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Online Appendix to
“Global and Robust Stability

in a General Price and Assortment Competition Model”

Awi Federgruen and Ming Hu

A. Analysis of Example 1

Federgruen and Hu (2015) investigate the same, in their Example 1; Muto (1993), Erkal (2005)

and Zanchettin (2006) address this specific case, with the further restriction γ1 “ γ2; for the case

of a duopoly, the models in Ledvina and Sircar (2012) and Cumbul and Virág (2018) reduce to

this case.

Figure 1 Why Supermodularity Fails
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Note, theR-matrix is both row- and column-wise diagonally dominant. See Figure 1 for a pictorial

representation of the polyhedron P when γ1 “ 0.7 and γ2 “ 0.3:

P “

"

pě 0

ˇ

ˇ

ˇ

ˇ

1´ p1` γ1p2 ě 0
1´ p2` γ2p1 ě 0

*

.

Consider the four points A,B,C,D with A in the interior of P , D R P and B and C on the boundary

segment corresponding with the line 0 “ q1ppq “ 1 ´ p1 ` γ1p2. By the regularity condition, the

demand levels of point D are the same as those of point B. Thus, d1pp1, p
1
2q ą 0, but d1pp1, p2q “

d1pp
1
1, p

1
2q “ d1pp

1
1, p2q “ 0 and d1pp1, p

1
2q´ d1pp1, p2q ą 0“ d1pp

1
1, p

1
2q´ d1pp

1
1, p2q so that the demand

function d1p¨q fails to have increasing differences and therefore fails to be supermodular. Moreover,

assuming p1 ą w1, we have π1pp1, p
1
2q ´ π1pp1, p2q ą 0 “ π1pp

1
1, p

1
2q ´ π1pp

1
1, p2q, where πipp1, p2q “

ppi´wiqdipp1, p2q is the profit function of firm i. Here, we see that the profit function π1p¨q fails to

be supermodular, as well.
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The demand and profit functions d1 and π1 also fail the weaker single crossing property, see

Milgrom and Shannon (1994), Edlin and Shannon (1998), Topkis (1998) and Athey (2001): Note

d1pp
1
1, p2q ě d1pp1, p2q but d1pp

1
1, p

1
2q ă d1pp1, p

1
2q and the same comparisons apply to the profit func-

tion π1p¨q. Finally, with demand and profit values often equal to zero, the log-supermodularity

property is irrelevant.

We now show that multiple equilibria may arise in P . Note first that

W “

"

wě 0

ˇ

ˇ

ˇ

ˇ

2` γ1´p2´ γ1γ2qw1` γ1w2 ě 0
2` γ2´p2´ γ1γ2qw2` γ2w1 ě 0

*

Ě P. (A.1)

Recall, W o represents the set of wholesale prices under which a unique equilibrium prevails in the

interior of P .

Consider the special case when γ1 “ γ2 “ γ. We construct an equilibrium at which firm 1 prices

at cost, i.e., p̃1 “ w1. Firm 2 sets the price p2 “ p̃2 such that firm 1 is exactly priced out of the

market, i.e., 0 “ q1 “ 1´ p̃1 ` γp̃2, i.e., p̃2 “
w1´1
γ

. We identify conditions under which the point

p̃“ pp̃1, p̃2q “ pw1,
w1´1
γ
q is an equilibrium.

The point p̃“ pw1,
w1´1
γ
q is on the boundary of P , denoted by BP , if p̃ě 0 and a´Rp̃ě 0, which

requires

1ďw1 ď
1

1´ γ
. (A.2)

First, consider firm 1. The firm does not gain by pricing below p̃1 “ w1, because that would

result in a non-positive profit. Likewise, the firm does not gain by increasing its price above w1: by

the regularity condition (see Definition 1), its demand volume, and hence its profit value remains

at zero.

Next, consider firm 2. If firm 2 decreases its price to some p2 ă p̃2, the price vector pp̃1, p2q R P and

the associated demand volumes are obtained by applying the affine functions qp¨q to its projection

Ωpp̃1, p2q. It is easily verified from the LCP conditions (2) and (3) that Ω2pp̃1, p2q “ p2, while

p̄1pp2q ”Ω1pp̃1, p2q “ 1` γp2 ď p̃1 since for this corrected price level for product 1, q1 “ 0. Thus

d2pp2q “ q2pp̄1pp2q, p2q “ 1´ p2` γp̄1pp2q “ 1´ p2` γp1` γp2q “ p1` γq´ p1´ γ
2qp2.

Thus, when firm 2 decreases its price, its effective profit function is

π´2 pp2q “ pp2´w2qrp1` γq´ p1´ γ
2qp2s.

Since this function is concave, we need:

dπ´2 pp2q

dp2

ˇ

ˇ

ˇ

ˇ

p2“
w1´1
γ

ě 0,
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to ensure that firm 2 has no incentive to decrease its price. This results in the following condition:

2` γ´ γ2

γ
´

2p1´ γ2q

γ
w1`p1´ γ

2qw2 ě 0. (A.3)

(The corresponding half plane is bounded by a line that contains an edge of W .) Given p̃1 “w1, if

firm 2 increases its price marginally to some new level p2 ą p̃2, the new price vector pp̃1, p2q remains

in P , so that

d2pp̃1 “w1, p2q “ q2pp̃1 “w1, p2q “ 1´ p2` γp̃1 “ 1´ p2` γw1.

Thus, before firm 2 increases its price up to p1` γw1q, at which point it prices itself out of the

market as well, the effective profit function is,

π`2 pp1 “w1, p2q “ pp2´w2qp1´ p2` γw1q.

This function is again concave, so that

dπ`2 pp1, p2q

dp2

ˇ

ˇ

ˇ

ˇ

p1“w1,p2“
w1´1
γ

ď 0,

ensures that firm 2 has no incentive to increase its price to any level ď p1`γw1q. This leads to the

following condition:
2` γ

γ
´

2´ γ2

γ
w1`w2 ď 0. (A.4)

We conclude that the price vector pw1,
w1´1
γ
q is a Nash equilibrium when all three conditions

(A.2)-(A.4) are satisfied, i.e., when the cost rate vector w lies in:

ĂW “

#

1ďw1 ď
1

1´ γ

ˇ

ˇ

ˇ

ˇ

ˇ

2`γ´γ2

γ
´

2p1´γ2q

γ
w1`p1´ γ

2qw2 ě 0
2`γ
γ
´

2´γ2

γ
w1`w2 ď 0

+

, the triangle ACD,

which is contained in W (II)“ tw ě 0 | rΘpwqs1 ď w1, rΘpwqs2 “ w2u, the half open area, bounded

by the line segment AC, the horizontal axis and the horizontal line through the point A“ p 1
γ
, 1
γ
q.

We display the polyhedron ĂW for γ “ 0.7 in Figure 2. It is easily verified that the polyhedron W̃

is non-empty: it contains the point p2,0.2q, for example.

For this vector of cost rates p2,0.2q, pw1,
w1´1
γ
q “ p2,1.4286q is one Nash equilibrium.

Moreover, as shown in Proposition 1, pp˚|wq “ p˚pw1q “ p1.8808,1.2583q is an alternative equi-

librium, which we verify as follows.

If w P intpW q, the following price vector is the unique equilibrium in intpP q, see (5), by Theorem

1(c):

p˚1 pwq “
2` γ1

4´ γ1γ2
`

2

4´ γ1γ2
w1`

γ1
4´ γ1γ2

w2, p
˚
2 pwq “

2` γ2
4´ γ1γ2

`
γ2

4´ γ1γ2
w1`

2

4´ γ1γ2
w2. (A.5)
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Figure 2 Non-Equivalent Equilibria
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Note. For w PĂW , there are at least two non-equivalent equilibria p˚pΘpwqq and p̃“ pw1,
w1´1
γ
q. The highlighted point

in ĂW is w“ p2,0.2q.

Figure 3 Price Equilibria for w“ p2,0.2q
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Note. For w “ p2,0.2q, the set of price equilibria is given by the line segment between p˚pΘpwqq “ p1.8808,1.2583q

and p̃“ pw1,
w1´1
γ
q “ p2,1.4286q on the boundary of P .

If w P RN``zintpW q, the special equilibrium pp˚|wq P BP is given by (A.5) with w replaced by

w1 “Θpwq:

p˚1 pw
1q “

2` γ1
4´ γ1γ2

`
2

4´ γ1γ2
w11`

γ1
4´ γ1γ2

w12, p
˚
2 pw

1q “
2` γ2

4´ γ1γ2
`

γ2
4´ γ1γ2

w11`
2

4´ γ1γ2
w12. (A.6)

Next, consider w PW pIIq: In this area of the plane, w11 “w1´ t1 and w12 “w2 (i.e., t2 “ 0), such

that 0“ rQpw´ tqs1 “ rΨpRqas1´ rΨpRqRpw´ tqs1, from which we get w11 “w1´ t1 “
p2`γ1q`γ1w2

2´γ1γ2
.
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Substituting into (A.6), we get

p˚1 pw
1q “

2` γ1
2´ γ1γ2

`
γ1

2´ γ1γ2
w2, p˚2 pw

1q “
1` γ2

2´ γ1γ2
`

1

2´ γ1γ2
w2. (A.7)

For w “ p2,0.2q P W pIIq and γ1 “ γ2 “ γ “ 0.7, we have p˚pw1q “
`

2`0.7
2´0.49

` 0.7
2´0.49

ˆ 0.2, 1`0.7
2´0.49

` 1
2´0.49

ˆ 0.2
˘

“ p1.8808,1.2583q.

Moreover, the two equilibria fail to be equivalent. In both equilibria, product 1 does not survive

the competition: Under the price equilibrium p2,1.4286q, firm 2 has a sales volume d2 “ 0.9714

and a profit level π2 “ 1.1935. Under pp˚|wq “ p1.8808,1.2583q, firm 2 enjoys a larger sales volume

d2 “ 1.0583, but a somewhat lower profit level π2 “ 1.12.

We show below that the full set of equilibria in P is the line segment connecting the two equilibria

p2,1.4286q and p1.8808,1.2583q, which lies on the boundary of P , see Figure 3. Since w“ p2,0.2q P

RN``zintpW q, by Theorem 1(d), we only need to consider BP , the boundary of P .

First, we verify that the boundary between P and P pIq does not contain an equilibrium. Consider

a point po such that d1pp
oq ą 0 and d2pp

oq “ 0. Since d1pp
oq ą 0, it must be the case po1 ąw1. Then

firm 2 can become strictly more profitable by reducing its price p2 to p2 “ po1, because now she

still has a positive margin since po1 ą w1 “ 2ą 0.2“ w2 and reducing her price (moving from the

boundary onto the diagonal within P ) would boost her demand to a positive level.

Second, we verify that, on the boundary of P and P pIIq, any point with p2 ă 1.2583 is not an

equilibrium. Consider a point d2pp
oq ą 0 and d1pp

oq “ 0 such that po ă p1.8808,1.2583q. Firm 2 has

an incentive to (slightly) increase her price p2. By doing so, the price point goes to P o, the interior

of P , in which the raw demand function applies without the need of modification. Then the profit

function of firm 2 should be pp2´w2qp1´ p2` γp1q. Note that

drpp2´w2qp1´ p2` γp1qs

dp2

ˇ

ˇ

ˇ

ˇ

p“po

“ 1´ 2po2` γp
o
1`w2

“ 1´ 2po2` γp1` γp
o
2q`w2

“ 1` γ`w2´p2´ γ
2qpo2

ą 0,

where the second equality is due to 0“ d1pp
oq “ 1´ po1` γp

o
2 “ 0 and hence po1 “ 1` γpo2, and the

last inequality is due to γ “ 0.7, w2 “ 0.2 and po2 ă 1.2583. This verifies that firm 2 has an incentive

to (slightly) increase her price p2, at a point p“ po such that d2pp
oq ą 0, d1pp

oq “ 0 and po2 ă 1.2583.

Third, we verify that, on the boundary of P and P pIIq, any point with p2 ą 1.4286 is not an

equilibrium. Consider a point d2pp
oq ą 0 and d1pp

oq “ 0 such that po ą p2,1.4286q. Firm 1 has an
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incentive to slightly decrease her price p1 but still make sure it is greater than 2. By doing so,

the price point goes to P o, the interior of P , in which the raw demand function applies without

the need of modification. As a result, firm 1 has positive demand while still earns a positive profit

margin, leading to a positive profit level. This verifies that firm 1 has an incentive to (slightly)

decrease her price p1, at a point p“ po such that d2pp
oq ą 0, d1pp

oq “ 0 and po2 ą 1.4286.

Lastly, we can use the same way of verifying pw1,
w1´1
γ
q “ p2,1.4286q as an equilibrium to show on

the boundary of P and P pIIq, any point with p1.8808,1.2583q ă po ď p2,1.4286q is an equilibrium.

In general, the set of equilibria in P may be more complex. See Example 1 in Federgruen and

Hu (2015) for other types of equilibria in RN` and how these equilibria vary with w.

B. Auxiliary Lemmas

We use some properties of square matrices of special structure.

Definition B.1 (Z-matrix). A square matrix whose off-diagonal entries are non-positive is

called a Z-matrix.

Definition B.2 (P -matrix). A square matrix whose principal minors are all positive (non-

negative) is called a P -matrix (P0-matrix).

Definition B.3 (ZP -matrix). A matrix that is both a Z-matrix and a P -matrix is called a

ZP -matrix.

It is well known that all positive definite matrices are P -matrices, see, e.g., Cottle et al. (1992,

Chapter 3). However, the class of P -matrices is significantly broader because it accommodates

asymmetric matrices. It is well known that a symmetric matrix is positive definite if and only if it

is a P -matrix.

Lemma B.1. Let A be a ZP -matrix and B be a Z-matrix such that A ď B, i.e., B ´ A ě 0.

Then

(a) A´1 exists and A´1 ě 0.

(b) B is a ZP -matrix and B´1 ďA´1.

(c) AB´1 and B´1A are ZP -matrices.

Let Y “

ˆ

A B
C D

˙

represent a block decomposition of the matrix Y , with A and D square matri-

ces. The Schur complement of A in Y is defined as pD´CA´1Bq.

(d) If Y is a ZP -matrix, so are A and its Schur complement pD´CA´1Bq.

(e) If A is non-singular and Y is the inverse of a ZP -matrix, then the Schur complement of A,

pD´CA´1Bq is the inverse of a ZP -matrix, itself, and hence pD´CA´1Bq ě 0.

(f) Let X be the inverse of a symmetric ZP -matrix Y “

ˆ

A B
BJ D

˙

, with A a square |S|ˆ|S| matrix

and D a square |S| ˆ |S| matrix. Thus, XS,SX
´1
S,SXS,S ě 0.
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(g) If A“ I ´Q is a ZP -matrix, with Qě 0, then ρpQq ă 1, with ρpQq the spectral radius of Q.

Proof of Lemma B.1. Parts (a)-(d) can be found in Horn and Johnson (1991, Section 2.5).

(Horn and Johnson refer to ZP -matrices as M -matrices.) Part (e) follows from Imam (1984).

Part (f). Since Y is symmetric, X “ Y ´1 is symmetric. With Y “

ˆ

A B
BJ D

˙

. Then

X “ Y ´1 “

ˆ

pA´BD´1BJq´1 ´A´1BpD´BJA´1Bq´1

´pD´BJA´1Bq´1BJA´1 pD´BJA´1Bq´1

˙

ě 0,

see Horn and Johnson (1985, Section 0.7.3), and hence,

XS,SX
´1
S,SXS,S “ A´1BpD´BJA´1Bq´1pD´BJA´1BqpD´BJA´1Bq´1BJA´1

“ A´1BpD´BJA´1Bq´1BJA´1 ě 0,

where the inequality is due to Y being a ZP -matrix, hence B ď 0, A´1 ě 0 and pD´BJA´1Bq´1 ě 0

(since A and its Schur complement D´BJA´1B are ZP -matrices, by part (d)).

Part (g) follows from Horn and Johnson (1991, Lemma 2.5.2.1). �

Lemma B.2. For any p, p1,w PRN ,

‖maxpp,wq´maxpp1,wq‖
8
ď ‖p´ p1‖

8
.

Proof. From the definition of the matrix-norm ‖¨‖
8

, it suffices to show that |maxpp,wq ´

maxpp1,wq| ď |p´ p1|, i.e., for all l “ 1, . . . ,N , |maxppl,wlq ´maxpp1l,wlq| ď |pl ´ p
1
l|. The latter is

easily verified, assuming, without loss of generality, that pl ď p
1
l and considering all three possible

rankings: (i) pl ď p
1
l ďwl, (ii) pl ďwl ă p

1
l and (iii) wl ă pl ď p

1
l. �

C. Characterization of the Set of Equilibria in P : Proof of Theorem 1

In this Online Appendix, we provide a characterization of the equilibria in P . To this end, we

consider, as in Federgruen and Hu (2015), in conjunction with the full competition game in which

each retailer is able to select an arbitrary price vector, a restricted game in which the industry-

wide price vector p must be selected within the polyhedron P . This is a generalized Nash game

with coupled constraints, a term coined by Rosen (1965), i.e., even the feasible price range for

any retailer i depends on the price choices made by the competitors; see also Topkis (1998) for a

treatment of such generalized games.

While the structure of the feasible strategy space is more complex in this restricted game, it

has the advantage that the profit functions are simple quadratic functions, because for p P P ,

dppq “ qppq “ a´Rp is affine. Note that any equilibrium p˚ P P in the actual competition game is
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an equilibrium in the restricted game, but, the converse may fail to be true. For any equilibrium

po in the restricted game and any retailer i, poN piq must solve the quadratic program:

maxpN piq ppN piq´wN piqq
JpaN piq´RN piq,N piqpN piq´RN piq,´N piqp

o
´N piqq

s.t. a´R

ˆ

pN piq
po
´N piq

˙

ě 0 and pN piq ě 0.

This quadratic program can be rewritten as

minpN piq ´pw
J
N piqRN piq,N piq` a

J
N piq´pp

o
´N piqq

JRJN piq,´N piqqpN piq`
1

2
pJN piqp2RN piq,N piqqpN piq

`wJN piqpaN piq´RN piq,´N piqp
o
´N piqq

s.t. ´R

ˆ

pN piq
po
´N piq

˙

ě´a, (C.1)

pN piq ě 0. (C.2)

Since R is positive definite, RN piq,N piq is positive definite, as well. Let yi ě 0 and sN piq ě 0 denote

the Lagrange multipliers associated with the constraint sets (C.1) and (C.2), respectively. Also

let ti “ ptiN piq, t
i
´N piqq ě 0 denote the surplus variables of constraint set (C.1). Since RN piq,N piq is

positive definite, the optimal solution to this quadratic program is the unique solution to the

complementarity conditions:

¨

˝

sN piq
tiN piq
ti
´N piq

˛

‚´

¨

˝

RN piq,N piq`R
J
N piq,N piq RN piq,´N piq RJN piq,N piq R

J
´N piq,N piq

´RN piq,N piq ´RN piq,´N piq 0 0
´R´N piq,N piq ´R´N piq,´N piq 0 0

˛

‚

¨

˚

˚

˝

pN piq
po
´N piq
yiN piq
yi
´N piq

˛

‹

‹

‚

“

¨

˝

´pRJN piq,N piqwN piq` aN piqq

aN piq
a´N piq

˛

‚, (C.3)

and

sN piq ě 0, pN piq ě 0, sJN piqpN piq “ 0,

ti “ ptiN piq, t
i
´N piqq ě 0, yi “ pyiN piq, y

i
´N piqq ě 0, ptiqJyi “ 0. (C.4)

This implies that a price vector p is a generalized Nash equilibrium if and only if vectors s, yi, ti PRN`
can be found, for all i, such that (C.3) and (C.4) are satisfied for all i, simultaneously. In other

words, the price vector p is a generalized Nash equilibrium if and only if the extended vector

pp, y1, y2, . . . , yIq PRNpI`1q
` is a solution to a specific master LCP that takes the following form:

`

s, t1, . . . , tI
˘J
“
`

´T pRqw´ a,a, . . . , a
˘J
` R̃

`

p, y1, . . . , yI
˘J
, (C.5)

`

s, t1, . . . , tI
˘

ě 0,
`

p, y1, . . . , yI
˘

ě 0, (C.6)
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`

sJ, pt1qJ, . . . , ptIqJ
˘

¨

˚

˚

˚

˝

p
y1

...
yI

˛

‹

‹

‹

‚

“ 0, (C.7)

where

R̃”

¨

˚

˚

˚

˝

R`T pRq R̊N p1q ¨ ¨ ¨ R̊N pIq
´R 0 0 0

...
...

. . .
...

´R 0 0 0

˛

‹

‹

‹

‚

PRNpI`1qˆNpI`1q, R̊N piq ”

¨

˚

˚

˚

˚

˚

˚

˝

0
...

RJN ,N piq
...
0

˛

‹

‹

‹

‹

‹

‹

‚

PRNˆN .

We first prove the following result regarding the master LCP:

Lemma C.1. For any w P RN``, the LCP (C.5)-(C.7) has at most one solution whose price

component lies in intpP q.

Proof of Lemma C.1. For a solution po to the LCP (C.5)-(C.7) to be in intpP q, ti “ a´Rpo ą 0

and by complementarity, yi “ 0. Hence, the LCP (C.5)-(C.7) reduces to s“´T pRqw´ a` rR`

T pRqspě 0, pě 0 and sJp“ 0. Since R`T pRq is positive definite, by Cottle et al. (1992, Theorem

3.1.6), this reduced LCP has a unique solution, but the solution may not necessarily be in intpP q.

Hence, the LCP (C.5)-(C.7) has at most one solution whose price component lies in intpP q. �

Now we characterize the set of Nash equilibria in the original game.

Proof of Theorem 1. Part (a). In the narrative proceeding Proposition 1, we showed that p˚pwq

is the only possible equilibrium in intpP q.

Part (b). Follows from the proof of Theorem 1 in Federgruen and Hu (2015), see the Online

Appendix thereof.

Part (c). We showed, in Proposition 1, that when w P intpW q, p˚pwq is an equilibrium, indeed.

By part (a), we already know that no other equilibrium in intpP q can exist. To show that there

are no alternative equilibria, anywhere, we first establish that there are no alternative equilibria in

the restricted game. This is equivalent to showing that the master LCP corresponding with this

restricted game, i.e., the LCP (C.5)-(C.7), has a unique solution.

R̃ is a P0-matrix, a fact shown as part of the proof of Theorem 1 in Federgruen and Hu (2015),

see the Online Appendix thereof. Were this matrix a P -matrix, this would immediately imply that

the LCP (C.5)-(C.7) has a unique solution, see Theorem 3.1.6. in Cottle et al. (1992). Since R̃

is only a P0-matrix, we need an additional property to arrive at the same conclusion. However,

Corollary 5 in Jones and Gowda (1998) shows that the LCP has a unique solution if it has a locally
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unique solution; indeed we have shown that p˚pwq is a locally unique solution since no other point

in intpP q is an equilibrium.

Therefore, when w P intpW q, no price vector p̃ P P , with p̃ ‰ p˚pwq is an equilibrium of the

restricted game; and, a fortiori, of the full price competition game. Finally, to exclude the existence

of equilibria in RN` zP , we invoke part (b): if such an equilibrium p̃ R P were to exist, then Ωpp̃q,

on the boundary of P , is an equilibrium as well, and we have just proven that no vector on the

boundary of P is an equilibrium.

Finally, if w P intpW q, qpp˚pwqq ą 0, i.e., all products have a positive market share, or N`pp˚|wq “

N .

Part (d): When w PRN``zintpW q, the proof of Proposition 1 showed that there is no equilibrium

in intpP q: after all, only p˚pwq is a candidate equilibrium in intpP q; however, when w PRN``zintpW q,

p˚pwq R intpP q. This proves the first statement. The fact that p˚pw1q P BP is an equilibrium was

shown in Proposition 1(b).

Part (e): For any product l PN piq for some i “ 1, . . . , I with dpp˚|wql ą 0, we must have that

pp˚|wql ěwl. This is because if pp˚|wql ăwl, firm i can strictly improve its profit by increasing its

price pp˚|wql to wl. The argument is as follows. Without loss of generality, we assume pp˚|wql1 ěwl1 ,

for l1 ‰ l; otherwise, we simultaneously raise prices of those product that are below its cost to

its cost, and the same argument as follows holds. As the price of product l increases, its demand

volume dl decreases, while the demand volumes of all other products d´l increase, see Farahat

and Perakis (2010, Corollary 1), i.e., dpwl; pp
˚|wq´lql1 ě dpp

˚|wql1 for l1 ‰ l. If the demand volume

dpwl; pp
˚|wq´lql for product l at price wl is still nonnegative, the profit level of firm i strictly

improves because firm i now eliminates a negative profit for product l while improving profitability

for all of its other products. That is,

πipwl; pp
˚|wq´lq “ pwl´wlqdpwl; pp

˚|wq´lql`
ÿ

l,l1PN piq

ppp˚|wql1 ´wl1qdpwl; pp
˚|wq´lql1

ě ppp˚|wql´wlqdpp
˚|wql`

ÿ

l,l1PN piq

ppp˚|wql1 ´wl1qdpp
˚|wql1 , (C.8)

where the inequality is due to pp˚|wql ă wl, dpp˚|wql ě 0, pp˚|wql1 ě wl1 for l1 ‰ l, and

dpwl; pp
˚|wq´lql1 ě dpp

˚|wql1 for l1 ‰ l. Otherwise, in the process of increasing the price of product l

from pp˚|wql to wl, at some price point, its demand volume hits zero. By the regularity condition,

a further price increase leaves all demand volumes unaltered. Both scenarios eliminate a negative

profit value for product l while the profits for any other products sold by firm i are (weakly)

improved, i.e., inequality (C.8) holds for both cases. This contradicts the fact that pp˚|wq is an

equilibrium. �
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D. Proposition 2 and Proof of Lemma 2

Proposition 2. For any w PRN``, p˚pw1q, coupled with Lagrange multipliers yiN piq “ rw´w
1sN piq

and yi
´N piq “ 0 for all i, constitutes a solution to the LCP (C.5)-(C.7).

Proof of Proposition 2. It suffices to verify that p̃ “ rR` T pRqs´1ra` T pRqw1s “ p˚pw1q, ỹil “
"

wl´w
1
l if l PN piq,

0 otherwise,
for all i, s̃“ 0, t̃i “ a´Rp̃, for all i, satisfy the LCP (C.5)-(C.7).

The nonnegative conditions (C.6) can be easily verified.

To verify (C.5), we have

rR`T pRqsp̃´ra`T pRqws`

¨

˚

˝

RJN ,N p1qỹ
1

...
RJN ,N pIqỹ

I

˛

‹

‚

“ rR`T pRqsp̃´ra`T pRqws`

¨

˚

˝

RJN p1q,N p1qrw´w
1sN p1q

...
RJN pIq,N pIqrw´w

1sN pIq

˛

‹

‚

“ rR`T pRqsp̃´ra`T pRqws`T pRqpw´w1q

“ rR`T pRqsp̃´ra`T pRqw1s “ 0,

Lastly, we verify the complementarity conditions (C.7). Since s̃“ 0, s̃Jp̃“ 0. Note that

t̃i “ a´Rp̃“ qpp̃q “Qpw1q ě 0 for all i,

where the last inequality is due to Federgruen and Hu (2015, Proposition 2(b)). By the definition

of the projection, pw ´ w1qJQpw1q “ 0. Thus ỹil t̃
i
l “ pwl ´ w

1
lqrQpw

1qsl “ 0 for l P N piq. Moreover,

ỹil t̃
i
l “ 0 for l RN piq because ỹil “ 0. �

Proof of Lemma 2. Consider, for any i“ 1, . . . , I, the single player price game, with firm i as

the “monopolist” and demand functions given by the (unique) regular extension on R|N piq|` of the

affine functions

pqN piqppN piqq “ α´RN piq,N piqpN piq,

where α“ aN piq ´RN piq,´N piqp´N piq ě 0. The regular extension of these affine functions on R|N piq|`

is well defined, since RN piq,N piq, as a major principal of the full matrix R, is both a Z-matrix and

positive definite, and is thus given by

pdN piqppN piqq “ pqN piqppN piq´ tN piqq “ α´RN piq,N piqppN piq´ tN piqq

with the vector tN piq the unique solution to the LCP:

α´RN piq,N piqppN piq´ tN piqq ě 0,
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tJN piqrα´RN piq,N piqppN piq´ tN piqqs “ 0, and tN piq ě 0.

Now fix a vector po
´N piq ě 0. Recall that RBipp

o
´N piqq is the price vector which optimizes firm

i’s profits in the above single player robust competition game. In this game the matrix R is to be

replaced by RN piq,N piq and T pRN piq,N piqq “RN piq,N piq by property (IS). Applying the expression in

(5) to this single firm game, we get the following expression for RBipwN piq, p
o
´N piqq:

RBipwN piq, p
o
´N piqq “ w1N piq`r2RN piq,N piqs

´1pα´RN piq,N piqw
1
N piqq

“ r2RN piq,N piqs
´1α`

1

2
rwN piq´ tpwN piq, p

o
´N piqqs, (D.1)

where w1N piq “wN piq´ tpwN piq, p
o
´N piqq is the projection, along the coordinates, of wN piq onto

Wi ” twN piq ą 0 |ΨpRN piq,N piqqrα´RN piq,N piqwN piqs ě 0u “ Pipp
o
´N piqq,

where the last equality is due to ΨpRN piq,N piqq “ T pRN piq,N piqqrRN piq,N piq`T pRN piq,N piqqs
´1 “ 1

2
and

(8).

Let

dN piqpwN piq, αq “ α´RN piq,N piqpwN piq´ tpwN piq, αqq,

and

BN piqpwN piq, αq “ α`RN piq,N piqpwN piq´ tpwN piq, αqq.

Then in view of (D.1), we can write

RBipwN piq, p
o
´N piqq “ r2RN piq,N piqs

´1BN piqpwN piq, αq. (D.2)

Since the projection of wN piq onto Wi along the coordinates is defined by a linear complementarity

problem, for any l PN piq, by complementarity,

if rtpwN piq, αqsl ą 0, rdN piqpwN piq, αqsl “ 0, so that αl “ rRN piq,N piqpwN piq´ tpwN piq, αqqsl and hence,

rBpwN piq, αqsl “ 2αl;

if rtpwN piq, αqsl “ 0, rdN piqpwN piq, αqsl ą 0, so that αl ą rRN piq,N piqpwN piq´ tpwN piq, αqqsl and hence,

rBpwN piq, αqsl ă 2αl.

Let pt “ tpwN piq, pp´N piqq, rt “ tpwN piq, rp´N piqq, qt “ tpwN piq, qp´N piqq, pB “ BN piqpwN piq, pαq, rB “

BN piqpwN piq, rαq, qB “BN piqpwN piq, qαq.

Since qαď pα, |Wi ĎxWi. It follows from Lemma B.2(d) in the Online Appendix of Federgruen and

Hu (2016) that the projection of the vector wN piq onto xWi is component-wise smaller than that

onto |Wi ĎxWi, i.e., ptď qt. As a consequence, only the following three cases need to be considered.
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(i) If qtl ą 0 and ptl “ 0, then qBl “ 2qαl and pBl ă 2pαl and hence,

r pB´ qBsl ă r2ppα´ qαqsl.

(ii) If qtl ą 0 and ptl ą 0, then qBl “ 2qαl and pBl “ 2pαl and hence,

r pB´ qBsl “ r2ppα´ qαqsl.

(iii) If qtl “ 0 and ptl “ 0, by (D.1),

rpp˚´ qp˚sl “ tr2RN piq,N piqs
´1
pαul`

1

2
wl´tr2RN piq,N piqs

´1
qαul´

1

2
wl

“ tr2RN piq,N piqs
´1ppα´ qαqul.

Thus, let S “ tl PN piq | qtl “ ptl “ 0u. Then

rpp˚´ qp˚sS “ tr2RN piq,N piqs
´1ppα´ qαquS. (D.3)

For notational simplicity, let

r2RN piq,N piqs
´1 “X, pB´ qB “ y, pα´ qα“ z ě 0.

Since R is a positive-definite Z-matrix, RN piq,N piq has the same properties. It follows from Lemma

B.1(a) that X ě 0.

By (D.2), we expand the two sides of (D.3): XS,SyS `XS,SyS “XS,SzS `XS,SzS. Then

yS “ zS `X
´1
S,SXS,SpzS ´ ySq. (D.4)

Therefore,

rpp˚´ qp˚sS “XS,SyS `XS,SyS “XS,SrzS `X
´1
S,SXS,SpzS ´ ySqs`XS,SyS

“ XS,SzS `XS,SX
´1
S,SXS,SzS `rXS,S ´XS,SX

´1
S,SXS,SsyS

ď XS,SzS `XS,SX
´1
S,SXS,SzS `rXS,S ´XS,SX

´1
S,SXS,Ssp2zSq

“ XS,SzS `r2XS,S ´XS,SX
´1
S,SXS,SszS

ď 2XS,SzS ` 2XS,SzS

“ 2rXzsS “ rR
´1
N piq,N piqppα´ qαqsS, (D.5)

where the second equality is due to (D.4). The first inequality follows from yS ď 2zS (combining

cases (i) and (ii)) while XS,S´XS,SX
´1
S,SXS,S ě 0, as the Schur complement of XS in X, the inverse

of a ZP -matrix, is the inverse of a ZP -matrix, itself, see Lemma B.1(e), and the last inequality is
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due to X,z ě 0 and XS,SX
´1
S,SXS,S ě 0. The latter follows from Lemma B.1(f) with Y “ 2RN piq,N piq,

which is symmetric under Assumption (IS).

We thus have the first part of (18), where the first inequality is due to pαě qα and the monotonicity

of equilibrium prices with respect to the intercept vector α (see Federgruen and Hu 2016, Theorem

4(b)), and the second inequality is due to the combination of (D.3) and (D.5). By the same

argument, we have the second part of (18). �
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