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O perations management has the tradition of coming from and going back to real-life applications. It deals with the
management of the process of matching supply with demand. The emerging business process in a sharing economy

or an innovative marketplace calls for active management at the operational level. We take a neoclassical perspective by
drawing inspiration from the classic models in operations management and economics. We aim at building connections
and identifying differences between those traditional models and the new applications in sharing economy and innovative
marketplaces. We also point out potential future research directions.

Key words: sharing economy; innovative marketplace
History: Revised: August 2020, Accepted: November 2020 by J. George Shanthikumar, after one revision.
*Corresponding author.

1. Introduction

Operations management deals with managing the
process of matching supply with demand. The disci-
pline has the tradition of coming from and going back
to real-life applications. Each one of the founding pil-
lars, such as inventory management and revenue
management, establishes itself as a field not only
because it has beautiful theories but also because the
theories were motivated by practice and can be read-
ily implemented. On the one hand, the widely prac-
ticed classic inventory theory typically treats demand
as given and focuses on minimizing the cost associ-
ated with inventory replenishment on the supply
side. On the other hand, the traditional revenue man-
agement models, initially practiced by the airlines
and hotels, assume a fixed supply side and focus on
maximizing the revenue of selling a limited amount
of capacity by regulating the demand.
Nowadays, facilitated by the proliferating adoption

of Internet-connected sensors and devices, the age-
old idea of resource sharing (e.g., library book shar-
ing) is reviving and developing into a crop of innova-
tive business models, which are often referred to as
sharing economy and innovative marketplaces. The
notion, in general, may refer to a market model that
allows sharing of access to goods and services, or an
online platform that enables individuals or small enti-
ties as buyers and sellers to “transact.” The promise
of this emerging industry lies in increasing the utiliza-
tion of resources/assets and improving the efficiency
of transactions. These business models require active
management of regulating supply and demand at the

same time, taking into account the incentives and
decisions of the sellers/service providers and buyers/
customers. For example, Uber, as an intermediary
platform, crowdsources services from independent
drivers to fulfill trip requests by riders. The platform
determines wage for drivers and price for riders, and
dispatches a driver to serve a rider after they find it
incentive compatible to enter the matching pool.
Unlike Uber, Airbnb is an online marketplace in
which homeowners take the wheel by charging prices
for their short-term rentals to guests. The platform, as
a broker, can influence the matching between hosts
and guests but cannot prescribe hosts’ decisions.

What does this article do and not do?

1. This article takes a neoclassical perspective by
drawing inspiration from the classic models in
operations management. It aims at building
bridges between the traditional models and
new areas, which allow us to apply tools
developed for the old to the new. The models
presented here are parsimonious and not the
closest to reality. But they are built upon the
classic operations/economics models and tuned
for those innovative applications. They can be
a starting point to get one step closer to reality.

2. This article serves as a tutorial with basics,
which one may use to start exploring this excit-
ing field. It also points out some future
research opportunities (see also Benjaafar and
Hu 2020, Chen et al. 2020c) As our main pur-
pose is not to comprehensively survey the area
which is rapidly growing (see Hu 2019 for a
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collection of earlier works), not all of the
related papers are covered.

3. In this article, we will use Uber and Airbnb,
two arguably most successful examples of
sharing economy and innovative marketplaces,
to motivate a set of prototypical models. There
are a variety of unique aspects associated with
other innovative business models and applica-
tions, such as capacity planning and rebalanc-
ing in bike sharing (Freund et al. 2019) and
service zone design in electric vehicle sharing
(He et al. 2017), which we do not cover here.

4. This article focuses on analytical models to be
aligned with the special issue’s theme. There is
a growing literature of empirical, experimental,
and behavioral studies, see, for example,
Cohen et al. (2020), Allon et al. (2018), Ming et
al. (2020),and Jiang et al. (2020) on the ride-
sharing market such as Uber and Lyft, Li et al.
(2019), Cui et al. (2020a), and Cui et al. (2020b)
on the short-rental market such as Airbnb,
Kabra et al. (2020) on bike sharing and Bimpi-
kis et al. (2020) on an online marketplace.

2. From Inventory Theory to Dynamic
Matching

Motivated by Uber’s matching of drivers and riders,
we study a parsimonious model of matching which
connects back to the classic inventory theory. In each
period, supply and demand of various “types” arrive
in random quantities. In a sharing economy, as sup-
ply is crowdsourced, there exists uncertainty on the
supply side in the same fashion as the demand side.
In ride-hailing, types can be geolocations, as drivers
and riders view the transportation as more of a homo-
geneous service. Then, the matching between a pair
spatially closer to each other generates a higher
reward because of a shorter pickup time for the driver
and shorter waiting time for the rider. For parsimony,
we assume away pricing decisions and focus on the
centralized matching decisions. With unmatched dri-
vers and riders fully or partially stay in the system,
the platform aims at maximizing the total expected
rewards by optimizing the matchings. This problem
lies in the center of many sharing economy platforms,
which often use crowdsourced supply and match it
dynamically with customer demand in a centralized
fashion, as supply and demand randomly arrive at
the platform.
To stay close to the classic periodic-review inven-

tory system, we assume there is a finite horizon of T
periods. At the beginning of each period t, m types of
supply and n types of demand arrive in random quan-
tities, which could follow a Bernoulli distribution

(taking only a value of 0 or 1) as a special case. We use
i to index a supply type and j to index a demand type.
There is an exogenously given reward rtij for matching
one unit of type i supply and one unit of type j
demand in period t. For example, rtij may be a con-
stant reward minus the traveling cost from location i
to location j in period t. We can write the rewards in a
matrix form as Rt ¼ðrtijÞ. To obtain a parsimonious
formulation, one can account for waiting costs of
those supply and demand types that are not immedi-
ately matched by incorporating those costs into the
matching rewards. The state for a given period t con-
stitutes the supply and demand levels of various
types before matching but after the arrival of random
supply St and demand Dt of various types for that
period, with St and Dt of a vector in the dimension of
m and n, respectively. We denote, as the system state,
the supply vector by x¼ðx1, . . .,xmÞ and the demand
vector by y¼ðy1, . . .,ynÞ, where xi and yj are the quan-
tities of type i supply and type j demand available to
be matched. On observing the state (x,y), the firm
decides on the quantity qij of type i supply to be
matched with type j demand. For conciseness, we
write the decision variables of matching quantities in
a matrix form asQ¼ðqijÞ.
Given a feasible matching quantity matrix Q, the

post-matching levels of type i supply and type j
demand are given by ui ¼ xi�∑m

j0¼1qij0 and
vj ¼ yj�∑n

i0¼1qi0j, respectively. The post-matching sup-
ply and demand vector is denoted by u and v, respec-
tively. The unmatched supply and demand at the end
of a period carry over to the next period with a frac-
tion of α 2 [0,1] and β 2 [0,1], respectively. The carry-
over rates can be made to be time dependent. The
platform’s goal is to determine a matching policy
Q� ¼ ðq�ijÞ that maximizes the expected total matching
rewards over the finite horizon. Denote by Vtðx,yÞ the
optimal expected total rewards given that it is in per-
iod t and the current state is (x,y). We formulate the
following stochastic dynamic program:

Vtðx,yÞ¼ max
Q∈fQ≥0ju≥0,v≥0g

Rt∘Qþ γEVtþ1ðαuþSt,βvþDtÞ,

(DM)

where “∘” gives the sum of elements of the entry-
wise product of two matrices and γ 2 [0,1] is a dis-
count factor. The boundary conditions can be
VTþ1ðx,yÞ¼ 0 for all (x,y), without loss of generality.
Under some conditions, structural properties of the

optimal matching policies for Problem (DM) can be
derived. Hu and Zhou (2020) establish the so-called
“modified Monge condition” that specifies a domi-
nance relation between two pairs of supply and
demand types. The modified Monge conditions are
sufficient, and necessary in a robust sense, for the
optimal matching policy to satisfy the following

Hu: From the Classics to New Tunes
Production and Operations Management 30(6), pp. 1668–1685, © 2020 Production and Operations Management Society 1669



priority properties in Problem (DM): For any two
pairs of supply and demand types with one strictly
dominating the other, it is optimal to prioritize the
matching of the dominating pair over the dominated
pair. The modified Monge condition generalizes the
condition of a Monge sequence, discovered by Gas-
pard Monge, a French mathematician, in 1781, which
guarantees a static and balanced transportation prob-
lem to be solved by a greedy algorithm (see Table 1
for detailed comparisons). As a result of the priority
properties, the optimal matching policy boils down to
a match-down-to structure when a specific pair of
supply and demand types is considered, along with
the priority hierarchy. That is, there exist state-depen-
dent thresholds, called match-down-to levels, govern-
ing the matching of a specific pair of supply and
demand types. Only if the available amounts of
resources exceed those levels, is it optimal to match
the supply and demand types down to those levels. If
some pair of supply and demand types are not
matched as much as possible, all pairs that are strictly
dominated by this pair should not be matched at all,
due to the priority structure.
This structural property of “priority and thresh-

olds” is a generalization of priority structures seen in
the balanced and deterministic transportation prob-
lems, and the threshold-type policies seen in the
inventory management (such as base-stock levels)
and quantity-based revenue management (such as
protection levels). Because of these connections,
methodologies, techniques, and insights developed
for one domain can be transferred to the other. For
example, Hu and Zhou (2020) further show, by verify-
ing the L\-concavity of the value functions of a trans-
formed problem, the optimal total matching quantity
or the optimal match-down-to levels can have mono-
tonicity properties with respect to the system state.
This technique has been applied for deriving struc-
tural properties for lost-sales inventory models (Zip-
kin 2008) and perishable-inventory models (Chen
et al. 2014). For another example, in view of the differ-
ence between backlogs vs. lost-sales inventory sys-
tems, Chen et al. (2019c) focus on a lost-sales analogy
of the above dynamic matching problem that allows

backlogs. The authors show that under a supermodu-
lar reward structure, the optimal dynamic matching
policy can still have the structure of priority and
thresholds for both backlogs and lost-sales systems,
but the specific priority may be entirely different in
the two systems.

Research opportunities.

1. Competitive analysis. In the above formulation,
supply and demand have known arrival proba-
bilities. The platform may want to solve a
robust optimization version of the problem with
unknown arrival patterns. The objective then
becomes to design online algorithms (of making
decisions on the fly) to protect the firm against
the worst-case scenario and have theoretical
performance guarantees over all possible
instances (see, e.g., Karp et al. 1990 for an early
work and Ma and Simchi-Levi 2020, Truong
and Wang 2019 for the latest developments).

2. Computational approach to stochastic dynamic
programming. The structure of priority and
thresholds holds for certain reward structures.
But even for those cases, computing the thresh-
olds can be cumbersome. It is desirable to have
a general computational approach that can
work for any reward structure. Given the suc-
cess of applying approximate dynamic pro-
gramming and Lagrangian relaxation
approaches to dynamic pricing problems in
giving rise to structural properties and efficient
algorithms (see, e.g., Adelman 2007, Balseiro et
al. 2020) it leaves a lot to be desired for apply-
ing similar approaches to the dynamic match-
ing problem.

3. Centralized vs. decentralized dynamic match-
ing. In some marketplace, for example, the
online labor market, sequentially arriving partic-
ipants on both supply and demand sides make
self-interested (i.e., decentralized) matching
decisions. It can be essential for the platform that
operates such a marketplace to quantify the gap
between centralized vs. decentralized matching
in a dynamic setting and identify ways to close
the gap (see, e.g., Baccara et al. 2020).

3. From One-Sided to Two-Sided
Pricing

First, consider the most parsimonious one-sided pric-
ing problem. A seller faces a market of customers
with size M and random customer valuation V. On
the supply side, the marginal cost of the product is a
constant of w. The seller decides on the price p to
solve the one-sided pricing problem:

Table 1 Comparisons Between the Monge Sequence and Modified
Monge Condition

Monge sequence Modified monge condition

Static, deterministic, and balanced Dynamic, stochastic, and unbalanced
Transportation problem Matching problem
Defined for a sequence of all pairs Defined for specific pairs
Sufficient and necessary Sufficient, and robustly necessary
Greedy algorithm: Priority and thresholds:
(1) Priority sequence (1) Priority hierarchy
(2) Match as much as possible (2) Match-down-to policy
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maxpðp�wÞdðpÞ, where d(p)=M�P(V≥p) is the down-
ward-sloping demand curve. This formulation serves
as the foundation of classic finite-horizon revenue
management problems, in which the marginal cost
dynamically changes, contingent on the seller’s
remaining capacity and the time until the end of the
sales horizon.
Now we extend this one-sided pricing problem to a

two-sided one. As the purpose is to reveal connec-
tions among problems, we slightly abuse the notation
and it would be clear from the context that the same
notation may refer to different variables in different
problems. Suppose an intermediary platform crowd-
sources a homogeneous good or service from a pool
of independent sellers or contractors with size N and
random opportunity cost C and sell it to a market of
buyers with size M and random customer valuation
V. See Figure 1 for an illustration of such a market. If
there is unlimited supply, the total amount of cus-
tomers who are willing to pay for the service at price
p is d(p)=M�P(V≥p). Given a posted wage w, the total
amount of independent suppliers or contractors, who
are willing to provide the good or service, is s(w)=N�P
(C≤w). This is the number of suppliers who would
show up if they were guaranteed to be matched with
a customer. The platform decides on the wage w
offered to the sellers and the price p charged to cus-
tomers to solve the following two-sided pricing
problem:

max
w,p

ðp�wÞminfsðwÞ,dðpÞg: (P)

One can show that for a given wage w and price p,
even if the suppliers and customers strategically
anticipate their matching likelihood, the matching
quantity is still equal to min{s(w),d(p)}.
Problem (P) is different from the capacitated pric-

ing problem maxpðp�wÞminfQ,dðpÞg, to which the
deterministic version of the classic revenue manage-
ment problem boils down (see Gallego and Van Ryzin
1994). The difference comes from in the capacitated

pricing problem, the capacity Q and the marginal
operating cost w are independent and exogenously
given, while they are linked and endogenized in Prob-
lem (P).
In economics, research on two-sided markets has

studied platforms such as credit cards, video game
consoles, and organ allocation/exchange. Rochet
and Tirole (2003) consider a general model of com-
petition between two platforms with the transaction
volume in the multiplicative form of supply and
demand. Such a form of the transaction volume is
appropriate for a two-sided market platform with a
long-term objective. For instance, the credit card
company cares about the potential transaction vol-
ume in proportion to s(w)�d(p) if there are s(w) mer-
chants on the supply side accepting the credit card
for payment and d(p) customers on the demand
side using the credit card. Motivated by the ride-
hailing market, Problem (P) studies an on-demand
matching platform’s minute-by-minute pricing deci-
sions that adapt to the changing market conditions.
As a result, the transaction volume takes the form
being minimum of supply and demand quantities.
To see this, if in a short run, there are a number of
s(w) drivers and d(p) riders within a neighborhood,
the transaction volume is close to min{s(w),d(p)}. In
view of the classic newsvendor problem with pre-
committed supply, taking the minimum of supply
and demand is the most natural form from an
operational perspective.
The transaction volume taking the form of min{s

(w),d(p)} results in a pricing problem of a totally
different nature from the one-sided pricing
problem maxpðp�wÞdðpÞ, or the problem
maxw,pðp�wÞsðwÞdðpÞ with a long-term objective. To
see this, we illustrate below how the optimal price
changes as a function of exogenously given wage.
Under very mild regularity conditions, Hu and
Zhou (2018) show that the optimal price
p�ðwÞ¼ argmaxpðp�wÞminfsðwÞ,dðpÞg, as a function
of exogenously given wage w, is U-shaped. That is, it

pw

Figure 1 Two-Sided Market
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is first decreasing in w and then, increasing in w. See
Figure 2 for an illustration.
The intuition of the U-shaped optimal price func-

tion p�ðwÞ is as follows. When the wage is meager,
say, close to zero, just a few drivers are willing to
come out and work. The platform sets a price that is
exorbitantly high so that only those riders who have
very high valuations get a ride. When the exogenous
wage increases from being very low, more drivers
come out to work, and the platform lowers the price
so that more riders get the service to catch up with the
increasing amount of available drivers. When the
exogenous wage is high enough, there are too many
drivers willing to come out and expect to get some
work. If the platform wants to give every driver a job,
the price charged to a rider would be too low, even
possibly lower than the exogenous wage. In this case,
the platform is better off to charge the optimal one-
sided price with the wage as being given. In other
words, when the exogenous wage w is below a thresh-
old w�≤ �w, the supply is limited due to the relatively
low wage, and thus the optimal price is the market
clearing price, that is, the price such that d(p)=s(w),
which would decrease as the wage rises. When the
exogenous wage w is above the threshold, the supply
is ample due to the relatively high wage, and thus the
optimal price is the unconstrained revenue maximizing
priceargmax pðp�wÞdðpÞ, which would increase as the
wage rises.
This U-shape property of p�ðwÞ is in stark contrast

with the traditional supply chain settings. Consider a
supply chain where a retailer procures from its sup-
plier who may, in turn, procure from further up-
stream suppliers. Any cost surge in the supply chain,
for example, a wage or cost increase at some firm
along the supply chain, would always push up the

wholesale price w and lead to an increase in the opti-
mal retail price argmaxpðp�wÞdðpÞ. Moreover, the U-
shape property of p�ðwÞ is also in stark contrast to the
classic economics literature on two-sided pricing. As
mentioned, Rochet and Tirole (2003) assume a multi-
plicative form of the transaction volume. That is, the
platform solves the problem maxw,pðp�wÞsðwÞdðpÞ. It
is easy to see that the objective function (p−w)s(w)d(p)
is log-supermodular in w and p. Then by Topkis’s the-
orem, the optimal price argmax pðp�wÞsðwÞdðpÞ is
always increasing in w.
That range in which the optimal price may decrease

in the exogenous wage is certainly relevant.
Note that the optimal wage and price
ðw�,p�Þ¼ argmaxw,pðp�wÞminfsðwÞ,dðpÞg would sat-
isfy w�≤ �w, because sðw�Þ¼ dðp�Þ must hold as there is
no uncertainty and the platform can fully control
wage and price.
The above discussion reveals that Problem (P) with

the short-term objective and the transaction volume
taking the form of the minimum of supply and
demand is natural for operations management
researchers but is fundamentally different from the
traditional unconstrained supply chain setting (i.e.,
the one-sided pricing) and the two-sided pricing in
the economics literature. It provides us with a justifi-
cation for theoretical novelty in examining the two-
sided pricing problem at the operational level.
The parsimonious form of Problem (P) can serve as

a workhorse model on top of which many additional
features can be incorporated. For example, Hu and
Zhou (2018) focus on the widely practiced, flat,
across-the-board commission contracts, under which
the platform takes a fixed cut and the wage is equal to
a fraction of the price, regardless of what price is
charged, that is, w= γp, where γ is the payout rate to
the drivers and (1−γ) is the commission rate the plat-
form takes. The platform precommits to a commission
rate before it sets a contingent price depending on the
randomly realized market conditions. The authors
study the performance of an optimal commission rate
contract benchmarked with the case that the platform
can freely choose wage and price for any market con-
dition without any constraint.

Research opportunities.

1. Dynamic two-sided pricing. In practice, there
exists uncertainty in the timing, number, and
valuation of arrivals of sellers/contractors and
buyers. The platform can dynamically vary
wage and price to balance supply and demand.
Unmatched sellers and buyers may hang
around in the market waiting to be matched.
Contingent pricing, reacting to the market con-
dition, obviously can have an edge over a fixed
price. Cachon et al. (2017) show that drivers

p*(w)

www*

Figure 2 U-Shaped Optimal Price as a Function of Exogenous Wage
[Color figure can be viewed at wileyonlinelibrary.com]
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and riders are generally better off with varying
prices contingent on the realized supply and
demand conditions. Chen et al. (2020b) con-
sider a dynamic version of Problem (P) allow-
ing the intermediary to buy in, sell out, and
hold inventory. Moreover, static pricing may
also be preferred. Banerjee et al. (2015) show
that a static pricing policy can be asymptoti-
cally optimal in a thick market. Chen and Hu
(2020b) further study a dynamic version of
Problem (P) in which sellers/contractors and
buyers sequentially arrive at the market and
can strategically time their transactions. A sta-
tic pricing policy by the intermediary platform
has an advantage of deterring strategic waiting
behavior of sellers and buyers, which is hard
to account for by pricing models. As a result,
with static pricing, all participants can be
brought in as they arrive, increasing the thick-
ness of the market. There are still many unan-
swered questions. For example, it is interesting
to characterize the structural property of the
optimal dynamic two-sided pricing policy with
and without strategic behavior of sellers and
buyers.

2. Spatial two-sided pricing. Problem (P) is a sin-
gle-location model, assuming all supply and
demand are located nearby in a small region.
If the spatial dimension of ride-hailing is con-
sidered, it is critical to take into account dri-
vers’ incentives of moving around which
involve the time and effort in repositioning
themselves, picking up riders, and going to the
riders’ destination where it may be hard to
find a good ride. Bimpikis et al. (2019) explore
the spatial price equilibrium, in a multilocation
model allowing drivers to decide whether to
work and where to position themselves in a
network of interconnected locations. The
authors highlight the impact of the origin-des-
tination demand (im)balancedness across the
network of locations on the platform’s wage,
price, profits, and consumer surpluses. Besbes
et al. (2019) consider a continuously dispersed
linear city where the drivers can reposition
themselves. Under a fixed commission rate, the
platform sets location-specific prices along the
linear city, and then, the riders’ requests along
the city realize. The drivers then relocate them-
selves in a simultaneous-move game based on
prices, demands, and driving costs. Garg and
Nazerzadeh (2020) show that drivers would
cherry-pick trip requests under the multiplica-
tive surge (i.e., the payout scales with the trip
length), and the issue can be addressed by the
additive surge (i.e., a surge component in the

payout independent of the trip length). Spatial
pricing is still an underexplored area with
many opportunities. For example, it is highly
desirable to consider a stochastic dynamic spa-
tio-temporal model that allows the travel time
to be proportional to the travel distance
between locations (see Ata et al. 2019 for an
econometric study).

3. Joint pricing and matching. The marriage of
supply chain and revenue management gives
birth to the stream of research on joint pricing
and inventory control (see, e.g., Chen and Sim-
chi-Levi 2004, Federgruen and Heching 1999).
It will be a fruitful direction to consider the
pricing and matching decisions jointly. On the
one hand, the platform can use wage and price
to regulate supply and demand of different
types, for example, at different geolocations,
and on the other hand, the platform then can
decide on how to match those supply and
demand that accept the given wage and price.
The coupling of pricing and matching makes
the problem challenging yet fascinating.

4. From Queueing to Resource Sharing

In the previous two sections, we draw connections
between sharing economy and the classic inventory
(supply) and revenue (demand) management.
Another critical methodology in operations manage-
ment is queueing theory that can be applied to study
service systems. One unit of resources can be shared
among randomly arriving customers for a random
amount of time. It is not a new idea to view the
resources as the servers and apply a queueing model
to capture the dynamics of supply–demand mismatch
at the operational level, for example, a customer who
does not find an available resource upon arrival needs
to wait (see Cachon and Feldman 2011 for Netflix
DVD sharing), or leaves the system without getting
served (which is referred to as a “loss” system). What
can be novel is to consider crowdsourced servers’
incentives of participation, which determine the sup-
ply quantity, and in turn, interact with demand,
potentially under the moderation by a platform. For
example, Benjaafar et al. (2019) apply a multi-server
loss queueing system to study peer-to-peer product
sharing.
Pricing control. As one type of resource sharing,

ride-hailing can naturally be viewed from a queueing
perspective. For example, one can revisit the two-
sided pricing problem (1) by adopting a queueing for-
mulation. The benefit of doing that is to capture the
experienced delay by riders (demand) or drivers (sup-
ply), a critical feature at the operational level that is
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absent in the simple formulation (P). Now consider
the following model. Suppose the riders are delay
sensitive with a waiting cost c per unit of time. They
make joining or balking decisions based on the
expected wait time E(W) before getting served. This is
analogous to the treatment in the unobservable
queue, and an alternative treatment can be similar to
the observable queue (see Hassin and Haviv 2003,
Chap. 2 and 3). The effective arrival rate of customers
requesting the service should satisfy:

λ¼Λ �PðV�p� cEðWÞ≥0Þ, (1)

where Λ is the arrival rate of potential riders. Sup-
pose each rider takes 1/μ amount of time to serve,
that is, μ is the service rate. Given there are s(w)
number of drivers (servers) available on the street,
Taylor (2018) and Bai et al. (2019) adopt the M/M/k
queue formula as a natural approximation to
express the expected wait time E(W) experienced by
riders in terms of the arrival rate λ, the service rate
μ and the number of servers k=s(w), which together
with Eq. (1) can capture the equilibrium outcome.
Here, w should be understood as the expected pay-
off of drivers from signing up and joining the work-
force. Another coarser approximation is to use the
M/M/1 queue formula to express the expected rid-
ers’ delay E(W) with arrival rate λ and service rate s
(w)μ, see, for example, Benjaafar et al. (2020) and
Guo et al. (2020), which then lends tractability to
explore other phenomena under the approximation.
In equilibrium, the effective rate of riders requesting
services can be expressed in terms of wage and
price, denoted by λ�ðw,pÞ, and the number of drivers
who find it incentive compatible to come out and
work can also be expressed in terms of wage and
price, denoted by s�ðw,pÞ. Analogous to Problem (P),
the platform’s problem is to solve
maxw,pðp�wÞλ�ðw,pÞ, subject to s�ðw,pÞμ<λ�ðw,pÞ
which is the stability condition. The underlying
assumption of this parsimonious M/M/k formulation
is that there are a fixed number of drivers in the
system of a single location.
In contrast, Banerjee et al. (2015) study an “open”

queueing network with two queues (where the
“open” network refers to that drivers can come to and
exit from the system), an M/M/1 queue to model idle
drivers at one location and an M/M/∞ to model busy
drivers within the region (see also He et al. 2017 in
which the same modeling approach is adopted for
electric vehicle sharing). The authors focus on com-
paring static pricing and state-dependent contingent
pricing policies.
Routing and other controls. All queueing models

mentioned above are single-location models. To
account for cars’ spatial movement and the platform’s

routing controls, there is a stream of research adopt-
ing the framework of a “closed” loss queueing net-
work. Specifically, there is a finite number of
locations/regions and a finite number of drivers/cars
(which can be controlled by wage or routing deci-
sions). Each region has its own stream of arriving rid-
ers. When a rider arrives at a location, if there is an
idle driver, the rider and driver can be matched and
travel together to another location with a given transi-
tion probability and a certain travel time. The fixed
number of cars move between locations but never
leave the system (referred to as the “closed network”),
and riders get lost if finding no idle driver in the
desired location (referred to as the “loss system”). In
this stream, Afèche et al. (2018a) consider two loca-
tions and focus on the performance impact of reposi-
tioning control (or drivers’ self-repositioning) and
demand-side admission control (with a fixed price p).
Braverman et al. (2019) consider multiple locations
and focus on empty-car routing control. Chu et al.
(2018) study a single-location model in which drivers
can cherry-pick riders, and focus on information,
routing, and priority controls by the platform.
Moreover, Özkan and Ward (2020) consider an

“open” loss queueing network in which the drivers’
arrival and departure processes at each location are
exogenous, and focus on the dynamic matching deci-
sion. In a general setting, Gurvich and Ward (2014)
study the dynamic control of matching queues at the
operational level. All these routing papers focus on
the fluid deterministic counterpart of the original
stochastic system, due to the apparent complexity of
the problem.
Self-scheduling servers. One feature of a sharing

economy is supply uncertainty because resources of
goods and services are crowdsourced. Classical
queueing models assume a fixed number of servers.
This may reflect the reality that even though drivers
have the freedom of dictating when and how long to
work, as soon as they start working, the setup cost
keeps them to stay around not just for one ride/task
but for many. As a result, at a more operational level,
the number of available drivers may be somewhat
constant over certain time window. But ideally one
wants to build queueing models that can handle ran-
dom service capacity which results from self-schedul-
ing. For example, Ibrahim (2018) studies the controls
of staffing, compensation, and delay announcements,
to effectively control a queueing system with a ran-
dom number of servers and impatient customers.
Research opportunities. There is still a lot to be

done in the directions mentioned above. For example,
most of those above multilocation queueing models
assume loss demand, which is desirable to be
extended. Moreover, here are some broad directions
and problems to explore:
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1. Double-ended queue. As an alternative queue-
ing model to the M/M/k queue, the double-
ended queue has been used to model a single-
location taxi stand, at which drivers and riders
arrive independently, see Kendall (1951). After
a driver and a rider pair up, they leave the sys-
tem. The double-ended queue can be a more
appropriate modeling framework for a match-
ing market where service providers do not
come back after a matching, for example, shop-
pers at a grocery store help make a delivery
for their neighbors, and commuters pool their
car with riders on the way to work or home.
This double-ended queue framework is a con-
tinuous-time version of the dynamic matching
model introduced in section 2 with one supply
type and one demand type, and may be read-
ily extended to account for two-sided pricing
or/and multiple locations (types).

2. Carpooling. When a car is shared among rid-
ers, the capacity of the “server” (i.e., the car) is
literally increased. However, such a capacity
increase is endogenized by the riders’ choices.
It would be interesting to extend some of the
above queueing models to account for the
option of carpooling by riders, see, for exam-
ple, Jacob and Roet-Green (2019), Hu et al.
(2020b).

3. Free floating system. Those multilocation spa-
tial models mentioned above are one step clo-
ser to reality. However, they still do not fully
capture the reality of free-floating cars. The
gap is analogous to the difference between
docked vs. dockless bike sharing. A spatial
model with finer granularity is desired and can
fit data better. In practice, from the drivers’
point of view, a renewal “cycle” starts with
dropping off the previous rider, and follows
with waiting for a rider request, then on the
way to pick up the rider after receiving a dis-
patch order and then, driving to the destina-
tion with the rider in the car. From the riders’
point of view, the wait not only includes the
amount of time earlier riders still occupy the
drivers but also consists of the pickup time for
the rider and some or all of the previous rid-
ers. The pickup time, proportional to the travel
distance, makes the dynamics complicated and
hard to analyze because it depends on the
number of available drivers when a rider
request arrives at the system and also on the
routing policy (see, e.g., Feng et al. 2020). The
system dynamics can be similar to the classic
stochastic and dynamic vehicle-routing prob-
lem but not the same. Bertsimas and Van
Ryzin (1991, 1993) provide potential directions

on how to better understand the system
dynamics. As the latest development in this
direction, Besbes et al. (2018) modify an M/M/k
queue with a state-dependent service rate that
takes into account the pickup time under the
match-to-the-closest dispatch rule. On top of
the performance evaluation for a given number
of drivers and a specific routing policy (see,
e.g., Hu 2020), one can optimize the routing
policy or study the optimal one- or two-sided
pricing problem (see, e.g., Chen and Hu
2020a).

4. Three-sided matching. In grocery/food deliv-
ery, platforms use technology to stitch together
couriers (drivers), grocery stores/restaurants,
and customers. The problem is more compli-
cated than ride-hailing in which only two par-
ties are involved. Other than more parties
involved, the complexity may come from:
When couriers arrive at a designated place to
pick up an order, the order may not be ready,
as there is a separate process of preparing it
for pickup; Couriers may pickup multiple
orders at the same or different places and send
them to the same or different destinations (see,
e.g., Gorbushin et al. 2020); Other than pricing
and routing decisions, the platform can opti-
mize the product offerings by highlighting var-
ious options to moderate demand.

5. From Newsvendor to Resource
Sharing

The above-mentioned queueing formulations have
the advantage of capturing asymmetric decision time-
scales of the drivers and riders in ride-hailing. More
specifically, drivers tend to evaluate more long-term
payoffs when deciding on whether to provide the ser-
vice while riders make a purchase decision in a much
shorter timescale. The fixed-server or closed-network
queueing formulation assumes a fixed number/
amount of drivers or service capacity to serve riders
who arrive at a transient system state.
An alternative formulation with fixed capacity can

be analogous to the classic newsvendor problem.
Cachon et al. (2017) consider a strategic-level decision
period in which drivers decide whether to sign up for
a ride-hailing platform taking into account future
expected payoffs and the platform can impose a cap
on the driver pool. Then in the short run, for example,
at a day-to-day level, drivers decide on whether to
come out and work depending on their realized
opportunity cost for that period, and the platform
may set wage or price contingently. The problem is
somewhat analogous to a newsvendor problem,
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because of the endogenized driver pool size. In addi-
tion to the cap on the driver pool at the strategic level,
Gurvich et al. (2019) also allow the platform to set a
cap on the number of drivers who can work, in addi-
tion to wage or price decisions, in the short run. Here,
the short-run cap imposed by the firm is literally a
newsvendor quantity.
Similarly, one can build a simple newsvendor-type

extension of Problem (P). At the strategic level, the
drivers anticipate the expected earning �w, and thus
the number of drivers who sign up for work is sð�wÞ.
In the short run, given the fixed number sð�wÞ of dri-
vers at work which is analogous to the newsvendor
quantity, the platform can set a price contingently, in
view of the surge pricing practice. That is, at the oper-
ational level, the platform is to solve for the contin-
gent wage w�

ε and price p�ε such that they achieve

max
w,p

ðp�wÞminfsð�wÞ,dεðpÞg, (N)

where dεðpÞis a realization of a random demand
curve D(p) which can be obtained by perturbing
the deterministic demand curve d(p) additively or
multiplicatively with a random variable E (whose
realization is denoted by ϵ). One could impose con-
straints on the relationship between p and w in
Problem (N) such as w=γp where γ is a fixed pay-
out rate. Given the contingent wage w�

ε , the fraction
of drivers who get a job, out of those making
themselves available, is sðw�

εÞ=sð�wÞ. To make sure
the drivers earn what is promised on expectation,
as a constraint,

�w¼E w�
E �

sðw�
EÞ

sð�wÞ
� �

:

If the platform sets a committed price p at the strate-
gic level, that is, p�ε ¼ p does not depend on the ran-
dom demand realization ϵ, the problem is then close
to the classic newsvendor selling to price-sensitive
customers (see Petruzzi and Dada 1999). The differ-
ence, however, is that here the “newsvendor” in shar-
ing economy achieves its “newsvendor” quantity sð�wÞ
through announcing its committed pricing decision p,
where �w is the expected effective earning of drivers
under price p.

Research opportunities.

1. Pricing and commission policies. Among
others, the newsvendor-type formulations pro-
vide opportunities to study various pricing
strategy in the short run such as contingent vs.
committed pricing strategy, and crowdsourcing
contracts at the strategic level such as contin-
gent commission rate vs. committed minimum
wage contracts.

2. The employee mode. One can consider a vari-
ant of the classic newsvendor selling to price-
sensitive customers with the price contingently
determined on the uncertainty realization and
the “newsvendor” quantity is obtained as a
function of effective earnings. In this model,
the drivers are hired as employees and made
incentive compatible to sign up for the job in
anticipation of expected earnings. Such an
employee mode can become more practically
relevant than the independent contractor mode
(see Problem (P)), as California Assembly Bill
5, in effect starting Jan 1, 2020, compels gig-
economy platforms to treat their worker as
employees as opposed to independent contrac-
tors. It can be of significant practical value to
quantify the impact on the stakeholders such
as the drivers, riders, and the platform, when
the system switches from the independent con-
tractor mode of Problem (P) to the employee
mode analogous to Problem (N).

6. From Strategic Customers to
Strategic Buyers and Sellers

In all formulations mentioned above, when customers
make a purchase decision, they compare available
options at the moment upon their arrival, that is, their
decision making is myopic. In the operations manage-
ment literature, a large body of literature studies so-
called strategic, or more accurately, forward-looking,
customer behavior, in which customers consider pur-
chase opportunities over time (see, e.g., Shen and Su
2007). This literature is motivated by potential strate-
gic waiting behavior by customers in anticipate of a
future price drop. In ride-sharing and other market-
places, not only buyers but also sellers may demon-
strate strategic behavior. Moreover, they may be not
only inter-temporally strategic but also spatially
strategic.
First, let us consider strategic customer behavior on

the demand side. Hu et al. (2020a) consider a two-pe-
riod model, commonly adopted in the strategic cus-
tomer literature, to capture riders’ strategic waiting in
response to surge pricing in ride-hailing. At the begin-
ning of period 1, a total volume of N=1 (infinitesimal)
drivers are available in a small region, and a total vol-
ume of M>1 (infinitesimal) riders appear in the same
region, constituting a demand surge. The riders’
incremental valuations of getting rides from the plat-
form, net of their next best options are heterogeneous
following a distribution V. Each unit of rider requires
one unit of the drivers to provide service. Once
matched, both rider and driver leave the region indef-
initely.
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In period 1, the platform sets price p1 for that per-
iod. Given p1, some riders will request rides in this
period, some may strategically wait out period 1 and
request rides only in period 2, and the rest never
request rides. The riders requesting rides in period 1
and available drivers are randomly matched. In per-
iod 2, new drivers with an opportunity cost c who
were nearby and strategically decided in period 1 to
“chase the surge” arrive in the surge region to join
any remaining drivers, and the platform sets p2. The
remaining riders from period 1 then decide whether
to request rides, and those who do are again ran-
domly matched to available drivers. (For simplicity,
one can assume that no new riders appear in period
2.) Riders discount valuations of getting rides in per-
iod 2. This model can explain why surge pricing, a
short-lived sharp price surge followed by a lower
price, can even benefit consumer surplus: The plat-
form strategically inflates the initial price to make rid-
ers voluntarily wait out the initial surge period, so as
to attract drivers to the surge region and then, serve
riders with a lower price. The surge pricing has a sig-
naling effect to drivers that the higher the surged
price, the more unserved riders out there, without
any demand information communicated to drivers.
On the supply side, Afèche et al. (2018b) study the

drivers’ forward-looking behavior in deciding
whether to reposition toward the hotspot after an
unexpected demand shock of uncertain duration
occurs, given their location-dependent repositioning
delay and payoff risk. The paper compares the perfor-
mances of various dynamic policies of setting driver
wages and rider prices by the platform, taking into
account the interplay of three timescales, rider
patience, demand shock duration, and drivers’ repo-
sitioning delays. As mentioned earlier, Chu et al.
(2018) study the cherry-picking behavior by drivers,
who may skip low-payoff riders and wait for high-
payoff riders. Moreover, Bimpikis et al. (2019), Afèche
et al. (2018a), and Besbes et al. (2019) focus on the dri-
vers’ strategic spatial repositioning, which have been
mentioned above; see also Guda and Subramanian
(2019) in the marketing literature.

Research opportunities.

1. Both sellers and buyers are strategic. Chen and
Hu (2020b) allow both sellers and buyers of a
homogeneous good or service to be inter-tem-
porally forward-looking, and show a two-sided
pricing and matching policy that induces their
myopic behavior is asymptotically optimal.
There is a lot that can be further explored in
this area. For instance, one wants to build
more realistic models that account for contin-
gent pricing and joint strategic drivers’ and
riders’ waiting and repositioning behavior.

2. Mechanism design. Drivers and riders have
their own private information, and it is a criti-
cal problem of how the platform can design
mechanisms to tease out such information so
to enable more efficient matching (see Ma et al.
2019 for a mechanism design problem in ride-
hailing under complete information).

7. From One-Sided to Two-Sided
Competition

The most classic competition models in economics are
Bertrand (price) and Cournot (quantity) competition
models. Here we briefly review a version of those
models for differentiated products, which we will
extend to account for the competition between two
ride-hailing platforms such as Uber and Lyft. Con-
sider a symmetric duopoly market with firms 1 and 2
each selling one product by setting prices p1 and p2,
respectively. The two products are substitutable. The
demand system that governs the market has a linear
structure: provided that demand quantities are posi-
tive,

d1ðp1,p2Þ¼ a�p1þαp2, d2ðp1,p2Þ¼ a�p2þαp1, (2)

where a>0 is the potential market size and
α 2 [0,1) measures the substitutability between the
two products. Such a linear demand structure can
be obtained from a Hotelling line model or a rep-
resentative consumer maximizing a quadratic util-
ity function. Both firms have the same marginal
cost to procure, produce and distribute their prod-
ucts. In the Bertrand competition, both firms
simultaneously set prices to maximize their profit.
In the Cournot competition, both firms simultane-
ously make decisions on the targeted sales quantity
to maximize their profit, and the prices are
resolved as the market clearing prices such that
the targets are achieved in the competitive market.
The celebrated Kreps and Scheinkman equivalency
says that Bertrand price competition with precom-
mitted capacity yields the same equilibrium out-
come as Cournot competition (see Kreps and
Scheinkman 1983). That is, consider a two-stage
sequential game in which the firms maximize their
profit. In the first stage, both firms simultaneously
decide on the capacity of their production and dis-
tribution. In the second stage, given the capacity
level they build in the first stage, both firms
simultaneously set prices. The outcome of this two-
stage game is the same as that of Cournot compe-
tition. The intuition behind the Kreps and Scheink-
man equivalency is that precommitment in
capacity can curb throat-cutting price competition
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because firms cannot sell beyond their capacity
level.
Now one can ask similar questions for a competi-

tive market where two platforms fight on two fronts.
That is, on the one hand, platforms compete in offer-
ing wages to the drivers and on the other hand, they
compete in setting prices posted to the riders, see Fig-
ure 3. On the demand side, we can adopt the above
linear demand system Eq. (2). On the supply side, we
can also assume a linear structure: provided that sup-
ply quantities are positive,

s1ðw1,w2Þ¼w1�βw2, s2ðw1,w2Þ¼w2�βw1,

where β 2 [0,1) measures the substitutability
between the two platforms in the eyes of drivers.
Similar to section 3, we consider a short-term objec-
tive of the platforms. At the operational level, given
the competitor’s decisions, the objective of each plat-
form i, i=1,2 is to solve

max
wi,pi

ðpi�wiÞminfsiðwi,w3�iÞ,diðpi,p3�iÞg: (P2)

We assume platforms simultaneously make their
wage and price decisions. This game (P2) is a natu-
ral extension of the two-sided pricing problem (P) to
two-sided competition and that of the one-sided
Bertrand competition to two-sided wage and price
competition, for simplicity, referred to as two-sided
price competition.
The counterpart of the Cournot competition in the

two-sided market is that firms simultaneously decide

on the matching quantity and then, on both supply
and demand sides, market clearing wages and prices
are resolved to achieve the targeted matching quan-
tity, which is referred to as two-sided quantity com-
petition. Hu and Liu (2019) show that analogous to
the comparison between the classic Cournot and Ber-
trand competition, two-sided quantity competition
leads to more alleviated market outcomes with higher
market prices than two-sided pricing competition.
Moreover, a two-sided counterpart of the Kreps and
Scheinkman equivalency remains to hold. That is,
consider a two-stage sequential game in which plat-
forms maximize their profit. In the first stage, both
platforms simultaneously decide on the capacity level
which limits their matching quantity. In the second
stage, given the capacity level they choose in the first
stage, both firms simultaneously set wages and prices.
The authors show that the outcome of this two-stage
game is the same as that of two-sided quantity com-
petition. These results demonstrate the connection of
the two-sided competition with the classic one-sided
competition, and show that the insights from the one-
sided competition remain robust for the two-sided
competition.
Here, come the new tunes. Because now the plat-

forms compete on both supply and demand sides,
motivated by the competition between Uber and Lyft,
one can consider two-stage games with other precom-
mitment devices than capacity. First, the platforms
can commit to wages and then, compete on prices.
Second, the platforms can commit to prices and then,
compete on wages. Third, the platforms can commit

Figure 3 Two-Sided Competition
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to the commissions, or equivalently, the payout ratios,
that is, the ratio between wage and price, and then,
compete on prices. By comparing these competition
modes, Hu and Liu (2019) show the following new
insights among others. First, precommitment effec-
tiveness can vary depending on the competitiveness
of two sides of the market. In one-sided price compe-
tition, it is always more beneficial to firms if they com-
mit on the supply side. In two-sided price
competition, platforms need to investigate which side,
supply or demand side, of the market, is more com-
petitive. Precommitment on the more competitive
side actually intensifies the competition and performs
worse than no commitment at all. Second, in a deter-
ministic setting, the firm has an incentive to set wage
and price so that supply is precisely matched with
demand, which is referred to as “two-sided balanc-
ing.” This two-sided balancing incentive (the same
reason that drives the downward shape of the optimal
price as a function of the exogenous wage in the two-
sided pricing problem (P), see section 3) serves as an
intrinsic constraint that alleviates competition on the
more competitive side. These insights prevail even
with market uncertainty in an extension where certain
precommitment occurs in the first stage, before a con-
tingent decision is made in the second stage, reacting
to the realized market condition.
In a two-sided competition model, Bernstein et al.

(2019) build supply and demand structures on top of
the linear systems by subtracting a disutility term that
depends on supply and demand utilizations to cap-
ture the congestion effects when the two sides are
unbalanced. The authors focus on comparing single-
homing vs. multi-homing behavior by the drivers
(i.e., drivers have their dedicated platform, vs. drivers
can serve both platforms). Cohen and Zhang (2019)
adopt a MultiNomial Logit choice model for the
demand side (another commonly used demand struc-
ture, see Federgruen and Hu 2017) and a general sup-
ply curve for each platform assuming single-homing.
Their focus is to investigate the impact of a new ser-
vice jointly offered by competing platforms where

one platform’s dedicated drivers can provide shared
rides that are available to riders from either platform.
Research opportunities. Two-sided competition has

not been much explored in the operations manage-
ment literature. One direction is to take a one-plat-
form two-sided model as a base (see, e.g., Bai and
Tang 2020) and extend it to competition, and another
is to extend a one-sided competition model (see, e.g.,
Federgruen and Hu 2015) to two-sided competition.
In either path, the new two-sided competition model
needs to be practically grounded and generate novel
results/insights to make an impact. Moreover, a fruit-
ful route can also be to study features arising from
sharing economy such as competition on the payout
rate and bonus payment to drivers (see, e.g., Chen et
al. 2020a).

8. From Supply Chain to Marketplace

The classic supply chain model involves three parties
with a supplier (or manufacturer) selling through a
retailer to customers, see Figure 4. Nowadays a typi-
cal marketplace involves three parties as well, with a
group of independent sellers selling on a platform to
customers, see Figure 5. The key differences are (i)
suppliers in a marketplace are usually in a large quan-
tity, each with limited influence on the whole market;
and (ii) unlike a retailer, the platform that operates a
marketplace may have limited control on a transac-
tion between a seller and a customer.
The supply chain contract literature focuses on how

the supplier can offer a contract to the retailer to maxi-
mize the supply chain surplus and then, split the ben-
efit that has grown to the largest (see, e.g., Cachon
2003). Unlike the traditional supply chain, the inde-
pendent sellers in some marketplace have the full
right to set their own prices. But the platform can
influence the sellers’ decisions by offering a crowd-
sourcing contract, or a financing scheme to sellers
(see, e.g., Dong et al. 2018), or influence the matching
process between buyers and sellers, for example, by
manipulating information disclosed to an interested

pw

Figure 4 Traditional Supply Chain
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party (see, e.g., Liu et al. 2020). To use Airbnb as an
example, hosts on the platform have full freedom to
decide the price they would love to charge for their
listings. There are individual property owners, or cor-
porate players who control multiple assets (see Zhu et
al. 2019). For any type of hosts, the platform can opti-
mize the commission rate it proportionally takes at
the strategic level or customize the ranking of listings
made available to a guest.
As mentioned earlier, platforms often charge a

commission for each transaction. That is, for whatever
price posted to the customers, regardless of whether
that pricing decision is made by the platform (e.g., in
the case of Uber) or by the independent sellers (e.g.,
in the case of Airbnb), the platform takes a fixed frac-
tion out of the total price paid by customers. This
commission contract structure is meant to qualify a
platform for the legal status of being a broker. This
commission contract literally is a revenue-sharing
contract, which can coordinate a traditional supply
chain with one supplier and one retailer. However, it
is easy to see that such a commission contract signed
between an independent seller and the platform
would most likely not be in the best interest of the
platform, because the seller now makes the pricing
decision. Under competition, a seller may be forced to
set a price lower than what is desired by the platform.
The commission contract is signed and applied for

a relatively long period of time, while prices may vary
at the transaction level. For example, a commission
rate is fixed for Uber drivers over at least a couple of
months, but prices Uber sets for each ride vary
depending on the market conditions. Hu and Zhou
(2018) show that by carefully selecting a commission
rate, even though the platform may lose some flexibil-
ity in moderating supply and demand (as now the
wage is derived from the pricing decision under the
commission contract), the profit loss may not be sig-
nificant, and there exists a provable performance
guarantee. Hu and Liu (2019) show that the commis-
sion contract as a constraint governing the wage and

price may, in fact, benefit platforms under competi-
tion (compared to no commission contract).

Research opportunities.

1. Crowdsourcing contract. Parallel to supply
chain contracting, it is interesting to study
crowdsourcing contracts of various forms,
which affect the incentive of the independent
suppliers/vendors. For example, Chen et al.
(2019b) propose a compensation-while-idling
mechanism, offered to independent self-inter-
ested suppliers, to achieve a centralized solu-
tion for a marketplace. Balseiro et al. (2019)
study the mechanism design problem of an
intermediary who offers a contract to an adver-
tiser in an online advertising marketplace. For
another example, Netflix and Spotify crowd-
source movies and music from numerous ven-
dors and artists and bundle them to sell at the
price of one (see Hu and Wang 2019). In the
case of Spotify, the collected subscription fees
for the bundle are allocated according to the
realized contribution, among all, by each
crowdsourced product. In the case of Netflix,
the platform negotiates payments for each pro-
duct ex-ante before releasing it on the plat-
form.

2. Social utility. The sharing economy is based on
the sharing activities between participants. As
the social structure is embedded as an indis-
pensable foundation, the sharing economy has
blurred the line between economic and social
transactions. For example, Cui et al. (2020b)
show that on Airbnb which facilitates shared
living between a guest and a host, the guest
may draw a social utility from staying with the
host. The existence of social utility can create
an incentive misalignment between the plat-
form and a host. Think about the joy of offer-
ing hospitality to travelers around the world,
which is the idea behind couchsurfing and

Figure 5 Platform Economy
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leads to the birth of Airbnb. With this joy, the
host has an incentive to set a price lower than
without social utility and lower than what the
platform desires. For another example, ride-
hailing and food delivery platforms often allow
tipping to service providers, which encourages
social interactions and is not taxed by the plat-
forms. With the presence of social utility in
sharing economy justified, it is then valuable to
study how such presence would affect the plat-
form’s decisions.

3. Platform intermediation. In practice, many mar-
ketplace operators are making efforts to move
toward a more centrally controlled platform to
gain efficiency or/and profitability. For instance,
eBay now provides price suggestions to the sell-
ers and buyers in the form of “the product is
trending” at this particular price to facilitate
transactions. Other than priming the sellers or
using a crowdsourcing contract to influence their
decisions, the platform that runs the marketplace
can adopt other moderating tools depending on
the context. For example, Allon et al. (2012)
study the impact of facilitating the matching
between service providers and customers, and
enabling communication among service provi-
ders, in an online service marketplace. Arnosti et
al. (2020) study a matching market in which par-
ticipants face search and screening costs when
seeking a match. The authors focus on the plat-
form’s moderating controls, such as limiting the
number of applications that an individual can
send or making it more costly to apply. Bimpikis
and Papanastasiou (2019) study information dis-
closure mechanisms by a platform. Liu et al.
(2018) investigate the commission or joint com-
mission and price control by an on-demand
healthcare service platform. It is worthwhile to
delve into the operations of a specific platform to
study how the platform could improve prof-
itability or efficiency.

9. From Optimal Transport to Matching
Supply with Demand

The origin of matching supply with demand is about
the optimal transportation and resource allocation.
There can be a fundamental, yet unexplored, connec-
tion between the optimal transport problem, a classic
problem intensively studied in mathematics (see, e.g.,
Villani 2009), and the operational problem of match-
ing supply with demand. The optimal transport prob-
lem is to find the most cost-effective way to move
mass, for example, to find a way that transforms a
given probability density function into another that

minimizes the cost of transport. This problem has
accumulated a large body of deep theories that have
resulted in a couple of Fields medalists and may dee-
pen our understanding of matching supply with
demand. The optimal transport problem treats the
original status and the targeted level as continuous
distributions over a continuous space. To see its con-
nection with operations, imagine a heat map indicat-
ing the distribution of autonomous cars. A central
planner could move around those cars to serve riders.
Traditional operations management models often
assume the system state and space to be discrete to
stay closer to reality, for example, there is an integral
number of echelons/stages in an inventory system,
and there are discrete units of capacity to sell in a rev-
enue management setting. We do see promising evi-
dence that relaxing those discrete assumptions may
lead to neater results, see, for example, Song and Zip-
kin (2013), not to mention the trivial example that the
Economic Order Quantity formula gives a continuous
quantity as the optimal solution.

Research opportunities. In applying existing theo-
ries from the optimal transport problem to opera-
tional problems, there are still significant gaps, which
may call for developing new theories.

1. Temporal dimension. The classic optimal trans-
port problem only has a spatial dimension. In
the physical world, moving resources is not
only costly but also time consuming. It is
highly desirable to incorporate the time dimen-
sion into the optimal transport problem.

2. Uncertainty. The optimal transport problem
does not have uncertainty. In operational prob-
lems, there exists uncertainty on both sides of
supply and demand.

3. Moderation. In a matching market, both supply
(corresponding to the original status) and
demand (corresponding to the target level) can
be moderated by incentives such as wage and
price before the matching.

4. Decentralized incentive. The optimal transport is
a centralized solution dictating how resources
should be moved. In ride-hailing, resources such
as drivers, unlike autonomous cars, have self-in-
terested incentives to be fulfilled. Besbes et al.
(2019) study a decentralized version of the one-
or two-dimensional optimal transport problem in
which drivers self-interestedly respond to the
platform’s (surge) pricing decisions.

It would be highly desirable to extend some of
the primary forms of solution characterizations of
the optimal transport problem to account for the
above mentioned operational features in a general
form.
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10. From Efficiency or Profit
Maximization to Alternative
Objectives and Other Social and
Environmental Issues

In almost all the above discussions, the default objec-
tive is to maximize the system’s operational efficiency
or the firm’s profitability. As there are at least three
parties of stakeholders involved in a sharing econ-
omy, alternative objectives could be a weighted sum
of the surpluses of buyers, sellers, and the intermedi-
ary firm. For example, more legislation such as Cali-
fornia Assembly Bill 5 is signed to require ride-
hailing platforms to put more weight on the drivers’
welfare in their decision making. As explained in sec-
tion 3, an increase in the drivers’ welfare can entice
more drivers to come out and work and force the plat-
form to lower prices, which benefit riders at the same
time.
Moreover, we are also faced with a brand-new set

of unintended or unaccounted-for social and environ-
mental consequences that arise from the emergence of
sharing economy. For example, Chen et al. (2019a)
show that more customers having access to a food
delivery service may hurt the food delivery platform
itself and the society. Thus it can be practically
impactful to figure out how we can match service pro-
viders and products with users more efficiently while
minimizing some of the problems and waste caused
by these technologies. Agrawal et al. (2019) point out
challenges and research opportunities in studying
environmental sustainability in the circular economy.
Here, we provide some additional research ideas that
one may explore in a specific sharing economy or
innovative marketplace.

Research opportunities.

1. Alternative objectives. All the previously dis-
cussed formulations may be re-examined
under an alternative objective. One can also
compare the optimal policies under different
objectives.

2. Ride-hailing. The great thing about ride-shar-
ing apps is that riders only have to wait a few
minutes for a ride, but that convenience comes
with a price. Drivers are waiting idle on city
streets for requests or have to come from a
long way to pickup customers. This phe-
nomenon of a so-called “wild goose chase”
(see Castillo et al. 2017) leads to the low uti-
lization of the cars and possibly results in
increasing traffic in cities. Hu (2020) shows that
both temporal and spatial pooling (by delay
matching and designating pickup and drop-off
areas, respectively), common notions in the

operations management, can resolve the issue
to a large extent (see also Yan et al. 2020 for an
approach called “dynamic waiting” which is
similar to temporal pooling). Besides, with a
unique gender perspective, Guo et al. (2020)
examine how female users’ safety concerns
affect the system configuration of ride-hailing
platforms. Lastly, Asadpour et al. (2020) study
the implications of utilization-based minimum
earning regulations on ride-hailing service pro-
viders. As ride-hailing has penetrated our daily
lives, studies on various public policies could
have a considerable impact.

3. Food ordering and delivery. The food delivery
services, such as Uber Eats, while removing
the hassle of cooking, are adding to our land-
fills. The packaging that comes with the food
orders is often excessive or not recyclable. It is
critical to consider the environmental down-
side in the strategic and operational decisions
in this emerging industry.

4. Short-term rental. Airbnb is thought to be
crowding out long-term renters. Empirical
research is desirable to quantify such an
impact and guide policy making to curb any
potential downside.

5. Clothes-sharing. Clothes-sharing firms such as
Rent the Runway and Style Lend may be
encouraging customers—who know that they
can resell or share their purchases—to buy
more clothes than they need. This not only
increases the volume of clothes in circulation
but incurs further environmental costs, such as
cleaning, shipping, and packaging, whenever
these items change hands. A holistic view
needs to be taken to evaluate the overall
impact of the notion of sharing clothes.

11. Concluding Remarks

The field of sharing economy and innovative market-
places is an exciting area. The problems of matching
supply with demand in those contexts can be well
rooted in practice and connected with the classic
fields in operations management such as inventory,
supply chain, revenue management, and queueing.
This article aims at building bridges between those
classic problems and the new applications of sharing
economy, which allow us to transfer questions, tech-
niques, intuitions, and insights from one side to the
other.
Moreover, the new applications also motivate us to

learn, invent and develop new questions, techniques,
intuitions and insights, which help us to better under-
stand the essences of the problem of matching supply
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with demand. In particular, the new applications in
sharing economy and innovative marketplaces typi-
cally may have the following features, in contrast to
the classic settings, which need to be considered:

1. Many independent sellers. The suppliers are
independent decision makers and there are a
large number of them. Analyzing such suppli-
ers’ behavior may require approximation tools
such as mean-field approximation (see, e.g., Bal-
seiro et al. 2015) and non-atomic game theory.

2. Supply uncertainty. The supply side has uncer-
tainty, due to the independent, self-scheduling
behavior by suppliers.

3. Platform intermediation. The platform can
influence the decision making of sellers and
buyers who may have private information. The
theory of mechanism design is a desirable tool-
set for designing moderation schemes.

4. Stakeholder welfare. As there are multiple par-
ties involved, it is critical to take into account
the welfare of all parties such as sellers, buy-
ers, and the platforms.

Finally, the applications of sharing economy are
likely to evolve (e.g., crowdsourced drivers and
human couriers may be replaced by autonomous cars
and delivery robots), but the theme of matching sup-
ply with demand will not fade away.
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