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1. Introduction Dynamic demand and supply on ride-hailing plat-
One of the most prominent marketplace innovations ~ forms necessitate dynamic pricing. To this end, Uber
in the past decade has been the advent of sharing (or implements an instrument called surge pricing, and
glg) economies, defined by online platforms helplng Lyft implements a similar instrument called prime time
match individual service providers to individual cus-  pricing. In this paper, we generally refer to such in-
tomers. Some sharing economy platforms, such as struments as surge pricing. The basic principle of
TaskRabbitand Airbnb, serve as online marketplaces ~ surge pricingis thata platform sets a regular price and
on which service providers and customers engage in ~ dynamically adjusts the price by a multiplier based on
their own matching processes. Other platforms, most ~ the current demand and supply, effectively adjusting
notably ride-hailing platforms, such as Uber and Lyft,  the price in real time. Although the platforms claim
completely control the matching process, dictating inreal ~ that surge pricing is designed to improve experience
time which driver serves which rider and how much the (Uber 2018), it has been one of the most controversial
rider is charged while keeping a percentage of therider’s ~ aspects of ride hailing. Riders have accused Uber of
payment (e.g., roughly one quarter for both Uber and  price gouging (Lowrey 2014). Drivers complain that
Lyft according to Krisher and Sell 2017) and transfer-  surge pricing is too unpredictable and short lived
ring the rest to the driver. For these ride-hailing plat-  (Kerr 2015, Rosenblatt 2018). Proponents, on the
forms, pricing is their primary lever to manage demand  other hand, claim that surge pricing is consistent
and supply and is, thus, of utmost importance. with basic economic principles of supply and demand
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(Economist 2016). Despite the controversies, Uber and
Lyft appear to be committed to this instrument.

Surge pricing, as such a pivotal and controversial
subject, deserves careful inspection. The developing
literature on surge pricing primarily takes a spatial
perspective and investigates how prices at different
locations influence driver distributions; see Bimpikis
etal. (2019) and Besbes et al. (2021). However, we are
primarily drawn to an important temporal charac-
teristic unique to ride hailing: namely that riders and
drivers on a ride-hailing platform respond to surge
pricing on different timescales. A rider seeing a price
surge can decide to leave the platform by putting
away their phone in mere seconds. By contrast, when
a driver wants to take advantage of surge pricing in a
particular region, the driver may need to finish the
current ride, leave home, or travel from a different
region, which can take 10 minutes or more. More
crucially, drivers” and riders” different response time-
scales lead to strategic behavior that is supported by
abundant anecdotes. For example, Kerr (2015) suggests
that drivers are well aware of the time it takes them to
drive to a surge region and take this into consider-
ation in their decisions. Rosenblatt (2018) states,
“Some Uber drivers say they feel misled when they
travel to a surge area in high demand only to find that
it has disappeared. The consensus in driver forums
is, ‘Don’t chase the surge.”” On the other hand,
Diakopoulos (2015) suggests riders can anticipate
that a surge may not last and wait out the surge in
just a few minutes. The different response timescales
and strategic rider and driver behavior can have
profound implications on the design and effective-
ness of surge pricing.

In this paper, we emphasize the temporal per-
spective and adopt a two-period model that captures
riders” and drivers’ different response timescales to
pricing and their corresponding strategic behavior.
We also test the model’s robustness when incorpo-
rating spatial elements. We use this model to attempt
to answer the following questions: Accounting for
salient temporal elements of ride hailing, what is a
platform’s optimal/equilibrium surge-pricing policy?
Can the ride-hailing platforms’ current pricing prac-
tices be explained? How may such platforms improve
their surge-pricing policies? And what impact would
there be if a platform neglects riders” and drivers’
strategic behavior in their surge-pricing practice?

To answer these questions, we adopt the following
two-period model. At the beginning of period 1, a
total volume of one (continuous, normalized) driver
is available in a small region, and a total volume of
r > 1 riders with heterogeneous valuations appear in
the same region, constituting a demand surge. The
platform sets price p; for period 1. Given the initial
price p1, some riders request rides in this period, some

strategically wait out period 1 at a cost and request
rides only in period 2, and the rest do not request rides
in either period. Currently unavailable drivers may
decide to “chase the surge” and make themselves
available in the region (i.e., drive toward the region)
at a cost, but they only become available in period 2.
The riders requesting rides in period 1 and currently
available drivers are randomly matched. If drivers
outnumber riders, all rider requests are satisfied. If
riders outnumber drivers, unserved riders may wait
at a cost. In period 2, new drivers who decided in
period 1 to chase the surge become available and join
any remaining drivers, and the platform sets the
second-period price p,. Given the price p,, the remain-
ing riders from period 1 decide whether to request
rides, and those who do are again randomly matched
with available drivers.

We adopt the notion of rational expectations to
characterize the equilibrium behavior over the two
periods. Through various analyses, we recover the
commonly seen surge-pricing pattern of a short-lived
sharp price surge followed by a lower price as an
equilibrium, which we refer to as skimming surge
pricing (SSP) for its resemblance to price skimming.
The SSP equilibrium matches current pricing prac-
tices and reveals a more nuanced mechanism of surge
pricing beyond simply setting prices to make supply
meet demand as the platform may strategically inflate
the price above the level that micromatches supply
and demand in the surge region. The short-lived
sharp price surge causes many high-value riders to
voluntarily wait out the initial price surge, which
serves to attract additional drivers to the region de-
spite their slow responses. After the initial period,
new drivers arrive, and the market clears at a price
point lower than the initial surge price. In practice,
SSP’s sharp price surge can robustly signal that a
region has many unserved riders when drivers have
no other information. Additional drivers may then
make themselves available in the surge region—not to
chase the surge but to pursue riders.

Interestingly, another distinct and somewhat coun-
terintuitive equilibrium can also occur in which, upon
observing a demand surge, the platform sets a low price
followed by a higher price, which we refer to as pene-
tration surge pricing (PSP) for its resemblance to pen-
etration pricing. The rationale behind the PSP equi-
librium is that the platform sets a low price to entice
many riders into requesting rides. This, alongside
random matching, forces many high-value (as well as
low-value) riders to wait out the initial surge period,
which serves to attract additional drivers to the re-
gion. After the initial period, new drivers arrive, and
the market clears at a price point higher than the
initial price. We find that when PSP and SSP equilibria
coexist, PSP can be superior to SSP in generating a
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higher platform profit and matching volume and re-
ducing price variability in addition to avoiding the
initial sharp price surge. Both PSP and SSP operate on
the fundamental principle of keeping high-value riders
around to attract drivers to the current region. The
difference is that PSP does so with lower prices, which
increases the matching volume and platform profit.
One possible reason the PSP strategy is not widely
observed is that it requires the platform to share
demand-supply information with drivers, which is
not yet common practice. To this end, our findings
suggest that platforms may consider strategies, such
as sharing demand-supply information with drivers
or committing to future price surges to enable PSP
policies to improve profit and efficiency and mitigate
controversies surrounding sharp price surges.

We study several extensions. First, we confirm the
preceding insights by accounting for the spatial per-
spective that additional drivers may come to the surge
region with different costs by traveling different dis-
tances. We find that, given the same total amount of
drivers in a disc with the surge spot in the center, a
more clustered distribution of drivers generally leads
to larger matching volumes and higher platform pro-
fits than a uniform driver distribution. Second, we show
that, if the platform fails to account for riders” and
drivers’ different response timescales and strategic
behavior and instead sets prices myopically to match
demand and supply, all parties may be worse off,
which speaks to the importance of the temporal
perspective in ride-hailing pricing. Finally, we show
that our key insights remain valid when not all riders
are strategic and when there are incoming riders in
period 2 to confirm the robustness of these insights.

In the rest of this paper, we survey the related lit-
erature in Section 2 and introduce our model in
Section 3. The main analysis is conducted in Section 4.
We then analyze four model extensions in Section 5
before concluding the paper in Section 6. The appendix
contains additional technical results. All proofs are
relegated to the online appendix.

2. Literature Review

As sharing economies become more prevalent and
prominent, a growing body of literature has provide
insights into various aspects of two-sided market
platforms. Examples of issues investigated include
how platforms influence potential customers’ pur-
chase decisions (Jiang and Tian 2016, Benjaafar et al.
2018, Chenetal. 2019, Feng et al. 2020), how platforms
manage self-scheduling service providers (Gurvich
etal.2019) and incentivize them (Sun et al. 2019), how
platform operations are affected by online reviews
(Yang and Zhang 2018) and information provision
(Chu et al. 2018), how ride-hailing platforms route
drivers (Su 2018) and compete/cooperate with each

other (Cohen and Zhang 2019), and how supply and
demand are matched on platforms (Allon et al. 2012,
Ozkan and Ward 2020, Hu and Zhou 2021). Narasimhan
etal. (2018) provide a review of the sharing economy
literature from the marketing perspective, and Hu
(2018) considers the operations perspective.

Our paper fits in the literature examining pricing
strategies on ride-hailing platforms, especially the
surge-pricing strategy (see Banerjee and Johari 2018
for a framework of modeling, optimizing, and rea-
soning about ride-hailing platforms). In the domain of
empirical and experimental studies, Chen (2016) em-
pirically finds that Uber drivers adjust their schedule
to work more during surge times. Cohen et al. (2018)
use field experiments to investigate how different
subsidy schemes affect the engagement of riders who
experience the frustration of long waiting or travel
times. Jiang et al. (2021) conduct laboratory experi-
ments to study drivers’ relocation decisions with fi-
nancial incentives, such as surge pricing and subsidy.
The authors observe that financial incentives must be
combined with demand information sharing to be the
most effective in incentivizing drivers to relocate to a
demand surge region.

In the sphere of analytical works on pricing deci-
sions for ride-hailing markets, there are at least three
research streams. The first stream includes stationary
single-location models that capture the first-order
effects of ride-hailing markets. The platform, as an
intermediary, optimizes the price offered to riders
and the wage paid to drivers. Unlike a traditional
supply chain, the platform indirectly manages inde-
pendent self-scheduling contractors through wages.
Taylor (2018) studies an on-demand service platform
and shows that uncertainty in delay-sensitive cus-
tomers’ valuations or the agents’ opportunity costs
can lead to counterintuitive insights; delay sensitivity
can increase the optimal price or lower the optimal
wage. Complementing Taylor’s (2018) work, Bai et al.
(2019) focus on the impact of the demand rate, sen-
sitivity to waiting time, service rate, and the number
of available providers on the optimal price, wage, and
payoutratio. The authors show that the optimal price,
wage, and payout ratio increase in the potential cus-
tomer demand rate. These two papers use a queueing
model that takes into account the interaction of drivers
and delay-sensitive riders. More recently, Benjaafar
etal. (2021) and Nikzad (2019) focus on labor welfare
in on-demand service platforms with two-sided pric-
ing decisions by showing that, in equilibrium, labor
supply may have a nonmonotonic effect on labor
welfare. In all these papers, pricing decisions, such as
price and wage, are determined and committed to for a
relatively long term.

Among this stream of single-location models with
stationary system parameters but demand uncertainty,
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there is a set of papers focusing on the debate about
whether the platform should adopt short-run surge
pricing (i.e., dynamic pricing based on realized de-
mand) or static pricing. Cachon et al. (2017) show that
drivers and riders are generally better off with dif-
ferent prices contingent on varying supply and demand
conditions. Banerjee et al. (2016) adopt a queueing
approach to show, on one hand, static pricing can be
nearly optimal when the market is thick with large
volumes of supply and demand. Chen and Hu (2020)
further confirm the asymptotic optimality of static
pricing in a thick market even whenbuyers and sellers
exhibit forward-looking behavior. On the other hand,
Banerjee et al. (2016) show that dynamic pricing is
much more robust than static pricing to variations or
information in system parameters. When the time a
driver takes to pick up a rider is considered (which is
ignored in most models), Castillo et al. (2018) show
that there could be multiple equilibria for a given
price, and surge pricing can help the system adjust
itself based on market conditions to avoid the less
efficient wild-goose-chase equilibrium. Hu and Zhou
(2020) show that, in a market with demand and
supply uncertainty, a fixed payout ratio can be op-
timal or near optimal for the platform though the
price and wage would change depending on the
market conditions.

The second stream of developing literature on the
ride-hailing market involves static models with spa-
tial considerations. Bimpikis et al. (2019) explore the
equilibrium spatial price distribution when allowing
drivers to decide whether to work and where to
position themselves in a network of interconnected
locations. Under the assumption that potential sup-
ply is infinite, their findings highlight the impact of
the demand balancedness across locations on the
platform’s prices, profits, and consumer surpluses.
Afeche et al. (2018a) consider a queueing network
model and focus on the performance impact of op-
erational controls, demand-side admission control,
and supply-side repositioning from the perspectives
of the platform, drivers, and riders. They show under
what conditions it is optimal to strategically reject
demand at a low-demand location to induce drivers
to reposition themselves to a high-demand location.
Besbes et al. (2021) consider a linear city in which the
drivers can reposition themselves. The platform sets
location-specific prices along the linear city, and then
riders’ requests along the city are realized. The drivers
then relocate themselves with zero travel time in a
simultaneous-move game based on prices, demands,
and driving costs.

In all the aforementioned papers, either drivers
and riders make decisions within the same timescale
(see, e.g., Cachon et al. 2017, Hu and Zhou 2020) or
drivers decide on whether to join the platform in the

long run based on the expected payoffs over a set of
short-run demand scenarios with prices for riders com-
mitted or determined contingently (see, e.g., Banerjee
etal. 2016). By contrast, we are among the first to focus
on the unique temporal characteristics of the ride-
hailing market and consider riders” and drivers” dif-
ferent decision-making timescales and resulting strate-
gic reactions to short-run contingent surge pricing.

Our paper and two other closely related papers
belong to a third research stream that considers
nonstationary models. Guda and Subramanian (2019)
show that surge pricing can be used strategically to
move drivers from a price-surge area into a neigh-
boring area where higher demand is predicted, which
is the exact opposite of what is commonly perceived
as the effect of surge pricing. Similar to our model,
they also consider consecutive periods and strategic
driver behavior. The most important distinction is
that they consider predictable demand surges in the
future and show how surge pricing can be used in a
counterintuitive way to manage anticipated demand
surges. By contrast, we consider unpredictable de-
mand surges and study optimal/equilibrium pricing
strategies after the surges have already occurred.
Their main finding is that surge pricing can be used
in a region with excess supply to throttle demand and
force drivers to move to another region with less
supply. By contrast, in our paper, we show that surge
pricing can be used in a region with insufficient supply
to attract drivers from neighboring regions.

Afeche etal. (2018b) consider the transient behavior
of aride-hailing network after an unexpected demand
shock of uncertain duration occurs at a hot-spot loca-
tion. Drivers are geographically dispersed and forward-
looking in deciding whether to reposition toward the
hot spot given their location-dependent repositioning
delay and payoff risk. Their paper compares the per-
formance of various dynamic platform policies for
setting rider prices and driver wages, considering the
interplay of three timescales, rider patience, demand
shock duration, and drivers’ repositioning delays.
Whereas we focus on the interplay of forward-looking
riders and strategic drivers in one location, Aféche et al.
(2018b) focus on geographically dispersed, myopic
riders and strategic drivers. Therefore, their model of
surge pricing lacks the intertemporal demand re-
sponse to surge pricing, which is a pivotal element in
our model.

One critical difference between our paper and these
two papers is that we model forward-looking riders and
investigate the interplay of strategic riders and drivers.
Specifically, we focus on the intertemporal effects of
surge pricing; thatis, pricing in one period can affect the
supply of drivers as well as the demand of riders in the
next period. The adopted two-period model is commonly
seen in the literature of strategic (forward-looking)
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customer behavior; see, for example, Shen and Su
(2007), Cachon and Swinney (2009), Cachon and
Feldman (2015), and Papanastasiou and Savva (2016).
In summary, our paper complements the growing
literature on ride-hailing markets by taking a tem-
poral perspective and makes the unique contribution
of capturing riders” and drivers’ two-sided strategic
responses to surge pricing on different timescales.

3. Model

We adopt a two-period model to capture riders” and
drivers’ different response timescales to surge pricing
and their resulting strategic behavior with each pe-
riod representing roughly 5-10 minutes of real time.
At the beginning of period 1, a total volume of one
(continuous, normalized) driver is available in a small
region, and a total volume of ¥ > 1 (continuous) riders
appear in the same region, constituting a demand
surge. Hence, we model unpredictable demand surges
for which surge pricing is implemented reactively. The
riders” incremental valuations of getting rides from
the platform, net of their next best options (taking a
bus, asking a friend for a ride, forgoing the trip, etc.),
are assumed to be distributed uniformly between
zero and one. Each unit of riders requires one unit of
drivers to provide service. For simplicity, we assume
that the destinations are outside of the demand-surge
region; thus, once matched, both rider and driver
leave the region permanently. For tractability and
following conventions of the strategic behavior litera-
ture, we assume all information to be public. Although
this is clearly a simplification of reality, throughout the
paper, we show that, in some cases, the full-information
assumption is a reasonable approximation, and in other
cases, it has meaningful managerial implications.

In period 1, the platform sets price p; for the period.
Given the price p;, some riders request rides in this
period, some strategically wait out period 1 and re-
quest rides only in period 2, and the rest never request
rides. The riders requesting rides in period 1 and
currently available drivers are randomly matched.
(Random matching is a direct consequence of the fact
that the platform does not know each individual
rider’s exact valuation.) Based on prevalent ride-
hailing pricing practices, we assume that, out of
each matched rider’s paid price p;, yp1 goes to the
driver and (1 — y)p1 goes to the platform, where y €
(0,1) is an exogenous payout rate. We do not model
drivers strategically turning down matched riders
because ride-hailing platforms generally strongly dis-
courage drivers from rejecting matched rides. For
example, Uber drivers who reject requests risk being
locked out of the system for up to 15 minutes
(McFarland 2016); hence, it is extremely unlikely for
drivers to strategically decline matched rides.

If riders who request rides outnumber currently
available drivers, each rider, regardless of valuation,
has the same likelihood of not getting a ride. This
mechanism is the so-called “proportional rationing”
(see, e.g., Tirole 1988, pp. 213-214). If drivers out-
number riders, all riders receive rides, and excess
drivers remain in the surge region for the next period.
We denote by pf, i = 1,2 the likelihood that a rider in
period iis matched with a driver in the current period.
On the other hand, drivers currently not in the region
or in the region but unavailable to provide service in
period 1, can decide to chase the surge and make
themselves available at cost ¢ with a key assumption
that they only become available in period 2. This as-
sumption captures drivers’ relatively slower responses
to surge pricing. We denote by d the volume of in-
coming drivers in period 2 and by p} the resulting
likelihood that a driver in period 2 is matched with a
rider. (The drivers’ likelihood of being matched in
period 1 is easy to express with other parameters;
thus, we do not dedicate a symbol to it.) We focus the
base model on the temporal perspective and ignore
the spatial perspective by assuming a fixed c for all
drivers. In Section 5.1, we incorporate spatial ele-
ments into the model by allowing c to depend on the
distance a driver must travel to the surge region,
which, in turn, depends on the driver distribution
around the surge region.

In period 2, new drivers who decided in period 1 to
react to the initial price p; arrive in the surge region to
join any remaining drivers, and the platform sets the
second-period price p,. The remaining riders from
period 1 then decide whether to request rides, and
those who do are again randomly matched with
available drivers. (In the base model, we assume that
no new riders other than those who arrived in period 1
but decided to wait out the surge appear in period 2.
This assumption is relaxed in Section 5.4.) Riders’
valuations of getting rides in period 2 are discounted
by a factor of @ € (0,1) to capture the disutility of
waiting. However, riders, drivers, and the platform
do not discount payments made in period 2 because
5-10 minutes is too short to generate any meaningful
financial discounting. Riders failing to receive rides
in period 2 take their next best options and gain
zero utility.

All decision makers are assumed to be risk-neutral,
expected-profit/utility maximizers. Consistent with
the strategic behavior literature, we adopt the concept
of rational expectation equilibria; that is, we assume
a period 1 outcome, solve for the subsequent period 2
outcome and, in turn, require the assumed period 1
outcome to be optimal given the subsequent pe-
riod 2 outcome. The exact definition is as follows.
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Definition 1 (Rational Expectation Equilibria). A subgame
perfect Nash equilibrium with rational expectations
(1, p5,4d, P}, Py P3) to the game among the firm, riders,
and drivers satisfies

1. The firm in period 1 sets the price pj to maximize
the expected total profits over two periods subject to
its belief about the number of new drivers arriving at
period 2, d. That is, pi = arg max,, [min{(1 —v)r, 1}p1+
75(v, d)], where v is the valuation of those customers
who would be indifferent between making a request
in period 1 or not, 7}(v,d) is the optimal profit of
period 2 (see Equation (2)), and p; is the optimal price
of period 2 that achieves the optimal profit.

2. Riders in period 1 make their request decision
given the observed price p and subject to their beliefs
about the price of period 2, p», and their matching
probabilities in periods 1 and 2, pj and pj. Specifically,
arider with valuation v makes a request if pj (v — p]) +
(1 = py)ps(av —p2) > ph(av — po) in the scenario av >
P2 or v > p} in the scenario av < p,.

3. Drivers who may be available in period 2 make
theirjoining decisions subject to their beliefs about the
price of period 2, p», and their matching probability in
period 2, p. Specifically, they make themselves avail-
able in the surge region if yp,p3 > c.

4. Beliefs are consistent with equilibrium out-
comes, that is, o=, =pi, d=d, p} =p}, pb=ph,
and 74 = pi.

4. Surge-Pricing Equilibria

To solve the model, we first take the riders’ per-
spective. In an equilibrium, riders form rational ex-
pectations about pj and p,—matching probabilities in
periods 1 and 2 for all riders requesting rides (p} = 1if
available drivers outnumber riders requesting rides
inperiod i, i = 1,2, otherwise, p] < 1)—and about p; in
period 2. Given the expectations, the following lemma
characterizes riders’ requesting decisions based on
their valuations and is illustrated in Figure 1. Recall
that ais the valuation discount factor for riders taking
rides in period 2.

Lemma 1. Suppose the platform sets prices p1 and p, in
periods 1 and 2, respectively, and riders form rational ex-
pectations p} and pj about their matching probabilities in
periods 1 and 2, respectively.

a. Suppose p1 > p2/a. Riders with high valuations v >
v=(p1 — pip2)/ (1 — aph) request rides in period 1 and, if
not matched, wait and continue to request rides in period 2.
Riders with medium valuations v € [py/a, v) wait through
period 1 and only request rides in period 2. The remaining
low-valuation riders never request rides and leave the
platform immediately.

b. Suppose p1 < p2/a. Riders with high valuations v >
v=p1 request rides in period 1. Of riders requesting rides
but not matched in period 1, those with valuations v >
p2/a remain on the platform and continue to request rides
in period 2, and those with valuations v € [v, p2/a) leave
the platform and do not request rides in period 2. Riders
with low valuations v < v never request rides and leave the
platform immediately.

Based on the lemma, we next consider the plat-
form’s pricing strategies and identify equilibria of the
model. A simple case is when incoming drivers’ cost ¢
is sufficiently high. In this case, the platform sets a
“greedy” optimal price in period 1, disregarding
period 2, and any remaining riders and drivers leave
the platform after period 1. The following proposition
describes this case.

Proposition 1 (Greedy Surge Pricing (GSP)). In the equi-
librium characterized in Table A1, riders and drivers not
matched in period 1 leave the platform, matching does not
occur in period 2, and the platform sets the optimal price
myopically for period 1.

The greedy surge pricing equilibrium is intuitive:
when drivers’ outside opportunities are sufficiently
appealing (i.e., c is sufficiently high), the platform
gives up attracting drivers in period 2 and focuses on
maximizing the profit in period 1 only. Such an
equilibrium captures the scenarios of extreme and
large-scale demand surges, in which attracting new
drivers is infeasible although this scenario is neither
highly representative nor very interesting.

Figure 1. Riders’ Requesting Decisions Based on Their Valuations
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Next, we consider cases in which cis not excessively
high and matching may occur in period 2. Recall from
Lemma 1 that only riders with valuations above a
threshold v request rides in period 1. Therefore, two
types of riders may request rides in period 2: those
with valuations above v who requested but did not get
rides in period 1 and those with valuations below v
who did not request rides in period 1. The latter type
exists only when the second-period price is suffi-
ciently attractive. Recall that p] is the riders’ matching
probability in period 1. Given the second-period price
p2, the total volume of riders requesting rides in pe-
riod 2 is given by

1-P2)1-p)r,
q(p2)= ( a)( .

B (1—Q)(1—p{)r+(g—%2)r, if p» < av.

if pr > av,

@)

We denote the volume of remaining drivers at the end
of period 1 by y = [1 - (1 -2v)r]* and the volume of
drivers arriving in the surge region in period 2 by d.
Given v, y, and d, the platform sets the optimal pe-
riod 2 price to maximize the second-period profit;
that is,

= max|(1 -y)min{g(p),y +djp].  (2)

As previously mentioned, p; denotes the optimal
solution to (2). The resulting riders’ and drivers’
matching probabilities in period 2, respectively, deno-
ted by pj and p4, are given by

!~ min¥ "4 ¢ = min102)
Py = mm{q(p*) ,1}, py = mm{y " d,l .

2

The following lemmas characterize the equilibrium in
period 2.

Lemma 2. Assume c is sufficiently low such that there is
matching in period 2: (i) q(p2) is decreasing in p,; (ii) ph = 1
in any equilibrium.

Lemma 2(i) is intuitive. Lemma 2(ii) states that, in
any equilibrium, when there is matching in period 2,
because everything can be correctly anticipated, ad-
ditional drivers arrive such that all those riders who
want to make a request in period 2 can be served.

Lemma 3. The conditions and equilibrium outcomes in
period 2 are provided in Table A.2.

Based on period 2’s equilibrium outcomes, we
characterize two types of equilibrium in the next two
propositions, in addition to GSP, which is presented
in Proposition 1.

Proposition 2 (SSP). In the equilibrium characterized in
Table A.3, matching occurs in both periods, and the platform’s

prices are such that py > p5/a(> p5), namely a high price
followed by a (waiting-adjusted) low price.

The SSP equilibrium is named for its resemblance to
the price skimming strategy in marketing, in which the
price of a product or a service is initially set high and
lowered over time to maximize revenue. The SSP
equilibrium is consistent with ride-hailing platforms’
current surge-pricing practices, which often exhibit
a short-lived sharp price surge followed by lower
prices. The fundamental logic of the SSP equilibrium is that
the platform sets a high price in period 1 and lowers it in
period 2 so that a group of relatively high-value riders are
willing to forgo immediately requesting rides and wait
until period 2 in anticipation of the arrival of additional
drivers. The presence of these riders in period 2, in turn,
attracts drivers to come to the surge region in period 2,
thus completing the circle and forming a rational
expectations equilibrium. Because this equilibrium is
simply meant to attract incoming drivers, it occurs
when incoming drivers” opportunity cost c is small.

The SSP equilibrium matches very well the obser-
vation that ride-hailing platforms frequently set short-
lived sharp surge prices followed by lower prices. This
surge-pricing practice often draws public outcry that
the platform gouges riders during demand surges. The
classic economic explanation argues that, because of
the mismatch in demand and supply, the platform
should charge a higher price to direct the limited
supply to those who are willing to pay more, resulting
in more efficient resource allocation (measured in terms
of total social welfare). By contrast, we identify a more
nuanced mechanism of surge pricing and show that the
platform may want to set an initial surge price much
higher than what is justified to make supply meet
demand. The initial sharp surge price causes many
high-value riders to voluntarily wait out the initial
surge period, which serves to attract additional drivers
to come to the region despite their slow responses. In
addition, recall that we adopt a full-information model
and assume that drivers are aware of the demand
surge. In practice, drivers do not directly observe the
demand surge. However, the sharp surge price sends a
strong signal about the surge region having many
riders awaiting drivers. Therefore, even though the SSP
equilibrium is derived from a full-information model, it
still helps us understand the platform’s pricing strat-
egiesand theriders” and drivers’ responses in practice.

To summarize, despite the controversies surround-
ing sharp surge prices, our analysis justifies such
practices by revealing the nuanced mechanism per-
taining to temporal structures of surge pricing and
strategic behavior of riders and drivers. We recom-
mend that platforms more explicitly explain the nuance
behind surge pricing to ease public concerns over sharp
surge prices. To their credit, platforms are already
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doing so to some extent; for example, Uber advises
riders to “wait a few minutes to see if the rates go back
down to normal” (Uber 2018). Such arguments may
be much more convincing if supported by an in-depth
explanation of the mechanism as revealed earlier.

Interestingly, our analysis also uncovers another
surge-pricing strategy that attracts drivers through a
completely different mechanism.

Proposition 3 (PSP). In the equilibrium characterized in
Table A.4, matching occurs in both periods, and the plat-
form’s prices are such that py < p5/a, namely a low price
followed by a high (waiting-adjusted) price.

The PSP equilibrium is named for its resemblance to
the penetration pricing strategy in marketing, in which
the price of a product or a service is initially set low to
quickly grow its market share and later increased to a
normal level. A PSP equilibrium presents a drastically
different approach to surge pricing with a moderate and
delayed price increase. Notably, the initial period 1 price is
below the minimum price to attract drivers, ¢/y (which
turns out to be the period 2 price in PSP); in other
words, the platform strategically deflates the period 1
price despite the driver shortage. This observation is
in stark contrast with the SSP equilibrium, in which
the platform strategically inflates the period 1 price
beyond the level that micromatches supply and de-
mand. The fundamental logic of the PSP equilibrium
is that the platform sets a low price in period 1 to
entice many riders into requesting rides. This leads to
random matching, and consequently, many high-
value (alongside low-value) riders are forced to
wait out the initial surge period; they do not leave the
platform in anticipation of additional drivers arriving
soon. The presence of these riders in period 2, in turn,
attracts drivers to come to the surge region in period 2,
thus completing the circle and forming a rational
expectations equilibrium. Unlike the SSP policy, the
PSP policy maximizes period 1 rider—driver matching
and is more efficient. The downside is that there may not
be sufficient riders left to attract drivers in period 2.
Therefore, the policy is most suitable for heavy de-
mand surges with high values of .

Notably, the PSP equilibrium may coexist with the
GSP or SSP equilibria in certain parameter regions,
providing an opportunity to compare these different
approaches to surge pricing. We use the superscript to
indicate the equilibrium type.

Proposition 4 (PSP versus GSP/SSP). In parameter regions
where PSP equilibrium coexists with GSP or SSP equilibria,

i. The platform profit is always higher under PSP than GSP
and can be higher than SSP: 7’5P > nCSP and 7P can be
higher than 77,

ii. The matching volume is always higher under PSP
than GSP or SSP: VPSP > VOSP op V55P,

iii. The period 2 price is always lower under PSP than
SSP (which implies the same for the period 1 price):
(PPSP <)phSP < p5SP(< p3P); the period 1 price is always
lower under PSP than GSP: p}'Sf < p¢sP.

iv. The price gap between the two periods is always lower

under PSP than SSP: 0 < p5SP — pPSP < p3SP — p5sP.

Proposition 4 shows that PSP is superior in several
ways to GSP or SSP whenever these equilibria coexist.
Parts (i) and (ii) state that PSP policies are preferable
in terms of matching volumes and, hence, social ef-
ficiency, and can often be superior in terms of plat-
form profitability (see Figure A.1 for a numerical
comparison of GSP, SSP, and PSP). Note that, al-
though we model a profit-maximizing platform, in
practice, a platform may also consider other objec-
tives, such as user experience and the platform’s
growth. The matching volume is a useful perfor-
mance metric related to such nonprofit objectives, and
it is notable that PSP policies outperform GSP or SSP
policies in terms of the matching volume.

Although both PSP and SSP operate on the fun-
damental principle of keeping high-value riders around
to attract drivers to the current region, PSP does so with
lower prices, which increases the matching volume and
often boosts the platform profit as well. Part (iii) states
that PSP policies lead to lower prices than SSP across
both periods. In the meantime, PSP policies incorporate
gradual price increases in lieu of the short-lived sharp
price surges under SSP, which have caused contro-
versies. Part (iv) complements part (iii) and shows that,
not only do prices under PSP move in the opposite

Figure 2. (Color online) GSP, SSP, and PSP Equilibrium
Regions (o = 0.8)
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direction of those under SSP, but the price variability is
also lower under PSP than SSP. These advantages
speak volumes to the potential advantages of adopting
PSP to replace the current SSP policies. However,
unlike under the SSP policy, in which some riders in
period 1 voluntarily choose to wait for the price to go
down, under the PSP policy, riders not matched in
period 1 are forced to wait while the price goes up.
Psychologically speaking, the same amount of wait
under PSP may feel longer for riders than that under
SSP. Although we make such an informal observation,
we do not model this aspect and leave it to future po-
tential behavioral studies.

Despite the theoretical advantages, PSP is not com-
monly observed in practice. We believe that a key
factor may be the information structure. Recall that
we adopt a full-information model, which assumes
drivers are aware of the demand surge even without a
sharp price surge. Currently, drivers on most ride-
hailing platforms have no access to such informa-
tion. This discrepancy may explain why the PSP equi-
librium is not common. It, however, does not mean
that our discovery has no practical value. On the con-
trary, our findings suggest that the theoretical advan-
tages of PSP policies may be unleashed if platforms
inform drivers of demand-supply information. One
approach is to display a real-time map of request-to-
driver ratios. Incidentally, the Land Transport Au-
thority of Singapore implements such a system, called
the Driver Guidance System, for local GrabTaxi drivers
to highlight regions of adjacent demand surges on a
map (Driver Guidance System 2018). An alternative
approach is to commit to future (i.e., period 2 in our
model) price surges. For example, if a platform com-
mits to a driver that, in 15 minutes, the price in an
adjacent region will surge to a certain level for at least
10 minutes (while keeping the current price at a nor-
mal level), it is a clear signal that the platform is
experiencing a demand surge in that region and in-
tends to adopt a PSP policy. Therefore, our findings
from the full-information model provide meaningful
managerial implications. At a high level, informing
drivers of demand-supply information would mark a
departure from the prevalent ride-hailing practice of
managing demand and supply with the sole lever of
pricing. Incidentally, practitioners have also argued
that ride-hailing platforms should utilize additional
tools to manage demand surges rather than depending
solely on pricing (Economist 2016). Adopting such
strategies requires fundamental changes to current
practices and will inevitably meet hurdles. Our the-
oretically predicted improvements in efficiency and
mitigation of controversies surrounding sharp price
surges may provide a justification for overcoming
these hurdles.

Suppose the platform informs drivers of demand-
supply information, and thus, the PSP equilibrium
exists. In cases of multiple equilibria of different
types, we assume that the platform selects the one that
maximizes its expected profit. The resulting equi-
librium regions are illustrated in Figure 2. To un-
derstand the intuitions behind the regions, note that,
whenincoming drivers’ costs are sufficiently high, the
platform cannot attract drivers to the surge region
and has to resort to GSP. With moderate incoming
drivers’ costs, the platform can attract drivers to the
surge region using two drastically different approaches.
SSP uses a short-lived, sharp price surge to strategically
keep high-value riders waiting to attract drivers, which
is a targeted approach and works with any level of
demand surge; however, because of the high initial
price, it is less efficient, and the inefficiency rises with
incoming drivers’ costs. Therefore, SSP is suitable for
relatively low incoming drivers’ costs. By compari-
son, PSP uses a low initial price to keep riders waiting
to attract drivers, which is more efficient, especially
with high incoming drivers’ costs, but works only for
heavy demand surges.

Next, we consider the impact of @, which measures
the riders’ patience. Intuitively, when riders are more
patient, they are more likely to wait until period 2;
therefore, the GSP region should shrink. Further-
more, we know that the PSP policy is more suitable for
heavier demand surges, and we may expect that, for
larger values of r, the PSP region grows and that,
for smaller values of r, the SSP region grows when
riders are more patient. These intuitions are confirmed
in the following proposition and illustrated in Figure 3.

Proposition 5. As « increases, the GSP region defined for
Figure 2 shrinks. Furthermore, for r < 2/+/a, the SSP region
grows; otherwise, the PSP region grows.

To summarize, we fully characterize the equilibria
of the game and identify three types of equilibrium.
The SSP equilibrium matches the observed practices
of platforms setting sharp and short-lived surge
prices and reveals a nuanced mechanism behind such
practices. The PSP equilibrium, characterized by
gradual and moderate price increases, is superior to
the SSP equilibrium in efficiency when they coexist
but requires platforms to share demand-supply in-
formation with drivers. The GSP is a less interesting
extreme case that completes the analysis.

5. Extensions

5.1. Temporal-Spatial Model

Our base model focuses on the temporal dimension
although spatial aspects of surge pricing are ignored
for clean insights. The lack of spatial consideration is
captured by the assumption that all incoming drivers
incur the same cost c. In this extension, we consider
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Figure 3. (Color online) Equilibrium Regions Under Various a
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that additional drivers are distributed around the surge
region; as such, when more drivers come to the surge
region, they need to travel longer distances at higher costs.

Specifically, we assume that by attracting a total of
d drivers in period 2, the cost of the marginal (last
increment of) incoming driver is ¢y + c1f(d). The term
co represents fixed costs, such as getting off the couch.
The term c; represents per-travel-distance costs, such
as the fuel cost. The increasing function f(d) repre-
sents the marginal incoming driver’s travel distance
as a function of 4 and is determined by the driver
distribution around the surge region. Our general
observation is that the same types of equilibria still
exist. Therefore, the structural insights derived from
our base model continue to hold when accounting for
spatial aspects of surge pricing.

Proposition 6. When incoming drivers’ costs are in the
form of ¢y + c1f (d), the equilibrium can only be in the form of
the GSP, SSP, and PSP equilibria. In particular, for f(d) = d,
all equilibria are fully characterized in Tables A.5-A.7.

We next investigate the quantitative impacts of
different driver distributions. In particular, we con-
sider two specific scenarios with equal total numbers
of drivers in the same region with the surge point in
the center. In the first scenario, we suppose drivers are
uniformly distributed around the point of a demand
surge at unit density; the uniformly distributed drivers
are representative of large metropolitan areas. It would
be reasonable to assume that surge pricing always at-
tracts drivers from a disc of a particular radius /. It, thus,

follows thatd = ntl? = [ = \/d/ 7. Therefore, the cost of
the marginal incoming driver s co + c1Vd/ 7. We assume
that there are a total of d drivers distributed in a disc
of aradius [ = i/ with the surge point in the center.

In the second scenario, we suppose the driver
distribution to be denser closer to the surge region,
which is typical for smaller towns. In particular, we
assume that the driver density at distance ! from the

demand surge point is 1/(21). The scale factor 1/2 is
chosen such that a total of d drivers are located
within a radius of [, identical to the first scenario. One
can derive that, when attracting 4 drivers, the mar-
ginal driver travels d/ Vrd, and the cost of the mar-
ginal incoming driveriscy + c1d/ \/ﬁ, which increases
faster in d than that in the first scenario.

Figure 4 compares the platform profit 7, matching
volume V, and both periods’ prices p] and p; against
varying per-travel-distance costs c; for the afore-
mentioned uniform and concentrated driver distri-
bution scenarios. It can be observed that the clustered
driver distribution generally yields lower equilib-
rium prices (except at jumps between equilibria) and
higher platform profits 7 and matching volumes V
than the uniform driver distribution. This observation
is intuitive given that it is easier to attract drivers
when they are concentrated around the surge area,
improving system efficiency and platform profitability.

5.2. Myopic Surge Pricing

Thus far, we have assumed that the platform is aware
of and accounts for drivers” and riders” strategic be-
havior in setting surge prices. What would be the
impact if the platform neglects such strategic be-
havior? In this extension, we consider a myopic platform
that sets prices to maximize its profit in each period,
assuming all riders with values above the prices request
rides, whereas the riders and drivers actually still behave
strategically (i.e., anticipating future outcomes and
making current decisions accordingly). Werefer tosucha
policy as myopic surge pricing (MSP). The following
proposition presents the MSP policy.

Proposition 7 (MSP). The MSP policy is fully character-
ized in Table A.8. Under such a policy, matching can occur
only in period 1, only in period 2, or in both periods. When
the matching occurs in period 2, the platform’s prices are
such that p1 > pa/a, namely a high price followed by a low
(waiting-adjusted) price.
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Figure 4. (Color online) Equilibrium Outcomes Under Different Incoming Drivers” Costs (I=4,a0=08, y =038
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Given that the platform neglects riders” and drivers’
strategic behavior, the pricing may be unbalanced,
leading to no matching in either period. One may expect
that, in all important metrics, MSP policy should be
mostly worse than the strategic equilibria in Section 4, in
which the platform accounts for drivers” and riders’
strategic behavior. Analytically, we can only partially
characterize the comparison because of the com-
plexity (see Proposition A.1), and we focus on nu-
merically comparing strategic and myopic policies in
Figure 5. The myopic policies are indeed largely
outperformed or at least matched by strategic equi-
libria in terms of the platform profit, matching vol-
ume, and driver/rider surplus. These findings point to
potentially dire consequences of a platform’s myopic
pricing aimed at micromatching currently available
riders and drivers. Therefore, it is important for ride-
hailing platforms to recognize and account for riders’
and drivers’ different response timescales and cor-
responding strategic behavior when setting prices.

5.3. Mixed Strategic and Myopic Riders

Although the base model assumes that all riders are
strategic for simplicity, in reality, only a proportion of
consumers may be strategic (Li et al. 2014). In fact,
mixed strategic and myopic customers may even be
an endogenized outcome (Aflaki et al. 2020). In this
extension, we assume only a 6 proportion of riders are
strategic. The remaining 1 — 6 proportion of myopic
riders always request rides in period 1 as long as the price
isbelow their valuation and leave if they are not matched.

Proposition 8. When a O proportion of all r riders are
strategic and the remaining 1 — O proportion are myopic, the
GSP equilibria remain the same as in Table A.1, and the SSP
and PSP equilibria are fully characterized in Table A.9. In
addition, Proposition 4 continues to hold.

Proposition 8 shows that PSP policies are still su-
perior to SSP and GSP policies even in the presence of
myopic riders. The next proposition introduces how

0.40

mixed strategic and myopic riders impact the equi-
librium structure.

Proposition 9. As more riders are strategic (i.e., 0 in-
creases), the PSP region grows and the SSP and GSP regions
(including that overlapped with PSP) remain unchanged as
with all strategic customers. In addition, as O increases, p}
under the PSP equilibrium decreases, p; remains unchanged,
and VPSP and 7P increase.

When more riders are strategic, there are generally
more available riders in period 2 because strategic
riders may wait out period 1. Therefore, the PSP
policy is more likely to arise to capitalize on period 2
riders and lead to higher matching volume and profit
for the platform. For the same reason, as shown in
Proposition 9, with more strategic riders, the platform
sets a lower price in period 1 to force more riders into
period 2 and improve its profit. Notably, when 0 = 1,
the model is reduced to the base model without
myopic riders. When 0 =0, that is, all riders are
myopic, no matching occurs in period 2; thus, only
GSP equilibria can arise.

Finally, we note that, although Section 5.2 ad-
dresses the impact of a myopic platform and Section 5.3
addresses the impact of myopic riders, we have not
addressed the impact of myopic drivers. In fact, when
some drivers are myopic, the impact is similar to all
drivers being strategic but having a higher cost ¢ to
come to the surgeregion (because, in both cases, fewer
drivers in the neighboring region respond to the
anticipated price in period 2). Therefore, the impact of
myopic drivers would be similar to having an increased
cost ¢, which is thoroughly studied in Section 4.

5.4. Incoming Riders in Period 2

Our base model assumes that all riders arrive in
period 1 and no riders arrive in period 2. In this ex-
tension, we assume an additional r, riders with the
same valuation distribution UJ[0,1] arrive at the be-
ginning of period 2. Note that, with the incoming
riders in period 2, the GSP policy, under which
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matching occurs only in period 1, becomes irrelevant.
With a given r,,, Equation (1) becomes

(1-2) (1= pi)r+ (1= p2)ra,
if p» > av,
(1-0)(1-ph)r+ (Q - Z—Z)r +(1—p2)rn,

if p» < aw.

q(p2) = )

Similar to Lemma 2 in the base model analysis, the
following lemma characterizes the platform’s optimal
pricing decision in period 2 with incoming riders.

Lemma 4. The conditions and equilibrium outcomes with
the incoming riders in period 2 are provided in Table A.10.

Lemma 4 allows us to derive the following proposition.

Proposition 10. With incoming riders in period 2, GSP
equilibria do not exist. SSP and PSP equilibria are, re-
spectively, characterized in Tables A.11 and A.12.

In Figure 6, we plot the equilibrium outcomes with
incoming riders in period 2. Compared with Figure 2,
the most prominent difference is the lack of the GSP
region: as we noted earlier, the GSP policy is irrelevant in
this case. The original GSP region with large values of c is

absorbed by the PSP region. The intuition is that, when
there are guaranteed period 2 riders, drivers are willing to
come to the region even if their costs of doing so are high.
Finally, we note that this model can be extended to
allow random incoming riders in period 2; that is, 7,
is a random variable. Certain results that depend on
the realized r, remain unchanged, such as those in
Table A.10. Other results that require taking expec-
tations with respect to r,, unfortunately, cannot be
analytically obtained. Nevertheless, because our key
intuitions are not affected by a random r,, we expect
the observations about Figure 6 to generally hold.

6. Concluding Remarks

Ride hailing is a vital and fast-growing industry in the
sharing economy. The business model pioneered by
Uber and adopted by most players in the industry is
one in which the platform almost entirely dictates the
matching process. Surge pricing is the primary lever
to manage demand and supply in this scenario.
Furthermore, surge pricing is one of the most con-
troversial aspects of ride hailing and has been de-
scribed as price gouging although major platforms
remain committed to the practice. Most of the

Figure 5. (Color online) Differences Between Strategic and Myopic Policies (Strategic — Myopic; @ = 0.8 and y = 0.72)
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Figure 6. (Color online) Equilibrium Regions with New
Arrivals in Period 2 (o« = 0.8, r,, = 3)
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literature takes the spatial perspective and treats
surge pricing at a location as a simple tool for
rebalancing demand and supply, not unlike the
methods used in other marketplaces. In this paper,
we investigate surge pricing with an emphasis on
its temporal characteristics unique to ride hailing.
That is, drivers respond to surge pricing more
slowly than riders, which results in strategic driver
and rider behavior.

We find that the commonly observed pattern of a
short-lived, sharp price surge followed by a lower
price occurs in an equilibrium, which we refer to as
SSP. This finding, to some extent, justifies the con-
troversial sharp price surges by establishing a more
nuanced mechanism of how surge pricing works
beyond simply setting prices to make supply meet
demand. We recommend that platforms more ex-
plicitly explain the nuance behind surge pricing to
ease public concerns over sharp surge prices.

Interestingly, we also identify another equilibrium
surge-pricing strategy, in which the platform sets a
low initial price followed by a higher price. We refer to
this strategy as PSP. We find that, when coexisting,
the PSP equilibrium is superior to the SSP equilibrium
in several essential metrics. Although theoretically
attractive, practical uses of such a pricing strategy are
hindered by drivers’ lack of demand-supply infor-
mation (because it is not signaled by a sharp price
surge). We recommend that platforms either directly
communicate demand-supply information to drivers
or commit to future price surges to be able to adopt the
PSP strategy to potentially improve profit and effi-
ciency and mitigate controversies surrounding sharp
price surges.

In terms of potential future research directions, we
note that our work (as well as most existing literature
on ride hailing) models a single platform. Generally,
competition to a platform leads to increased costs to
attractdrivers and reduced rider valuation (relative to
alternative options) on the platform. Insights ob-
tained from this work (e.g., Figure 2) suggest that, in
these cases, the PSP policy is more likely to outper-
form the currently prevalent SSP policy. Therefore,
our recommendation for adopting the PSP policy is
even more relevant when the platform faces competi-
tion. A competing platform may further employ so-
phisticated pricing strategies to counter strategies
studied in this paper; see, for example, a recent paper
by Bernstein et al. (2021). On the other hand, we note
that forced waiting under the PSP policy may feel longer
for riders than voluntary waiting under the SSP policy.
Similarly, price changes over time may induce behav-
ioral responses from riders; see, for example, a survey
by Zheng and Ozer (2012). Our study of a single
platform with rational players can potentially serve
as a basis for future studies of platform competition
and the behavioral aspects of ride hailing.
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Appendix

Proposition A.1 (MSP vs. SSP). With sufficiently large r
and small § (see the proof for specific conditions), comparing
the MSP and SSP equilibria, the prices of both periods under

Figure A.1. Comparison of Platform Profit Under GSP, SSP,
and PSP Equilibria (a = 0.8)
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the MSP equilibrium are, respectively, higher than those
under the SSP equilibrium, and the social welfare under
the SSP equilibrium is also larger than that under the MSP

equilibrium.
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Table A.4. PSP Equilibrium

Equilibrium PSP
Condition so<ay "‘f—%,rk%
Period 1 pri T A c
eriod 1 price p} 1- fFa-5)
Period 2 price p; <
Table A.5. GSP Equilibria in the Temporal-Spatial Model
Equilibrium GSP1 GSP2
Condition $25r<2 ;_9 >a(l-1),r>2
Period 1 price p} : 1-1
Table A.6. SSP Equilibria in the Temporal-Spatial Model
Equilibrium SSP1 SSP2
Condition o+ [;;5?)[) -1 < (22(;@3‘3 o +o <i(1-Yay
r< ﬁfﬁ) rz z%féﬁ)
. . * 2—a)? —_(1-a
Period 1 price p} 2<( 4_3)11) (1-H-9)
i i * a2-a @
Period 2 price p; ﬁ 21-9Y
Equilibrium SSP3 SSP4
Condition ay < (3r—4)c +4co,r <2 c<1-Yay,r>2

Period 1 price p}
Period 2 price p3

ay > (r—2)c +2¢
5p)

(1 _ay+ci—co
ay+cir

%C] +¢co Z%(l —%)[X)/
1-DA-a)+p;

(1 _ay+c—c
ay+crr

Note. Here, pg’ssp T = Aatad)

4SsP1 _ Zeoray)+

eyt [Cuy_(%y)zmv]/ wherey=1-(1-o)r.

201

Table A.7. PSP Equilibria in the Temporal-Spatial Model

Equilibrium

PSP

Condition

Period-1 price p}
Period-2 price p;

(1-2)(r-

1 1 1 PP _1_1
1,,}113517) > dlz(r 1,p11>sp) >d, P < 1 .

PSP
P1
co+ci1d

y




106

Hu, Hu, and Zhu: Two-Sided Temporal Responses in Ride Hailing
Manufacturing & Service Operations Management, 2022, vol. 24, no. 1, pp. 91-109, © 2021 INFORMS

Table A.8. MSP Equilibria
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Table A.11. SSP Equilibria with Incoming Riders in Period 2
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