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Proof of Lemma 1. We consider two cases: p; > 22 and p; < £2.
Case 1: p; > %2. For the riders with a valuation v < %2, they do not try to take a ride in both
periods. We next study the riders with a valuation v > £2. Note that these customers, if left in
Period 2, always try to take a ride in Period 2. Let Ug denote his utility of trying to take a ride
immediately and Uy, denote the utility of waiting for Period 2. It is easy to see Ugr = p} (v —p;) +
(1= p])ps(av — ps) and Uy = ph(av — py). It follows that Uz > Uy, if and only if v > %. By
p1 > 22, we have % > .
Case 2: p; < %2. We consider two separate scenarios.
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e v >E Similar to Case 1, we have Ur > Uy, if and only if v > p1_a,ﬂ“ . Moreover, by p; < %2,
2

it follows that % <p1 < £2. Therefore, customers with v > 22 try to take a ride immediately
in period 1, and if they are not matched, they will continue trying to take a ride in Period 2.

e v < 22 These riders will never try to take a ride in Period 2. If v > py, they will try to take a
ride in period 1; otherwise if v <p; < 22, the riders will not take a ride in both periods. Q.E.D.

Proof of Proposition 1. If no transaction takes place in Period 2, then the platform’s profit
can be expressed as m = min{(1 — p)r, 1}p. It is easy to check that the optimal solution is p* =1/2
with 7 =r/4 if r <2; otherwise, p* =1 —1/r with 7* =1 —1/r. In addition, if r <2 and p* =1/2,
the highest valuation for the left riders is 1/2. Therefore, to guarantee no transaction in Period 2,
we need the condition ¢/~ > 1/2«. Similarly, when r > 2 and p* =1 — 1/r, we need the condition
¢/y>a(l—1/r). QE.D.

Proof of Lemma 2. (i) ¢(p;) is decreasing in p, when py > av and py < av. Moreover, ¢(ps) is
continuous at py = aw. Therefore, the desired result directly follows. (ii) We consider two separate
cases. If g(p2) <y+d, then obviously we have py =1 for any p,. If ¢(p2) > y+d, then (2) is reduced
to 5 = H;)ax(l —v)(y + d)ps, subject to q(p2) >y + d. It is easy to see that p} must satisfy that
q(p3) = y—id, which also implies p; = 1. Therefore, in both cases, we have pj =1. Q.E.D.

Proof of Lemma 3. As shown in Lemma 2, it suffices to only consider the scenario ¢(p2) < d+y.
By (1), we need to consider two cases: %2 <wpand v < %2 < 1. For each case, we compute the

corresponding optimal profit, and then we compare the profits and find the optimal solutions.
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Case 1: 22 <w, i.e., p; <aw. In this case, we have ¢(p2) = (1 —v)(1 - p})r+ (v — £2)r. By Lemma

2(ii), the problem of the platform in Period 2 in this case can be described as

my" =max(1=7)[(1=0)(1 = p}) + (= 2)rp, (EC.1)

P2

st. (1-v)(1—py)+v— djfy %gg. (EC.2)

1%

where 7,* is the optimal profit of Case 1 in Period 2.

We next focus on the scenario (1 —v)(1—pf) +v— 2 <, ie, (1-v)(1—p})r <d+y. Note
that if (1 —v)(1— p})r > d+y, which implies that the total number of available drivers is no larger
than that of high-valuation riders who tried to buy in period 1, then the platform has no incentive
to set a price lower than aw. Define m;(p;) = (1 —7)[(1 —2)(1 — p}) + (v — 22)]por. Let m/(p2) =0.
We have p, = $[(1 —2v)(1 — p) + v] = p3. Therefore,

o if % >, ie., (1—v)(1—p])>wv, then p5 = av. Because the optimal decision is taken at the
boundary point p3* = aw, the profit in this subcase must be no more than that in Case 2.

o If (1—0)(1—p)) +u— 0 <2 <y e, (1-v)(1—p)) <vand 3[(1-v)(1-p}) +ulr <d+y,
then p}* = pj and 7" = 2 (1 —)[(1 —v)(1 — p}) +v]*ar.

o I (1—v)(1—p)) +v— S > 2 je, (1—v)(1—p})+ufr>d+y, then pi* = [(1—v)(1 -
pi)+u— o and my' = (1—9)(d+y)[(1-2)(1 - pf) +v— o

Case 2: v < 2 < 1. In this case, we have g(p2) = (1 — 22)(1 — p})r. Then the problem of the

platform in Period 2 in this case can be described as

w3 =max(1 - )(1 - 2)(1 - p})rp, (EC.3)
d+y D2

s.t. max{l— —— v} <=—=<1 EC.4
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where 72* is the optimal profit in Case 2. Define mo(ps) = (1 —7)(1— &)(1 — %) rps. Let mi(ps) = 0.
We have p, = &. Therefore, the optimal solution to (EC.3), denoted as p3*, can be expressed as
(1%231{)74777 %}O& SpeCiﬁcaHy,

e whenv>1—22 je, (1—v)(1—pr<d+y:ifv<

py =max{1l—

we have p} =% and 73 =1(1—7)(1-

1
29

ph)ra; otherwise, we have p? =wa and 72" = (1 —v)(1 — p})awr.

e when v <1 — % if 1 >1— (1‘f:%’)r, ie, (1 —pl)r <d+y, we have p3 =< and 73 =
11 =) (1 = p})ar; otherwise, we have p? =[1 — (1‘3?)7“]04 and 72 = (1 —7)(d+y)[1 - (112?)1«]6“‘

By comparing the two profits in Case 1 and Case 2, we can find the optimal solutions, i.e.,
73 = max{ms*, m2*}. The desired results directly follow. Q.E.D.
Proof of Proposition 2. As shown in Lemma 3, there are four possible solutions in Period

2. Since we focus on the scenario v > p; > 22, only Solutions 3 and 4 can arise in equilibrium. To
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see this, note that in Solutions 1 and 2, % > v. Moreover, the platform could set a price p;, such
that (1 —v)r >1 or (1 —v)r <1. We first study the case (1 —v)r > 1, and then we show that the
optimal solution under this case must satisfy (1 —wv)r =1, which implies it suffices to consider only
the case (1 —v)r <1.

Suppose (1 —wv)r > 1. It follows that pj] = and (1 —v)(1—p})+uv=1—-. If Solution 3 is

o

the optimal solution in Period 2, then p5 = $(1 — ) and p§ = +(1 — L)r/(d+ y). Moreover, due
=1(1—-1)ar2 and 75 = (1 —7)(1 -

to ypipd = ¢, we also have pd = o

2)2ar. Then the platform’s profit over two periods is given by m = (1 —7)p1 + (1 —)(1 — 1)%ar.

pP1—DP5

=2, 1t is easy to see the optimal p; takes the value such that

Moreover, since we have v =

(1 —v)r=1. If Solution 4 is the optimal solution in Period 2, by vp3p$ = ¢, we have p} = <. Then

by (1-v)(1—p])+v=1-1 and %z(l—y)(l—p?)—i—y—d# , we have d +y = (1— | — )r,
and 3 =(1—7)(1—1— o rs. It follows that m= (1 —~)p1 + (1 —7)(1 - r- o5 )r<. Again, since
v = pi:Z;, it is easy to see the optimal p;, takes the value such that (1 — v)r = 1. Therefore, it

suffices to consider only the case (1 —uv)r <1.
Suppose (1 —v)r <1 and Solution 3 is the optimal solution in Period 2. It follows that p] =1,

§ = stiryys Ps = yva, ™5 = 1 (1—7y)aw’r and d = 7 (v)* + (1 —v)r — 1. Then by v= %, we have

=R
W

plg )rpl + (1 -
(32-)%ar. Let d—” =0, we have p; = 2=%_ In addition, recall that (1 —u)r<l1,ie,p >(1-
(1-

2(4—
2. Then pt = max{ 222 (1 - ;)(1 - 5)}. Specifically, if 2=9% > (1—1)(1—$), Le., 7 <

2(4—3a)

_ (2= 04)2 V= 2—a
2(4—-3a)? = 4-3«a

1 = (1 —%)v. Taking this and m = 1(1 —7)1; ar into 7, we have m = (1 — 7)(

")
7)
(2-a)
2(4—3w)

4-3a
2(1-a)’

in Period 2, we need the condition 5 < ;Ef 3") Otherwise, if r >

. To guarantee d+y > 5[(1=v)(1—p}) +u]r
we have p} = (1— *)(1 -5),

we have pj = and p} =

( )’
v=1—1and p§ 2(1—1). To guarantee d+y > $[(1 —v)(1 — p}) + v]r in Period 2, we need the

condition £ < 9(1 - 1).
Next suppose (1 —v)r <1 and Solution 4 is the optimal solution in Period 2. Since pg =1, we

always have p; = £. In addition, because p; = (v — )« in Solution 4, we have d+y = (v — =

and thus 73 = (1 —7)(v — ;5)r<. Taking this and v = 175 into 7, it follows 7* = (1 —)(1 —

p1 p1—%

__%)rpl + (=M= — 5)rs. Let j?”l =0, we have p; = 15 + ¢. In addition, recall that

(1-v)r<1ie,pi>(1-;)(1—a)+ < in this case. Thenp’{2111a>({1*—“+£ (1= -a)+ 2}

Specifically, if 5% + £ > 1-H(1-a)+ £ ler<2, then p; = 5% 4 £ S u= + and p; = <. To
guarantee d +y < $[(1 —v)(1 — p}) 4+ v]r, we need the condition £ £> Z To guarantee v > p;, we
need the condition £ < g. If 7 > 2, then pj = (1 - H(l—a)+ =1 — L and p; = <. To guarantee

d+y < 3[(1—v)(1—pl)+v]r, we need the condition £ > %(1— ). To guarantee v > p;, we need

;
the condition £ <a(1 - ).



ecd

The drivers’ surplus is given by Sp = v(p: Vi + p2V2) — de, where V; is transaction volume in

period ¢ and d is the number of new drivers arrived in Period 2. Then the total social welfare is

given by W =S+ Sp +m, where S = (52 —p;)(1 —v)r + 2522 (v — ) is the riders’ surplus and
=1 =) (p1(1 —v)r+p2(v— £2)r) is the platform’s profit. In addition, W can also be expressed
as W = 1;rﬁ(l —u)r+ L;m (v— %2)7’ —de.

Finally, we next study the overlaps regions. First, there is no overlap between SSP and GSP.

The boundary is £ =g when r <2 (for SSP3 and GSP1) and £ =a(1 - 1) (for SSP4 and GSP2).

2

Second, there is no overlap between the SSP2 and SSP4. Third, there are indeed overlaps between
SSP1 and SSP3, ie., & < £ < 222 (’) and r < 2. Fourth, there are overlaps between SSP1 and SSP4,

’ 4 =5 = 2(4-3a)

S(1— *) < 3 < 2(51 o and 2<r< 2%1 3o Obviously, for the overlapped regions, the platform

will set the price such that the maximized profit is obtained. We first provide the results on profit

comparison for the overlap between SSP1 and SSP3 (§ < £ < a(2—

<< e andr<2)

LEmMA EC.1. There always exists fop =< — 0‘72 - 0‘[4((241?35 — 122] such that SSP1 dominates

SSP3 when § < © £< Bo; otherwise when 50 < £ £< o(2-2) - 66P3 dominates SSP1.

2(4—3a)”’

)2
4(4—3a)

2 (9)7] Let f(B)= 1878+ @) 1-a Note that f() is convex and decreasing when

4 ¥ 4(4— 3(1)

<p< 0‘(2 O‘) . Therefore, it suffices to show f(8=F) >0 and f(3= 42 3a))) < 0. Moreover, it is

>0 andf(f = 22=2)) = _ U2 o < 0. The desired result

2(4—3a) T 4(4—3a)2

Proof of Lemma EC.1. The gap between the profits in two equilibria is given by 1"[

easy to check that f(B=9)= 16(4 50

follows from that f, is the solution to f(3=0) when § <3< 2"(512 3?). Q.E.D.

For the overlap between SSP1 and SSP4 ($(1—1) < £< ;’Ef 30‘) and 2 <r < 2%1 30‘) ), we have the

following results.

LEMMA EC.2. There always exists 81(r) such that SSP1 dominates SSP4 when $(1—1) < £<

B1(r); otherwise when B1(r) < << ;f ;), SSPj dominates SSP1.

It is possible that (3;(r) takes the value of O‘(2 O‘) , then SSP1 always dominates SSP4. The proof
is similar that for Lemma EC.1 and thus omltted. The only difference is that the threshold 3,
depends on r. Q.E.D.

Proof of Proposition 3. Recall that v = py, if p; < ?2. Suppose (1 —2v)r <1. The remaining
riders at the beginning of Period 2 are those with a valuation v < v, and thus no transaction incurs
in Period 2. It is easy to see the optimal solution is p; = 1 with nj = $ if r < 2; otherwise, pj =1—1

with 77 =1 — 1. We next study the case (1 —v)r > 1, where we have p] = and y = 0. Since

1
(1—v)r

we have 22 <v in Solutions 3 and 4 of Period 2, it suffices to consider Solutions 1 and 2.
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Suppose Solution 1 is the optimal solution in Period 2. Since p$ = 1, by vp;p3 = ¢, we have ps =

\_/Q\C‘

Moreover, since p; = [1 — d”) Ja, it follows that d +y = (1 - Z)(1—p))r=(1— 35)(r - =

and thus 73 = (1 —7)2(1 - 5)(r — —) Then the total profit over two perlods is given by ™=

L=+ Q=20 — —)] Let d—” =0, we have p; =1—, /2(1 — _%). In addition, recall that

(1-v)r>1ie,p <1-1. Thenplzmln{l—\/f—) 1—;}
Specifically, ifl—,/ 1—— , l.e .,T‘Z% and & ,/“—2 4 < % +\/ﬂ,

4
then pj =v=1-— — <) and 7* 7)[1—2,/%(1—0(—7)—%%(1——) r]. In addition, we

i

M\Q

av
have d = (1 — )(1—,01 r—(l—a—v)(r—ﬁ). To guarantee (1 —v)(1 — p})r >d+y, and
¥ ay

3(1—p})r > d+y, we need the cond1t1on £> % and £ S=9, respectively. By § — 0‘72 —5<5<
ﬁggg% “72——2_oz , the equ1hbr1um w1thp1:1—,/ 1—0%) exists when %ggg
24\/2 — 5 and r> Tlfl— Cl-L)>1-1t e, £<g—\/F—For£> @ _ g
orr< %, then p; =v=1—1% and 7* =1 — 1. Note that it follows that (1 —v)r =1, which implies
d+y =0 and no transaction Period 2.

Suppose Solution 2 is the optimal solution in Period 2. Since p} = (1_12)7‘, T =12(r— liy)a.
Then the platform’s profit over two periods is given by 7= (1—+) [p1 + 50— =)]. Let d—” =0, we
have p; =1— @ . In addition, recall that (1—v)r > 1, i.e., p; <1—21. Then pj =min{l—¥* 1-1}.

:1_£

Specifically, if 1 — L <1- %, ie., r> it follows that p} However, since we have

f?

p1 < 22 in this case, there is no equilibrium with p; <22 If 1 — f >1- ;, ie., r< we have

f?
pl=v=1-— % Again, no transaction takes place in the second period.

When p; < 22, riders’ total surplus and total transaction volume are given by S = 1‘% +(1-—

)L —prx a5 =5 s (1= 5) + ga(a—5)? (T—ﬁ) and V' =1+ (1 = 2)(1 - p})r =

L4+ (1 —=2)r— %, where (1 — 22)(1 — p{)r and “52 are the number and average surplus

of the riders in Period 2, respectively. Drivers’ surplus is given by Sp = v(p1Vi + p2Va) — de =
Y(p1+ (1 —22)(1 = p})r-p2) —dc, where V; is transaction volume in period 4 and d is the number of
new drivers arrived in Period 2. Then the total social welfare is given by W = S + Sp + 7, where
S is the riders’ surplus and 7 = (1 —7)(p1V} + p2V5) is the platform’s profit. Q.E.D.

Proof of Proposition 4. PSP equilibrium has overlap regions with GSP2 and SSP4 separately.
First, we compare PSP and GSP2. The overlap regions between the two equilibria can be expressed

as a(l— 7) < < S+ —Fzandr > = . It is easy to see the profit gap between PSP and GSP2
isgivenbyAﬂ':(l—v)(f—Q 7(1——)4— (1—07/) =(1- f,/f —2)r—1]>>0. The
volume gap between PSP and GSP2 is given by AV = +4/2 r +1]>0.

Second, we compare Equilibria PSP and SSP4. The overlap regions are given by 13- <
a(l— ) and 7 > ~=. It can be easily checked that the gap of the profits (SSP4-PSP) is (1 7)(1 -
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a) = (1=2,/2(1=%)). Then, when r < ag\/_icuic)’ the profit under PSP is larger than that

under SSP4; otherwise the profit under SSP4 is larger.
It can be easily checked that the there are more new drivers attracted (d) in PSP than that in

SSP4, if € =2 T1a» which is also part of the conditions for PSP. Therefore, more drivers are attracted

to the current region in PSP than in SSP4. Since in PSP and SSP4, no drivers are left to Period
2 and py =1, then the total transaction volume can be expressed as 1+ d, and thus the matching
volume in PSP is larger.

We next show [p; —p3| in SSP4 is larger than that PSP, i.e., (1-1)(1—a) > >s=1+,/5(1-25).
Recall that in the conditions of SSP4, we have 1 — 1 > —=. Therefore, it sufﬁces to show for for

cxi (l-a)s -+ 12> £(1—;%), which can be further simplified as g(2) = (4a? — 3o +

1)(%) +(2—- 504)0# +a? > 0. One can verify that discriminant for the quadratic function 9(5) =0,

6 =[(2—b5a)a)’ —4a*(4a® —3a+1) > 0 when o < §. Therefore, we next show g9(5) =0 for £ > 12

when a > 2. It can be checked that g(f) is increasing for £ > 3 when a > 5 Moreover, g(; =

)= (1+a)2 (4 —4«) > 0. This completes the proof. Q.E.D.
Proof of Proposition 5. When r is relatively small, r < %, the boundary line between GSP
and SSP is £ =g for r <2 and £ =oa(l - 1) for r > 2, both of which are increasing in o. It follows

that the boundary line between GSP and SSP is raised. For r > the boundary line between

f»
PSP and GSP is % =9+ \/% — %, which is increasing «; and thus the boundary line between
GSP and PSP is raised. Similarly, it can be checked that the boundary line between PSP and SSP
r= M}ﬁ goes down. Q.E.D.

Proof of Proposition 6. It is easy to check that the GSP equilibria remain the same as previous.
We next study the SSP and PSP equilibria. Specifically, for SSP1 and SSP2, most outcomes remain
the same, including p1, T, S v, po. The only differences are d, p¢ and the conditions. d is the solution
to yzvaZ - 3 o +c1f(d), and p = svr/(d+y), where y is the same as before, i.e., y=1—(1—v)r.
In addltlon, the conditions for SSP1 and SSP2, d+y > £[(1 —v)(1 — p}) +v]r can be expressed as
d> 32+ (1-v)r

For SSP3 and SSP4, since Solution 4 is the optimal solution in Period 2, we still have 1) pd =1,
and p; = %ﬁw); and 2) d+y = (v— 2 )7“ and p; = (1 — @)a Then it follows that d is the

solution to M =(1- d+1)

a. Plugging d into p} = ( +1) o, we can obtain p3. The rest proof
resembles that of Proposition 2. We have p; = max{5® +p}, (1 —1)(1 — @) +p5}. The conditions
for SSP3 are given by r <2 and § < p; < §. The conditions for SSP4 are given by r > 2 and

2(1—-1)<p; <a(l—1). In both equilibria, the matching volume is given by V = (1 %)r.
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For PSP, similar to the proof in Proposition 3, it suffices to consider Solutions 1 as the optimal

solution in Period2. Since pd = 1, by vp3p3 = ¢ + ¢1 f(d), we have p} = %lf(d) Moreover, since
=[1- dJ;y) Ja in Solution 1, it follows that d is the solution to %ﬁw) 11— (ld;y Ja. Note

, one can easily obtain p; (also

that the solution is in terms of v. Plugging d into p} = M

in terms of v). Recall that 7= (1 —~)(v+dp;) and p, = v in PSP. Let pI’S” be the real solution

to 4¢ =0 such that p{"** maximizes m and 0 < p{*¥ < 1. By (1 —v)r > 1, we need the condition

pfSP S 1

(1—v)(1—p})r>d+yand 0.5(1—p))r>d+y. QE.D.

— % In addition, as Solution 1 is the optimal solution, we also need the conditions

Proof of Proposition 7. Since the firm is myopic to maximize the revenue in period 1 when
setting py, it is easy to see that pi =1 — % When setting p,, Lemma 3 still holds with a myopic
firm. In addition, by p; =1— 2, we have (1 —v)r < 1. Thus, we only need to consider the scenario

v>p1 > 22, ie., only Solutions 3 and 4 in Lemma 3 can arise. Suppose Solution 3 is the optimal

or
2(d+y)’

v="1=L2 we have v=(1—1/r)/(1 —a/2) and p; = 32-(1 — 1). By ’YP;% = ¢, we have

solution in Period 2. It follows that pj =1, pd =

7 = 1(1 — y)aw®r and p; = Jva. By

d+y=%"(v)?. To guarantee d+y > +[(1 —v)(1 — pjﬁ) +v]r and v <1, we need the conditions
<

72-(1—1) and o < 2. Suppose Solution 4 is the optimal solution in Period 2. Since p3 =1,

we always have p; = £. It follows that v="5=£2 = (1-1/r —¢/7)/(1-a) and d+y = (v— 5)r.

To guarantee d+y < 1[(1 —v)(1 — pI) +v]r, we need the condition (1—1). In addition, by

—Za

p1 > 2 and v <1, we have the condltlons £<a(l—1)and a <1+ < For the above two scenarios,

<>
ol
£
e
7)

the firm’s total revenue over two periods is expressed as m = (1 —)[p1(1 — v)r 4+ p2(v — 2)r], and

the riders’ surplus is given by S = (22 — p1)(1 — v)r + (2522)(v — 22)r. As the drivers’ surplus
is Sp =[p1(1 —v)r + p2(v — 22)r] — de, the total social welfare is given by W = Sp + S+ 7 =

1;E(l —u)r+ 7@;” (v—2)r —dc.

It is also possible that v > 1, then no transaction takes place in period 1, i.e., when 1) % <
72-(1—-1%) and o> 2; or 2) ;2-(1— 1) <f<a(l- 1). In these scenarios, at the beginning of
period 2, the firm sets the price p, to maximize its revenue min{(1 — 27,1 +d)}p,. It is easy to
check the optimal solution is p; = § with d = “Z* —1 when £ < g and p; = £ withd=(1—5)r—1
when % > 5. In these scenarios, the transaction Volume, platform proﬁt, rider surplus, driver
surplus and social welfare are given by V = (1 —2)r, 7= (1 —-7)(1 = 2)rp,, S = (1 — 2)r=t2,
Sp=7(1—2)rpy —dc and W =E2(1-2)r —de. Q.E.D.

Proof of Proposition 8. The proof of this lemma resembles that of Propositions 2 and 3.

Q.E.D.
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Proof of Proposition 9. Note that GSP has overlaps with SSP4 in which (1 —v)fr + (1 —

p?)(1—0)r = 1. Therefore, the profit in SSP4 can be expressed as 7974 = (1 —+)[pi + (v — £)ore]=

(=) (=) +0£ (- E)r
(1-7) atad

. It can be checked that 1)when r >3 — a(1 —0), 75574 is increasing in

T <
2—atald — ay

0; and when r >3 — (1 — ), 79574 is decreasing in 6 for

lcce <11 QED.

r— oy — r

< %, and increasing in 6 for

Proof of Lemma 4. The proof of this lemma resembles that of Lemma 3. Q.E.D.

Proof of Proposition 10. The proof of this proposition resembles that of Proposition 2.
Q.E.D.

Proof of Proposition 11. We consider the scenario where SSP2 and MSP4 are the outcomes

of SSP and MSP, respectively. Note that the conditions for SSP2 is a subset of those for MSP4.

4—3a
2(1—«a)
£<3(1- 1). The first period prices pj in MSP4 and SSP2 are 1 -1 and (1—1)(1— %), respectively.

T 2

The second period prices p; in MSP4 and SSP2 are § and §(1 — %), respectively. In MSP4, the

Therefore, the conditions for this scenario are the same as those for SSP2, i.e., r > and

social welfare is given by Wiygps = “522 (1 — 22)r —de = ar(2 — 2) 4+ c. The social welfare in SSP2 is
given by Wsgps =1— 5=+ (2 — 2)ar(1— 1 )2 Hence, the social welfare gap can be expressed as A =
Wsspa = Wuspa=[1— (3 = 1)a](1 - 5-) — ¢. Recall that the conditions for SSP2 are £< S(1- %)
and r > 55722 > 2. Therefore, A>[1— (2 - 1)of(1—-5) - FA-H=1-2)1-2)+ 52 >0.

2(1—a) — 2 2 r 4 T
Q.E.D.




