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OA.1. Proofs

Proof of Lemma 1. (i) Taking derivative of H(q) w.r.t. q, we have

dH(q)

dq
=

c

θq2
f

(
1

θ

(
p+ c ·

(
1

q
− 1

)))
> 0.

(ii) Assumption 1(ii) is guaranteed by the fact that the support of the distribution F (·) is

unbounded.

(iii) We prove Assumption 1(iii) by contradiction. Taking derivative of H(αq)/H(q) w.r.t. q, we

have

d

dq

(
H(αq)

H(q)

)
=
H(αq)

H(q)

[
c

θαq2

f( 1
θ
(p+ c( 1

αq
− 1)))

F̄ ( 1
θ
(p+ c( 1

αq
− 1)))

− c

θq2

f( 1
θ
(p+ c( 1

q
− 1)))

F̄ ( 1
θ
(p+ c( 1

q
− 1)))

]
.

Suppose there exists a q′ such that d
dq

(
H(αq′)
H(q′)

)
≤ 0, which implies that

f( 1
θ (p+c( 1

αq′−1)))

F̄ ( 1
θ (p+c( 1

αq′−1)))
≤

α ·
f( 1
θ (p+c( 1

q′−1)))

F̄ ( 1
θ (p+c( 1

q′−1)))
. Coupling with the IGFR property that 1

θ

[
p+ c( 1

αq′ − 1)
]
f( 1
θ (p+c( 1

αq′−1)))

F̄ ( 1
θ (p+c( 1

αq′−1)))
≥

1
θ

[
p+ c( 1

q′ − 1)
]
f( 1
θ (p+c( 1

q′−1)))

F̄ ( 1
θ (p+c( 1

q′−1)))
, we have p+ c( 1

αq′ − 1)≥ 1
α

[
p+ c( 1

q′ − 1)
]
. A direct consequence of

the preceding inequality is that (p− c)≥ p−c
α

, which contradicts with 0< α < 1 and p > c. Thus,

we obtain the desired result. �

Proof of Proposition 1. Suppose that a backer arrives with time-to-go t > 0 and pledges needed

n ≥ 1. This focal backer would decide whether or not to pledge based on her expected project’s

success rate conditional on her pledging, i.e., Qt(n− 1). Consider what happens in a small time

interval δ, and we have

Qt(n) = (1− δλtH(Qt(n− 1))) ·Qt−δ(n) + δλtH(Qt(n− 1)) ·Qt−δ(n− 1) + o(δ).

Rearranging and taking the limit as δ→ 0, we obtain Equation (2). With the boundary conditions,

the solution to Equation (2), which is an ordinary differential equation solved by induction, is

unique. �

Proof of Theorem 1. (i) We prove this by induction. First when n= 1, because Qt(0) = 1, it is

easy to verify that Qt(1) = 1− exp
(
−
∫ t

0
λsH(1)ds

)
is the unique solution of Equation (2). Hence

Qt(1) increases in t, and Qt(1)<Qt(0).

Now assume the statement is true for n− 1 (n≥ 2), then for n:

∂

∂t

[
Qt(n−1)−Qt(n)

]
= λt

[
H(Qt(n−2)) (Qt(n− 2)−Qt(n− 1))−H(Qt(n−1)) (Qt(n− 1)−Qt(n))

]
.
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Since Qt(n− 2)−Qt(n− 1) > 0, ∂
∂t

[
Qt(n− 1)−Qt(n)]

]
> λtH(Qt(n− 1))

[
Qt(n− 1)−Qt(n)

]
.

Based on Grönwall’s Inequality and the fact that Qt(n− 1)−Qt(n)
∣∣∣
t=0

= 0, we have Qt(n− 1)−

Qt(n)> 0 for any t > 0. This also implies that ∂Qt(n)

∂t
> 0. Therefore the statement is also true for

n.

(ii) The inequality is equivalent to Qt(n)

Qt(n−1)
≤ 1− e−λ̄t. Consider the function eλ̄tQt(n). Taking

the derivative w.r.t. t, we have

∂(eλ̄tQt(n))

∂t
= λ̄eλ̄tQt(n) + eλ̄t

∂Qt(n)

∂t
≤ λ̄eλ̄tQt(n) + λ̄eλ̄t[Qt(n− 1)−Qt(n)] = λ̄eλ̄tQt(n− 1),

where the inequality is due to ∂Qt(n)

∂t
> 0 and ∂Qt(n)

∂t
≤ λ̄[Qt(n−1)−Qt(n)], as implied by Equation

(2). Integrating from 0 to t on both sides, we have

Qt(n) ≤
∫ t

0

λ̄e−λ̄(t−s)Qs(n− 1)ds≤ λ̄Qt(n− 1)

∫ t

0

e−λ̄(t−s)ds= (1− e−λ̄t)Qt(n− 1).

where the second inequality is due to the increasing monotonicity of Qt(n− 1) in t as shown in

Theorem 1(i). Therefore, we conclude that Qt(n)

Qt(n−1)
≤ 1− e−λ̄t.

(iii) We will prove that Qt(n)

Qt(n−1)
strictly increases in t and H(Qt(n))

H(Qt(n−1))
increases in t by induction.

Consider first when n= 1. Because Qt(1)

Qt(0)
=Qt(1) and H(Qt(1))

H(Qt(0))
= H(Qt(1))

H(1)
, the monotonicity is guar-

anteed by part (i) and Assumption 1(i). Now assume that the monotonicity in t holds for n− 1.

We next show that rt(n)≡ Qt(n)

Qt(n−1)
strictly increases in t and ϕt(n)≡ H(Qt(n))

H(Qt(n−1))
increases in t. First

from part (i), we observe that 0 < rt(n) < 1 for t > 0. Taking the derivative of rt(n) w.r.t. t, we

have

∂rt(n)

∂t
=
λtH(Qt(n− 1)) [Qt(n− 1)−Qt(n)]

Qt(n− 1)
− Qt(n)λtH(Qt(n− 2)) [Qt(n− 2)−Qt(n− 1)]

Q2
t (n− 1)

= λt

[
H(Qt(n− 1))

(
1− Qt(n)

Qt(n− 1)

)
− Qt(n)

Qt(n− 1)
H(Qt(n− 2))

(
Qt(n− 2)

Qt(n− 1)
− 1

)]
= λt

Qt(n)

Qt(n− 1)
Ht(Qt(n− 2))

[
H(Qt(n− 1))

H(Qt(n− 2))

(
Qt(n− 1)

Qt(n)
− 1

)
−
(
Qt(n− 2)

Qt(n− 1)
− 1

)]
= λtrt(n)H(Qt(n− 2))

[
ϕt(n− 1)

(
1

rt(n)
− 1

)
−
(

1

rt(n− 1)
− 1

)]
.

Suppose that there exists some t1 such that ∂rt(n)

∂t

∣∣∣
t=t1

≤ 0. Then, there must exist some t2 ∈

(0, t1) such that ∂rt(n)

∂t

∣∣∣
t=t2

> 0. Otherwise, if ∂rt(n)

∂t
≤ 0 for all t < t1, then lim

t→0
rt(n) = 0 ≥ rt1(n),

which contradicts with the fact that Qt(n)> 0. Due to the continuity of ∂rt(n)

∂t
, there exists some

t3 ∈ [t2, t1), such that ∂rt(n)

∂t

∣∣∣
t=t3

= 0. That is,

ϕt3(n− 1)

(
1

rt3(n)
− 1

)
−
(

1

rt3(n− 1)
− 1

)
= 0.
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Because ϕt(n− 1) strictly increases in t and rt(n− 1) increases in t, and rt(n) decreases in t

between [t3, t1], we have

ϕt1(n− 1)

(
1

rt1(n)
− 1

)
−
(

1

rt1(n− 1)
− 1

)
>ϕt3(n− 1)

(
1

rt3(n)
− 1

)
−
(

1

rt3(n− 1)
− 1

)
= 0,

which implies that ∂rt(n)

∂t
|t=t1 > 0. However, this contradicts with the preceding statement that

∂rt(n)

∂t
|t=t1 ≤ 0. Therefore, we conclude that ∂rt(n)

∂t
> 0 for any t > 0.

Next we show that H(Qt(n))

H(Qt(n−1))
increases in t. For any t′ > t, we have

H(Qt′(n)) =H
( Qt′(n)

Qt′(n− 1)
Qt′(n− 1)

)
≥H

( Qt(n)

Qt(n− 1)
Qt′(n− 1)

)
,

where the inequality is due to the increasing monotonicity of Qt(n)

Qt(n−1)
in t and Assumption 1(i).

Due to Assumption 1(iii) and Theorem 1(i), we have

H(Qt′(n))

H(Qt′(n− 1))
≥
H
(

Qt(n)

Qt(n−1)
Qt′(n− 1)

)
H(Qt′(n− 1))

≥
H
(

Qt(n)

Qt(n−1)
Qt(n− 1)

)
H(Qt(n− 1))

=
H(Qt(n))

H(Qt(n− 1))
.

We hence prove the increasing monotonicity of H(Qt(n))

H(Qt(n−1))
in t.

For the monotonicity in n, because we have shown that ∂rt(n)

∂t
> 0 for any t > 0, ϕt(n−1)

(
1

rt(n)
−

1
)
−
(

1
rt(n−1)

−1
)
> 0 . Since ϕt(n−1)≤ 1, we have rt(n)< rt(n−1), i.e., Qt(n)

Qt(n−1)
< Qt(n−1)

Qt(n−2)
. A direct

consequence is that H(Qt(n))

H(Qt(n−1))
=

H

(
Qt(n)
Qt(n−1)

Qt(n−1)

)
H(Qt(n−1))

<
H

(
Qt(n−1)
Qt(n−2)

Qt(n−1)

)
H(Qt(n−1))

. Due to Assumption 1(iii)

and part (i), we have

H
(
Qt(n−1)

Qt(n−2)
Qt(n− 1)

)
H(Qt(n− 1))

≤
H
(
Qt(n−1)

Qt(n−2)
Qt(n− 2)

)
H(Qt(n− 2))

=
H(Qt(n− 1))

H(Qt(n− 2))
.

Therefore, we conclude that H(Qt(n))

H(Qt(n−1))
≤ H(Qt(n−1))

H(Qt(n−2))
for any t > 0.

(iv) For any n≥ 1, we have

Qt+h(n)

Qt(n)
=

Qt+h(n)

Qt+h(n− 1)
· Qt+h(n− 1)

Qt(n− 1)
· Qt(n− 1)

Qt(n)
>
Qt+h(n− 1)

Qt(n− 1)
,

where the inequality is due to
Qt+h(n)

Qt+h(n−1)
> Qt(n)

Qt(n−1)
as shown in Theorem 1(iii).

Last, we prove the monotonicty in t by induction. When n= 0 the statement is obvious. Suppose

that the statement is true for n− 1, where n≥ 1. Then for any t2 > t1 ≥ 0,

H(Qt2(n− 1))

H(Qt2+h(n− 1))
=
H
(

Qt2 (n−1)

Qt2+h
(n−1)

Qt2+h(n− 1)
)

H(Qt2+h(n− 1))
≥
H
(

Qt1 (n−1)

Qt1+h
(n−1)

Qt2+h(n− 1)
)

H(Qt2+h(n− 1))
.

Based on Assumption 1(iii), we have

H(Qt2(n− 1))

H(Qt2+h(n− 1))
≥
H
(

Qt1 (n−1)

Qt1+h
(n−1)

Qt1+h(n− 1)
)

H(Qt1+h(n− 1))
=

H(Qt1(n− 1))

H(Qt1+h(n− 1))
,
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due to Qt2+h(n− 1)≥Qt1+h(n− 1) and
Qt1 (n−1)

Qt1+h
(n−1)

≤ 1. Thus H(Qt(n−1))

H(Qt+h(n−1))
increases in t. Next we

take derivative of
Qt+h(n)

Qt(n)
w.r.t. t:

∂

∂t

Qt+h(n)

Qt(n)
=
Ht+h(n) [Qt+h(n− 1)−Qt+h(n)]

Qt(n)
− Qt+h(n)

Qt(n)

Ht(n) [Qt(n− 1)−Qt(n)]

Qt(n)

= Ht+h(n)
Qt(n− 1)

Qt(n)

[
Qt+h(n− 1)

Qt(n− 1)
− Qt+h(n)

Qt(n)

(
Qt(n)

Qt(n− 1)
+

Ht(n)

Ht+h(n)

(
1− Qt(n)

Qt(n− 1)

))]
= Ht+h(n)

Qt(n− 1)

Qt(n)

[
Qt+h(n− 1)

Qt(n− 1)
− Qt+h(n)

Qt(n)

[
1−

(
1− H(Qt(n− 1))

H(Qt+h(n− 1))

)(
1− Qt(n)

Qt(n− 1)

)]]
.

Note that
Qt+h(n)

Qt(n)
→ 1 when t→∞, and

Qt+h(n)

Qt(n)
> 1 for any finite t. Thus

Qt+h(n)

Qt(n)
decreases

in t when t is sufficiently large. Suppose that
Qt+h(n)

Qt(n)
is not monotonically decreasing in t. Then

there must exist a t3 > t2 > t1 such that ∂
∂t

Qt+h(n)

Qt(n)

∣∣∣
t=t1

= 0 and ∂
∂t

Qt+h(n)

Qt(n)
> 0 for any t ∈ (t2, t3).

However,
Qt+h(n−1)

Qt(n−1)
decreases in t by the induction assumption. We also know that H(Qt(n−1))

H(Qt+h(n−1))

increases in t, which would imply that 1−
(

1− H(Qt(n−1))

H(Qt+h(n−1))

)(
1− Qt(n)

Qt(n−1)

)
increases in t over (t2, t3).

Consequently ∂
∂t

Qt+h(n)

Qt(n)
≤ ∂

∂t

Qt+h(n)

Qt(n)

∣∣∣
t=t2

= 0 for t∈ (t2, t3), which contradicts with ∂
∂t

Qt+h(n)

Qt(n)
> 0 for

any t∈ (t2, t3). We thus obtain the announced results. �

Proof of Lemma 2. (i) Taking derivative of Hθa (q)

Hθb (q)
w.r.t. q, we have

∂

∂q

(
Hθa(q)

Hθb(q)

)
=
Hθa(q)

Hθb(q)

c

q2

[ 1

θa

f
(

1
θa

(p+ c( 1
q
− 1))

)
F̄
(

1
θa

(p+ c( 1
q
− 1))

) − 1

θb

f
(

1
θb

(p+ c( 1
q
− 1))

)
F̄
(

1
θb

(p+ c( 1
q
− 1))

)].
Because θa < θb and Assumption 1, we conclude that ∂

∂q

(
Hθa (q)

Hθb (q)

)
> 0. Thus, we obtain the

announced results.

(ii) Taking derivative of Hpa (q)

Hpb (q)
w.r.t. q, we have

∂

∂q

(
Hpa(q)

Hpb(q)

)
=

1

[Hpb(q)]2

[
c

θq2
f

(
1

θ

[
pa + c ·

(
1

q
− 1

)])
F̄

(
1

θ

[
pb + c ·

(
1

q
− 1

)])

− c

θq2
f

(
1

θ

[
pb + c ·

(
1

q
− 1

)])
F̄

(
1

θ

[
pa + c ·

(
1

q
− 1

)])]

=
Hpa(q)

Hpb(q)

c

θq2

 f
(

1
θ

[
pa + c ·

(
1
q
− 1
)])

F̄
(

1
θ

[
pa + c ·

(
1
q
− 1
)]) − f

(
1
θ

[
pb + c ·

(
1
q
− 1
)])

F̄
(

1
θ

[
pb + c ·

(
1
q
− 1
)])

 .
Due to pa > pb and that f(v)

F̄ (v)
increases in v, we conclude that ∂

∂q

(
Hpa (q)

Hpb (q)

)
> 0. �

Proof of Proposition 2. Denote xt(n) = Qat (n)

Qbt(n)
and γt(n) = Ha(Qat (n))

Hb(Qbt(n))
. We first prove that xt(n)

and γt(n) increase in t by induction. When n = 0, xt(0) = 1 and γt(0) = Ha(1)

Hb(1)
, and thus the

monotonicity holds trivially. Now suppose that the statement is true for n−1. Taking the derivative

of xt(n) w.r.t. t, we have

dxt(n)

dt
=
λtH

a(Qa
t (n− 1)) [Qa

t (n− 1)−Qa
t (n)]

Qb
t(n)

− Q
a
t (n)λtH

b(Qb
t(n− 1)) [Qb

t(n− 1)−Qb
t(n)]

[Qb
t(n)]2
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= λt
Qa
t (n)

Qb
t(n)

[
Ha(Qa

t (n− 1))

(
Qa
t (n− 1)

Qa
t (n)

− 1

)
−Hb(Qb

t(n− 1))

(
Qb
t(n− 1)

Qb
t(n)

− 1

)]
= λt

[
Ha(Qa

t (n− 1))

(
Qa
t (n− 1)

Qb
t(n− 1)

Qb
t(n− 1)

Qb
t(n)

− Q
a
t (n)

Qb
t(n)

)
−Hb(Qb

t(n− 1))
Qa
t (n)

Qb
t(n)

(
Qb
t(n− 1)

Qb
t(n)

− 1

)]
= λtH

a(Qa
t (n− 1))

Qb
t(n− 1)

Qb
t(n)

·[
Qa
t (n− 1)

Qb
t(n− 1)

− Qb
t(n)

Qb
t(n− 1)

Qa
t (n)

Qb
t(n)

− Hb(Qb
t(n− 1))

Ha(Qa
t (n− 1))

Qa
t (n)

Qb
t(n)

(
1− Qb

t(n)

Qb
t(n− 1)

)]
= λtH

a(Qa
t (n− 1))

Qb
t(n− 1)

Qb
t(n)

[
xt(n− 1)− Qb

t(n)

Qb
t(n− 1)

xt(n)− xt(n)

γt(n− 1)

(
1− Qb

t(n)

Qb
t(n− 1)

)]
= λtH

a(Qa
t (n− 1))

Qb
t(n− 1)

Qb
t(n)

[
xt(n− 1)−xt(n)−

(
1

γt(n− 1)
− 1

)(
1− Qb

t(n)

Qb
t(n− 1)

)
xt(n)

]
.

Denote L(t) = xt(n−1)−
[
1 +

(
1

γt(n−1)
− 1
)(

1− Qbt(n)

Qbt(n−1)

)]
xt(n). Next we show that if there exists

some t1 such that L(t1) < 0, there must exist some t2 ∈ (0, t1) such that L(t2) ≥ 0. Consider the

following two cases.

(1) lim
t→0

γt(n− 1) = 0. Using L’ Hopital’s rule, we have

lim
t→0

xt(n) = lim
t→0

∂Qat (n)

∂t

∂Qbt(n)

∂t

= lim
t→0

λtH
a(Qa

t (n− 1)) (Qa
t (n− 1)−Qa

t (n))

λtHb(Qb
t(n− 1)) (Qb

t(n− 1)−Qb
t(n))

= lim
t→0

γt(n− 1) ·
Qa
t (n− 1)

[
1− Qat (n)

Qat (n−1)

]
Qb
t(n− 1)

[
1− Qbt(n)

Qbt(n−1)

] = 0.

Suppose there exists some t1 > 0 such that ∂xt(n)

∂t
|t=t1 < 0. Then, there must exist some t2 ∈

(0, t1) such that ∂xt(n)

∂t
|t=t2 ≥ 0; otherwise xt(n) decreases within (0, t1], which implies that xt1 ≤

lim
t→0

xt(n) = 0. This contradicts with the fact that xt(n)> 0 for t > 0.

(2) lim
t→0

γt(n− 1)> 0. Because of lim
t→0

Qbt(n)

Qbt(n−1)
= 0 as shown in Theorem 1(ii), lim

t→0
L(t) = lim

t→0
xt(n−

1)− xt(n)

γt(n−1)
. Again using L’ Hopital’s rule, we have

lim
t→0

L(t) = lim
t→0

xt(n− 1)− lim
t→0

1

γt(n− 1)

Ha(Qa
t (n− 1)) ·Qa

t (n− 1)
[
1− Qat (n)

Qat (n−1)

]
Hb(Qb

t(n− 1)) ·Qb
t(n− 1)

[
1− Qbt(n)

Qbt(n−1)

] = 0.

Suppose there exists some t1 > 0 such that ∂xt(n)

∂t

∣∣∣
t=t1

< 0, i.e., L(t1)< 0. Then, there must exist

some t2 ∈ (0, t1) such that ∂xt(n)

∂t
|t=t2 ≥ 0; otherwise, xt(n) decreases within (0, t1]. Combined with

the results that xt(n− 1), γt(n− 1) and Qbt(n)

Qbt(n−1)
all increase in t, we have that L(t) increases in

(0, t1], which suggests that L(t1)≥ lim
t→0

L(t) = 0. This contradicts with the preceding argument that

L(t1)< 0.

Therefore, if there exists some t1 such that L(t1) < 0, there must exist a t2 ∈ (0, t1) such that

L(t2) ≥ 0. Coupling with the continuity of L(t), there exists a t3 ∈ [t2, t1) such that L(t3) = 0.
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This implies that xt(n) strictly decreases within (t3, t1]. Combined with the results that xt(n− 1),

γt(n− 1) and Qbt(n)

Qbt(n−1)
all increase in t, we have that L(t) increases in (t3, t1], which suggests that

L(t1) ≥ L(t3) = 0. This contradicts with the preceding argument that L(t1) < 0. Therefore, we

conclude that ∂xt(n)

∂t
≥ 0 for all t > 0.

Given that xt(n) increases in t, for any δ > 0, we have

Hb(Qa
t+δ(n))

Hb(Qb
t+δ(n))

=
Hb
(
xt+δ(n)Qb

t+δ(n)
)

Hb(Qb
t+δ(n))

≥
Hb
(
xt(n)Qb

t+δ(n)
)

Hb(Qb
t+δ(n))

≥ Hb (xt(n)Qb
t(n))

Hb(Qb
t(n))

=
Hb(Qa

t (n))

Hb(Qb
t(n))

,

where the second inequality is a result of Assumption 1(iii). Hence Hb(Qat (n))

Hb(Qbt(n))
increases in t. Com-

bining with the assumption that Ha(q)

Hb(q)
increases in q, we conclude that Ha(Qat (n))

Hb(Qbt(n))
increases in t.

Next we prove that xt(n) and γt(n) decrease in n. Because xt(n) increases in t, we have L(t) =

xt(n− 1)− xt(n)−
(

1
γt(n−1)

− 1
)(

1− Qbt(n)

Qbt(n−1)

)
xt(n) > 0 for any t > 0. Coupling with the results

that γt(n− 1)≤ 1, xt(n)≥ 0 and Theorem 1(i), we thus have that xt(n− 1)>xt(n).

Given that Qat (n)

Qbt(n)
decreases in n, we have

Ha(Qa
t (n))

Ha(Qb
t(n))

=
Ha
(
Qat (n)

Qbt(n)
Qb
t(n)

)
Ha(Qb

t(n))
≤
Ha
(
Qat (n−1)

Qbt(n−1)
Qb
t(n)

)
Ha(Qb

t(n))
≤
Ha
(
Qat (n−1)

Qbt(n−1)
Qb
t(n− 1)

)
Ha(Qb

t(n− 1))
=
Ha(Qa

t (n− 1))

Ha(Qb
t(n− 1))

,

where the second inequality is a result of Assumption 1(iii). Moreover, Ha(Qbt(n))

Hb(Qbt(n))
≤ Ha(Qbt(n−1))

Hb(Qbt(n−1))

because of the assumption that Ha(q)

Hb(q)
increases in q. Therefore, we have

Ha(Qa
t (n))

Hb(Qb
t(n))

=
Ha(Qa

t (n))

Ha(Qb
t(n))

Ha(Qb
t(n))

Hb(Qb
t(n))

≤ Ha(Qa
t (n− 1))

Ha(Qb
t(n− 1))

Ha(Qb
t(n− 1))

Hb(Qb
t(n− 1))

=
Ha(Qa

t (n− 1))

Hb(Qb
t(n− 1))

.

We thus complete the proof. �

For notational convenience, we denote Ht(n)≡H(Qt(n− 1)) in the following proofs.

Proof of Theorem 2. Denote Jst (n) as the optimal expected profit at state (t, n) assuming that

the seeding stimulus has not been activated. We prove that τ s(n) is given by

τ s(n) = sup
{
t :Ht((n−n0)+) ·Qt((n−n0− 1)+)−

[
Ht((n−n0)+)−Ht(n)

]
·Qt((n−n0)+)

≥Ht(n)
Jst (n− 1)

G+B−R

}
.

(OA.1)

Expected profit Jst (n) at state (t, n) is given by

• when n≥ 1 and t≤ τ s(n), Jst (n) = (G+B−R) ·Qt((n−n0)+);

• when t > τ s(n), Jst (n) is given by

∂Jst (n)

∂t
= λtHt(n) [Jst (n− 1)−Jst (n)] , (OA.2)

with boundary conditions Jsτs(n)(n) = (G+B−R) ·Qτs(n)((n−n0)+) and Jst (0) =G+B.
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Denote lt(n) ≡ Jst (n)

Qt((n−n0)+)
. We add to the statement that lt(n) increases in t, and prove by

induction. When n≤ n0, the optimal expected profit is given by Jst (n) = (G+B) ·Qt(n)+(G+B−

R) · (1−Qt(n)). That is, the creator’s optimal policy is to hold off until right before the deadline,

and to activate “seeding” if no backer pledges by then. It is not hard to verify that it is the unique

solution to the differential equation characterized by Equation (OA.2). We thus conclude that

lt(n) = Jst (n) increases in t for n≤ n0.

Assume that the statement is true for n− 1, where n ≥ n0 + 1. Next, we seek to derive Jst (n)

by showing that the creator’s optimal policy is to “seed” immediately when t≤ τ st (n) and to hold

off when t > τ st (n). We can rewrite the inequality within the curly brackets in Equation (OA.1) as

follows.

1 +

[
Ht(n−n0)

Ht(n)
− 1

][
1− Qt(n−n0)

Qt(n−n0− 1)

]
≥ Jst (n− 1)

(G+B−R) ·Qt(n−n0− 1)
.

RHS of the inequality increases in t because lt(n− 1) increases in t, while LHS decreases in t

due to Theorem 1(iii). Therefore, for any t ≤ τ s(n), the inequality within the curly brackets in

Equation (OA.1) holds; whereas the direction of the inequality is flipped for any t > τ s(n).

Suppose there exists some t1 > τ s(n) such that the creator’s optimal policy is to activate the

seeding stimulus immediately, i.e., Jst1(n) = (G+B−R) ·Qt1(n−n0). Comparing the case without

activating the stimulus at time t1, we have

Jst1(n) ≥ λt1Ht1(n)δ ·Jst1−δ(n− 1) + (1−λt1Ht1(n)δ) ·Jst1−δ(n) + o(δ)

≥ λt1Ht1(n)δ ·Jst1−δ(n− 1) + (1−λt1Ht1(n)δ) · (G+B−R) ·Qt1−δ(n−n0) + o(δ).

Plugging Qt1(n− n0) = (1− λt1Ht1(n− n0)δ) ·Qt1−δ(n− n0) + λt1Ht1(n− n0)δ ·Qt1−δ(n− n0 −

1) + o(δ) into Jst1(n) in the inequality above, rearranging and taking the limit as δ→ 0, we have

(G+B−R)
[
Ht1(n−n0)Qt1(n−n0− 1)− (Ht1(n−n0)−Ht1(n))Qt1(n−n0)

]
≥Ht1(n)Jst1(n− 1).

This contradicts with the fact that t1 > τ
s(n). Therefore, the creator’s optimal policy is to hold

off when t > τ s(n), i.e., Jst (n)> (G+B−R) ·Qt(n− n0). Consider what happens in a small time

interval δ, we have

Jst (n) = (1− δλtHt(n)) ·Jst−δ(n) + δλtHt(n) ·Jst−δ(n− 1) + o(δ).

Rearranging and taking the limit as δ→ 0, we obtain Equation (OA.2).

We next show that the creator’s optimal policy is to “seed” immediately when t < τ s(n). Suppose

that there exists some t2 < τ s(n), such that Jst (n) = (G+B −R) ·Qt(n− n0) for any t≤ t2, and
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Jst (n)> (G+B −R) ·Qt(n− n0) when t ∈ (t2, t2 + h]. (Because Js0 (n) = 0 for any n > n0, we can

always find some t2 such that Jst (n) = (G + B − R) · Qt(n − n0) for any t ≤ t2.) Then, for any

t∈ (t2, t2 +h]

Jst+δ(n) = (1−λt+δHt2+δ(n)δ) ·Jst (n) +λt+δHt+δ(n)δ ·Jst (n− 1) + o(δ).

Let δ→ 0, we obtain ∂Jst (n)

∂t
= λtHt(n) [Jst (n− 1)−Jst (n)] over interval (t2, t2 + h]. According to

Equation (OA.1), Jst (n−1)≤ G+B−R
Ht(n)

[Ht(n−n0)Qt(n−n0− 1)− (Ht(n−n0)−Ht(n))Qt(n−n0)].

Also because Jst (n)> (G+B−R) ·Qt(n−n0) when t∈ (t2, t2 +h], we have

∂Jst (n)

∂t

< λt(G+B−R) [Ht(n−n0)Qt(n−n0− 1)− (Ht(n−n0)−Ht(n))Qt(n−n0)−Ht(n)Qt(n−n0)]

= λt(G+B−R) ·Ht(n−n0) [Qt(n−n0− 1)−Qt(n−n0)] .

However, we know from Equation (2) that ∂
∂t

[(G+B−R) ·Qt(n−n0)] = λt(G+B−R) ·Ht(n−

n0) [Qt(n−n0− 1)−Qt(n−n0)]. Therefore, ∂
∂t

[Jst (n)− (G+B−R) ·Qt(n−n0)] < 0 for any t ∈

(t2, t2 +h]. Since [Jst (n)− (G+B−R) ·Qt(n−n0)]
∣∣∣
t=t2

= 0, we obtain that Jst (n)< (G+B−R) ·

Qt(n−n0) when t∈ (t2, t2 +h]. This contradicts with the assumption we made earlier. Hence, the

creator’s optimal policy is to “seed” immediately for any t < τ st (n), i.e., Jst (n) = (G + B − R) ·

Qt(n−n0) for any t < τ s(n).

Lastly, we show that lt(n) is an increasing function of t. This is obvious when t ≤ τ s(n), as

Jst (n)

Qt(n−n0)
=G+B−R. When t > τ s(n), taking the derivative of lt(n) w.r.t. t, we have

∂lt(n)

∂t
=
λtHt(n) [Jst (n− 1)−Jst (n)]

Qt(n−n0)
− λtHt(n−n0)Jst (n) [Qt(n−n0− 1)−Qt(n−n0)]

[Qt(n−n0)]2

= λt

{
Ht(n)

[
Jst (n− 1)

Qt(n−n0− 1)

Qt(n−n0− 1)

Qt(n−n0)
− Jst (n)

Qt(n−n0)

]
−Ht(n−n0)

Jst (n)

Qt(n−n0)

[
Qt(n−n0− 1)

Qt(n−n0)
− 1

]}
= λtHt(n)

Qt(n−n0− 1)

Qt(n−n0)

{
lt(n− 1)− lt(n)

Qt(n−n0)

Qt(n−n0− 1)
− lt(n)

Ht(n−n0)

Ht(n)

[
1− Qt(n−n0)

Qt(n−n0− 1)

]}
= λtHt(n)

Qt(n−n0− 1)

Qt(n−n0)

[
lt(n− 1)− lt(n)−

(
Ht(n−n0)

Ht(n)
− 1

)(
1− Qt(n−n0)

Qt(n−n0− 1)

)
lt(n)

]
.

Notice that Jst (n)> (G+B−R) ·Qt(n−n0) when t > τ s(n), and thus lt(n)>G+B−R when

t > τ s(n). Suppose that there exists some t3 > τ
s(n) such that ∂lt(n)

∂t

∣∣∣
t=t3

< 0. Then, there must be

some t4 ∈ (τ s(n), t3), such that ∂lt(n)

∂t
|t=t4 ≥ 0; otherwise, ∂lt(n)

∂t
< 0 for any τs(n) < t ≤ t3, leading

to lt3 < lτs(n)(n) = G+B −R, which contradicts with the result that lt(n) > (G+B −R) when

t > τ s(n).
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Due to the continuity of ∂lt(n)

∂t
, there exists some t5 ∈ [t4, t3) such that ∂lt(n)

∂t

∣∣
t=t5

= 0, and ∂lt(n)

∂t
< 0

on (t5, t3]. That is,

lt5(n− 1)− lt5(n)−
(
Ht5(n−n0)

Ht5(n)
− 1

)(
1− Qt5(n−n0)

Qt5(n−n0− 1)

)
lt5(n) = 0.

According to Theorem 1(iii), Ht(n−1)

Ht(n)
decreases in t and Qt(n−n0)

Qt(n−n0−1)
increases in t. Coupling with

the result that lt(n) strictly decreases within (t5, t3], we have

lt3(n− 1)− lt3(n)−
(Ht3(n−n0)

Ht3(n)
− 1
)(

1− Qt3(n−n0)

Qt3(n−n0− 1)

)
lt3(n)

> lt5(n− 1)− lt5(n)−
(Ht5(n− 1)

Ht5(n)
− 1
)(

1− Qt5(n−n0)

Qt5(n−n0− 1)

)
lt5(n) = 0.

This implies that ∂lt(n)

∂t

∣∣
t=t3

> 0 and contradicts with our assumption that ∂lt(n)

∂t

∣∣
t=t3

< 0. We thus

complete the proof. �

Proof of Corollary 1. (i) We prove by induction. When n = n0 + 1, it is straightforward that

τ s(n0 + 1)≥ τ s(n0) = · · ·= τ s(1) = 0. Now assume the statement is true for n−1, i.e., τ s(1)≤ · · · ≤

τ s(n− 1) for some n > n0. We prove τ s(n− 1)≤ τ s(n) by showing that for any t < τ s(n− 1), the

creator’s optimal action is not to activate the seeding stimulus at state (t, n). Suppose this is not

true, then t > τ s(n). From Equation (OA.1), we have

Ht(n−n0)Qt(n−n0− 1)− (Ht(n−n0)−Ht(n))Qt(n−n0)<Ht(n)
Jst (n− 1)

G+B−R
.

Because t < τ s(n−1), Jst (n−1) = (G+B−R) ·Qt(n−n0−1). Plugging Jst (n−1) into the inequality

above, we have

Ht(n−n0)Qt(n−n0− 1)− (Ht(n−n0)−Ht(n))Qt(n−n0)<Ht(n)Qt(n−n0− 1)

⇒ (Ht(n−n0)−Ht(n)) (Qt(n−n0− 1)−Qt(n−n0))< 0.

However, it contradicts with Theorem 1(i) and Assumption 1(i). We thus obtain the announced

results.

(ii) Denote Yt(n;B,R) = Jst (n;B,R)

G+B−R . Here, we use the notation Jst (n;B,R)≡ Jst (n) to emphasize

the dependence of Jst (n) on B and R. Similarly, we denote τ s(n;B,R)≡ τ s(n). We add to the state-

ment that Yt(n;B,R) decreases in B and increases in R, and prove by induction. For any n≤ n0, the

statement is obviously true since τ s(n;B,R) = 0 and Yt(n;B,R) = (G+B)·Qt(n)+(G+B−R)·(1−Qt(n))

G+B−R =

1 + R·Qt(n)

G+B−R decreases in B and increases in R. Now suppose τ s(n;B1,R) ≥ τ s(n;B2,R) and

Yt(n;B1,R) ≤ Yt(n;B2,R), for any n ≤ n0 and B1 > B2 ≥ 0. From Equation (OA.1), for any t >

τ s(n+ 1;B1,R),

1 +

[
Ht(n+ 1−n0)

Ht(n+ 1)
− 1

][
1− Qt(n+ 1−n0)

Qt(n+ 1−n0− 1)

]
<

Yt(n;B1,R)

Qt(n+ 1−n0)
≤ Yt(n;B2,R)

Qt(n+ 1−n0)
.
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Therefore, τ s(n+ 1;B,R) increases in B. Similarly we can show that τ s(n+ 1;B,R) decreases

in R.

Now we show the monotonicity of Yt(n+ 1;B,R) w.r.t B and R. For any t≤ τ s(n+ 1;B2,R),

Yt(n+ 1;B1,R) = Yt(n+ 1;B2,R) =Qt(n+ 1−n0).

When t∈ (τ s(n+ 1;B2,R), τ s(n+ 1;B1,R)], Yt(n+ 1;B1,R) =Qt(n+ 1−n0) whereas the Yt(n+

1;B2,R)≥Qt(n+ 1−n0) because of the definition of Jst (n).

When t > τ s(n+ 1;B1,R), Yt(n+ 1;Bi,R) is the solution of

∂y

∂t
= λtHt(n+ 1)[Yt(n;Bi,R)− y],

with the boundary condition yτs(n+1;B1,R) = Yτs(n+1;B1,R)(n+1;Bi,R) where i= 1,2. Note that RHS

of the equation decreases in B based on the induction hypothesis of n. Coupling with the fact

that Yτs(n+1;B1,R)(n + 1;B1,R) ≤ Yτs(n+1;B1,R)(n + 1;B2,R), Yt(n + 1;B,R) decreases in B when

t > τ s(n+ 1;B1,R). In a similar fashion, we can show that Yt(n+ 1;B,R) increases in R. We thus

obtain the announced results. �

Proof of Theorem 3. (i) Since J bT,N = (G+B) ·QT (N) and JsT,N = JsT (N), it is sufficient to show

that Qt(n)

Jst (n)
increases in t.

When n= 0, the statement is obvious as Qt(0) = 1 and Jst (0) =G+B. Now assume that Qt(n−1)

Jst (n−1)

weakly increases in t. In that case:

When t < τ s(n), Jst (n) = (G+B−R) ·Qt((n−n0)+). Therefore Qt(n)

Jst (n)
= Qt(n)

(G+B−R)·Qt((n−n0)+)
. Accord-

ing to Theorem 1, it increases in t.

When t≥ τ s(n),

∂

∂t

Qt(n)

Jst (n)
=
λtHt(n) [Qt(n− 1)−Qt(n)]

Jst (n)
− Qt(n)

Jst (n)

λtHt(n) [Jst (n− 1)−Jst (n)]

Jst (n)

= λtHt(n)
Qt(n)

Jst (n)

[
Qt(n− 1)

Qt(n)
− J

s
t (n− 1)

Jst (n)

]
= λtHt(n)

Jst (n− 1)

Jst (n)

[
Qt(n− 1)

Jst (n− 1)
− Qt(n)

Jst (n)

]
.

When t= τ s(n), because Jst (n) = (G+B−R) ·Qt(n− 1),

Qt(n− 1)

Jst (n− 1)
− Qt(n)

Jst (n)
=
Qt(n− 1)

Jst (n− 1)
− Qt(n)

(G+B−R) ·Qt(n− 1)
.

Also, according to Equation (OA.1), at t= τ s(n),

Jst (n− 1) = (G+B−R) ·
[
Ht(n− 1)

Ht(n)
Qt(n− 2)−

(
Ht(n− 1)

Ht(n)
− 1

)
Qt(n− 1)

]
.

Hence,

Qt(n− 1)

Jst (n− 1)
− Qt(n)

Jst (n)
=

1

G+B−R
Qt(n− 1)

Ht(n−1)

Ht(n)
Qt(n− 2)−

(
Ht(n−1)

Ht(n)
− 1
)
Qt(n− 1)

− Qt(n)

(G+B−R) ·Qt(n− 1)
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=
1

G+B−R
Qt(n)

Ht(n−1)

Ht(n)
Qt(n− 2)−

(
Ht(n−1)

Ht(n)
− 1
)
Qt(n− 1)

·

G+B−R
Qt(n)

−
Ht(n−1)

Ht(n)
Qt(n− 2)−

(
Ht(n−1)

Ht(n)
− 1
)
Qt(n− 1)

Qt(n− 1)


=

1

G+B−R
Qt(n)

Ht(n−1)

Ht(n)
Qt(n− 2)−

(
Ht(n−1)

Ht(n)
− 1
)
Qt(n− 1)

[(
Qt(n− 1)

Qt(n)
− 1

)
− Ht(n− 1)

Ht(n)

(
Qt(n− 2)

Qt(n− 1)
− 1

)]
.

Recall that in the proof of Theorem 1, we have shown that for any t > 0, Ht(n)

Ht(n−1)

(
Qt(n−1)

Qt(n)
− 1
)
−(

Qt(n−2)

Qt(n−1)
− 1
)
> 0. Therefore Qt(n−1)

Jst (n−1)
− Qt(n)

Jst (n)

∣∣∣
t=τs(n)

> 0.

Suppose that there exists a t′ > τ s(n) such that Qt(n−1)

Jst (n−1)
− Qt(n)

Jst (n)
< 0, then because of continuity,

there must exists a τ s(n)< t1 < t
′ such that Qt(n−1)

Jst (n−1)
− Qt(n)

Jst (n)

∣∣∣
t=t1

= 0 and Qt(n−1)

Jst (n−1)
− Qt(n)

Jst (n)
< 0 when t∈

(t1, t
′). This also means that Qt(n)

Jst (n)
decreases in t over the interval. However, since Qt(n−1)

Jst (n−1)
increases

in t, Qt(n−1)

Jst (n−1)
− Qt(n)

Jst (n)
must be increasing in t within (t1, t

′). This indicates Qt(n−1)

Jst (n−1)
− Qt(n)

Jst (n)

∣∣∣
t=t′
≥ 0,

which leads to contradiction. Therefore Qt(n)

Jst (n)
increases in t for any t > 0.

(ii) Note that J bT,N ≤ JsT,N ≤ (G+B) ·QT ((N −n0)+). Consequently, we have

0≤ JsT,N −J bT,N ≤ (G+B) ·
[
QT ((N −n0)+)−QT (N)

]
.

Letting T →∞ or T → 0, we thus obtain the announced results. �

Proof of Theorem 4. We show that τu(n) is given by

τu(n) = sup

{
t : H̃t(n)Q̃t(n− 1)− (H̃t(n)−Ht(n))Q̃t(n)≥Ht(n)

Jut (n− 1)

G+B−K

}
, (OA.3)

where Jut (n) is the expected profit at state (t, n). It is given by

• when t≤ τu(n), Jut (n) = (G+B−K)Q̃t(n);

• when t > τu(n),
∂Jut (n)

∂t
= λtHt(n) [Jut (n− 1)−Jut (n)] , (OA.4)

with boundary conditions Juτu(n)(n) = (G+B−K)Q̃t(n), and Jut (0) =G+B.

First we show that if Jut (n−1)

Q̃t(n−1)
increases in t, then the creator would activate the stimulus if and

only if t≤ τu(n). To see that, we can rewrite the inequality in the bracket in Equation (OA.3) as

follows.

1 +

(
H̃t(n)

Ht(n)
− 1

)(
1− Q̃t(n)

Q̃t(n− 1)

)
≥ Jut (n− 1)

(G+B−K)Q̃t(n− 1)
.

According to Theorem 1(iii), LHS of the above inequality strictly decreases in t; while RHS

increases in t due to our induction hypothesis. Therefore, for any t < τu(n), the inequality holds;

whereas the direction of the inequality is flipped for any t > τu(n).
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Suppose that there exists some t1 > τu(n), such that the creator’s optimal policy is to upgrade

immediately, i.e., Jut1(n) = (G+B−K)Q̃t1(n). Then, we have

(G+B−K)Q̃t1(n) > (1− δλt1Ht1(n))Jut1−δ(n) + δλt1Ht1(n)Jut1−δ(n− 1) + o(δ)

≥ (1− δλt1Ht1(n))(G+B−K)Q̃t1−δ(n) + δλt1Ht1(n)Jut1−δ(n− 1) + o(δ).

Plugging Q̃t1(n) = (1− δλt1H̃t1(n))Q̃t1−δ(n) + δλt1H̃t1(n)Q̃t1−δ(n− 1) + o(δ) into the inequality

above, rearranging and taking the limit as δ→ 0, we have

H̃t1(n)Q̃t1(n− 1)−
(
H̃t1(n)−Ht1(n)

)
Q̃t1(n)≥

Ht1(n)Jut1(n− 1)

G+B−K
.

This contradicts with our assumption that t1 > τ
u(n). Therefore, the creator would not upgrade

when t > τu(n), i.e., Jut (n) > (G+B −K)Q̃t(n) for any t > τu(n). Consider what happens in a

small time interval δ, we have

Jut (n) = (1− δλtHt(n))Jut−δ(n) + δλtHt(n)Jut−δ(n− 1) + o(δ).

Rearranging and taking the limit as δ→ 0, we thus obtain Equation (OA.4).

We next show that the creator’s optimal policy is to upgrade immediately when t < τu(n).

Suppose that there exists some t2 < τ
u(n), such that Jut (n) = (G+B−K)Q̃t(n) for all t≤ t2, and

Jut (n)> (G+B−K)Q̃t(n) for t∈ (t2, t2 + δ]. Then, we have

(G+B−K)Q̃t2+δ(n) < Jut2+δ(n) = (1− δλt2+δHt2+δ(n))Jut2(n) + δλt2+δHt2+δ(n)Jut2(n− 1) + o(δ)

= (1− δλt2+δHt2+δ(n))(G+B−K)Q̃t2(n) + δλt1+δHt2+δ(n)Jut2(n− 1) + o(δ).

Plugging Q̃t2+δ(n) = (1−δλt2+δH̃t2+δ(n))Q̃t2(n)+δλt2+δH̃t2+δ(n)Q̃t2(n−1)+o(δ) into the inequal-

ity above, rearranging and taking the limit as δ→ 0, we have

(G+B−K)
[
H̃t2(n)Q̃t2(n− 1)−

(
H̃t2(n)−Ht2(n)

)
Q̃t2(n)

]
≤Ht2(n)Jut2(n− 1).

This contradicts with the assumption that t2 < τu(n). Therefore, the creator would upgrade

immediately when t < τu(n), i.e., Jut (n) = (G+B−K)Q̃t(n) for any t < τu(n).

Therefore, to prove Theorem 4, it is sufficient to show that Jut (n)

Q̃t(n)
increases in t. We do this by

induction. For n= 0, the statement is obvious since Jut (0)

Q̃t(0)
=G+B.

Now assume that the statement is true for n− 1, and consider the case n. It is trivial when

t ≤ τu(n) because Jut (n)

Q̃t(n)
= G+B −K. Consider next when t > τu(n). Suppose that there exists

some t3 > τu(n) such that ∂
∂t

Jut (n)

Q̃t(n)

∣∣∣
t=t3

< 0. Then, there must exist some t4 ∈ (τu(n), t3) such that
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∂
∂t

Jut (n)

Q̃t(n)

∣∣
t=t4
≥ 0; otherwise,

Jut3
(n)

Q̃t3 (n)
<

Juτu(n)(n)

Q̃τu(n)(n)
=G+B−K, which contradicts with the result that

Jut (n)> (G+B−K) · Q̃t(n) for any t > τu(n). Due to the continuity of ∂
∂t

Jut (n)

Q̃t(n)
, there exists some

t5 ∈ [t4, t3), such that ∂
∂t

Jut (n)

Q̃t(n)

∣∣∣
t=t5

= 0. That is,

∂

∂t

Jut (n)

Q̃t(n)

∣∣∣∣
t=t5

=
λt5Ht5(n)

[
Jut5(n− 1)−Jut5(n)

]
Q̃t5(n)

−
λt5H̃t5(n)Jut5(n)

[
Q̃t5(n− 1)− Q̃t5(n)

]
[Q̃t5(n)]2

= λt5Ht5(n)
Q̃t5(n− 1)

Q̃t5(n)

[
Jut5(n− 1)

Q̃t5(n− 1)
−
Jut5(n)

Q̃t5(n)
−

(
H̃t5(n)

Ht5(n)
− 1

)(
1− Q̃t5(n)

Q̃t5(n− 1)

)
Jut5(n)

Q̃t5(n)

]
= 0.

Because Q̃t(n)

Q̃t(n−1)
increases in t, H̃t(n)

Ht(n)
decreases in t as shown in Theorem 1(iii), and the induction

hypothesis that Jut (n−1)

Q̃t(n−1)
increases in t, we have ∂

∂t

Jut (n)

Q̃t(n)

∣∣∣
t=t3

≥ 0, which contradicts with the assump-

tion that ∂
∂t

Jut (n)

Q̃t(n)

∣∣∣
t=t3

< 0. Therefore, Jut (n)

Q̃t(n)
increases in t for any t > τu(n), and we thus complete

the proof. �

Proof of Corollary 2. (i) Suppose that there exists an n, such that τu(n)< τu(n− 1). For any

t∈ (τu(n), τu(n− 1)), Jut (n− 1) = (G+B−K)Q̃t(n− 1). Using the definition of τu(n), we have

(G+B−K)
[
H̃t(n)Q̃t(n− 1)− (H̃t(n)−Ht(n))Q̃t(n)

]
<Ht(n)Jut (n− 1)

⇒ (H̃t(n)−Ht(n))(Q̃t(n− 1)− Q̃t(n))< 0.

This contradicts with Theorem 1(i) and Assumption 1(i). We thus obtain the announced results.

(ii) Denote Zt(n;B,K) = Jut (n;B,R)

G+B−K . Here, we use the notation Jut (n;B,R)≡ Jut (n) to emphasize

the dependence of Jut (n) on B and K. Similarly, we denote τu(n;B,K)≡ τu(n). Note that Equation

(OA.3) can be rewritten as:

τu(n;B,K) = sup
{
t : H̃t(n)Q̃t(n− 1)− (H̃t(n)−Ht(n))Q̃t(n)≥Ht(n)Zt(n− 1;B,K)

}
.

Only the RHS of the above inequality depends on B and K. Thus, τu(n;B,K) increases in B

and decreases in K if and only if Zt(n− 1;B,K) decreases in B and increases in K. We prove the

monotonicity of Zt(n;B,K) w.r.t. B and K for any n≥ 0 by induction.

First when n = 0, Zt(0;B,K) = G+B
G+B−K . The statement is obvious. Now suppose it is true for

any m≤ n− 1. This implies that τu(m;B,K) increases in B and decreases in K for any m≤ n.

Thus, we have τu(n;B1,K)> τu(n;B2,K) for any B1 >B2 ≥ 0. Consider the following cases w.r.t.

t:

When t ≤ τu(n;B2,K), creators of both projects would upgrade project features immediately.

Hence Zt(n;B1,K) =Zt(n;B2,K) = Q̃t(n).
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When τu(n;B2,K)< t≤ τu(n;B1,K), only the project with a long-term profit of B1 would use

the stimulus. Therefore, Zt(n;B1,K) = Q̃t(n) whereas Zt(n;B2,K)≥ Q̃t(n) =Zt(n;B1,K).

When t > τu(n;B1,K), neither projects activates the stimulus policy. For i= 1,2, Zt(n;Bi,K)

is the solution of
dz

dt
= λtHt(n) (Zt(n− 1;Bi,K)− z) ,

with boundary condition z(τu(n;B1,K)) = Zτu(n;B1,K)(n,Bi,K). RHS of the above equation

decreases in B1. Coupling with the inequality Zτu(n;B1,K)(n,B1,K)≤Zτu(n;B1,K)(n,B2,K), we have

Zt(n;B1,K)≤Zt(n;B2,K).

In a similar fashion, we can show that Zt(n;B,K) increases in K. This completes the proof. �

Proof of Theorem 5. (i) Since J bt (n) = (G + B) · Qt(n). It is equivalent to show that Qt(n)

Jut (n)

increases in t.

When n= 0, the statement is obvious as Qt(n) = 1 and Jut (n) =G+B. Now assume that it’s

true for n− 1. Then for n:

When t < τu(n), Jut (n) = (G+B−K)Q̃t(n). Hence Qt(n)

Jut (n)
= 1

G+B−K
Qt(n)

Q̃t(n)
. According to Proposi-

tion 2, Qt(n)

Jut (n)
increases in t.

When t≥ τu(n),

∂

∂t

Qt(n)

Jut (n)
=
λtHt(n) [Qt(n− 1)−Qt(n)]

Jut (n)
− Qt(n)

Jut (n)

λtHt(n) [Jut (n− 1)−Jut (n)]

Jut (n)

= λtHt(n)
Qt(n)

Jut (n)

[
Qt(n− 1)

Qt(n)
− J

u
t (n− 1)

Jut (n)

]
= λtHt(n)

Jut (n− 1)

Jut (n)

[
Qt(n− 1)

Jut (n− 1)
− Qt(n)

Jut (n)

]
.

At t= τu(n), because Jut (n) = (G+B−K)Q̃t(n),

Qt(n− 1)

Jut (n− 1)
− Qt(n)

Jut (n)
=
Qt(n− 1)

Jut (n− 1)
− Qt(n)

(G+B−K)Q̃t(n)
.

Also according to Equation (OA.3), Jut (n−1) = G+B−K
Ht(n)

[H̃t(n)Q̃t(n−1)− (H̃t(n)−Ht(n))Q̃t(n)]

at t= τu(n). Hence,

Qt(n− 1)

Jut (n− 1)
− Qt(n)

Jut (n)
=

Ht(n) ·Qt(n− 1)

(G+B−K)
[
H̃t(n)Q̃t(n− 1)− (H̃t(n)−Ht(n))Q̃t(n)

] − Qt(n)

(G+B−K)Q̃t(n)

=
1

G+B−K

[
Ht(n)Qt(n− 1)

H̃t(n)Q̃t(n− 1)− (H̃t(n)−Ht(n))Q̃t(n)
− Qt(n)

Q̃t(n)

]
=

1

G+B−K
Qt(n)

H̃t(n)Q̃t(n− 1)− (H̃t(n)−Ht(n))Q̃t(n)

[
Ht(n)

(
Qt(n− 1)

Qt(n)
− 1

)
− H̃t(n)

(
Q̃t(n− 1)

Q̃t(n)
− 1

)]
.

In the proof of Proposition 2, we have shown that for any t > 0, Ht(n)
(
Qt(n−1)

Qt(n)
− 1
)
−

H̃t(n)
(
Q̃t(n−1)

Q̃t(n)
− 1
)
> 0. Therefore, ∂

∂t

Qt(n)

Jut (n)

∣∣∣
t=τu(n)

> 0. Suppose there exists some t′ > τu(n) such
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that Qt(n−1)

Jut (n−1)
− Qt(n)

Jut (n)
< 0, then according to the continuity of the functions, there must exist

some τu(n) < t0 < t′, such that ∂
∂t

Qt(n)

Jut (n)

∣∣∣
t=t0

= 0 and ∂
∂t

Qt(n)

Jut (n)
< 0 in the interval (t0, t

′]. However,

since Qt(n−1)

Jut (n−1)
increases in t, Qt(n−1)

Jut (n−1)
− Qt(n)

Jut (n)
must strictly increase in the interval (t0, t

′], implying

∂
∂t

Qt(n)

Jut (n)

∣∣∣
t=t′

> 0. This leads to contradiction. Therefore, ∂
∂t

Qt(n)

Jut (n)
≥ 0 for any t > 0.

(ii) Following a similar approach as the proof for Theorem 3(ii), we can show that lim
T→∞

JuT,N −

J bT,N = lim
T→0

JuT,N −J bT,N = 0 for any N ≥ 1. �

Proof of Theorem 6. Denote At(n) the optimal expected profit at state (t, n) assuming that the

creator has not ended LTO yet. The optimal expected profit over the course of the entire pledging

process is denoted by J lt(n). We show that τ l(n) is given by

τ l(n) = sup
{
t : At(n)≥ [G+B− (N −n)k] ·Qt(n)

}
, (OA.5)

where At(n) is the solution of

∂At(n)

∂t
= λtĤt(n)

[
J lt(n− 1)−At(n)

]
, (OA.6)

with boundary conditions A0(n) = 0 for any n≥ 1, and At(0) =G+B−Nk.

Expected profit J lt(n) at state (t, n) is given by

J lt(n) =

{
At(n), if t < τ l(n)

[G+B− (N −n)k] ·Qt(n), if t≥ τ l(n)
.

Denote dt(n) = At(n)

Qt(n)
. We add to the statement that dt(n) decreases in t and prove by induction.

It’s trivial when n= 0 because dt(0) = At(0)

Qt(0)
=G+B−Nk. Suppose that the statement is true for

n− 1. Taking the derivative of dt(n) w.r.t. t, we have

∂dt(n)

∂t
=
λtĤt(n) [J lt(n− 1)−At(n)]

Qt(n)
− λtHt(n)At(n) [Qt(n− 1)−Qt(n)]

[Qt(n)]2

= λt

(
Ĥt(n)

[
J lt(n− 1)

Qt(n− 1)

Qt(n− 1)

Qt(n)
− At(n)

Qt(n)

]
−Ht(n)

At(n)

Qt(n)

[
Qt(n− 1)

Qt(n)
− 1

])
= λtĤt(n)

Qt(n− 1)

Qt(n)

[
J lt(n− 1)

Qt(n− 1)
−

[
1−

(
1− Ht(n)

Ĥt(n)

)(
1− Qt(n)

Qt(n− 1)

)]
dt(n)

]
.

Taking the limit as t→ 0 and using L’Hopital’s rule, we have

lim
t→0

dt(n) = lim
t→0

λtĤt(n) [J lt(n− 1)−At(n)]

λtHt(n) [Qt(n− 1)−Qt(n)]
= lim

t→0

Ĥt(n)

Ht(n)

J lt(n− 1)

Qt(n− 1)
.

By the induction hypothesis, we know that Jlt(n−1)

Qt(n−1)
decreases in t since J lt(n−1) is equal to either

At(n− 1) or [G+B− (N −n)k] ·Qt(n− 1). From Theorem 1(iii), Ĥt(n)

Ht(n)
decreases in t. Therefore
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lim
t→0

dt(n) = lim
t→0

Ĥt(n)

Ht(n)

Jlt(n−1)

Qt(n−1)
exists. Next we show that, if there exists some t1 such that ∂dt(n)

∂t

∣∣∣
t=t1

>

0, there must be some t2 ∈ (0, t1) such that ∂dt(n)

∂t

∣∣∣
t=t2

< 0. Consider the following two cases.

(1) lim
t→0

dt(n) =∞. If there exists a t1 such that ∂dt(n)

∂t
|t=t1 > 0, then there must exist a t2 ∈ (0, t1)

such that ∂dt(n)

∂t

∣∣
t=t2
≤ 0; Otherwise dt1 ≥ lim

t→0
dt(n) =∞, which is impossible.

(2) lim
t→0

dt(n) <∞. This implies that lim
t→0

Jlt(n−1)

Qt(n−1)
<∞ and lim

t→0

Ht(n)

Ĥt(n)
> 0. Let S(t) = Jlt(n−1)

Qt(n−1)
−[

1−
(

1− Ht(n)

Ĥt(n)

)(
1− Qt(n)

Qt(n−1)

)]
dt(n). Because lim

t→0
1−

(
1− Ht(n)

Ĥt(n)

)(
1− Qt(n)

Qt(n−1)

)
= lim

t→0

Ht(n)

Ĥt(n)
> 0 and

lim
t→0

dt(n) = lim
t→0

Ĥt(n)

Ht(n)

Jlt(n−1)

Qt(n−1)
<∞, we have lim

t→0
S(t) = 0.

Recall that ∂dt(n)

∂t
= λtĤt(n)Qt(n−1)

Qt(n)
·S(t). Suppose there exists a t1 such that ∂dt(n)

∂t

∣∣∣
t=t1

> 0, then

there must exist a t2 ∈ (0, t1) such that ∂dt(n)

∂t

∣∣∣
t=t2

< 0; Otherwise, dt(n) increases within [0, t1].

Coupling with the results that Ht(n)

Ĥt(n)
and Qt(n)

Qt(n−1)
both increase in t, we conclude that S(t) decreases

in t. A direct consequence is that S(t1) ≤ S(0) = 0, which contradicts with the assumption that

∂dt(n)

∂t
> 0.

Consequently, if there exists a t1 such that ∂dt(n)

∂t

∣∣
t=t1

> 0, there must exist a t2 ∈ [0, t1) such that

∂dt(n)

∂t

∣∣
t=t2
≤ 0. Due to the continuity of ∂dt(n)

∂t
, there exists some t3 ∈ [t2, t1) such that S(t3) = 0,

and S(t)> 0 for any t∈ (t3, t1]. However, because dt(n), Ht(n)

Ĥt(n)
and Qt(n)

Qt(n−1)
increase in t, and Jlt(n−1)

Qt(n−1)

decreases in t for any t ∈ (t3, t1), S(t) should decrease in t, which contradicts with the preceding

result. Therefore, dt(n) must decrease in t for any t > 0. Moreover, because Qt(n)

Qt(n−1)
strictly increases

in t, S(t) 6= 0 for any t. Therefore, for any t > 0, S(t) < 0 and dt(n) strictly decreases in t. As a

result, At(n)> [G+B− (N −n)k] ·Qt(n) for any t < τ l(n), and the direction of the inequality is

flipped for any t > τ l(n).

Next we show that the creator’s optimal policy is to end the limited-time offer if and only if

t > τ l(n). Suppose that there exists some t4 < τ
l(n), such that the creator’s optimal decision is to

end the limited-time offer immediately, i.e., J lt4(n) = [G+B− (N −n)k] ·Qt4(n). Then, we have

[G+B− (N −n)k] ·Qt4(n)

> λt4Ĥt4(n)δJ lt4−δ(n− 1) + (1−λt4Ĥt4(n)δ)J lt4−δ(n) + o(δ)

≥ λt4Ĥt4(n)δJ lt4−δ(n− 1) +
(

1−λt4Ĥt4(n)δ
)
At4−δ(n) + o(δ) =At4(n) + o(δ),

which contradicts with t4 < τ l(n). Therefore, the creator would not end the limited-time offer for

any t≤ τ l(n). Consider what happens in a small time interval δ, we have

J lt(n) = (1− δλtĤt(n))J lt−δ(n) + δλtĤt(n)J lt−δ(n− 1) + o(δ).

Rearranging, taking the limit as δ→ 0, and replacing J lt(n) with At(n), we thus have

∂At(n)

∂t
= λtĤt(n)

[
J lt(n− 1)−At(n)

]
.
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Suppose that there exists some t5 ≥ τ l(n) such that J lt(n) = [G+B− (N −n)k] ·Qt(n) for any

t≤ t5 but J lt(n)> [G+B− (N −n)k] ·Qt(n) for any t ∈ (t5, t5 + δ]. (Because J l
τ l(n)

= Aτ l(n)(n) =

[G+B− (N −n)k] ·Qτ l(n)(n), we can always find such t5 ≥ τ l(n).) Thus, we have

[G+B− (N −n)k] ·Qt5+δ(n)

< λt5+δĤt5+δ(n)δJ lt5(n− 1) +
(

1−λt5+δĤt5+δ(n)δ
)
J lt5(n) + o(δ)

= λt5+δĤt5+δ(n)δJ lt5(n− 1) +
(

1−λt5+δĤt5+δ(n)δ
)

[G+B− (N −n)k] ·Qt5(n) + o(δ).

Plugging Qt5+δ(n) = λt5+δHt5+δ(n)δQt5(n − 1) + (1 − λt5+δHt5+δ(n)δ)Qt5(n) + o(δ) into the

inequality above, rearranging, and taking the limit as δ→ 0, we have

[G+B− (N −n)k] ·
(
Ht5(n)Qt5(n− 1) + (Ĥt5(n)−Ht5(n))Qt5(n)

)
≤ Ĥt5(n)J lt5(n− 1).

Because that S(t) = Jlt(n−1)

Qt(n−1)
−
[
1−

(
1− Ht(n)

Ĥt(n)

)(
1− Qt(n)

Qt(n−1)

)]
dt(n)< 0 for any t, we have

Ĥt5(n)J lt5(n− 1)<
[
Ht5(n)Qt5(n− 1) + (Ĥt5(n)−Ht5(n))Qt5(n)

]
dt5(n).

Combining the preceding two inequalities, we have that dt5(n) =
At5 (n)

Qt5 (n)
> G + B − (N − n)k,

which contradicts with t5 > τ
l(n). Therefore, the creator’s optimal policy is to end the limited-time

offer for any t > τ l(n), i.e., J lt(n) = [G+B− (N −n)k] ·Qt(n) for any t > τ l(n). We thus obtain the

announced results. �

Proof of Corollary 3. Denote Wt(n;B,k) = At(n)

G+B−(N−n)k
. We prove by induction that

Wt(n;B,k) increases in B and decreases in k. When n= 0, this statement is trivial as Wt(0;B,k) =

1. Now suppose it is true for n− 1 and consider the case n:

∂Wt(n;B,k)

∂t
= λtĤt(n)

[
J lt(n− 1)

G+B− (N −n+ 1)k

G+B− (N −n+ 1)k

G+B− (N −n)k
−Wt(n;B,k)

]
,

with boundary condition W0(n;B,k) = 0 for any n> 0. Since J lt(n− 1) = max{At(n− 1), [G+B−

(N − n+ 1)k]Qt(n− 1)}, Jlt(n−1)

G+B−(N−n+1)k
increases in B and decreases in k based on the induction

hypothesis for n − 1. It is also obvious that G+B−(N−n+1)k

G+B−(N−n)k
increases in B and decreases in k.

Therefore, the RHS of the equation above increases in B and decreases in k, which implies that

Wt(n;B,k) increases in B and decreases in k. We thus proved the statement for n.

Denote τ l(n;B,k) ≡ τ l(n) to emphasize the dependence of τ l(n) on B and k. From Equa-

tion (OA.5), we have τ l(n;B,k) = sup{t : Wt(n;B,k) ≥ Qt(n)}. Consider any B1 > B2. For any

t≤ τ l(n;B2, k), we have Wt(n;B1, k)≥Wt(n;B2, k)≥Qt(n). Therefore, τ l(n;B1, k)≥ τ l(n;B2, k).

Similarly we can show that τ l(n;B,k) decreases in k. We thus obtain the announced result. �
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Proof of Theorem 7. (i) follows directly from the proof of Theorem 6, where we show that Jlt(n)

Qt(n)

decreases in t.

Next we prove (ii). When T → 0, both J lT,N and J bT,N → 0. On the other hand, when T ≥ τ l(N),

the creator ends the LTO immediately, so we have J lT,N = J bT,N . Thus, lim
T→∞

J lT,N−J bT,N = lim
T→0

J lT,N−

J bT,N = 0, and thus we obtain the announced results. �

OA.2. Extension: Multiple Rounds of Stimulus

For analytical tractability, we restrict our attention to the circumstance where a creator can apply

the stimulus only once in the main text. However, as we can see from Table 2, creators typically

update their projects rather frequently in practice, especially for those successful projects. In this

section, we extend the model in Section 4 to consider multiple rounds of stimulus offerings for the

two reactive stimulus policies: seeding and feature upgrade. We show that the optimal strategies

still follow the threshold structure in the sense that the creator should adopt the stimuli if and

only the time-to-go is shorter than a cutoff, and that the cutoff increases in pledge-to-go n. For

limited-time offers, when there are multiple LTOs in effect, the decision to end one of them would

depend on the total funds collected at a given time, which makes the problem significantly more

complicated. While we hypothesize that the optimal strategy is a threshold policy, the proof is

beyond the scope of this paper, which we leave for future research.

OA.2.1. Seeding

Suppose that the creator is able to offer up to n0 ≥ 1 seeds, potentially in multiple rounds. Denote

0≤m≤ n0 as the number of seeds left at a given point during the crowdfunding campaign. At the

state of time-to-go t, pledges needed n and seeds left m, the expected profit is denoted as Jst (n,m).

The cost of the ith seed is assumed to be Ri ≥ 0 for any 1≤ i≤ n0.

Proposition OA.1. For any (n,m), there exists a 0≤ τ s(n,m)≤∞, such that:

• When t≤ τ s(n,m), the creator will activate seeding stimulus right away. That is, Jst (n,m) =

Jst (n− 1,m− 1) for any t≤ τ s(n,m);

• When t > τ s(n,m), the creator is better-off withholding seeding stimulus. The expected profit

Jst (n,m) in this case is given by:

∂Jst (n,m)

∂t
= λtHt(n) (Jst (n− 1,m)−Jst (n,m)) ,

with boundary condition Jsτs(n,m)(n,m) = Jsτs(n,m)(n−1,m−1), Jst (n,0) = (G+B−
∑n0

i=1Ri)Qt(n),

Js0 (0,m) =G+B−
∑n0

i=m+1Ri, and Js0 (n,m) = 0 for all n> 0.

Moreover, τ s(n,m) increases in n.
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Proof of Proposition OA.1. First for any (n,m) and t > 0,

Jst+δ(n,m)≥ (1−λtHt(n)δ)Jst (n,m) +λtHt(n)δJst (n− 1,m) + o(δ).

Let δ→ 0, we get the following inequality:

∂Jst (n,m)

∂t
≥ λtHt(n) [Jst (n− 1,m)−Jst (n,m)] . (OA.7)

We add the following statements to the proposition and prove by induction.

(1) For any 1≤ j ≤m, Jst (n,m)

Jst (n−j,m−j) increases in t.

(2) Jst (n,m)

Jst (n−1,m)
increases in t when t≥ τ s(n,m).

First when m= 1, we already prove the threshold structure and the monotonicity of the thresh-

olds in Theorem 2. We also show that statement (1) holds for m= 1 in the proof of Theorem 2.

In addition, in the proof of Theorem 3, we show that Jst (n,0)

Jst (n,1)
increases in t for any n. Therefore

Jst (n,1)

Jst (n−1,1)
= Jst (n,1)

Jst (n−1,0)

Jst (n−1,0)

Jst (n−1,1)
increases in t. Thus the statements are true for m= 1.

Now consider m> 1. Suppose the statements are true for any n and m− i where i≥ 1. When

n = 1, it is obvious that the optimal strategy is to wait to use the seeding stimulus right before

time expires, i.e., τ s(1,m) = 0. So the statements are true for n= 1.

Assume that the statements are true for some n−1, where n> 1. We prove the threshold structure

for n by contradiction. Suppose it is not true, then there exists an time interval (t, t+h) over which

the stimulus will not be used. Because of the continuity of Jst (n,m), Jst (n,m) = Jst (n− 1,m− 1)

and Jst+h(n,m) = Jst+h(n− 1,m− 1). For any t ∈ (t, t+ h), Jst (n,m) > Jst (n− 1,m− 1). Now for

every t∈ [t, t+h], we find j = min{i≥ 1 : τ s(n− i,m− i)≤ t}. We collect all those unique j’s, and

denote them as j0 > j1 > · · · > jκ, where j0 = min{i ≥ 1 : τ s(n− i,m− i) ≤ t} and jκ = min{i ≥

1 : τ s(n − i,m − i) ≤ t + h}. For any τ s(n − ji,m − ji) ≤ t ≤ τ s(n − ji+1,m − ji+1), Jst (n,m) =

Jst (n− 1,m− 1) = · · ·= Jst (n− ji,m− ji).

Since the optimal strategy is not to use the stimulus at t+ δ and Jst (n,m) = Jst (n− j0,m− j0),

Jst+δ(n,m) = (1−λtHt(n)δ)Jst (n,m) +λtHt(n)δJst (n− 1,m) + o(δ)

= (1−λtHt(n)δ)Jst (n− j0,m− j0) +λtHt(n)δJst (n− 1,m) + o(δ)

> (1−λtHt(n− j0)δ)Jst (n− j0,m− j0) +λtHt(n− j0)δJst (n− j0− 1,m− j0) + o(δ)

Let δ→ 0, we have

Ht(n− j0) [Jst (n− j0− 1,m− j0)−Jst (n− j0,m− j0)]<Ht(n) [Jst (n− 1,m)−Jst (n− j0,m− j0)] ,
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at t= t. Rearrange the terms:

1 +

[
Ht(n− j0)

Ht(n)
− 1

][
1− Jst (n− j0,m− j0)

Jst (n− j0− 1,m− j0)

]
<

Jst (n− 1,m)

Jst (n− j0− 1,m− j0)
,

at t= t. According to our induction assumptions, the LHS decreases in t for any t≥ τ s(n−j0,m−j0)

and RHS increases in t. Thus the inequality holds for any t > t. Also for any t≤ t < τ s(n−j1,m−j1),

Jst (n− j1,m− j1) = Jst (n− j0,m− j0). According to Inequality (OA.7), we have

∂Jst (n,m− j1)

∂t
=
∂Jst (n,m− j0)

∂t

= Ht(n− j0) [Jst (n− j0− 1,m− j0)−Jst (n− j0,m− j0)]

≥ Ht(n− j1) [Jst (n− j1− 1,m− j1)−Jst (n− j1,m− j1)]

Thus, the following inequality holds for any t≤ t≤ τ s(n− j1,m− j1).

Ht(n− j1) [Jst (n− j1− 1,m− j1)−Jst (n− j1,m− j1)]<Ht(n) [Jst (n− 1,m)−Jst (n− j0,m− j0)] .

Note that Jst (n− j0,m− j0) = Jst (n− j1,m− j1) at t= τ s(n− j1,m− j1). Thus,

Ht(n− j1) [Jst (n− j1− 1,m− j1)−Jst (n− j1,m− j1)]<Ht(n) [Jst (n− 1,m)−Jst (n− j1,m− j1)] ,

at t= τ s(n− j1,m− j1). In a similar manner, we can show that for any t > τ s(n− jκ,m− jκ),

Ht(n− jκ) [Jst (n− jκ− 1,m− jκ)−Jst (n− jκ,m− jκ)]<Ht(n) [Jst (n− 1,m)−Jst (n− jκ,m− jκ)] .

On the other hand, at t= t+ h, the optimal strategy is to activate the stimulus, which means

that

Jst+h(n,m) = Jst+h(n− jκ,m− jκ)

= (1−λt+hHt+h(n− jκ)δ)Jst+h−δ(n− jκ,m− jκ) +λt+hHt+h(n− jκ)δJst+h−δ(n− jκ− 1,m− jκ) + o(δ)

≥ (1−λt+hHt+h(n)δ)Jst+h−δ(n,m) +λt+hHt+h(n)δJst+h−δ(n− 1,m) + o(δ)

≥ (1−λt+hHt+h(n)δ)Jst+h−δ(n− jκ,m− jκ) +λt+hHt+h(n)δJst+h−δ(n− 1,m) + o(δ).

This would imply that

Ht(n− jκ) [Jst (n− jκ− 1,m− jκ)−Jst (n− jκ,m− jκ)]≥Ht(n) [Jst (n− 1,m)−Jst (n− jκ,m− jκ)] ,

and therefore leads to contradiction.
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Next we show that τ s(n,m)< τ s(n− 1,m). Suppose this is not true. Then for any τ s(n,m)≤

t≤ τ s(n− 1,m), Jst (n,m)>Jst (n− 1,m− 1) and Jst (n− 1,m) = Jst (n− 2,m− 1). Thus,

∂Jst (n,m)

∂t
= λtHt(n) [Jst (n− 1,m)−Jst (n,m)]≤ λtHt(n− 1) [Jst (n− 2,m− 1)−Jst (n,m)] .

On the other hand, ∂Jst (n−1,m−1)

∂t
≥ λtHt(n− 1)[Jst (n− 2,m− 1)− Jst (n− 1,m− 1)] according to

Inequality (OA.7). Since Jsτs(n,m)(n,m) = Jsτs(n,m)(n−1,m−1), Jst (n,m)≤ Jst (n−1,m−1) for any

t∈ (τ s(n,m), τ s(n− 1,m)), which leads to contradiction.

Finally we prove statements (1) and (2) for n and m. For (1), if t ≤ τ s(n,m), Jst (n,m)

Jst (n−j,m−j) =

Jst (n−1,m−1)

Jst (n−j,m−j) increases in t from the induction assumption. Thus all we need to show is that for a

given t > τ s(n,m), ∂
∂t

Jst (n,m)

Jst (n−j,m−j) ≥ 0 for any j ≤min{j ≥ 1 : τ s(n− j,m− j)< t}. This derivative is

given by

∂

∂t

Jst (n,m)

Jst (n− j,m− j)

=
λtHt(n)[Jst (n− 1,m)−Jst (n,m)]

Jst (n− j,m− j)
− λtHt(n− j)Jst (n,m) [Jst (n− j− 1,m− j)−Jst (n− j,m− j)]

[Jst (n− j,m− j)]2

=λt

{
Ht(n)

[
Jst (n− 1,m)

Jst (n− j− 1,m− j)
Jst (n− j− 1,m− j)
Jst (n− j,m− j)

− Jst (n,m)

Jst (n− j,m− j)

]
−

Ht(n− j)
Jst (n,m)

Jt(n− j,m− j)

[
Jst (n− j− 1,m− j)
Jst (n− j,m− j)

− 1

]}

=λtHt(n)
Jst (n− j− 1,m− j)
Jst (n− j,m− j)

{
Jst (n− 1,m)

Jst (n− j− 1,m− j)
− Jst (n,m)

Jst (n− j,m− j)
Jst (n− j,m− j)

Jst (n− j− 1,m− j)
−

Jst (n,m)

Jst (n− j,m− j)
Ht(n− j)
Ht(n)

[
1− Jst (n− j,m− j)

Jst (n− j− 1,m− j)

]}

=λtHt(n)
Jst (n− 2,m− 1)

Jst (n− 1,m− 1)

{
Jst (n− 1,m)

Jst (n− j− 1,m− j)
−

[
1 +

(
Ht(n− j)
Ht(n)

− 1

)(
1− Jst (n− j,m− j)

Jst (n− j− 1,m− j)

)]
Jst (n,m)

Jst (n− j,m− j)

}
.

Note that Jst (n,m)

Jst (n−j,m−j)

∣∣∣
t=τs(n,m)

= 1 and Jst (n,m)

Jst (n−j,m−j) > 1 for any t > τ s(n,m). Thus Jst (n,m)

Jst (n−j,m−j)

increases in t initially. Now suppose there exists a t1 such that ∂
∂t

Jst (n,m)

Jst (n−j,m−j)

∣∣∣
t=t1

< 0. We can then

find a t2 < t1 such that ∂
∂t

Jst (n,m)

Jst (n−j,m−j)

∣∣∣
t=t2

= 0 and ∂
∂t

Jst (n,m)

Jst (n−j,m−j) < 0 for any t ∈ (t2, t1]. However,

Jst (n−1,m)

Jst (n−j−1,m−j) increases in t for any t≥ τ s(n− 1,m), Jst (n−j,m−j)
Jst (n−j−1,m−j) increases in t for any t≥ τ s(n−

j,m− j), and Ht(n−j)
Ht(n)

decreases in t. This means that ∂
∂t

Js(n,m)

Js(n−j,m−j) > 0 over (t1, t2], which leads to

contradiction. Thus Jst (n,m)

Jst (n−j,m−j) increases in t when t≥ τ s(n,m).



22

Finally we prove statement (ii). Since τ s(n,m)≥ τ s(n− 1,m), for any t≥ τ s(n,m), we have

∂

∂t

Jst (n,m)

Jst (n− 1,m)
=λtHt(n)

(
1− Jst (n,m)

Jst (n− 1,m)

)
−λtHt(n− 1)

Jst (n,m)

Jst (n− 1,m)

(
Jst (n− 2,m)

Jst (n− 1,m)
− 1

)
=λtHt(n)

Jst (n,m)

Jst (n− 1,m)

[
Jst (n− 1,m)

Jst (n,m)
− 1− Ht(n− 1)

Ht(n)

(
Jst (n− 2,m)

Jst (n− 1,m)
− 1

)]
.

Note that Jst (n,m)

Jst (n−1,m)
< 1 for any finite t and limt→∞

Jst (n,m)

Jst (n−1,m)
= 1. This means that Jst (n,m)

Jst (n−1,m)

approaches 1 from below. Thus, if it does not increase in t for any t≥ τ s(n+1,m), there must exist

t2 > t1 ≥ τ s(n,m) such that ∂
∂t

Jst (n,m)

Jst (n−1,m)

∣∣∣
t=t1

= 0 and ∂
∂t

Jst (n,m)

Jst (n−1,m)
≤ 0 for any t ∈ (t1, t2]. However

Ht(n−1)

Ht(n)

(
Jst (n−2,m)

Jst (n−1,m)
− 1
)

strictly decreases in t from our induction assumption about n − 1. This

means that ∂
∂t

Jst (n,m)

Jst (n−1,m)
> 0 over (t1, t2], which leads to contradiction. We thus prove the announced

results. �

OA.2.2. Feature Upgrade

Suppose the creator can make at most nu updates according to a predefined sequence (, which

is possibly determined by the potential benefit of each update). We use m(≤ nu) to denote the

number of feature upgrades that remains to be implemented. With m upgrades left, the corre-

sponding pledge likelihood is denoted as H̃(m)(q). More upgrades make the project more attractive

in the sense that H̃(0)(q) ≥ H̃(1)(q) ≥ · · · ≥ H̃(nu)(q) = H(q). Similarly, the corresponding success

probability Q̃m
t (n) satisfies the condition Q̃

(0)
t (n) > Q̃

(1)
t (n) > · · · > Q̃

(nu)
t (n) = Qt(n). As a direct

extension of Assumption 1(iii), we assume that H̃(m−1)(q)

H̃(m)(q)
decreases in q for any m.

Cost of ith update is assumed to be Ki, i= 1, . . . , nu. At the state of time-to-go t, pledges needed

n and upgrades remaining m, the expected profit is denoted as Jut (n,m).

Proposition OA.2. For any (n,m), there exists a 0≤ τu(n,m)≤∞, such that:

• When t ≤ τu(n,m), the optimal strategy is to upgrade project features right away. That is,

Jut (n,m) = Jut (n,m− 1) for any t≤ τu(n,m);

• When t > τu(n,m), the creator is better-off withholding feature upgrades. The expected profit

Jut (n,m) in this case is given by:

∂Jut (n,m)

∂t
= λtH̃t(n,m) (Jut (n− 1,m)−Jut (n,m)) ,

with boundary conditions Juτu(n,m)(n,m) = Juτu(n,m)(n,m−1), Jut (n,0) = (G+B−
∑nu

i=1Ki)Q̃
(0)
t (n),

Ju0 (0,m) =G+B−
∑nu

i=m+1Ki, and Ju0 (n,m) = 0 for all n> 0.

Moreover, τu(n,m) increases in n.
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Proof of Proposition OA.2. First, for any (n,m) and t > 0, we have

Jut+δ(n,m)≥
[
1−λtH̃t(n,m)δ

]
Jut (n,m) +λtH̃t(n,m)δJut (n− 1,m) + o(δ).

Let δ→ 0, we obtain the following inequality:

∂Jut (n,m)

∂t
≥ λtH̃t(n,m) [Jut (n− 1,m)−Jut (n,m)] . (OA.8)

For proof convenience, let Jut (−1,m) = Jut (0,m) and τut (−1,m) = 0. It’s easy to see that Jut (0,m)

is indeed the unique solution of the differential equation where n= 0.

We add the following statements to the Proposition and prove by induction

(i) For any 0≤ j ≤m, Jut (n,m)

Jut (n,m−j) increases in t.

(ii) Jut (n,m)

Jut (n−1,m)
increases in t for t≥ τu(n,m).

First when m= 0, the threshold structure and the monotonicity of the thresholds follow imme-

diately from our earlier denotation. Statement (i) is trivial as j can only be 0, and Statement (ii)

holds according to Proposition 2.

Now suppose that the statements are true for any n≥ 0 and m− 1 where m≥ 1. We next show

that they must also hold for n and m. First it is obvious that the statements hold for n= 0. Now

assume that they hold for n−1 where n≥ 1. We first show that the optimal stimulus strategy is a

threshold policy. If this is not true, then we can find a time interval (t, t+h), over which the optimal

strategy is not to upgrade the project features, i.e., Jut (n,m)>Jut (n,m−1) over (t, t+h). Because

of the continuity of Jut (n,m), we have Jut (n,m) = Jut (n,m− 1) and Jut+h(n,m) = Jut+h(n,m− 1).

For each t∈ [t, t+h], there exists a j = min{i≥ 1 : τu(n,m− i)≤ t}. We collect all those unique j’s

and denote them as j0 > j1 > · · ·> jκ, where j0 = min{i≥ 1 : τu(n,m− i)≤ t} and jκ = min{i≥ 1 :

τu(n,m− i)≤ t+h}. When t= t+ δ, the optimal strategy is not to upgrade project features, but

Jut (n,m) = Jut (n,m− j0). Thus,

Jut+δ(n,m) =
(

1−λtH̃t(n,m)δ
)
Jut (n,m) +λtH̃t(n,m)δJut (n− 1,m) + o(δ)

>
(

1−λtH̃t(n,m− j0)δ
)
Jut (n,m− j0) +λtH̃t(n,m− j0)δJut (n− 1,m− j0) + o(δ).

Let δ→ 0, we have

H̃t(n,m) [Jut (n− 1,m)−Jut (n,m− j0)]> H̃t(n,m− j0) [Jut (n− 1,m− j0)−Jut (n,m− j0)] ,

at t= t. Rearrange the terms, at t= t, we have(
H̃t(n,m− j0)

H̃t(n,m)
− 1

)[
1− Jut (n,m− j0)

Jut (n− 1,m− j0)

]
≤ Jut (n− 1,m)

Jut (n− 1,m− j0)
.
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According to our induction assumptions, LHS decreases in t for t≥ t≥ τu(n,m− j0) and RHS

increases in t. Thus the above inequality holds for any t > t. In addition, Jut (n,m− j1) = Jut (n,m−

j0) for any τu(n,m− j0)< t≤ τu(n,m− j1), which leads to

∂Jut (n,m− j1)

∂t
=
∂Jut (n,m− j0)

∂t
= H̃t(n,m− j0) [Jut (n− 1,m− j0)−Jut (n,m− j0)] .

According to Inequality (OA.8),

H̃t(n,m− j0) [Jut (n− 1,m− j0)−Jut (n,m− j0)]≥ H̃t(n,m− j1) [Jut (n− 1,m− j1)−Jut (n,m− j1)] .

Coupling with the fact that Jut (n,m−j0) = Jut (n,m−j1) for any t∈ [τu(n,m−j0), τu(n,m−j1)],

we thus have

H̃t(n,m) [Jut (n− 1,m)−Jut (n,m− j1)]> H̃t(n,m− j1) [Jut (n− 1,m− j1)−Jut (n,m− j1)] .

Similarly, we can show that for any t > τu(n,m− jκ),

H̃t(n,m) [Jut (n− 1,m)−Jut (n,m− jκ)]> H̃t(n,m− jκ) [Jut (n− 1,m− jκ)−Jut (n,m− jκ)] .

However for any t > t+h,

Jut (n,m) = Jut (n,m− jκ)

=
(

1−λt−δH̃t−δ(n,m− jκ)δ
)
Jut−δ(n,m− jκ) +λt−δH̃t−δ(n,m− jκ)δJut−δ(n− 1,m− jκ)

≥
(

1−λt−δH̃t−δ(n,m)δ
)
Jut−δ(n,m− jκ) +λt−δH̃t−δ(n,m)δJut−δ(n− 1,m) + o(δ).

Let δ→ 0,

H̃t(n,m) [Jut (n− 1,m)−Jut (n,m− jκ)]≤ H̃t(n,m− jκ) [Jut (n− 1,m− jκ)−Jut (n,m− jκ)] ,

which leads to contradiction. Thus a unique threshold τu(n,m) exists, such that the optimal policy

is to upgrade the features when t≤ τu(n,m), and not to upgrade when t > τu(n,m).

Next we show τu(n,m)≥ τu(n− 1,m) by contradiction. Suppose this is not true. Then for any

τu(n,m)< t≤ τu(n− 1,m), Ju(n,m)>Jut (n,m− 1) and Jut (n− 1,m) = Jut (n− 1,m− 1). Thus,

∂Jut (n,m)

∂t
= λtH̃t(n,m) [Jut (n− 1,m)−Jut (n,m)]

= λtH̃t(n,m) [Jut (n− 1,m− 1)−Jut (n,m)]

< λtH̃t(n,m− 1) [Jut (n− 1,m− 1)−Jut (n,m)] .
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On the other hand, ∂Jut (n,m−1)

∂t
≥ λtH̃t(n,m − 1)[Jut (n − 1,m − 1) − Jut (n,m − 1)] according

to Inequality (OA.8). Since Juτu(n,m)(n,m) = Juτu(n,m)(n,m − 1), Jut (n,m) < Jut (n,m − 1) for any

τu(n,m)< t≤ τu(n− 1,m), which leads to contradiction.

Now we show that statements (i) and (ii) are true for n. For any t ≤ τu(n,m), Jut (n,m)

Jut (n,m−j) =

Jut (n,m−1)

Jut (n,m−j) increases in t based on the induction assumptions. Thus in order to prove statement (i),

we only need to focus on t > τu(n,m). Without loss of generality, we assume that τu(n,m− j)<

τu(n,m) (Otherwise Jut (n,m− j) = Jut (n,m− j′), where j′ = min{i < j : τu(n,m− i)< τu(n,m)}

for any t > τu(n,m)).

∂

∂t

Jut (n,m)

Jut (n,m− j)
=
λtH̃t(n,m)[Jut (n− 1,m)−Jut (n,m)]

Jut (n,m− j)
−

λtH̃t(n,m− j)Jut (n,m) [Jut (n− 1,m− j)−Jut (n,m− j)]
[Jut (n,m− j)]2

=λt

{
H̃t(n,m)

[
Jut (n− 1,m)

Jut (n− 1,m− j)
Jut (n− 1,m− j)
Jut (n,m− j)

− Jut (n,m)

Jut (n,m− j)

]
−

H̃t(n,m− j)
Jut (n,m)

Jut (n,m− j)

[
Jut (n− 1,m− j)
Jut (n,m− j)

− 1

]}

=λtH̃t(n,m)
Jut (n− 1,m− j)
Jut (n,m− j)

{
Jut (n− 1,m)

Jut (n− 1,m− j)
− Jut (n,m)

Jut (n,m− j)
Jut (n,m− j)

Jut (n− 1,m− j)
−

Jut (n,m)

Jut (n,m− j)
H̃t(n,m− j)
H̃t(n,m)

[
1− Jut (n,m− j)

Jut (n− 1,m− j)

]}

=λtH̃t(n,m)
Jut (n− 1,m− j)
Jut (n,m− j)

{
Jut (n− 1,m)

Jut (n− 1,m− j)
−[

1 +

(
H̃t(n,m− j)
H̃t(n,m)

− 1

)(
1− Jut (n,m− j)

Jut (n− 1,m− j)

)]
Jut (n,m)

Jut (n,m− j)

}
.

When t = τu(n,m), Jut (n,m)

Jut (n,m−j) = 1, whereas Jut (n,m)

Jut (n,m−j) > 1 for any t > τu(n,m). Thus, Jut (n,m)

Jut (n,m−j)

increases in t at t = τu(n,m). Suppose there exists a t1 > τu(n,m) such that ∂
∂t

Jut (n,m)

Jut (n,m−j) < 0.

Because of the continuity of Jut (n,m)

Jut (n,m−j) , there must exist a t2 < t1 such that ∂
∂t

Jut (n,m)

Jut (n,m−j)

∣∣∣
t=t2

= 0

and ∂
∂t

Jut (n,m)

Jut (n,m−1)
< 0 for any t∈ (t2, t1]. However, Jut (n−1,m)

Jut (n−1,m−j) strictly increases in t according to our

induction assumption, and H̃t(n,m−j)
H̃t(n,m)

decreases in t according to our assumption. This means that

∂
∂t

Jut (n,m)

Jut (n,m−j) ≥ 0 over (t2, t1], which leads to contradiction.

Finally we prove statement (ii) by contradiction. Suppose it is not true. Then there must exist

t2 > t1 ≥ τu(n,m), such that ∂
∂t

Jut (n,m)

Jut (n−1,m)

∣∣
t=t1

= 0 and ∂
∂t

Jut (n,m)

Jut (n−1,m)
< 0 for any t ∈ (t1, t2]. Because

τu(n,m)≥ τu(n− 1,m), we have



26

∂

∂t

Jut (n,m)

Jut (n− 1,m)
= λtH̃t(n,m)

(
1− Jut (n,m)

Jut (n− 1,m)

)
−λtH̃t(n− 1,m)

Jut (n,m)

Jut (n− 1,m)

(
Jut (n− 2,m)

Jut (n− 1,m)
− 1

)
= λtH̃t(n,m)

Jut (n,m)

Jut (n− 1,m)

[
Jut (n− 1,m)

Jut (n,m)
− 1− H̃t(n− 1,m)

H̃t(n,m)

(
Jut (n− 2,m)

Jut (n− 1,m)
− 1

)]
.

However, Jut (n−2,m)

Jut (n−1,m)
decreases in t as t ≥ τu(n,m) ≥ τu(n− 1,m), and H̃t(n−1,m)

H̃t(n,m)
decreases in t

according to Theorem 1(iii). Consequently, if Jst (n−1,m)

Jst (n,m)
decreases in t, then ∂

∂t

Jut (n,m)

Jut (n−1,m)
≥ 0 over

(t1, t2], which leads to contradiction. We thus obtained the announced results. �

OA.2.3. Numerical Experiments

In this section, we complement our analytical results with a numerical analysis illustrating the

benefit of multiple rounds of stimuli. Parameters of the numerical experiments are specified as

follows. For seeding, we consider the case where each seeding stimulus allows the creator to acquire

1 pledge at a cost of $120. For feature upgrade, we consider the case where each upgrade in project

features costs the creator K = $120, and improves the project quality by 0.1.

Figure OA.1 Benefits of Mutiple Rounds of Stimulus Policies
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(a) Improvement in Expected Profit: Seeding
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(b) Improvement in Expected Profit: Feature Upgrade

Note: V ∼ exp( 1
100

), p= $120, θ = 1, c= $30, G= $1,800 (i.e., N = 15), B = $500, T = 30 and λt = 2. The

benchmark is the base model with no stimulus.

Figure OA.1 illustrates the change in the expected profit w.r.t. the number of stimuli and the

deadline. While access to additional rounds of stimuli always improve the expected profit, the

absolute benefit is non-monotonic w.r.t. the deadline T . When the deadline T is small, having more

rounds of the stimuli helps little because the project has little chance to succeed even if multiple

stimuli are applied. At the other end of the spectrum, when the deadline T is sufficiently large,
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again multiple rounds of stimuli render little benefit as the project is likely to reach the target

without help of any stimulus policies. Similar to our observation from the numerical analysis in

Section 4.4, we also observe that the stimulus policy with multiple rounds of updates is the most

effective when the remaining time is neither too long or too short.


