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SA. Value of Blockchain in a Serial Supply Chain: Proofs

Proof of Proposition 1. We use backward induction to solve the game. Recall that the game

consists of three stages. First, in stage 3, suppliers 1 and 2 simultaneously choose q1 and q2 to

maximize their own expected profits, given w1 and w2 decided in previous stages. Specifically,

for supplier 1, the first-order condition of πS1(w2, q1|w1, q2) is
dπS1

(w2,q1|w1,q2)

dq1

∣

∣

∣

q1=q̃1(w1,w2,q2)
= (w1−

w2)q2−C ′(q̃1(w1,w2, q2)) = (w1−w2)q2−θγ(q̃1(w1,w2, q2))γ−1 =0. Taking the second-order deriva-

tive of πS1(w2, q1|w1, q2) w.r.t. q1 yields
d2πS1

(w2,q1|w1,q2)

dq21
=−C ′′(q1) =−θγ(γ− 1)qγ−2

1 < 0. Thereby,

supplier 1’s optimal quality in response to w1 and w2 is q̃1(w1,w2, q2) =
[

(w1−w2)q2
θγ

]
1

γ−1
. On the other

hand, for supplier 2, the first-order condition of πS2(q2|w2, q1) is
dπS2

(q2|w2,q1)

dq2

∣

∣

∣

q2=q̃2(w2,q1)
= w2q1 −

C ′(q̃2(w2, q1)) = w2q1 − θγ(q̃2(w2, q1))γ−1 = 0. Taking the second-order derivative of πS2(q2|w2, q1)

w.r.t. q2 yields
d2πS2

(q2|w2,q1)

dq22
=−C ′′(q2) =−θγ(γ−1)qγ−2

2 < 0. Thereby, supplier 2’s optimal quality

in response to w2 is q̃2(w2, q1) =
(

w2q1
θγ

)
1

γ−1
. Solving the suppliers’ best response functions yields

their optimal quality decisions in stage 3 as follows:

q̃1(w1,w2) =

[

(w1 −w2)γ−1w2

θγγγ

]
1

γ(γ−2)

, (SA.1)

q̃2(w1,w2) =

[

(w1 −w2)w
γ−1
2

θγγγ

]

1
γ(γ−2)

. (SA.2)

Next, consider stage 2, where supplier 1 chooses the contract to offer to supplier 2, w2, to maxi-

mize πS1(w2, q̃1(w1,w2)|w1, q̃2(w1,w2)), given w1 decided in stage 1. Plugging (SA.1) and (SA.2) into

πS2(q2|w2, q1), we have πS2(q̃2(w1,w2)|w2, q̃1(w1,w2)) = w2q̃1(w1,w2)q̃2(w1,w2) − θ(q̃2(w1,w2))γ =

(γ − 1)(w1 − w2)
1

γ−2w
γ−1
γ−2
2

(

1
θ

)
2

γ−2
(

1
γ

)

γ
γ−2

! 0 for any w1 ! w2 ! 0. Thus, IR2 is always satisfied.

Then, plugging (SA.1) and (SA.2) into (1), we have supplier 1’s problem as follows:

max
w2

πS1(w2|w1) =w1q̃1(w1,w2)q̃2(w1,w2)− θ(q̃1(w1,w2))
γ −w2q̃1(w1,w2)q̃2(w1,w2)

= (γ− 1)(w1−w2)
γ−1
γ−2w

1
γ−2
2

(

1

θ

)
2

γ−2
(

1

γ

)

γ
γ−2

.



2

We now analyze supplier 1’s optimal contracting decision. Taking the first-order derivative of

πS1(w2|w1) w.r.t. w2 yields

dπS1(w2|w1)

dw2
=

γ− 1

γ− 2
(w1 −w2)

1
γ−2w

3−γ
γ−2
2

(

1

θ

)
2

γ−2
(

1

γ

)

γ
γ−2
(

w1 − γw2

)

. (SA.3)

Solving (SA.3) yields the solution of supplier 1’s first-order condition as follows:

w̃2(w1) =
w1

γ
. (SA.4)

Then, we need to show that w̃2(w1) is supplier 1’s optimal contracting decision. In particular, we

will prove that the sufficient condition of the local maximum is able to guarantee the unique global

maximum, the underlying idea of which was used by Petruzzi and Dada (1999) and Aydin and

Porteus (2008). Taking the second-order derivative of πS1(w2|w1) w.r.t. w2 yields

d2πS1(w2|w1)

dw2
2

=
γ− 1

γ− 2
(w1 −w2)

3−γ
γ−2w

5−2γ
γ−2
2

(

1

θ

)
2

γ−2
(

1

γ

)

γ
γ−2

·

[

− γw2(w1 −w2)+
3− γ

γ− 2
(w1 − γw2)(w1 −w2)−

1

γ− 2
(w1 − γw2)w2

]

.

By Assumption 2 and w̃2(w1) < w1, we can show that
d2πS1

(w2|w1)

dw2
2

∣

∣

∣

w̃2(w1)
< 0. Hence, w̃2(w1) is a

strict local maximum. Suppose now that there exist more than one, say two, interior stationary

points for the function πS1(w2|w1). Because both points need to be local maxima, the function

should also have an interior local minimum somewhere in between, which is a contradiction to the

result that all interior stationary points are local maxima. Consequently, we can conclude that there

exists only one stationary point w̃2(w1) that satisfies (SA.4), which is the unique local maximum,

and also the unique global maximum. Thus, w̃2(w1) is supplier 1’s optimal contracting decision.

Then, plugging (SA.4) into (SA.1) and (SA.2), we have

q̃1(w1) =

[

(γ− 1)γ−1wγ
1

θγγ2γ

]
1

γ(γ−2)

, (SA.5)

q̃2(w1) =

[

(γ− 1)wγ
1

θγγ2γ

]
1

γ(γ−2)

. (SA.6)

Comparing (SA.5) and (SA.6) yields q̃1(w1)
q̃2(w1)

= (γ− 1)
1
γ ! 1.

Next, consider stage 1, where the buyer chooses the contract to offer to supplier 1, w1, to maximize

πB(w1|q̃1(w1, w̃2(w1)), q̃2(w1, w̃2(w1))). Plugging (SA.4) into πS1(w2|w1), we have πS1(w̃2(w1)|w1) =

(γ− 1)
[

w1 − w̃2(w1)
]

γ−1
γ−2
[

w̃2(w1)
]

1
γ−2
(

1
θ

)
2

γ−2
(

1
γ

)

γ
γ−2

= (γ − 1)
2γ−3
γ−2 w

γ
γ−2
1

(

1
θ

)
2

γ−2
(

1
γ

)

2γ
γ−2

! 0 for any

w1 ! 0. Thus, IR1 is always satisfied. Then, plugging (SA.4), (SA.5) and (SA.6) into (1), we have

the buyer’s problem as follows:
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max
w1

πB(w1) = (p+ l)q̃1(w1)q̃2(w1)− l−w1q̃1(w1)q̃2(w1)

= (p+ l−w1)(γ− 1)
1

γ−2w
2

γ−2
1

(

1

θ

)
2

γ−2
(

1

γ

)
4

γ−2

− l.

We now analyze the buyer’s optimal contracting decision. Taking the first-order derivative of

πB(w1) w.r.t. w1 yields

dπB(w1)

dw1
=

1

γ− 2
(γ− 1)

1
γ−2w

4−γ
γ−2
1

(

1

θ

)
2

γ−2
(

1

γ

)
4

γ−2
[

2(p+ l)− γw1

]

. (SA.7)

Solving (SA.7) yields the solution of the buyer’s first-order condition as follows:

wN‡
1 =

2(p+ l)

γ
. (SA.8)

Then, we need to show that wN‡
1 is the buyer’s optimal contracting decision. Similar to the previous

proof, if the stationary point characterized in (SA.8) is a strict local maximum, then wN‡
1 must

be the unique global maximum, proved by contradiction. Taking the second-order derivative of

πB(w1) w.r.t. w1 yields

d2πB(w1)

dw2
1

=
1

γ− 2
(γ− 1)

1
γ−2w

6−2γ
γ−2
1

(

1

θ

)
2

γ−2
(

1

γ

)
4

γ−2
[(

4− γ

γ− 2

)[

2(p+ l)− γw1

]

− γw1

]

.

By Assumption 2, we can show that d2πB(w1)

dw2
1

∣

∣

∣

w
N‡
1

< 0. Thus, wN‡
1 is the buyer’s optimal contracting

decision.

Finally, plugging wN‡
1 into (SA.4), (SA.5) and (SA.6), we obtain the suppliers’ equilibrium quality

and contracting decisions: wN‡
2 = 2(p+l)

γ2 , qN‡
1 =

[

2(p+l)(γ−1)
γ−1
γ

θγ3

]

1
γ−2

, qN‡
2 =

[

2(p+l)(γ−1)
1
γ

θγ3

]
1

γ−2

. By

Assumptions 1 and 2, we have qN‡
i ∈ (0,1) for i ∈ {1,2}. Moreover, we can show that wN‡

1 /wN‡
2 =

γ ! 2 and qN‡
1 /qN‡

2 = (γ− 1)
1
γ ! 1. "

Proof of Proposition 2. We use backward induction to solve the game. Recall that the game con-

sists of three stages. First, in stage 3, suppliers 1 and 2 simultaneously choose q1 and q2 to maximize

their own expected profits, given w1 and w2 decided in previous stages. Specifically, for supplier 1,

the first-order condition of πS1(w2, q1|w1, q2) is
dπS1

(w2,q1|w1,q2)

dq1

∣

∣

∣

q1=q̃1(w1,q2)
=w1q2 −C ′(q̃1(w1, q2)) =

w1q2−θγ(q̃1(w1, q2))γ−1 = 0. Taking the second-order derivative of πS1(w2, q1|w1, q2) w.r.t. q1 yields
d2πS1

(w2,q1|w1,q2)

dq21
=−C ′′(q1) =−θγ(γ−1)qγ−2

1 < 0. Thereby, supplier 1’s optimal quality in response

to w1 is q̃1(w1, q2) =
(

w1q2
θγ

)
1

γ−1
. On the other hand, for supplier 2, the first-order condition of

πS2(q2|w2) is
dπS2

(q2|w2)

dq2

∣

∣

∣

q2=q̃2(w2)
= w2 − C ′(q̃2(w2)) = w2 − θγ(q̃2(w2))γ−1 = 0. Taking the second-

order derivative of πS2(q2|w2) w.r.t. q2 yields
d2πS2

(q2|w2)

dq22
=−C ′′(q2) =−θγ(γ−1)qγ−2

2 < 0. Thereby,
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supplier 2’s optimal quality in response to w2 is q̃2(w2) =
(

w2
θγ

)
1

γ−1
. Solving the suppliers’ best

response functions yields their optimal quality decisions in stage 3 as follows:

q̃1(w1,w2) =

(

wγ−1
1 w2

θγγγ

)

1
(γ−1)2

, (SA.9)

q̃2(w2) =

(

w2

θγ

)
1

γ−1

. (SA.10)

Next, consider stage 2, where supplier 1 chooses the contract to offer to supplier 2, w2, to maxi-

mize πS1(w2, q̃1(w1,w2)|w1, q̃2(w2)), given w1 decided in stage 1. Plugging (SA.10) into πS2(q2|w2),

we have πS2(q̃2(w2)|w2) = w2q̃2(w2)− θ(q̃2(w2))γ = (γ − 1)w
γ

γ−1
2

(

1
θ

)
1

γ−1
(

1
γ

)

γ
γ−1

! 0 for any w2 ! 0.

Thus, IR2 is always satisfied. Then, plugging (SA.9) and (SA.10) into (2), we have supplier 1’s

problem as follows:

max
w2

πS1(w2|w1) =w1q̃1(w1,w2)q̃2(w2)− θ(q̃1(w1,w2))
γ −w2q̃2(w2)

= (γ− 1)w
γ

γ−1
1 w

γ

(γ−1)2

2

(

1

θ

)

2γ−1
(γ−1)2

(

1

γ

)

γ2

(γ−1)2

−w
γ

γ−1
2

(

1

θγ

)
1

γ−1

.

We now analyze supplier 1’s optimal contracting decision. Taking the first-order derivative of

πS1(w2|w1) w.r.t. w2 yields

dπS1(w2|w1)

dw2
=

γ

γ− 1
w

3γ−γ2−1
(γ−1)2

2

(

1

θγ

)
1

γ−1



w
γ

γ−1
1

(

1

θ

)

γ

(γ−1)2
(

1

γ

)

γ2−γ+1
(γ−1)2

−w
γ(γ−2)

(γ−1)2

2



 . (SA.11)

Solving (SA.11) yields the solution of supplier 1’s first-order condition as follows:

w̃2(w1) =

[

wγ(γ−1)
1

θγγγ2−γ+1

]
1

γ(γ−2)

. (SA.12)

Then, we need to show that w̃2(w1) is supplier 1’s optimal contracting decision. In similar fashion

to the proof of Proposition 1, if the stationary point characterized in (SA.12) is a strict local

maximum, then w̃2(w1) must be the unique global maximum, proved by contradiction. Taking the

second-order derivative of πS1(w2|w1) w.r.t. w2 yields

d2πS1(w2|w1)

dw2
2

=
−1

(γ− 1)3
w

−2γ2+5γ−2
(γ−1)2

2

(

1

θ

)
1

γ−1
(

1

γ

)

2−γ
γ−1

·

[

γ(γ− 2)w
γ(γ−2)

(γ−1)2

2 +(γ2 − 3γ+1)

[

w
γ

γ−1
1

(

1

θ

)

γ

(γ−1)2
(

1

γ

)

γ2−γ+1
(γ−1)2

−w
γ(γ−2)

(γ−1)2

2

]]

.

By Assumption 2, we can show that
d2πS1

(w2|w1)

dw2
2

∣

∣

∣

w̃2(w1)
< 0. Thus, w̃2(w1) is supplier 1’s optimal

contracting decision. Then, plugging (SA.12) into (SA.9) and (SA.10), we have

q̃1(w1) =

[

wγ
1

θγγγ+1

]
1

γ(γ−2)

, (SA.13)
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q̃2(w1) =

[

wγ
1

θγγ2γ−1

]
1

γ(γ−2)

. (SA.14)

Comparing (SA.13) and (SA.14) yields q̃1(w1)
q̃2(w1)

= γ
1
γ > 1.

Next, consider stage 1, where the buyer chooses the contract to offer to supplier 1, w1,

to maximize πB(w1|q̃1(w1, w̃2(w1)), q̃2(w̃2(w1))). Plugging (SA.12) into πS1(w2|w1), we have

πS1(w̃2(w1)|w1) = (γ − 1)w
γ

γ−1
1

[

w̃2(w1)
]

γ

(γ−1)2
(

1
θ

)

2γ−1
(γ−1)2

(

1
γ

)

γ2

(γ−1)2 −
[

w̃2(w1)
]

γ
γ−1
(

1
θγ

)
1

γ−1
= (γ −

2)w
γ

γ−2
1

(

1
θ

)
2

γ−2
(

1
γ

)

γ+1
γ−2

! 0 for any w1 ! 0. Thus, IR1 is always satisfied. Then, plugging (SA.12),

(SA.13) and (SA.14) into (2), we have the buyer’s problem as follows:

max
w1

πB(w1) = (p+ l)q̃1(w1)q̃2(w1)− l−w1q̃1(w1)q̃2(w1)

= (p+ l−w1)w
2

γ−2
1

(

1

θ

)
2

γ−2
(

1

γ

)
3

γ−2

− l.

We now analyze the buyer’s optimal contracting decision. Taking the first-order derivative of

πB(w1) w.r.t. w1 yields

dπB(w1)

dw1
=

1

γ− 2
w

4−γ
γ−2
1

(

1

θ

)
2

γ−2
(

1

γ

)
3

γ−2
[

2(p+ l)− γw1

]

. (SA.15)

Solving (SA.15) yields the solution of the buyer’s first-order condition as follows:

wT‡
1 =

2(p+ l)

γ
. (SA.16)

Then, we need to show that wT‡
1 is the buyer’s optimal contracting decision. Similar to the previous

proof, if the stationary point characterized in (SA.16) is a strict local maximum, then wT‡
1 must

be the unique global maximum, proved by contradiction. Taking the second-order derivative of

πB(w1) w.r.t. w1 yields

d2πB(w1)

dw2
1

=
1

γ− 2
w

6−2γ
γ−2
1

(

1

θ

)
2

γ−2
(

1

γ

)
3

γ−2
[(

4− γ

γ− 2

)[

2(p+ l)− γw1

]

− γw1

]

.

By Assumption 2, we can show that d2πB(w1)
dw2

1

∣

∣

∣

w
T‡
1

< 0. Thus, wT‡
1 is the buyer’s optimal contracting

decision.

Finally, plugging wT‡
1 into (SA.12), (SA.13) and (SA.14), we obtain the suppliers’ equilibrium

quality and contracting decisions: wT‡
2 =

[

2(p+ l)
]

γ−1
γ−2
(

1
θ

)
1

γ−2

(

1
γ

)

2γ2−2γ+1
γ(γ−2)

, qT‡
1 =

[

2(p+l)

θγ
2+ 1

γ

]
1

γ−2

, qT‡
2 =

[

2(p+l)

θγ
3− 1

γ

]
1

γ−2

. By Assumptions 1 and 2, we have qT‡
i ∈ (0,1) for i ∈ {1,2}. Moreover, we can show

that wT‡
1 /wT‡

2 = γ/qT‡
1 > γ and qT‡

1 /qT‡
2 = γ

1
γ > 1. "
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Proof of Theorem 1. The theorem follows from comparing the equilibrium contracts and sup-

pliers’ quality decisions characterized in Propositions 1 and 2. By Assumptions 1 and 2, we have

wT‡
2 <wN‡

2 ⇔
[

2(p+ l)
]

γ−1
γ−2

(

1

θ

)
1

γ−2
(

1

γ

)

2γ2−2γ+1
γ(γ−2)

<
2(p+ l)

γ2
⇔

[

2(p+ l)

θγ2+ 1
γ

]
1

γ−2

< 1,

qT‡
1 > qN‡

1 ⇔

[

2(p+ l)

θγ2+ 1
γ

]
1

γ−2

>

[

2(p+ l)(γ− 1)
γ−1
γ

θγ3

]
1

γ−2

⇔ γ
γ−1
γ > (γ− 1)

γ−1
γ ,

qT‡
2 > qN‡

2 ⇔

[

2(p+ l)

θγ3− 1
γ

]
1

γ−2

>

[

2(p+ l)(γ− 1)
1
γ

θγ3

]
1

γ−2

⇔ γ
1
γ > (γ− 1)

1
γ ,

wT‡
1

wT‡
2

>
wN‡

1

wN‡
2

⇔
γ

qT‡
1

> γ,
qT‡
1

qT‡
2

>
qN‡
1

qN‡
2

⇔ γ
1
γ > (γ− 1)

1
γ .

By Assumptions 1 and 2, the above inequalities always hold. Hence, the theorem is proved. "

Proof of Theorem 2. Consider the case without traceability. Based on the equilibrium charac-

terized in Proposition 1, we obtain the equilibrium expected profits for the buyer, the downstream

and the upstream suppliers, and the entire supply chain as follows:

πN‡
B = (γ− 2)(γ− 1)

1
γ−2 2

2
γ−2 (p+ l)

γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

γ+4
γ−2

− l,

πN‡
S1

= (γ− 1)
2γ−3
γ−2 2

γ
γ−2 (p+ l)

γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

3γ
γ−2

,

πN‡
S2

= (γ− 1)
γ−1
γ−2 2

γ
γ−2 (p+ l)

γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

3γ
γ−2

,

πN‡
SC = πN‡

B +πN‡
S1

+πN‡
S2

.

Consider the case with traceability. Based on the equilibrium characterized in Proposition 2, we

obtain the equilibrium expected profits for the buyer, the downstream and the upstream suppliers,

and the entire supply chain as follows:

πT‡
B = (γ− 2)2

2
γ−2 (p+ l)

γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

γ+3
γ−2

− l,

πT‡
S1

= (γ− 2)2
γ

γ−2 (p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ+1
γ−2

,

πT‡
S2

= (γ− 1)2
γ

γ−2 (p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

3γ−1
γ−2

,

πT‡
SC = πT‡

B +πT‡
S1

+πT‡
S2
.

We next compare the buyer’s equilibrium expected profits with and without traceability. By

Assumptions 1 and 2, it is easy to see that πT‡
B > πN‡

B always hold.
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We then compare the downstream supplier’s equilibrium expected profits with and without

traceability. By Assumptions 1 and 2, we have

πT‡
S1

> πN‡
S1

⇔ (γ− 2)2
γ

γ−2 (p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ+1
γ−2

> (γ− 1)
2γ−3
γ−2 2

γ
γ−2 (p+ l)

γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

3γ
γ−2

⇔ (γ− 2)γ−2γγ−1 > (γ− 1)2γ−3

⇔ (γ− 2) log(γ− 2)+ (γ− 1) logγ− (2γ− 3) log(γ− 1)> 0.

Denote D1(γ) ≡ (γ − 2) log(γ − 2) + (γ − 1) logγ − (2γ − 3) log(γ − 1). Taking the first- and

second-order derivatives of D1(γ) w.r.t. γ, we have D′
1(γ) = log

[

γ(γ−2)
(γ−1)2

]

+ 1
γ(γ−1)

and D′′
1 (γ) =

3γ−2
γ2(γ−1)2(γ−2)

. Since D′′
1 (γ) > 0 by Assumption 2, we know that D′

1(γ) increases in γ, and

thus, D′
1(γ) < limγ→+∞D′

1(γ) = log 1 = 0, for any γ ! 2. Hence, D1(γ) decreases in γ, and

thus, D1(γ) > limγ→+∞D1(γ) = limγ→+∞

[

γ log
(

γ−2
γ−1

)

+ γ log
(

γ
γ−1

)

+2 log
(

γ−1
γ−2

)

+ log
(

γ−1
γ

)]

=

limγ→+∞

[

− γ2

(γ−2)(γ−1)
+ γ

γ−1

]

= 0. Therefore, we can see that πT‡
S1

> πN‡
S1

always holds.

We then compare the upstream supplier’s equilibrium expected profits with and without trace-

ability. By Assumptions 1 and 2, it is easy to show that πT‡
S2

> πN‡
S2

always holds. Therefore, we can

also see that πT‡
SC > πN‡

SC always holds.

Finally, we compare the changes of the two suppliers’ equilibrium expected profits due to trace-

ability. By Assumptions 1 and 2, we have

πT‡
S2

−πN‡
S2

> πT‡
S1

−πN‡
S1

⇔ (γ− 1)

(

1

γ

)

3γ−1
γ−2

− (γ− 1)
γ−1
γ−2

(

1

γ

)

3γ
γ−2

> (γ− 2)

(

1

γ

)

2γ+1
γ−2

− (γ− 1)
2γ−3
γ−2

(

1

γ

)

3γ
γ−2

⇔

(

γ2 − 3γ+2

γ2 − 3γ+1

)γ−2

>
γ

γ− 1

⇔ (γ− 2) log

(

γ2 − 3γ+2

γ2 − 3γ+1

)

− log

(

γ

γ− 1

)

> 0.

Denote D2(γ) ≡ (γ − 2) log
(

γ2−3γ+2
γ2−3γ+1

)

− log
(

γ
γ−1

)

. Taking the first- and second-order

derivatives of D2(γ) w.r.t. γ, we have D′
2(γ) = log

(

γ2−3γ+2
γ2−3γ+1

)

− γ+1
γ(γ2−3γ+1)

and D′′
2 (γ) =

2γ−3
γ2−3γ+1

[

1
γ2−3γ+1

− 1
γ2−3γ+2

]

+ 3γ(γ−2)+1
γ2(γ2−3γ+1)2

. Since D′′
2 (γ)> 0 by Assumption 2, we know that D′

2(γ)

increases in γ, and thus, D′
2(γ)< limγ→+∞D′

2(γ) = log1 = 0, for any γ ! 2. Hence, D2(γ) decreases

in γ, and thus, D2(γ)> limγ→+∞D2(γ) = limγ→+∞

log

(

γ2−3γ+2
γ2−3γ+1

)

1
γ−2

− log 1 = limγ→+∞
(2γ−3)(γ−2)

(γ2−3γ+1)(γ−1)
=

0. Therefore, we can see that πT‡
S2

−πN‡
S2

> πT‡
S1

−πN‡
S1

always holds. "

SB. Value of Blockchain in a Parallel Supply Chain: Proofs

Proof of Proposition 3. We first derive the suppliers’ optimal quality decisions. Given wi, sup-

plier i ∈ {1,2} chooses qi to maximize πSi
(qi|wi, q−i). For supplier i, the first-order condition of

πSi
(qi|wi, q−i) is

dπSi
(qi|wi,q−i)

dqi

∣

∣

∣

qi=q̃i(wi,q−i)
= wiq−i −C ′(q̃i(wi, q−i)) = wiq−i − θγ(q̃i(wi, q−i))γ−1 = 0.
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Taking the second-order derivative of πSi
(qi|wi, q−i) w.r.t. qi yields

d2πSi
(qi|wi,q−i)

dq2i
= −C ′′(qi) =

−θγ(γ − 1)qγ−2
i < 0. Thereby, supplier i’s optimal quality in response to wi is q̃i(wi, q−i) =

(

wiq−i

θγ

)
1

γ−1
. Solving the suppliers’ best response functions yields their optimal quality decisions:

q̃i(wi,w−i) =

(

wγ−1
i w−i

θγγγ

)

1
γ(γ−2)

. (SB.1)

Next, consider the buyer’s problem. Plugging (SB.1) into πSi
(qi|wi, q−i), we have

πSi
(q̃i(wi,w−i)|wi, q̃−i(wi,w−i)) = wiq̃i(wi,w−i)q̃−i(wi,w−i) − θ(q̃i(wi,w−i))γ = (γ −

1)w
γ−1
γ−2
i w

1
γ−2
−i

(

1
θ

)
2

γ−2
(

1
γ

)

γ
γ−2

! 0 for any wi ! 0 and w−i ! 0. Thus, IRi is always satisfied. Then,

plugging (SB.1) into (3), we have the buyer’s problem as follows:

max
w1,w2

πB(w1,w2) = (p+ l)q̃1(w1,w2)q̃2(w1,w2)− l− (w1 +w2)q̃1(w1,w2)q̃2(w1,w2)

= (p+ l−w1 −w2)w
1

γ−2
1 w

1
γ−2
2

(

1

θγ

)
2

γ−2

− l.

We now analyze the buyer’s optimal contracting decisions. Taking the first-order derivatives of

πB(w1,w2) w.r.t. w1 and w2 yields

∂πB(w1,w2)

∂w1
=w

3−γ
γ−2
1 w

1
γ−2
2

(

1

θγ

)
2

γ−2
[

p+ l−w1 −w2

γ− 2
−w1

]

, (SB.2)

∂πB(w1,w2)

∂w2
=w

1
γ−2
1 w

3−γ
γ−2
2

(

1

θγ

)
2

γ−2
[

p+ l−w1 −w2

γ− 2
−w2

]

. (SB.3)

Solving (SB.2) and (SB.3) yields the solution of the buyer’s first-order conditions as follows:

wN†
1 =wN†

2 =
p+ l

γ
. (SB.4)

Then, we need to show that (wN†
1 ,wN†

2 ) are the buyer’s optimal contracting decisions. In particular,

we will prove that the sufficient conditions of the local maximum are able to guarantee the unique

global maximum, the underlying idea of which was used by Petruzzi and Dada (1999) and Aydin

and Porteus (2008). Taking the second-order derivatives of πB(w1,w2) w.r.t. w1 and w2 yields

∂2πB(w1,w2)

∂w2
1

=
1

γ− 2
w

5−2γ
γ−2
1 w

1
γ−2
2

(

1

θγ

)
2

γ−2
[

(3− γ)(p+ l−w1 −w2)

γ− 2
− 2w1

]

,

∂2πB(w1,w2)

∂w2
2

=
1

γ− 2
w

1
γ−2
1 w

5−2γ
γ−2
2

(

1

θγ

)
2

γ−2
[

(3− γ)(p+ l−w1 −w2)

γ− 2
− 2w2

]

,

∂2πB(w1,w2)

∂w1∂w2
=

1

γ− 2
w

3−γ
γ−2
1 w

3−γ
γ−2
2

(

1

θγ

)
2

γ−2
[

p+ l−w1 −w2

γ− 2
−w1 −w2

]

.

By Assumption 2, we can show that the Hessian of πB(w1,w2) is negative definite in the neighbor-

hood of (wN†
1 ,wN†

2 ). Hence, (wN†
1 ,wN†

2 ) is a strict local maximum. Suppose now that there exist
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more than one, say two, interior stationary points for the function πB(w1,w2). Because both points

need to be local maxima, the function should also have an interior local minimum somewhere in

between, which is a contradiction to the result that all interior stationary points are local max-

ima. Consequently, we can conclude that there exists only one stationary point (wN†
1 ,wN†

2 ) that

satisfies (SB.4), which is the unique local maximum, and also the unique global maximum. Thus,

(wN†
1 ,wN†

2 ) are the buyer’s optimal contracting decisions.

Finally, plugging (wN†
1 ,wN†

2 ) into (SB.1), we obtain the suppliers’ optimal quality decisions:

qN†
1 = qN†

2 =
(

p+l
θγ2

)
1

γ−2
. By Assumptions 1 and 2, we have qN†

i ∈ (0,1) for i∈ {1,2}. "

Proof of Proposition 4. We first derive the suppliers’ optimal quality decisions. Given wi, sup-

plier i∈ {1,2} chooses qi to maximize πSi
(qi|wi). For supplier i, the first-order condition of πSi

(qi|wi)

is
dπSi

(qi|wi)

dqi

∣

∣

∣

qi=q̃i(wi)
=wi −C ′(q̃i(wi)) =wi − θγ(q̃i(wi))γ−1 =0. Taking the second-order derivative

of πSi
(qi|wi) w.r.t. qi yields

d2πSi
(qi|wi)

dq2
i

=−C ′′(qi) =−θγ(γ − 1)qγ−2
i < 0. Thereby, the solution of

the first-order condition is supplier i’s optimal quality in response to wi. Solving the suppliers’ best

response functions yields their optimal quality decisions:

q̃i(wi) =

(

wi

θγ

)
1

γ−1

. (SB.5)

Next, consider the buyer’s problem. Plugging (SB.5) into πSi
(qi|wi), we have πSi

(q̃i(wi)|wi) =

wiq̃i(wi)− θ(q̃i(wi))γ = (γ − 1)w
γ

γ−1
i

(

1
θ

)
1

γ−1

(

1
γ

)

γ
γ−1

! 0 for any wi ! 0 and w−i ! 0. Thus, IRi is

always satisfied. Then, plugging (SB.5) into (4), we have the buyer’s problem as follows:

max
w1,w2

πB(w1,w2) = pq̃1(w1)q̃2(w2)+
1

2
(p− l)q̃1(w1)

[

1− q̃2(w2)

]

+
1

2
(p− l)q̃2(w2)

[

1− q̃1(w1)

]

− l

[

1− q̃1(w1)

][

1− q̃2(w2)

]

−w1q̃1(w1)−w2q̃2(w2)

=
1

2
(p+ l)

(

1

θγ

)
1

γ−1
[

w
1

γ−1
1 +w

1
γ−1
2

]

− l−w
γ

γ−1
1

(

1

θγ

)
1

γ−1

−w
γ

γ−1
2

(

1

θγ

)
1

γ−1

.

We now analyze the buyer’s optimal contracting decisions. Taking the first-order derivatives of

πB(w1,w2) w.r.t. w1 and w2 yields

∂πB(w1,w2)

∂w1
=

1

γ− 1
w

2−γ
γ−1
1

(

1

θγ

)
1

γ−1
[

1

2
(p+ l)− γw1

]

, (SB.6)

∂πB(w1,w2)

∂w2
=

1

γ− 1
w

2−γ
γ−1
2

(

1

θγ

)
1

γ−1
[

1

2
(p+ l)− γw2

]

. (SB.7)

Solving (SB.6) and (SB.7) yields the solution of the buyer’s first-order conditions as follows:

wT†
1 =wT†

2 =
p+ l

2γ
. (SB.8)
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Then, we need to show that (wT†
1 ,wT†

2 ) are the buyer’s optimal contracting decisions. In similar

fashion to the proof of Proposition 3, if the stationary point characterized in (SB.8) is a strict local

maximum, then (wT†
1 ,wT†

2 ) must be the unique global maximum, proved by contradiction. Taking

the second-order derivatives of πB(w1,w2) w.r.t. w1 and w2 yields

∂2πB(w1,w2)

∂w2
1

=
1

2(γ− 1)2
w

3−2γ
γ−1
1

(

1

θγ

)
1

γ−1
[

(2− γ)(p+ l)− 2γw1

]

,

∂2πB(w1,w2)

∂w2
2

=
1

2(γ− 1)2
w

3−2γ
γ−1
2

(

1

θγ

)
1

γ−1
[

(2− γ)(p+ l)− 2γw2

]

,

∂2πB(w1,w2)

∂w1∂w2
=0.

By Assumption 2, we can show that the Hessian of πB(w1,w2) is negative definite in the neighbor-

hood of (wT†
1 ,wT†

2 ). Thus, (wT†
1 ,wT†

2 ) are the buyer’s optimal contracting decisions.

Finally, plugging (wT†
1 ,wT†

2 ) into (SB.5), we obtain the suppliers’ optimal quality decisions: qT†
1 =

qT†
2 =

(

p+l
2θγ2

)
1

γ−1
. By Assumptions 1 and 2, we have qT†

i ∈ (0,1) for i ∈ {1,2}. "

Proof of Theorem 3. The theorem follows from comparing the equilibrium contracts and sup-

pliers’ quality decisions characterized in Propositions 3 and 4. First, it is easy to see that wT†
i <wN†

i

always holds. Second, by Assumptions 1 and 2, we have

qT†
i > qN†

i ⇔

(

p+ l

2θγ2

)
1

γ−1

>

(

p+ l

θγ2

)
1

γ−2

⇔

(

1

2

)
1

γ−1

>

(

p+ l

θγ2

)
1

(γ−2)(γ−1)

⇔
γ2

2γ−2
>

p+ l

θ
.

Thus, the comparison between qT†
i and qN†

i can be characterized by thresholds l̄, or p̄, or θ̄, or γ̄

such that qT†
i > qN†

i if l < l̄, or p< p̄, or θ> θ̄, or γ < γ̄; whereas qT†
i < qN†

i if l > l̄, or p > p̄, or θ< θ̄,

or γ > γ̄, where

l̄≡
θγ2

2γ−2
− p, p̄≡

θγ2

2γ−2
− l, θ̄≡

2γ−2(p+ l)

γ2
, γ̄ ≡

{

γ̄0 if p+l
θ

# 4,

2 if p+l
θ

> 4,

and γ̄0 is the unique solution to γ2

2γ−2 =
p+l
θ

in the range of γ > 2. Besides, γ̄0 > 4, and it is decreasing

in p and l, while increasing in θ. Hence, the theorem is proved. "

Proof of Theorem 4. Consider the case without traceability. Based on the equilibrium charac-

terized in Proposition 3, we obtain the equilibrium expected profits for the buyer, the suppliers,

and the entire supply chain as follows:

πN†
B = (γ− 2)(p+ l)

γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

γ+2
γ−2

− l,

πN†
Si

= (γ− 1)(p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

,

πN†
SC = (γ2 − 2)(p+ l)

γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

− l.
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Consider the case with traceability. Based on the equilibrium characterized in Proposition 4, we

obtain the equilibrium expected profits for the buyer, the suppliers, and the entire supply chain as

follows:

πT†
B = (γ− 1)(p+ l)

γ
γ−1

(

1

2θ

)
1

γ−1
(

1

γ

)

γ+1
γ−1

− l,

πT†
Si

= (γ− 1)

(

p+ l

2

)

γ
γ−1
(

1

θ

)
1

γ−1
(

1

γ

)

2γ
γ−1

,

πT†
SC = (γ2 − 1)(p+ l)

γ
γ−1

(

1

2θ

)
1

γ−1
(

1

γ

)

2γ
γ−1

− l.

We first compare the buyer’s equilibrium expected profits with and without traceability. By

Assumptions 1 and 2, we have

πT†
B > πN†

B ⇔ (γ− 1)(p+ l)
γ

γ−1

(

1

2θ

)
1

γ−1
(

1

γ

)

γ+1
γ−1

− l > (γ− 2)(p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

γ+2
γ−2

− l

⇔
(γ

2

)
1

γ−1
γ

2
(γ−2)(γ−1) >

(

γ− 2

γ− 1

)(

p+ l

θγ

)

γ
(γ−2)(γ−1)

.

The last inequality always holds since
(

γ
2

)
1

γ−1 ! 1, γ
2

(γ−2)(γ−1) > 1, γ−2
γ−1

< 1, and
(

p+l
θγ

)

γ
(γ−2)(γ−1)

< 1.

Hence, we can see that πT†
B > πN†

B always holds.

We then compare the suppliers’ equilibrium expected profits with and without traceability. By

Assumptions 1 and 2, we have

πT†
Si

> πN†
Si

⇔ (γ− 1)

(

p+ l

2

)

γ
γ−1
(

1

θ

)
1

γ−1
(

1

γ

)

2γ
γ−1

> (γ− 1)(p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

⇔

(

1

2

)

γ
γ−1

>

(

p+ l

θγ2

)

γ
(γ−2)(γ−1)

⇔
γ2

2γ−2
>

p+ l

θ
.

Thus, the comparison between πT†
Si

and πN†
Si

can be characterized by thresholds l̄, or p̄, or θ̄, or γ̄

such that πT†
Si

> πN†
Si

if l < l̄, or p < p̄, or θ > θ̄, or γ < γ̄; whereas πT†
Si

< πN†
Si

if l > l̄, or p > p̄, or

θ< θ̄, or γ > γ̄, where the thresholds l̄, p̄, θ̄, and γ̄ are characterized in the proof of Theorem 3.

Finally, we compare the equilibrium total supply chain profits with and without traceability. By

Assumptions 1 and 2, we have

πT†
SC > πN†

SC ⇔ (γ2 − 1)(p+ l)
γ

γ−1

(

1

2θ

)
1

γ−1
(

1

γ

)

2γ
γ−1

− l > (γ2 − 2)(p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

− l

⇔

(

γ2 − 1

γ2 − 2

)(

1

2

)
1

γ−1

>

(

p+ l

θγ2

)

γ
(γ−2)(γ−1)

⇔

(

γ2 − 1

γ2 − 2

)

γ
2

(γ−2)(γ−1)

(γ

2

)
1

γ−1
>

(

p+ l

θγ

)

γ
(γ−2)(γ−1)

.
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The last inequality always holds since γ2−1
γ2−2

> 1, γ
2

(γ−2)(γ−1) > 1,
(

γ
2

)
1

γ−1 ! 1, and
(

p+l
θγ

)

γ
(γ−2)(γ−1)

< 1.

Hence, we can see that πT†
SC > πN†

SC always holds. "

SC. Data Permission and Consensus Mechanism: Proofs

Proof of Proposition 5. The game consists of two stages. First, in stage 2, suppliers 1 and

2 simultaneously choose q1 and q2 to maximize their own expected profits, given w1 and w2

decided in stage 1. Specifically, for supplier i ∈ {1,2}, the first-order condition of πSi
(qi|wi) is

dπSi
(qi|wi)

dqi

∣

∣

∣

qi=q̃i(wi)
=wi−θγ(q̃i(wi))γ−1 =0. Taking the second-order derivative of πSi

(qi|wi) w.r.t. qi

yields
d2πSi

(qi|wi)

dq2
i

=−θγ(γ−1)qγ−2
i < 0. Thereby, the solution of the first-order condition is supplier

i’s optimal quality in response to wi and ti. Solving the suppliers’ best response functions yields

their optimal quality decisions:

q̃i(wi) =

(

wi

θγ

)
1

γ−1

. (SC.1)

Next, consider stage 1, where the buyer chooses the contract to offer to suppliers 1 and 2, w1 and

w2, to maximize πB(w1,w2|q̃1(w1), q̃2(w2)). Plugging (SC.1) into πSi
(qi|wi), we have πSi

(q̃i(wi)|wi) =

wiq̃i(wi)−θ(q̃i(wi))γ = (γ−1)w
γ

γ−1
i

(

1
θ

)
1

γ−1

(

1
γ

)

γ
γ−1

! 0 for any wi ! 0. Thus, IRi is always satisfied.

Then, plugging (SC.1) into (C.1), we have the buyer’s problem as follows:

max
w1,w2

πB(w1,w2) = (p+ l)q̃1(w1)q̃2(w1)− l−w1q̃1(w1)−w2q̃2(w1)

= (p+ l)w
1

γ−1
1 w

1
γ−1
2

(

1

θγ

)
2

γ−1

−w
γ

γ−1
1

(

1

θγ

)
1

γ−1

−w
γ

γ−1
2

(

1

θγ

)
1

γ−1

− l.

We now analyze the buyer’s optimal contracting decisions. Taking the first-order derivatives of

πB(w1,w2) w.r.t. w1 and w2 yields

∂πB(w1,w2)

∂w1
=

1

γ− 1
w

2−γ
γ−1
1

(

1

θγ

)
1

γ−1
[

(p+ l)w
1

γ−1
2

(

1

θγ

)
1

γ−1

− γw1

]

, (SC.2)

∂πB(w1,w2)

∂w2
=

1

γ− 1
w

2−γ
γ−1
2

(

1

θγ

)
1

γ−1
[

(p+ l)w
1

γ−1
1

(

1

θγ

)
1

γ−1

− γw2

]

. (SC.3)

Solving (SC.2) and (SC.3) yields the solution of the buyer’s first-order conditions as follows:

wR‡
1 =wR‡

2 = (p+ l)
γ−1
γ−2

(

1

θ

)
1

γ−2
(

1

γ

)

γ
γ−2

. (SC.4)

Then, we need to show that (wR‡
1 ,wR‡

2 ) are the buyer’s optimal contracting decisions. In similar

fashion to the proof of Proposition 3, by Assumption 2, we can show that the Hessian of πB(w1,w2)

is negative definite in the neighborhood of (wR‡
1 ,wR‡

2 ). Thus, (wR‡
1 ,wR‡

2 ) are the buyer’s optimal

contracting decisions.
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Finally, plugging (wR‡
1 ,wR‡

2 ) into (SC.1), we obtain the suppliers’ optimal quality decisions:

qR‡
1 = qR‡

2 =
(

p+l
θγ2

)
1

γ−2
. By Assumptions 1 and 2, we have qR‡

i ∈ (0,1) for i∈ {1,2}. "

Proof of Theorem 5 and Proposition 6. Under restricted data permission, based on the equilib-

rium characterized in Proposition 5, we obtain the equilibrium expected profits for the buyer, the

downstream and the upstream suppliers, and the entire supply chain as follows:

πR‡
B = (γ− 2)(p+ l)

γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

γ+2
γ−2

− l,

πR‡
S1

= (γ− 1)(p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

,

πR‡
S2

= (γ− 1)(p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

,

πR‡
SC = πR‡

B +πR‡
S1

+πR‡
S2

= (γ2 − 2)(p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

− l.

The equilibrium profits under unrestricted data permission are characterized in the proof of The-

orem 2.

We first compare the equilibrium total supply chain profits under restricted and unrestricted

data permission. By Assumptions 1 and 2, we have

πR‡
SC > πT‡

SC ⇔ (γ2 − 2)(p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

− l > (γ3 − 2γ− 2)2
2

γ−2 (p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

3γ−1
γ−2

− l

⇔ (γ2 − 2)γ
γ−1
γ−2 > (γ3 − 2γ− 2)2

2
γ−2 .

Thus, the comparison between πR‡
SC and πT‡

SC can be characterized by threshold γ̄1, which is the

unique solution to (γ2 − 2)γ
γ−1
γ−2 = (γ3 − 2γ− 2)2

2
γ−2 in the range of γ > 2, such that πR‡

SC > πT‡
SC if

γ > γ̄1; whereas π
R‡
SC < πT‡

SC if γ < γ̄1.

We then compare the buyer’s equilibrium expected profits under restricted and unrestricted data

permission. By Assumptions 1 and 2, we have

πR‡
B > πT‡

B ⇔ (γ− 2)(p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

γ+2
γ−2

− l > (γ− 2)2
2

γ−2 (p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

γ+3
γ−2

− l

⇔ γ > 4.

Thus, the comparison between πR‡
B and πT‡

B can be characterized by threshold γ̄2 = 4 such that

πR‡
B < πT‡

B if γ < γ̄2; whereas π
R‡
B > πT‡

B if γ > γ̄2.

We then compare the downstream supplier’s equilibrium expected profits under restricted and

unrestricted data permission. By Assumptions 1 and 2, we have
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πR‡
S1

< πT‡
S1

⇔ (γ− 1)(p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

> (γ− 2)2
γ

γ−2 (p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ+1
γ−2

⇔

(

γ− 1

γ− 2

)

γ
1

γ−2

(

1

2

)

γ
γ−2

< 1.

The last inequality always holds by Assumption 2. Thus, πR‡
S1

< πT‡
S1

always holds.

Finally, we compare the upstream supplier’s equilibrium expected profits under restricted and

unrestricted data permission. By Assumptions 1 and 2, we have

πR‡
S2

> πT‡
S2

⇔ (γ− 1)(p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

> (γ− 1)2
γ

γ−2 (p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

3γ−1
γ−2

⇔ γγ−1 > 2γ .

Thus, the comparison between πR‡
S2

and πT‡
S2

can be characterized by threshold γ̄3, which is the

unique solution to γγ−1 = 2γ in the range of γ > 2, such that πR‡
S2

< πT‡
S2

if γ < γ̄3; whereas π
R‡
S2

> πT‡
S2

if γ > γ̄3. "

Proof of Theorem 6. The theorem can be proved by comparing Theorem 5 to Proposition 6.

"

Proof of Proposition C.1. We first derive the suppliers’ optimal quality and transfer pay-

ment decisions. Given wi and ti, supplier i ∈ {1,2} chooses qi and t−i to maximize

πSi
(qi, t−i|wi, ti, q−i). For supplier i, the first-order conditions of πSi

(qi, t−i|wi, ti, q−i) are
∂πSi

(qi,t−i|wi,ti,q−i)

∂qi

∣

∣

∣

qi=q̃i(wi,w−i),t−i=t̃−i(wi,w−i)
= (wi− ti+ t̃−i(wi,w−i))q−i+ ti−θγ(q̃i(wi,w−i))γ−1 =0

and
∂πSi

(qi,t−i|wi,ti,q−i)

∂t−i

∣

∣

∣

qi=q̃i(wi,w−i),t−i=t̃−i(wi,w−i)
=−q−i(1− q̃i(wi,w−i))< 0. Thus, t̃−i(wi,w−i) = 0

always holds, and the suppliers’ optimal transfer payment is tR†
i = tR†

−i =0. Taking the second-order

derivative of πSi
(qi, t−i|wi, ti, q−i) w.r.t. qi yields

∂2πSi
(qi,t−i|wi,ti,q−i)

∂q2
i

=−θγ(γ−1)qγ−2
i < 0. Thereby,

the solution of the first-order condition is supplier i’s optimal quality in response to wi and ti.

Solving the suppliers’ best response functions yields their optimal quality decisions:

q̃i(wi,w−i) =

(

wγ−1
i w−i

θγγγ

)

1
γ(γ−2)

. (SC.5)

Note that (SC.5) is the same as (SB.1), and the buyer’s contracting problem (C.2) is the same as

(3) due to tR†
i = tR†

−i = 0. Hence, the rest of the proof follows from that of Proposition 3. "

Proof of Theorem C.1 and Proposition C.2. By comparing Proposition C.1 to Proposition 3,

we can see that the equilibrium contracts and quality levels under restricted data permission are

the same as those in the case without traceability. Thus, the equilibrium profits under restricted

and unrestricted data permission are characterized in the proof of Theorem 4. Hence, the proof of

the theorem and the proposition follows from that of Theorem 4. "
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Proof of Theorem C.2. The theorem can be proved by comparing Theorem C.1 to Proposition

C.2. "

SD. Limited Liability of Downstream Supplier: Proofs

Proof of Proposition E.1. We use backward induction to solve the game. Recall that the game

consists of three stages. First, in stage 3, suppliers 1 and 2 simultaneously choose q1 and q2

to maximize their own expected profits, given w1 and w2 decided in previous stages. Specifi-

cally, for supplier 1, the first-order condition of πS1(w2, q1|w1, q2) is
dπS1

(w2,q1|w1,q2)

dq1

∣

∣

∣

q1=q̃1(w1,w2,q2)
=

(w1 − w2)q2 + min{w2, b}q2 − θγ(q̃1(w1,w2, q2))γ−1 = 0. Taking the second-order derivative of

πS1(w2, q1|w1, q2) w.r.t. q1 yields
d2πS1

(w2,q1|w1,q2)

dq21
=−θγ(γ−1)qγ−2

1 < 0. On the other hand, for sup-

plier 2, the first-order condition of πS2(q2|w2, q1) is
dπS2

(q2|w2,q1)

dq2

∣

∣

∣

q2=q̃2(w2,q1)
=w2q1+min{w2, b}(1−

q1) − θγ(q̃2(w2, q1))γ−1 = 0. Taking the second-order derivative of πS2(q2|w2, q1) w.r.t. q2 yields
d2πS2

(q2|w2,q1)

dq22
=−θγ(γ−1)qγ−2

2 < 0. Solving the suppliers’ best response functions yields their opti-

mal quality decisions in stage 3 as follows: (i) if w2 # b,

q̃1(w1,w2) =

(

wγ−1
1 w2

θγγγ

)

1
(γ−1)2

, (SD.1)

q̃2(w1,w2) =

(

w2

θγ

)
1

γ−1

; (SD.2)

(ii) if w2 > b,

q̃1(w1,w2) =
θγ(q̃2(w1,w2))γ−1− b

w2 − b
, (SD.3)

q̃2(w1,w2) =
θγ(q̃1(w1,w2))γ−1

w1 −w2 + b
. (SD.4)

Next, consider stage 2, where supplier 1 chooses the contract to offer to supplier 2, w2, to

maximize πS1(w2, q̃1(w1,w2)|w1, q̃2(w1,w2)), given w1 decided in stage 1. Denote

b̄(w1)≡

[

wγ(γ−1)
1

θγγγ2−γ+1

]
1

γ(γ−2)

.

Then, following the proof of Proposition 2, we can show that there are two possible cases in stage 2

equilibrium, depending on b: (i) if b! b̄(w1), we have w̃2(w1) =

[

w
γ(γ−1)
1

θγγγ2−γ+1

]
1

γ(γ−2)

, and the following

proof is the same as that of Proposition 2; (ii) if b < b̄(w1), we cannot obtain the equilibrium due

to limited tractability, and thus we resort to numerical studies for this case (note that when b= 0,

the proof is the same as that of Proposition 1). "

Proof of Theorem E.1. The proposition follows immediately by comparing Proposition E.1 to

Propositions 1 and 2. "
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SE. Downstream Supplier’s Use of Traceability Information Upon
Receiving the Product: Proofs

Proof of Proposition F.1. We use backward induction to solve the game. Note that the game

consists of three stages and the last two stages remain the same as in (2). Specifically, in stage

3, suppliers 1 and 2 simultaneously choose q1 and q2 to maximize their own expected profits,

πS1(w2, q1|w1, q2) and πS2(q2|w2), given w1 and w2 decided in previous stages. In similar fashion to

the proof of Proposition 2, we obtain the suppliers’ optimal quality decisions in stage 3 as follows:

q̃1(w1,w2) =

(

wγ−1
1 w2

θγγγ

)

1
(γ−1)2

, (SE.1)

q̃2(w2) =

(

w2

θγ

)
1

γ−1

. (SE.2)

Next, consider stage 2, where supplier 1 chooses the contract to offer to supplier 2, w2, to

maximize πS1(w2, q̃1(w1,w2)|w1, q̃2(w2)), given w1 decided in stage 1. In similar fashion to the proof

of Proposition 2, we obtain supplier 1’s optimal contracting decision as follows:

w̃2(w1) =

[

wγ(γ−1)
1

θγγγ2−γ+1

]
1

γ(γ−2)

. (SE.3)

Then, plugging (SE.3) into (SE.1) and (SE.2), we have

q̃1(w1) =

[

wγ
1

θγγγ+1

]
1

γ(γ−2)

, (SE.4)

q̃2(w1) =

[

wγ
1

θγγ2γ−1

]
1

γ(γ−2)

. (SE.5)

Comparing (SE.4) and (SE.5) yields q̃1(w1)
q̃2(w1)

= γ
1
γ > 1.

Next, consider stage 1, where the buyer chooses the contract to offer to supplier 1, w1, to

maximize πB(w1|q̃1(w1, w̃2(w1)), q̃2(w̃2(w1))). Plugging (SE.3), (SE.4) and (SE.5) into (F.1), we

have the buyer’s problem as follows:

max
w1

πB(w1) = (p+ l)q̃1(w1)q̃2(w1)− lq̃2(w1)−w1q̃1(w1)q̃2(w1)

= (p+ l−w1)w
2

γ−2
1

(

1

θ

)
2

γ−2
(

1

γ

)
3

γ−2

− lw
1

γ−2
1

(

1

θ

)
1

γ−2
(

1

γ

)

2γ−1
γ(γ−2)

.

We now analyze the buyer’s optimal contracting decision. Taking the first-order derivative of

πB(w1) w.r.t. w1 yields

dπB(w1)

dw1
=

1

γ− 2
w

4−γ
γ−2
1

(

1

θ

)
2

γ−2
(

1

γ

)
3

γ−2
[

2(p+ l)− γw1 − l

(

1

w1

)
1

γ−2

θ
1

γ−2 γ
γ+1

γ(γ−2)

]

. (SE.6)
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Solving (SE.6) yields the solution of the buyer’s first-order condition, wT‡
1 , that satisfies

2(p+ l)− γwT‡
1 = l

[

θγγγ+1

(

wT‡
1

)γ

]
1

γ(γ−2)

. (SE.7)

Then, in similar fashion to the proof of Proposition 2, we can show that d2πB(w1)

dw2
1

∣

∣

∣

w
T‡
1

< 0 by

Assumption 2. Thus, wT‡
1 is the buyer’s optimal contracting decision.

Finally, plugging wT‡
1 into (SE.3), (SE.4) and (SE.5), we obtain the suppliers’ equilibrium quality

and contracting decisions: wT‡
2 =

[

(wT‡
1 )

γ(γ−1)

θγγγ2−γ+1

]

1
γ(γ−2)

, qT‡
1 =

[

(wT‡
1 )

γ

θγγγ+1

]
1

γ(γ−2)

, qT‡
2 =

[

(wT‡
1 )

γ

θγγ2γ−1

]
1

γ(γ−2)

.

By Assumptions 1 and 2, we have qT‡
i ∈ (0,1) for i∈ {1,2}. Moreover, we can show that qT‡

1 /qT‡
2 =

γ
1
γ > 1. "

SF. An Assembly Supply Chain: Proofs

Proof of Proposition G.1. We first derive the suppliers’ optimal quality decisions. Given wi,

supplier i∈ {1,2} chooses qi to maximize πSi
(qi|wi, q−i). The first-order condition of πSi

(qi|wi, q−i)

is
dπSi

(qi|wi,q−i)

dqi

∣

∣

∣

∣

qi=q̃i(wi,q−i)

= wiq−i − C ′(q̃i(wi, q−i)) = wiq−i − θγ(q̃i(wi, q−i))γ−1 = 0. Taking the

second-order derivative of πSi
(qi|wi, q−i) w.r.t. qi yields

d2πSi
(qi|wi,q−i)

dq2
i

=−C ′′(qi) =−θγ(γ−1)qγ−2
i <

0. Thereby, supplier i’s optimal quality in response of wi is q̃i(wi, q−i) =
(

wiq−i

θγ

)
1

γ−1
. Solving the

suppliers’ best response functions yields their optimal quality decisions:

q̃i(wi,w−i) =

(

wγ−1
i w−i

θγγγ

)

1
γ(γ−2)

. (SF.1)

Next, consider the buyer’s problem. Plugging (SF.1) into πSi
(qi|wi, q−i), we have

πSi
(q̃i(wi,w−i)|wi, q̃−i(wi,w−i)) =wiq̃i(wi,w−i)q̃−i(wi,w−i)− θ(q̃i(wi,w−i))

γ

=wi

(

wγ−1
i w−i

θγγγ

)

1
γ(γ−2)

(

wγ−1
−i wi

θγγγ

)

1
γ(γ−2)

− θ

[(

wγ−1
i w−i

θγγγ

)

1
γ(γ−2)

]γ

= (γ− 1)w
γ−1
γ−2
i w

1
γ−2
−i

(

1

θ

)
2

γ−2
(

1

γ

)

γ
γ−2

! 0,

for any wi ! 0 and w−i ! 0. Thus, IRi is always satisfied. Then, plugging (SF.1) into (G.1), the

buyer’s problem becomes

max
w1,w2

πB(w1,w2) = (p+ l)q̃1(w1,w2)q̃2(w1,w2)− l− (w1 +w2)q̃1(w1,w2)q̃2(w1,w2)

= (p+ l−w1 −w2)

(

wγ−1
1 w2

θγγγ

)

1
γ(γ−2)

(

wγ−1
2 w1

θγγγ

)

1
γ(γ−2)

− l

= (p+ l−w1 −w2)w
1

γ−2
1 w

1
γ−2
2

(

1

θγ

)
2

γ−2

− l.
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We now analyze the buyer’s optimal contracting decisions. Taking the first-order derivatives of

πB(w1,w2) w.r.t. w1 and w2 yields

∂πB(w1,w2)

∂w1
=w

3−γ
γ−2
1 w

1
γ−2
2

(

1

θγ

)
2

γ−2
[

p+ l−w1 −w2

γ− 2
−w1

]

, (SF.2)

∂πB(w1,w2)

∂w2
=w

1
γ−2
1 w

3−γ
γ−2
2

(

1

θγ

)
2

γ−2
[

p+ l−w1 −w2

γ− 2
−w2

]

. (SF.3)

Solving (SF.2) and (SF.3) yields the solution of the buyer’s first-order conditions as follows:

wN%
1 =wN%

2 =
p+ l

γ
. (SF.4)

Then, we need to show that (wN%
1 ,wN%

2 ) are the buyer’s optimal contracting decisions. Taking the

second-order derivatives of πB(w1,w2) w.r.t. w1 and w2 yields

∂2πB(w1,w2)

∂w2
1

=
1

γ− 2
w

5−2γ
γ−2
1 w

1
γ−2
2

(

1

θγ

)
2

γ−2
[

(3− γ)(p+ l−w1 −w2)

γ− 2
− 2w1

]

,

∂2πB(w1,w2)

∂w2
2

=
1

γ− 2
w

1
γ−2
1 w

5−2γ
γ−2
2

(

1

θγ

)
2

γ−2
[

(3− γ)(p+ l−w1 −w2)

γ− 2
− 2w2

]

,

∂2πB(w1,w2)

∂w1∂w2
=

1

γ− 2
w

3−γ
γ−2
1 w

3−γ
γ−2
2

(

1

θγ

)
2

γ−2
[

p+ l−w1 −w2

γ− 2
−w1 −w2

]

.

By Assumption 2, we can show that the Hessian of πB(w1,w2) is negative definite in the neighbor-

hood of (wN%
1 ,wN%

2 ). Thus, (wN%
1 ,wN%

2 ) are the buyer’s optimal contracting decisions.

Finally, plugging (wN%
1 ,wN%

2 ) into (SF.1), we obtain the suppliers’ optimal quality decisions:

qN%
1 = qN%

2 =
(

p+l
θγ2

)
1

γ−2
. By Assumptions 1 and 2, we have qN%

i ∈ (0,1). "

Proof of Proposition G.2. By comparing (G.2) and (C.1), we can see that the model formulation

for the assembly supply chain case with traceability is equivalent to that for the serial supply chain

case under restricted data permission. Thus, the proof of this proposition follows from that of

Proposition 5. "

Proof of Theorem G.1. Consider the case without traceability. Based on the equilibrium char-

acterized in Proposition G.1, we obtain the equilibrium expected profits for the buyer, the suppliers,

and the entire supply chain as follows:

πN%
B = (γ− 2)(p+ l)

γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

γ+2
γ−2

− l,

πN%
Si

= (γ− 1)(p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

,

πN%
SC = (γ2 − 2)(p+ l)

γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

− l.
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Consider the case with traceability. Based on the equilibrium characterized in Proposition G.2,

we obtain the equilibrium expected profits for the buyer, the suppliers, and the entire supply chain

as follows:

πT%
B = (γ− 2)(p+ l)

γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

γ+2
γ−2

− l,

πT%
Si

= (γ− 1)(p+ l)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

,

πT%
SC = (γ2 − 2)(p+ l)

γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

− l.

The theorem can be proved by comparing the equilibrium wholesale prices, the equilibrium

quality levels, and the equilibrium expected profits for the buyer, the suppliers, and the entire

supply chain for the cases with and without traceability. "

SG. Buyer’s Product Inspection: Proofs

Proof of Proposition H.1. We use backward induction to solve the game. Note that the game

consists of three stages and the last two stages remain the same as in (1). Specifically, in stage

3, suppliers 1 and 2 simultaneously choose q1 and q2 to maximize their own expected profits,

πS1(w2, q1|w1, q2) and πS2(q2|w2, q1), given w1 and w2 decided in previous stages. In similar fashion

to the proof of Proposition 1, we obtain the suppliers’ optimal quality decisions in stage 3 as follows:

q̃1(w1,w2) =

[

(w1 −w2)γ−1w2

θγγγ

]
1

γ(γ−2)

, (SG.1)

q̃2(w1,w2) =

[

(w1 −w2)w
γ−1
2

θγγγ

]

1
γ(γ−2)

. (SG.2)

Next, consider stage 2, where supplier 1 chooses the contract to offer to supplier 2, w2, to

maximize πS1(w2, q̃1(w1,w2)|w1, q̃2(w1,w2)), given w1 decided in stage 1. In similar fashion to the

proof of Proposition 1, we obtain supplier 1’s optimal contracting decision as follows:

w̃2(w1) =
w1

γ
. (SG.3)

Then, plugging (SG.3) into (SG.1) and (SG.2), we have

q̃1(w1) =

[

(γ− 1)γ−1wγ
1

θγγ2γ

]
1

γ(γ−2)

, (SG.4)

q̃2(w1) =

[

(γ− 1)wγ
1

θγγ2γ

]
1

γ(γ−2)

. (SG.5)

Comparing (SG.4) and (SG.5) yields q̃1(w1)
q̃2(w1)

= (γ− 1)
1
γ ! 1.
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Next, consider stage 1, where the buyer chooses the contract to offer to supplier 1, w1, and the

inspection level β to maximize πB(w1,β|q̃1(w1, w̃2(w1)), q̃2(w1, w̃2(w1))). Plugging (SG.3), (SG.4)

and (SG.5) into (H.1), we have the buyer’s problem as follows:

max
w1,β

πB(w1,β) =
[

p+ l(1−β)
]

q̃1(w1)q̃2(w1)− l(1−β)−w1q̃1(w1)q̃2(w1)− I(β)

=
[

p+ l(1−β)−w1

]

[

(γ− 1)γ−1wγ
1

θγγ2γ

]
1

γ(γ−2)
[

(γ− 1)wγ
1

θγγ2γ

]
1

γ(γ−2)

− l(1−β)−
1

2
µβ2

=
[

p+ l(1−β)−w1

]

(γ− 1)
1

γ−2w
2

γ−2
1

(

1

θ

)
2

γ−2
(

1

γ

)
4

γ−2

− l(1−β)−
1

2
µβ2.

We now analyze the buyer’s optimal contracting decision and inspection level. Taking the first-

order derivatives of πB(w1,β) w.r.t. w1 and β yields

∂πB(w1,β)

∂w1
=

1

γ− 2
(γ− 1)

1
γ−2w

4−γ
γ−2
1

(

1

θ

)
2

γ−2
(

1

γ

)
4

γ−2
[

2
[

p+ l(1−β)
]

− γw1

]

, (SG.6)

∂πB(w1,β)

∂β
=−l(γ− 1)

1
γ−2w

2
γ−2
1

(

1

θ

)
2

γ−2
(

1

γ

)
4

γ−2

+ l−µβ. (SG.7)

Solving (SG.6) and (SG.7) yields the solution of the buyer’s first-order conditions as follows:

wN‡
1 =

2 [p+ l (1−βN‡)]

γ
, (SG.8)

and βN‡ satisfies

(γ− 1)
1

γ−2

[

2 [p+ l (1−βN‡)]

θγ3

]

2
γ−2

=1−
µβN‡

l
. (SG.9)

Then, we need to show that wN‡
1 and βN‡ are the buyer’s optimal decisions. Taking the second-

order derivative of πB(w1,β) w.r.t. β yields ∂2πB(w1,β)
∂β2 =−µ < 0. Thus, βN‡ is the buyer’s optimal

inspection level. Then, in similar fashion to the proof of Proposition 1, if the stationary point

characterized in (SG.8) is a strict local maximum, then wN‡
1 must be the unique global maximum,

proved by contradiction. Taking the second-order derivative of πB(w1,β) w.r.t. w1 yields

∂2πB(w1,β)

∂w2
1

=
1

γ− 2
(γ− 1)

1
γ−2w

6−2γ
γ−2
1

(

1

θ

)
2

γ−2
(

1

γ

)
4

γ−2
[(

4− γ

γ− 2

)[

2
[

p+ l(1−β)
]

− γw1

]

− γw1

]

.

By Assumption 2, we can show that ∂2πB(w1,β)

∂w2
1

∣

∣

∣

(wN‡
1 ,βN‡)

< 0. Thus, wN‡
1 is the buyer’s optimal

contracting decision.

Finally, plugging wN‡
1 and βN‡ into (SG.3), (SG.4) and (SG.5), we obtain the suppliers’ equi-

librium quality and contracting decisions: wN‡
2 =

2[p+l(1−βN‡)]
γ2 , qN‡

1 =

[

2[p+l(1−βN‡)](γ−1)
γ−1
γ

θγ3

]
1

γ−2

,

qN‡
2 =

[

2[p+l(1−βN‡)](γ−1)
1
γ

θγ3

]
1

γ−2

. By Assumptions 1 and 2, we have qN‡
i ∈ (0,1) for i∈ {1,2}. More-

over, we can show that wN‡
1 /wN‡

2 = γ ! 2 and qN‡
1 /qN‡

2 = (γ− 1)
1
γ ! 1. "
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Proof of Proposition H.2. We use backward induction to solve the game. Note that the game

consists of three stages and the last two stages remain the same as in (2). Specifically, in stage

3, suppliers 1 and 2 simultaneously choose q1 and q2 to maximize their own expected profits,

πS1(w2, q1|w1, q2) and πS2(q2|w2), given w1 and w2 decided in previous stages. In similar fashion to

the proof of Proposition 2, we obtain the suppliers’ optimal quality decisions in stage 3 as follows:

q̃1(w1,w2) =

(

wγ−1
1 w2

θγγγ

)

1
(γ−1)2

, (SG.10)

q̃2(w2) =

(

w2

θγ

)
1

γ−1

. (SG.11)

Next, consider stage 2, where supplier 1 chooses the contract to offer to supplier 2, w2, to

maximize πS1(w2, q̃1(w1,w2)|w1, q̃2(w2)), given w1 decided in stage 1. In similar fashion to the proof

of Proposition 2, we obtain supplier 1’s optimal contracting decision as follows:

w̃2(w1) =

[

wγ(γ−1)
1

θγγγ2−γ+1

]
1

γ(γ−2)

. (SG.12)

Then, plugging (SG.12) into (SG.10) and (SG.11), we have

q̃1(w1) =

[

wγ
1

θγγγ+1

]
1

γ(γ−2)

, (SG.13)

q̃2(w1) =

[

wγ
1

θγγ2γ−1

]
1

γ(γ−2)

. (SG.14)

Comparing (SG.13) and (SG.14) yields q̃1(w1)
q̃2(w1)

= γ
1
γ > 1.

Next, consider stage 1, where the buyer chooses the contract to offer to supplier 1, w1, and

the inspection level β to maximize πB(w1,β|q̃1(w1, w̃2(w1)), q̃2(w̃2(w1))). Plugging (SG.12), (SG.13)

and (SG.14) into (H.2), we have the buyer’s problem as follows:

max
w1,β

πB(w1,β) =
[

p+ l(1−β)
]

q̃1(w1)q̃2(w1)− l(1−β)−w1q̃1(w1)q̃2(w1)− I(β)

=
[

p+ l(1−β)−w1

]

[

wγ
1

θγγγ+1

]
1

γ(γ−2)
[

wγ
1

θγγ2γ−1

]
1

γ(γ−2)

− l(1−β)−
1

2
µβ2

=
[

p+ l(1−β)−w1

]

w
2

γ−2
1

(

1

θ

)
2

γ−2
(

1

γ

)
3

γ−2

− l(1−β)−
1

2
µβ2.

We now analyze the buyer’s optimal contracting decision and inspection level. Taking the first-

order derivatives of πB(w1,β) w.r.t. w1 and β yields

∂πB(w1,β)

∂w1
=

1

γ− 2
w

4−γ
γ−2
1

(

1

θ

)
2

γ−2
(

1

γ

)
3

γ−2
[

2
[

p+ l(1−β)
]

− γw1

]

, (SG.15)
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∂πB(w1,β)

∂β
=−lw

2
γ−2
1

(

1

θ

)
2

γ−2
(

1

γ

)
3

γ−2

+ l−µβ. (SG.16)

Solving (SG.15) and (SG.16) yields the solution of the buyer’s first-order conditions as follows:

wT‡
1 =

2 [p+ l (1−βT‡)]

γ
, (SG.17)

and βT‡ satisfies
[

2 [p+ l (1−βT‡)]

θγ
5
2

]

2
γ−2

= 1−
µβT‡

l
. (SG.18)

Then, we need to show that wT‡
1 and βT‡ are the buyer’s optimal decisions. Taking the second-

order derivative of πB(w1,β) w.r.t. β yields ∂2πB(w1,β)
∂β2 =−µ < 0. Thus, βT‡ is the buyer’s optimal

inspection level. Then, in similar fashion to the proof of Proposition 2, if the stationary point

characterized in (SG.17) is a strict local maximum, then wT‡
1 must be the unique global maximum,

proved by contradiction. Taking the second-order derivative of πB(w1,β) w.r.t. w1 yields

∂2πB(w1,β)

∂w2
1

=
1

γ− 2
w

6−2γ
γ−2
1

(

1

θ

)
2

γ−2
(

1

γ

)
3

γ−2
[(

4− γ

γ− 2

)[

2
[

p+ l(1−β)
]

− γw1

]

− γw1

]

.

By Assumption 2, we can show that ∂2πB(w1,β)
∂w2

1

∣

∣

∣

(wT‡
1 ,βT‡)

< 0. Thus, wT‡
1 is the buyer’s optimal

contracting decision.

Finally, plugging wT‡
1 into (SG.12), (SG.13) and (SG.14), we obtain the suppliers’ equilib-

rium quality and contracting decisions: wT‡
2 =

[

2 [p+ l (1−βT‡)]
]

γ−1
γ−2
(

1
θ

)
1

γ−2
(

1
γ

)

2γ2−2γ+1
γ(γ−2)

, qT‡
1 =

[

2[p+l(1−βT‡)]

θγ
2+ 1

γ

]
1

γ−2

, qT‡
2 =

[

2[p+l(1−βT‡)]

θγ
3− 1

γ

]
1

γ−2

. By Assumptions 1 and 2, we have qT‡
i ∈ (0,1) for

i∈ {1,2}. Moreover, we can show that wT‡
1 /wT‡

2 = γ/qT‡
1 > γ and qT‡

1 /qT‡
2 = γ

1
γ > 1. "

Proof of Proposition H.3. We use backward induction to solve the game. Note that the game

consists of two stages and the last stage remains the same as in (3). Specifically, given wi, supplier

i∈ {1,2} chooses qi to maximize πSi
(qi|wi, q−i). In similar fashion to the proof of Proposition 3, we

obtain the suppliers’ optimal quality decisions:

q̃i(wi,w−i) =

(

wγ−1
i w−i

θγγγ

)

1
γ(γ−2)

. (SG.19)

Next, consider the buyer’s problem. Plugging (SG.19) into (H.3), we have the buyer’s problem

as follows:

max
w1,w2,β

πB(w1,w2,β) =
[

p+ l(1−β)
]

q̃1(w1,w2)q̃2(w1,w2)− l(1−β)− (w1+w2)q̃1(w1,w2)q̃2(w1,w2)− I(β)

=
[

p+ l(1−β)−w1 −w2

]

(

wγ−1
1 w2

θγγγ

)

1
γ(γ−2)

(

wγ−1
2 w1

θγγγ

)

1
γ(γ−2)

− l(1−β)−
1

2
µβ2

=
[

p+ l(1−β)−w1 −w2

]

w
1

γ−2
1 w

1
γ−2
2

(

1

θγ

)
2

γ−2

− l(1−β)−
1

2
µβ2.
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We now analyze the buyer’s optimal contracting decisions and inspection level. Taking the first-

order derivatives of πB(w1,w2,β) w.r.t. w1, w2 and β yields

∂πB(w1,w2,β)

∂w1
=w

3−γ
γ−2
1 w

1
γ−2
2

(

1

θγ

)
2

γ−2
[

p+ l(1−β)−w1−w2

γ− 2
−w1

]

, (SG.20)

∂πB(w1,w2,β)

∂w2
=w

1
γ−2
1 w

3−γ
γ−2
2

(

1

θγ

)
2

γ−2
[

p+ l(1−β)−w1−w2

γ− 2
−w2

]

, (SG.21)

∂πB(w1,w2,β)

∂β
=−lw

1
γ−2
1 w

1
γ−2
2

(

1

θγ

)
2

γ−2

+ l−µβ. (SG.22)

Solving (SG.20), (SG.21) and (SG.22) yields the solution of the buyer’s first-order conditions as

follows:

wN†
1 =wN†

2 =
p+ l (1−βN†)

γ
, (SG.23)

and βN† satisfies
[

p+ l (1−βN†)

θγ2

]

2
γ−2

= 1−
µβN†

l
. (SG.24)

Then, we need to show that (wN†
1 ,wN†

2 ) and βN† are the buyer’s optimal decisions. Taking the

second-order derivative of πB(w1,w2,β) w.r.t. β yields ∂2πB(w1,w2,β)
∂β2 = −µ < 0. Thus, βN† is the

buyer’s optimal inspection level. Then, in similar fashion to the proof of Proposition 3, if the station-

ary point characterized in (SG.23) is a strict local maximum, then (wN†
1 ,wN†

2 ) must be the unique

global maximum, proved by contradiction. Taking the second-order derivatives of πB(w1,w2,β)

w.r.t. w1 and w2 yields

∂2πB(w1,w2,β)

∂w2
1

=
1

γ− 2
w

5−2γ
γ−2
1 w

1
γ−2
2

(

1

θγ

)
2

γ−2
[

(3− γ)
[

p+ l(1−β)−w1−w2

]

γ− 2
− 2w1

]

,

∂2πB(w1,w2,β)

∂w2
2

=
1

γ− 2
w

1
γ−2
1 w

5−2γ
γ−2
2

(

1

θγ

)
2

γ−2
[

(3− γ)
[

p+ l(1−β)−w1−w2

]

γ− 2
− 2w2

]

,

∂2πB(w1,w2,β)

∂w1∂w2
=

1

γ− 2
w

3−γ
γ−2
1 w

3−γ
γ−2
2

(

1

θγ

)
2

γ−2
[

p+ l(1−β)−w1−w2

γ− 2
−w1 −w2

]

.

By Assumption 2, we can show that the Hessian of πB(w1,w2,β) is negative definite in the neigh-

borhood of (wN†
1 ,wN†

2 ). Thus, (wN†
1 ,wN†

2 ) are the buyer’s optimal contracting decisions.

Finally, plugging (wN†
1 ,wN†

2 ) and βN† into (SG.19), we obtain the suppliers’ optimal quality

decisions: qN†
1 = qN†

2 =

[

p+l(1−βN†)
θγ2

]
1

γ−2

. By Assumptions 1 and 2, we have qN†
i ∈ (0,1) for i ∈

{1,2}. "

Proof of Proposition H.4. We use backward induction to solve the game. Note that the game

consists of two stages and the last stage remains the same as in (4). Specifically, given wi, supplier
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i ∈ {1,2} chooses qi to maximize πSi
(qi|wi). In similar fashion to the proof of Proposition 4, we

obtain the suppliers’ optimal quality decisions:

q̃i(wi) =

(

wi

θγ

)
1

γ−1

. (SG.25)

Next, consider the buyer’s problem. Plugging (SG.25) into (H.4), we have the buyer’s problem

as follows:

max
w1,w2

πB(w1,w2,β) =
1

2
p

[

q̃1(w1)+ q̃2(w2)

]

−
1

2
l

[

1− q̃1(w1)

]

(1−β)−
1

2
l

[

1− q̃2(w2)

]

(1−β)

−w1q̃1(w1)−w2q̃2(w2)− I(β)

=
1

2

[

p+ l(1−β)
]

[

q̃1(w1)+ q̃2(w2)

]

− l(1−β)−w1q̃1(w1)−w2q̃2(w2)− I(β)

=
1

2

[

p+ l(1−β)
]

(

1

θγ

)
1

γ−1
[

w
1

γ−1
1 +w

1
γ−1
2

]

− l(1−β)−w
γ

γ−1
1

(

1

θγ

)
1

γ−1

−w
γ

γ−1
2

(

1

θγ

)
1

γ−1

−
1

2
µβ2.

We now analyze the buyer’s optimal contracting decisions and inspection level. Taking the first-

order derivatives of πB(w1,w2,β) w.r.t. w1, w2 and β yields

∂πB(w1,w2,β)

∂w1
=

1

γ− 1
w

2−γ
γ−1
1

(

1

θγ

)
1

γ−1
[

p+ l(1−β)

2
− γw1

]

, (SG.26)

∂πB(w1,w2,β)

∂w2
=

1

γ− 1
w

2−γ
γ−1
2

(

1

θγ

)
1

γ−1
[

p+ l(1−β)

2
− γw2

]

, (SG.27)

∂πB(w1,w2,β)

∂β
=−

1

2
l

(

1

θγ

)
1

γ−1
[

w
1

γ−1
1 +w

1
γ−1
2

]

+ l−µβ. (SG.28)

Solving (SG.26), (SG.27) and (SG.28) yields the solution of the buyer’s first-order conditions as

follows:

wT†
1 =wT†

2 =
p+ l (1−βT†)

2γ
, (SG.29)

and βT† satisfies
[

p+ l (1−βT†)

2θγ2

]

1
γ−1

= 1−
µβT†

l
. (SG.30)

Then, we need to show that (wT†
1 ,wT†

2 ) and βT† are the buyer’s optimal decisions. Taking the second-

order derivative of πB(w1,w2,β) w.r.t. β yields ∂2πB(w1,w2,β)
∂β2 = −µ < 0. Thus, βT† is the buyer’s

optimal inspection level. Then, in similar fashion to the proof of Proposition 4, if the stationary

point characterized in (SG.29) is a strict local maximum, then (wT†
1 ,wT†

2 ) must be the unique global

maximum, proved by contradiction. Taking the second-order derivatives of πB(w1,w2,β) w.r.t. w1

and w2 yields
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∂2πB(w1,w2,β)

∂w2
1

=
1

γ− 1
w

3−2γ
γ−1
1

(

1

θγ

)
1

γ−1
[

(2− γ)
[

p+ l(1−β)− 2γw1

]

2(γ− 1)
− γw1

]

,

∂2πB(w1,w2,β)

∂w2
2

=
1

γ− 1
w

3−2γ
γ−1
2

(

1

θγ

)
1

γ−1
[

(2− γ)
[

p+ l(1−β)− 2γw2

]

2(γ− 1)
− γw2

]

,

∂2πB(w1,w2,β)

∂w1∂w2
= 0.

By Assumption 2, we can show that the Hessian of πB(w1,w2,β) is negative definite in the neigh-

borhood of (wT†
1 ,wT†

2 ). Thus, (wT†
1 ,wT†

2 ) are the buyer’s optimal contracting decisions.

Finally, plugging (wT†
1 ,wT†

2 ) into (SG.25), we obtain the suppliers’ optimal quality decisions:

qT†
1 = qT†

2 =

[

p+l(1−βT†)
2θγ2

]
1

γ−1

. By Assumptions 1 and 2, we have qT†
i ∈ (0,1) for i∈ {1,2}. "

SH. Suppliers’ Exogenous Loss: Proofs

Proof of Proposition I.1. We use backward induction to solve the game. Recall that the game

consists of three stages. First, in stage 3, suppliers 1 and 2 simultaneously choose q1 and q2 to maxi-

mize their own expected profits, given w1 and w2 decided in previous stages. Specifically, for supplier

1, the first-order condition of πS1(w2, q1|w1, q2) is
dπS1

(w2,q1|w1,q2)

dq1

∣

∣

∣

q1=q̃1(w1,w2,q2)
= (w1 −w2 + ls)q2−

C ′(q̃1(w1,w2, q2)) = (w1 −w2 + ls)q2− θγ(q̃1(w1,w2, q2))γ−1 = 0. Taking the second-order derivative

of πS1(w2, q1|w1, q2) w.r.t. q1 yields
d2πS1

(w2,q1|w1,q2)

dq21
=−C ′′(q1) =−θγ(γ−1)qγ−2

1 < 0. Thereby, sup-

plier 1’s optimal quality in response to w1 and w2 is q̃1(w1,w2, q2) =
[

(w1−w2+ls)q2
θγ

]
1

γ−1
. On the

other hand, for supplier 2, the first-order condition of πS2(q2|w2, q1) is
dπS2

(q2|w2,q1)

dq2

∣

∣

∣

q2=q̃2(w2,q1)
=

(w2+ ls)q1−C ′(q̃2(w2, q1)) = (w2+ ls)q1− θγ(q̃2(w2, q1))γ−1 =0. Taking the second-order derivative

of πS2(q2|w2, q1) w.r.t. q2 yields
d2πS2

(q2|w2,q1)

dq22
=−C ′′(q2) =−θγ(γ−1)qγ−2

2 < 0. Thereby, supplier 2’s

optimal quality in response to w2 is q̃2(w2, q1) =
[

(w2+ls)q1
θγ

]
1

γ−1
. Solving the suppliers’ best response

functions yields their optimal quality decisions in stage 3 as follows:

q̃1(w1,w2) =

[

(w1 −w2 + ls)γ−1(w2 + ls)

θγγγ

]
1

γ(γ−2)

, (SH.1)

q̃2(w1,w2) =

[

(w1 −w2 + ls)(w2 + ls)γ−1

θγγγ

]
1

γ(γ−2)

. (SH.2)

Next, consider stage 2, where supplier 1 chooses the contract to offer to supplier 2, w2, to max-

imize πS1(w2, q̃1(w1,w2)|w1, q̃2(w1,w2)), given w1 decided in stage 1. Plugging (SH.1) and (SH.2)

into πS2(q2|w2, q1), we have
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πS2(q̃2(w1,w2)|w2, q̃1(w1,w2)) =(w2 + ls)q̃1(w1,w2)q̃2(w1,w2)− ls − θ(q̃2(w1,w2))
γ

=(w2 + ls)

[

(w1 −w2 + ls)γ−1(w2 + ls)

θγγγ

]
1

γ(γ−2)
[

(w1 −w2 + ls)(w2 + ls)γ−1

θγγγ

]
1

γ(γ−2)

− ls − θ

[[

(w1 −w2 + ls)(w2 + ls)γ−1

θγγγ

]
1

γ(γ−2)
]γ

=(γ− 1)(w1 −w2 + ls)
1

γ−2 (w2 + ls)
γ−1
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

γ
γ−2

− ls.

Then, plugging (SH.1) and (SH.2) into (I.1), we have supplier 1’s problem as follows:

max
w2

πS1(w2|w1) =(w1 + ls)q̃1(w1,w2)q̃2(w1,w2)− ls − θ(q̃1(w1,w2))
γ −w2q̃1(w1,w2)q̃2(w1,w2)

=(w1 −w2 + ls)

[

(w1 −w2 + ls)γ−1(w2 + ls)

θγγγ

]
1

γ(γ−2)
[

(w1 −w2 + ls)(w2+ ls)γ−1

θγγγ

]
1

γ(γ−2)

− ls − θ

[[

(w1 −w2 + ls)γ−1(w2 + ls)

θγγγ

]
1

γ(γ−2)
]γ

=(γ− 1)(w1−w2 + ls)
γ−1
γ−2 (w2 + ls)

1
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

γ
γ−2

− ls.

We now analyze supplier 1’s optimal contracting decision. Taking the first-order derivative of

πS1(w2|w1) w.r.t. w2 yields

dπS1(w2|w1)

dw2
=

γ− 1

γ− 2
(w1−w2+ ls)

1
γ−2 (w2+ ls)

3−γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

γ
γ−2
[

w1−γw2−(γ−2)ls

]

. (SH.3)

Solving (SH.3) yields the solution of supplier 1’s first-order condition as follows:

w̃2(w1) =
w1 − (γ− 2)ls

γ
. (SH.4)

Then, we need to show that w̃2(w1) is supplier 1’s optimal contracting decision. In similar fashion to

the proof of Proposition 1, if the stationary point characterized in (SH.4) is a strict local maximum,

then w̃2(w1) must be the unique global maximum, proved by contradiction. Taking the second-order

derivative of πS1(w2|w1) w.r.t. w2 yields

d2πS1(w2|w1)

dw2
2

=
γ− 1

γ− 2
(w1 −w2 + ls)

3−γ
γ−2 (w2 + ls)

5−2γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

γ
γ−2
[

− γ(w1 −w2 + ls)(w2 + ls)

+
3− γ

γ− 2

[

w1 − γw2 − (γ− 2)ls
]

(w1 −w2 + ls)−
1

γ− 2

[

w1 − γw2 − (γ− 2)ls
]

(w2 + ls)

]

.

By Assumption 2 and w̃2(w1) < w1, we can show that
d2πS1

(w2|w1)

dw2
2

∣

∣

∣

w̃2(w1)
< 0. Thus, w̃2(w1) is

supplier 1’s optimal contracting decision. Then, plugging (SH.4) into (SH.1) and (SH.2), we have

q̃1(w1) =

[

(γ− 1)γ−1(w1 +2ls)γ

θγγ2γ

]
1

γ(γ−2)

, (SH.5)
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q̃2(w1) =

[

(γ− 1)(w1 +2ls)γ

θγγ2γ

]
1

γ(γ−2)

. (SH.6)

Comparing (SH.5) and (SH.6) yields q̃1(w1)
q̃2(w1)

= (γ−1)
1
γ ! 1. Besides, we can show that IR2 is satisfied

when ls is sufficiently small.

Next, consider stage 1, where the buyer chooses the contract to offer to supplier 1, w1, to

maximize πB(w1|q̃1(w1, w̃2(w1)), q̃2(w1, w̃2(w1))). Plugging (SH.4) into πS1(w2|w1), we have

πS1(w̃2(w1)|w1) = (γ− 1)

[

w1 − w̃2(w1)+ ls

]

γ−1
γ−2
[

w̃2(w1)+ ls

]
1

γ−2
(

1

θ

)
2

γ−2
(

1

γ

)

γ
γ−2

− ls

= (γ− 1)

[

w1 −
w1 − (γ− 2)ls

γ
+ ls

]

γ−1
γ−2
[

w1 − (γ− 2)ls
γ

+ ls

]
1

γ−2
(

1

θ

)
2

γ−2
(

1

γ

)

γ
γ−2

− ls

= (γ− 1)
2γ−3
γ−2 (w1 +2ls)

γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

− ls.

Then, plugging (SH.4), (SH.5) and (SH.6) into (I.1), we have the buyer’s problem as follows:

max
w1

πB(w1) = (p+ l)q̃1(w1)q̃2(w1)− l−w1q̃1(w1)q̃2(w1)

= (p+ l−w1)

[

(γ− 1)γ−1(w1 +2ls)γ

θγγ2γ

]
1

γ(γ−2)
[

(γ− 1)(w1+2ls)γ

θγγ2γ

]
1

γ(γ−2)

− l

= (p+ l−w1)(γ− 1)
1

γ−2 (w1 +2ls)
2

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)
4

γ−2

− l.

We now analyze the buyer’s optimal contracting decision. Taking the first-order derivative of

πB(w1) w.r.t. w1 yields

dπB(w1)

dw1
=

1

γ− 2
(γ− 1)

1
γ−2 (w1 +2ls)

4−γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)
4

γ−2
[

2(p+ l)− γw1 − 2(γ− 2)ls

]

. (SH.7)

Solving (SH.7) yields the solution of the buyer’s first-order condition as follows:

wN‡
1 =

2
[

p+ l− (γ− 2)ls
]

γ
. (SH.8)

Then, we need to show that wN‡
1 is the buyer’s optimal contracting decision. Similar to the previous

proof, if the stationary point characterized in (SH.8) is a strict local maximum, then wN‡
1 must

be the unique global maximum, proved by contradiction. Taking the second-order derivative of

πB(w1) w.r.t. w1 yields

d2πB(w1)

dw2
1

=
1

γ− 2
(γ−1)

1
γ−2 (w1+2ls)

6−2γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)
4

γ−2
[(

4− γ

γ− 2

)[

2(p+ l)− γw1 − 2(γ− 2)ls

]

− γw1

]

.

By Assumption 2, we can show that d2πB(w1)
dw2

1

∣

∣

∣

w
N‡
1

< 0. Thus, wN‡
1 is the buyer’s optimal contracting

decision. Besides, we can show that IR1 is satisfied when ls is sufficiently small.
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Finally, plugging wN‡
1 into (SH.4), (SH.5) and (SH.6), we obtain the suppliers’ equilibrium

quality and contracting decisions: wN‡
2 = 2(p+l)−(γ−2)(γ+2)ls

γ2 , qN‡
1 =

[

2(p+l+2ls)(γ−1)
γ−1
γ

θγ3

]

1
γ−2

, qN‡
2 =

[

2(p+l+2ls)(γ−1)
1
γ

θγ3

]
1

γ−2

. By Assumptions I.1 and 2, we have qN‡
i ∈ (0,1) for i∈ {1,2}. "

Proof of Proposition I.2. We use backward induction to solve the game. Recall that the game

consists of three stages. First, in stage 3, suppliers 1 and 2 simultaneously choose q1 and q2 to

maximize their own expected profits, given w1 and w2 decided in previous stages. Specifically,

for supplier 1, the first-order condition of πS1(w2, q1|w1, q2) is
dπS1

(w2,q1|w1,q2)

dq1

∣

∣

∣

q1=q̃1(w1,q2)
= (w1 +

ls)q2 − C ′(q̃1(w1, q2)) = (w1 + ls)q2 − θγ(q̃1(w1, q2))γ−1 = 0. Taking the second-order derivative of

πS1(w2, q1|w1, q2) w.r.t. q1 yields
d2πS1

(w2,q1|w1,q2)

dq21
=−C ′′(q1) =−θγ(γ−1)qγ−2

1 < 0. Thereby, supplier

1’s optimal quality in response to w1 is q̃1(w1, q2) =
[

(w1+ls)q2
θγ

]
1

γ−1
. On the other hand, for supplier

2, the first-order condition of πS2(q2|w2) is
dπS2

(q2|w2)

dq2

∣

∣

∣

q2=q̃2(w2)
= (w2+ ls)−C ′(q̃2(w2)) = (w2+ ls)−

θγ(q̃2(w2))γ−1 = 0. Taking the second-order derivative of πS2(q2|w2) w.r.t. q2 yields
d2πS2

(q2|w2)

dq22
=

−C ′′(q2) =−θγ(γ− 1)qγ−2
2 < 0. Thereby, supplier 2’s optimal quality in response to w2 is q̃2(w2) =

(

w2+ls
θγ

)
1

γ−1
. Solving the suppliers’ best response functions yields their optimal quality decisions in

stage 3 as follows:

q̃1(w1,w2) =

[

(w1 + ls)γ−1(w2 + ls)

θγγγ

]
1

(γ−1)2

, (SH.9)

q̃2(w2) =

(

w2 + ls
θγ

)
1

γ−1

. (SH.10)

Next, consider stage 2, where supplier 1 chooses the contract to offer to supplier 2, w2, to maxi-

mize πS1(w2, q̃1(w1,w2)|w1, q̃2(w2)), given w1 decided in stage 1. Plugging (SH.10) into πS2(q2|w2),

we have

πS2(q̃2(w2)|w2) = (w2 + ls)q̃2(w2)− ls − θ(q̃2(w2))
γ

= (w2 + ls)

(

w2 + ls
θγ

)
1

γ−1

− θ

[(

w2 + ls
θγ

)
1

γ−1
]γ

− ls

= (γ− 1)(w2+ ls)
γ

γ−1

(

1

θ

)
1

γ−1
(

1

γ

)

γ
γ−1

− ls.

Then, plugging (SH.9) and (SH.10) into (I.2), we have supplier 1’s problem as follows:
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max
w2

πS1(w2|w1) =(w1 + ls)q̃1(w1,w2)q̃2(w2)− ls − θ(q̃1(w1,w2))
γ −w2q̃2(w2)

=(w1 + ls)

[

(w1 + ls)γ−1(w2 + ls)

θγγγ

]
1

(γ−1)2
(

w2 + ls
θγ

)
1

γ−1

− ls

− θ

[[

(w1 + ls)γ−1(w2 + ls)

θγγγ

]
1

(γ−1)2
]γ

−w2

(

w2 + ls
θγ

)
1

γ−1

=(γ− 1)(w1+ ls)
γ

γ−1 (w2 + ls)
γ

(γ−1)2

(

1

θ

)

2γ−1
(γ−1)2

(

1

γ

)

γ2

(γ−1)2

−w2(w2 + ls)
1

γ−1

(

1

θγ

)
1

γ−1

− ls.

We now analyze supplier 1’s optimal contracting decision. Taking the first-order derivative of

πS1(w2|w1) w.r.t. w2 yields

dπS1(w2|w1)

dw2
=

1

γ− 1
(w2 + ls)

3γ−γ2−1
(γ−1)2

(

1

θγ

)
1

γ−1
[

(w1 + ls)
γ

γ−1

(

1

θγ

)

γ

(γ−1)2

− (w2 + ls)
−1

(γ−1)2

[

γw2 +(γ− 1)ls

]]

.

(SH.11)

Solving (SH.11) yields the solution of supplier 1’s first-order condition, w̃2(w1), that satisfies

(w1 + ls)
γ(γ−1)

(

1

θγ

)γ

=

[

w̃2(w1)+ ls

]−1[

γw̃2(w1)+ (γ− 1)ls

](γ−1)2

. (SH.12)

Note that w̃2(w1) is supplier 1’s optimal contracting decision. However, due to limited tractabil-

ity, we cannot obtain the closed-form w̃2(w1) from solving (SH.12). Hence, we derive the inverse

function of w̃2(w1) from (SH.12), i.e., w̃1(w2), as follows:

w̃1(w2) =





θγγγ
[

γw2 +(γ− 1)ls
](γ−1)2

w2 + ls





1
γ(γ−1)

− ls. (SH.13)

Then, plugging (SH.13) into (SH.9) and (SH.10), we have

q̃1(w2) =

[

γw2 +(γ− 1)ls

]
1
γ

(w2 + ls)
1

γ(γ−1)

(

1

θγ

)
1

γ−1

, (SH.14)

q̃2(w2) =

(

w2 + ls
θγ

)
1

γ−1

. (SH.15)

Comparing (SH.14) and (SH.15) yields q̃1(w2)
q̃2(w2)

=

[

γw2+(γ−1)ls
w2+ls

]
1
γ

> (γ−1)
1
γ ! 1. Besides, we can show

that IR2 is satisfied when ls is sufficiently small.

Next, consider stage 1, where the buyer chooses the contract to offer to supplier 1, w1, to maximize

πB(w1|q̃1(w1, w̃2(w1)), q̃2(w̃2(w1))). Note that it is equivalent for the buyer to choose the optimal

w2 and offer the corresponding contract w̃1(w2) to supplier 1. Plugging (SH.13) into πS1(w2|w1),

we have
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πS1(w2|w̃1(w2)) = (γ− 1)

[

w̃1(w2)+ ls

]

γ
γ−1

(w2 + ls)
γ

(γ−1)2

(

1

θ

)

2γ−1
(γ−1)2

(

1

γ

)

γ2

(γ−1)2

−w2(w2 + ls)
1

γ−1

(

1

θγ

)
1

γ−1

− ls

= (γ− 1)











θγγγ
[

γw2 +(γ− 1)ls
](γ−1)2

w2 + ls





1
γ(γ−1)







γ
γ−1

(w2 + ls)
γ

(γ−1)2

(

1

θ

)

2γ−1
(γ−1)2

(

1

γ

)

γ2

(γ−1)2

−w2(w2 + ls)
1

γ−1

(

1

θγ

)
1

γ−1

− ls

= (γ− 1)

[

γw2 +(γ− 1)ls

]

(w2 + ls)
1

γ−1

(

1

θ

)
1

γ−1
(

1

γ

)

γ
γ−1

−w2(w2 + ls)
1

γ−1

(

1

θγ

)
1

γ−1

− ls.

Then, plugging (SH.13), (SH.14) and (SH.15) into (I.2), we have the buyer’s problem as follows:

max
w1

πB(w1) = max
w2

πB(w̃1(w2))

= (p+ l)q̃1(w̃1(w2))q̃2(w̃1(w2))− l− w̃1(w2)q̃1(w̃1(w2))q̃2(w̃1(w2))

= (p+ l)

[

γw2 +(γ− 1)ls

]
1
γ

(w2 + ls)
1

γ(γ−1)

(

1

θγ

)
1

γ−1
(

w2 + ls
θγ

)
1

γ−1

− l

−











θγγγ
[

γw2 +(γ− 1)ls
](γ−1)2

w2 + ls





1
γ(γ−1)

− ls







[

γw2 +(γ− 1)ls

] 1
γ

· (w2 + ls)
1

γ(γ−1)

(

1

θγ

) 1
γ−1

(

w2 + ls
θγ

) 1
γ−1

= (p+ l+ ls)

[

γw2 +(γ− 1)ls

] 1
γ

(w2 + ls)
γ+1

γ(γ−1)

(

1

θγ

) 2
γ−1

− l−

[

γw2 +(γ− 1)ls

]

(w2 + ls)
1

γ−1

(

1

θγ

) 1
γ−1

.

We now analyze the buyer’s optimal contracting decision. Taking the first-order derivative of

πB(w̃1(w2)) w.r.t. w2 yields

dπB(w̃1(w2))

dw2
=

1

γ− 1
(w2 + ls)

2−γ
γ−1

(

1

θγ

)
1

γ−1
[

(p+ l+ ls)

[

γw2 +(γ− 1)ls

]

1−γ
γ

·

[

2γ2w2 +(γ− 1)(2γ+1)ls

]

(w2 + ls)
1

γ(γ−1)

(

1

θ

)
1

γ−1
(

1

γ

)

γ
γ−1

− γ2w2 − (γ− 1)(γ+1)ls

]

.

(SH.16)

Solving (SH.16) yields the solution of the buyer’s first-order condition, wT‡
2 , that satisfies

(p+ l+ ls)
(

wT†
2 + ls

)

1
γ(γ−1)

(

1

θ

)
1

γ−1
(

1

γ

)

γ
γ−1
[

2γ2wT†
2 +(γ− 1)(2γ+1)ls

]

=

[

γ2wT†
2 +(γ− 1)(γ+1)ls

][

γwT†
2 +(γ− 1)ls

]

γ−1
γ

(SH.17)

Then, plugging wT‡
2 into (SH.13), we obtain the buyer’s optimal contracting decisions: wT‡

1 =

w̃1(w
T‡
2 ) =

[

γwT‡
2 + (γ − 1)ls

]

γ−1
γ (wT‡

2 + ls)
− 1

γ(γ−1) (θγ)
1

γ−1 − ls. Besides, we can show that IR1 is

satisfied when ls is sufficiently small.
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Finally, plugging wT‡
2 into (SH.14) and (SH.15), we obtain the suppliers’ equilibrium quality

decisions: qT‡
1 =

[

γwT‡
2 + (γ − 1)ls

]
1
γ (wT‡

2 + ls)
1

γ(γ−1)

(

1
θγ

)
1

γ−1
, qT‡

2 =

[

w
T‡
2 +ls

θγ

]
1

γ−1

. By Assumptions

I.1 and 2, we have qT‡
i ∈ (0,1) for i∈ {1,2}. "

Proof of Proposition I.3. We first derive the suppliers’ optimal quality decisions. Given wi,

supplier i ∈ {1,2} chooses qi to maximize πSi
(qi|wi, q−i). For supplier i, the first-order condi-

tion of πSi
(qi|wi, q−i) is

dπSi
(qi|wi,q−i)

dqi

∣

∣

∣

qi=q̃i(wi,q−i)
= (wi + ls)q−i − C ′(q̃i(wi, q−i)) = (wi + ls)q−i −

θγ(q̃i(wi, q−i))γ−1 = 0. Taking the second-order derivative of πSi
(qi|wi, q−i) w.r.t. qi yields

d2πSi
(qi|wi,q−i)

dq2i
=−C ′′(qi) =−θγ(γ−1)qγ−2

i < 0. Thereby, supplier i’s optimal quality in response to

wi is q̃i(wi, q−i) =
[

(wi+ls)q−i

θγ

]
1

γ−1
. Solving the suppliers’ best response functions yields their optimal

quality decisions:

q̃i(wi,w−i) =

[

(wi + ls)γ−1(w−i+ ls)

θγγγ

]
1

γ(γ−2)

. (SH.18)

Next, consider the buyer’s problem. Plugging (SH.18) into πSi
(qi|wi, q−i), we have

πSi
(q̃i(wi,w−i)|wi, q̃−i(wi,w−i)) = (wi + ls)q̃i(wi,w−i)q̃−i(wi,w−i)− ls − θ(q̃i(wi,w−i))

γ

= (wi + ls)

[

(wi + ls)γ−1(w−i+ ls)

θγγγ

]
1

γ(γ−2)
[

(w−i+ ls)γ−1(wi + ls)

θγγγ

]
1

γ(γ−2)

− ls − θ

[[

(wi + ls)γ−1(w−i + ls)

θγγγ

]
1

γ(γ−2)
]γ

= (γ− 1)(wi+ ls)
γ−1
γ−2 (w−i+ ls)

1
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

γ
γ−2

− ls.

Then, plugging (SH.18) into (I.3), we have the buyer’s problem as follows:

max
w1,w2

πB(w1,w2) = (p+ l)q̃1(w1,w2)q̃2(w1,w2)− l− (w1 +w2)q̃1(w1,w2)q̃2(w1,w2)

= (p+ l−w1 −w2)

[

(w1 + ls)γ−1(w2 + ls)

θγγγ

]
1

γ(γ−2)
[

(w2 + ls)γ−1(w1 + ls)

θγγγ

]
1

γ(γ−2)

− l

= (p+ l−w1 −w2)(w1 + ls)
1

γ−2 (w2 + ls)
1

γ−2

(

1

θγ

)
2

γ−2

− l.

We now analyze the buyer’s optimal contracting decisions. Taking the first-order derivatives of

πB(w1,w2) w.r.t. w1 and w2 yields

∂πB(w1,w2)

∂w1
= (w1 + ls)

3−γ
γ−2 (w2 + ls)

1
γ−2

(

1

θγ

)
2

γ−2
[

p+ l−w1 −w2

γ− 2
−w1 − ls

]

, (SH.19)

∂πB(w1,w2)

∂w2
= (w1 + ls)

1
γ−2 (w2 + ls)

3−γ
γ−2

(

1

θγ

)
2

γ−2
[

p+ l−w1 −w2

γ− 2
−w2 − ls

]

. (SH.20)

Solving (SH.19) and (SH.20) yields the solution of the buyer’s first-order conditions as follows:

wN†
1 =wN†

2 =
p+ l− (γ− 2)ls

γ
. (SH.21)
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Then, we need to show that (wN†
1 ,wN†

2 ) are the buyer’s optimal contracting decisions. In similar

fashion to the proof of Proposition 3, if the stationary point characterized in (SH.25) is a strict

local maximum, then (wN†
1 ,wN†

2 ) must be the unique global maximum, proved by contradiction.

Taking the second-order derivatives of πB(w1,w2) w.r.t. w1 and w2 yields

∂2πB(w1,w2)

∂w2
1

=
1

γ− 2
(w1 + ls)

5−2γ
γ−2 (w2 + ls)

1
γ−2

(

1

θγ

)
2

γ−2
[

(3− γ)(p+ l−w1 −w2)

γ− 2
− 2(w1 + ls)

]

,

∂2πB(w1,w2)

∂w2
2

=
1

γ− 2
(w1 + ls)

1
γ−2 (w2 + ls)

5−2γ
γ−2

(

1

θγ

)
2

γ−2
[

(3− γ)(p+ l−w1 −w2)

γ− 2
− 2(w2 + ls)

]

,

∂2πB(w1,w2)

∂w1∂w2
=

1

γ− 2
(w1 + ls)

3−γ
γ−2 (w2 + ls)

3−γ
γ−2

(

1

θγ

)
2

γ−2
[

p+ l−w1 −w2

γ− 2
−w1 −w2 − 2ls

]

.

By Assumption 2, we can show that the Hessian of πB(w1,w2) is negative definite in the neighbor-

hood of (wN†
1 ,wN†

2 ). Thus, (wN†
1 ,wN†

2 ) are the buyer’s optimal contracting decisions. Besides, we

can show that IRi is satisfied when ls is sufficiently small.

Finally, plugging (wN†
1 ,wN†

2 ) into (SH.18), we obtain the suppliers’ optimal quality decisions:

qN†
1 = qN†

2 =
(

p+l+2ls
θγ2

)
1

γ−2
. By Assumptions I.1 and 2, we have qN†

i ∈ (0,1) for i∈ {1,2}. "

Proof of Proposition I.4. We first derive the suppliers’ optimal quality decisions. Given wi, sup-

plier i∈ {1,2} chooses qi to maximize πSi
(qi|wi). For supplier i, the first-order condition of πSi

(qi|wi)

is
dπSi

(qi|wi)

dqi

∣

∣

∣

qi=q̃i(wi)
= wi + ls −C ′(q̃i(wi)) = wi + ls − θγ(q̃i(wi))γ−1 = 0. Taking the second-order

derivative of πSi
(qi|wi) w.r.t. qi yields

d2πSi
(qi|wi)

dq2i
= −C ′′(qi) = −θγ(γ − 1)qγ−2

i < 0. Thereby, the

solution of the first-order condition is supplier i’s optimal quality in response to wi. Solving the

suppliers’ best response functions yields their optimal quality decisions:

q̃i(wi) =

(

wi + ls
θγ

)
1

γ−1

. (SH.22)

Next, consider the buyer’s problem. Plugging (SH.22) into πSi
(qi|wi), we have

πSi
(q̃i(wi)|wi) = (wi+ ls)q̃i(wi)− ls − θ(q̃i(wi))

γ

= (wi+ ls)

(

wi + ls
θγ

)
1

γ−1

− ls − θ

[(

wi + ls
θγ

)
1

γ−1
]γ

= (γ− 1)(wi+ ls)
γ

γ−1

(

1

θ

)
1

γ−1
(

1

γ

)

γ
γ−1

− ls.

Then, plugging (SH.22) into (I.4), we have the buyer’s problem as follows:
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max
w1,w2

πB(w1,w2) = pq̃1(w1)q̃2(w2)+
1

2
(p− l)q̃1(w1)

[

1− q̃2(w2)

]

+
1

2
(p− l)q̃2(w2)

[

1− q̃1(w1)

]

− l

[

1− q̃1(w1)

][

1− q̃2(w2)

]

−w1q̃1(w1)−w2q̃2(w2)

=
1

2
(p+ l)

[

q̃1(w1)+ q̃2(w2)

]

− l−w1q̃1(w1)−w2q̃2(w2)

=
1

2
(p+ l)

[(

w1 + ls
θγ

)
1

γ−1

+

(

w2 + ls
θγ

)
1

γ−1
]

− l−w1

(

w1 + ls
θγ

)
1

γ−1

−w2

(

w2 + ls
θγ

)
1

γ−1

.

We now analyze the buyer’s optimal contracting decisions. Taking the first-order derivatives of

πB(w1,w2) w.r.t. w1 and w2 yields

∂πB(w1,w2)

∂w1
=

1

γ− 1
(w1 + ls)

2−γ
γ−1

(

1

θγ

)
1

γ−1
[

1

2
(p+ l)− γw1 − (γ− 1)ls

]

, (SH.23)

∂πB(w1,w2)

∂w2
=

1

γ− 1
(w2 + ls)

2−γ
γ−1

(

1

θγ

)
1

γ−1
[

1

2
(p+ l)− γw2 − (γ− 1)ls

]

. (SH.24)

Solving (SH.23) and (SH.24) yields the solution of the buyer’s first-order conditions as follows:

wT†
1 =wT†

2 =
p+ l− 2(γ− 1)ls

2γ
. (SH.25)

Then, we need to show that (wT†
1 ,wT†

2 ) are the buyer’s optimal contracting decisions. In similar

fashion to the proof of Proposition 4, if the stationary point characterized in (SH.25) is a strict

local maximum, then (wT†
1 ,wT†

2 ) must be the unique global maximum, proved by contradiction.

Taking the second-order derivatives of πB(w1,w2) w.r.t. w1 and w2 yields

∂2πB(w1,w2)

∂w2
1

=
1

γ− 1
(w1 + ls)

3−2γ
γ−1

(

1

θγ

)
1

γ−1
[

(2− γ)(p+ l− 2γw1)

2(γ− 1)
− γw1 − 2ls

]

,

∂2πB(w1,w2)

∂w2
2

=
1

γ− 1
(w2 + ls)

3−2γ
γ−1

(

1

θγ

)
1

γ−1
[

(2− γ)(p+ l− 2γw2)

2(γ− 1)
− γw2 − 2ls

]

,

∂2πB(w1,w2)

∂w1∂w2
= 0.

By Assumption 2, we can show that the Hessian of πB(w1,w2) is negative definite in the neigh-

borhood of (wT†
1 ,wT†

2 ). Thus, (wT†
1 ,wT†

2 ) are the buyer’s optimal contracting decisions. Besides, we

can show that IRi is satisfied when ls is sufficiently small.

Finally, plugging (wT†
1 ,wT†

2 ) into (SH.22), we obtain the suppliers’ optimal quality decisions:

qT†
1 = qT†

2 =
(

p+l+2ls
2θγ2

)
1

γ−1
. By Assumptions I.1 and 2, we have qT†

i ∈ (0,1) for i∈ {1,2}. "

Proof of Theorem I.1. The theorem follows from comparing the equilibrium contracts and sup-

pliers’ quality decisions characterized in Propositions I.3 and I.4. First, it is easy to see that

wT†
i <wN†

i always holds. Second, by Assumptions I.1 and 2, we have
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qT†
i > qN†

i ⇔

(

p+ l+2ls
2θγ2

)
1

γ−1

>

(

p+ l+2ls
θγ2

)
1

γ−2

⇔

(

1

2

)
1

γ−1

>

(

p+ l+2ls
θγ2

)
1

(γ−2)(γ−1)

⇔
γ2

2γ−2
>

p+ l+2ls
θ

.

Thus, the comparison between qT†
i and qN†

i can be characterized by thresholds l̃, or p̃, or θ̃, or γ̃

such that qT†
i > qN†

i if l < l̃, or p< p̃, or θ> θ̃, or γ < γ̃; whereas qT†
i < qN†

i if l > l̃, or p > p̃, or θ< θ̃,

or γ > γ̃, where

l̃≡
θγ2

2γ−2
− p− 2ls, p̃≡

θγ2

2γ−2
− l− 2ls, θ̃≡

2γ−2(p+ l+2ls)

γ2
, γ̃ ≡

{

γ̃0 if p+l+2ls
θ

# 4,

2 if p+l+2ls
θ

> 4,

and γ̃0 is the unique solution to γ2

2γ−2 = p+l+2ls
θ

in the range of γ > 2. Besides, γ̃0 > 4, and it is

decreasing in p and l, while increasing in θ. Hence, the theorem is proved. "

Proof of Theorem I.2. Consider the case without traceability. Based on the equilibrium charac-

terized in Proposition I.3, we obtain the equilibrium expected profits for the buyer, the suppliers,

and the entire supply chain as follows:

πN†
B = (γ− 2)(p+ l+2ls)

γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

γ+2
γ−2

− l,

πN†
Si

= (γ− 1)(p+ l+2ls)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

− ls,

πN†
SC = (γ2 − 2)(p+ l+2ls)

γ
γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

− l− 2ls.

Consider the case with traceability. Based on the equilibrium characterized in Proposition I.4,

we obtain the equilibrium expected profits for the buyer, the suppliers, and the entire supply chain

as follows:

πT†
B = (γ− 1)(p+ l+2ls)

γ
γ−1

(

1

2θ

)
1

γ−1
(

1

γ

)

γ+1
γ−1

− l,

πT†
Si

= (γ− 1)

(

p+ l+2ls
2

)

γ
γ−1
(

1

θ

)
1

γ−1
(

1

γ

)

2γ
γ−1

− ls,

πT†
SC = (γ2 − 1)(p+ l+2ls)

γ
γ−1

(

1

2θ

)
1

γ−1
(

1

γ

)

2γ
γ−1

− l− 2ls.

We first compare the buyer’s equilibrium expected profits with and without traceability. By

Assumptions I.1 and 2, we have

πT†
B > πN†

B ⇔ (γ− 1)(p+ l+2ls)
γ

γ−1

(

1

2θ

)
1

γ−1
(

1

γ

)

γ+1
γ−1

− l > (γ− 2)(p+ l+2ls)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

γ+2
γ−2

− l

⇔
(γ

2

)
1

γ−1
γ

2
(γ−2)(γ−1) >

(

γ− 2

γ− 1

)(

p+ l+2ls
θγ

)

γ
(γ−2)(γ−1)

.
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The last inequality always holds since
(

γ
2

)
1

γ−1 ! 1, γ
2

(γ−2)(γ−1) > 1, γ−2
γ−1

< 1, and
(

p+l+2ls
θγ

)

γ
(γ−2)(γ−1)

<

1. Hence, we can see that πT†
B > πN†

B always holds.

We then compare the suppliers’ equilibrium expected profits with and without traceability. By

Assumptions I.1 and 2, we have

πT†
Si

> πN†
Si

⇔ (γ− 1)

(

p+ l+2ls
2

)

γ
γ−1
(

1

θ

)
1

γ−1
(

1

γ

)

2γ
γ−1

− ls > (γ− 1)(p+ l+2ls)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

− ls

⇔

(

1

2

)

γ
γ−1

>

(

p+ l+2ls
θγ2

)

γ
(γ−2)(γ−1)

⇔
γ2

2γ−2
>

p+ l+2ls
θ

.

Therefore, the comparison between πT†
Si

and πN†
Si

can be characterized by thresholds l̃, or p̃, or θ̃,

or γ̃ such that πT†
Si

> πN†
Si

if l < l̃, or p < p̃, or θ> θ̃, or γ < γ̃; whereas πT†
Si

< πN†
Si

if l > l̃, or p > p̃, or

θ< θ̃, or γ > γ̃, where the thresholds l̃, p̃, θ̃, and γ̃ have been characterized in the proof of Theorem

I.1.

Finally, we compare the equilibrium total supply chain profits with and without traceability. By

Assumptions I.1 and 2, we have

πT†
SC > πN†

SC ⇔ (γ2 − 1)(p+ l+2ls)
γ

γ−1

(

1

2θ

)
1

γ−1
(

1

γ

)

2γ
γ−1

− l− 2ls > (γ2 − 2)(p+ l+2ls)
γ

γ−2

(

1

θ

)
2

γ−2
(

1

γ

)

2γ
γ−2

− l− 2ls

⇔

(

γ2− 1

γ2− 2

)(

1

2

) 1
γ−1

>

(

p+ l+2ls
θγ2

)
γ

(γ−2)(γ−1)

⇔

(

γ2− 1

γ2− 2

)

γ
2

(γ−2)(γ−1)

(γ

2

) 1
γ−1

>

(

p+ l+2ls
θγ

)
γ

(γ−2)(γ−1)

.

The last inequality always holds since γ2−1
γ2−2

> 1, γ
2

(γ−2)(γ−1) > 1,
(

γ
2

)
1

γ−1 ! 1, and
(

p+l+2ls
θγ

)

γ
(γ−2)(γ−1)

< 1. Hence, we can see that πT†
SC > πN†

SC always holds. "
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