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Proof of Lemma 1. We consider two cases: p1 ≥ p2
α

and p1 ≤ p2
α
.

Case 1: p1 ≥ p2
α
. For the riders with a valuation v ≤ p2

α
, they do not try to take a ride in both

periods. We next study the riders with a valuation v ≥ p2
α
. Note that these customers, if left in

Period 2, always try to take a ride in Period 2. Let UR denote his utility of trying to take a ride

immediately and UW denote the utility of waiting for Period 2. It is easy to see UR = ρr1(v− p1)+

(1− ρr1)ρ
r
2(αv− p2) and UW = ρr2(αv− p2). It follows that UR ≥ UW , if and only if v ≥ p1−ρr2p2

1−αρr2
. By

p1 ≥ p2
α
, we have

p1−ρr2p2
1−αρr2

≥ p1.

Case 2: p1 ≤ p2
α
. We consider two separate scenarios.

• v ≥ p2
α
. Similar to Case 1, we have UR ≥UW , if and only if v ≥ p1−ρr2p2

1−αρr2
. Moreover, by p1 ≤ p2

α
,

it follows that
p1−ρr2p2
1−αρr2

≤ p1 ≤ p2
α
. Therefore, customers with v ≥ p2

α
try to take a ride immediately

in period 1, and if they are not matched, they will continue trying to take a ride in Period 2.

• v < p2
α
. These riders will never try to take a ride in Period 2. If v≥ p1, they will try to take a

ride in period 1; otherwise if v < p1 <
p2
α
, the riders will not take a ride in both periods. Q.E.D.

Proof of Proposition 1. If no transaction takes place in Period 2, then the platform’s profit

can be expressed as π=min{(1− p)r,1}p. It is easy to check that the optimal solution is p∗ = 1/2

with π∗ = r/4 if r≤2; otherwise, p∗ = 1− 1/r with π∗ = 1− 1/r. In addition, if r≤ 2 and p∗ = 1/2,

the highest valuation for the left riders is 1/2. Therefore, to guarantee no transaction in Period 2,

we need the condition c/γ ≥ 1/2α. Similarly, when r ≥ 2 and p∗ = 1− 1/r, we need the condition

c/γ ≥ α(1− 1/r). Q.E.D.

Proof of Lemma 2. (i) q(p2) is decreasing in p2 when p2 ≥ αv and p2 ≤ αv. Moreover, q(p2) is

continuous at p2 = αv. Therefore, the desired result directly follows. (ii) We consider two separate

cases. If q(p2)≤ y+d, then obviously we have ρr2 = 1 for any p2. If q(p2)≥ y+d, then (2) is reduced

to π∗
2 =max

p2
(1− γ)(y + d)p2, subject to q(p2) ≥ y + d. It is easy to see that p∗2 must satisfy that

q(p∗2) = y+ d, which also implies ρr2 = 1. Therefore, in both cases, we have ρr2 = 1. Q.E.D.

Proof of Lemma 3. As shown in Lemma 2, it suffices to only consider the scenario q(p2)≤ d+y.

By (1), we need to consider two cases: p2
α

≤ v and v ≤ p2
α

≤ 1. For each case, we compute the

corresponding optimal profit, and then we compare the profits and find the optimal solutions.
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Case 1: p2
α
≤ v, i.e., p2 ≤ αv. In this case, we have q(p2) = (1−v)(1−ρr1)r+(v− p2

α
)r. By Lemma

2(ii), the problem of the platform in Period 2 in this case can be described as

π1∗
2 =max

p2
(1− γ)[(1− v)(1− ρr1)+ (v− p2

α
)]rp2 (EC.1)

s.t. (1− v)(1− ρr1)+ v− d+ y

r
≤ p2

α
≤ v. (EC.2)

where π1∗
2 is the optimal profit of Case 1 in Period 2.

We next focus on the scenario (1− v)(1− ρr1) + v− d+y
r

≤ v, i.e., (1− v)(1− ρr1)r ≤ d+ y. Note

that if (1−v)(1−ρr1)r≥ d+y, which implies that the total number of available drivers is no larger

than that of high-valuation riders who tried to buy in period 1, then the platform has no incentive

to set a price lower than αv. Define m1(p2)≡ (1− γ)[(1− v)(1− ρr1)+ (v− p2
α
)]p2r. Let m

′
1(p2) = 0.

We have p2 =
α
2
[(1− v)(1− ρr1)+ v]≡ p12. Therefore,

• if
p12
α
≥ v, i.e., (1− v)(1− ρr1)≥ v, then p∗2 = αv. Because the optimal decision is taken at the

boundary point p1∗2 = αv, the profit in this subcase must be no more than that in Case 2.

• If (1− v)(1−ρr1)+ v− d+y
r

≤ p12
α
≤ v, i.e., (1− v)(1−ρr1)≤ v and 1

2
[(1− v)(1−ρr1)+ v]r≤ d+ y,

then p1∗2 = p12 and π1∗
2 = 1

4
(1− γ)[(1− v)(1− ρr1)+ v]2αr.

• If (1− v)(1− ρr1) + v − d+y
r

≥ p12
α
, i.e., 1

2
[(1− v)(1− ρr1) + v]r ≥ d+ y, then p1∗2 = [(1− v)(1−

ρr1)+ v− d+y
r
]α and π1∗

2 = (1− γ)(d+ y)[(1− v)(1− ρr1)+ v− d+y
r
]α.

Case 2: v ≤ p2
α
≤ 1. In this case, we have q(p2) = (1 − p2

α
)(1 − ρr1)r. Then the problem of the

platform in Period 2 in this case can be described as

π2∗
2 =max

p2
(1− γ)(1− p2

α
)(1− ρr1)rp2 (EC.3)

s.t. max{1− d+ y

(1− ρr1)r
, v} ≤ p2

α
≤ 1 (EC.4)

where π2∗
2 is the optimal profit in Case 2. Define m2(p2)≡ (1−γ)(1− p2

α
)(1−ρr1)rp2. Let m

′
2(p2) = 0.

We have p2 =
α
2
. Therefore, the optimal solution to (EC.3), denoted as p2∗2 , can be expressed as

p∗2 =max{1− d+y
(1−ρr1)r

, v, 1
2
}α. Specifically,

• when v≥ 1− d+y
r
, i.e., (1−v)(1−ρr1)r≤ d+y: if v≤ 1

2
, we have p2

∗
2 = α

2
and π2∗

2 = 1
4
(1−γ)(1−

ρr1)rα; otherwise, we have p2
∗

2 = vα and π2∗
2 = (1− v)(1− ρr1)αvr.

• when v ≤ 1 − d+y
r
: if 1

2
≥ 1 − d+y

(1−ρr1)r
, i.e., 1

2
(1 − ρr1)r ≤ d + y, we have p2

∗
2 = α

2
and π2∗

2 =

1
4
(1− γ)(1− ρr1)αr; otherwise, we have p2

∗
2 = [1− d+y

(1−ρr1)r
]α and π2∗

2 = (1− γ)(d+ y)[1− d+y
(1−ρr1)r

]α.

By comparing the two profits in Case 1 and Case 2, we can find the optimal solutions, i.e.,

π∗
2 =max{π1∗

2 , π2∗
2 }. The desired results directly follow. Q.E.D.

Proof of Proposition 2. As shown in Lemma 3, there are four possible solutions in Period

2. Since we focus on the scenario v ≥ p1 ≥ p2
α
, only Solutions 3 and 4 can arise in equilibrium. To
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see this, note that in Solutions 1 and 2,
p∗2
α
≥ v. Moreover, the platform could set a price p1, such

that (1− v)r ≥ 1 or (1− v)r ≤ 1. We first study the case (1− v)r ≥ 1, and then we show that the

optimal solution under this case must satisfy (1−v)r= 1, which implies it suffices to consider only

the case (1− v)r≤ 1.

Suppose (1− v)r≥ 1. It follows that ρr1 =
1

(1−v)r
, and (1− v)(1− ρr1)+ v = 1− 1

r
. If Solution 3 is

the optimal solution in Period 2, then p∗2 =
1
2
(1− 1

r
)α and ρd2 =

1
2
(1− 1

r
)r/(d+ y). Moreover, due

to γp∗2ρ
d
2 = c, we also have ρd2 =

c
γp∗2

. Then it follows d+ y = 1
4
(1− 1

r
)2αr γ

c
and π∗

2 =
1
4
(1− γ)(1−

1
r
)2αr. Then the platform’s profit over two periods is given by π = (1− γ)p1 +

1
4
(1− γ)(1− 1

r
)2αr.

Moreover, since we have v =
p1−p∗2
1−α

, it is easy to see the optimal p1 takes the value such that

(1− v)r= 1. If Solution 4 is the optimal solution in Period 2, by γp∗2ρ
d
2 = c, we have p∗2 =

c
γ
. Then

by (1− v)(1− ρr1) + v = 1− 1
r
and

p∗2
α
= (1− v)(1− ρr1) + v − d+y

r
, we have d+ y = (1− 1

r
− c

αγ
)r,

and π∗
2 = (1− γ)(1− 1

r
− c

αγ
)r c

γ
. It follows that π = (1− γ)p1 +(1− γ)(1− 1

r
− c

αγ
)r c

γ
. Again, since

v =
p1−p∗2
1−α

, it is easy to see the optimal p1 takes the value such that (1− v)r = 1. Therefore, it

suffices to consider only the case (1− v)r≤ 1.

Suppose (1− v)r ≤ 1 and Solution 3 is the optimal solution in Period 2. It follows that ρr1 = 1,

ρd2 =
vr

2(d+y)
, p∗2 =

1
2
vα, π∗

2 =
1
4
(1−γ)αv2r and d= αγr

4c
(v)2+(1−v)r−1. Then by v=

p1−p∗2
1−α

, we have

p1 = (1− α
2
)v. Taking this and π2 =

1
4
(1− γ)v2αr into π, we have π = (1− γ)(1− p1

1−α
2
)rp1 + (1−

γ)( p1
2−α

)2αr. Let dπ
dp1

= 0, we have p1 =
(2−α)2

2(4−3α)
. In addition, recall that (1− v)r ≤ 1, i.e., p1 ≥ (1−

1
r
)(1− α

2
). Then p∗1 =max{ (2−α)2

2(4−3α)
, (1− 1

r
)(1− α

2
)}. Specifically, if (2−α)2

2(4−3α)
≥ (1− 1

r
)(1− α

2
), i.e., r≤

4−3α
2(1−α)

, we have p∗1 =
(2−α)2

2(4−3α)
, v= 2−α

4−3α
and p∗2 =

(2−α)

2(4−3α)
. To guarantee d+ y≥ 1

2
[(1− v)(1−ρr1)+ v]r

in Period 2, we need the condition c
γ
≤ α(2−α)

2(4−3α)
. Otherwise, if r≥ 4−3α

2(1−α)
, we have p∗1 = (1− 1

r
)(1− α

2
),

v = 1− 1
r
and p∗2 =

α
2
(1− 1

r
). To guarantee d+ y ≥ 1

2
[(1− v)(1− ρr1) + v]r in Period 2, we need the

condition c
γ
≤ α

2
(1− 1

r
).

Next suppose (1− v)r ≤ 1 and Solution 4 is the optimal solution in Period 2. Since ρd2 = 1, we

always have p∗2 =
c
γ
. In addition, because p∗2 = (v− d+y

r
)α in Solution 4, we have d+ y = (v− c

αγ
)r

and thus π∗
2 = (1 − γ)(v − c

αγ
)r c

γ
. Taking this and v =

p1− c
γ

1−α
into π, it follows π∗ = (1 − γ)(1 −

p1− c
γ

1−α
)rp1 + (1 − γ)(

p1− c
γ

1−α
− c

αγ
)r c

γ
. Let dπ

dp1
= 0, we have p1 =

1−α
2

+ c
γ
. In addition, recall that

(1− v)r≤ 1, i.e., p1 ≥ (1− 1
r
)(1−α)+ c

γ
in this case. Then p∗1 =max{ 1−α

2
+ c

γ
, (1− 1

r
)(1−α)+ c

γ
}.

Specifically, if 1−α
2

+ c
γ
≥ (1− 1

r
)(1− α) + c

γ
, i.e. r ≤ 2, then p∗1 =

1−α
2

+ c
γ
, v = 1

2
and p∗2 =

c
γ
. To

guarantee d+ y ≤ 1
2
[(1− v)(1− ρr1) + v]r, we need the condition c

γ
≥ α

4
. To guarantee v ≥ p1, we

need the condition c
γ
≤ α

2
. If r≥ 2, then p∗1 = (1− 1

r
)(1−α)+ c

γ
, v= 1− 1

r
and p∗2 =

c
γ
. To guarantee

d+ y ≤ 1
2
[(1− v)(1− ρr1) + v]r, we need the condition c

γ
≥ α

2
(1− 1

r
). To guarantee v ≥ p1, we need

the condition c
γ
≤ α(1− 1

r
).
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The drivers’ surplus is given by SD = γ(p1V1 + p2V2) − dc, where Vi is transaction volume in

period i and d is the number of new drivers arrived in Period 2. Then the total social welfare is

given by W = S+SD +π, where S = ( 1+v

2
− p1)(1− v)r+ αv−p2

2
(v− p2

α
)r is the riders’ surplus and

π= (1− γ)(p1(1− v)r+ p2(v− p2
α
)r) is the platform’s profit. In addition, W can also be expressed

as W = 1+v

2
(1− v)r+ αv+p2

2
(v− p2

α
)r− dc.

Finally, we next study the overlaps regions. First, there is no overlap between SSP and GSP.

The boundary is c
γ
= α

2
when r≤ 2 (for SSP3 and GSP1) and c

γ
= α(1− 1

r
) (for SSP4 and GSP2).

Second, there is no overlap between the SSP2 and SSP4. Third, there are indeed overlaps between

SSP1 and SSP3, i.e., α
4
≤ c

γ
≤ α(2−α)

2(4−3α)
and r≤ 2. Fourth, there are overlaps between SSP1 and SSP4,

i.e., α
2
(1− 1

r
)≤ c

γ
≤ α(2−α)

2(4−3α)
and 2≤ r≤ 4−3α

2(1−α)
. Obviously, for the overlapped regions, the platform

will set the price such that the maximized profit is obtained. We first provide the results on profit

comparison for the overlap between SSP1 and SSP3 (α
4
≤ c

γ
≤ α(2−α)

2(4−3α)
and r≤ 2).

Lemma EC.1. There always exists β0 ≡ α
2
−
√

α2

4
−α[ (2−α)2

4(4−3α)
− 1−α

4
] such that SSP1 dominates

SSP3 when α
4
≤ c

γ
≤ β0; otherwise when β0 ≤ c

γ
≤ α(2−α)

2(4−3α)
, SSP3 dominates SSP1.

Proof of Lemma EC.1. The gap between the profits in two equilibria is given by r[ (2−α)2

4(4−3α)
−

1−α
4

− c
γ
+ 1

α
( c
γ
)2]. Let f(β)≡ 1

α
β2−β+ (2−α)2

4(4−3α)
− 1−α

4
. Note that f(β) is convex and decreasing when

α
4
≤ β ≤ α(2−α)

2(4−3α)
. Therefore, it suffices to show f(β = α

4
)≥ 0 and f(β = α(2−α)

2(4−3α)
)≤ 0. Moreover, it is

easy to check that f(β = α
4
) = α2

16(4−3α)
≥ 0 andf(β = α(2−α)

2(4−3α)
) = − (1−α)α2

4(4−3α)2
≤ 0. The desired result

follows from that β0 is the solution to f(β = 0) when α
4
≤ β ≤ α(2−α)

2(4−3α)
. Q.E.D.

For the overlap between SSP1 and SSP4 (α
2
(1− 1

r
)≤ c

γ
≤ α(2−α)

2(4−3α)
and 2≤ r≤ 4−3α

2(1−α)
), we have the

following results.

Lemma EC.2. There always exists β1(r) such that SSP1 dominates SSP4 when α
2
(1− 1

r
)≤ c

γ
≤

β1(r); otherwise when β1(r)≤ c
γ
≤ α(2−α)

2(4−3α)
, SSP4 dominates SSP1.

It is possible that β1(r) takes the value of α(2−α)

2(4−3α)
, then SSP1 always dominates SSP4. The proof

is similar that for Lemma EC.1 and thus omitted. The only difference is that the threshold β1

depends on r. Q.E.D.

Proof of Proposition 3. Recall that v = p1, if p1 ≤ p2
α
. Suppose (1− v)r ≤ 1. The remaining

riders at the beginning of Period 2 are those with a valuation v≤ v, and thus no transaction incurs

in Period 2. It is easy to see the optimal solution is p∗1 =
1
2
with π∗

1 =
1
2
if r≤ 2; otherwise, p∗1 = 1− 1

r

with π∗
1 = 1− 1

r
. We next study the case (1− v)r ≥ 1, where we have ρr1 =

1
(1−v)r

and y = 0. Since

we have p2
α
≤ v in Solutions 3 and 4 of Period 2, it suffices to consider Solutions 1 and 2.
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Suppose Solution 1 is the optimal solution in Period 2. Since ρd2 = 1, by γp∗2ρ
d
2 = c, we have p∗2 =

c
γ
.

Moreover, since p∗2 = [1− d+y
(1−ρr1)r

]α, it follows that d+ y = (1− c
αγ

)(1− ρr1)r = (1− c
αγ

)(r − 1
1−v

),

and thus π∗
2 = (1− γ) c

γ
(1− c

αγ
)(r − 1

1−v
). Then the total profit over two periods is given by π =

(1− γ)[p1 +
c
γ
(1− c

αγ
)(r− 1

1−v
)]. Let dπ

dp1
= 0, we have p1 = 1−

√
c
γ
(1− c

αγ
). In addition, recall that

(1− v)r≥ 1, i.e., p1 ≤ 1− 1
r
. Then p∗1 =min{1−

√
c
γ
(1− c

αγ
),1− 1

r
}.

Specifically, if 1 −
√

c
γ
(1− c

αγ
) ≤ 1 − 1

r
, i.e., r ≥ 2√

α
and α

2
−

√
α2

4
− α

r2
≤ c

γ
≤ α

2
+

√
α2

4
− α

r2
,

then p∗1 = v = 1 −
√

c
γ
(1− c

αγ
) and π∗ = (1 − γ)[1 − 2

√
c
γ
(1− c

αγ
) + c

γ
(1 − c

αγ
)r]. In addition, we

have d = (1− p2
α
)(1− ρr1)r = (1− c

αγ
)(r − 1√

c
γ (1− c

αγ )
). To guarantee (1− v)(1− ρr1)r ≥ d+ y, and

1
2
(1−ρr1)r≥ d+y, we need the condition c

γ
≥ α

1+α
and c

γ
≥ α

2
, respectively. By α

2
−
√

α2

4
− α

r2
≤ α

2
≤

α
1+α

≤ c
γ
≤ α

2
+
√

α2

4
− α

r2
≤ α , the equilibrium with p∗1 = 1−

√
c
γ
(1− c

αγ
) exists when α

1+α
≤ c

γ
≤

α
2
+
√

α2

4
− α

r2
and r ≥ 2√

α
. If 1−

√
c
γ
(1− c

αγ
)≥ 1− 1

r
, i.e., c

γ
≤ α

2
−
√

α2

4
− α

r2
or c

γ
≥ α

2
+
√

α2

4
− α

r2

or r < 2√
α
, then p∗1 = v= 1− 1

r
and π∗ = 1− 1

r
. Note that it follows that (1− v)r= 1, which implies

d+ y= 0 and no transaction Period 2.

Suppose Solution 2 is the optimal solution in Period 2. Since ρr1 =
1

(1−v)r
, π∗

2 =
1−γ
4
(r − 1

1−v
)α.

Then the platform’s profit over two periods is given by π= (1−γ)[p1+
α
4
(r− 1

1−v
)]. Let dπ

dp1
= 0, we

have p1 = 1−
√
α

2
. In addition, recall that (1−v)r≥ 1, i.e., p1 ≤ 1− 1

r
. Then p∗1 =min{1−

√
α

2
,1− 1

r
}.

Specifically, if 1−
√
α

2
≤ 1− 1

r
, i.e., r ≥ 2√

α
, it follows that p∗1 = 1−

√
α

2
. However, since we have

p1 ≤ p2
α

in this case, there is no equilibrium with p1 ≤ p2
α
. If 1−

√
α

2
≥ 1− 1

r
, i.e., r ≤ 2√

α
, we have

p∗1 = v= 1− 1
r
. Again, no transaction takes place in the second period.

When p1 ≤ p2
α
, riders’ total surplus and total transaction volume are given by S = 1−p1

2
+ (1−

p2
α
)(1− ρr1)r ×

α−p2
2

= 1
2

√
c
γ
(1− c

αγ
) + 1

2α
(α− c

γ
)2(r − 1√

c
γ (1− c

αγ )
) and V = 1 + (1− p2

α
)(1− ρr1)r =

1 + (1 − p2
α
)r − 1−p2/α

1−p1
, where (1 − p2

α
)(1 − ρr1)r and α−p2

2
are the number and average surplus

of the riders in Period 2, respectively. Drivers’ surplus is given by SD = γ(p1V1 + p2V2) − dc =

γ(p1+(1− p2
α
)(1−ρr1)r ·p2)−dc, where Vi is transaction volume in period i and d is the number of

new drivers arrived in Period 2. Then the total social welfare is given by W = S +SD + π, where

S is the riders’ surplus and π= (1− γ)(p1V1 + p2V2) is the platform’s profit. Q.E.D.

Proof of Proposition 4. PSP equilibrium has overlap regions with GSP2 and SSP4 separately.

First, we compare PSP and GSP2. The overlap regions between the two equilibria can be expressed

as α(1− 1
r
)≤ c

γ
≤ α

2
+
√

α2

4
− α

r2
and r≥ 2√

α
. It is easy to see the profit gap between PSP and GSP2

is given by ∆π = (1− γ)( 1
r
− 2

√
c
γ
(1− c

αγ
) + c

γ
(1− c

αγ
)r) = (1− γ) 1

r
[
√

c
γ
(1− c

αγ
)r − 1]2 ≥ 0. The

volume gap between PSP and GSP2 is given by ∆V = 1
r
[(1− c

αγ
)r2 +

√
γ
c
− 1

α
r+1]≥ 0.

Second, we compare Equilibria PSP and SSP4. The overlap regions are given by α
1+α

≤ c
γ
≤

α(1− 1
r
) and r≥ 2√

α
. It can be easily checked that the gap of the profits (SSP4-PSP) is (1− 1

r
)(1−
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α)− (1− 2
√

c
γ
(1− c

αγ
)). Then, when r ≤ 1−α

α−2
√

c
γ (1− c

γ )
, the profit under PSP is larger than that

under SSP4; otherwise the profit under SSP4 is larger.

It can be easily checked that the there are more new drivers attracted (d) in PSP than that in

SSP4, if c
γ
≥ α

1+α
, which is also part of the conditions for PSP. Therefore, more drivers are attracted

to the current region in PSP than in SSP4. Since in PSP and SSP4, no drivers are left to Period

2 and ρd = 1, then the total transaction volume can be expressed as 1+ d, and thus the matching

volume in PSP is larger.

We next show |p∗1−p∗2| in SSP4 is larger than that PSP, i.e., (1− 1
r
)(1−α)≥ c

γ
−1+

√
c
γ
(1− c

αγ
).

Recall that in the conditions of SSP4, we have 1− 1
r
≥ c

αγ
. Therefore, it suffices to show for for

c
γ
≥ α

1+α
, [(1− α) c

αγ
− c

γ
+ 1]2 ≥ c

γ
(1− c

αγ
), which can be further simplified as g( c

γ
)≡ (4α2 − 3α+

1)( c
γ
)2+(2−5α)α c

γ
+α2 ≥ 0. One can verify that discriminant for the quadratic function g( c

γ
) = 0,

δ= [(2−5α)α]2−4α2(4α2−3α+1)≥ 0 when α≤ 8
9
. Therefore, we next show g( c

γ
)≥ 0 for c

γ
≥ α

1+α

when α≥ 8
9
. It can be checked that g( c

γ
) is increasing for c

γ
≥ α

1+α
when α≥ 8

9
. Moreover, g( c

γ
=

α
1+α

) = α2

(1+α)2
(4− 4α)≥ 0. This completes the proof. Q.E.D.

Proof of Proposition 5. When r is relatively small, r ≤ 2√
α
, the boundary line between GSP

and SSP is c
γ
= α

2
for r≤ 2 and c

γ
= α(1− 1

r
) for r≥ 2, both of which are increasing in α. It follows

that the boundary line between GSP and SSP is raised. For r ≥ 2√
α
, the boundary line between

PSP and GSP is c
γ
= α

2
+
√

α2

4
− α

r2
, which is increasing α; and thus the boundary line between

GSP and PSP is raised. Similarly, it can be checked that the boundary line between PSP and SSP

r= 1−α

α−2
√

c
γ (1− c

γ )
goes down. Q.E.D.

Proof of Proposition 6. It is easy to check that the GSP equilibria remain the same as previous.

We next study the SSP and PSP equilibria. Specifically, for SSP1 and SSP2, most outcomes remain

the same, including p1, π, S v, p2. The only differences are d, ρd2 and the conditions. d is the solution

to γ 1
2
vα

1
2 vr

d+y
= c0+ c1f(d), and ρd2 =

1
2
vr/(d+y), where y is the same as before, i.e., y= 1− (1−v)r.

In addition, the conditions for SSP1 and SSP2, d+ y≥ 1
2
[(1− v)(1− ρr1)+ v]r can be expressed as

d≥ r−3
2

+(1− v)r.

For SSP3 and SSP4, since Solution 4 is the optimal solution in Period 2, we still have 1) ρd2 = 1,

and p∗2 =
c0+c1f(d)

γ
; and 2) d + y = (v − p∗2

α
)r and p∗2 = (1 − d+1

r
)α. Then it follows that d is the

solution to c0+c1f(d)

γ
= (1− d+1

r
)α. Plugging d into p∗2 = (1− d+1

r
)α, we can obtain p∗2. The rest proof

resembles that of Proposition 2. We have p∗1 =max{ 1−α
2

+ p∗2, (1− 1
r
)(1−α)+ p∗2}. The conditions

for SSP3 are given by r ≤ 2 and α
4
≤ p∗2 ≤ α

2
. The conditions for SSP4 are given by r ≥ 2 and

α
2
(1− 1

r
)≤ p∗2 ≤ α(1− 1

r
). In both equilibria, the matching volume is given by V = (1− p∗2

α
)r.
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For PSP, similar to the proof in Proposition 3, it suffices to consider Solutions 1 as the optimal

solution in Period2. Since ρd2 = 1, by γp∗2ρ
d
2 = c0 + c1f(d), we have p∗2 =

c0+c1f(d)

γ
. Moreover, since

p∗2 = [1− d+y
(1−ρr1)r

]α in Solution 1, it follows that d is the solution to c0+c1f(d)

γ
= [1− d+y

(1−ρr1)r
]α. Note

that the solution is in terms of v. Plugging d into p∗2 =
c0+c1f(d)

γ
, one can easily obtain p∗2 (also

in terms of v). Recall that π = (1− γ)(v+ dp∗2) and p1 = v in PSP. Let pPSP
1 be the real solution

to dπ
dv

= 0 such that pPSP
1 maximizes π and 0< pPSP

1 < 1. By (1− v)r ≥ 1, we need the condition

pPSP
1 ≤ 1 − 1

r
. In addition, as Solution 1 is the optimal solution, we also need the conditions

(1− v)(1− ρr1)r > d+ y and 0.5(1− ρr1)r > d+ y. Q.E.D.

Proof of Proposition 7. Since the firm is myopic to maximize the revenue in period 1 when

setting p1, it is easy to see that p∗1 = 1− 1
r
. When setting p2, Lemma 3 still holds with a myopic

firm. In addition, by p∗1 = 1− 1
r
, we have (1− v)r≤ 1. Thus, we only need to consider the scenario

v ≥ p1 ≥ p2
α
, i.e., only Solutions 3 and 4 in Lemma 3 can arise. Suppose Solution 3 is the optimal

solution in Period 2. It follows that ρr1 = 1, ρd2 = vr

2(d+y)
, π∗

2 = 1
4
(1 − γ)αv2r and p∗2 = 1

2
vα. By

v = p1−p2
1−α

, we have v = (1 − 1/r)/(1 − α/2) and p∗2 =
α

2−α
(1 − 1

r
). By γp∗2

(v−p∗2/α)r
d+y

= c, we have

d+ y = αγr
4c

(v)2. To guarantee d+ y ≥ 1
2
[(1− v)(1− ρrr) + v]r and v ≤ 1, we need the conditions

c
γ
≤ α

2−α
(1− 1

r
) and α ≤ 2

r
. Suppose Solution 4 is the optimal solution in Period 2. Since ρd2 = 1,

we always have p∗2 =
c
γ
. It follows that v = p1−p2

1−α
= (1− 1/r− c/γ)/(1− α) and d+ y = (v− c

αγ
)r.

To guarantee d+ y≤ 1
2
[(1− v)(1− ρrr)+ v]r, we need the condition c

γ
≥ α

2−α
(1− 1

r
). In addition, by

p1 ≥ p2
α

and v≤ 1, we have the conditions c
γ
≤ α(1− 1

r
) and α≤ 1

r
+ c

γ
. For the above two scenarios,

the firm’s total revenue over two periods is expressed as π = (1− γ)[p1(1− v)r+ p2(v− p2
α
)r], and

the riders’ surplus is given by S = ( 1+v

2
− p1)(1− v)r + (αv−p2

2
)(v − p2

α
)r. As the drivers’ surplus

is SD = γ[p1(1 − v)r + p2(v − p2
α
)r] − dc, the total social welfare is given by W = SD + S + π =

1+v

2
(1− v)r+ αv+p2

2
(v− p2

α
)r− dc.

It is also possible that v ≥ 1, then no transaction takes place in period 1, i.e., when 1) c
γ
≤

α
2−α

(1− 1
r
) and α ≥ 2

r
; or 2) α

2−α
(1− 1

r
) ≤ c

γ
≤ α(1− 1

r
). In these scenarios, at the beginning of

period 2, the firm sets the price p2 to maximize its revenue min{(1− p2
α
r,1 + d)}p2. It is easy to

check the optimal solution is p∗2 =
α
2
with d= αγr

4c
−1 when c

γ
≤ α

2
and p∗2 =

c
γ
with d= (1− c

αγ
)r−1

when c
γ
≥ α

2
. In these scenarios, the transaction volume, platform profit, rider surplus, driver

surplus and social welfare are given by V = (1− p2
α
)r, π = (1− γ)(1− p2

α
)rp2, S = (1− p2

α
)rα−p2

2
,

SD = γ(1− p2
α
)rp2 − dc and W = α+p2

2
(1− p2

α
)r− dc. Q.E.D.

Proof of Proposition 8. The proof of this lemma resembles that of Propositions 2 and 3.

Q.E.D.
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Proof of Proposition 9. Note that GSP has overlaps with SSP4 in which (1− v)θr + (1−

p∗1)(1−θ)r= 1. Therefore, the profit in SSP4 can be expressed as πSSP4 = (1−γ)[p∗1+(v− c
αγ

)θr c
γ
] =

(1− γ)
(1− 1

r )(1−α)+θ c
γ (1− c

αγ )r

1−α+αθ
. It can be checked that 1)when r≥ 3−α(1− θ), πSSP4 is increasing in

θ; and when r≥ 3−α(1− θ), πSSP4 is decreasing in θ for
1− 1

r
2−α+αθ

≤ c
αγ

≤ 1
r
, and increasing in θ for

1
r
≤ c

αγ
≤ 1− 1

r
. Q.E.D.

Proof of Lemma 4. The proof of this lemma resembles that of Lemma 3. Q.E.D.

Proof of Proposition 10. The proof of this proposition resembles that of Proposition 2.

Q.E.D.

Proof of Proposition 11. We consider the scenario where SSP2 and MSP4 are the outcomes

of SSP and MSP, respectively. Note that the conditions for SSP2 is a subset of those for MSP4.

Therefore, the conditions for this scenario are the same as those for SSP2, i.e., r ≥ 4−3α
2(1−α)

and

c
γ
≤ α

2
(1− 1

r
). The first period prices p∗1 in MSP4 and SSP2 are 1− 1

r
and (1− 1

r
)(1− α

2
), respectively.

The second period prices p∗2 in MSP4 and SSP2 are α
2
and α

2
(1− 1

r
), respectively. In MSP4, the

social welfare is given by WMSP4 =
α+p2

2
(1− p2

α
)r−dc= αr( 3

8
− γ

4
)+c. The social welfare in SSP2 is

given by WSSP2 = 1− 1
2r
+( 3

8
− γ

4
)αr(1− 1

r
)2. Hence, the social welfare gap can be expressed as ∆=

WSSP2 −WMSP4 = [1− (3
4
− γ

2
)α](1− 1

2r
)− c. Recall that the conditions for SSP2 are c

γ
≤ α

2
(1− 1

r
)

and r ≥ 4−3α
2(1−α)

≥ 2. Therefore, ∆ ≥ [1− ( 3
4
− γ

2
)α](1− 1

2r
)− αγ

2
(1− 1

r
) = (1− 3α

4
)(1− 2

r
) + αγ

4r
≥ 0.

Q.E.D.


