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SA. Value of Blockchain in a Serial Supply Chain: Proofs
Proof of Proposition 1. We use backward induction to solve the game. Recall that the game
consists of three stages. First, in stage 3, suppliers 1 and 2 simultaneously choose ¢; and ¢, to

maximize their own expected profits, given w; and w, decided in previous stages. Specifically,

drg, (w2,q1|w1,q2)

dqy = (wl -

for supplier 1, the first-order condition of g, (w2, q1|w1,¢2) is

q1=3q1(w1,w2,92)

wy)qo — C'(G1 (w1, W, q2)) = (w1 — ws)qa — 07(G1 (w1, Wy, q2))? "' = 0. Taking the second-order deriva-
271' w: w —
tive of mg, (we, q1|w1,q2) w.r.t. ¢; yields $rsy (wrnfunae) —C"(q1) = —0y(y —1)q] " < 0. Thereby,

dq% .
supplier 1’s optimal quality in response to w; and wsy is ¢; (wy, wa, ¢2) = {%} " On the other
hand, for supplier 2, the first-order condition of 7g,(ga|w2,q1) is %)jml) » : = Wyqq —
q2=q2(w2,q1

C'(q2(w2,q1)) = woqs — 07(g2(w2,¢1))"~! = 0. Taking the second-order derivative of g, (g2|w2,q1)

271' w9, — . . .
w.r.t. gy yields Lﬁgﬂ = —C"(go) = —0v(y—1)¢g3 % < 0. Thereby, supplier 2’s optimal quality
2

1
=T
in response to wy is Go(ws,q1) = (wj—;“> . Solving the suppliers’ best response functions yields

their optimal quality decisions in stage 3 as follows:

1

5 Wi — wo ) Lws, 1 762

ql(wl,wg): |:( ! 97’?)7 2:| s (SAl)
1

- wy — wy)wy ] 0D

qg(wl,wg) = [%] . (SA2)

Next, consider stage 2, where supplier 1 chooses the contract to offer to supplier 2, w,, to maxi-
mize g, (Wa, ¢1 (w1, Ws)|w1, G2 (w1, ws)), given w; decided in stage 1. Plugging (SA.1) and (SA.2) into
s, (q2|w2,q1), we have g, (Ga(w, ws)|ws, ¢1 (w1, w2)) = waGr (w1, w2)Ga(wr, ws) — O(G2(wr,ws))" =
(v —1)(w;, — wQ)V_lfwg% (%)% (%)WVQ > 0 for any w; > wy > 0. Thus, IR, is always satisfied.
Then, plugging (SA.1) and (SA.2) into (1), we have supplier 1’s problem as follows:

max s, (wa|wy) = wi Gy (wr, wa)Ga(wr, wa) — O(G1 (w1, w2))" — was (W1, wa)Ga (w1, w5)
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We now analyze supplier 1’s optimal contracting decision. Taking the first-order derivative of

s, (wo|wy) w.r.t. wy yields

2 Y
drs, (we|wy)  ~v—1 1 = 1IN\ 1\ 2
dwy oyt Te T (G ) (D) () (5A)

Solving (SA.3) yields the solution of supplier 1’s first-order condition as follows:

wq

Wa(wy) = —. (SA.4)
Y
Then, we need to show that wy(w;) is supplier 1’s optimal contracting decision. In particular, we
will prove that the sufficient condition of the local maximum is able to guarantee the unique global
maximum, the underlying idea of which was used by Petruzzi and Dada (1999) and Aydin and
Porteus (2008). Taking the second-order derivative of mg, (wa|w;) w.r.t. wy yields

d’mg, (wowy) vy —1 sy =2 (1] 752 1\ 72
TR () ()
3—7 1

— ’ng(wl — ’LUQ) + ﬁ(wl —’ng)(wl — wg) — ﬁ(wl — ’Y’Ll)g)wg .

d*mg, (walwr)

By Assumption 2 and wy(w;) < wy, we can show that e
wa

< 0. Hence, wy(w;) is a
W (wy)

strict local maximum. Suppose now that there exist more than one, say two, interior stationary

points for the function mg, (ws|w,). Because both points need to be local maxima, the function
should also have an interior local minimum somewhere in between, which is a contradiction to the
result that all interior stationary points are local maxima. Consequently, we can conclude that there
exists only one stationary point wy(w;) that satisfies (SA.4), which is the unique local maximum,
and also the unique global maximum. Thus, w,(w;) is supplier 1’s optimal contracting decision.

Then, plugging (SA.4) into (SA.1) and (SA.2), we have

1
) — 1)) 1565
ql(wl)—{i(7 93727 1} , (SA.5)
B — Dw? 'Y(’Y1*2)
) = | (SA.6)

Comparing (SA.5) and (SA.6) yields % =(y-— 1)% >1.

G2 (w1)

Next, consider stage 1, where the buyer chooses the contract to offer to supplier 1, w;, to maximize
7p(wi|qr (w1, W2 (wr)), Go(ws, Wa(wr))). Plugging (SWA-4) into s, (wz|w:), we have 7T512(771)2(w1)‘w1) =
(3= 1) s — a()] 2 [ia ()] 7 (2) 7 ()7 =-0FF T ()77 (1) 20 for any
wy = 0. Thus, IR, is always satisfied. Then, plugging (SA.4), (SA.5) and (SA.6) into (1), we have

the buyer’s problem as follows:



max mp(wr) = (p+1)G(w1)G2(w1) — 1 —wig1(w1)G2(w1)

wy
L2 I\ 1\ T
—pt-w) -0l (5) T (3)

We now analyze the buyer’s optimal contracting decision. Taking the first-order derivative of

mp(wy) w.r.t. wy yields

drp(w) 1 (y— 1)?121413_:% <1>% (%)ﬁ [2(p+l) —")/wl:|. (SA.7)

dw, v—2 0
Solving (SA.7) yields the solution of the buyer’s first-order condition as follows:

WVt = 20D (SA.8)

v

Then, we need to show that w{vi is the buyer’s optimal contracting decision. Similar to the previous

Y must

proof, if the stationary point characterized in (SA.8) is a strict local maximum, then w]’
be the unique global maximum, proved by contradiction. Taking the second-order derivative of
mp(wy) w.r.t. wy yields

2 4
d27TB(’LU1) B 1 1 %1 1\~ 1\~ 4—")/
) et (3) 7 (3) | (B52) 20 - ] .

dmp(wy)

By Assumption 2, we can show that =2,
wy

vy <0 Thus, w{vi is the buyer’s optimal contracting

wy

decision.
Finally, plugging w{vi into (SA.4), (SA.5) and (SA.6), we obtain the suppliers’ equilibrium quality
1

1
y=175=2 17173=2
and contracting decisions: w)'# = 2 N — [w} Lot = [MJ . By

72 9 973 9,),3

Assumptions 1 and 2, we have ¢ ' € (0,1) for i € {1,2}. Moreover, we can show that w * /wy* =
y>2and ¢t/ =(y-1)7 >1. O

Proof of Proposition 2. We use backward induction to solve the game. Recall that the game con-
sists of three stages. First, in stage 3, suppliers 1 and 2 simultaneously choose ¢; and ¢, to maximize

their own expected profits, given w; and w, decided in previous stages. Specifically, for supplier 1,

drg, (w2,q1]w1,92)

day :wlﬁh—cl(%(wlaﬁh)):

q1=341(w1,92)
w12 — 07(¢1 (w1, ¢2))?~* = 0. Taking the second-order derivative of 7g, (w2, ¢1|w1, g2) W.r.t. ¢; yields

the first-order condition of 7g, (ws,q1|w1,¢2) is

d’rg) (wo,q1|wi g

s o (q1) = —0~(y —1)g] "* < 0. Thereby, supplier 1’s optimal quality in response
1
1

to wy is ¢i(wy,qq) = (“3—;12) "' On the other hand, for supplier 2, the first-order condition of
dm s, (g2|w2)

dga

= wy — C"(Ga(ws)) = wy — 0¥(Ga(w2))?*~' = 0. Taking the second-

q2=32(w2)

271' w —
order derivative of mg, (g2|w2) W.r.t. g yields Gy (2lwa) —C"(g2) = —0y(y—1)q3~* < 0. Thereby,

dq%

TS, (ga|w,) is




1
=T
supplier 2’s optimal quality in response to wy is go(wy) = (j—i) """, Solving the suppliers’ best

response functions yields their optimal quality decisions in stage 3 as follows:
1
w] ™ w, ) G-1?
)

Q'W'y

G (wr,wz) = ( (SA.9)

o (w5) = <;U—72> o (SA.10)

Next, consider stage 2, where supplier 1 chooses the contract to offer to supplier 2, w,, to maxi-
mize mg, (wa, ¢1 (w1, ws)|w, §2(w2)), given w; decided in stage 1. Plugging (SA.10) into mg, (g2|ws),
we have g, (G2 (w2)|ws) = wada(ws) — O(G2(w2))” = (v — 1)102”%1 (%)% (%) T >0 for any wq > 0.
Thus, IR, is always satisfied. Then, plugging (SA.9) and (SA.10) into (2), we have supplier 1’s
problem as follows:

HS;X U (w2’w1) = w1y (wh w2)§2(w2) - e(gl(wh 1U2))"Y - w2€72(w2)
2

2y-1
= 1) 1 ﬁg‘ 1 (Wil)Q 1 (Wzl)Q 2 (1 71
=(y wy ™ w, 7 S w, 5 .

We now analyze supplier 1’s optimal contracting decision. Taking the first-order derivative of

s, (Walwy) w.r.t. wy yields

2 .4

drs, (wolw) _ 7 Rt - o (LYF (1Y (SA.11)

d IR 0 SR ’ ' '
Wa Y Y Y

Solving (SA.11) yields the solution of supplier 1’s first-order condition as follows:

Wy
Gryr? -+l

y(v=1) V(‘Yl*?)
] (SA.12)

Wy (wy) = [
Then, we need to show that w,(w,) is supplier 1’s optimal contracting decision. In similar fashion
to the proof of Proposition 1, if the stationary point characterized in (SA.12) is a strict local
maximum, then w,(w;) must be the unique global maximum, proved by contradiction. Taking the

second-order derivative of g, (wa|w;) w.r.t. wy yields

5 _1_ 2—y
dzﬂ'sl(wglwl) . -1 w%{;giz (1) 'Yll <l> 'Y*q
wi oI i) 5

1(vy=2)

(~—1)2
: [7(7—2)1057 V(3 =3y +1)

= ot 7(v=2)
%1 <1> (v—1) <1> (v—1) W]]
wy' - — —wy " .
1 9 v 2

03 . < 0. Thus, wy(w,) is supplier 1’s optimal

contracting decision. Then, plugging (SA.12) into (SA.9) and (SA.10), we have

27T w9 |w
By Assumption 2, we can show that 4 sy (walwr)

1
w] ] 7 =2)
)

¢ (w1) = [W (SA.13)



(SA.14)

Comparing (SA.13) and (SA.14) yields % :7% >1.
Next, consider stage 1, where the buyer chooses the contract to offer to supplier 1, w,
to maximize wg(ws|G (w1, We(wy)),da(Wa(ws))). Plugging (SA.12) into g, (wa|w,), we have
2
~ roo o 21 e ~ - A1
Wsl(WQ(wl)‘wl) = (")/ — 1)’[1)1'Y_I [wg(wl)] (=12 (%) (v—1)2 (%) =07 _ [w2(w1)] =1 (%)'y = (’Y —
+1

0 2 —
2)w, (%)7j (%) v >0 for any w; > 0. Thus, IR, is always satisfied. Then, plugging (SA.12),

(SA.13) and (SA.14) into (2), we have the buyer’s problem as follows:

max mp(wr) = (p+1)G(w1)G2(w1) — 1 —wigr(w1)ga(wr)

B o\
et (5 (D)7
0 Y

We now analyze the buyer’s optimal contracting decision. Taking the first-order derivative of

mp(w;) w.r.t. wy yields

2 3
dﬂ'B(wl) . 1 %Y_:WZ 1 7—2 l ) B
dw, -2t \8 N 2(p+1) —ywi . (SA.15)

Solving (SA.15) yields the solution of the buyer’s first-order condition as follows:

wlt = A+l (SA.16)

v

Then, we need to show that wlT1E is the buyer’s optimal contracting decision. Similar to the previous

¥ must

proof, if the stationary point characterized in (SA.16) is a strict local maximum, then wlT
be the unique global maximum, proved by contradiction. Taking the second-order derivative of

mp(wy) w.r.t. wy yields

2 3
d27TB(’LU1)_ 1 % 1 72 1 72 4—")/
w2t ) 5) (=) e s

dmp(wy)
du}l2

By Assumption 2, we can show that

ry <0 Thus, w!* is the buyer’s optimal contracting
Wy
decision.

Finally, plugging w ' into (SA.12), (SA.13) and (SA.14), we olgtain the suppliers’ eqlllilibrium
2v° —2vy+1 |:

-1 _1 =
quality and contracting decisions: wy * = [2(p+1)] 772 (4) 72 (%) O T =

2t |70 T _

1 972+% y 4o =
7=z

[92(’,;—+g] . By Assumptions 1 and 2, we have ¢/ * € (0,1) for i € {1,2}. Moreover, we can show

v

that w}* /wy* =~/ql* >~y and ¢ /g3 " =77 >1. O



Proof of Theorem 1. The theorem follows from comparing the equilibrium contracts and sup-

pliers’ quality decisions characterized in Propositions 1 and 2. By Assumptions 1 and 2, we have

VTR B aprn 4]
J— - yr—
wyt <wyt e 20+ - — < 2P o |22 <1,
0 2 7 0’y2+%
r 1t 17 525
20+ ) |77 _ 20+ )(v=1)F |7 =1 2ot
a'>ale D5 > e Sy T (=177,
Lo 7] L
1 1
B 13—2 B 171732
2 l 2 Divy—1
qgi >qévi<:> (p“:l) > (p+ )(Z )7 Sy > (,Y_l)%7
Oy~ 0y
o i o :
Wa Wy q, qs ds

By Assumptions 1 and 2, the above inequalities always hold. Hence, the theorem is proved. [
Proof of Theorem 2. Consider the case without traceability. Based on the equilibrium charac-
terized in Proposition 1, we obtain the equilibrium expected profits for the buyer, the downstream

and the upstream suppliers, and the entire supply chain as follows:

_2 y+4
Tyt = (7= 2)(y =172 (p 1) <%> (%) S
-2 3
T == 1) 2T () <%> <%> o
72 =
W%i:(y—l)%:lQ«/_lf(p_{_l)ﬁ <%>W <%>W |

Nt _ __Ni Nt Nt
Mgl =Tpg +7T51 +7T52.

Consider the case with traceability. Based on the equilibrium characterized in Proposition 2, we

obtain the equilibrium expected profits for the buyer, the downstream and the upstream suppliers,

and the entire supply chain as follows:

¥

mht = (y —2)272 (p+ 1) 72

7N\

D= DI~ DI

W= -2+

w5 =27 )7

T _ Tt T T3
MTgr =Tpg —|—7r51 —i—7752.

We next compare the buyer’s equilibrium expected profits with and without traceability. By

Assumptions 1 and 2, it is easy to see that w5 > 78" always hold.



We then compare the downstream supplier’s equilibrium expected profits with and without

traceability. By Assumptions 1 and 2, we have

- - 1\ (1) 72 B et (1T (1)
2 — — — —2 —2 —2 — —
st-22m0r (5) 7 (3) T S0y F e (5) 7 (2)
S=2)7 > (=)

< (y—2)log(y—2) + (v —1)logy — (27— 3)log(y — 1) > 0.

Denote Di(7) = (v — 2)log(y — 2) + (y — 1)logy — (2y — 3)log(y — 1). Taking the first- and
second-order derivatives of D;(v) w.r.t. v, we have Dj(vy) = log [7(7 2)] + —L— and D{(y) =

y(v—=1)

Since DY(y) > 0 by Assumption 2, we know that D;(v) increases in =, and

Ty
T, > 775

3v—2
Y2(v=1)2(v-2)"

thus, Di(y) < lim, ;. Di(y) = logl =0, for any v > 2. Hence, D;(v) decreases in v, and
thus, Di(y) > im0 D1(7y) = lim, 4o ['ylog< ) +’y10g< ) +2log (7 1) +log (7 1)] =
lim, oo | =75 +527| = 0. Therefore, we can see that 775 > 775 ' always holds.

We then compare the upstream supplier’s equilibrium expected profits with and without trace-
ability. By Assumptions 1 and 2, it is easy to show that 7r > 7TS ! always holds. Therefore, we can
also see that meg, > mhc always holds.

Finally, we compare the changes of the two suppliers’ equilibrium expected profits due to trace-

ability. By Assumptions 1 and 2, we have

3y—1 3y 2v+1

1\ 72 -1 1\ 72 1\ 72 2v—3
A LT A L w—l)(;) —w—lw(—) >(7—2)<—> —<v—1>w<7
(PN g
v2=3y+1 v—1

2

o8y +2 gl
e (v=2log [ L—2) _joe (—— ) > 0.

o )Og<72—37+1> Og<7—1>>

Denote Dy(y) = (v — 2)log (%) — log (ﬁ) Taking the first- and second-order

derivatives of Do(y) w.rt. v, we have Di(y) = log@z:gzﬁ) — V(WJ_JE,}WI) and DJ(v) =

+ 23(1(27__323111)2. Since DYJ(y) > 0 by Assumption 2, we know that D} ()

2y—3 1
223y+1 | v2—3y+1 37+2}

increases in v, and thus, D} () <lim,_, o D5(y) =logl =0, for any v > 2. Hence, D,(y) decreases

lo '\/273'\/+2
72 —37+1
1

—2

(2y=3)(y=2)

in Y, and thus DQ( ) > hm.vH‘Foo DQ( ) = lim.yiFFOO log 1= hm.},*}+oo Z=37+D)(—1) =

0. Therefore, we can see that 7TS — 7r52 > 7731 - 7TS always holds. O

SB. Value of Blockchain in a Parallel Supply Chain: Proofs
Proof of Proposition 3. We first derive the suppliers’ optimal quality decisions. Given w;, sup-

plier ¢ € {1,2} chooses ¢; to maximize g, (¢;|w;,q_;). For supplier i, the first-order condition of

drg, (q;|w;,q—q) ~ ~ _
% = Wiq—; — CI(Qi(wia Q—i)) = Wiq—; — 0’}’(%(%‘7 Q—i))'y '=0.

2;=G; (w;,q—;)

s, (Qi’wiaQ—i) is



2 w
Taking the second-order derivative of 7g,(g;|w;,q—;) w.r.t. ¢; yields % —C"(q;) =
—0y(y — 1)¢) "> < 0. Thereby, supplier i’s optimal quality in response to w; is §(w;,q_;) =
1

(%) . Solving the suppliers’ best response functions yields their optimal quality decisions:

1
~ w) tw_;\ 0D
Gi(wi,w_;) = <W> . (SB.1)
Next, consider the buyer’s problem. Plugging (SB.1) into wg,(q;lw;,q—;), we have
wsi(qvi(wi’w*iﬂwi’qii(wh'y}*i)) = wiGi(wi,w )G (Wi, w_;) — OG(w,w_;)) = (v -

y=1 _1_ _2 -
Dw, 2w (3)72 <%)W >0 for any w; > 0 and w_; > 0. Thus, IR, is always satisfied. Then,
plugging (SB.1) into (3), we have the buyer’s problem as follows:

max 7p(wy, wz) = (p+1)G1 (w1, we)Ga(w, ws) — 1 — (w1 +ws) G (w1, wa)Go(wr, wo)

w1,w2

(p+1 g ? <1> z
=WP+l—w —w)w; “wy T | — — 1.
1 2 1 2 07

We now analyze the buyer’s optimal contracting decisions. Taking the first-order derivatives of

mp(wy, we) w.r.t. wy and wy yields

2
Orp(wi,wy) 223 2L (1 N2 [p+l—w —w,
T = W,y Wy % T — w1, (SB2)
2
O (wy, ws) s 21N\ [ pHl—w —ws
Inplt, Wa) _ = prizwimw . B.
D, wy " w,g ™ o Wo (SB.3)

Solving (SB.2) and (SB.3) yields the solution of the buyer’s first-order conditions as follows:

l
wh T =w) T = pre (SB.4)

Then, we need to show that (w; Nt wd ) are the buyer’s optimal contracting decisions. In particular,
we will prove that the sufficient conditions of the local maximum are able to guarantee the unique
global maximum, the underlying idea of which was used by Petruzzi and Dada (1999) and Aydin

and Porteus (2008). Taking the second-order derivatives of mg(wy,w,) w.r.t. w; and w, yields

2
8271'3(101,102) 1 5,;2; g < 1 )”_g [(3—7)(p+l—w1 — wsy) _2w1:|

ow? _7—2w1 2 0 v—2
2
827TB(w1,w2): 1 wﬁw% 1\ (3—’y)(p+l—w1—w2)_2w
311)% 7_2 1 2 9 7_2 21

Prp(wiw) 1 sz (1 2 pHl—wi—wy
Ow; 0w, v—2 1 07 v =2 1 2] -

By Assumption 2, we can show that the Hessian of mg(w;,w,) is negative definite in the neighbor-

hood of (wi', wi™). Hence, (w)',wy') is a strict local maximum. Suppose now that there exist



more than one, say two, interior stationary points for the function 7z (wy,w,). Because both points
need to be local maxima, the function should also have an interior local minimum somewhere in
between, which is a contradiction to the result that all interior stationary points are local max-
ima. Consequently, we can conclude that there exists only one stationary point (w; T,w2 ) that

satisfies (SB.4), which is the unique local maximum, and also the unique global maximum. Thus,
(wT,wy' 1) are the buyer’s optimal contracting decisions.
Fmadly7 plugglng (w1 ,w2 ) into (SB.1), we obtain the suppliers’ optimal quality decisions:

gt =g = (5;”) . By Assumptions 1 and 2, we have ¢ € (0,1) for i € {1,2}. O

Proof of Proposition 4. We first derive the suppliers’ optimal quality decisions. Given w;, sup-

plier ¢ € {1,2} chooses ¢; to maximize g, (¢;|w;). For supplier ¢, the first-order condition of 7, (g;|w;)

drg, (q;|w;)

o =w; — C'(qi(w;)) = w; — 09(Gi(w;))~! = 0. Taking the second-order derivative

4;=G; (w;

of mg, (¢;|w;) w.r.t. g; yields % = —C"(q;) = —0~(y — 1)¢) "> < 0. Thereby, the solution of

the first-order condition is Supplierl i’s optimal quality in response to w;. Solving the suppliers’ best
response functions yields their optimal quality decisions:
1

gi(w;) = <%> o (SB.5)

Next, consider the buyer’s problem Plugging (SB.5) into g, (¢;|w;), we have mg, (g;(w;)|w;) =

w; @i (w;) — 0(g;(w;))Y = (v — Dw ( )7 ( )LI >0 for any w; > 0 and w_; > 0. Thus, IR; is

always satisfied. Then, plugging (SB 5) into (4), we have the buyer’s problem as follows:
max g (wy,ws) = pgr(wy)Ga(ws) + %

w1,w2

(0= 00 |1 )| + 50~ D) |1~ )|
St )| |1 et |~ waii) - ()

1 l 1 4T A A l 2 (1 T 2 (1 T
=gt () (o e e () ()

We now analyze the buyer’s optimal contracting decisions. Taking the first-order derivatives of

mp(wy, we) w.r.t. wy and wy yields

Omg(wy,ws) 1 =1 (1 7T 1
= o 5 - B.
ow, =1 s 5P+l —ywi|, (SB.6)
871'3(’{1}1,’{1}2) 1 % 1 "/lI 1
= o 5 —yw,| . B.
dws =1\ 5 (P +1) = yw, (SB.7)

Solving (SB.6) and (SB.7) yields the solution of the buyer’s first-order conditions as follows:

Tt _ TT:p+l

w, ' =w, > (SB.8)
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Then, we need to show that (wlTT,sz T) are the buyer’s optimal contracting decisions. In similar

fashion to the proof of Proposition 3, if the stationary point characterized in (SB.8) is a strict local
maximum, then (w; T,w2 T) must be the unique global maximum, proved by contradiction. Taking

the second-order derivatives of wp(w,ws) w.r.t. w; and w, yields

1
*rp(w,w 1 32y (1 \7 T
Era e ) B e LR
1
1
*rp(w,w 1 2 1\ T
Ba(w; 2) = 2(,7_ 1)2w27 <%> [(2 _7)(p+l) - 2'7w2]7
2

g (wy,w,) —0
awlan '

By Assumption 2, we can show that the Hessian of mg(w;,w,) is negative definite in the neighbor-
hood of (w],wi"). Thus, (w] ,ws') are the buyer’s optimal contracting decisions.

Finally, plugging (wFfT, wa ) into (SB.5), we obtain the suppliers’ optimal quality decisions: qi” =
it = (2’;;;1 ) . By Assumptions 1 and 2, we have ¢, ' € (0,1) for i € {1,2}. O

Proof of Theorem 3. The theorem follows from comparing the equilibrium contracts and sup-

pliers’ quality decisions characterized in Propositions 3 and 4. First, it is easy to see that w; f< wl i

always holds. Second, by Assumptions 1 and 2, we have

_1 _1_ _1_ 1
Tt _ Nt pHi\ 7T p+1\ 72 1\7 1 p+1\ G-DG-D 2 p+l
>4 = > <\ = > 2N >
LR <2972> 02 2 62 272 [

Thus, the comparison between q;‘F " and qfv " can be characterized by thresholds [, or p, or 6, or ~

suchthatq';”>qfvT ifl<l_,01rp<]5,o1r9>§,01f7<7;vvhem—:'asq;”<quT ifI>1,0orp>p,orf<0,

or v > 7, where

I= by’ —p, D= Oy” —1 Q_Ew 5= o iprJrngla
g2 U S PR T =
and 7 is the unique solution to 2722 = 2t i the range of 7 > 2. Besides, 5, > 4, and it is decreasing

in p and [, while increasing in 6. Hence, the theorem is proved. [
Proof of Theorem 4. Consider the case without traceability. Based on the equilibrium charac-
terized in Proposition 3, we obtain the equilibrium expected profits for the buyer, the suppliers,

and the entire supply chain as follows:

wl = (= 1)) (g

T = -2 (p+1)7? (%)7 <1>W—z.
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Consider the case with traceability. Based on the equilibrium characterized in Proposition 4, we

obtain the equilibrium expected profits for the buyer, the suppliers, and the entire supply chain as

== (;f <z>%“_z,
I ONONON
A= (P~ ) (p+ )7 ( ) ( ) L

We first compare the buyer’s equilibrium expected profits with and without traceability. By

follows:

Assumptions 1 and 2, we have

1 1 2 ~y+2

T >yt (y—l)(erl)le(—)W_I %) —1>(y=2)(p+1)72 <%>W<%> —1

L e
©<z)w yiw D > -2 2 p+1\ G061 ‘
2 vy—1 0

. S
The last inequality always holds since (%) ﬁ >1,v0- RIcE >1, < 1, and (erl) =200 .

44
=2
ik

Hence, we can see that w5 > 7' always holds.
We then compare the suppliers’ equilibrium expected profits with and without traceability. By

Assumptions 1 and 2, we have

e 1 2y 2
T Nt (PRI LT N 2y (LT (N
Aienlen-0(5 7 (5) (5) 7 2e-vero (5)7 (5

o 4
1\ 7T 1\ G-26-1 2 l
=(3) > (5%) N el

Thus, the comparison between ng and 7T5]\v? can be characterized by thresholds I, or p, or 6, or 7

such that 775 > 7TS Tif I <1, or p<p, or >0, or v <7; whereas ng

<7TSJX_Jr if {>1, or p>p, or
6 < 0, or v > 7, where the thresholds [, p, #, and 7 are characterized in the proof of Theorem 3.

Finally, we compare the equilibrium total supply chain profits with and without traceability. By
Assumptions 1 and 2, we have

2y

Tt 9 v 1 722 1\ 72
Tso > mee & (V¥ = 1)(p+ )77 < ) <—> —1> (" =2)(p+1)72 <§> <;> .y
+1 T=D6=-D
> < W)
=1 e ()7 s (P =B
7=2)(v— 2L
®<72—2>7 <2> ><07> ‘
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2 1 e c
The last inequality always holds since ﬁ >1,y0-20-1 > 1, (%) >1,and (erl) =207 .

Hence, we can see that ma, > mh, always holds. O

SC. Data Permission and Consensus Mechanism: Proofs

Proof of Proposition 5. The game consists of two stages. First, in stage 2, suppliers 1 and
2 simultaneously choose ¢; and ¢, to maximize their own expected profits, given w; and w,
decided in stage 1. Specifically, for supplier ¢ € {1,2}, the first-order condition of 7, (¢;|w;) is
%Zj'wi) o w; —0v(¢;(w;))?~! = 0. Taking the second-order derivative of g, (¢;|w;) w.r.t. g;
yields M = —0y(y—1)¢g)"* < 0. Thereby, the solution of the first-order condition is supplier

1’s optimal quality in response to w; and t;. Solving the suppliers’ best response functions yields

their optimal quality decisions:

Gi(w,) = <;%> (SC.1)

Next, consider stage 1, where the buyer chooses the contract to offer to suppliers 1 and 2, w; and

wy, to maximize 7 (w1, ws|¢1 (w1), g2(w2)). Plugging (SC.1) into 7, (¢;|w;), we have 7g, (G;(w;)|w;) =
v 1 =1

w; G (w;) — (G (w;))Y = (y—Dw; ™" (5)7T (%) >0 for any w; > 0. Thus, IR; is always satisfied.

Then, plugging (SC.1) into (C.1), we have the buyer’s problem as follows:

max 7g(wy,ws) = (p+1)G1(w1)Ga(wr) — 1 —wiGi(wy) — waga(wy)

w1,w2
l 1 ﬁ 1 “/_zf % 1 “/_lf % 1 “/_lfl
=Pt bul <%> i <%> s <%> -k

We now analyze the buyer’s optimal contracting decisions. Taking the first-order derivatives of

mp(wy, wy) w.r.t. w; and w, yields

1 1

Impwpws) 1 (1Y)77 A (L)
B(awll 2) =5 1wf <%> (p+Dw, <%> - ’Yw1] ; (SC.2)

1 1

Orp(wy,w 1 2=/ 1\ (L
B(8w12 2)—7_1105 (a) (p+1w, (a) —’Yw2]- (SC.3)

Solving (SC.2) and (SC.3) yields the solution of the buyer’s first-order conditions as follows:

wi = wl = (p+1)7 <%> G) : (SC.4)

Then, we need to show that (wfi,wfi) are the buyer’s optimal contracting decisions. In similar

fashion to the proof of Proposition 3, by Assumption 2, we can show that the Hessian of mg(w;,w,)
is negative definite in the neighborhood of (wf™*,wf*). Thus, (wf*, wi*) are the buyer’s optimal

contracting decisions.
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Fmadly7 plugglng (wi™*,wy*) into (SC.1), we obtain the suppliers’ optimal quality decisions:

gt =gt = <§:l> . By Assumptions 1 and 2, we have ¢/" € (0,1) for i € {1,2}. O
Proof of Theorem 5 and Proposition 6. Under restricted data permission, based on the equilib-
rium characterized in Proposition 5, we obtain the equilibrium expected profits for the buyer, the

downstream and the upstream suppliers, and the entire supply chain as follows:

=2 (1) (1) -
0 v ’
_2_ 2y
Tl =(y=Dp+1)7> <%>72 (%) o
2 2y
wi=a-nwnm (5)7 (2)7

2y

R} R} 2 = 1 G 1\"=?
Tse =mg + s, gy = (7 —2)(p+ )T ) 5 —1.

The equilibrium profits under unrestricted data permission are characterized in the proof of The-
orem 2.

We first compare the equilibrium total supply chain profits under restricted and unrestricted

data permission. By Assumptions 1 and 2, we have

, L (1N (1) \ o [1\TE 1\
w0040 (5) (3) —i> et mm-aetery (5) ()T

(1P =272 > (4P — 2y - 2)272.

Thus, the comparison between 74s, and 74f can be characterized by threshold 7;, which is the

2 2)7% =y —2y-— 2)2%5 in the range of v > 2, such that 755, > 75l if

unique solution to (v
v > F1; whereas mhe < e if v < 1.
We then compare the buyer’s equilibrium expected profits under restricted and unrestricted data

permission. By Assumptions 1 and 2, we have

2 y+2 2
IN"2/1\2 1\"-2 /1 —2
wis e -6+ (5) 7 (3) T s amzten (5)(5)

Sy >4,

Thus, the comparison between 7h¢ and 745" can be characterized by threshold 4, = 4 such that

it < b if 4 < 7y; whereas Tht

>y Fif v > 5,.
We then compare the downstream supplier’s equilibrium expected profits under restricted and

unrestricted data permission. By Assumptions 1 and 2, we have



14

2 2 2 2y+1

oo () () 0o () ()

o (11 1%2<1
=2 = :
~—2)7 2

The last inequality always holds by Assumption 2. Thus, 77511 < wgli always holds.
Finally, we compare the upstream supplier’s equilibrium expected profits under restricted and

unrestricted data permission. By Assumptions 1 and 2, we have

2y 2 3v—1

2
1\72 (172 1\72 (1) 72
e () () > 0me (5) ()

Y Y

Sy >,
Thus, the comparison between ng and ﬂgi can be characterized by threshold 75, which is the
unique solution to v7~! =27 in the range of v > 2, such that 7752 < 7752 if v < #3; whereas ﬂgj > 77?2]t
ifv>~4;. O
Proof of Theorem 6. The theorem can be proved by comparing Theorem 5 to Proposition 6.
0
Proof of Proposition C.1. We first derive the suppliers’ optimal quality and transfer pay-

ment decisions. Given w; and ¢;, supplier i € {1,2} chooses ¢; and t_; to maximize

7s,(qist_ilw;, t;,q—;). For supplier ¢, the first-order conditions of g, (g;,t—;|w;,t;,q_;) are

Omg,; (a3t —s|wi,tiq—;)

daz = (w; —t;i +t_i(wi, w_;)) g+ t; — 0v(Gs(wi, w_;)) "1 =0

) @i =Gi(wi,w_q)t =t _;(wiw_;)

U —ilwi,ti,q—;

and 5, ( 3,5‘- q—;) ) =—q_;(1 — gi(w;,w_;)) <0. Thus, t_ i(wi,w_;) =0
- ¢i=q; (wi,w_;)t =t _;(w;,w_;)

always holds, and the suppliers’ optimal transfer payment is ¢/ = ¢"1 =

0. Taking the second-order

derivative of mg, (q;, t_;|w;, t;,q_;) w.r.t. g; yields 82”1’(%’;;?‘%’%’(1%) = —0v(y—1)¢)* <0. Thereby,
the solution of the first-order condition is supplier i’s optimal quality in response to w; and {,.
Solving the suppliers’ best response functions yields their optimal quality decisions:
1 T
Gilwi w) = (%) . (SC.5)
Note that (SC.5) is the same as (SB.1), and the buyer’s contracting problem (C.2) is the same as
(3) due to ;" = "1 = 0. Hence, the rest of the proof follows from that of Proposition 3. [
Proof of Theorem C.1 and Proposition C.2. By comparing Proposition C.1 to Proposition 3,
we can see that the equilibrium contracts and quality levels under restricted data permission are
the same as those in the case without traceability. Thus, the equilibrium profits under restricted

and unrestricted data permission are characterized in the proof of Theorem 4. Hence, the proof of

the theorem and the proposition follows from that of Theorem 4. [
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Proof of Theorem C.2. The theorem can be proved by comparing Theorem C.1 to Proposition
c2. O

SD. Limited Liability of Downstream Supplier: Proofs
Proof of Proposition E.1. We use backward induction to solve the game. Recall that the game
consists of three stages. First, in stage 3, suppliers 1 and 2 simultaneously choose ¢; and ¢,

to maximize their own expected profits, given w; and w, decided in previous stages. Specifi-

cally, for supplier 1, the first-order condition of g, (ws, ¢1|ws,¢2) is %W =
71=3q1(w1,w2,q2)

(w; — wy)go + min{ws,b}qs — 07(q1 (w1, ws,q2))?~! = 0. Taking the second-order derivative of
2rg (w ,q1 w1, _
s, (W2, q1|w1, g2) W.r.t. ¢ yields %M = —0y(y—1)q] * < 0. On the other hand, for sup-
1
drg, (q2|w2,q1)
dgz

= waqy + min{w,, b} (1 —
72=G2(w2,q1)

¢1) — 07(Ga(w2,q1))"' = 0. Taking the second-order derivative of 7s,(ga|ws,q1) W.r.t. ¢o yields

plier 2, the first-order condition of g, (ga|w2, ¢1) is

2
d"mg, (q2lw2,q1)

i = —0y(y—1)g3 ? < 0. Solving the suppliers’ best response functions yields their opti-

mal quality decisions in stage 3 as follows: (i) if wy < b,

G (wi, w2) = <w;;;02> o ; (SD.1)
1
G2 (wr,w2) = <;U—;> o ; (SD.2)
(i) if wy > b,
G (wr,ws) = 9’Y(q~2(w;7w_23))71 — b7 (SD.3)
Gz (w1, w2) = 07((]1(101,2102))71‘ (SD.4)

wy, — Wa + b
Next, consider stage 2, where supplier 1 chooses the contract to offer to supplier 2, w,, to
maximize g, (w2, G1 (w1, ws)|wy, Ga(wy,ws)), given w; decided in stage 1. Denote

1
_ wv(v—l) v(v=2)
) = [7 |

Gryr?—v+1

Then, following the proof of Proposition 2, we can show that there are two possible cases in stage 2

w70 76D

equilibrium, depending on b: (i) if b > b(w; ), we have W, (w;) = , and the following

07—+
proof is the same as that of Proposition 2; (ii) if b < l_)(wl), we ca:mot obtain the equilibrium due
to limited tractability, and thus we resort to numerical studies for this case (note that when =0,
the proof is the same as that of Proposition 1). O

Proof of Theorem E.1. The proposition follows immediately by comparing Proposition E.1 to

Propositions 1 and 2. [
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SE. Downstream Supplier’s Use of Traceability Information Upon
Receiving the Product: Proofs

Proof of Proposition F.1. We use backward induction to solve the game. Note that the game
consists of three stages and the last two stages remain the same as in (2). Specifically, in stage
3, suppliers 1 and 2 simultaneously choose ¢; and ¢, to maximize their own expected profits,
s, (Wa, 1|w1, g2) and mg, (ga|ws), given w; and w, decided in previous stages. In similar fashion to

the proof of Proposition 2, we obtain the suppliers’ optimal quality decisions in stage 3 as follows:

1
=Ly, \ G
d wz)” , (SE.1)

(]1(101,102) = < 0777

Go(ws) = <;U—,j> o (SE.2)

Next, consider stage 2, where supplier 1 chooses the contract to offer to supplier 2, w,, to
maximize g, (w2, ¢1 (w1, w2 )|wr, G2(w2)), given wy decided in stage 1. In similar fashion to the proof

of Proposition 2, we obtain supplier 1’s optimal contracting decision as follows:

R w'ly(v—l) ﬁ
Then, plugging (SE.3) into (SE.1) and (SE.2), we have
) w] 17D
Ow) =g ) (SE.4)
1
i wl 176D
Go(wy) = [79772171] (SE.5)

Comparing (SE.4) and (SE.5) yields —‘71(“’1; —~7 > 1.

G2 (w1

Next, consider stage 1, where the buyer chooses the contract to offer to supplier 1, w;, to
maximize 7p(w;|q(wy, Wa(wn)), G2(W2(wy))). Plugging (SE.3), (SE.4) and (SE.5) into (F.1), we

have the buyer’s problem as follows:

max mp(wi) = (p+ )G (w1)Ga(w) = 1G2(wr) — w1 Gy (w1)G2(wr)

1 2 (1\72 [1)72 L (1\72 (1\%6
- - Y= yr—
“rimn (5) 7 (5) e (5) ()

We now analyze the buyer’s optimal contracting decision. Taking the first-order derivative of

mp(w;) w.r.t. wy yields

NN E
dmp(w) _ 1 wfi 1\~ Ly 2p+1) —yw; —1 1Yy Qﬁy'y&j}?) . (SE.6)
d’UJl Y- 2 0 Wi
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Solving (SE.6) yields the solution of the buyer’s first-order condition, wi*, that satisfies

1
9%7»y+1 v(v=2)
(wr ")
Then, in similar fashion to the proof of Proposition 2, we can show that % s < 0 by
1 wl

Assumption 2. Thus, wfi is the buyer’s optimal contracting decision.
Finally, plugging w;“ into (SE.3), (SE.4) and (SE.5), we obtain the suppliers’ equilibrium quality

1
. [(wlTi)W(“fl):| 7(r=2) - |:(w¥“1)“/:| STeE) T4 _ [ (wTH)? } v('v172).

. s T —
and contracting decisions: wy* = pEp—" y = | gt , Q5 T T
Tt _
/Q2 =

By Assumptions 1 and 2, we have ¢; ' € (0,1) for i € {1,2}. Moreover, we can show that ¢,

’y%>1. ([l

SF. An Assembly Supply Chain: Proofs

Proof of Proposition G.1. We first derive the suppliers’ optimal quality decisions. Given w;,

supplier i € {1,2} chooses ¢; to maximize g, (¢;|w;,q_;). The first-order condition of mg, (q;|w;,q—;)

drg, (ai|wiq—i)

= W;q—; — C/((Z'(wz‘,q_i)) = W;iq—; — 0’)’(@‘(%7(]—1‘))771 = 0. Taking the

dg;
2 =q; (w;,q—;) )
second-order derivative of g, (q;|w;, q—;) w.r.t. g; yields dﬂs—i(gzl;ui’# =—C"(q;) = —0y(y—1)g] > <
0. Thereby, supplier i’s optimal quality in response of w; is ¢;(w;,q_;) = (%) % Solving the
suppliers’ best response functions yields their optimal quality decisions:
w)  w_; )
i(wi, w—;) = (W) - (SF.1)

Next, consider the buyer’s problem. Plugging (SF.1) into mg,(g;|w;,q—;), we have

s, ((ji(wia wﬂ') |wi> qﬂ'(wi, wfi)) = wi@i(wia w—i)@—i(wu w—i) - Q(Qi(wu w—z‘))v

1 1 1
w?flw_i ~(=2) wlzlwi 7(v=2) wzflw_i 7(v=2) 17
= Wi wav 9777 —0 W

2 0l
1=l 1 /1\7Z /1\72
—G-nei 7 (5)(2) 50

for any w; > 0 and w_; > 0. Thus, IR, is always satisfied. Then, plugging (SF.1) into (G.1), the

buyer’s problem becomes

max Tp(wi,ws) = (p+ )G (w1, ws)Ga(wr,ws) — 1 — (w1 4+ ws2) G (w1, wa)Go (w1, ws)

wi,w2
1 1
wz_le 7(v=2) w;—lwl (v =2)
s ()T (1)

2

( l ) 712 712 1 72 l
=p+—w—www<—> — 1.
1 2 1 2 97
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We now analyze the buyer’s optimal contracting decisions. Taking the first-order derivatives of

mp(wy, wy) w.r.t. w; and w, yields
2
3—v 1 1 =2 — —
Ompwy,wa) _ 55k, 2 (L prlzw—w, (SF.2)
dw, O V-2

2

@@gﬂﬁ@22w35w33<$>%f[giiiﬁ%:ﬂz_w4, (SF.3)

P

an

Solving (SF.2) and (SF.3) yields the solution of the buyer’s first-order conditions as follows:
(SF.4)

+1
it s = 2L

Then, we need to show that (w]*, w)™*) are the buyer’s optimal contracting decisions. Taking the

second-order derivatives of mg(w;,w;) w.r.t. w; and wy yields
2

) [y,

- 1>

327TB(w1,w2) _ 1 ws,;,z;w.yilg i
dw? v=21 7 \by 72
2
8271'3(’{1]17’{1]2) — 1 ww_lgw% i 72 (3_W)(p+l_w1_w2) _2w2
ows y—2 ' 2 Oy v—2 7
2
82 1 3—v 3—vy 1 y—2 l_ _
(W, ws) _ w g (— p+i—w w2_w1_w2 .
) 0y 72

awl 8’11]2
By Assumption 2, we can show that the Hessian of 7 (w;,w;) is negative definite in the neighbor-

hood of (wi¥*, wd*). Thus, (w]*,w)™*) are the buyer’s optimal contracting decisions.
Finally, pluggingl(w{\[ * wd*) into (SF.1), we obtain the suppliers’ optimal quality decisions:
@ =q¢l* = (%ﬁ) i By Assumptions 1 and 2, we have ¢/"* € (0,1). O
Proof of Proposition G.2. By comparing (G.2) and (C.1), we can see that the model formulation
for the assembly supply chain case with traceability is equivalent to that for the serial supply chain

case under restricted data permission. Thus, the proof of this proposition follows from that of

Proposition 5. [
Consider the case without traceability. Based on the equilibrium char-

Proof of Theorem G.1.
acterized in Proposition G.1, we obtain the equilibrium expected profits for the buyer, the suppliers,

and the entire supply chain as follows:
1 22 1 7 g
Y= Y=
Nx _ -9 l 712 _ _ —1
T =0 =2)+0)77 {5 S ;

)
v —a-nee (57 (57

g, =

%
a7
Il
o)
o
|
N/
)
+
ik
7 N\
Sl
N———
jm
Y
= |
N——
2
|
|
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Consider the case with traceability. Based on the equilibrium characterized in Proposition G.2,

we obtain the equilibrium expected profits for the buyer, the suppliers, and the entire supply chain

2 y+2
T — - 1 = 1 =
g = (y=2)(p+1)72 9 5 -1,

v v
L=t-ne+07 (5) T (2)7

o L (1\7? 1\ 72
Tso =" —=2)(p+1)77 <§> <;> -1

The theorem can be proved by comparing the equilibrium wholesale prices, the equilibrium

as follows:

quality levels, and the equilibrium expected profits for the buyer, the suppliers, and the entire
supply chain for the cases with and without traceability. [

SG. Buyer’s Product Inspection: Proofs

Proof of Proposition H.1. We use backward induction to solve the game. Note that the game
consists of three stages and the last two stages remain the same as in (1). Specifically, in stage
3, suppliers 1 and 2 simultaneously choose ¢; and ¢, to maximize their own expected profits,
s, (Wa, 1|w1, g2) and g, (ga|w2, ¢1), given w; and w, decided in previous stages. In similar fashion

to the proof of Proposition 1, we obtain the suppliers’ optimal quality decisions in stage 3 as follows:

1

B wy — ws )Y Lw, | 7D

ql(wl,QUQ): |:( ! 97’?/)7 2:| s (SGl)
1

. wy —wy)wd 102D

Go(wy, wy) = [%] (SG.2)

Next, consider stage 2, where supplier 1 chooses the contract to offer to supplier 2, w,, to
maximize g, (wa, ¢ (W, ws)|wy, G2 (wy,ws)), given w; decided in stage 1. In similar fashion to the

proof of Proposition 1, we obtain supplier 1’s optimal contracting decision as follows:

Wy

Wy (wy) = o (SG.3)

Then, plugging (SG.3) into (SG.1) and (SG.2), we have

1
B v—1 Y=1w? 1762
G (wy) = [%} ; (SG.4)
1
5 — Dw? 10—
Go(w:) = [%] . (SG.5)

Comparing (SG.4) and (SG.5) yields M =(y-— 1)% >1.

Go(wy)
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Next, consider stage 1, where the buyer chooses the contract to offer to supplier 1, w;, and the
inspection level S to maximize 7p(wy, B|G:i (w1, We(wy)),Ga(wr,We(wy))). Plugging (SG.3), (SG.4)
and (SG.5) into (H.1), we have the buyer’s problem as follows:

Iillé}éi mp(wi, B) = [p—i— I(1— 5)}@1(101)@2(101) —U(1=B) —wi gy (w1)Ga(wy) — 1(B)

<v—1>v1wr}m {(w—l)wz]m gL

2
9v727 077% i(1- a —,uﬂ

—[p+ia-5)-w] | :

= [0 -8~ w] ()T (g) (%) 1) - gus?.

We now analyze the buyer’s optimal contracting decision and inspection level. Taking the first-

order derivatives of mg(wy, 3) w.r.t. w; and f yields

awB;Zjﬁ) _ ;2(7—1)7—1%33 <%>_f <%>_5 [2[p+z(1_5)} _wl}, (SG.6)
0 L2 1N\ 1\
w =iy =D <5> <;> +1—pp. (SG.7)

Solving (SG.6) and (SG.7) yields the solution of the buyer’s first-order conditions as follows:

Nt 2[p+1(1—pNY)]

w, "= ) (SG.8)
' v
and BV* satisfies ,
L [2lp+1(1— M psN
—1)7=2 =1—-—. SG.9
(r-1)7 = : (5G.9)
Then, we need to show that w{v tand BN are the buyer’s optimal decisions. Taking the second-
FPrp(wi,B) _

order derivative of wg(wy,3) w.r.t. 5 yields = —p < 0. Thus, SV* is the buyer’s optimal

832
inspection level. Then, in similar fashion to the proof of Proposition 1, if the stationary point

i

characterized in (SG.8) is a strict local maximum, then w{v must be the unique global maximum,

proved by contradiction. Taking the second-order derivative of mg(w;,3) w.r.t. w; yields
2 4
Prp(wi, B) 1 L S AN LI\ [ [4—n
= —1)7 2w, ? (= — — |2 1-— — — .
i =m0y (5) () [(55) [ -] o

2
By Assumption 2, we can show that Z7zlwf) ”’g(“;l*ﬁ)

v Tt N

< 0. Thus, w{vi is the buyer’s optimal
contracting decision.
Finally, plugging w}* and SNt into (SG.3), (SG.4) and (SG.5), we obtain the suppliers’ equi-
1

=17 52
1(1-pNt (1= (v—1)
librium quality and contracting decisions: wév P w, q{v b= [2[p+ (16 Mg]” b ] ,

5

1

N 2[p+l(1fﬁNi)]('yfl)% FZ N
@t = . By Assumptions 1 and 2, we have ¢'* € (0,1) for i € {1,2}. More-

63

over, we can show that w'*/w)* =~y >2 and ¢V /¢l =(y-1)7>1. O



21

Proof of Proposition H.2. We use backward induction to solve the game. Note that the game
consists of three stages and the last two stages remain the same as in (2). Specifically, in stage
3, suppliers 1 and 2 simultaneously choose ¢; and ¢, to maximize their own expected profits,
s, (Wa, 1|w1, g2) and mg, (ga|ws), given w; and w, decided in previous stages. In similar fashion to

the proof of Proposition 2, we obtain the suppliers’ optimal quality decisions in stage 3 as follows:

w'ly_lw2 (W*ll)E
i ) , (SG.10)
1
ﬁ
G2 (ws) = <;U—72> . (SG.11)

G (wi, w2) = (

Next, consider stage 2, where supplier 1 chooses the contract to offer to supplier 2, w,, to
maximize mg, (ws, ¢1 (w1, wa)|ws, G2 (w2)), given w; decided in stage 1. In similar fashion to the proof

of Proposition 2, we obtain supplier 1’s optimal contracting decision as follows:

wz(v—l) “/('vlf2)
Wy (wy) = 79%}N2_V+1] (SG.12)
Then, plugging (SG.12) into (SG.10) and (SG.11), we have
Y 1AeD
~ w Yr—=
Gi(wy) = [7977;1] : (SG.13)
1
) w! 136D
Go(wy) = [W;_l] (SG.14)

Comparing (SG.13) and (SG.14) yields % =7 > 1.
Next, consider stage 1, where the buyer chooses the contract to offer to supplier 1, w;, and
the inspection level 8 to maximize mg(wy, B|G; (w1, Wa(w1)), G2 (W2 (w,))). Plugging (SG.12), (SG.13)

and (SG.14) into (H.2), we have the buyer’s problem as follows:

Iillaé{ mp(ws, B) = [p—l—l(l - 5)]@1(“’1)@2(101) —1(1=B) — w11 (w1)Ga(wr) — 1(8)

1 1
B wl 1 w] 1 1,
— - -] [ | ST - - s

i1 72 (1 (T (1 Lg
= [p+1(1 = B) —wi]uwy ] 5 —( —ﬂ)—§ﬂﬂ-

We now analyze the buyer’s optimal contracting decision and inspection level. Taking the first-
order derivatives of 7z (wy, ) w.r.t. wy and (3 yields

a 1, 1 % 1 7_32 1 W_Eg
ﬂBéZ;}l 5):7_2“’1 <§> <;> [Q[Pﬂ(l—ﬁ)]—vwl, (SG.15)
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op
Solving (SG.15) and (SG.16) yields the solution of the buyer’s first-order conditions as follows:

Wt = 2[1?”%-5”)]’ (5G.17)

Onp(wf) __y <%>_Z G)T Ll B, (SG.16)

and 7% satisfies

pBt
I

Then, we need to show that wlTi and BT% are the buyer’s optimal decisions. Taking the second-

:1—

{2[p+l(1 —5”)]] 7 , (SG.18)

97%

2
order derivative of mz(wy, ) w.r.t. B yields W = —u < 0. Thus, B7# is the buyer’s optimal
inspection level. Then, in similar fashion to the proof of Proposition 2, if the stationary point

characterized in (SG.17) is a strict local maximum, then w]* must be the unique global maximum,

proved by contradiction. Taking the second-order derivative of wg(wy, 3) w.r.t. w; yields

(9271'3 1 1 % 1 % 1 TEQ -
25t () ) () et ] ]

2
By Assumption 2, we can show that W‘
1

Tt . ) .
(Tt T < 0. Thus, w;* is the buyer’s optimal

contracting decision.
Finally, plugging w;* into (SG.12), (SG.13) and (SG.14), we obtain the suppliers’ equilib-

o B 22y
rium quality and contracting decisions: w3 ' = [2 [p+l(1—ﬁTi)]]7*2 (1)7*2 <l> "o Lt =

[Q[MM] T [z[wom (i .

. By Assumptions 1 and 2, we have ¢/t € (0,1) for

1
2+"/

2% 0" Y
i€ {1,2}. Moreover, we can show that w ' /wi* =~/q¢'* >~ and ¢ */q}

F= 7% >1. O
Proof of Proposition H.3. We use backward induction to solve the game. Note that the game
consists of two stages and the last stage remains the same as in (3). Specifically, given w;, supplier
i €{1,2} chooses ¢; to maximize 7g,(¢;|w;,q_;). In similar fashion to the proof of Proposition 3, we
obtain the suppliers’ optimal quality decisions:
1 T
Gi(wi, w_;) = <w;;777131> o . (SG.19)
Next, consider the buyer’s problem. Plugging (SG.19) into (H.3), we have the buyer’s problem

as follows:
max 7w, ws,B) = [P+l(1 —5)]51(101,102)@2(101,102) =11 = B) — (w1 + w2) 1 (w1, w2) G (w1, wa) — I(B)

wy,w2,p
1 1
w'Y_lw F7(v—2) wV_lw 7(v—2) 1
_[p+l(1_ﬂ)_w1_w2]< év,yvz> < ;V'}Nl> _l(l_IB)__MBQ

2

— [+ 109w wsfol Tl () 10 5) - s
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We now analyze the buyer’s optimal contracting decisions and inspection level. Taking the first-

order derivatives of 7z (w;,wq, ) w.r.t. wy, wy and S yields

2
aﬂB(wl,ZUQ,ﬂ)_ i_:“g/ (1 2 [p+1(1—B) —w; — ws
8’(1]1 ! Wa 0’}’ ,.)/_2 wy |, (SGQO)
2
aﬂB(wl,ZUQ,ﬂ)_ 'v_l2 % 1\72 p+l(1—5)—w1—w2
T ow, 0" oy po— —wa, (SG.21)
2
871'3(11]17’{1]2,/8)_ ﬁ ﬁ 1 =2
o5~ wiwi gy ) Hiows (5G.22)

Solving (SG.20), (SG.21) and (SG.22) yields the solution of the buyer’s first-order conditions as

follows:
1— BNt
wf” = wé\” = p—+l( B ), (SG.23)
Y
and BT satisfies
2
1 — BNt ~—=2 Ny
[%] —1_ % (SG.24)

Then, we need to show that (wf”,wév T) and ANT are the buyer’s optimal decisions. Taking the

second-order derivative of wg(wy,ws, ) w.r.t. § yields W = —u < 0. Thus, ST is the
buyer’s optimal inspection level. Then, in similar fashion to the proof of Proposition 3, if the station-
ary point characterized in (SG.23) is a strict local maximum, then (w) ', w) ') must be the unique
global maximum, proved by contradiction. Taking the second-order derivatives of mg(wy,ws, 3)

w.r.t. w; and wy yields

Prs(wiwnf) _ 1 5% o (1T B8 —wm—w]
5 = wy' T wy wr |,
owy v—2 0~ y—2
Prp(wiwy ) 1 1y = (172 [B=)[p+U(1— ) —wi —w)]
5 = w{ " w, — — 2wy |,
ows v—2 0~ y—2
2
Prp(wy,wy,B) 1 33 33 (1 \72 [p4+1(1—-f) —w —w,
dwdw, 42 <5> [ y—2 ST wQ] '

By Assumption 2, we can show that the Hessian of wg(w;,ws, ) is negative definite in the neigh-
borhood of (wit,wi ™). Thus, (w)'',w)") are the buyer’s optimal contracting decisions.
Finally, plugging (w)'",w)") and AT into (SG.19), we obtain the suppliers’ optimal quality
4
p+l(15NT):| v—2
P )

. By Assumptions 1 and 2, we have ¢' € (0,1) for i €

decisions: ¢ = ¢)'T = [ 7

{1,2}. O
Proof of Proposition H.4. We use backward induction to solve the game. Note that the game

consists of two stages and the last stage remains the same as in (4). Specifically, given w;, supplier
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i € {1,2} chooses ¢; to maximize g, (q;|w;). In similar fashion to the proof of Proposition 4, we

obtain the suppliers’ optimal quality decisions:

w,\ 7T
gi(w;) = <0—;> . (SG.25)
Next, consider the buyer’s problem. Plugging (SG.25) into (H.4), we have the buyer’s problem
as follows:
1 |. - 1 . 1 -
s (11,0, 8) = o )+ )| = 511 =) | (1= 9) = 51 1 = el | (19

—w1G1 (1) — waa(ws) — 1(B)

= %[p—i—l(l —ﬂ)] [Ql(wl) +§2(w2)} — (1= B) —wi 1 (w1) — waga(w2) — I(B)

1 INTT[ 2, (17T
=gl () for Tl i -l ()

1
2o 1\ 1
~ud (5;) -

We now analyze the buyer’s optimal contracting decisions and inspection level. Taking the first-

order derivatives of mg(wy,ws, B) w.r.t. wy, wy and S yields

1
Omp(wi,wy, ) 1 1N\ [p+I(1-P)
Ow, - 1 0y 5 ywi| (SG.26)
1
O (w1, wy, ) 1 i%} L\ "1 [p+i(1-0)
- 0 — - 2
Ow, v—172 \by 5 Ywa |, (SG.27)
1
Omp (Wi, ws, B) L1\ 4 A
95 2'\by — up. 2
op 5! 0~ w Fwy | = pf (SG.28)
Solving (SG.26), (SG.27) and (SG.28) yields the solution of the buyer’s first-order conditions as
follows:
1— BTt
Wt = rt 22570 (5G.29)
2y
and BT satisfies 1
pHI(1—BTNTT BT
[ 267 =l-— (SG.30)

Then, we need to show that (w?T, wQT T) and 87T are the buyer’s optimal decisions. Taking the second-

2
order derivative of mp(w;,wy, ) w.r.t. 8 yields W = —u < 0. Thus, A7 is the buyer’s
optimal inspection level. Then, in similar fashion to the proof of Proposition 4, if the stationary
point characterized in (SG.29) is a strict local maximum, then (w] ', wa ') must be the unique global

maximum, proved by contradiction. Taking the second-order derivatives of mg(wy,ws, 3) w.r.t. w,

and wy yields
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Prp(wy,wy, B) 1 s <i>v—1r [(2—7) [p+1(1—B) — 2yuw,] ]

owr 4= 1 \oy 2(v—1) e
Prp(wpws,f) 1 5% (1\TT[@=)pHI1-F) 2w
w3 y=17 \& 2(y 1) |

82773(101,102,5)

8w1 an =0

By Assumption 2, we can show that the Hessian of 7z (w;,ws, 3) is negative definite in the neigh-
borhood of (w!,wi'). Thus, (w] ', wi’) are the buyer’s optimal contracting decisions.
Finally, plugging (w] ,w3') into (SG.25), we obtain the suppliers’ optimal quality decisions:
1

Tt T p+l(1—,8TT) =T . T .
G = =g . By Assumptions 1 and 2, we have ¢; ' € (0,1) for i € {1,2}. O

SH. Suppliers’ Exogenous Loss: Proofs
Proof of Proposition I.1. We use backward induction to solve the game. Recall that the game
consists of three stages. First, in stage 3, suppliers 1 and 2 simultaneously choose ¢; and ¢, to maxi-

mize their own expected profits, given w;, and w, decided in previous stages. Specifically, for supplier

drg, (w2,q1|w1,q2)
dqy

= (U)l — Wo + lS)QQ —

a1=3q1(w1,w2,q2)

C'(Gy(wy, ws,q2)) = (w1 —wy + 1) g2 — 07(G1 (w1, ws,q2))"~! = 0. Taking the second-order derivative

1, the first-order condition of 7g, (w2, ¢1|w1,g2) is

. d*n wa,q1 w1, _
of wg, (w2, q1|w1, g2) w.r.t. ¢; yields LCZQM = —C"(q,) = —0v(y—1)q]* < 0. Thereby, sup-
1 _lr
plier 1’s optimal quality in response to w; and wq is ¢ (w;,ws,q2) = w "7, On the
other hand, for supplier 2, the first-order condition of 7g,(¢g2|ws,q1) is W » : =
q2=3q2(wW2,q1

(wa+ 1) g1 — C' (G2 (w2, q1)) = (w2 + 1) g1 — 07(Ga(w2, q1))?~+ = 0. Taking the second-order derivative

sy (lwaq)

of mg, (ga|ws, q1) W.r.t. go yields d . = —C"(q2) = —0v(y—1)g3 > < 0. Thereby, supplier 2’s

(wo+ls)q

1
oy } T Solving the suppliers’ best response

optimal quality in response to wy is Go (w2, q1) = [

functions yields their optimal quality decisions in stage 3 as follows:

1

. —wy+ 1) H(wa+ 1) 1707

a (w17w2) _ |:(w1 Wa 97’1/7 (w2 ):| 7 (SHI)
1

_ —wy + 1) (wa +1,)77 707D

QQ(wl, w2) _ |:(’UJ1 Wao evifwa ) :| ) (SH2)

Next, consider stage 2, where supplier 1 chooses the contract to offer to supplier 2, w,, to max-
imize 7g, (wa, ¢1 (w1, ws)|w1, §2(wr,ws)), given w; decided in stage 1. Plugging (SH.1) and (SH.2)

into g, (¢2|ws, q1), we have
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TS, (Qg(wl,w2)|w2,cj1(w1,w2)) = (wz + ls)@l(w1,w2)q~2(w1>w2) —1ls— 9(@2(“’1,102))V

— (s +1,) (w1 —wy + 1) Hwy + 1) TeE)) (wy — ws 4 1) (wa + 1) ETo=]
= 2 s QVI-)/V 0777

9777
2 Y
- 1\"2 /1\72
(= 1) (wy — ws + 1) 72 (ws 4+ 1,) 2 <5> <;> 1

Then, plugging (SH.1) and (SH.2) into (I.1), we have supplier 1’s problem as follows:

IEIUE;X wsl(w2|w1) = (wl + ZS)Q1(w1aw2)62(w1aw2) —ls— G(Cfl(wlawz))V - wqu(wlawz)q~2(w1>w2)

L 1
_ (w1 — wy + 1) wy +1,) ] 70D [ (wy —wy + 1) (wy +1,)7 170D
==t +L) [ 0y Oy

1o (wy —wa +1,)" H(wy + 1) e |7
s Ory

2 ~
_ = 2
:(’Y—1)(w1—w2+ls)%(wz+ls)%2 <%>’Y <%>’Y — .

We now analyze supplier 1’s optimal contracting decision. Taking the first-order derivative of

s, (wo|wy) w.r.t. wy yields

d ws|w -1 1 30y (1\72 [1\7 2
TrSlCsz’ 1) :::_2(w1—w2+ls)712(w2+ls)7:2{ <§> <;> |:w1_7w2_('7_2)ls . (SH.3)

Solving (SH.3) yields the solution of supplier 1’s first-order condition as follows:

wy — (v —2)l
Y

Wa(wy) = (SH.4)

Then, we need to show that w,(w,) is supplier 1’s optimal contracting decision. In similar fashion to
the proof of Proposition 1, if the stationary point characterized in (SH.4) is a strict local maximum,
then Wy (w; ) must be the unique global maximum, proved by contradiction. Taking the second-order

derivative of mg, (wa|w;) w.r.t. wy yields

d? -1 3— 5— 1\7Z2 /1\72
Wsii(wu;ﬂwl) :X_Q(wl—wz-i-ls)z_*}(ll)z-i-ls)ijW <§> <;> [—’y(wl—wg—i—ls)(wg—i—ls)
2
_ 1
+y—g[wl—sz—(V—Q)ZS](UH—U&#LZS)_ 7—2[w1_7w2_(7_2)l5](w2+ls) '

d*ng) (walwr)

By Assumption 2 and ws(w;) < w;, we can show that L
2

< 0. Thus, wy(w,) is

Wa(w1)

supplier 1’s optimal contracting decision. Then, plugging (SH.4) into (SH.1) and (SH.2), we have

1
) 1wy 4 20,)7] T
R R (SHL5)
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_ ¥ — D (w +2[ Y ’Y('Y 2)
qQ(wl): ( )9(’Y’712'y )

(SH.6)

Comparing (SH.5) and (SH.6) ylelds =(y— 1)% > 1. Besides, we can show that IR is satisfied
when [, is sufficiently small.
Next, consider stage 1, where the buyer chooses the contract to offer to supplier 1, w;, to

maximize g (w1 |Gr (wr, W2 (w1)), G2 (w1, We(w1))). Plugging (SH.4) into mg, (we|w; ), we have

7, (i) oy) = (7 - 1) [wl — By (wy) +zs} = [w2<w1> +zs] ” @) j (%) o
=(v-1) {wl - A (1_2)15 +ls] - [—wl — (';—2)15 +ls] ” (%)TQZ G)%Z 1,

= (v = 1)57 (w, +2,)7 <%>722<%>%_1

Then, plugging (SH.4), (SH.5) and (SH.6) into (I.1), we have the buyer’s problem as follows:

max mp(wi) = (p+1) G (wi1)G(wi) — I — wiqi (wi)G2(wn)

s = Q=i 2] T
tholtl Y27
= (p+1—w)(y— D)7 (wy +21,) 7 (%)(%)d

We now analyze the buyer’s optimal contracting decision. Taking the first-order derivative of

mp(wy) w.r.t. wy yields

dﬂ'B(wl) . 1
dw1 N Y — 2

(7 )77 g + 21,) <%>722<%>742[2(p+l)—7w1—2(7—2)l5- (SHL7)

Solving (SH.7) yields the solution of the buyer’s first-order condition as follows:

Wt = 2 p+! _y — 2] (SH.8)

Then, we need to show that w{v ' is the buyer’s optimal contracting decision. Similar to the previous

proof, if the stationary point characterized in (SH.8) is a strict local maximum, then w{v i

must
be the unique global maximum, proved by contradiction. Taking the second-order derivative of

mp(w;) w.r.t. wy yields

d27TB (w1 ) 1

) LD () (g) (%) (353) |20+ 0= mw - 2= 20| ]

drp(wy)
dw%

By Assumption 2, we can show that , < 0. Thus, w{v ' is the buyer’s optimal contracting

wy

decision. Besides, we can show that IR, is satisfied when [, is sufficiently small.



28

Finally, plugging w; ' into (SH.4), (SH.5) and (SH.6), we obtain the suppliers’ equilibrium

1
y-175=2
quality and contracting decisions: w)* = 2(1)+l)—(vv—22)(7+2)ls7 gVt = 2<p+l+2l;zy(37_l) 7 gt =
spetszgaont | 77 By A tions .1 and 2, we have ¢/'* € (0,1) for i € {1,2}. O
A . By Assumptions I.1 and 2, we have ¢; * € (0,1) for i € {1,2}.

Proof of Proposition 1.2. We use backward induction to solve the game. Recall that the game
consists of three stages. First, in stage 3, suppliers 1 and 2 simultaneously choose ¢; and ¢, to

maximize their own expected profits, given w; and w, decided in previous stages. Specifically,

drg, (w2,q1|w1,92)

for supplier 1, the first-order condition of g, (w2, q:|ws,¢2) is T

g (wl +
a1=q1(w1,92)
l)g2 — C'(q1(wy,q2)) = (w1 + Ls)ga — 07(G1 (w1, g2))?" " = 0. Taking the second-order derivative of
2
msy (wa,a1wi,q2)

s, (Wa, 1 w1, g2) W.r.t. ¢ yields ¢ i —C"(q1) = —0v(y—1)q] " < 0. Thereby, supplier

1
1’s optimal quality in response to w; is ¢ (w1, q2) = [%} "' On the other hand, for supplier
= (wa + 1) = C'(G2(w2)) = (wa + 1) —

q2=3a2(w2)

drg, (g2|w2)
dqz

2, the first-order condition of g, (gz2|w2) is

271' w
07(¢2(ws))"~! = 0. Taking the second-order derivative of ms,(ga|ws) W.r.t. ¢o yields %?2) =

—C"(q3) = —0y(y —1)q3 > < 0. Thereby, supplier 2’s optimal quality in response to ws is Ga(ws) =

1

=T
(w%—:ls> """ Solving the suppliers’ best response functions yields their optimal quality decisions in

stage 3 as follows:

_ +1) Hwy +1,)] ¢ iy
ql(wl,wg) = |:(w1 )0777(11& ):| ! s (SHQ)
1
Go(ws) = <w207 ) . (SH.10)

Next, consider stage 2, where supplier 1 chooses the contract to offer to supplier 2, w,, to maxi-
mize g, (Wa, §1 (w1, ws)|ws, §2(ws)), given w; decided in stage 1. Plugging (SH.10) into mg, (ga|w2),

we have

T, (Ga(w2) |[w2) = (wa + 1) Go(w2) — I — 0(Ga(w2))”

1 1
_ wy I \TT [ (w1 \ 7T
i (22 o] (2

— (y—1)(wp 1) 77 (g)ﬁ (%)ﬁ 1,

Then, plugging (SH.9) and (SH.10) into (I.2), we have supplier 1’s problem as follows:
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IEIUE;X 7TSl(w2|w1) = (w1 +15)G1 (w1, w2) Go(wa) — Iy — O(G1 (w1, w2))” — waGa(ws)

_(w —|—Z ) (w1+l5)v_1(w2+ls) ﬁg w2+l5 W_ll —l
AL s Gy 0~y °
(wy + 1)1 (s +1,)| 57 | wy +1,\ 7T
-0 — Wo
0y 0~y
2y—1 72 1
e a1\ (-2 (1) (1?2 1\7 T
:(7_ 1)(w1+ls)711 (w2+l5)(W*1)2 <§> ! <;> ! _w2(w2+ls)"/_lf <%> —ls.

We now analyze supplier 1’s optimal contracting decision. Taking the first-order derivative of

s, (wo|wy) w.r.t. wy yields

1 ol
1 39921 (1 \ 7T 1\ 6e-02 S
drs, (wa|w:) _ (ws +1,) ij1)2 <%>” [(wl_‘_ls)%f <_> =1 _(w2+ls)_(771)2 [’sz-i-(’y—l)ls} .

dws v—1 0~y

(SH.11)
Solving (SH.11) yields the solution of supplier 1’s first-order condition, ws(w;), that satisfies

(s +1,)70° (%) — st 1. B is(un) + (- D i (SH.12)

Note that wq(w;) is supplier 1’s optimal contracting decision. However, due to limited tractabil-
ity, we cannot obtain the closed-form wy(w;) from solving (SH.12). Hence, we derive the inverse

function of wy(w;) from (SH.12), i.e., w;(wy), as follows:

1
](v—1)2 =1y

5 07 [ywa + (y = 1)1,

i (ws) = .. —1.. (SH.13)
Then, plugging (SH.13) into (SH.9) and (SH.10), we have

: L\

. =
¢ (ws) = [’YU& + (v — 1)15} (wg +15)70-D <%> , (SH.14)

1
- +I,\ T

Ga(ws) = <w297 > . (SH.15)

2=

Comparing (SH.14) and (SH.15) yields Zééﬁi = [WZJJLSDZS > (y— 1)% > 1. Besides, we can show
that IR, is satisfied when [, is sufficiently small.

Next, consider stage 1, where the buyer chooses the contract to offer to supplier 1, w;, to maximize
g (w |G (wy, We(wy)), g2(Wa(w;))). Note that it is equivalent for the buyer to choose the optimal

wy and offer the corresponding contract @, (ws) to supplier 1. Plugging (SH.13) into g, (ws|wy),

we have
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v 2

2y—1 ol 1
=T _a _[1\6-02 /1) (-1)2 1\ ¢
s, (wo| iy (w2)) = (7—1)[w1(w2)+zs} (W +1,) -1 <5> ! (-) T wy(wy 1) <9—> —1,

Y Y
12 76-D T 21 ~?
— (1) 07y [yws + (v — 1)1 o= (s 41 )ﬁ 1\G-02% [1\ G102
= w2+l5 2 s 9 v
1
1 1\ T
—’UJQ(’UJQ—FZS)ﬁ <%> —ls

S A [CO YA 3 M ) MRSy (LN A

Then, plugging (SH.13), (SH.14) and (SH.15) into (I.2), we have the buyer’s problem as follows:

max 7mg(w;) = max 7g(w(ws))
w1 w2

= (p+ D@1 (01 (w2)) @2 (01 (w2)) — 1 — D1 (w2)G1 (W01 (w2)) G2 (101 w2))
Y 1 ls
:(p+l)|:'7w2+(fy—1)lj| (w2—|—l w(w 1) _7) ’IU2+ ) y
07y [ywz + (v = 1)L] (”*1)2 o . g Ly (LT (w2t )T
wo + I 7w2 +0 (w24 1,)7070 % 0~
5 1 1\ T
=({p+1+1) [”ng—l-(’y—l)ls] (wa + 1 )WW D % —l— {”ng—l—('y—l)ls} (we + 1)1 <%> .
We now analyze the buyer’s optimal contracting decision. Taking the first-order derivative of
(W (we)) w.r.t. wy yields
(i (w)) _ 1 1) v
T plWi (W 2—y B
= )71 | — [+1 — 1)l
i)~ L) () |t ek (- DL
1 v
1\ /1\7"
. [272102—1—(7—1)(27—1—1)15] (ws +1)TRT <§> <;> _72w2—(7—1)(7+1)15]
(SH.16)
Solving (SH.16) yields the solution of the buyer’s first-order condition, wi?*, that satisfies
_1 0
L A I e Py Ty
(p+14+1,) (] +1,) 76D : —~ 27%w, "+ (v = 1) (2y + 1)1,
7 (SH.17)

5

{wQu( )(7+1)st% +(y- )l]

Then, plugging wgi into (SH.13), we obtain the buyer’s optimal contracting decisions: wipi =

oot 1
Wy (wit) = [ngTi + (v = 1)l K (wy* 4 1,) D) (97)7_lr — l,. Besides, we can show that IR, is

satisfied when [, is sufficiently small.
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Finally, plugging w2T P into (SH.14) and (SH.15), we obtain the suppliers’lequilibrium quality
decisions: ¢} = [vwrgpi +(y—1)L]"7 l( P, )W ) (%)711, ot = [#jls} W. By Assumptions
I.1 and 2, we have ¢/ ' € (0,1) for i € {1,2}. O

Proof of Proposition 1.3. We first derive the suppliers’ optimal quality decisions. Given wj,
supplier i € {1,2} chooses ¢; to maximize mg,(q;|w;,q_;). For supplier i, the first-order condi-
= (wi + 1s)g-i — C"(@(wisq-4)) = (wi + Ls)q—s —

4;=3; (w;,q—;)

0v(¢;(wi,q—;))"~' = 0. Taking the second-order derivative of mg,(gilw;,q—;) w.r.t. ¢ yields

drg, (qilwi,q—;)

tion of 7r5i(<]i|wz‘>Q—z‘) is da;

27'I' . | Wi,q—4 — . . . . .
% = —C"(q;) = —0~(y —1)q] > < 0. Thereby, supplier i’s optimal quality in response to

M} . Solving the suppliers’ best response functions yields their optimal

w; is ¢;(wi, q—;) = { 0

quality decisions:

(w; + 1) (w_; + zs)} gee

e (SH.18)

(ji(wiaw—i) = [
Next, consider the buyer’s problem. Plugging (SH.18) into mg,(q;|w;,q—;), we have
Wsi(ql-(wi,wfi)lwi, Q—i(wi,wﬂ')) = (wi + ZS)(ji(wiawfi)qfi(wiawfi) —ls— G(Qi(wnw—i))v

_ l (wl + ls)'yil(w_i + ls) W("/lfz) (w—i + ls)'}’*l(wi + ls) W("/—lfz)
= (wi + s) 0777 9%.)”

(w; + 1) (w_; +1,)]76-2 17
1,0
Qwv

= (7= 1)(wi + 1) (w +1) 72 <%>722<%>W_V2—l

Then, plugging (SH.18) into (I1.3), we have the buyer’s problem as follows:

max 7g(wy,ws) = (p+1)G1(wy,ws)Ga(wr,ws) — 1 — (w1 +wsa) G (w1, ws)Go(wr, ws)

w1, w2

=(p+1l—w —w,)

(wl + ls)vfl(w2 + ls) "/(W1*2) (w2 + ls)’Yfl(wl + ls) W(“/1*2)
kel Oy N
1 1 \2
We now analyze the buyer’s optimal contracting decisions. Taking the first-order derivatives of

mp(wy, we) w.r.t. wy and wy yields

2
87rB(w1,w2)_ 1N\"72 [p+l—w —ws
—ow, )7 (wy +1,) 7 e e B (SH.19)
2
omg(wy,w 3— I\ 2 [p+l—w—w
%ﬁz(wﬁz)w(wﬁz)ﬂ(%) [%—wg—ls]. (SH.20)
Solving (SH.19) and (SH.20) yields the solution of the buyer’s first-order conditions as follows:
w{VT—wéVT:p—i_l_(fY_Q)lS. (SH.21)

v
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Then, we need to show that (w} ',ws ') are the buyer’s optimal contracting decisions. In similar

fashion to the proof of Proposition 3, if the stationary point characterized in (SH.25) is a strict
local maximum, then (w1 , Wh T) must be the unique global maximum, proved by contradiction.

Taking the second-order derivatives of mg(wy,ws) w.r.t. w; and w, yields

Prp(wi,wy) 1 (w1 + 1) F (s + 1) (L)*B[@—vﬂp+l—w1—wﬂ_2@h+hﬂ,

owy y—2 O N —2
2
Frplw,wy) _ 1 sz (L\TF[B=)(p+1l—wi —w)

2

2 _ =2 _ _

8752(122}11)2):712(21]1_{_[ )’3Y ;/(w2+l )’3Y v <%>W [W_wl—wQ—le} .
1 2 - o

By Assumption 2, we can show that the Hessian of m(w;,w,) is negative definite in the neighbor-
hood of (w;' ", wl"). Thus, (wi',w)") are the buyer’s optimal contracting decisions. Besides, we
can show that IR, is satisfied when [, is sufficiently small.
Finally, plugging (w)',wy ') into (SH.18), we obtain the suppliers’ optimal quality decisions:
=g = (%) o . By Assumptions L1 and 2, we have ¢ ' € (0,1) for i € {1,2}. O
Proof of Proposition I.4. We first derive the suppliers’ optimal quality decisions. Given w;, sup-

plier ¢ € {1,2} chooses ¢; to maximize g, (¢;|w;). For supplier ¢, the first-order condition of 7, (g;|w;)

drg, (gi|w;)
dg;

=w; + 1, — C'(q;(w;)) = w; + Iy — 0(q:(w;))"~ = 0. Taking the second-order

4;=G; (w;)

derivative of mg, (g;|w;) w.r.t. ¢; yields w —C"(q;) = —0y(y — 1)g] > < 0. Thereby, the

solution of the first-order condition is supplier i’s optimal quality in response to w;. Solving the

suppliers’ best response functions yields their optimal quality decisions:

~ w1+ls>'y_1r
qi(w;) = . SH.22
(w)= (50 (SH.22)

Next, consider the buyer’s problem. Plugging (SH.22) into 7g,(q;|w;), we have

s, (G (wi) |w;) = (w; + 1) G (w;) — 1y — 0(Gi(w;))”

1 1
’UJZ—‘—IS'YTI wi—‘—ls'y_irfy
(%) ] (52

(= )i +1,) 7 (g)ﬁ (%)j .y

Then, plugging (SH.22) into (1.4), we have the buyer’s problem as follows:
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s i, 100) = ()2 + 50— Di(w) | 1= 8] + 50~ Dals) 1~ )
1= )] 1= 20| - w1 0) - e
= 504D ) + )| 1 ) ()

1 1 1 1
_1 wl—l—ls 7T ’UJQ“‘ZS 7T ’UJ1+lS -1 ’UJQ“‘IS -1
_5(p+l)[< 0y > +< 0y > ]_l_w1< 0y ) _w2< 0y > '

We now analyze the buyer’s optimal contracting decisions. Taking the first-order derivatives of

mp(wy, wy) w.r.t. w; and w, yields

Orp(wi,wy) 1 2 (1 T I1
i LR DA 5P+ —ywi = (=1L, (SH.23)
1
37TB(w1,w2)_ 1 2—% 1 F—T1 1
b CLR) 1<97> {2(p+l) Yws — (7 1)l5]. (SH.24)

Solving (SH.23) and (SH.24) yields the solution of the buyer’s first-order conditions as follows:

1 —2(y—=1)l,
w?fzwg"’[:p_‘_ (v—1) ‘
2y

(SH.25)

Then, we need to show that (wlTT,sz T) are the buyer’s optimal contracting decisions. In similar

fashion to the proof of Proposition 4, if the stationary point characterized in (SH.25) is a strict
local maximum, then (w!',w.') must be the unique global maximum, proved by contradiction.

Taking the second-order derivatives of 7z (w;,ws) w.r.t. w; and wy yields

1
827'('3(’[1)1,’[1)2) 1 3—2y 1 7T (2—7)(p+l—2’yw1)
= (= ~ywy —2
ow? ~v—1 (wr +1,) 5 Oy 2(y—1) ywr = 2s |
1
Prp(wi,wy) 1 s 1\ [(2=7)(p+1—27w,)
8’11)% 77_1(w2+ls)’y 1 % 2(7_1) _7w2_215 )

827'('3(’[1)1, ’LUQ) _ O
3w13w2 '

By Assumption 2, we can show that the Hessian of mz(w;,w;) is negative definite in the neigh-
borhood of (w] ', w3 ). Thus, (w] ', wa') are the buyer’s optimal contracting decisions. Besides, we
can show that IR, is satisfied when [, is sufficiently small.

Finally, plugging (wa,wQT T) into (SH.22), we obtain the suppliers’ optimal quality decisions:
al=qlT= (%) o By Assumptions .1 and 2, we have ¢/ ' € (0,1) for i € {1,2}. O

Proof of Theorem I.1. The theorem follows from comparing the equilibrium contracts and sup-

pliers’ quality decisions characterized in Propositions 1.3 and 1.4. First, it is easy to see that
Tt

w; ' < wfv " always holds. Second, by Assumptions I.1 and 2, we have
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pl42l, p+1421\ 7
qZ' >q1 2 2
20~ 0
1 1
1\ "1 p+1+20,\ G-26G-1 v p+Il+2I,
s = —_— & .
<2> >< 6 ) R

Thus, the comparison between qiT T and qlN T can be characterized by thresholds l~, or p, or 5, or vy
such that q';”>qfvT ifl<l~, or p < p, or9>§, or v <7; vvhelr(—:'asq;”<quT ifl>l~, or p > p, 0r9<§,

or v >, where

L P U S e B 0 RO if 2l <y
B T T 72 T2 i e sy
and 7, is the unique solution to 23—: = % in the range of v > 2. Besides, 7, > 4, and it is

decreasing in p and [, while increasing in 6. Hence, the theorem is proved. [
Proof of Theorem 1.2. Consider the case without traceability. Based on the equilibrium charac-
terized in Proposition 1.3, we obtain the equilibrium expected profits for the buyer, the suppliers,

and the entire supply chain as follows:

2
¥o2 3
TN = (= 2)(p+ 1+ 20,) 7 <§> (%) -1,

2 2y
IN7Z /172
wA]S‘VT:(’y_l)(p+l+2ls)w_lg <§>“/ <;>“/ _lsa

2 2y
5=z 5=z
mhd = (v = 2)(p+ 1 +21,) 72 <%>W (%)W —1—2L.

Consider the case with traceability. Based on the equilibrium characterized in Proposition 1.4,
we obtain the equilibrium expected profits for the buyer, the suppliers, and the entire supply chain

as follows:
A1

7= (= (ot 1420) 7 (21)”11<1>ﬁ—z,

R-o-n(2) () ()
)

Tot= (= 1)(p+1+2l)7 " < <—> -2,

We first compare the buyer’s equilibrium expected profits with and without traceability. By

Assumptions 1.1 and 2, we have

+1 2 +2

1 ol
1\ T /1\71T INTZ /172
wfeale a-verea (1) (2) —sa-aeeay T ()T (2)

1 ——
=3 (Z> o '7(77_2)2(’%1) S 2 (Pl ) ey :
2 v—1 0
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_1 2 O e
The last inequality always holds since (%) 21, 496-90-0 > 1, 3—:? <1, and (%) =200
1. Hence, we can see that 75 >y always holds.
We then compare the suppliers’ equilibrium expected profits with and without traceability. By

Assumptions I.1 and 2, we have

ot 1 2y 2 2y
Nt p+z+zzs>ﬁ<1>w<1>ﬁ L (1\72 (1\7?
7T,_>7T,_<:>")/—1 <7 — — —l,>(y=1D(p+1+20,)72 | = _ —1,
S; S; ( ) 9 9 v ( )( ) 9 v
0l ol
INTT _ (p+I+20,\0260-D A2 pl+2l
- <2> g < 0y? ) AT

Therefore, the comparison between ng and WJSVZ_T can be characterized by thresholds l , OT P, Or é,

T N

or 74 such that ﬂgf >7TJSVZ_Jr if <1, orp<p,orfd>0, or v < 7; whereas 7T§_ <mg,' ifl >1, or p>p, or

1

0 < 5, or v > 7, where the thresholds l , Dy 0~, and 4 have been characterized in the proof of Theorem
I.1.

Finally, we compare the equilibrium total supply chain profits with and without traceability. By

Assumptions I.1 and 2, we have

2y 2
v 1\ /1\" 1T v 1\"2 /1\72
Toe > The & (V2= 1) (p+1+20)71 (@) (—) —1=20,> (¥ =2)(p+1+2l,)72 (5> (—) —1-2l,
Y

o (7L (LT (il T
v2 =2 2 92
2 a1 S -
(=l WW(1)7*1> pHi+2l\ 0o
72 -2 2 O
1

2 1
The last inequality always holds since 12:1 > 1, y6=26-0 > 1, (%)7’1 > 1, and

2
. T
<p+z+215 ) =2)(-1)

e < 1. Hence, we can see that s, > 74/, always holds. [
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