
1

Online Appendix to

“Sales Effort Management Under All-or-Nothing Constraint”

Longyuan Du, Ming Hu, Jiahua Wu

We analyze how a seller can adjust the sales intensity to maximize her profit under an all-or-

nothing constraint. This online appendix contains all proofs. The techniques we used to characterize

the optimal policy, analyze the asymptotic bounds, and construct static and dynamic heuristics

with provable performance bounds can be readily applied to the general stochastic point process

control problem when the objective function is discontinuous. In particular:

1. We obtain rich structural properties of the optimal policies in Theorem 1 and Lemma A1 in

this online appendix. We show the precise monotonicity of the optimal sales intensity. That

is, when b≤ p the optimal sales intensity increases in t, whereas when b > p the optimal sales

intensity first increases then decreases in t. To the best of our knowledge, we are the first

to show this “watershed” structure of the optimal sales intensity in the context of revenue

management/sales effort management. The proof of Theorem 1 relies on constructing tight

bounds of ∆t(n) (for instance, when b > p we prove that when t is sufficiently large, ∆t(n)>

p+ exp
(
−
∫ t

0
λ∗(s,n)ds

)
F (n−1)(t), where F (n−1)(t) is a polynomial function of order n− 1

and the leading coefficient is positive), which, we believe, is novel and readily reusable in other

settings.

2. We show that asymptotically optimal static heuristics require a markup on top of the optimal

deterministic sales intensity, which is also unique due to the existence of the all-or-nothing

constraint. The asymptotic analysis requires the bounding of the tail distribution of a Poisson

variable. We use a tight bound in the proof of Proposition 5, which again can be applied in

many other contexts.

3. Regarding resolving heuristics, we show that the standard resolving heuristic in revenue man-

agement that updates the sales intensity by periodically resolving the static problems is not

asymptotically optimal. We propose a modified resolving heuristic with a carefully chosen

switching time that can strike a balance between the loss in the probability of reaching the

target and the cost of extra effort from the higher sales intensity. To the best of our knowledge,

this two-stage resolving heuristic is novel in the literature, and the same technique can be

used in many other settings when the objective function is discontinuous.

Proof of Proposition 1. When n≥ 1, for any t > 0, let us consider a small time period δ. We

have

J∗t+δ(n) = max
λ

(1−λδ) ·J∗t (n) +λδ ·J∗t (n− 1)− c(λ)δ+ o(δ).
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Rearranging the terms and letting δ→ 0, we get Equation (2). The boundary conditions are derived

from the following. At time 0, the optimal expected profit is just 0 if the threshold is not reached,

i.e., J∗0 (n) = 0, ∀n≥ 1. When n= 0, the seller already reaches the threshold. As a result, at any

time t, the optimal λ∗(t,0) shall maximize the profit rate λp− c(λ). Thus, the profit rate when

n = 0 is given by ∂J∗
t (0)

∂t
= max

λ
{λp− c(λ)}. Given that J∗0 (0) = b, we thus obtain the announced

result. �

Proof of Theorem 1. The monotonicity of J∗t (n) is obvious, and thus we omit the proof here.

To prove parts (ii) and (iii) of the theorem, we prove the following lemma first.

Lemma A1. (i) ∀n≥ 2 and 0< z ≤+∞, if ∂∆t(n−1)

∂t
≥ 0 for any t ∈ [0, z], then ∂∆t(n)

∂t
> 0 for

any t∈ [0, z];

(ii) ∀n≥ 1, if ∂∆t(n)

∂t

∣∣∣
t=z
≤ 0, then ∂∆t(n)

∂t
≤ 0 for any t > z;

(iii) ∀n≥ 0, lim
t→∞

λ∗(t, n) = λ∗.

Proof of Lemma A1. (i) For notational convenience, we let J∗t (−1) = J∗(0) + p. First we show

that

λ∗(t, n)
[
∆t(n− 1)−∆t(n)

]
≤ ∂∆t(n)

∂t
≤ λ∗(t, n− 1)

[
∆t(n− 1)−∆t(n)

]
. (OA.1)

For any time t and a small time interval δ, we have

J∗t+δ(n) = max
λ

(1−λδ) ·J∗t (n) +λδ ·J∗t (n− 1)− c(λ)δ+ o(δ)

≥ (1−λ∗(t, n− 1)δ) ·J∗t (n) +λ∗(t, n− 1)δ ·J∗t (n− 1)− c(λ∗(t, n− 1))δ+ o(δ).

Rearranging the terms and letting δ → 0, we have ∂J∗
t (n)

∂t
≥ λ∗(t, n − 1)∆t(n) − c(λ∗(t, n − 1)).

Therefore,

∂∆t(n)

∂t
=
∂J∗t (n− 1)

∂t
− ∂J

∗
t (n)

∂t

≤ [λ∗(t, n− 1)∆t(n− 1)− c(λ∗(t, n− 1))]− [λ∗(t, n− 1)∆t(n)− c(λ∗(t, n− 1))]

= λ∗(t, n− 1) [∆t(n− 1)−∆t(n)] .

Similarly, we can also show that ∂∆t(n)

∂t
≥ λ∗(t, n) [∆t(n− 1)−∆t(n)].

Define

Lt(n)≡
∫ t

0

λ∗(s,n)ds.

Since ∆0(n) = 0 for n≥ 2, applying Grönwall’s inequality to Inequality (OA.1), we have:

∆t(n)≤ exp (−Lt(n− 1))

∫ t

0

exp(Ls(n− 1))∆s(n− 1)λ∗(s,n− 1)ds,
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for any t≤ z. Since ∆t(n− 1) increases in t from the stipulation of Lemma A1(i), we have

∆t(n)≤ exp (−Lt(n− 1))∆t(n− 1)

∫ t

0

exp(Ls(n− 1))λ∗(s,n− 1)ds <∆t(n− 1).

Based on Inequality (OA.1), we have ∂∆t(n)

∂t
≥ λ∗(t, n)

[
∆t(n− 1)−∆t(n)

]
> 0.

(ii) We show this by induction. Consider first when n= 1. Suppose the statement is not true, then

there exists t2 > t1 ≥ z such that ∂∆t(1)

∂t

∣∣∣
t=t1

= 0 and ∂∆t(1)

∂t
> 0 for all t ∈ (t1, t2]. From Inequality

(OA.1), we have ∆t1(0)−∆t1(1) = 0, and ∆t(0)−∆t(1)> 0 for all t∈ (t1, t2]. Because ∆s(0) = p, ∀s

by construction, we have ∆t1(1) = p and ∆t(1)< p for all t∈ (t1, t2]. Because ∆t(1) strictly increases

between [t1, t2], we have ∆t(1) > p for any t ∈ (t1, t2], which leads to contradiction. Thus, the

statement is true for n= 1.

Now assume the statement is true for n− 1 and let us consider n. Suppose the statement is not

true for n, then there exists t2 > t1 ≥ z such that ∂∆t(n)

∂t

∣∣∣
t=t1

= 0 and ∂∆t(n)

∂t
> 0 for all t ∈ (t1, t2].

From Inequality (OA.1), we have ∆t1(n − 1) − ∆t1(n) = 0, and ∆t(n − 1) − ∆t(n) > 0 for all

t ∈ (t1, t2]. First we know that, if ∂∆t(n−1)

∂t

∣∣∣
t=z

> 0, ∂∆t(n−1)

∂t
> 0 for any t ≤ z. (Otherwise, there

exists a t1 < z such that ∂∆t(n−1)

∂t

∣∣∣
t=t1

≤ 0. Using the assumption for n− 1, we have ∂∆t(n−1)

∂t
≤ 0

for any t≥ t1, which leads to contradiction.) According to Lemma A1(i), ∂∆t(n)

∂t
> 0 for any t≤ z,

which in turn means ∂∆t(n)

∂t

∣∣∣
t=z

> 0. This contradicts with our assumption that ∂∆t(n)

∂t

∣∣∣
t=z
≤ 0. Thus

we must have ∂∆t(n−1)

∂t

∣∣∣
t=z
≤ 0. Using our assumption for n− 1, this implies that ∂∆t(n−1)

∂t
≤ 0 for

any t ≥ z. Because ∆t(n− 1) decreases in t and ∆t(n) strictly increases in t for any t ∈ [t1, t2],

∆t(n−1)−∆t(n) also strictly decreases in t for any t∈ [t1, t2]. Thus ∆t(n−1)−∆t(n)< 0 for any

t∈ (t1, t2], which leads to contradiction. We thus complete the proof.

(iii) In order to prove lim
t→∞

λ∗(t, n) = λ∗, it is sufficient to show that lim
t→∞

∆t(n) = p as λ∗(t, n) =

arg maxλ∈[λ,λ̄] {λ∆t(n)− c(λ)}. We prove this by induction. For n= 0, ∆t(0) = p by construction.

Now suppose lim
t→∞

∆t(n − 1) = p. Then for any ε > 0, there exists a z such that for any t > z,

p− ε <∆t(n− 1)< p+ ε. From Inequality (OA.1),

∆t(n) ≥ ∆z(n) · exp (Lz(n)−Lt(n)) + exp(−Lt(n))

∫ t

z

exp (Ls(n))∆s(n− 1)λ∗(s,n)ds

> ∆z(n) · exp(Lz(n)−Lt(n)) + (p− ε) · exp (−Lt(n))

∫ t

z

exp (Ls(n))λ∗(s,n)ds

= ∆z(n) · exp(Lz(n)−Lt(n)) + (p− ε)[1− exp (Lz(n)−Lt(n))]

= p− ε− [p− ε−∆z(n)] exp (Lz(n)−Lt(n)) .

Since lim
t→∞

Lt(n) = +∞, we can find a z1 such that ∆t(n)> p− 2ε for any t > z1. Similarly, we

can find a z2 such that ∆t(n) < p+ 2ε for any t > z2. Thus the statement is true for n, and we

obtain the announced result. �
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Now, we are ready to prove Theorem 1 parts (ii) and (iii). Recall that λ∗(t, n) =

arg maxλ∈[λ,λ̄] {λ∆t(n)− c(λ)}= sup{λ≤ λ̄ : ∆t(n)≥ c′(λ)}∨λ. Since c(λ) is convex, c′(λ) increases

in λ. Therefore the weak monotonicity in t and n of ∆t(n) implies the weak monotonicity of λ∗(t, n).

We thus only need to show the monotonicity of ∆t(n) in t and n. Furthermore, from Inequality

(OA.1), we know that ∆t(n) weakly increases (decreases) in t if and only if ∆t(n− 1) ≥ ∆t(n)

(∆t(n− 1)≤∆t(n)). Therefore, it suffices to show the monotonicity of ∆t(n) in t.

First, we prove Theorem 1(iii) when b≤ p. Based on λ∗(t,0) = λ∗ and Inequality (OA.1), we have

∆t(1)≤ e−λ
∗t

[
∆0(0) +

∫ t

0

λ∗eλ
∗s∆s(0)ds

]
= e−λ

∗t

[
b+ p

∫ t

0

λ∗eλ
∗s ds

]
= p− (p− b)e−λ

∗t ≤ p.

This further implies that ∆t(1) increases in t based on Inequality (OA.1). From Lemma A1, we

thus have ∆t(n) strictly increases in t for any n≥ 2.

Now we prove Theorem 1(ii) when b > p. To that end, we prove a stronger statement that

there exists an ηn such that for any t≥ ηn, ∆t(n)≥ p+ exp(−Lt(n))F (n−1)(t), where F (n−1)(t) =

θ(n−1)tn−1 +θ(n−2)tn−2 + · · ·+θ(0) with θ(n−1) > 0. If this inequality holds, then we have F (n−1)(t)>

0 when t is sufficiently large, which further implies that ∆t(n) > p when t is sufficiently large.

Note that lim
t→∞

∆t(n) = p. This means ∆t(n) must be approaching p from above. Combining with

∆0(n) = 0≤ p for any n≥ 2 and Lemma A1(ii), we can then conclude that ∆t(n) must first increase

and then decrease in t.

We prove the inequality ∆t(n)≥ p+ exp(−Lt(n))F (n−1)(t) by induction. For n= 1,

J∗t (1) = exp(−Lt(1))

∫ t

0

exp(Ls(1)) [λ∗(s,1) (b+ (λ∗p− c(λ∗))s)− c(λ∗(s,1))] ds

= exp(−Lt(1))

∫ t

0

exp(Ls(1)) · [λ∗(s,1) (b+ (λ∗p− c(λ∗))s− p) +λ∗(s,1)p− c(λ∗(s,1))] ds.

Because λ∗ maximizes λp− c(λ), λ∗(s,1)p− c(λ∗(s,1))≤ λ∗p− c(λ∗) for any s∈ [0, T ]. Thus,

J∗t (1) ≤ exp (−Lt(1))

∫ t

0

exp (Ls(1)) · [λ∗(s,1) (b+ (λ∗p− c(λ∗))s− p) +λ∗p− c(λ∗)] ds

= exp(−Lt(1))

[∫ t

0

(b+ (λ∗p− c(λ∗))s− p)d exp (Ls(1)) +

∫ t

0

exp (Ls(1)) (λ∗p− c(λ∗)) ds

]
= exp(−Lt(1))

[
(b+ (λ∗p− c(λ∗))t− p) exp(Lt(1))− (b− p)−

∫ t

0

exp (Ls(1)) (λ∗p− c(λ∗)) ds+

∫ t

0

exp(Ls(1)) (λ∗p− c(λ∗)) ds

]
= b+ (λ∗p− c(λ∗))t− p− (b− p) exp (−Lt(1)) .

Consequently, we have ∆t(1) = J∗t (0)−J∗t (1)≥ p+ (b− p) exp(−Lt(1)).
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Now suppose the statement is true for n−1. There exists an η≥ 0 such that ∆t(n−1) (and thus

also λ∗(t, n− 1)) decreases in t when t≥ η. We first show that Lt(n)−Lt(n− 1) is bounded from

below, i.e., Lt(n)−Lt(n− 1)≥C , where C is a constant independent of t.

Applying Grönwall’s Inequality on Inequality (OA.1) over [η, t], we have

∆t(n) ≥ ∆η exp

(
−
∫ t

η

λ∗(s,n)ds

)
+

∫ t

η

exp

(
−
∫ t

s

λ∗(s,n)ds

)
∆s(n− 1)ds

= ∆η(n) · exp (Lη(n)−Lt(n)) + exp(−Lt(n))

∫ t

η

exp (Ls(n))∆s(n− 1)λ∗(s,n)ds

≥ ∆η(n) · exp (Lη(n)−Lt(n)) + ∆t(n− 1) · exp (−Lt(n))

∫ t

η

exp (Ls(n))λ∗(s,n)ds

= ∆η(n) · exp (Lη(n)−Lt(n)) + ∆t(n− 1) · [1− exp(Lη(n)−Lt(n))]

= ∆t(n− 1) + [∆η(n)−∆t(n− 1)] exp(Lη(n)) · exp(−Lt(n)),

where the second inequality is due to the stipulation that ∆t(n− 1) decreases in t for any t≥ η.

Note that ∆t(n− 1) is bounded from above. Also η is a constant independent of t. We can thus

find a constant C1 such that [∆η(n)−∆t(n− 1)] exp(Lη(n)) ≥ C1 for any t > η, which implies

∆t(n)−∆t(n− 1)≥C1 exp(−Lt(n)).

Let λ̃(t, n) be the unique solution of equation ∆t(n) = c′(λ). Then for t’s such that λ̃(t, n) ≤

λ̃(t, n − 1), ∆t(n) −∆t(n − 1) = c′(λ̃(t, n)) − c′(λ̃(t, n − 1)) ≤ α(λ̃(t, n) − λ̃(t, n − 1)), where α =

min
λ∈[λ,λ̄]

c′′(λ)> 0. Hence for any t≥ η, λ̃(t, n)− λ̃(t, n− 1)≥ C1
α

exp(−Lt(n)) if λ̃(t, n)≤ λ̃(t, n− 1).

This further implies that λ̃(t, n)− λ̃(t, n− 1)≥− |C1|
α

exp(−Lt(n)) for any t≥ η.

Note that λ∗(t, n) = arg maxλ∈[λ,λ̄] {λ∆t(n)− c(λ)}= sup{λ≤ λ̄ : ∆t(n)≥ c′(λ)} ∨ λ= (λ̃(t, n) ∧

λ̄)∨λ. We show that there exists some constant w≥ η such that for any t≥w, λ∗(t, n)−λ∗(t, n−

1)≥ λ̃(t, n)− λ̃(t, n− 1) if λ∗(t, n)< λ∗(t, n− 1). From Assumption 1(iii), λ∗ ∈ [λ, λ̄]. Consider the

following three cases:

(a) If λ∗ = λ, lim
t→∞

λ∗(t, n) = λ∗ < λ̄ from Lemma A1(iii). Thus there exists some constant w ≥

η such that λ∗(t, n) = λ̃(t, n) ∨ λ and λ∗(t, n − 1) = λ̃(t, n − 1) ∨ λ for any t ≥ w. If λ∗(t, n) <

λ∗(t, n− 1), λ̃(t, n− 1)>λ (otherwise λ∗(t, n)<λ∗(t, n− 1) = λ̃(t, n− 1)∨λ= λ, which contradicts

with λ∗(t, n) ≥ λ). This implies that λ∗(t, n − 1) = λ̃(t, n − 1) ∨ λ = λ̃(t, n − 1). Also note that

λ∗(t, n)≥ λ̃(t, n). Therefore, for any t≥w, if λ∗(t, n)<λ∗(t, n−1), λ∗(t, n)−λ∗(t, n−1) = λ∗(t, n)−

λ̃(t, n− 1)≥ λ̃(t, n)− λ̃(t, n− 1).

(b) If λ∗ = λ̄, lim
t→∞

λ∗(t, n) = λ∗ >λ from Lemma A1(iii). Thus there exists some constant w≥ η

such that λ∗(t, n) = λ̃(t, n)∧ λ̄ and λ∗(t, n−1) = λ̃(t, n−1)∧ λ̄ for any t≥w. If λ∗(t, n)<λ∗(t, n−1),



6

λ̃(t, n) < λ̄ (otherwise λ∗(t, n − 1) > λ∗(t, n) = λ̃(t, n) ∧ λ̄ = λ̄, which contradicts with λ∗(t, n −

1)≤ λ̄). This implies that λ∗(t, n) = λ̃(t, n) ∧ λ̄= λ̃(t, n). Also note that λ∗(t, n− 1)≤ λ̃(t, n− 1).

Therefore, for any t ≥ w, if λ∗(t, n) < λ∗(t, n− 1), λ∗(t, n)− λ∗(t, n− 1) = λ̃(t, n)− λ∗(t, n− 1) ≥

λ̃(t, n)− λ̃(t, n− 1).

(c) If λ∗ ∈ (λ, λ̄), lim
t→∞

λ∗(t, n) = λ∗ ∈ (λ, λ̄) from Lemma A1(iii). Therefore λ∗(t, n) = λ̃(t, n) and

λ∗(t, n− 1) = λ̃(t, n− 1) when t is sufficiently large. We can find some constant w ≥ η such that

λ∗(t, n) = λ̃(t, n) and λ∗(t, n− 1) = λ̃(t, n− 1) for any t≥w, which implies that λ∗(t, n)−λ∗(t, n−

1) = λ̃(t, n)− λ̃(t, n− 1).

Recall our earlier result that λ̃(t, n)− λ̃(t, n− 1) ≥ − |C1|
α

exp(−Lt(n)) for any t ≥ η. Therefore

there exists some constant w ≥ η, such that for any t ≥ w, if λ∗(t, n) < λ∗(t, n − 1), λ∗(t, n) −

λ∗(t, n− 1)≥ λ̃(t, n)− λ̃(t, n− 1)≥− |C1|
α

exp(−Lt(n)). Thus,

Lt(n)−Lt(n− 1) =

∫ t

0

(λ∗(s,n)−λ∗(s,n− 1)) ds

≥
∫ w

0

(λ∗(s,n)−λ∗(s,n− 1)) ds+

∫ t

w

[λ∗(s,n)−λ∗(s,n− 1)]
−

ds

=

∫ w

0

(λ∗(s,n)−λ∗(s,n− 1)) ds+

∫ t

w

(λ∗(s,n)−λ∗(s,n− 1))1{λ∗(s,n)<λ∗(s,n− 1)} ds

≥
∫ w

0

(λ∗(s,n)−λ∗(s,n− 1)) ds−
∫ t

w

|C1|
α

exp(−Ls(n))1{λ∗(s,n)<λ∗(s,n− 1)} ds

≥
∫ w

0

(λ∗(s,n)−λ∗(s,n− 1)) ds−
∫ t

0

|C1|
α
e−λs ds,

where 1{A} is an indicator function that equals one if condition A holds and zero otherwise.

Because w is a constant independent of t,
∫ w

0
(λ∗(s,n)−λ∗(s,n− 1)) ds is also a constant. Since∫ t

0

|C1|
α
e−λs ds is bounded from above, Lt(n)−Lt(n− 1) is bounded from below, i.e., we can find a

constant C such that Lt(n)−Lt(n− 1)≥C for any t.

Our stipulation for n−1 says ∆t(n−1)≥ p+exp(−Lt(n−1))F (n−2)(t) for any t≥ ηn−1. Because

the leading coefficient of F (n−2)(t) is positive and lim
t→∞

λ∗(t, n) = λ∗, we can find some z ≥ ηn−1 such

that F (n−2)(t) > 0 and λ∗(t, n) ≥ λ∗+λ

2
for any t > z. Thus, by applying Grönwall’s Inequality to

Inequality (OA.1) over [z, t], we have

∆t(n) ≥ ∆z exp

(
−
∫ t

z

λ∗(s,n)ds

)
+

∫ t

z

exp

(
−
∫ t

s

λ∗(s,n)ds

)
∆s(n− 1)ds

= ∆z(n) exp(Lz(n)−Lt(n)) + exp(−Lt(n))

∫ t

z

exp (Ls(n))λ∗(s,n)∆s(n− 1)ds

= exp(−Lt(n))

[
∆z(n) exp(Lz(n)) +

∫ t

z

exp (Ls(n))λ∗(s,n)∆s(n− 1)ds

]
≥ exp (−Lt(n))

[
∆z(n) exp(Lz(n)) +

∫ t

z

exp (Ls(n))
[
p+ exp(−Ls(n− 1))F (n−2)(s)

]
λ∗(s,n)ds

]
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= exp(−Lt(n))

[
∆z(n) exp(Lz(n)) +

∫ t

z

p · exp (Ls(n))λ∗(s,n)ds+

∫ t

z

exp (Ls(n)−Ls(n− 1))F (n−2)(s)λ∗(s,n)ds

]

= exp(−Lt(n))

[
∆z(n) exp(Lz(n)) + p · exp(Lt(n))− p · exp(Lz(n)) +

∫ t

z

exp (Ls(n)−Ls(n− 1))F (n−2)(s)λ∗(s,n)ds

]

= p+ exp(−Lt(n))

[
(∆z(n)− p) exp(Lz(n)) +

∫ t

z

exp (Ls(n)−Ls(n− 1))F (n−2)(s)λ∗(s,n)ds

]
.

Note that for any s∈ [z, t], λ∗(s,n)≥ λ∗+λ

2
, Ls(n)−Ls(n− 1)≥C , and F (n−2)(s)≥ 0. Therefore

∆t(n) ≥ p+ exp(−Lt(n))

[
(∆z(n)− p) exp(Lz(n)) +

∫ t

z

exp(C ) ·F (n−2)(s) · λ
∗+λ

2
ds

]
= p+ exp(−Lt(n))

[
(∆z(n)− p) exp(Lz(n)) + exp(C ) · λ

∗+λ

2
·
∫ t

z

F (n−2)(s)ds

]
= p+ exp(−Lt(n))F (n−1)(t),

where we denote F (n−1)(t)≡ (∆z(n)−p) exp(Lz(n))+exp(C ) · λ
∗+λ

2
·
∫ t
z
F (n−2)(s)ds. Since F (n−2)(t)

is a polynomial function of t of order n− 2 and the leading coefficient is positive,
∫ t
z
F (n−2)(s)ds

is a polynomial function of t of order n− 1 and its leading coefficient is also positive. Because

(∆z(n)− p) exp(Lz(n)) is a constant independent of t, F (n−1)(t) is a polynomial function of t of

order n− 1 and its leading coefficient is also positive. Therefore, the statement is also true for n.

The strict monotonicity of τ(n) is a direct result of Lemma A1(i), and thus we complete the

proof of Theorem 1(ii).

lim
t→∞

λ∗(t, n) = λ∗, ∀n≥ 0 in Theorem 1(iv) is shown in Lemma A1(iii). lim
t→0

λ∗(t, n) = λ, ∀n > 0

is obvious, and thus we omit the proof here. �

Proof of Proposition 2. First, we solve the following maximization problem

Π̃D = maxΛ π̃D(Λ) = b+ p (ΛT −N)− c(Λ)T

s.t. ΛT ≥N.

It is easy to verify that the optimal solution is given by Λ∗ = λD and Π̃D = π̃D(λD).

Next we show that Π̃D is an upper bound for πD(λ). Based on Jensen’s inequality, for any λ,

we have

πD(λ) = b+ p

(∫ T

0

λt dt−N
)
−
∫ T

0

c(λt)dt
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≤ b+ p

(∫ T

0

λt dt−N
)
−T · c

(
1

T

∫ T

0

λt dt

)
= π̃D

(
1

T

∫ T

0

λt dt

)
.

Therefore,

ΠD = max

{
πD(λ) :

∫ T

0

λt dt≥N
}
≤max

{
π̃D

(
1

T

∫ T

0

λt dt

)
:

∫ T

0

λt dt≥N
}

= Π̃D.

Because πD(λD) = Π̃D, we thus obtain the announced result. �

Proof of Proposition 3. Because c(λ) is convex, we have
∫ θ

0
c(λs)ds≥ θ · c

(
1
θ

∫ θ
0
λs ds

)
based on

Jensen’s inequality. Therefore,

Π(θ)
u = Eu

(
θb+ p

(∫ θ

0

dDs− θN
)∣∣∣∣∫ θ

0

dDs ≥ θN
)
Pu
(∫ θ

0

dDs ≥ θN
)
−Eu

∫ θ

0

c(λs)ds

≤ θ ·Eu
(
b+ p

(
1

θ

∫ θ

0

dDs−N
)
− c
(

1

θ

∫ θ

0

dDs

)∣∣∣∣1θ
∫ θ

0

dDs ≥N
)
Pu
(∫ θ

0

dDs ≥ θN
)

+θ ·
[
Eu
(
c

(
1

θ

∫ θ

0

dDs

)∣∣∣∣1θ
∫ θ

0

dDs ≥N
)
Pu
(∫ θ

0

dDs ≥ θN
)
−Euc

(
1

θ

∫ θ

0

λs ds

)]
Using the definition of Π

(θ)
D , θ ·Eu

(
b+ p

(
1
θ

∫ θ
0

dDs−N
)
− c
(

1
θ

∫ θ
0

dDs

)∣∣∣ 1θ ∫ θ0 dDs ≥N
)
≤Π

(θ)
D .

Therefore,

Π(θ)
u ≤ Π

(θ)
D ·Pu

(∫ θ

0

dDs ≥ θN
)

+θ ·
[
Eu
(
c

(
1

θ

∫ θ

0

dDs

)∣∣∣∣1θ
∫ θ

0

dDs ≥N
)
Pu
(∫ θ

0

dDs ≥ θN
)
−Euc

(
1

θ

∫ θ

0

λs ds

)]
< Π

(θ)
D ·Pu

(∫ θ

0

dDs ≥ θN
)

+ θ ·Eu
[
c

(
1

θ

∫ θ

0

dDs

)
− c
(

1

θ

∫ θ

0

λs ds

)]
.

Because
(∫ θ

0
dDs−

∫ θ
0
λs ds

)2

−
∫ θ

0
λs ds is also a martingale, Var

{∫ θ
0

dDs−
∫ θ

0
λs ds

}
= O(θ).

Therefore

Eu
[
c

(
1

θ

∫ θ

0

dDs

)
− c
(

1

θ

∫ θ

0

λs ds

)]
=Eu

[
c′ (ξ) ·

(
1

θ

∫ θ

0

dDs−
1

θ

∫ θ

0

λs ds

)]

≤ c′(λ̄) ·Eu
∣∣∣∣1θ
∫ θ

0

dDs−
1

θ

∫ θ

0

λs ds

∣∣∣∣≤ c′(λ̄) · 1
θ

[
Eu
(∫ θ

0

dDs−
∫ θ

0

λs ds

)2
]1/2

=O(1/
√
θ),

where ξ is between 1
θ

∫ θ
0

dDs and 1
θ

∫ θ
0
λs ds. Therefore,

Π(θ)
u <Π

(θ)
D ·Pu

(∫ θ

0

dDs ≥ θN
)

+O(
√
θ).

Since Pu
(∫ θ

0
dDs ≥ θN

)
≤ 1 and Π

(θ)
D = Θ(θ), lim sup

θ→∞

Π
(θ)
u

Π
(θ)
D

≤ 1.
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Now for policies that have lim
θ→∞

Eu
∫ θ
0 λsds
θN

< 1. Using Markov’s inequality, we have

Pu
(∫ θ

0

dDs ≥ θN
)
≤

Eu
∫ θ

0
dDs

θN
=

Eu
∫ θ

0
λs ds

θN
.

Therefore, lim
θ→∞

Π
(θ)
u

Π
(θ)
u

≤ lim
θ→∞

Eu
∫ θ
0 λsds
θN

< 1. �

Proof of Proposition 4. Our proof uses the following result.

Lemma A2. Let X be a random variable with Poisson distribution with rate λ. For any 0<x<

λ,

P (X ≤ λ−x)≤ exp

(
−x

2

2λ

)
.

Lemma A2 provides a bound for the tail of a Poisson distribution. We refer interested readers

to Canonne (2017) and the remark on page 13 of Pollard (2015) for the proof.

Without loss of generality, we assume that T = 1. When λ∗ > N , we know that Π
(θ)
D =

θ [b+ p(λ∗−N)− c(λ∗)]. For the stochastic problem with the static heuristic, the sales process

follows a homogeneous Poisson process with rate λ∗ > N , and thus the total sales
∫ θ

0
dDs has a

Poisson distribution with rate λ∗θ. Based on Lemma A2, we have

P
(∫ θ

0

dDs ≥ θN
)

= 1−P
(∫ θ

0

dDs <λ
∗θ− θ(λ∗−N)

)
≥ 1− exp

[
−(λ∗−N)2

2λ∗
θ

]
.

Therefore,

Π
(θ)
SH = E

(
θb+ p

(∫ θ

0

dDs− θN
)∣∣∣∣∫ θ

0

dDs ≥ θN
)
P
(∫ θ

0

dDs ≥ θN
)
−
∫ θ

0

c(λs)ds

≥ E
(
θb+ p

(∫ θ

0

dDs− θN
))(

1− exp

[
−(λ∗−N)2

2λ∗
θ

])
− c(λ∗)θ

= Π
(θ)
D − θ[b+ p(λ∗−N)] exp

[
−(λ∗−N)2

2λ∗
θ

]
.

Because Π
(θ)
D ≥Π

(θ)
SH when θ is sufficiently large, we thus conclude that lim

θ→∞

(
Π

(θ)
D −Π

(θ)
SH

)
= 0. �

Proof of Proposition 5. Without loss of generality, we assume that T = 1. When λ∗ ≤N , the

optimal profit for the deterministic problem is given by Π
(θ)
D = θ [b− c(N)]. Next consider the

stochastic problem. Given that λ
(θ)
SH = λD+f(θ), the total sales

∫ θ
0
dDs follows a Poisson distribution

with mean θN + θf(θ). It is easy to verify that the static heuristic is not asymptotically optimal

when lim
θ→∞
|f(θ)|> 0. Thus, we focus solely on heuristics such that lim

θ→∞
f(θ) = 0.

First, consider the case when lim
θ→∞

√
θf(θ)<∞. Let Yθ =

∫ θ
0 dDs−(θN+θf(θ))√

θN+θf(θ)
. Thus,

∫ θ
0

dDs ≥ θN is

equivalent to Yθ ≥− θf(θ)√
θN+θf(θ)

. Because lim
θ→∞

√
θf(θ)<∞, there exists −∞≤B <+∞, such that

lim
θ→∞

θf(θ)√
θN+θf(θ)

= B. Based on Central Limit Theorem, we have

P

(
Yθ ≥−

θf(θ)√
θN + θf(θ)

)
= Φ(B) + o(1),
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where Φ(·) is the c.d.f. of the standard normal distribution. From the proof of Proposition 3, we

know that

Π
(θ)
SH <Π

(θ)
D ·P

(∫ θ

0

dDs ≥ θN
)

+O(
√
θ) = Φ(B) ·Π(θ)

D + o(θ).

Since Φ(B)< 1, lim
θ→∞

Π
(θ)
SH

Π
(θ)
D

< 1.

Next consider the case when lim
θ→∞

√
θf(θ) =∞. From Lemma A2, we have

P
(∫ θ

0

dDs ≥ θN
)

= P
(∫ θ

0

dDs ≥ (θN + θf(θ))− θf(θ)

)
≥ 1− exp

[
− (θf(θ))2

2(θN + θf(θ))

]
> 1− exp

(
− θf2(θ)

2(N + 1)

)
(∵ f(θ)< 1).

Consequently, we have

1

θ
Π

(θ)
SH =

[
b− pN + p

1

θ
E
(∫ θ

0

dDs

∣∣∣∣∫ θ

0

dDs ≥ θN
)]

P
(∫ θ

0

dDs ≥ θN
)
− 1

θ

∫ θ

0

c(λs)ds

≥
[
b− pN + p

1

θ
E
(∫ θ

0

dDs

)]
P
(∫ θ

0

dDs ≥ θN
)
− c(λD + f(θ))

= [b+ pf(θ)] ·P
(∫ θ

0

dDs ≥ θN
)
− c(λD + f(θ))

> [b+ pf(θ)] ·
[
1− exp

(
− θf2(θ)

2(N + 1)

)]
− c(λD + f(θ))

=
1

θ
ΠD(θ)− b exp

(
− θf2(θ)

2(N + 1)

)
− (c′(λD)− p)f(θ)− c

′′(λD)

2
[f(θ)]

2
+ o
(

[f(θ)]
2
)

).

Since θf2(θ)→∞, 1
θ
Π

(θ)
SH ≥ 1

θ
Π

(θ)
D + o(1). Coupling with the result that lim

θ→∞
1
θ
Π

(θ)
D ≥ lim

θ→∞
1
θ
Π

(θ)
opt ≥

lim
θ→∞

1
θ
Π

(θ)
SH , we conclude that lim

θ→∞
1
θ
Π

(θ)
SH = lim

θ→∞
1
θ
Π

(θ)
D . That is, the static heuristic is asymptotically

optimal when lim
θ→∞

√
θf(θ) =∞. In particular, if λ∗ =N , we have c′(λD) = p. Then for any ε > 0, we

can let f(θ) = θ−0.5+ε/2, and the performance loss of the corresponding static heuristic is bounded

by Π
(θ)
D −Π

(θ)
SH =O(θε). On the other hand, if λ∗ <N , then for any ε > 0, we can let f(θ) = θ−0.5+ε,

and the performance loss of the corresponding static heuristic is bounded by Π
(θ)
D −Π

(θ)
SH =O(θ0.5+ε).

Lastly, we show that the performance gap increases at a rate greater than
√
θ when λ∗ < N .

Notice that

Π
(θ)
SH ≤ θ ·E

(
b+ p

(
1

θ

∫ θ

0

dDs−N
)
− c
(

1

θ

∫ θ

0

dDs

)∣∣∣∣∫ θ

0

dDs ≥ θN
)
P
(∫ θ

0

dDs ≥ θN
)

+O(
√
θ)

< θ ·E
(
b+ p

(
1

θ

∫ θ

0

dDs−N
)
− c
(

1

θ

∫ θ

0

dDs

))
+O(

√
θ)

≤ θ

[
b+ p ·

(
E
(

1

θ

∫ θ

0

dDs

)
−N

)
− c
(
E
(

1

θ

∫ θ

0

dDs

))]
+O(

√
θ)
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= θ [b+ pf(θ)− c(λD + f(θ))] +O(
√
θ),

where the last inequality is due to Jensen’s inequality. With Taylor’s expansion, we know that

c(λD + f(θ)) = c(λD) + c′(λD)f(θ) + o(f(θ)). Thus, we have

Π
(θ)
SH ≤ θ (b− c(λD)) + θf(θ) [p− c′(λD)] +O(

√
θ) = Π

(θ)
D + f(θ) [p− c′(λD)] +O(

√
θ).

Because λ∗ < λD, we have p − c′(λD) < 0, and thus 1
θ

(
Π

(θ)
D −Π

(θ)
SH

)
= Ω(f(θ)). Because

lim
θ→∞

√
θf(θ) =∞, we conclude that 1√

θ

(
Π

(θ)
D −Π

(θ)
SH

)
=∞. �

Next, we show two auxiliary results, which will be used in the proofs of Proposition 6 and

Theorem 2.

Lemma A3. Denote D̂t as the realized demand between time-to-go t and t − 1, and let δt =

D̂t−ED̂t. If
T∑

s=l+1

δs
s−1

<λD−λ∗ for any l≥ t, then

λ̂t = λD−
T∑

s=t+1

δs
s− 1

. (OA.2)

Proof of Lemma A3. We prove the lemma by induction. At t = T , we have λ̂T = λD = N/T

and n̂T =N . Because D̂T is a Poisson random variable with mean λ̂T , ED̂T =N/T . Thus, we can

update the threshold as follows

n̂T−1 =N − D̂T =N − δT −ED̂T =
T − 1

T
N − δT .

If δT
T−1

<λD−λ∗ =N/T −λ∗, then we have n̂T−1 > (T − 1)λ∗. Thus,

λ̂T−1 = max

{
λ∗,

n̂T−1

T − 1

}
=
n̂T−1

T − 1
=

T−1
T
N − δT
T − 1

= λD−
δT

T − 1
.

Now suppose that Equation (OA.2) holds for t. That is, λ̂t = λD −
T∑

s=t+1

δs
s−1

, which implies that

λ̂t > λ∗ and n̂t = λ̂tt. Because D̂t is a Poisson random variable with mean λ̂t, we have ED̂t = λ̂t.

Thus, the updated threshold is given by

n̂t−1 = n̂t− D̂t = n̂t− δt−ED̂t = λ̂t(t− 1)− δt.

Therefore,

nt−1

t− 1
=
λ̂t(t− 1)− δt

t− 1
= λ̂t−

δt
t− 1

= λD−
T∑
s=t

δs
s− 1

.

When
T∑
s=t

δs
s−1

<λD−λ∗, we have
nt−1

t−1
>λ∗. Thus, λ̂t−1 = max

{
λ∗,

n̂t−1

t−1

}
=

n̂t−1

t−1
= λD−

T∑
s=t

δs
s−1

, and

we obtain the announced result. �
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Lemma A4. For any 0 < x < min
{
λ̄−λD, λD−λ∗

}
, let τ(x) be the first time-to-go such that

|λ̂t−λD| ≥ x. There exists Ψ(x)> 0 (independent of t), such that, for any 1≤ t≤ T − 2,

P (τ(x)> t)<
Ψ(x)

t
.

Proof of Lemma A4. Based on Lemma A3, we know that

P (τ(x)> t) = P

(
max

t+1≤l≤T−1

∣∣∣∣∣
T∑

s=l+1

δs
s− 1

∣∣∣∣∣≥ x
)
.

Notice that
T∑
s=t

δs
s−1

is a backwards martingale w.r.t. filtration {Ht}, where Ht is the observed

history up to time-to-go t. Based on Doob’s maximal inequality, we thus have

P (τ(x)> t) = P

(
max

t+1≤l≤T−1

∣∣∣∣∣
T∑

s=l+1

δs
s− 1

∣∣∣∣∣≥ x
)
≤ 1

x2
E

(
T∑

s=t+2

δs
s− 1

)2

.

For any s < t, we know that E[δsδt] =E [δtE (δs|δt)] = 0. Therefore,

E

(
T∑

s=t+2

δs
s− 1

)2

=
T∑

s=t+2

Eδ2
s

(s− 1)2
=

T∑
s=t+2

Var(D̂s)

(s− 1)2
<

T∑
s=t+2

λ̄

(s− 1)2
<

T∑
s=t+2

λ̄

(s− 1)(s− 2)
<
λ̄

t
.

Let Ψ(x) = λ̄
x2 . We can then conclude that P (τ(x)> t)< Ψ(x)

t
. �

Proof of Proposition 6. Without loss of generality, we assume that T = 1. Thus,

Π
(θ)
RH =

[
θb+ p ·E

(
θ∑
t=1

D̂t− θN

∣∣∣∣∣
θ∑
t=1

D̂t ≥ θN

)]
P

(
θ∑
t=1

D̂t ≥ θN

)
−E

θ∑
t=1

c(λ̂t)

= θ (b− pN)P

(
θ∑
t=1

D̂t ≥ θN

)
+ pE

(
θ∑
t=1

D̂t

∣∣∣∣∣
θ∑
t=1

D̂t ≥ θN

)
P

(
θ∑
t=1

D̂t ≥ θN

)
−E

θ∑
t=1

c(λ̂t)

< θ (b− pN)− θ (b− pN)P

(
θ∑
t=1

D̂t < θN

)
+ pE

(
θ∑
t=1

D̂t

)
−E

θ∑
t=1

c(λ̂t).

Using Jensen’s inequality, we have

E
θ∑
t=1

c(λ̂t)≥ θ · c

(
1

θ
E

θ∑
t=1

λ̂t

)
= θ · c

(
1

θ
E

θ∑
t=1

D̂t

)
.

Therefore,

Π
(θ)
RH < θ(b− pN) + pE

θ∑
t=1

D̂t− θ · c

(
1

θ
E

θ∑
t=1

D̂t

)
− θ(b− pN)P

(
θ∑
t=1

D̂t < θN

)
.

Notice that E
θ∑
t=1

D̂t ≥ θN due to λ̂t = max
{
λ∗, nt

t

}
. Coupling with the result that λp − c(λ)

decreases in λ for any λ≥N (this is due to λ∗ <N), we have

Π
(θ)
RH < θ(b−pN)+θpN−θc(N)−θ(b−pN)P

(
θ∑
t=1

D̂t ≥ θN

)
= Π

(θ)
D −θ(b−pN)P

(
θ∑
t=1

D̂t < θN

)
.
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So to complete the proof, we only need to show that lim
θ→∞

P
(

θ∑
t=1

D̂t < θN

)
> 0. Note that

P

(
θ∑
s=t

D̂t < θN

)
= 1−P

(
θ∑
t=1

D̂t ≥ θN

)
> 1−P

(
λ̂t = λ∗

)
= P

(
λ̂t >λ

∗
)

> P
(
∀s≥ t :

∣∣∣λ̂s−λD∣∣∣≤ x)= P (τ(x)< t) = 1−P (τ(x)≥ t) ,

where 0 < x ≤ λD − λ∗ and τ(x) is the first tim-to-go that |λ̂t − λD| ≥ x as defined in Lemma

A4. Let x= λD−λ∗
2

and t= 2Ψ(x) = 8λ̄
(λD−λ∗)2

. Based on Lemma A4, we have P [τ(x)> 2Ψ(x)]< 1
2
.

That is, when t= 8λ̄
(λD−λ∗)2

, the probability that λ̂t ≥ λ∗+λD
2

is greater than 1/2, which also implies

that the probability of the updated threshold n̂2Ψ(x) being greater than zero is greater than 1/2.

Because 2Ψ(x) = 8λ̄
(λD−λ∗)2

is finite and does not depend on θ, we can conclude that the probability

the threshold being reached when time expires must be strictly less than 1 in the limit. �

Proof of Theorem 2. Without loss of generality, we assume that T = 1. Let x =

min
{
λ̄−λD

2
, λD−λ∗

}
. From Lemma A4, we have

Eτ (θ)(x) =
θ−1∑
t=1

P
(
τ (θ)(x)≥ t

)
< 1 +

θ−2∑
t=1

P
(
τ (θ)(x)> t

)
< 1 + Ψ(x)

θ−2∑
t=1

1

t
=O(log θ).

Therefore, there exists an M > 0, which is independent of θ, such that Eτ θ(x)≤M log θ. Denote

τ̂ θ = max{τ θ(x),M log θ}. Thus,

Eτ̂ θ =Emax
{
τ θ(x),M log θ

}
≤E

(
τ θ(x) +M log θ

)
≤ 2M log θ,

which implies that M log θ≤Eτ̂ θ ≤ 2M log θ.

The expected profit of the modified resolving heuristic is given by

Π
(θ)
MRH =

[
θ(b− pN) + p ·E

(
θ∑
t=1

D̂t

∣∣∣∣∣
θ∑
t=1

D̂t ≥ θN

)]
P

(
θ∑
t=1

D̂t ≥ θN

)
−E

(
θ∑
t=1

c(λ̂t)

)

≥

θ(b− pN) + p ·E

 θ∑
t=τ̂θ+1

D̂t

P( θ∑
t=1

D̂t ≥ θN

)
−E

 θ∑
t=τ̂θ+1

c(λ̂t)

−O(log θ)

=

θ(b− pN) +E

 θ∑
t=τ̂θ+1

(pD̂t− c(λ̂t))

P( θ∑
t=1

D̂t ≥ θN

)
−

(
1−P

(
θ∑
t=1

D̂t ≥ θN

))
E

 θ∑
t=τ̂θ+1

c(λ̂t)

−O(log θ).

Next, we provide bounds for the two terms P
(

θ∑
t=1

D̂t ≥ θN
)

and E

(
θ∑

t=τ̂θ+1

(pD̂t− c(λ̂t))

)
.

First, consider P
(

θ∑
t=1

D̂t ≥ θN
)

. Recall that τ̂ θ is the first time such that
∣∣∣λ̂t−λD∣∣∣ ≥
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min
{

1
2

(
λ̄−λD

)
, λD−λ∗

}
. Thus, λ̂t = n̂t

t
≥ 1

2

(
λ̄+λD

)
for any t≥ τ̂ θ + 1. Coupling with the result

that n̂t = θN −
θ∑

s=t+1

D̂s, we have θN −
θ∑

t=τ̂θ+2

D̂t ≤ λ̄+λD
2

(τ̂ θ + 1). Thus,

P

(
θ∑
t=1

D̂t ≥ θN

)
= P

τ̂θ+1∑
t=1

D̂t ≥ θN −
θ∑

t=τ̂θ+2

D̂t


≥ P

 τ̂θ∑
t=1

D̂t ≥
λ̄+λD

2
(τ̂ θ + 1)


= E

P
 τ̂θ∑

t=1

D̂t ≥
λ̄+λD

2
(τ̂ θ + 1)

∣∣∣∣∣∣τ̂ θ
 .

Conditional on τ̂ θ,
τ̂θ∑
t=1

D̂t follows a Poisson distribution with mean λ̄τ θ. Thus, based on Lemma

A2, we have

P

(
θ∑
t=1

D̂t ≥ θN

)
≥ 1−E

P
 τ̂θ∑

t=1

D̂t < λ̄τ̂
θ− λ̄−λD

2
τ θ +

λ̄+λD
2

∣∣∣∣∣∣τ̂ θ


≥ 1−E

exp

−
(
λ̄−λD

2
τ̂ θ− λ̄+λD

2

)2

2λ̄τ̂ θ




= 1−E
[
exp

(
λ̄2−λ2

D

4λ̄

)
· exp

(
−(λ̄−λD)2

8λ̄
τ̂ θ
)
· exp

(
−(λ̄+λD)2

8λ̄τ̂ θ

)]
> 1− exp

(
λ̄2−λ2

D

4λ̄

)
·E
[
exp

(
−(λ̄−λD)2

8λ̄
τ̂ θ
)]

≥ 1− exp

(
λ̄2−λ2

D

4λ̄

)
·E
[
exp

(
−(λ̄−λD)2

8λ̄
M log θ

)]
.

The last inequality is due to τ̂ θ ≥M log θ. Let M ≥ 8λ̄
(λ̄−λD)2

, and thus we can conclude that there

exists a Γ such that P
(

θ∑
t=1

D̂t ≥ θN
)
≥ 1− Γ

θ
.

Next, consider E

(
θ∑

t=τ̂θ+1

(pD̂t− c(λ̂t))

)
. Denote εt =

θ∑
s=t

δs
s−1

, where δt = D̂t − ED̂t. Based on

Taylor’s expansion, we have

θ∑
t=τ̂θ+1

(pD̂t− c(λ̂t)) =
θ∑

t=τ̂θ+1

[
p (λD− εt+1 + δt)− c(λD) + c′(λD)εt+1−

1

2
c′′(zt)ε

2
t+1

]

=
θ∑

t=τ̂θ+1

[pλD− c(λD)]−
θ∑

t=τ̂θ+1

(p− c′(λD))εt+1−
θ∑

t=τ̂θ+1

1

2
c′′(zt)ε

2
t+1 + p

θ∑
t=τ̂θ+1

δt.

The existence of zt ∈ [λ̂t, λD] is guaranteed by mean value theorem. Note that
θ∑
s=t

δs and
θ∑
s=t

εs are
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backwards martingales. Because Eτ̂ θ > 0, we have E

(
θ∑

t=τ̂θ+1

δt

)
= E

(
θ∑

t=τ̂θ+1

εt+1

)
= 0 based on

the optimal stopping time theorem. Moreover,

E
θ∑

t=τ̂θ

c′′(zt)ε
2
t = E

τ̂θ∑
t=1

∑
1≤s,v≤t

c′′(zt)
δsδv

(θ− s)(θ− v)

= E
τ̂θ∑
t=1

t∑
s=1

c′′(zt)
δ2
s

(θ− s)2

≤ E
θ∑
t=1

t∑
s=1

c′′(zt)
δ2
s

(θ− s)2

= O(log θ).

Therefore, we have

E

 θ∑
t=τ̂θ+1

(
pD̂t− c(λ̂t)

)=E

 θ∑
t=τ̂θ+1

[pλD− c(λD)]

−O(log θ) = [pλD− c(λD)]
(
θ−Eτ̂ θ

)
−O(log θ).

Recall that Eτ̂ θ ≤ 2M log θ and pλD− c(λD) = pN − c(N). Thus,

E

 θ∑
t=τ̂θ+1

(
pD̂t− c(λ̂t)

)= [pN − c(N)]θ−O(log θ).

Finally, we assemble all pieces together, and obtain

Π
(θ)
MRH ≥

θ(b− pN) +E

 θ∑
t=τ̂θ+1

(pD̂t− c(λ̂t))

P( θ∑
t=1

D̂t ≥ θN

)
−

(
1−P

(
θ∑
t=1

D̂t ≥ θN

))
E

θ∑
t=τ̂θ+1

c(λ̂t)−O(log θ)

≥ [θ(b− pN) + (pN − c(N))θ−O(log θ)] ·
(

1− Γ

θ

)
− Γ

θ
·O(θ)−O(log θ)

= θb− c(N)θ−O(log θ)

= Π
(θ)
D −O(log θ).

Thus, we obtain the announced results. �
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