Downloaded from informs.org by [142.1.10.111] on 21 July 2022, at 01:15 . For personal use only, all rights reserved.

Published in Management Science on October 06, 2021 as DOI: 10.1287/mnsc.2021.4142.
This article has not been copyedited or formatted. The final version may differ from this version.

inferms

http://pubsonline.informs.org/journal/mnsc

MANAGEMENT SCIENCE

Vol. 68, No. 7, July 2022, pp. 5109-5126
ISSN 0025-1909 (print), ISSN 1526-5501 (online)

Sales Effort Management Under All-or-Nothing Constraint

Longyuan Du,? Ming Hu,? Jiahua Wu®

2School of Management, University of San Francisco, San Francisco, California 94117; P Rotman School of Management, University of Toronto,
Toronto, Ontario M5S 3E6, Canada; ® Imperial College Business School, Imperial College London, London SW7 2AZ, United Kingdom

Contact: ldu5@usfca.edu, https://orcid

.org/0000-0003-1628-7539 (LD); ming. hu@rotman.utoronto.ca,
https:// orcid.org/0000-0003-0900-7631 (MH); j. wu@imperial.ac.uk,

https:// orcid.org/0000-0002-2254-1858 (JW)

Received: December 19, 2019

Revised: September 22, 2020;

January 9, 2021

Accepted: April 13, 2021

Published Online in Articles in Advance:
October 6, 2021

https://doi.org/10.1287/mnsc.2021.4142

Copyright: © 2021 INFORMS

Abstract. We consider a sales effort management problem under an all-or-nothing
constraint. The seller will receive no bonus/revenue if the sales volume fails to reach a
predetermined target at the end of the sales horizon. Throughout the sales horizon, the
sales process can be moderated by the seller through costly effort. We show that the
optimal sales rate is nonmonotonic with respect to the remaining time or the outstanding
sales volume required to reach the target. Generally, it has a watershed structure, such that
for any needed sales volume, there exists a cutoff point on the remaining time above which
the optimal sales rate decreases in the remaining time and below which it increases in the
remaining time. We then study easy-to-compute heuristics that can be implemented
efficiently. We start with a static heuristic derived from the deterministic analog of the
stochastic problem. With an all-or-nothing constraint, we show that the performance of the
static heuristic hinges on how the profit-maximizing rate fares against the target rate,
which is defined as the sales target divided by the length of the sales horizon. When the
profit-maximizing rate is higher than the target rate, the static heuristic adopting the
optimal deterministic rate is asymptotically optimal with negligible loss. On the other
hand, when the profit-maximizing rate is lower than the target rate, the performance loss
of any asymptotically optimal static heuristic is of an order greater than the square root of
the scale parameter. To address the poor performance of the static heuristic in the latter
case, we propose a modified resolving heuristic and show that it is asymptotically optimal
and achieves a logarithmic performance loss.
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1. Introduction

nothing mechanism (Oyer 2000). With the all-or-noth-
ing constraint, one crucial question for a decision

Freddie Hoyt is the general manager at the Town &
Country Chrysler dealership in Levittown, New York.
On one typical working day, he was sitting in his
office, frowning at the whiteboard hanging on the
wall. The whiteboard recorded each person’s sales for
the month to date. It was the second-to-last day of the
month, and they were 16 cars behind the target of 129
cars assigned by Chrysler for the month. Chrysler
would pay them from $65,000 to $85,000 if the target
was achieved by the end of the month. This commis-
sion was so crucial for the dealership that it would
essentially determine whether they could make a
profit that month (This American Life 2013).
Quota-based compensation contracts, where a seller
will receive a lump-sum bonus if and only if her
number of sales exceeds a given quota, are prevalent
in salesforce management. It is reported that 89%
of firms use some variation of a “quota-like” all-or-
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maker is how to maximize the chance of reaching the
target, and, therefore, the payout, by the deadline. In
the case of Town & Country, when Freddie saw that
the sales were moving slowly, his solution was to
push salespeople at the dealership to work harder:
“I've got to be at that number... So put your nose
right to the ground and come out shooting today,
everybody!” (This American Life 2013). Instead of
waiting for customers coming to the store, salespeople
were asked to call up any lead they might have to try
to close deals over the phone. Most worked long
hours on the last days of the month.

In general, with a quota-based compensation plan,
a seller needs to carefully determine the amount of
costly effort she would like to exert over the evalua-
tion period. A delicate balance needs to be struck
between effort and the chance of reaching the quota.
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A higher level of effort generally leads to a higher
sales number, which increases the likelihood of reach-
ing the quota. However, because of the stochastic
nature of demand, the costly effort can become futile
if the sales fall short.

In this paper, with the context of sales effort
management in mind, we study how a seller can exert
efforts to maximize her expected profit under an all-
or-nothing constraint. Specifically, we consider a
model where demand arrives following a Poisson
process and the intensity is moderated by the seller
through costly effort. The seller’s performance is
evaluated at the end of the sales horizon. Her payout
includes a lump-sum bonus and an over-target com-
mission per unit if the number of sales is greater than
or equal to the predetermined target; otherwise, she
receives nothing.'

We formulate this problem as a dynamic program
and study the structure of the optimal policy. As our
problem of sales effort management is equivalent to a
dynamic pricing problem in which the seller may
control sales intensity by varying prices, we compare
our results with those obtained in classical revenue-
management (RM) settings (see more discussions in
Section 2). We show that, when the lump-sum bonus is
greater than the per-unit bonus commission, which
arguably always holds in practice, the optimal sales
rate is not monotonic with respect to the remaining
time or the number of sales required to reach the target.
The nonmonotonicity in the optimal sales rate differs
fundamentally from results in the existing RM litera-
ture, where the optimal sales rate is typically monoton-
ic with respect to both time-to-go and remaining inven-
tory (see, e.g., Gallego and van Ryzin 1994). With the
all-or-nothing constraint, two opposing forces drive the
optimal sales intensity. On the one hand, the all-or-
nothing constraint incentivizes the seller to increase the
sales, with the hope of reaching the target by the end of
the sales horizon. However, the cost will be sunk and
the seller will incur a loss if the target is not reached in
the end. These two forces together shape the optimal
sales intensity and create a turning point in time: For
any needed sales volume, the seller will increase the
sales intensity as the deadline gets closer, but only to a
point. After the turning point, the optimal rate will
decrease as time-to-go decreases. Although the two
forces that drive the monotonicity of the optimal solu-
tion are intuitive, showing the existence of the turning
point is not trivial. To that end, we develop a novel
approach that leads to a tight bound on the optimal
solution. With the carefully constructed bound, we
prove that as time-to-go increases, the optimal sales
intensity approaches its limit from above, which
guarantees that the turning point must be finite.

Next, we propose various heuristics. To evaluate
their performance for problems with the all-or-nothing

constraint, we first study the deterministic approxima-
tion of the problem and seek to come up with a
performance bound for the stochastic problem. This
approach is motivated by common observations in the
RM literature that the optimal deterministic profit is
an upper bound for that of the stochastic problem.
Surprisingly, we show, with a counterexample, that
this statement does not always hold in our setting.
With an all-or-nothing constraint, the possibility of a
random surge in demand may actually help the
seller by pushing sales beyond the target, especially
when the sales target is so high that it is not likely to
be reached without random demand shocks. None-
theless, we prove that when some system primitives
are scaled up, the optimal profit of the deterministic
problem is, indeed, an upper bound for that of the
stochastic problem. Thus, we can use it to gauge the
performance of heuristics in an asymptotic regime.

We consider an easily implementable, static heuris-
ticc, where the sales intensity remains constant
throughout the sales horizon. In traditional RM
settings, such as Gallego and van Ryzin (1994), a static
heuristic that adopts the optimal solution of the
deterministic problem is proven to be asymptotically
optimal and has a square-root revenue loss. However,
with an all-or-nothing constraint, we show that the
performance of the static heuristic hinges on how the
profit-maximizing rate fares against the target rate,
defined as the sales target divided by the length of the
sales horizon. When the profit-maximizing rate is
higher than the target rate, the static heuristic of the
optimal deterministic rate performs extremely well, as
the absolute profit loss converges to zero when the
target and sales horizon scale up proportionally.

This is intriguing because in many traditional RM
problems, the absolute performance loss of the opti-
mal static heuristic is nonnegligible. On the other
hand, when the profit-maximizing rate is lower than
the target rate, the performance of the static heuristic
is compromised. We show that, for the heuristic to be
asymptotically optimal, the seller must induce a cons-
tant rate higher than the optimal deterministic rate.
This is because, with the all-or-nothing constraint,
ensuring that the target will almost certainly be
reached at the end of the sales horizon is essential for
any heuristic to be asymptotically optimal. This can be
achieved for a static heuristic only by a rate higher
than the optimal deterministic rate to account for
demand uncertainty. To find asymptotically optimal
static heuristics, we apply the Central Limit Theorem
and the results of Poisson tail bounds to find the
minimum increase in the sales intensity that will
ensure a high probability of the target being reached.
Because of the extra cost associated with this positive
sales boost, the performance loss is of an order greater
than the square root of the scale parameter.
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To address the poor performance of the static
heuristic when the profit-maximizing rate is lower
than the target rate, we investigate periodic resolving
heuristics where the seller updates the sales rate by
resolving the deterministic problem periodically, with
the updated number of sales required to reach the
target and the updated remaining time. A standard
resolving heuristic, which updates sales rates with the
optimal solution to the updated deterministic prob-
lem, is proven to be asymptotically optimal in tradi-
tional RM problems and yields a logarithmic perfor-
mance gap (Jasin 2014). However, we show that the
same policy is suboptimal with an all-or-nothing con-
straint. This, again, is because there is no guarantee that
the sales target can be reached with the bare optimal
deterministic rate, even though it is being updated
periodically over the course of the sales horizon. In-
stead, we propose a modified resolving heuristic, where
the heuristic adopts the optimal deterministic rate in
the early stage, but switches to a higher “full-speed”
rate either when the remaining time is short, but the
target has not been reached, or when the number of
sales is well below that expected. In this heuristic, the
time switch to full-speed mode is a crucial parameter.
To ensure a good overall performance of the heuristic,
we bound the loss in the probability of reaching the
target and the cost of extra effort from the higher sales
intensity. This allows us to select a switching time that
balances the two terms. This modified resolving heuris-
tic is proven to be asymptotically optimal, with a
recovered logarithmic performance loss.

2. Literature Review

Our paper is closely related to dynamic pricing
problems in RM. In a classical RM setting, a seller seeks
to maximize revenue from selling a fixed amount of
inventory over a time horizon by varying prices. In
sales effort management, the seller seeks to maximize
payout from selling products over a given sales horizon
by dynamically adjusting the level of effort. We show
that our sales effort management problem is equivalent
to an RM problem, because the price control can be
viewed as the sales intensity control, as long as there is
a one-to-one correspondence between price and sales
intensity.

Some financial constraints considered in the RM
literature resemble the all-or-nothing constraint in our
setting. Yuri et al. (2008) consider a dynamic pricing
problem where the seller cares about not only the
expected revenue, but also the probability of meeting
a revenue target as a chance (soft) constraint. They
formulate the problem as a continuous-time optimal
control problem and study the structural properties of
the optimal solution. In contrast, the all-or-nothing con-
straint in our paper is, by definition, a hard constraint on

each sample path, which results in totally different
optimal policies. Besbes and Maglaras (2012) study
dynamic pricing policies for problems with a series of
financial constraints on revenues and sales along the
sales horizon. The seller would be penalized for failing
to reach the milestone targets. The authors derive
heuristics based on the deterministic analog of the
stochastic problem and prove their optimality in an
asymptotic regime. In contrast to their paper, where the
seller’s penalties are continuous with respect to reve-
nues/sales, in our setting, the seller’s payout function is
discontinuous around the sales target under an all-or-
nothing constraint. This discontinuity plays a crucial
role in shaping the optimal policy, as it, along with the
seller’s sunk costs over the sales horizon, creates both
motivation and deterrent for the seller to exert effort,
leading to nontrivial distinctions in the optimal strategy
compared with those in classical RM problems. More
recently, Besbes et al. (2018) build upon the dynamic
pricing framework of Gallego and van Ryzin (1994)
and study the effect of a debt on pricing, where the
seller only collects the residual revenues after the debt
is paid off. In a similar context, Ahn et al. (2021) study
the optimal policy for a price-taker (as opposed to a
price-setter in Besbes et al. 2018) to sell assets at the
market price over time under debt obligations. In
their settings, the seller’s payoff is the positive part of
the revenue minus the debt, a continuous function
with a kink at the debt. In addition to the fact that the
seller’s payout function is discontinuous in our set-
ting, our paper also differs from Besbes et al. (2018)
and Ahn et al. (2021) in one important respect: The
target in our paper is specified with respect to sales
volume, rather than revenue. The reason why this
seemingly trivial difference is critical is because,
when the target is with respect to sales volume, the
only way for the seller to reach the target is to sell
more products by lowering prices. However, the
same cannot be said when the target is with respect to
revenue. In this case, in order to increase the chance of
hitting the revenue target at the end, the seller can
choose either to sell the products in larger quantities
by charging a lower price or to charge a higher price
and hope that demand produces a favorable result.
Besbes et al. (2018) show that the latter strategy, even
though it has greater variability, is preferred in a
dynamic pricing problem under debt obligations. The
structural property of the optimal policy in our paper
differs significantly from that in Besbes et al. (2018).
Apart from exploring the structural property of the
optimal policy for problems with an all-or-nothing
sales volume constraint, we also focus on the con-
struction of easy-to-compute heuristics and study
their performances.

Driven by the curse of dimensionality, many re-
searchers focus on the construction of heuristics for
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dynamic pricing problems. The approach most closely
related to our paper is the pricing policy based on the
deterministic counterpart of the stochastic problem.
Gallego and van Ryzin (1994) show that the optimal
profit achieved in the deterministic problem is an
upper bound to that of the stochastic problem. When
the problem is scaled up with the time and state
proportionally growing, a static heuristic that adopts
the optimal solution of the deterministic problem is
asymptotically optimal and has a performance gap of
the square root of the scale parameter. In contrast, we
show in this paper that many of the properties associ-
ated with the optimal static heuristic in the classical
RM setting are overturned in the presence of an all-or-
nothing constraint. First, the optimal deterministic
profit is no longer a universal upper bound for that of
the stochastic problem. This upper bound only holds
if the scale of the problem is sufficiently large. Second,
a static heuristic based on the optimal deterministic
solution is not asymptotically optimal. For a static
heuristic to achieve asymptotic optimality, a non-
trivial margin needs to be added to the optimal
deterministic solution to ensure that the sales target
can almost certainly be reached at the end of the sales
horizon. Lastly, the optimal static heuristic with the
all-or-nothing constraint has a larger-than-square-root
performance loss, a typical magnitude in the tradition-
al RM settings.

One common criticism of a static heuristic is that
the price is determined upfront, which means that the
price has no chance to respond to demand realizations
that unfold over time. Because of this, researchers
propose to resolve the deterministic problem repeat-
edly throughout the sales horizon with up-to-date
sales and inventory information. Such “resolving”
heuristics have been studied extensively in the RM
literature with great success (see, e.g., Cooper 2002,
Maglaras and Meissner 2006, Jasin and Kumar 2012,
and Jasin 2014). In particular, Jasin (2014) shows that a
heuristic based on resolving the deterministic problem
periodically in the framework of Gallego and van
Ryzin (1994) achieves a logarithmic performance loss,
which is significantly lower than that of the optimal
static heuristic. However, we demonstrate that, with
an all-or-nothing constraint, a standard resolving heu-
ristic is not asymptotically optimal. This, again, is
owing to the discontinuity around the target in the
seller’s payout function. We devise an asymptotically
optimal modified resolving heuristic that prioritizes
cost minimization during the early stage of the sales
horizon. However, the priority is switched to a full-
speed rate, maximizing the probability of hitting the
target, when either the remaining time is short or the
number of sales is much lower than expected.

On the application side, our paper is related to the
widely studied salesforce compensation problem (see,

e.g.,, Coughlan 1993). The theoretical root of this
literature can be traced back to the principal-agent
framework. Under different assumptions about sales-
person utility, distribution of sales outcomes, etc., the
optimal compensation plan can be nonlinear in the
total sales (Basu et al. 1985), linear in the total sales
(Lal and Srinivasan 1993), or have a quota-based
bonus structure (Oyer 2000). Despite different views
on the optimal salesforce compensation plan, sales
quotas are prevalent in the industry (Joseph and
Kalwani 1998). Part of the reason is that, even though
a sales quota might not be optimal under certain
circumstances, its performance is quite close to that of
the optimal compensation policy (Raju and Srinivasan
1996). In the operations management literature, the
hockey-stick phenomenon, which refers to the surge
in sales toward the end of an evaluation period as a
direct consequence of a sales quota, receives particular
attention. Sales fluctuation has an adverse effect on
production and inventory planning in a supply chain.
To mitigate the hockey-stick phenomenon, Chen
(2000) proposes a moving-time-window evaluation
schedule to smooth the demand process. Sohoni et al.
(2010) show that the reduction of demand variability,
along with better information, helps to dampen the
hockey-stick phenomenon. It is worth mentioning that
the D-contract studied in Sohoni et al. (2010) is a
special case of the all-or-nothing contract studied in
this paper. However, the focus of our paper is rather
different. We explore how to dynamically adjust a
seller’s effort to maximize the expected payoff under
an exogenously given contract.

The all-or-nothing constraint is also prevalent in
online crowdfunding, which has recently attracted
tremendous interest from researchers. A typical
crowdfunding project will follow an all-or-nothing
scheme, where the project creator will receive the
fund if and only if the goal is reached before the end
of the crowdfunding campaign. The papers more
related to our work are those that focus on the
dynamics of crowdfunding pledging processes. Alaei
et al. (2021) and Zhang et al. (2021) study crowdfund-
ing dynamics to find the optimal upfront design of
projects, including goals, duration of crowdfunding
campaigns, etc. In contrast, we explore, with the
terminology of crowdfunding, how a campaign crea-
tor can dynamically adjust backers” arrival rate with
her costly effort to maximize the cumulative pledged
amount at the end of a crowdfunding campaign. Du
et al. (2017) study stimulus policies in crowdfunding
with network externalities, where project creators can
contingently switch or stop offering an incentive
scheme for the rest of the campaign to induce
customers’ pledging, as an optimal stopping-time
problem. Stimulus costs of crowdfunding projects,
such as promised updates, are incurred only if the
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project reaches the goal. In contrast, our paper
requires the seller to make costly efforts immediately
to increase sales intensity and allows her to increase
sales intensity in continuous time. This creates a
dilemma for the seller because the spending is wasted
if the target cannot be reached by deadline. Closest to
ours in terms of high-level research questions, Burtch
et al. (2021) study analytically and empirically if and
when a creator should send out referral links, and
how many, to drive traffic to the campaign through-
out the pledging process. The authors focus on the
effect of positive network externalities of existing
pledgers on future pledging behavior, without consid-
ering an all-or-nothing constraint, which is consistent
with their empirical context of Indiegogo, which uses
the keep-it-all payment scheme rather than the all-or-
nothing payment scheme for creators. As mentioned,
the presence of an all-or-nothing constraint funda-
mentally changes the structure of the problem, which
is our main focus.

Lastly, the all-or-nothing mechanism is also com-
monly used in innovation contests, where firms out-
source innovation projects to the crowd. Researchers
show that the “winner-take-all” scheme—that is, the
prize is only awarded to the best performer—is
optimal for a wide range of occasions (see, e.g., Kalra
and Shi 2001 and Moldovanu and Sela 2001). In this
stream, the works closest to ours are those papers that
focus on dynamic games and study how contestants
dynamically adjust their effort-provision levels over
time (see, e.g., Choi 1991, Malueg and Tsutsui 1997,
Halac et al. 2017, and Bimpikis et al. 2019). The
common recurring theme in this literature is that
contestants’ effort-provision level gradually decreases
over time, with contestants eventually dropping out
of the contest as it becomes less likely that they will
win the prize. This differs significantly from the
structure of the optimal effort level in our paper,
which generally first increases and then decreases;
this is referred to as the “watershed” structure in our
analysis. Furthermore, unlike this stream of literature,
which mainly focuses on the design of an optimal
policy from the perspective of contest designers—
such as the reward structure and information-
disclosure policy—we take the contract as exogenous-
ly given and study how the seller can maximize the
profit by dynamically adjusting her effort levels over
the sales horizon.

3. Model

We introduce the model. For concreteness, we discuss
the setup in the context of salesforce management:
All-or-nothing contracts are prevalent in such a con-
text, as illustrated in This American Life (2013). Con-
sider a seller (say, a salesperson or a car dealer) who

sells a single product over a finite time. We denote T
as the length of the sales horizon. Before the start of
the sales horizon, the seller enters into an all-or-
nothing contract with an upstream supplier, as de-
tailed below.

Definition 1 (All-or-Nothing Contract). Let x be the total
sales during the entire sales horizon. The payout to
the seller R(x) is given by

R(x):{(b)ﬂa(x—N) x >N,

Y<N. where b,p > 0.

)

In this contract, the sales target N is the goal set for
the seller over the sales horizon. If the total sales
volume is no less than the predetermined sales target
N, the seller will receive a lump-sum payment b and a
commission p for each unit sold beyond the target.
However, if the total sales volume falls short of the
target N, the seller will receive nothing. This is why
we refer to it as an “all-or-nothing” contract. Our
results still hold for an alternative payment scheme
where, even if the seller does not exert any effort,
there is a base demand rate and the seller earns a fixed
commission for every unit of sales, regardless of
whether the target is met, in addition to the all-or-
nothing lump-sum bonus and the over-target commis-
sion per unit, which can both be zero.

We make some remarks on the all-or-nothing con-
tract. First, many commonly used sales contracts are
special cases of the contract given by Definition 1. For
example, when n = 0 and b = 0, the contract is reduced
to a regular commission plan, where the seller is paid
a constant commission for every unit sold. Sales
quotas are reportedly used by 89% of firms, making
them the most consistent feature of sales compensa-
tion (Oyer 2000). The theoretical rationale for the
prevalence of all-or-nothing contracts is that this type
of contract is found to be optimal or a piecewise-linear
approximation of the optimal contract under a wide
range of settings (see, e.g., Basu et al. 1985 and Raju
and Srinivasan 1996). Second, the optimal contract
design is beyond the scope of our paper. In our
discussion, we assume that the contract format and
specification, in terms of b, p, and N, are exogenously
given. There is a long history of literature on the
design of salesforce compensation contracts, mainly
based on the principal-agent model. We refer interest-
ed readers to Basu et al. (1985), Lal and Srinivasan
(1993), and Oyer (2000) for details. Putting the discus-
sion of optimal contracts aside, all-or-nothing con-
tracts are prevalent in practice because of other
practicalities. For instance, the bonuses offered by
manufacturers are often nonmonetary, such as en-
hanced tech support, invitation to exclusive events,
and access to training programs, which cannot be
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discretized. Thus, a linear contract can be difficult to
operationalize, should it be theoretically optimal.

Customers arrive and make their purchases accord-
ing to a Poisson process. We assume that the seller
precommits to a fixed price for the product at the
beginning of the sales horizon. This price could be the
manufacturer’s suggested retail price. The intensity of
the sales process can be moderated by the seller with
costly effort. For instance, it could reflect the amount
of effort that the seller exerts to promote the product
or the amount of money that the seller spends on
advertising.

We denote c(A) > 0 as the cost rate for the seller if she
wants to induce a sales intensity A. With a cost c¢(A;), the
sales still have uncertainty, and we denote the moderat-
ed sales process as D,, V t € [0, T]. The sales process D;
is a nonhomogeneous Poisson process with mean A; at
time . Denote by [A, A] the set of feasible sales rates. We
assume the following for the cost function.

Assumption 1 (Cost Function).
i. A > 0 is the cost-free sales rate—that is, c(A) = 0;
ii. c(A) is invertible, and convex in A, ¥ A € [A, A];
iii. A" € [A, A], where A" = argmax {A | Ap —c(A)}.

Assumption 1(i) says that there exists a natural cost-
free sales rate. Without loss of generality, we assume
this rate to be the lower bound of the set of feasible
sales rates because there is no incentive for the seller to
go for a lower rate. We assume in Assumption 1(ii) the
convexity of c(-), which implies that cost expenditure
has a diminishing return on sales. This assumption is
consistent with common assumptions in the RM and
salesforce compensation literature. For instance, Lal
and Staelin (1986), Oyer (2000), and Sohoni et al. (2010)
assume that the sales response function, which is the
inverse of the cost-rate function, is concave. There is
also a one-to-one correspondence between cost and
sales rate, which allows us to use the sales intensity as
our decision variable in the analysis. This follows the
convention in the RM literature (see, e.g., Gallego and
van Ryzin 1994). Lastly, to avoid the cumbersome
discussion of corner solutions, we assume in Assump-
tion 1(iii) that the profit-maximizing sales rate is well
defined and within the feasible set. This is without loss
of generality and can be achieved by properly defining
the feasible set. Intuitively, the optimal sales intensity
will neither go below the cost-free rate A nor become
too large, owing to the convexity of c(A).

The seller is assumed to be risk-neutral. Her objec-
tive is to maximize the expected profit over the sales
horizon by choosing a nonanticipating policy
u={A; : 0<t<T}. The value of A, at each time ¢
(time-to-go; see more below) is only allowed to
depend on the past sales observations. We can formu-
late the seller’s profit-maximization problem as fol-

lows: selecting a policy # to maximize

/OT dD; |- /OTC(/\S)dsl. (S)

We focus on the model where the seller exerts costly
effort to moderate the sales process; however, we
emphasize that our model is also applicable when price
is the controller. The reason is as follows. In the context
of pricing, we can write the inverse demand function as
P(A) =po—06(A), where p, is the seller’s break-even
price (e.g., the invoice price from the manufacturer for a
dealership), and 6(A) represents a markup (ie., 6(A) is
negative) or a markdown (i.e., 6(A) is positive). Thus,
the seller’s profit function can be formulated as

R

Hopt = ms-x , =K,

T
ot := max, 7, = E, [R(/0 dD,)-

T
J,8(A)dDy].
For Markov policies, we have

Ed [ "5(1s)dDs] = Eu| / "5(As)Asds], and, thus, the
pricir({g problem is equi({zalent to the sales effort prob-
lem with “cost” rate c(A)=06(A)A.> Our assumption
about the convexity of the discount rate c(1) = A6(A) is
equivalent to the convention in the RM literature that
assumes the revenue rate AP (A7) to be concave.

We also want to highlight here that our objective
function is discontinuous around the sales target N
because of the all-or-nothing contract. This is fundamen-
tally different from many papers in the RM literature
(e.g., Gallego and van Ryzin 1994, Maglaras and Meissner
2006, and Besbes and Maglaras 2012). The discontinuity
of the objective function makes our analysis more diffi-
cult. It plays a crucial role in shaping the optimal heuristic
in this setting, leading to nontrivial distinctions between
the optimal strategy and those in classical RM problems.

3.1. Structural Properties of the Optimal Policy
Next, we study how the optimal sales intensity and
expected profit evolve over time. We refer to t as the
time remaining on the sales horizon (i.e., time-to-go)
and n > 0 as the number of sales required to reach the
target. By the principle of optimality, the Hamilton—
Jacobi-Bellman (HJB) conditions for the optimal profit
can be summarized as follows.

Proposition 1. Denote by [;(n) the optimal expected profit
at state (t, n). It is the solution of

ohi0n) _ o
50— max a1 0] - vl

Vnxl, Vt,

with  boundary  conditions J3(n)=0, Vn>1 and
J;(0) =b+[A'p—c(A)]t, Y t, where A" is defined in As-
sumption 1.

()
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There exists a unique solution to Equation (2),
which we denote by A'(t,n); that is, the profit-
maximizing sales rate at the state (f, n), provided that
the cost function c(A) satisfies the regularity condi-
tions specified in Assumption 1. We define
A(n) :=[;(n—1) = J;(n). The boundary condition J;(0)
is no longer equal to zero, which differs from the
norm in the RM literature. This is because of our
slightly different definition of n. In our model, n
denotes the number of sales required to reach the
target, rather than the remaining stock level, as in a
typical RM model. Therefore, the marginal revenue
for each sale becomes a constant of p once n reaches
zero, and the optimal strategy for the seller is to
induce the profit-maximizing rate A*, which no longer
depends on n.

Theorem 1 (Watershed Structure of Optimal Policy). We
have the properties of the optimal policy:

i. Ji(n) increases in t, but decreases in n;

ii. When b > p, there exists 0 < t©(n) < oo, VYn > 1 such that

a. When t > t(n), Ay(n) and A*(t,n) decrease in t;
Ay(m) and A" (t, m) increase in m, for any m < n.

b. When t < t(n), Ay(n) and A*(t,n) increase in t;
A(m) and A*(t, m) decrease in m, for any m > n.
Moreover, t(n) strictly increases in n, that is,
0=1(1)<7(2) <<t —1) < 7(N) <-++;

iii. When b<p, A((n) and A*(t,n) increase in t and
decrease in n;

iv. lim; oA, n)=A", Vn>0 and lim;_oA*(t,n) =
A, Vn>0.

Theorem 1 summarizes structural properties of J;(n)
and A*(t,n). To give an intuitive understanding of
the proposition, we illustrate them with a couple of
numerical experiments, as displayed in Figures 1
and 2. The parametric specification of the numerical
experiments is given as follows: The initial sales target
N = 20 and marginal revenue per sale beyond the
target p = 2. The cost function is assumed to be

quadratic and to follow the form c(A) = (A - 2)%. Fig-
ure 1 and
Figure 2 show the results of numerical experiments
where the lump-sum payout b=40>p and b=1<p,
respectively.

Theorem 1(i) is intuitive. Everything else being
equal, with longer time-to-go or fewer sales required
to reach the target, both the expected sales and the
probability of reaching the target are higher, leading
to a higher optimal expected profit level. The monoto-
nicity of the optimal expected profit J;(n) is also
reflected in Figures 1(a) and 2(a). J;(n) is close to zero
when t is sufficiently small because there is little
chance for the seller to hit the target. As ¢ increases,
Ji(n) also increases. However, when b > p, which
arguably always holds in practice, J;(n) is neither
convex nor concave in t in general, in contrast to the
concavity commonly observed in the classical RM
problems. The shape of curves indicates that J;(n) is
initially convex in t, but becomes concave after the
turning point 7(n).

Theorem 1 parts (ii)-(iv) characterize the structure
of t(n) and A*(t,n). First, Theorem 1(ii) shows that
when the lump-sum payment b is greater than the
per-unit bonus commission p, the optimal sales rate is
nonmonotonic in either the remaining time or the
extra number of sales required to reach the target.
There exists a cutoff point 7(n), Vn >1, such that the
optimal sales rate A*(t,n) decreases in f when t > 7(n);
otherwise, A*(t,n) increases in t. We call this the
watershed structure. Figure 1 illustrates this watershed
structure. When it is very close to the end of the
horizon—that is, t — 0—the probability of reaching
the target is slim, and, thus, the seller’s optimal
strategy is to avoid incurring any extra cost by
adopting the cost-free rate A =2. As the remaining
time ¢ increases, the chance of hitting the target
improves, and, thus, the seller would respond by
exerting a greater amount of effort to induce higher

Figure 1. (Color online) Numerical Results of the Optimal Expected Profit and Optimal Sales Rate when b > p
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Figure 2. (Color online) Numerical Results of the Optimal Expected Profit and Optimal Sales Rate when b < p
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Note. N=20,b=1,p=2,and c(A) = (A —2)*.

sales. Because of the relatively large lump-sum payout
b, it becomes crucial for the seller to hit the sales
target, boosting the optimal sales rate higher than the
profit-maximizing sales rate A*. However, when the
remaining time ¢ is sufficiently long to be greater than
the turning point 7(n), the seller can comfortably hit
the target without stretching herself, and, thus, she
is better off exerting less effort. Hence, the optimal
sales intensity decreases in t and converges to A
when ¢ is large enough, as shown in Theorem 1(iv).

On the other hand, when the lump-sum payment b
is less than or equal to the per-unit bonus commission
p, the optimal sales rate monotonically increases in the
remaining time and decreases in the extra number of
sales required to reach the target, as shown in Theo-
rem 1(iii). Figure 2(b) illustrates the structure of the
optimal sales intensity in this case. As in the previous
case, it is optimal for the seller to exert little effort by
inducing the cost-free rate A =2 when the end of the
sales horizon is close . As t increases, the optimal sales
rate also increases. However, because of the relatively
small lump-sum payout b, any extra cost over the
profit-maximizing cost rate c(1) always outweighs
the potential benefit from a greater chance of reaching
the target, leading to the convergence of the optimal
sales intensity to A* when t is sufficiently large.

The watershed structure of the optimal sales rate
function differs fundamentally from that of most
conventional RM problems. For instance, in the
single-product setting, Gallego and van Ryzin (1994)
show that the optimal sales rate always decreases in
the time-to-go and increases in the remaining invento-
ry. The nonmonotonicity of optimal sales rates under
the all-or-nothing constraint is driven by the following
two forces, pushing in opposite directions. On the
one hand, the all-or-nothing constraint incentivizes
the seller to induce a higher sales intensity, with the
hope of reaching the target by the end of the sales
horizon. On the other hand, the cost is noncontingent,

(b)
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which means that the seller will incur a loss if the
target is not reached in the end. As a result, the seller
will refrain from exerting costly effort if the chance of
reaching the target is low. These two forces together
shape the optimal sales intensity over the course of
the sales horizon. For a given required number of
sales 17, when the remaining time is relatively long—
that is, t > 7(n)—the probability of reaching the target
at the end of the sales horizon is relatively high. In
this case, the benefit of increasing the probability of
reaching the target by inducing a higher sales rate, if
the remaining time is shorter, outweighs the extra
cost, and, thus, the force of reaching the target
dominates. But for a given required number of sales 7,
when t < 7(n), the probability of reaching the target is
low, and, thus, the cost concern dominates. So, the
seller is better off lowering the sales intensity if the
remaining time is shorter. Theorem 1 also shows that
the cutoff time 7(n) increases in n—that is, the larger
the gap from the target, the earlier the cost concern
will become the dominant force.

As time goes by, the random sales process under
the optimal policy is driven by the forces mentioned
above. As the end of the horizon comes closer (¢
becomes smaller), the required number of sales to
reach the target also becomes smaller (1 becomes
smaller). Along a sample path, it is likely that
the seller ends up not putting in much effort toward
the end of the sales horizon if the hope of reaching the
target is remote or the seller ends up putting in a lot
of effort toward the end, as in the story of This
American Life (2013) and as observed in the “hockey-
stick” phenomenon (see, e.g., Chen 2000). These possi-
ble realizations of a sample path do not contradict the
watershed structure, because this structure is a static
property for a given required number of sales. Indeed,
the nonmonotonicity of the optimal sales rate of
A*(t,n) is consistent with many empirical findings. For
instance, Steenburgh (2008) finds that, under a lump-
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sum bonus contract, salespeople, in general, respond
rationally and work harder, with the hope of reaching
the quota. But at the same time, they may also give up
if they feel that the quota is simply unreachable.

4. Upper Bound

In general, it is hard to compute the optimal policy for
the problem for the following reasons. Theoretically,
there is no general closed-form solution for A*(t,n).
Thus, finding the optimal sales rate A*(t,n) can be
computationally intensive, especially for problems on
a large scale. Moreover, from the practical side, even
if we know the optimal sales rate A*(t,n), it will be
difficult for the seller to constantly adjust the intensity
throughout the sales horizon, as A*(t,n) depends on
both the remaining time and the gap between sales
and the target. Our solution approach is as follows.
First, we come up with a performance bound for
Problem (S). Then, we propose various easy-to-com-
pute and implementable heuristics and show their
(sub)optimality by comparing the corresponding prof-
its with the performance bound.

Motivated by traditional RM problems, where the
optimal profit from the deterministic problem is prov-
en to be an upper bound for that of the stochastic
problem, we start with an analysis of the deterministic
version of Problem (S). However, as we will show
below, perhaps surprisingly, the optimal deterministic
profit is no longer a universal upper bound for
Problem (S).

4.1. Deterministic Problem

We can formulate the deterministic version of Prob-
lem (S) as follows. With the absence of demand
uncertainty, there is a one-to-one correspondence
between the sales and cost. That is, the sales rate is a
function of the cost at time f, which is deterministic.
Similar to Problem (S), the decision variable in the
deterministic problem is still the sales rate, which,
with a bit of abuse of notation, is still denoted by A,.
Thus, the problem can be formulated as

T
Ip := max 7np(Ad)=b+ p(/ Apdt — N)
A={A,:0<t<T} 0
T
- / c(A,) dt
0
T
st / A dt >N, (D)
0

With the formulation of Problem (D), we implicitly
assume that there exist nontrivial sales rates A;, such
that the target can be reached at the end of the sales
horizon with Ilp > 0. This can be the case when the
lump-sum bonus b is sufficiently large or the cost c(A)
is not prohibitively high. The problem becomes trivial
when this assumption is violated, as the seller would

simply adopt the cost-free sales rate A throughout the
entire sales horizon and earn zero profit as a result.
Next, we solve for the optimal solution to Problem (D).

Proposition 2 (Optimal Deterministic Rate). The optimal
solution to the deterministic problem is A;= Ap:=
max{N/T,A*}, V¥ t€[0,T], where A" is defined in As-
sumption 1.

We make some observations. First, recall that A" is
the profit-maximizing rate once the target is reached.
When A" > N/T, inducing a rate of A" would allow the
seller to meet the target at the end of the sales horizon
and, at the same time, maximize profit once the target
is reached. Thus, it is optimal for the seller to induce a
rate of A* throughout the sales horizon. When
A" < N/T, the seller needs to induce a rate of at least
N/T to reach the target. However, on the other hand,
any sales beyond the quota would incur a loss for the
seller because the marginal commission p is not high
enough to cover the marginal cost (ie., ¢/(N/T) > p).
Hence, the optimal sales rate in this case would be
N/T. Note that, under the special case when p = 0,
Proposition 2 implies that Ap = N/T, because A" = A.
That is, when there is no over-quota commission, it
is optimal for the seller to induce sales intensity such
that the total sales are equal to the sales target at the
end of the sales horizon, which is viable for the
deterministic problem.

Second, the result that the optimal deterministic
sales rate is static may not be as intuitive as it appears.
Recall that we do not require that b = pN, so the
marginal profit of each sale may differ before and
after the target is reached, and, thus, the seller can
potentially opt for different sales rates depending on
whether the target is reached. However, Proposition 2
shows that it is optimal to choose one single rate
throughout the season, owing to the convexity of the
cost function.

4.2. A Counterexample

Next, we show with an example that the optimal
deterministic revenue no longer serves as a universal
upper bound for the expected profit of the stochastic
problem when there is an all-or-nothing constraint.
That is, it is possible Il >1IIp. This is in stark
contrast to traditional RM problems (see, e.g., Gallego
and van Ryzin 1994, theorem 2) and most operations
management problems in which uncertainty cuts into
profitability (e.g., the newsvendor problem).

Example 1. Consider an example with the following
parameters: T = 1, N =1, p =5, and b = 5. The
cost function is assumed to be c(A) = (31 —1). First,
consider the deterministic problem. It is easy to
verify that A*=11/18 and N/T =1. Thus, we have
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Ap =N/T =1, and the optimal profit for the determin-
istic problem is I'lp = 1.

Next, consider the stochastic problem. Suppose the
seller chooses the cost-free rate Ay =A=1/3 for the
entire sales horizon as a heuristic. Then, the number
of sales during the sales horizon follows a Poisson
distribution with the rate of 1/3, and the seller’s

expected profit is given by
T
5+5 / dD, -1
0

T
/st
0

T T
/stzmuf dD. >1
0 0

T T
/dDS/ dD. > 1
0 0
T

5

dD.|=2.
[ an.|=3

As the above expected profit is achieved by a heuristic
policy, we can thus conclude that Iy, > 5/3 > T1p = 1.

E,[R =E,

=5E, P,

T
/stz1
0

=5E,

The reason why the optimal deterministic profit is
no longer guaranteed to be an upper bound for the
profit of the stochastic problem is as follows. In
traditional RM problems, demand uncertainty always
works against the seller: When the seller sets the price
for the current sale, she faces future demand uncer-
tainty; if the future demand realization is relatively
high (or low), the seller could have set a high (or low)
price for the current sale. However, with an all-or-
nothing constraint, demand uncertainty has a two-
sided impact on the seller’s profit and may actually
help her. In particular, when she does not expect to
reach the sales target in the absence of random
demand shocks without exerting any cost—that is,
E,[ /g dD,(A)] < N—the seller could refrain from ex-
erting costly effort and rely on pure luck.

A direct implication of Example 1 is that the seller
may “game” the system under the all-or-nothing
constraint. The purpose of imposing a sales target of
N is to motivate the seller to increase sales by exerting
greater effort. However, because of the randomness in
demand, the seller can be opportunistic by exerting
less effort and hoping that the randomness works in
her favor to push the sales above the target. As a
result, it is crucial to design the contract in a way that
appropriately aligns the incentives of multiple parties.

4.3. Asymptotic Analysis

The fact that the optimal profit from the stochastic
problem TII,,; may be higher than the deterministic
profit [T, makes our analysis more difficult. Because it
is generally hard to derive Il,,;, we would need a
benchmark to gauge the performance of various poli-
cies. Fortunately, we are able to re-establish the

inequality Il <Ilp in the asymptotic regime when
N, T, and b are large enough.

Consider a series of problems, where, for each
instance, we scale up the time horizon, sales target,
and lump-sum bonus by a factor of 0. That is, for the
O-th problem, we have T =0T, N©® =0N, and
b'®) = 0b, and we evaluate the performance of various
policies as 0 — co. We shall note that similar ap-
proaches have been applied in many other applica-
tions in RM (see, e.g., Besbes and Maglaras 2012 and
Jasin 2014). However, in the context of sales effort
management, this construction has a natural interpre-
tation. The original problem can be viewed as evaluat-
ing the sales number and rewarding the seller every T
time periods, whereas in the 0-th scaled problem, the
sales number is evaluated only once at the end of the
OT-th time period. So, if we divide the expected profit
for the 0-th problem by 6 and compare it with that of
the original problem, it will shed light on the impact
of the length of evaluation windows on the policy’s
performance.

For the O-th problem, we denote by Hf)gz and HEDQ)
the optimal profit of the stochastic problem and the
deterministic problem, respectively. It is easy to see
that the optimal solution of a deterministic problem
for any O remains the same, and Hg) =0llp =6
[b+p(ApT —N) —c(Ap)T]|. The %%otimal expected profit
of the stochastic problem Hf)pt must be computed
based on Problem (S), which is a difficult task in
general. Fortunately, we show in the following prop—
osition that Hg) still serves as an upper bound of I1 %)

opt
when 0 is sufficiently large.

Proposition 3 (Asymptotic Upper Bound). For any policy
u=A{A; : 0<t< T}, we have 11m9%n§,9>/n<§) <1, where
the inequality is strict if limg_oE, [/ST/\S ds]/6 < N.

Proposition 3 has two key takeaways. First, when 0
is sufficiently large, the optimal deterministic profit
always serves as an upper bound. This result allows
us to gauge the asymptotic performance of a policy by
comparing its expected profit against the optimal
deterministic profit. Second, when 0 is sufficiently
large, any policy with expected sales lower than
the target never achieves the upper bound. This is
because, if lime_onu[fGTAs ds]/6 <N, the probabil-
ity that the target will be reached is strictly less
than one.

To further explore the implications of Proposition 3,
we conduct a series of simulations by scaling up the
problem in Example 1 by a factor of 0. In the 0-th
scaled problem, the parameters are given by
T=0,N=6,p =5, and b=560. The cost function is
assumed to be c(1) = (31 —1)%. As a benchmark, the
optimal sales intensity in the deterministic problem is
)\Dg ) =N /T =1, with a corresponding profit Hg) =0in
the 6-th problem.
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Figure 3(a) shows the expected optimal profit of the
stochastlc problem H t relative to the deterministic
profit H ) as O varies. It corroborates our findings in
Example 1 and Proposition 3 that the optimal deter-
ministic profit serves as an upper bound for the
expected optimal profit of the stochastic problem only
when 0 is sufficiently large. The curve in Figure 3(b)
displays the average optimal sales intensity in the 0-th
stochastic problem. The horizontal dashed line in the
figure indicates the optimal sales intensity in the deter-
ministic problem, which is always equal to one. The
optimal sales intensity in a stochastic problem is calculat-
ed by using Equation (2) and is sample-path dependent.
To compare it with Ap, we repeat the simulation 1,000
times and record the average sales intensity during the
sales horizon for each 6. Figure 3(b) shows that the
average optimal sales intensity in the stochastic problem
is lower than Ap when 6 is small. However, with a
sufficiently large 0, the average optimal sales intensity
eventually converges to Ap from above, which makes
sense because the seller wants to ensure the target is met
under demand uncertainty.

As mentioned, in the context of sales effort manage-
ment, O can be interpreted as the length of an evalua-
tion time window. In this context, Proposition 3 and
Figure 3(b) illustrate one potential upside of having a
long evaluation time window. That is, with a suffi-
ciently long evaluation window, the rational seller
must induce a sufficiently high average sales rate to
reach the target, following a modified resolving heu-
ristic or, even better, the optimal policy, which
alleviates the moral hazard issue in salesforce man-
agement. This result contrasts and complements some
empirical and analytical studies that show that a
sufficiently short evaluation window may be pre-
ferred from other perspectives such as psychological
factors (Chung et al. 2013) or order smoothing and
coordination within a supply chain (Chen 2000).

5. Heuristics

Next, we propose various easy-to-implement heuris-
tics and explore their performance by comparing their
profit with the benchmark based on the deterministic
problem in the asymptotic regime.

5.1. Static Heuristics

First, we consider a heuristic where the seller induces a
static sales rate, denoted as )\gg for the O-th problem,
throughout the sales horizon. We adopt the solution
of the deterministic problem Ap, which is derived in
Proposition 2, as the rate for the static heuristic. This
heuristic is easy to implement, as it requires no monitor-
ing of the sales process by the seller during the sales
horizon. Moreover, it has a provable performance guar-
antee in traditional RM problems. Gallego and van Ryzin
(1994) show that the static heuristic with a rate of Ap is
asymptotically optimal, with a performance gap smaller
than O(V6). Jasin (2014) shows that this bound is tight.

Next, we investigate the performance of this static
heuristic in the stochastic setting when there exists an
all-or-nothing constraint. We denote the expected
proﬁt of the static heuristic in the 0-th problem b 3/
H H We evaluate its performance by comparing H
with Hf:, , which serves as an upper bound of the
optimal expected profit when 0 is sufficiently large, as
shown in Proposition 3.

We consider two scenarios, depending on how A"
fares against N/T. As we show below, the perfor-
mance of the static heuristic is fundamentally different
in each of the two. First, consider the case when
A*> N/T. In this case, we have /\(562 = A" for the static
heuristic, as the profit-maximizing sales intensity A"
can indeed reach the sales target N in the determinis-
tic problem. As we show in the following proposition,
this static heuristic is asymptotically optimal and is
able to asymptotically eliminate any performance gap
in the stochastic setting.

Figure 3. (Color online) Expected Optimal Profit and Average Sales Intensity with Different Scales
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Proposition 4. Suppose A" >N/T. We have limg_,c
0 0
(m - %) =o.

Proposition 4 delivers the somewhat intriguing
message that the static heuristic asymptotically yields
no performance loss at all, compared with the optimal
policy. That is, a simple static rate policy reduce the
performance gap to zero, even though the random-
ness in demand increases in an absolute term as 0
increases. This is in contrast to the performance of the
optimal static heuristic in many traditional RM prob-
lems, where its performance loss is given by O(V0)
(see, e.g., Gallego and van Ryzin 1994 and Besbes and
Maglaras 2012).

The underlying rationale for this seemingly coun-
terintuitive result is as follows. In many traditional
RM problems, revenue loss is driven mainly by the
mismatch between supply and demand. In particular,
when the realized demand is greater than the invento-
ry level, the seller leaves money on the table and
could have charged a higher (static) price. On the
other hand, when the realized demand is lower than
the supply, the seller could have made a greater profit
by charging a lower (static) price. The magnitude of
the performance loss from adopting a static pricing
policy scales at a rate of O(V0) (see, e.g., Besbes and
Maglaras 2012 and Jasin 2014). For a service system,
Kim and Randhawa (2017) show that the magnitude
of the performance loss of a contingent pricing policy
can be reduced to a rate of O(6'/?), but there will still
be a positive gap.

On the contrary, as the price is fixed and the seller
controls sales intensity, the main source of perfor-
mance loss in our model is the potential dire event of
the seller gaining nothing if she fails to reach the sales
target at the end of the sales horizon. When A* > N/T,
this risk asymptotically disappears because the target
will almost certainly be reached with a static heuristic
of rate A" when the scale of the problem is sufficiently
large. Along the way, the seller also induces the
profit-maximizing sales rate, which eliminates any
potential performance loss from excessive effort/cost
incurred to reach the target. The preceding two factors
guarantee little loss in performance by inducing a rate
of A" throughout the sales horizon, when the profit-
maximizing rate A" is higher than N/T.

Next, we analyze the case when A" <N/T. In this
case, the solution to the deterministic problem is
Ap =N/T. That is, when there is no uncertainty, the
best strategy for the seller is to induce a sales rate
such that the target will just be reached at the end of
the sales horizon. Given the positive result of
Proposition 4 on the static heuristic derived from the
deterministic problem, it may be tempting to also use
Ap in the stochastic problem as the rate for the static

heuristic. However, we show in the following propo-
sition that the static heuristic with a rate of Ap is
suboptimal.

Proposition 5. Suppose A" <N/T. Consider any static
heuristic with a rate of /\(562 = Ap +f(0), which satisfies
limg_mf(e) =0.
i. The heuristic is asymptotically optimal—that is,
limg_, [1E) /T1 = 1—if and only if limg_,., VOf(8) = oo;
ii. When A*=N/T, there exists a static heuristic
whose performance loss is bounded by Hg) _H(s(?{ =
069, Ve>0;
iii. When A* < N/T,
a. For any asymptotically optimal static heuristic, we

have limg_co %(Hg)) - Hg}) = o0;

b. There exists a static heuristic whose performance
loss is bounded by Hg) - H(si)l =0(6%°%), ¥ e>0.

Unlike the case when A* > N/T, Proposition 5(i) shows
that a static heuristic with a rate of Ap is no longer
asymptotically optimal when A* < N/T. As a matter of
fact, we show a much stronger result: that a static
heuristic can be asymptotically optimal if and only if a
positive margin f(0) is added to the optimal determin-
istic rate Ap. This is because, when there exists an all-
or-nothing constraint, the seller receives the payout only
when the number of sales reaches the target. Thus,
almost certainly reaching the target (i.e., with probability
one) is essential for any heuristic to be asymptotically
optimal. The optimal deterministic rate of Ap does not
account for demand uncertainty, and, therefore, the seller
can only guarantee the target being reached by inducing
a rate higher than Ap. The margin f(6) will shrink to
zero as 0 increases; otherwise, there is a persistent boost
beyond the minimum, leading to the heuristic being
suboptimal. Having said that, the margin f(6) cannot
converge to zero too quickly either—that is, with a rate
slower than 1/v0—as otherwise, reaching the target
cannot be guaranteed.

Under the special case when A" = N/T, the perfor-
mance loss of a static heuristic can be as low as
0(6°), ¥ €>0, as shown in Proposition 5(ii). More
interestingly, Proposition 5(iii) indicates that the per-
formance loss of any asymptotically optimal static
heuristic is greater than @(\/@I; when A* < N/T.> Com-
pared with many RM problems (see, e.g., Gallego and
van Ryzin 1994 and Jasin 2014), performance loss of
the optimal static heuristic is greater when there is an
all-or-nothing constraint. This is because, in order to
guarantee the target almost certainly being reached,
the seller needs to induce a boost f(6) on top of the
optimal deterministic sales rate Ap. Because the boost
cannot shrink too fast—that is, limgqm\/éf 6) =
co—the performance loss, driven by this higher-than-
optimal sales intensity, is greater than @(\/g). Having
said that, the performance loss of a static heuristic can
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be made arbitrarily close to ©(V0), as shown in
Proposition 5(iii).

5.2. Dynamic Heuristics

Propositions 4 and 5 show that the performance of the
optimal static heuristic is mixed. When A* > N/T, the
optimal static heuristic is asymptotically optimal, with
little loss in profit. The flip side of the story is not as
encouraging. When A" < N/T, some safety quantity on
top of the optimal deterministic sales rate is required
to ensure that the target will almost certainly be
reached at the end of the sales horizon. This boost in
the sales rate results in a performance loss greater
than ©(V6). To address the inferior performance of
static heuristics when A* < N/T, we expand our search
space by examining dynamic heuristics in this
subsection.

5.2.1. Periodic Resolving Heuristic. The performance
loss of static heuristics, when A" <N/T, is mainly
driven by the fact that the sales intensity is set at the
beginning of the horizon, and, therefore, does not
respond to random demand over the course of the
sales horizon. Thus, the seller must compensate by
inducing a higher-than-optimal sales rate to make
sure the total sales will exceed the target. A natural
solution to this problem is to resolve the problem
periodically during the sales horizon. At various
times, we resolve the deterministic problem with the
updated number of sales required to reach the target
and updated remaining time until the end of the sales
horizon. This process gives the seller chances to
respond to past demand and to adjust the sales
intensity accordingly. We refer to this heuristic as the
periodic resolving heuristic.

Suppose the heuristic reoptimizes at distinct time
points I ={1,2,...,T}. We denote A, t€T, as the
updated sales intensity at time point ¢. Then, the heuris-
tic can be formally stated below in Algorithm 1.

Algorithm 1 (Periodic Resolving Heuristic)

1. At time-to-go T, set ;\T =Ap.

2. At time-to-go t > 1, compute the updated distance
to the target, 71;.

3.if 71; < 0 then

4. SetA; =A"

5. else

6. Compute A; as the solution to Problem (D) with

N=#;,and T =t
7. end if

With the periodic resolving heuristic, the seller will
switch to the profit-maximizing sales rate of A" once
the sales target is reached. Otherwise, at each time
point ¢, the seller would resolve the deterministic
problem, as specified in Problem (D), by taking into
account the past demand realizations and the time

remaining until the end of the sales horizon. In theory,
this periodic resolving heuristic will strike a delicate
balance between complexity and performance. Com-
pared with the static heuristic, the resolving heuristic
is responsive to past demand realizations; yet, unlike
the optimal solution, which requires HJB equations to
be solved through backward induction, it only solves
a simple deterministic problem for a finite number of
times. We show in the following proposition that the
periodic resolving heuristic, as outlined in Algorithm 1,
is asymptotically suboptimal when there exists an all-
or-nothing constraint, though it has been shown to be
asymptotically optimal in many RM problems in the
absence of such a constraint.

Proposition 6 (Suboptimality of Periodic Resolving
Heuristic). Denote by Hg& the expected profit of the
periodic resolving heuristic. We have limg_,c H}?I/
ny <1

b .

Similar resolving heuristics have been studied in
many traditional RM problems, with great success. In
particular, Jasin (2014) shows that a resolving heuristic
is asymptotically optimal and has a logarithmic reve-
nue loss, which significantly reduces the square-root
revenue loss from the optimal static heuristic. Howev-
er, the superior performance of periodic resolving
heuristics no longer holds in the presence of an all-or-
nothing constraint. The underlying rationale is as
follows. Recall that when A* < N/T, the static heuristic
with rate Ap is not optimal because the corresponding
probability that the total sales volume will exceed the
target at the end of the sales horizon does not
converge to one as 0 — co. The same situation
persists, even if we resolve deterministic problems
periodically. The periodic resolving heuristic allows
the seller to adjust sales intensities in response to past
demand realizations, which potentially reduces excess
costs, especially when the number of sales is higher
than expected. However, the resulting sales intensity
from an updated deterministic problem still fails to
account for demand uncertainty in the future. There-
fore, the sales target will almost certainly not be
reached with optimal deterministic rates only, even
though they are being updated periodically based on
past demand realizations. This result underscores the
distinctiveness of the all-or-nothing constraint as a
hard constraint in a stochastic problem.

5.2.2. Modified Resolving Heuristic. Given an all-or-
nothing constraint, a superior dynamic policy should
not only be responsive to past demand realizations,
but also guard against future demand uncertainties.
With this observation, we propose a modified
resolving heuristic (MRH), which is summarized in
Algorithm 2.
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Algorithm 2 (Modified Resolving Heuristic)
1. At time-to-go T, set /\]}ARH =Ap.
2. At time-to-go t > 1, find the updated threshold 7i;.
3.if 71; < 0 then
4. Set AMRH = 1=,

5. else
6. Compute Ay as the solution to Problem (D) with
N= ﬁt and T = t',\ _

7. if t <Mlog0 or |A;—Ap|> mm{;(A - Ap), Ap—
/\*} then

8. Set AMRH =}

9. else .

10.  Set AMRH =},

11. end if

12. end if

In Algorithm 2, parameters M and A are some chosen
constants, independent of 9; see the next section for an
exploration of choosing these parameters. The modified
resolving heuristic works as follows. Initially, the heu-
ristic is the same as the standard periodic resolving
heuristic described in Algorithm 1, where Problem (D)
is updated and resolved periodically, and its solution is
deployed as the sales rate. This allows the heuristic to
respond to past demand realizations and avoid unnec-
essary excess costs, while still keeping the sales on track
to reach the target. However, the heuristic will switch
to a sufficiently high sales rate, referred to as the full-
speed rate, when either of the following conditions is
satisfied: (i) The remaining time is limited (ie.,
t <Mlog0), but the sales target has not yet been
reached; or (ii) the solution to Problem (D) with
parameters updated at time ¢ deviates significantly
from the ex ante optimal deterministic rate (i.e.,
Ap =N/T), which can happen only when the sales
are substantially lower than those of the determinis-
tic case at time f. When either of these two con-
ditions is satisfied, ensuring the sales target being
met becomes the highest priority, and, thus, the
seller is better off switching to the full-speed mode.
The performance of the modified resolving heuristic
is summarized in the following theorem.

Theorem 2 (Logarithm Gap of Modified Resolving
Heuristic). The modified resolving heuristic is asymptotical-
ly optimal, and the performance loss is bounded by
¥ — 119, = O(log 6).

Theorem 2 shows that the performance loss from
the modified resolving heuristic is improved to
O(log 0), which is much lower than that of the optimal
static heuristic, an order of greater than ©(V0), as
shown in Proposition 5. The superior performance of
the modified resolving heuristic is driven by its
reduced sales boost, which is still enough to guarantee
that the target will almost certainly be reached at the

end of the sales horizon. Instead of adding a cons-
tant margin to the optimal deterministic sales rate at
the beginning of the sales horizon, as in the optimal
static heuristic, the seller only needs to proactively
induce a higher-than-optimal rate either when the
remaining time is relatively short or when the num-
ber of sales is much lower than expected. By doing
this, extra costs can be avoided when the number of
sales turns out to be higher than expected. In situations
when higher sales intensity is indeed required, a costly
effort is only incurred for a limited period of time,
leading to a much smaller expected performance
loss.

The modified resolving heuristic under the all-or-
nothing constraint is able to achieve the same
performance gap as optimal resolving heuristics in a
traditional dynamic pricing setting (Jasin 2014). How-
ever, the underlying rationale is different. In the
classical RM problem considered by Jasin (2014),
resolving the deterministic problem periodically al-
lows the seller to adjust prices in response to past
demand realization, which reduces the potential mis-
match between supply and demand, leading to better
performance than that of the optimal static heuristic.
However, as we show in Proposition 6, simply adjust-
ing sales rates in response to past sales would be
suboptimal when there exists an all-or-nothing con-
straint. A superior heuristic will also account for
future demand uncertainties by ensuring that the
sales target will almost certainly be reached. With
Algorithm 2, we typically only need to adjust the
sales rate when the remaining time is less than
O(log0) if at all necessary (we show in the proof
that the expected time such that |;\t—AD| >
min {% (A =Ap), Ap — )\*} is less than O(log0), leading
to an improved performance gap of O(log0).

Theorem 2 also provides justification and perfor-
mance assurance for the hockey-stick phenomenon in
salesforce management (see, e.g., Chen 2000 and
Sohoni et al. 2010). This phenomenon refers to the
sales spike near the end of a sales horizon that is
commonly observed in a wide range of industries.
One possible rationale for this phenomenon is that
salespeople refrain from exerting a significant amount
of effort in the early stages and let demand unfold
naturally. A considerable amount of effort is justified
only when the deadline comes closer without the sales
target having been reached. This type of mentality
closely resembles the modified resolving heuristic in
spirit. So, even though the hockey-stick phenomenon
may cause difficulties for third parties, such as up-
stream partners in a supply chain, by generating
uneven orders over time, Theorem 2 shows that it
may be a strategy with verifiably good performance
for the seller herself.
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6. Numerical Examples: Performance
of Heuristics

In this section, we conduct comprehensive numerical
analysis to supplement our theoretical results in Sec-
tion 5. We evaluate the performance of heuristics by
considering a series of problems with different scales.
Unless otherwise stated, the parameters are as follows:
N©® =200, T® =50, and b® =400, in the 0-th prob-
lem. The cost function is assumed to be c(A) = (A — 2)°.
The same set of 6 values are used in the numerical
examples. The particular values of 0 adopted can be
found in the first column of Table 1. The only excep-
tion is Figure 3, where, because we need to compute
the optimal policy, we only conduct the experiments
for 0 <400 because of computational complexity.

First, we consider static heuristics. As shown in
Propositions 4 and 5, the performance of static heuristics
depends crucially on how A* fares against N@ /T,
Thus, we separate the two cases when A">

Table 1. Expected Profit of Static Heuristics and Dynamic
Heuristics

Static Heuristics Dynamic Heuristics

SH? MSH® RH® MRH¢

0 Mean SD Mean SD Mean SD Mean SD

2 6 45 11 34 4 52 7 35
4 10 87 36 57 11 95 30 48
6 12 129 67 75 12 137 57 58
8 15 171 90 105 20 181 88 67
10 15 212 119 126 17 221 113 88
12 7 252 161 128 36 261 152 93
14 14 294 178 171 18 304 184 107
16 15 335 219 177 15 344 217 122
18 43 373 255 184 27 386 259 108
20 39 416 286 206 28 430 291 123
30 -7 620 436 314 52 623 472 177
40 35 823 644 325 151 818 654 228
50 51 1,025 788 464 9% 1,026 857 227
60 38 1,230 946 569 231 1,215 1,056 259
70 -11 1433 1,129 632 123 1437 1246 282
80 -37 1632 1,335 636 121 1636 1,435 354
90 -103 1,829 1455 830 162 1833 1,604 440
100 58 2,039 1,699 749 322 2,015 1,816 404
200 144 4,048 3543 1,319 527 4,025 3,793 626
300 0 6,063 5,237 2,299 770 6,004 5780 725
400 70 8,075 7,363 2,062 793 8,003 7,749 1,094

500 -181 10,083 9,324 2232 1,759 9869 9,782 746
600 -709 12,069 11,151 2,983 902 12,013 11,728 1,159
700 63 14,099 13,068 3,358 998 14,044 13,709 1,639
800  -181 16,114 14,975 3,835 2,577 15,846 15,712 1,537
900  -329 18,110 17,184 2,841 2,629 17,887 17,725 1,704
1,000 70 20,120 18,697 5,108 3,105 19,845 19,675 2,270

Note. SD, standard deviation.
“Static heuristic with a sales intensity )\(5(2 =
"Modified static heuristic with a sales mten51ty A MSH =Ap+070%
“Periodic resolving heuristic, as outlined in Algorithm 1.
dModified resolving heuristic, as outlined in Algorithm 2.

N©® /T and when A* <N©@ /T We compute the
expected profit from static heuristics as follows. For the
O-th problem, we repeat simulation experiments for
50,000 times and record the average of the seller’s profits
as an approximation for HSH We then compare it with
the optimal deterministic profit HEJ), which serves as an
upper bound for the optimal profit of the stochastic
problem when 0 is large enough, as we show in
Proposition 3.

Consider first when the per-unit bonus commission p
is six. In this case, we have A" =argmax{A: )\p -
c(A)} =argmax{A:6A—(A-2)*} =5>NO/T0O) =
Thus, the sales intensity of the static heuristic is set to be
)\(9) A"=5. We compute the optimal deterministic
proflt and the expected profit from the static heuristic
under various 6 and display the differences between the
two in Figure 4(a). Some comments are in order. First,
we observe that, as 0 increases, the profit loss from the
static heuristic quickly enters the neighborhood of zero.
This is consistent with our statement in Proposition 4
that there is hardly any performance loss for the optimal
static heuristic when A” > N/T. Second, the expected
profit of the static heuristic is higher than that of the
optimal deterministic profit for some values of 6. This
corroborates our theoretical result that the optimal deter-
ministic profit is not a universal upper bound for the
expected profit from the stochastic problem. The upper-
bound statement holds only when 6 is sufficiently large.

Next, we consider the case when p = 2. In this case,
we have A" =argmax{A: Ap —c(A)} = argmax{A : 2A-
(A-2)*} =3 <N©/TO =4, Proposition 5 indicates
that static heuristics would perform badly in this case,
which is supported by the numerical results, as
displayed in Figure 4(b). In partlcular we consider
eight different sales intensities A 5131 = Ap +f(0), where
f(©)=07"F, and B€{0.2,0.3,0.4,0.5,0.6,0.7,0.8, + co},
for the static heuristic. We have a couple of observa-
tions from Figure 4(b). First, performance losses of the
heuristics with rates f>0.5 are roughly linear in 6
and are worse than those of the other three heuristics
when 0 is large. This is consistent with Proposition 5,
in which we show that when the boost in the sales
intensity is relatively small (i.e., §>0.5 in this case),
the static heuristic is not asymptotically optimal, and
the profit loss would be ©(6). On the other hand, as
long as limg_,. VOf(0) = 0o, which is the case when
B < 0.5, the profit loss would be less than ©(6). This is
reflected by the concave curvature of the correspond-
ing lines in the figure. Second, in our experiments, the
case with = 0.4 achieves the best asymptotic perfor-
mance. In general, a good candidate for 8 for the static
heuristic will be just slightly below 0.5. This is because
that the Poisson tail bound is subexponential (see
Lemma A2 in the online appendix), and, thus, the
probability of not hitting the target diminishes more
quickly as § increases.
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Figure 4. (Color online) Performance of Static Heuristics
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Next, we evaluate the performance of dynamic
heuristics, as discussed in Section 5.2. The setup of the
numerical experiments is the same as before. Two
extra parameters in the numerical experiments are the
constant M and A in the modified resolving heuristic.
We present the set of results with M = 10 and A =5
and discuss their impact on the performance of mod-
ified resolving heuristics at the end of this section.

The results are summarized in Table 1 and Figure 5.
Some comments are in order. First, we observe from
Table 1 and Figure 5(d) that both the static heuristic (SH)
adopting the optimal deterministic intensity and the
standard periodic resolving heuristic (RH) perform
poorly, which is consistent with Propositions 5 and 6.
Neither of the two heuristics introduces any boost in the
sales intensity on top of the optimal deterministic rate
(see Figure 5(a)), and, thus, there is a good chance that
the target will not be reached at the end of the sales
horizon. In fact, in our numerical experiments, the failure
rate of either heuristic is consistently higher than 40%, as
shown in Figure 5(c). Failing to reach the target is really
costly for the seller because the cost incurred over the
course of the sales horizon can never be recouped.

Second, Figure 5(d) shows that for both the static
heuristic with a rate of Ap+67%* (MSH) and the
modified resolving heuristic (MRH), the profit loss as a
percentage of the optimal deterministic profit converges
to zero promptly as the scale factor 0 increases. This,
again, confirms our theoretical results that both a certain
modified static heuristic and the modified resolving
heuristic are asymptotically optimal. Having said that,
we observe that the modified resolving heuristic consis-
tently outperforms the modified static heuristic with a
higher average profit level (see Table 1) and smaller
profit loss as a percentage of the optimal deterministic
profit (see Figure 5(d)). With the modified resolving
heuristic, the seller has the chance to respond to past
demand realizations and only needs to induce a higher-
than-optimal rate when either the remaining time is

relatively short or the number of sales is well below that
expected. Compared with the modified static heuristic,
the modified resolving heuristic can produce a greater
chance of reaching the target (see Figure 5(c)) with
lower sales intensities (see Figure 5(a)).

Finally, we explore the choice of parameters M and
A for the modified resolving heuristic. Figure 6 dis-
plays the profit loss of the heuristic under different
parameters with 6 = 500. We observe that, for a given
A, the performance loss of the heuristic is nonmono-
tonic in M in general. Profit loss as a percentage of the
optimal deterministic profit initially decreases in M
when M is small, but then increases in M as M gets
larger. The rationale for this nonmonotonicity is as
follows. Recall that Algorithm 2 requires that the sales
intensity be switched to the full-speed rate A when
the remaining time t is less than certain thresholds,
such as Mlog8, and the target has not yet been
reached. With a small M, the heuristic tends to switch
to A relatively late in the selling season, if it indeed
requires such a switch. Thus, the expected average
sales rate and the average cost rate are lower. The flip
side, however, is that there is a greater chance of
failing to reach the target. On the other hand, the
heuristic with a larger M causes the full-speed contin-
gency plan to be implemented earlier, resulting in a
higher average sales rate that deviates further from
the optimal deterministic rate. However, such a heu-
ristic produces a higher probability that the total sales
will reach the target by the deadline. The optimal
parameters for the modified resolving heuristic bal-
ance these two opposite forces by selecting an ex-
pected sales intensity that is just “high enough.”

Figure 6 sheds light on the optimal selection of
parameters. We denote by M*(1) the optimal M such
that the profit loss of the heuristic is minimized for
any given A. Figure 6 suggests that M*(A) decreases in
A in general. The practical implication of this observa-
tion is that, if the seller has limited maneuvers to
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Figure 5. (Color online) Performance of Heuristics
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Note. b=400, N =200, T =50, and c(A) = (A — 2)%.

increase the sales rate—that is, A is relatively small—
she is better off implementing a full-speed contingen-
cy plan relatively early.

7. Conclusion
We study a sales effort management problem under
an all-or-nothing constraint. This constraint plays a

Figure 6. (Color online) MRH: Profit Loss as Percentage of
Optimal Deterministic Profit
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central role in shaping the optimal policy, as it yields
two forces pushing in opposite directions. On the one
hand, the all-or-nothing constraint incentivizes the
seller to increase sales intensity, with the hope of
reaching the target by the end of the sales horizon.
However, if the target is not reached in the end, the
cost will be sunk, and the seller will incur a loss. The
optimal sales intensity is thereby nonmonotonic for
the remaining time and distance to the target. We
characterize the optimal policy for this problem,
which generally demonstrates a watershed structure.
We then propose various easily computable and
implementable heuristics and study their performance
under the asymptotic regime when the target and the
sales horizon are scaled up. One key takeaway from our
analysis is that, because the seller’s revenue is contingent
on achieving the sales target, ensuring that the target
will almost certainly be reached at the end of the sales
horizon is essential for any heuristic to be asymptotically
optimal. The performance loss associated with a heuris-
tic hinges on the extra effort required to ensure the target
being reached. In particular, we propose an asymptoti-
cally optimal modified resolving heuristic with a
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logarithmic performance loss, which diminishes the
adverse effect of the all-or-nothing constraint. This result
also alleviates the moral hazard in the salesforce contract
design. It suggests that by having a sufficiently long
evaluation window and a proportionally high target, a
rational seller can be induced to exert sufficient effort to
reach the target, following the modified resolving heu-
ristic or, even better, the optimal policy.

Last, we would like to clarify that our results, as well
as insights generated from the analysis, may not be
generalizable to the case where price is the decision
variable and the target is specified with respect to
revenue, rather than sales volume. This is because, as
mentioned earlier, when the target is a specific sales
volume, the only way for the seller to reach the target is
to sell more products by lowering the price. However,
the same cannot be said when the target is a certain
amount of revenue. In that case, in order to increase the
chance of hitting the target at the end of the sales
horizon, the seller can choose either to sell the products
in larger quantities by charging a lower price or to
charge a higher price and hope that demand produces a
favorable result. We would expect the latter strategy to
be preferable in certain situations when the seller dy-
namically adjusts prices to hit a revenue target.
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Endnotes

" Our results still hold for a payment scheme where, if the seller
exerts no effort, there is a base demand rate, and the seller earns a
fixed commission for every unit of sales, regardless of whether the
target is met, in addition to the all-or-nothing bonus and the over-
target commission per unit, which can be zero.

2 Our analysis does not require the nonnegativity of c(A).

3 f(6) =0O(g(0)) if there exist ky,ky, 09 > 0 such that for any 6 > 6y,
we have k; - g(0) <f(0) <k, - g(0).
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