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Abstract. We analyze a general but parsimonious price competition model for an oli-
gopoly in which each firm offers any number of products. The demand volumes are
general piecewise affine functions of the full price vector, generated as the “regular”
extension of a base set of affine functions. The model specifies a product assortment, along
with their prices and demand volumes, in contrast to most commonly used demand
models, such as the multinomial logit model or any of its variants. We show that a special
equilibrium in this model has global robust stability. This means that, from any starting
point, the market converges to this equilibrium when firms use a particular response
mapping to dynamically adjust their own prices in response to their competitors’ prices.
Themapping involves each firm optimizing its own prices over a limited subset of possible
prices and requires each firm to only know the demand function and cost structure for its
own products (but not for other firms’ products).
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1. Introduction and Summary
In the economics, marketing, and operations man-
agement literature, among others, oligopolistic price
competition models are used to characterize and study
various industries and interactions therein (see, e.g.,
Federgruen and Hu 2017). The development of such
price competition models has a long history, starting
with the seminal paper by Bertrand (1883). However,
progress has been slow in developing a tractable
model that represents many of the realities that are
pertinent in most industries. The following is a list
of desiderata for a general competition model:

i. the model should accommodate an arbitrary
number of competing firms each offering an arbitrary
potential assortment of products;

ii. the demand for any given product may depend
on the prices charged for some or all of the products
sold on the market, in accordance with general asym-
metric customer preferences, allowing for general com-
binations of direct- and cross-price elasticities;

iii. the model should be parsimonious;
iv. the model specifies a product assortment sold

on themarket as a subset of the full collection of potential
products, along with associated demand volumes;

v. the model has a guaranteed pure Nash equi-
librium; in the presence of multiple equilibria, one
should stand out in terms of predictability;
vi. under this special equilibrium, we should be

able to attain a set of indirect equilibrium demand
functions for upper-echelon competition models that
are equally tractable and inherit properties (i)–(v) in a
sequential oligopoly model.
In this paper, we address a general oligopolistic

competition model. Each of I independent retailers,
indexed by i, operating under linear cost structures
potentially offers a distinct set of products N (i). The
consumerdemandforallproducts inN �N (1)∪N (2)···∪
N (I), with N � |N |, is specified by a set of (piecewise)
affine demand functions. These demand functions are
anchored on a set of purely affine functions.However,
outside of a restricted polyhedron P in the complete
price space RN+ (i.e., the nonnegative orthant of the
Euclidean space), these affine functions predict neg-
ative demand volumes for at least some of the products
and must, therefore, be replaced by a suitable extension.
Shubik and Levitan (1980) stipulate that the ex-

tension of the affine demand functions, beyond the
polyhedronP, mustsatisfyanintuitiveregularity condition:
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under any given price vector, when some product
experiences zero demand (i.e., is priced out of the
market), any increase of its own price keeps the product
out of the market and has no impact on any of the
demand volumes. This regularity condition specifies
a unique set of demand functions, which are piecewise
affine. The potential price spaceRN+ is partitioned into
2N polyhedra, each correspondingwith a given subset
of the full product line for which there is positive
demand. Federgruen and Hu (2015) in this general
model prove that a pure Nash equilibrium always
exists, but depending on the choice of the cost rate
vector, only part of theN products may “survive” the
competition and be part of the equilibrium product
assortment. The authors provide a sufficient condition
for the equilibrium to be unique. However, multiple,
even infinitely many equilibria may exist. (Federgruen
and Hu (2015) report that, in the presence of multiple
equilibria, all such equilibria are equivalent in the
sense that all generate identical sales volumes for all
products and identical profit levels for all competing
firms. However, the result in Theorem 2(a) is incorrect.
This is explained in detail in Section 3.)

Thus, Federgruen and Hu (2015) establish that the
price competition model with extended affine de-
mand functions satisfies the first four of the list of
desiderata (i.e., (i)–(iv)). The objective of this paper
is to show that the remaining two desiderata (v) and
(vi) are satisfied as well. In particular, we identify a
unique special equilibrium, with far stronger prop-
erties than merely being a Nash equilibrium. Spe-
cifically, we show that it is the unique equilibrium that
has global robust stability. This means that, from any
starting point, the market converges to this equilib-
rium when firms use a particular response mapping
to dynamically adjust their own prices in response to
their competitors’ prices. The mapping involves each
firm optimizing its own prices over a limited subset
of possible prices; it requires each firm to only know
the demand function and cost structure for its own
products (but not for other firms’ products).

Moreover, there is a simple representation for this special
equilibrium—and to our knowledge, for no other: in an
industrywithN potential products, it can be computed
with a limited number of multiplications and inversions
ofN ×N matrices only, possibly in combination with
the solution of a single linear program in N variables
and constraints. Finally, under this special equilibrium,we
obtain a set of indirect equilibrium demand functions
for an upper-echelon competition model among sup-
pliers. The supplier competition is equally tractableas the
retailer competition model and the indirect equilibrium
demand functions inherit all of the properties (i)–(v)
(i.e., the last desideratum (vi) is also satisfied).

Establishing the existence of a pure Nash equilib-
rium in a noncooperative competition model greatly

advances our understanding of the competitive dy-
namics in industry. Identification of Nash equilib-
ria serves two potential objectives; see Holt and Roth
(2004) for a more in-depth discussion. The first is
prescriptive: any of the competing firms may be ad-
vised to adopt the strategy that is her part of the
overall Nash equilibrium. Any other advice to the
firmwould, per definition, have the unappealing feature
that it is dominated by a unilateral change toward a
different strategy. The second objective associated with
the identification of a Nash equilibrium is predictive: the
equilibrium is used to predict the (steady-state) be-
havior in the market.
However, to support the predictive use of a Nash

equilibrium, it is highly desirable to show that the
market converges to the equilibrium from an arbitrary
starting position as a result of a plausible iterative
adjustment process. Themost commonly investigated
such adjustment process is the so-called tatônnement
process, first introduced by Cournot (1838) in ana-
lyzing a duopoly where firms set sales quantities. In
each iteration of the tatônnement process, each firm
selects a best response to the current choices of its
competitors. Vives (2001) calls a Nash equilibrium
globally stable if this convergence property prevails
regardless of the starting point of the process.1

Furthermore, an adjustment process is all the more
plausible if the firms’ (iterative) adjustments can be
made with limited private information only (i.e.,
when each firm only needs to know the demand
functions for its own products and its own cost
structure). We specify such a best response, referred
to as the robust best response, and say that an equi-
libriumhas global robust stability if it arises as the limit
of such an adjustment process with robust best re-
sponses, regardless of the market’s starting point.
This additional robustness property further supports
the notion that theNash equilibrium requires nomore
than limited private information or bounded rational-
ity, even in the presence of full information. (We use
the term “robust” analogously to its use in “dis-
tributionally robust stochastic optimization,” an ap-
proach that requires only limited information about
the full distributions of the random input factors.)
In this paper, we show that the special equilib-

rium has, in fact, global robust stability. The equilib-
rium arises as the limit of this simplest possible of
tatônnement schemes where each firm acts on its own
private information only. In particular, no firm needs
to know the cost structure or demand functions of any
of its competitors, often private information.
Global stability has, typically, only been demon-

strated in supermodular games in which the uniqueness
of the equilibrium can be demonstrated. In a general
supermodular game, the set of equilibria is a bounded
lattice with more than a single element; if so, none of
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the equilibria are globally stable, even though the
component-wise smallest and largest equilibria enjoy a
restricted stability region (i.e., the equilibrium arises
as the limit of a tatônnement process that starts
with an initial strategy tuple in this restricted stabil-
ity region).

However, our competition model fails to be super-
modular, as demonstrated in Section 3. As mentioned,
it often has multiple equilibria. Interestingly, we
obtain global robust stability of the special equilib-
rium, even in the presence of many alternative Nash
equilibria. Thus, beyond the desiderata (i), (ii), (iii),
and (iv), already highlighted, the global stability re-
sult establishes (v).

Finally, as to (vi), the equilibrium sales volumes
associated with the special equilibrium, when viewed as
functions of the products’ variable cost rate vector, are
(the unique) regular extension of a new set of affine
functions. These have an easily computable intercept
vector and price sensitivity matrix, similar to the
structure of the retailers’ consumer demand functions
(see (6)). This characterization allows us to extend our
equilibrium analysis to a sequential oligopoly in a
multiechelon market: at each echelon of the supply
process, an arbitrary number of firms compete, each
offering one or multiple products to some or all of the
firms in the next echelon, with firms at the most
downstream echelon selling to the end consumer; see
Federgruen and Hu (2016). We are not aware of any
other oligopoly model that satisfies desideratum (vi).
For example, even in the basic multinomial logit
(MNL) model, the equilibrium demand functions re-
sult in an intractable upper-echelon competition game.

For any vector x ∈ RN and product set U ⊆ N , xU
(x−U) denotes the subvector of x whose components
belong to U (U � N \U). Similarly, for any N ×N
matrix X and sets U,V ⊆ N , XU,V denotes the sub-
block of the matrix whose row (column) indices
constitute the set U (V).

The remainder of this paper is organized as follows.
Section 2 gives a review of the literature. The model,
notation, and preliminary results are part of Section 3.
This section also characterizes the set of Nash equi-
libria. The global robust stability of the special price
equilibrium is shown in Section 4. Section 5 ends the
paper with concluding comments.

2. Literature Review
There is a vast literature on oligopolistic price com-
petition models. See Topkis (1998) and Vives (2001)
for surveys of the literature until the start of the
currentmillennium. In the past 15 years, attention has
focused on a fewworkhorsemodels that can be andhave
been used in empirical studies. This applies mostly to
the MNL model and various of its generalizations, in
particular the mixed multinomial logit (MMNL) model

and the nested MNL model. However, in both the
MMNL and nested MNL models, the existence of a
pure Nash equilibrium can only be guaranteed under
specific settings (seeAksoy-Pierson et al. 2013, Gallego
andWang2014). Perhapsmost importantly, under the
MNL model or any of its variants, the full set of po-
tential products arises as the product assortment in
the market, regardless of how the product prices are
selected. Such models are, therefore, intrinsically
incapable of analyzing how various model primitives
impact on the assortment that arises in equilibrium;
see desideratum (iv). We refer to Federgruen and Hu
(2015, 2017) for a survey of price competition models
based on the MNL model or various generaliza-
tions thereof.
Several authors have analyzed price competition

games based on the (extended) affine demand model
of this paper or special cases thereof. Farahat and
Perakis (2010) establish the existence of a unique
Nash equilibrium in the special case where the price
sensitivity matrix is symmetric and the cost rate
vector is in the interior of the price polyhedron P. This
is equivalent to assuming that there is positive de-
mand for all potential products when the firms offer
all of their products at cost. This assumption is rather
restrictive: in many industries, one can expect that
when even the most brand/feature attractive prod-
ucts in the market are offered at marginal cost, this
is likely to push less attractive substitutes out of
the market. The latter may only preserve a share
in the market when offered at a low price advan-
tage, thus appealing to the most price-sensitive cus-
tomers.Moreover, under this assumption, all retailers
in equilibrium always select a maximally available
product assortment, which defies what we observe
in practice.
Several papers in the economics literature have

addressed a very special case of the competition
model with (extended) affine demand functions. Al-
though allowing for a general cost rate vector, these
papers assume that (i) each firm has a unique product
to offer rather than an arbitrary collection of such
items and (ii) the price sensitivity matrix has identical
diagonal and identical off-diagonal elements. (The
recent paper by Thomassen et al. (2017) is an ex-
ception. Its estimated price sensitivity matrix has
nonidentical diagonal and off-diagonal elements; how-
ever, these authors do not characterize the set of
Nash equilibria.) See Ledvina and Sircar (2012) and
Cumbul and Virág (2018a) and the references therein.
Federgruen and Hu (2015) provide a characterization
of the set of Nash equilibria in the general model, with
an arbitrary vector of cost rates and a fully general,
possibly asymmetric, price sensitivity matrix. In this
general model, multiple, in fact infinitely many, pure
Nash equilibria are common.
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Several papers, startingwith Singh and Vives (1984),
analyze price competition models with a purely affine
set of demand functions. As mentioned in Section 1, a
purely affine set of demand functions can only prevail
on a limited polyhedron P, rather than the full price
space. An alternative approach to the problem is to
confine the set of feasible price choices to the poly-
hedron P. A recent example is Gao et al. (2017)
addressing a multiperiod model in which each firm
offers a single product, with a limited supply for
the full horizon. They show that the unique Nash
equilibrium—under a diagonally dominant price sen-
sitivity matrix—is globally stable among all price
vectors in (the equivalent of) the polyhedron P.

Recently, several papers have emphasized the fact
that retailers compete in terms of their product as-
sortments and not just in terms of their retail prices.
To our knowledge, Besbes and Sauré (2016) is the
first paper to address a joint price and assortment
competition model. However, in their model, firms
start by each making its own price and assortment
decisions. The specific sales volumes for all selected
products are then determined by an underlying pure
orMMNLmodel. In otherwords, eachfirm is assumed
to control its own product assortment, irrespective of
the price-assortment decisions made by its competi-
tors. The authors show that a unique equilibrium al-
ways exists, with the property that every firm selects
an identical profit margin for all of its products. In
our model, assortment choices are implied by price
selections allowing for general firm- and product-
dependent price sensitivities and explaining general
profit margins.

The identification of globally stable equilibria has a
long history as well. It seems to start with the seminal
paper by Theocharis (1960) in the context of the
classical Cournot competition model with homoge-
neous goods. al-Nowaihi and Levine (1985) derive a
set of sufficient conditions for global stability of the
Nash–Cournot equilibrium; these conditions imply
that all firms’ best-response functions are downward
sloping. The authors show that these conditions are
satisfied when the number of firms is less than or
equal to five and point out difficulties in the ear-
lier global stability results for the Cournot game in
Hahn (1962) and Okuguchi (1964). For a more recent
contribution, see Okuguchi and Yamazaki (2008) and
the references therein.

3. Model and Equilibrium Characterization
Consider an oligopolistic market with I retailers, each
having the option to bring one or several products to
the market. For all i � 1, . . . , I, let N (i) denote the set
of (potential) products offered by retailer i, with (i, k)

representing the kth product in this set. We use the
following notation:

wik � the procurement (purchase and/or
manufacturing) cost rate for product i, k( ),
which we refer to as the “wholesale price, ”

pik � the retail price charged by retailer i
for product k,

dik � the consumer demand for product i, k( ).

We thus assume that the retailers’ suppliers em-
ploy simple wholesale price contracts. Such contracts
continue to be most popular, both in the theoretical
literature and in practical supply chains (see, e.g.,
Hwang et al. 2015). The wholesale prices are exoge-
nous inputs to the model.2 The consumer demand for
each product depends, in general, on the prices of all
products (potentially) sold in the market. As in many
theoretical and empirical studies, we assume that the
foundation for the demand functions is provided by
a set of affine functions, with the following vector
specification:

q p
( ) � a − Rp. (1)

Here, R is an N ×N matrix, and a ≥ 0, indicating that
all products are relevant choices, with nonnegative
demand, at least when they are offered for free.
Although the affine functions provide the foun-

dation for the demand functions, they cannot be used
per se. After all, for price vectors outside the poly-
hedron P ≡ {p ≥ 0 | a − Rp ≥ 0}, the affine functions
q(·) in (1) predict negative demand volumes, for at
least some of the products. Shubik and Levitan (1980)
suggest that any extension of the demand functions
beyond P should satisfy the following highly intuitive
regularity property.

Definition 1 (Regularity). A demand function D(p) :
RN+ → RN+ is said to be regular if for any product l and
any price vector p, Dl(p) � 0 implies that D(p + Δ · el) �
D(p) for any Δ > 0, where el denotes the lth unit vector.

In otherwords, when under a given price vector p, a
particular product l � (i, k) attracts zero demand, any
increase of the product’s price has no impact on any
of the demand volumes. Although seemingly innocu-
ous, this intuitive regularity condition completely
specifies the extension of the demand functions on RN+ :
Soon et al. (2009) show that for any p ∈ RN+ , a set of
price corrections t needs to be applied such that

d p
( ) � q p − t

( ) � a − R p − t
( ) ≥ 0, (2)

t	 a − R p − t
( )[ ] � 0, and t ≥ 0, (3)
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where 	 is the symbol for transpose. The problem of
finding a vector t that satisfies (2) and (3) is a linear
complementarity problem (LCP) (see, e.g., Cottle et al.
1992). The solution to the LCP is well defined and
unique, under the following common assumption
about the price sensitivity matrix R (see Cottle et al.
1992, theorem 3.1.6).

Assumption (P). The matrix R is positive definite.

In particular, the function d(·), defined via the LCP
(2) and (3), is a true extension of the affine functions
q(·): when p ∈ P, it is immediate that t � 0 solves the
LCP, so that d(p) � q(p); conversely, when p /∈ P, a true
set of positive price corrections 0 
� t ≥ 0 is required.
Thus, any price vector p ∈ RN+ generates a unique
vector of sales volumes d(p).

We refer to the adjusted price vector p′ � p − t ≤ p as
the projection of the vector p onto the polyhedron P.

Definition 2 (Projection onto P). For any p ∈ RN+ , the
projection Ω(p) of p onto P along the coordinate axes is
defined as the vector p′ � p − t with t the unique so-
lution to the LCP (2) and (3).

Beyond property (P), we assume that the prod-
ucts are substitutes (i.e., all cross-price elasticities are
nonnegative). This is equivalent to assuming that the
matrix R has nonpositive off-diagonal elements (i.e.,
satisfies property (Z)).

Assumption (Z). The matrix R is a Z matrix (i.e., has
nonpositive off-diagonal elements).3

(Because R is positive definite, all diagonal ele-
ments are positive.) When the matrix R satisfies both
properties (P) and (Z), the solution to LCP (2) and (3)
may be determined by solving a linear program with
N variables and constraints, more specifically by opti-
mizing a linear objective over the polyhedron described
by the inequalities (2).

Federgruen and Hu (2015) characterize the equi-
librium behavior in the price competition game un-
der a general asymmetric price sensitivity matrix R.4 A
minor regularity condition is, however, required,
which the authors refer to as the NPW assumption.
In this paper, we adopt a strong sufficient condition
for the latter, imposing a limited type of symmetry
on the matrix R (Federgruen and Hu 2015, proposi-
tion 3).

Assumption (IS). The matrix R is intrafirm symmetric (IS;
i.e., Rik,ik′ � Rik′,ik for all i � 1, . . . , I and k, k′ ∈ N (i)).

Assumption (IS) holds, of course, trivially in the
important special case where each firm sells a single
product. (Existing economics papers have confined
themselves to this case.)

Under strictly affine demand functions without the
extension of (2) and (3), it is well known and easily

verified that the competition game is supermodular
(as long as the matrix R is a Z matrix). However, the
extended demand functions fail to be supermodular,
in general. The following simple duopoly example
in the classical paper by McGuire and Staelin (2008)
provides a counterexample.

Example 1. Two retailers i � 1, 2 each offer a single
product; the raw affine demand functions q(·) have an
intercept vector a � (1, 1)	 and R� (1 −γ1

−γ2 1 ) with γ1, γ2 ∈
(0, 1). See Online Appendix A for details.

We now characterize the equilibrium behavior in the
price competition model, where each firm i’s profit
functionπi(p) is given byπi(p) � ∑

k∈N (i)(pik−wik)dik(p).
Let

T R( ) ≡
R	
N 1( ),N 1( ) · · · 0

..

. . .
. ..

.

0 · · · R	
N I( ),N I( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and

Ψ R( ) ≡T R( ) R+T R( )[ ]−1.
Define the following polyhedron in the space of
possible wholesale price vectors:

W ≡ w > 0 | Ψ R( )a −Ψ R( )Rw ≥ 0{ }5 and
int W( ) ≡ w > 0 | Ψ R( )a −Ψ R( )Rw > 0{ }. (4)

Federgruen and Hu (2015, theorem 2(a)) show that if
w ∈ W, a pure Nash equilibrium exists. Moreover, in
case w ∈ RN++ \W (where R++ ≡ {x | x > 0}), a Nash
equilibrium is obtained by replacing w by w′ � Θ(w),
where Θ(·) denotes the projection of w onto the
polyhedronW along the coordinate axes. Federgruen
and Hu (2015) show that under Assumptions (P), (Z),
and (IS), the projection operator Θ(·) is uniquely
defined (again as the unique solution of an LCP,
analogous to (2) and (3)). Moreover, for any w ∈ RN++,
w′ � Θ(w) ≥ 0 because Ψ(R)R is positive definite by
Federgruen and Hu (2015, proposition 2(d)) and
Ψ(R)a ≥ 0 by Federgruen and Hu (2015, proposi-
tion 3).

Proposition 1. The price competition model has a pure
Nash equilibrium (p∗|w) with the following expression:

p∗|w( ) � p∗ w( ) � w + R + T R( )[ ]−1q w( )
if w ∈ W,

p∗ w′( ) � w′ + R + T R( )[ ]−1q w′( ),
with w′ � Θ w( ) if w ∈ RN++ \W.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (5)

With some algebra, the associated equilibrium sales
volumes are given by (see (4))

d∗|w( ) � Ψ R( )a −Ψ R( )Rw, if w ∈ W,
Ψ R( )a −Ψ R( )Rw′, with w′ � Θ w( )

if w ∈ RN++ \W.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6)
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If w ∈ W, w′ � Θ(w) � w; the second expressions in (5)
and (6) are therefore valid for all w > 0. Depending
on the position of the cost rate vector w, the equi-
librium (p∗|w) may be the unique price equilibrium,
or there may be alternative equilibria, possibly in-
finitely many equilibria. Themain result of this paper
is to show that (p∗|w) is, however, the unique equi-
librium that has global robust stability. This result
is obtained in thenext section.We complete this section
with a characterization of the complete set of equilibria.

3.1. Characterization of the Set of Equilibria
Our characterization of the set of equilibria differs
somewhat from the one provided in Federgruen and
Hu (2015). The latter asserted that (p∗|w) is the unique
equilibrium in P (Federgruen and Hu 2015, theorem
1(a)). This implied that all equilibria are equivalent in
the sense that they generate the same product assortment,
the same sales volumes for all products, and the same
profit levels for all firms. However, the proof for the
uniqueness result for (p∗|w) within P contains a subtle
error. Indeed, multiple equilibria within Pmay arise even
in the simplest of instances, as in the symmetric case of
Example 1,where γ1 � γ2 � γ (seeOnlineAppendixA).

Theorem 1 characterizes the set of Nash equilibria.

Theorem 1.
a. There exists at most one equilibrium in int(P). If an

equilibrium exists in int(P), it is unique in RN+ .
b. When po /∈ P is an equilibrium, so is Ω(po) ∈ P.

Moreover, Ω(po) and po are equivalent equilibria.
c. If w ∈ int(W), (p∗|w) � p∗(w) ∈ int(P) is the unique

equilibrium, and in equilibrium, all products are sold.
d. If w ∈ RN++ \ int(W), the set of all equilibria is outside

int(P), and (p∗|w) � p∗(w′) ∈ ∂P is one such equilibrium.
e. (p∗|w)l ≥ wl for any product l with positive equilib-

rium demand, under (p∗|w).
It follows from part (b) that if (p∗|w) is the unique

equilibrium in P, it is the component-wise smallest
equilibrium; whether unique in P or not, if (p∗|w) is
the component-wise smallest equilibrium, it has the
lowest associated profit levels: if p0 ≤ p1 are two
equilibria,πi(p0) � πi(p0i , p0−i) ≤ πi(p1i , p1−i) � πi(p1). The
inequality follows from Federgruen and Hu (2016,
theorem 4(g)). Cumbul and Virág (2018a) make the
same observation in their special model (see Cumbul
and Virág 2018a, footnote 4).

Part (e) shows that under the special equilibrium
(p∗|w), all products sold in the market have a non-
negative variable profit margin. However, in many
industries, we find that some of the products are
sold below cost, a practice often referred to as “loss
leading.” In the United Kingdom’s retail industry, for
example, the Competition Commission UK (2007, pp.
131–132) reports that “nearly all the main parties
sold a small number of products at prices below the

cost of purchase.”6 The phenomenon of “loss leading”
can be explained by models that incorporate search
costs or advertising strategies adopted to attract
customerswho are imperfectly informed of prices; see
Chen and Rey (2012) and its references for recent
examples of suchmodels. Ourmodel does not explain
the phenomenon of “loss leading.”

4. Global Robust Stability
In this section, we show that the special equilib-
rium (p∗|w) has global robust stability. To this end,
define for each firm i � 1, . . . , I a robust best-response
mapping as

argmax
pN i( )≥0

{
pN i( ) − wN i( )

( )	 aN i( )
([ −RN i( ),−N i( )p−N i( )

)
− RN i( ),N i( )pN i( )

]
: aN i( ) − RN i( ),−N i( )p−N i( )

( )
−RN i( ),N i( )pN i( ) ≥ 0

}
. (7)

To simplify the notation, note that the dependence
of firm i’s robust best response on the competitors’
prices is fully determined by the |N (i)|-dimensional
vector: α ≡ aN (i) − RN (i),−N (i)p−N (i) ≥ 0. (Nonnegativity
of α follows from a ≥ 0, p ≥ 0, and the fact that R is a Z
matrix.) Thus, define the best-response mapping as

RBi wN i( ),α
( )≡argmax

pN i( )≥0

{
pN i( )−wN i( )

( )	· α−RN i( ),N i( )pN i( )
( )

:α−RN i( ),N i( )pN i( )≥0
}
.

In other words, the RBi(·) operator selects for any
vector of prices p−N (i) of the products offered by firm
i’s competitors, the price vector that maximizes firm
i’s profits among all vectors pN (i) such that

pN i( ) ∈ Pi p−N i( )
( )

≡ pN i( ) ≥ 0 | α − RN i( ),N i( )pN i( ) ≥ 0
{ }

. (8)
We shall demonstrate that, for any p−N (i) ≥ 0, the
optimizationproblem (7) has a unique optimizer indeed.
The robust best-response mapping RBi(·) restricts

firm i’s choices to vectors pN (i) such that pN (i) ∈
Pi(p−N (i)). Firm i, of course, has the option to select a
price vector pN (i) that falls outside of Pi(p−N (i)), and
such a fully best selection may result in additional
profit enhancements. However, as shown in Section 3,
to assess the resulting sales volumes requires the solu-
tion of an LCP, defined by (2) and (3), which requires
knowledge of the structure of all affine demand
functions q−N (i) for all of the competitors’ products.
Such information may not be available to firm i.
In contrast, application of the robust best-response

mapping RBi(·) merely requires robust information
of the foundational affine functions qN (i)(·) per-
taining to firm i’s own products, as well as its own cost
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vectorwN (i). In this section, we show that even if firms
restrict possible price adjustments to price vectors in
Pi(p−N (i)), the adjustment process converges, in fact
geometrically fast, to the overall equilibrium (p∗|w);
thus, (p∗|w) is globally stable under the robust best-
response operator. In contrast, the convergence prop-
erties under fully best responses are more complex; see
Federgruen and Hu (2019).

Our analysis uses various matrix norms. A matrix
norm ‖·‖ on Rm×n assigns to any m × n matrix A a
number ‖A‖ with the following properties: (i) ‖λA‖ �
|λ| ‖A‖, for all λ ∈ R; (ii) ‖A + B‖ ≤ ‖A‖ + ‖B‖, for any
m × nmatrixB; and (iii) ‖A‖ ≥ 0 and ‖A‖ � 0 if and only
if A � 0m,n. A matrix norm is induced by a vector norm
‖·‖v onRn if ‖A‖ � sup{‖Ax‖v/‖x‖v : x∈Rn with x 
� 0}.A
vector norm ‖·‖ on Rn is absolute if ‖x‖ � |‖x‖|, where
|x| ≡ (|x1| , |x2| , . . . , |xn|). It is well known (see, e.g.,
Johnson and Nylen 1991) that any absolute vector
norm is monotone (i.e., ‖x‖ ≤ ‖y‖) if |x| ≤ |y|. In fact,
monotonicity and absoluteness are equivalent prop-
erties for vector norms; see Johnson andNylen (1991).

We first verify that the “robust best-response”
optimization problem (7) has a unique optimizer.

Lemma 1. Fix i � 1, . . . , I and po−N (i) ∈ R
N−|N (i)|
+ . The ro-

bust best-response mapping RBi(α;wN (i)) is well defined
because the optimization problem (7) has a unique maximizer.

Proof of Lemma 1. Because R is positive definite,
RN (i),N (i) is positive definite. Then, the optimization
problem (7) is a concave program with linear con-
straints, which has a unique solution. ∎

Let RB : RN → RN denote the complete robust best-
response mapping (i.e., RB(po) ∈ RN is the price vec-
tor that arises when each firm i � 1, . . . , I selects its
robust best-response price vector RBi(po−N (i)): RB(p) �
(RB1(p−N (1)),RB2(p−N (2)), . . . ,RBI(p−N (I)))). Let RB(n)(·)
be its n-fold application. We first prove that (p∗|w) is a
fixed point of the robust best-responsemappingRB(·).
We then show that it is the unique such fixed point.

Theorem 2. Fix w ∈ RN++. The equilibrium (p∗|w) is a fixed
point of the robust best-response mapping RB(·).
Proof of Theorem 2. Recall that

p∗|w( ) � p∗(w) if w ∈ W,

p∗(w′) if w ∈ RN++ \W,

{

and for any i,

p∗N i( ) w( ) � argmax
pN i( )

{
pN i( ) − wN i( )

( )	
·

[
aN i( ) − RN i( ),−N i( )p∗−N i( ) w( )

( )
−RN i( ),N i( )pN i( )

]}
(9)

because p∗(w) is the unique solution to the set of first-
order conditions when each retailer solves an uncon-
strained maximization problem of a strictly concave
profit function (Federgruen and Hu 2015, proposi-
tion 2(a)).

Now, we verify that (p∗|w) is indeed a fixed point
of p � RB(p).
Case 1. w ∈W. First, becausew ∈ W,w′ �w and (p∗|w)�
p∗(w) ∈P (see Federgruen and Hu (2015, proposition
2(b)). Hence, pN (i) � p∗N (i)(w) for any i satisfies the con-
straint set:

aN i( ) − RN i( ),−N i( )p∗−N i( ) w( )
( )

− RN i( ),N i( )pN i( ) ≥ 0. (10)

Because p∗N (i)(w) is an unconstrained maximizer
of problem (9) and it satisfies the constraint set (10),
it must be a maximizer of the following con-
strained problem:

max
pN i( )

pN i( ) − wN i( )
( )	[(

aN i( )−RN i( ),−N i( )p∗−N i( ) w( )
)

− RN i( ),N i( )pN i( )
]

s.t. aN i( ) − RN i( ),−N i( )p∗−N i( ) w( )
( )

− RN i( ),N i( )pN i( ) ≥ 0,

pN i( ) ≥ 0,

(11)

which is exactly the robust best-response problem,
given the competitors’ price choices p∗−N (i)(w). This
shows that (p∗|w) � p∗(w) is a fixed point of p � RB(p),
if w ∈ W.

Case 2. w ∈ RN++ \W.

Note that w′ � Θ(w) is the projection of w, along the
coordinate axes, onto the polyhedron W, described
by (4):

w′ ≤ w, (12)
Q w′( )	 w − w′( ) � 0, (13)
Q w′( ) � Ψ R( )a −Ψ R( )Rw′ ≥ 0. (14)

The LCP (12)–(14) hasauniquesolution (seeFedergruen
and Hu 2015, (8)) because the matrix Ψ(R)R is posi-
tive definite by Federgruen and Hu (2015, proposi-
tion 2(d)). Moreover, in view of Assumption (IS),
property (NPW) is satisfied (Federgruen andHu2015,
proposition 3). The property (NPW) guarantees that
w′ � Θ(w) ≥ 0. Combined with (14), this implies that

w′ ∈ W (15)
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(i.e., p∗(w′) ∈ P by the definition ofW). Now, consider
a setting where the cost rate vector w is replaced by
w′ ∈ W. By Case 1, p∗N (i)(w′) is a maximizer of the
following constrained problem (see (11)):

max
pN i( )

pN i( ) −w′
N i( )

( )	[
aN i( )

(
−RN i( ),−N i( )p∗−N i( ) w

′( )
)

−RN i( ),N i( )pN i( )
]

s.t. aN i( ) −RN i( ),−N i( )p∗−N i( ) w
′( )

( )
−RN i( ),N i( )pN i( ) ≥ 0,

pN i( ) ≥ 0.

For any firm i,

p∗N i( ) w
′( ) −wN i( )

[ ]	
aN i( ) −RN i( ),−N i( )p∗−N i( ) w

′( )
( )[

−RN i( ),N i( )p∗N i( ) w
′( )

]
� p∗N i( ) w

′( ) −wN i( )
[ ]	

QN i( ) w′( )
� p∗N i( ) w

′( ) −wN i( ) + wN i( ) −w′
N i( )

( )[ ]	
QN i( ) w′( )

� p∗N i( ) w
′( ) −w′

N i( )
[ ]	[

aN i( )
(

− RN i( ),−N i( )p∗−N i( ) w
′( )

)
−RN i( ),N i( )p∗N i( ) w

′( )
]
. (16)

The first equality follows from Federgruen and Hu
(2015, proposition 2(b)), showing that if w′ ∈ W,
q(p∗(w′)) � Q(w′). The second equality follows from
(wN (i) −w′

N (i))	QN (i)(w′) � 0 (see (13)). The last equality
again uses Q(w′) � q(p∗(w′)). For any retailer i,

p∗N i( ) w
′( ) − wN i( )

[ ]	
aN i( ) − RN i( ),−N i( )p∗−N i( ) w

′( )
( )[

−RN i( ),N i( )p∗N i( ) w
′( )

]
≤ max

q(pN i( ),p∗−N i( ) w
′( ))≥0,pN i( )≥0

pN i( ) − wN i( )
[ ]	

·
[
aN i( ) − RN i( ),−N i( )p∗−N i( ) w

′( )
( )

−RN i( ),N i( )pN i( )
]

≤ max
q(pN i( ),p∗−N i( ) w

′( ))≥0,pN i( )≥0
pN i( ) − w′

N i( )
[ ]	

·
[
aN i( ) − RN i( ),−N i( )p∗−N i( ) w

′( )
( )

−RN i( ),N i( )pN i( )
]

� p∗N i( ) w
′( ) − w′

N i( )
[ ]	[(

aN i( )−RN i( ),−N i( )p∗−N i( ) w
′( )

)
− RN i( ),N i( )p∗N i( ) w

′( )
]
. (17)

The first inequality is because of the fact that pN (i) �
p∗N (i)(w′) satisfies the constraints q(pN (i), p∗−N (i)(w′)) ≥ 0
and pN (i) ≥ 0 because p∗(w′) ∈ P by Theorem 1(d). The
second inequality is because of 0 ≤ w′ ≤ w (see (12)),
so that the objective function of the maximization

problem to the left of the inequality is dominated
by the objective function to its right. The last equality
is because of the fact that pN (i) � p∗N (i)(w′) is the un-
constrained optimizer of the optimization problem
to its left. Moreover, it indeed satisfies the con-
straints q(pN (i), p∗−N (i)(w′)) ≥ 0 and pN (i) ≥ 0 because
w′ ∈ W (see (15)). By Equation (16), all inequalities
in (17) hold as equalities, and in particular, p∗N (i)(w′) is
the maximizer of the following constrained problem:

max
pN i( )

pN i( ) −wN i( )
( )	[(

aN i( )−RN i( ),−N i( )p∗−N i( ) w
′( )

)
−RN i( ),N i( )pN i( )

]
s.t. aN i( ) −RN i( ),−N i( )p∗−N i( ) w

′( )
( )

−RN i( ),N i( )pN i( ) ≥ 0,

pN i( ) ≥ 0.

This is exactly the robust best-response problem, given
the competitors’ price choices p∗−N (i)(w′). It shows that
p∗(w′) is a fixed point of p � RB(p), if w ∈ RN++ \W. ∎

We now show that the robust best-response map-
ping is a contraction mapping. TogetherwithTheorem 2,
this implies that (p∗|w) is its (unique) fixed point. A
further implication is that, regardless of the market’s
initial price vector p0, it converges to (p∗|w) through
a series of dynamic adjustments as prescribed by
the robust best-response mapping RB(·). Moreover,
convergence is geometrically fast, implying that the
number of iterations required to approach (p∗|w)
within an arbitrary ε ball is a logarithmic function of
the original distance ‖p0 − (p∗|w)‖ (i.e., the number of
iterations is O(log(‖p0 − (p∗|w)‖))).
Thus, consider an arbitrary pair of price vec-

tors p̂, p̃ ∈ RN+ , and let p̌ � min{̂p, p̃}. Let α̂ � aN (i) −
RN (i),−N (i)p̂−N (i), α̃ � aN (i) − RN (i),−N (i)p̃−N (i), and α̌�
min{α̂,α̃}�aN (i)−RN (i),−N (i)p̌−N (i) because RN (i),−N (i) ≤0.
We first need the following lemma, the proof of which
is relegated toOnlineAppendixD. Let p̂∗ � RBi (̂p−N (i)),
p̃∗ � RBi (̃p−N (i)), and p̌∗ � RBi(p̌−N (i)).
Lemma 2. Fix p̂, p̃ ∈ RN+ . Fix i � 1, . . . , I,

0 ≤ p̂∗ − p̌∗ ≤ R−1
N i( ),N i( ) α̂ − α̌

( )
,

0 ≤ p̃∗ − p̌∗ ≤ R−1
N i( ),N i( ) α̃ − α̌

( )
. (18)

Now, we are ready to present our main result.

Theorem 3.
a. RB(·) is a contraction mapping: that is, there exists a

norm ‖·‖ on RN and a constant 0 < γ < 1 such that

‖RB p̂
( ) − RB p̃

( )‖ ≤ γ‖̂p − p̃‖ for all p̂, p̃ ∈ RN
+ . (19)

b. ‖RB(n)(p) − (p∗|w)‖ ≤ γn‖p − (p∗|w)‖ and limn→∞
RB(n)(p) � (p∗|w) for all p ∈ RN+ . In other words, (p∗|w) is
globally stable under RB(·).
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Proof of Theorem 3. It suffices to prove part (a). By
Theorem 2, (p∗|w) is a fixed point of the RB(·) operator.
Part (b) then follows by setting p̃ � (p∗|w) in (19) and
iterating inequality (19) n times.

For part (a), fix p̂, p̃ ∈ RN+ . Then, fix i � 1, . . . , I.
By (18),

−R−1
N i( ),N i( ) α̃ − α̌( ) ≤ p̂∗ − p̌∗( ) − p̃∗ − p̌∗( )

≤ R−1
N i( ),N i( ) α̂ − α̌( ). (20)

Let U � {l ∈ N (i) | α̂l < α̃l}. Because α̌ � min{α̂, α̃},
α̌U � α̂U and α̌U � α̃U . Recall that |x| � (|xi|) for any
vector x. Then, because R−1

N (i),N (i) ≥ 0 (by Online Ap-
pendix B, Lemma B.1(a)):

R−1
N i( ),N i( ) α̂ − α̌( ) � R−1

N i( ),N i( )α̂ − R−1
N i( ),N i( )α̌

� R−1
N i( ),N i( )

α̂U

α̂U

( )
− α̂U

α̃U

( )[ ]

� R−1
N i( ),N i( )

0
α̂U − α̃U

( )

≤ R−1
N i( ),N i( )

|̂αU − α̃U |
α̂U − α̃U

( )
� R−1

N i( ),N i( )|̂α − α̃|
� R−1

N i( ),N i( ) RN i( ),−N i( ) p̃−N i( ) − p̂−N i( )
( )⃒⃒ ⃒⃒

≤ −R−1
N i( ),N i( )RN i( ),−N i( ) p̃−N i( ) − p̂−N i( )

⃒⃒ ⃒⃒
� −R−1

N i( ),N i( )RN i( ),−N i( ) p̂−N i( ) − p̃−N i( )
⃒⃒ ⃒⃒

.

(21)
By symmetry,

R−1
N i( ),N i( ) α̃ − α̌( )
≤ −R−1

N i( ),N i( )RN i( ),−N i( ) p̃−N i( ) − p̂−N i( )
⃒⃒ ⃒⃒

� −R−1
N i( ),N i( )RN i( ),−N i( ) p̂−N i( ) − p̃−N i( )

⃒⃒ ⃒⃒
. (22)

Combining (20), (21), and (22),

|̂p∗ − p̃∗| � RBi p̂−N i( )
( ) − RBi p̃−N i( )

( )⃒⃒ ⃒⃒
≤ −R−1

N i( ),N i( )RN i( ),−N i( ) p̂−N i( ) − p̃−N i( )
⃒⃒ ⃒⃒

.

Combining each individual retailer’s best response
to get the best-response mapping, we have for any ab-
solute vector norm (and its associated matrix norm) ‖·‖,

‖RB p̂
( ) − RB p̃

( )‖ ≤ ‖Λ R( ) · |̂p − p̃|‖
≤ ‖Λ R( )‖ · ‖̂p − p̃‖, (23)

where

Λ R( ) �
0 −R−1

N 1( ),N 1( )RN 1( ),N 2( ) ··· −R−1
N 1( ),N 1( )RN 1( ),N I( )

−R−1
N 2( ),N 2( )RN 2( ),N 1( ) 0 ··· −R−1

N 2( ),N 2( )RN 2( ),N I( )

..

. ..
. . .

. ..
.

−R−1
N I( ),N I( )RN I( ),N 1( ) −R−1

N I( ),N I( )RN I( ),N 2( ) ··· 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≥ 0.

Note that Λ(R) � I−[T(R)]−1R. Because R ≤ T(R) due
to that T(R) is symmetric (see Assumption (IS)),
[T(R)]−1R � I −Λ(R) is a ZP matrix, by Online Ap-
pendix B, Lemma B.1(c). Because Λ(R) ≥ 0, it follows
from Online Appendix B, Lemma B.1(g) that
ρ(Λ(R)) < 1, with ρ(·) denoting the spectral radius.
By Horn and Johnson (1985, lemma 5.6.10), for any

ε > 0, there is a matrix norm ‖·‖ induced by an ab-
solute vector norm such that ρ(Λ(R)) ≤ ‖Λ(R)‖ ≤
ρ(Λ(R)) + ε. The absoluteness of the norm is because
the constructed norm in the proof ofHorn and Johnson
(1985, lemma 5.6.10) is based on the ‖·‖1-matrix norm,
which is absolute. Because ρ(Λ(R)) < 1, there exists
an absolute norm ‖|·|‖ and a constant γ such that
‖|Λ(R)|‖ � γ < 1. Therefore, by (23), which holds for
any absolute norm, we have ‖|RB(̂p) − RB(̃p)|‖ ≤
‖|Λ(R)|‖ · ‖|̂p − p̃|‖ � γ‖|̂p − p̃|‖, proving (19) and hence,
part (a) of the theorem. ∎

5. Conclusion
We have analyzed a general but parsimonious price
competition model for an oligopoly in which each
firm offers any number of products. The demand
volumes are general piecewise affine functions of the
full price vector, generated as the “regular” extension
of a base set of affine functions. The model specifies a
product assortment, along with their prices and de-
mand volumes, in contrast to most commonly used
demand models. Depending on the choice of the cost
rate vector, the model may have a unique Nash equi-
librium ormultiple such equilibria. Our first objective
was to provide a full characterization of the set of
Nash equilibria.
Regardless ofwhether there is a unique equilibrium

or not, there exists an equilibrium (p∗|w) that can be
computed with a limited number of matrix multi-
plications and inversions of N ×N matrices, some-
times combined with the solution of a single linear
program withN variables and constraints. Moreover,
the induced equilibrium sales functions have the
same structure as the original retail demand functions,
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thus enabling a similar analysis of the competition
among suppliers at higher echelons.

As our main result, we have shown that the special
equilibrium (p∗|w) has global robust stability (i.e., re-
gardless of its starting point, the market converges
geometrically fast to this equilibrium, if firms itera-
tively adjust their prices as robust best responses to the
competitors’ prices). To determine a robust best re-
sponse, a firm only needs to know its own demand
functions and cost structure and selects a best response
among a limited choice set. These stability results show
that the specialNashequilibrium (p∗|w) satisfies a strong
equilibrium property, adding to its predictive power.

We have introduced the concept of robust stability
and hope that this concept will be pursued in future
work for other competition games, in which the de-
termination of a fully best response for any given firm
requires more than just its own private information.
Nevertheless, its remains of great interest to study the
market dynamics, when firms adjust prices repeat-
edly based on fully best responses, rather than the ro-
bustly best responses. This topic has been addressed in
Federgruen and Hu (2019).
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Endnotes
1He adds: “Although [the tatônnement process] can (and has) been
criticized for being ad hoc, it can also be interpreted as a crude way of
expressing the bounded rationality of agents. Indeed, several learning
mechanisms for agents to play a Nash equilibrium can be understood
as refinements of the basic tatônnement” (Vives 2001, p. 49).
2 See, however, Federgruen and Hu (2016), where these prices are
endogenized in a sequential oligopoly model.
3However, in Federgruen andHu (2017, section 6.7), we have relaxed
Assumption (Z), allowing for certain types of complementarity
among the products.
4Ledvina and Sircar (2012) and Cumbul and Virág (2018a, b) and the
references therein had confined themselves to the special case
where R−1 has diagonal elements λ and off-diagonal elements λθ,
θ ∈ (0, 1) (i.e., R−1

ii � λ for all i and R−1
ij � λθ for all i 
� j). This cor-

responds with the matrix R where Rii � 1+θ(N−2)
λ(1−θ)(1+θ(N−1)) for all i and

Rij � − θ
λ(1−θ)(1+θ(N−1)) for all i 
� j.

5This definition of W is slightly different from that in Federgruen and
Hu (2015), confining the set to positive cost rate vectors w > 0 only.
6Different European countries and different states within the United
States have opposite views on whether loss leading should be pro-
hibited as a predatory practice; some of themhave general sales-below-
cost laws on the books. At the same time, the Organization for Economic
Co-operation and Development (2007) argued that “rules against loss
leading are likely to protect inefficient competitors and harm consumers.”
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