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Online Appendix to

“Revenue Volatility under Uncertain Network E↵ects”

A. Background Materials.

Theorem OA.1 (Potential Game; Monderer and Shapley 1996). Let � be a game in

which the strategy sets are intervals of real numbers. Suppose the payo↵ functions are twice con-

tinuously di↵erentiable. Then � is a potential game if and only if
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for all i, j 2N. (OA.1)

Moreover, if the payo↵ functions satisfy (OA.1) and z is an arbitrary (but fixed) strategy profile in

Y , then a potential for � is given by P (y) =
P

i2N

R 1

0
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(x(t))(xi)0(t)dt, where x : [0,1]! Y is a

piece-wise continuously di↵erentiable path in Y that connects z to y (i.e., x(0) = z and x(1) = y).

The spectral radius is closely related to the behavior of the convergence of the power sequence

of a matrix; namely, we have the following.

Theorem OA.2 (Horn and Johnson 1990, Theorem 5.6.12 and Corollary 5.6.16).

Let A be an n⇥ n matrix with spectral radius ⇢(A); then ⇢(A)< 1 if and only if limk!1Ak = 0.

Furthermore, the Taylor series for (I �A)�1 is convergent, i.e., (I �A)�1 =
P1

k=0A
k. Finally, if

⇢(A)> 1,
��Ak

��
2
is not bounded for increasing values of k.

Theorem OA.3 (Bai and Yin 1988). Let Wn be an n⇥ n matrix. Suppose Wn is symmet-

ric, entries on the diagonal are i.i.d., entries on the o↵-diagonal are i.i.d., and the diagonal

and o↵-diagonal entries are also independent. Then, the necessary and su�cient conditions for

�max

⇣
1p
n
Wn

⌘
! a a.s. are (1) E[[Wn]

+
11]1, (2) E[[Wn]412]<1, (3) E[[Wn]212] = �2, a= 2�, (4)

E[[Wn]12] 0. Here, �max

⇣
1p
n
Wn

⌘
represents the maximum eigenvalue of 1p

n
Wn, and [Wn]

+
11 is 0

if [Wn]11 < 0 and is [Wn]11 otherwise.
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B. Other Proofs.

Proof of Proposition 1. This proposition directly follows from the results in Candogan et al.

(2012). However, for the sake of completeness, we included a brief proof. For a given price vector

p, let

�(x) =
nX

i=1

✓
�1

2
x2
i + bixi � pixi

◆
+

1

2

X

i

↵
X

j2V\{i}

Wijxixj.

It is easy to verify that �(·) is the potential function of the second-stage game, and the con-

sumption game (W,↵,b,p) is an exact potential game. An exact potential game has an essentially

unique equilibrium, and myopic best responses converge to the equilibrium (see Monderer and

Shapley 1996).

We next characterize the consumption equilibrium when b� p. The utility of each agent in her

decision is concave and is characterized as x= ↵Wx+(b�p), where x represents the consumption

vector in the equilibrium. By Assumption 1, (I �↵W ) is non-singular, and we have

⇢(↵W ) ↵kWk1 = ↵max
i

nX

j=1

Wij < 1.

Therefore, by Theorem OA.2, the Taylor series of (I � ↵W )�1 is convergent, which implies that

(I�↵W )�1 is non-negative. Assuming b�p� 0 implies that 0 (I�↵W )�1(b�p) = x, completing

the proof of the first part.

Using the result from the first part, for a price vector p, if Assumption 1 holds, the equilibrium

consumption is (I � ↵W )�1(b� p) with revenue (p� c1)>(I � ↵W )�1(b� p). To maximize the

revenue, the seller chooses price vector p= 1
2
(b+ c1). Finally, according to Candogan et al. (2012,

Lemma 7), the consumption levels in equilibrium are interior under Assumption 2 (i.e., xi > 0 for

all i2 V), completing the proof. ⇤

Proof of Theorem 1. We break the proof into three parts.

Part 1, existence of an interior consumption equilibrium: We show that if (1) holds, then

for all W̃ 2 W(W, ✏), (I � ↵W̃ ) is non-singular and (I � ↵W̃ )�1 is non-negative. We first show
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that the spectral radius of ↵W̃ is less than or equal to 1, i.e., ⇢(↵W̃ )  1. Since W̃ and W are

symmetric, we have ⇢(W̃ ) =
���W̃

���
2
and ⇢(W ) =kWk2 (the norm 2, k·k2, and spectral radius, ⇢(·),

of any symmetric matrix are equal). Therefore,

⇢(↵W̃ ) =
���↵W +↵(W̃ �W )

���
2
 ↵kWk2 +↵

���W̃ �W
���
2
 ↵kWk2 +↵✏kWk2

=kWk2↵(1+ ✏)< �max(W )↵(1+
1

↵�max(W )
� 1) = 1,

where the second inequality follows from Definition 2 as W̃ 2 W(W, ✏) and the strict inequality

follows from (1). As presented in the appendix (Theorem OA.2), if ⇢(M)< 1, then I �M is non-

singular and the Taylor series for (I �M)�1 is convergent. Therefore, ⇢(↵W̃ ) < 1 implies that

(I �↵W̃ )�1 exists and is non-negative, which together with Proposition 1 completes the proof of

the first part.

Part 2, lower bound on revenue volatility: We show that for a given W , there exists W̃ 2

W(W, ✏) and b for which

����R (W,↵,b)�R
⇣
W̃ ,↵,b

⌘����/R (W,↵,b) is equal to the right-hand side

of Eq.(2). Recall that vmax(W ) denotes the eigenvector corresponding to the largest eigenvalue of

W , �max(W ). We let W̃ = (1 + ✏)W (note that W̃ 2W(W, ✏)) and b = c1+ vmax(W ). Note that

vmax(W ) is also an eigenvector of (I �↵W ), (I �↵W̃ ) and their inverses, with the corresponding

eigenvalues (1�↵�max(W )), (1�↵(1+ ✏)�max(W )) and their reciprocals.

Applying Proposition 1 for b= c1+vmax(W ) leads to

|R(W,↵,b)�R(W̃ ,↵,b)|
R(W,↵,b)

=

���(b� c1)>(I �↵W )�1(b� c1)� (b� c1)>(I �↵W̃ )�1(b� c1)
���

(b� c1)>(I �↵W )�1(b� c1)

=

���v>
max(W )(I �↵W )�1

vmax(W )�v
>
max(W )(I �↵W̃ )�1

vmax(W )
���

v>
max(W )(I �↵W )�1vmax(W )

=

��� 1
1�↵�max(W )

� 1
1�↵�max(W )(1+✏)

���
1

1�↵�max(W )

=
↵�max(W )✏

1�↵(1+ ✏)�max(W )
.

Part 3, upper bound on revenue volatility: We prove that for any W̃ 2 W(W, ✏), the

revenue volatility cannot be larger than the right-hand side of (2). This establishes that RV(W, ✏) =
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maxW̃2W(W,✏)RV(W,W̃ ) is also upper bounded by the right-hand side of (2). For ease of notation,

we define f = b� c1. Therefore, there is a one-to-one mapping between f and b, which leads to

RV(W,W̃ ) =max
f

�����
f
>(I �↵W )�1

f � f
>(I �↵W̃ )�1

f

f>(I �↵W )�1f

����� . (OA.2)

We break the rest of the proof of part 3 into four steps.

Step 1: We first show that without loss of generality, we can assume f
>(I �↵W )�1

f = 1, i.e.,

RV(W,W̃ ) =max
f

���f>(I �↵W )�1
f � f

>(I �↵W̃ )�1
f

��� (OA.3)

s.t. f>(I �↵W )�1
f = 1.

Note that for any f such that f
>(I � ↵W )�1

f = 1, the objective of the optimization problem

(OA.2) becomes equal to the objective of the optimization problem (OA.3). As (OA.3) is a more

constrained problem, its right-hand side is smaller than (or equal to) the right-hand side of (OA.2).

We next show the other direction of this inequality. Suppose f achieves the maximum of (OA.2).

We show that plugging f
0 = 1

(f>(I�↵W )�1f)1/2
f into the objective of (OA.3) achieves the same value

as the right-hand side of (OA.2) (using Assumptions 1 and 2, f>(I �↵W )�1
f � 0, and therefore,

f
0 is in Rn). First, note that

f
0>(I �↵W )�1

f
0 =

f
>

�
f>(I �↵W )�1f

�1/2 (I �↵W )�1 f
�
f>(I �↵W )�1f

�1/2 = 1.

Second, by plugging f
0 into the right-hand side of (OA.3), we obtain

�����
f
>(I �↵W )�1

f

f>(I �↵W )�1f
� f

>(I �↵W̃ )�1
f

f>(I �↵W )�1f

�����=

�����
f
>(I �↵W )�1

f � f
>(I �↵W̃ )�1

f

f>(I �↵W )�1f

����� .

Step 2: For any W̃ 2W(W, ✏) and f such that f>(I �↵W )�1
f = 1, we can rewrite

�����
f
>(I �↵W )�1

f � f
>(I �↵W̃ )�1

f

f>(I �↵W )�1f

�����=

�����f
>
✓
(I �↵W )�1 �

⇣
I �↵W̃ )�1

⌘◆
f

�����

=

�����f
> (I �↵W )�1

✓
I � (I �↵W )

⇣
I �↵W̃

⌘�1
◆
f

�����

=
���f>L�1M f

��� ,
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where L denotes I�↵W andM denotes I�(I �↵W )
⇣
I �↵W̃

⌘�1

. Note that since L is symmetric,

the matrix L�1 is also symmetric. Moreover,

L�1M = (I �↵W )�1

✓
I � (I �↵W )

⇣
I �↵W̃

⌘�1
◆
= (I �↵W )�1 � (I �↵W̃ )�1,

which is the di↵erence of two symmetric matrices and hence is symmetric.

Step 3: In this step, we show a lemma implying that the maximum of |f>L�1M f | is either zero

or the absolute value of one of the eigenvalues of M .

Lemma OA.1. Given L= I �↵W and M = I � (I �↵W )
⇣
I �↵W̃

⌘�1

, if f is the argument of

the maximum (or, similarly, argument of the minimum) of f>L�1M f over all vectors f such that

f
>L�1

f = 1, then M f = µf for some µ2R.

Proof of Lemma OA.1. Throughout this proof, we use the fact that L�1 and L�1M are sym-

metric, which we just established in the proof of step 2 in part 3 of the proof of Theorem 1. We

show the lemma for maximization and note that a similar proof holds for minimization. Suppose

f is the solution of the following optimization problem:

max
f

f
>L�1M f

s.t. f
>L�1

f = 1.

Using Bertsekas (1999, Proposition 3.1.1), if f is the optimal solution, then we either have

rf f
>L�1

f = 0 or

rfL(f , µ) = 0,

for some unique µ, where L(f , µ) is the Lagrangian defined as L(f , µ) = f
>L�1M f�µ

�
f
>L�1

f � 1
�
.

If rf f
>L�1

f = 2L�1
f = 0, then f = 0 and M f = µf hold for any µ. Otherwise, we obtain

rfL(f , µ) = 2L�1M f � 2µL�1
f = 0,
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where we used the symmetry of both L�1M and L�1 in the preceding equality. This implies that

L�1M f = µL�1
f . Multiplying both sides by L, we obtain M f = µf for some unique µ. We then

have |f>L�1M f |= |f>L�1µf |= |µ|, where the second equation follows from |f>L�1
f |= 1. ⇤

Step 4: In this step, we show
���R(W,↵,f)�R(W̃ ,↵,f)

R(W,↵,f)

��� ↵�max(W )✏
1�↵�max(W )(1+✏)

.

Using Steps 1 to 3 yields

�����
R(W,↵, f)�R(W̃ ,↵, f)

R(W,↵, f)

�����
(a)
= max

f : f>L�1f=1

���f>L�1M f

���

(b)
= max

f : f>L�1f=1

���f>L�1µf
���=max{|µ| : µ= 0 or µ is an eigenvalue of M}

(c)
 kMk , (OA.4)

where (a) follows from Steps 1 and 2, (b) follows from Step 3, and (c) holds becausekMk2 �
kMfk2
kfk2

=

|µ|. We next show that kMk2 
↵�max(W )✏

1�↵�max(W )(1+✏)
. We can write

kMk2 =
����I � (I �↵W )

⇣
I �↵W̃

⌘�1
����
2

=
���↵(W � W̃ )(I �↵W̃ )�1

���
2


���↵(W � W̃ )

���
2

���(I �↵W̃ )�1
���
2

(a)
 ↵✏kWk2

���(I �↵W̃ )�1
���
2

(b)
 ↵✏�max(W )

���(I �↵W̃ )�1
���
2

(c)
 ↵✏�max(W )

�min(W )(I �↵W̃ )

=
↵✏�max(W )

1�↵�max(W̃ )

(d)
 ↵�max(W )✏

1�↵�max(W ) (1+ ✏)
, (OA.5)

where (a) follows from W̃ 2W(W, ✏); (b) follows from that for symmetric non-negative matrices we

have kWk2 = ⇢(W ) = �max(W ); (c) holds as (I �↵W̃ )�1 is symmetric and non-negative (see The-

orem OA.2 in the appendix), and therefore, we can write
���(I �↵W̃ )�1

���
2
= �max

⇣
(I �↵W̃ )�1

⌘
=

1/�min

⇣
I �↵W̃

⌘
; and (d) follows from that W̃ is symmetric and non-negative, and therefore, we

have �max(W̃ ) =
���W̃

���
2

���W̃ �W

���
2
+kWk2  (1+ ✏)kWk2 = (1+ ✏)�max(W ).
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Invoking (OA.5) in (OA.4), we have the desired result. ⇤

Proof of Proposition 3. First note that the largest eigenvalue of a symmetric matrix is a convex

function of the matrix, i.e., �max(M) is a convex function of M . This is because, by definition, we

have �max(M) =maxkxk2=1 x
>Mx. Therefore, we have

�max(�M1 +(1��)M2) = max
kxk2=1

x
>(�M1 +(1��)M2)x

= max
kxk2=1

(�x>M1x+(1��)x>M2x)

 � max
kxk2=1

x
>M1x+(1��) max

kxk2=1
x
>M2x

= ��max(M1)+ (1��)�max(M2).

Hence, �max(�W +(1��)RW ) is convex in �.

We define F (W,RW,�) = �W +(1��)RW . For any �,�0 where �0 < �, we have

F (W,RW,�0) = �0W +(1��0)RW

=
�0

�

⇣
�W +(1��)RW

⌘
+(1� �0

�
)RW

=
�0

�
F (W,RW,�)+ (1� �0

�
)RW.

Therefore, using the convexity of largest eigenvalue, we have

�max(F (W,RW,�0)) �0

�
�max(F (W,RW,�))+ (1� �0

�
)�max(RW ) �max(F (W,RW,�)),

where the last inequality is due to the fact that for any regular network RW , we have �max(RW ) =

1/n, and by Lemma 1, �max(W )� 1/n. Hence, �max(�W +(1��)RW ) is increasing in �.

Moreover, by (2), the revenue volatility is increasing and convex in the largest eigenvalue of the

underlying network. Thus, the revenue volatility of �W +(1��)RW is increasing and convex in �

because we just proved that �max(�W +(1��)RW ) is increasing and convex in �. This completes

the proof.
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The second part follows because increasing the values of some entries (while keeping the rest of

the entries the same) of a matrix with all non-negative entries increases its largest eigenvalue. In

particular, given a network W with SW as a subgraph of W , we have

[�W +(1��)SW ]ij =Wij � (1��)(Wij �SWij).

Assuming that SW ⇢ W , we have 0  Wij � SWij  Wij, implying that [�W + (1� �)SW ]ij is

increasing in �, completing the proof of the second part. ⇤

Proof of Proposition 4. We have

1
>(

2X

k=0

↵kF (W,RW,�)k
1X

i=1

C(i, k)↵2i�2i)1

= 1
>I1

1X

i=1

1

i+1

✓
2i

i

◆
↵2i�2i +1

>↵F (W,RW,�)
1X

i=1

C(i,1)↵2i�2i
1

+1
>↵2F (W,RW,�)2

1X

i=1

C(i,2)↵2i�2i
1

= n
1X

i=1

1

i+1

✓
2i

i

◆
↵2i�2i +1

>↵(�W +(1��)RW )
1X

i=1

C(i,1)↵2i�2i
1

+1
>↵2(�W +(1��)RW )2

1X

i=1

C(i,2)↵2i�2i
1

= n
1X

i=1

1

i+1

✓
2i

i

◆
↵2i�2i +↵

1X

i=1

C(i,1)↵2i�2i +↵2
1X

i=1

C(i,2)↵2i�2i
⇣
1
>(�W +(1��)RW )21

⌘

= n
1X

i=1

1

i+1

✓
2i

i

◆
↵2i�2i +↵

1X

i=1

C(i,1)↵2i�2i +

 
↵2

1X

i=1

C(i,2)↵2i�2i

!0

@
nX

l=1

Deg2l (�W +(1��)RW )

1

A

= n
1X

i=1

1

i+1

✓
2i

i

◆
↵2i�2i +↵

1X

i=1

C(i,1)↵2i�2i +

 
↵2

1X

i=1

C(i,2)↵2i�2i

!0

@
nX

l=1

✓
�(Degl(W )+

1��

n

◆2
1

A

= n
1X

i=1

1

i+1

✓
2i

i

◆
↵2i�2i +↵

1X

i=1

C(i,1)↵2i�2i +

 
↵2

1X

i=1

C(i,2)↵2i�2i

!0

@1��2

n
+�2

nX

l=1

Deg2l (W )

1

A .

Note that the balancing process does not a↵ect the impact of zero- and first-degree connections on

revenue volatility. Moreover, we have

@

@�

0

@1��2

n
+�2

nX

l=1

Deg2l (W )

1

A= 2�(
�1

n
+

nX

l=1

Deg2l (W )),
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and using Cauchy-Schwarz inequality, and since
Pn

l=1Degl(W ) = 1, we have

1 =
nX

l=1

Degl(W )
nX

l=1

Deg2l (W )
nX

l=1

1,

implying that
Pn

i=1Deg2i (W )� 1
n
. Therefore, �1

n
+
Pn

i=1Deg2i (W ) is a positive constant, and the

absolute value of revenue volatility is increasing in �, completing the proof. ⇤

B.2. Proof of Theorem 2.

In the rest of this section, we prove Theorem 2. We first show a lemma, establishing that

under Assumption 3, the matrix I � ↵(Wn + Gn) is non-singular and that the Taylor series of

�
I �↵(Wn +Gn)

��1
is convergent. In particular, we show that ⇢(↵(Wn +Gn))< 1 almost surely,

which implies that the Taylor series expansion converges (see Theorem OA.2 in the appendix). We

then write (I�↵(Wn+Gn))�1 in its Taylor series expansion and characterize the expected revenue

volatility as a function of the standard deviation of the noise �, parameter ↵, and the network

structure Wn.

Lemma OA.2. Given a sequence of symmetric matrices Wn and a sequence of symmetric ran-

dom noise matrices Gn, if Gn satisfies Assumption 3 and ↵< 1
⇢(Wn)+2�

, then as n!1, ⇢(Wn +

Gn)< 1 almost surely, and the matrix I �↵(Wn +Gn) is invertible.

Next, we estimate R(Wn,Gn,↵,b) using the Taylor series approximation. We let H(Wn,Gn) =

(I �↵(Wn +Gn))�1 and use Lemma OA.2 to write

H(Wn,Gn) =
1X

i=0

↵i(Wn +Gn)
i. (OA.6)

For a Wigner matrix Gn, as a part of the proof of the Wigner semicircle law, it has been shown

that matrix moments are convergent in expectation (see, e.g., Anderson et al. 2010, Chapter 2)

and

lim
n!1

1

n
E
h
TrGk

n

i
=

⇢
�kC(k/2) if k even,

0 if k odd.
(OA.7)



10

If Wn and Gn were commuting, we could use the binomial expansions to simplify H(Wn,Gn) and

then calculate E
⇥
Gk

n

⇤
separately to measure the volatility as a function of the network structure and

the noise distribution. However, Wn and Gn are not necessarily commuting, which prevents us from

using this argument. This requires developing new techniques. We next provide a generalization of

the characterization of the Wigner matrix moment convergence and then use it to establish Lemma

OA.2. In this regard, we first introduce a combinatorial interpretation of H(Wn,Gn) by defining a

corresponding graph that we refer to as the white-gray graph.

Definition OA.1 (White-gray Graph). Given two matrices Wn and Gn, the corresponding

white-gray weighted graph WG(Wn,Gn) is a weighted graph with n nodes in which between any

pair of nodes, there is a gray edge and a white edge. The weight of the white edge between nodes i

and j is ↵Wij, and the weight of the gray edge between nodes i and j is ↵Gij. More precisely, the

weighted multi-graph WG(Wn,Gn) = (V,E) where V = {1, . . . , n} and

E = Ew [ Eg = {(i, j)w [ (i, j)g, i, j 2 V },

w((i, j)w) = ↵Wij, w((i, j)g) = ↵Gij,

where the edge e= (i, j)w denotes a white edge between i and j (similarly, e(i, j)g denotes a gray

edge), and w(e) denotes the weight of an edge e.

Definition OA.2. In the white-gray graph WG(Wn,Gn), a walk of length k between v0 and

vk is an alternating sequence of nodes and edges, T = (v0, e0, v1, e1, v2, . . . , vk�1, ek�1, vk), where the

endpoints of ei are vi and vi+1 (i.e., ei is the edge between vi and vi+1). We next introduce the

notions we use for these walks:

• Starting node s(·) and ending node d(·): We refer to v0 as the starting node of T and denote

it by s(T ). We refer to vk as the ending node of T and denote it by d(T ).

• V (·) and E(·): We define V (T ) and E(T ) as the set of distinct nodes and distinct edges used

in T , respectively.
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• The length of a walk | · |: The length of a walk denotes the number of edges used in the walk,

i.e., |T |= k.

• White walk, gray walk : A walk T is a white walk if all edges traversed in T are white. A walk

T is a gray walk if all edges traversed are gray.

• A section of a walk : Given a walk T and two nodes vi and vj on it (i < j), we denote the

section of a walk between vi and vj by Tvivj .

• Weight of a walk, w(·): We define the weight of a walk as the product of the weights of the

edges on the walk, i.e., w(v0, e0, v1, e1, v2, . . . , vk�1, ek�1, vk) =
Qk�1

i=0 w(ei).

• Finally, given a white-gray network WG(Wn,Gn), we let Pij denote the set of all walks, with

starting node i and ending node j. Note that Pij is an infinite collection of walks with all possible

lengths of 1 up to 1.

In Figure OA.1(a), we display a white-gray graph with four nodes, and in Figure OA.1(b),

we highlight a walk T = (v0 = 1, e0 = (1,2)w, v1 = 2, e1 = (2,3)g, v2 = 3, e2 = (3,4)g, v3 = 4, e3 =

(4,3)g, v4 = 3, e4 = (3,2)w, v5 = 2) from node 1 (s(T ) = 1) to node 2 (d(T ) = 2). The length of

T , |T |= 5, V (T ) = {1,2,3,4} and E(T ) = {(1,2)w, (2,3)g, (3,4)g, (3,2)w}. The section of the walk

Tv2=3,v5=2 = (3, (3,4)g,4, (4,3)g,3, (3,2)w,2), and the section of the walk Tv4=3,v5=2 = {3, (3,2)w,2}.

In this example, nodes 2 and 3 are visited twice in T .

We next present a simple connection between each entry of matrix H(Wn,Gn) and the walks in

the white-gray graph WG(Wn,Gn).

Lemma OA.3. Given a white-gray network WG(Wn,Gn), the (i, j)-th entry of H(Wn,Gn) is

Hij =
X

p2Pij

w(p),

where Pij is the collection of walks between i and j in WG(Wn,Gn).

Proof of Lemma OA.3. Using Eq. (OA.6), we have

Hij =
1X

k=0

h
(↵(Wn +Gn))

k
i

ij
=

1X

k=0

X

p2Pij ,|p|=k

w(p) =
X

p2Pij

w(p),
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Figure OA.1 (a) A white-gray graph WG(W4,G4) with 4 nodes. (b) A walk

T = (v0 = 1, e0 = (1,2)w, v1 = 2, e1 = (2,3)g, v2 = 3, e2 = (3,4)g, v3 = 4, e3 = (4,3)g, v4 = 3, e4 = (3,2)w, v5 = 2) of

length 5 between 1 and 2.

1

4 2

3

↵W12↵W12

↵G12↵G12

(a)

1

4 2

3

↵G34↵G34
↵G23↵G23

↵W32↵W32

↵W12↵W12

(b)

Note. (a) Between every pair (i, j) of nodes, there is a white edge with weight ↵Wij and a gray edge with weight

↵Gij . (b) The starting node of T is s(T ) = 1, and the ending node of T is d(T ) = 2. V (T ) = {1,2,3,4}. The weight of

T , w(T ) = ↵
5
W12G23G

2
34W32. The section of the walk Tv2=3,v5=2 = (3, (3,4)g,4, (4,3)g,3, (3,2)w,2).

completing the proof. ⇤

Lemma OA.3 states that the entry (i, j) of the matrix H represents the sum of all weights of

the walks between i and j in the white-gray graph WG(Wn,Gn). If there were no additional noise,

i.e., Gn is the zero matrix, then Hij would equal the sum of all weights of walks on white edges

from i to j. This is because the weight of any walk with at least one gray edge would be 0. For

random noise matrix Gn, using Assumption 3, E[Gij] = 0 for all i, j 2 V . Therefore, for any walk

that traverses a gray edge once, the expected weight is 0. However, the expected weight of a walk

traversing a gray edge more than once is no longer 0 and should be accounted for when computing

the sum of all weights of the walks between any two nodes.

In order to find a succinct representation of H, we next define a partition of walks into

grouped-walks, as follows.

Definition OA.3 (Grouped-walks). We define the grouped-walks from a starting node s

to an ending node d as a collection of walks in WG(Wn,Gn) formed by alternating gray and white

sections. In addition to the starting node and ending node (s, d), a group-walk is specified by a
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sequence of k white walks (T1, . . . , Tk) and the length of the gray walks in between the white walks.

The length of the gray walks is compactly denoted by a vector � 2 (N[ {0})k+1, where �i�1 is the

length of the gray section before Ti and �i > 0 for 1 i k. More precisely, we have

grouped-walks
�
(s, d), (T1, . . . , Tk), �

�
=

�
p= (Q0, T1,Q1, T2, . . . , Tk,Qk) | p2Psd,8i, |Qi|= �i,8e2E(Qi) : e2 Eg

 
,

where Psd is the set of walks in WG(Wn,Gn) from s to d and Eg is the set of all gray edges in

WG(Wn,Gn). Ti’s represent the white sections grouped-walks, and Qi’s represent the gray sections

of grouped-walks (the edges used in Qi are all gray). If �0 = 0, then |Q0| = 0, which means the

walks starting with T1. Furthermore, the expected weight of the grouped-walks, denoted by GP, is

defined as

w (GP) =E

2

4
X

p2GP

w(p)

3

5 .

The following lemma shows a key property of the weight of a grouped-walks.

Lemma OA.4. Let Gn be a Wigner matrix with E[G2
12] =

�2

n
. For any ✏> 0, there exists N such

that for all n�N , w
�
grouped-walks((s, d), (T1, . . . , Tk), �)

�
< ✏ if at least one of �1, . . . , �k is an odd

number or the concatenation of the white sections, i.e., (T1, T2, . . . , Tk) does not form a walk from

s to d.

Proof of Lemma OA.4. We let GP denote the set of grouped-walks((s, d), (T1, . . . , Tk), �). Let

�=
Pk

i=0 �i denote the total number of gray edges in the grouped-walks GP. Using Definition OA.1

and Assumption 3, the weight of the gray edge (i, j) is ↵Gij =
↵p
n
Yij. For a gray section Q, let

Y (Q) =
Q

e2E(Q) Ye. We can write

E[w(GP)] =

0

@
kY

j=1

w(Tj)

1

A
✓

↵p
n

◆�

E
|Qi|=�i,

8e2E(Qi) : e2Eg ,
s(Qi)=d(Ti),
d(Qi)=s(Ti+1)

2

4
kY

i=1

Y (Qi)

3

5 . (OA.8)
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Using Assumption 3, we have E[Yij] = 0. Therefore, for any sequence of gray sections (Q0, . . . ,Qk)

in which at least one edge appears exactly once, we obtain E[
Qk

i=0 Y (Qi)] = 0. Therefore, we have

the following properties.

Property 1: Any gray edge in a walk p2 GP with non-zero expected weight is traversed at least

twice.

Property 2: The expected weight of grouped-walks with � gray edges, for which the number of

distinct nodes (excluding the starting and ending nodes of each gray section) used by gray edges

is no more than half of the number of gray edges, goes to zero as n grows. Formally, we will show

for a given grouped-walks with k white walks,

lim
n!1

E
|Qi|=�i,

8e2E(Qi) : e2Eg ,
s(Qi)=d(Ti),
d(Qi)=s(Ti+1)


w(GP) : |[k

i=0 (V (Qi)� {s(Qi), d(Qi)})|<
�

2

�
= 0. (OA.9)

The contribution of white edges to the weight of GP is a constant. We next estimate the number

of ways that one can form the gray sections of GP. First note that for a given set S of nodes,

the number of ways of creating a sequence of k sections of a total length � is at most of order

|S|�. Additionally, note that the starting and ending nodes of each section Qi are fixed and that

the generated sequence represents the sections without their first and last edge. Therefore, in the

sequence generated by S, the number of ways of selecting s nodes is at most ns. Assumption 3

implies that all finite moments of Yij are bounded. Letting � =max1l�(E[Y l
ij])

1
l yields

E
|Qi|=�i,

8e2E(Qi),e2Eg ,
s(Qi)=d(Ti),
d(Qi)=s(Ti+1)


w(GP) : |[k

i=0 (V (Qi)� {s(Qi), d(Qi)})|<
�

2

�


0

@
kY

i=1

w(Ti)

1

A
✓

↵p
n

◆� �/2�1X

s=0

nss���



0

@
kY

i=1

w(Ti)

1

A (↵��)�
�/2�1X

s=0

ns� �
2



0

@
kY

i=1

w(Ti)

1

A (↵��)�
✓
�

2
n� �

2n
�
2�1

◆



15

=
1

n

0

B@
�

2

0

@
kY

i=1

w(Ti)

1

A (↵��)�

1

CA .

Taking the limit of both sides as n ! 1 shows Property 2. Property 2 implies that when n is

su�ciently large, we should consider only walks p 2 GP with at least �/2 distinct nodes on gray

edges (excluding the starting and ending nodes of the sections). Combining Properties 1 and 2, we

show the following property.

Property 3: For any walk p = (Q0, T1, . . . , Tk,Qk) 2 GP that satisfies Properties 1 and 2, we

have the following:

• The sequence of sections (T1, . . . , Tk) is a walk from i to j.

• Each section Qi is a closed walk in the form of a tree in which each edge is traversed exactly

twice.

We next prove this property. Given p= (Q0, T1, . . . , Tk,Qk), let t denote the number of connected

components formed by the union of gray sections (Q1, . . . ,Qk). Note that each gray section is a

connected component; therefore, the number of connected components formed by the union of

gray components is no more than k + 1, i.e., t  k + 1. We refer to each connected component

corresponding to a subset of gray sections as a partition and denote all partitions by the vector

⇡ = (⇡1, . . . ,⇡t), where t denotes the number of connected components. We next find an upper

bound on the number of free distinct nodes on gray sections (i.e., distinct nodes excluding the

starting and ending nodes of each gray section). Property 1 implies that the number of distinct

edges on gray walks is at most �
2
. Moreover, the number of free distinct nodes used in a graph

with t connected components and �
2
edges is no more than �

2
+ t, and the equality holds only if

every component is a tree. Furthermore, given partition ⇡, in each connected component, at least

one node is not free (corresponding to the starting and ending nodes of the gray section in that

connected component). Therefore, for a given partition ⇡ with � edges, the number of distinct

nodes is bounded by
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|[k
i=0

�
V (Qi)� {s(Qi), d(Qi)}

�
| �

2
+ t� t=

�

2
. (OA.10)

Note that in each partition, if the number of pre-specified nodes is more than one, then the number

of distinct free nodes we can choose from becomes strictly less than �
2
, which, by Property 2,

contributes asymptotically 0 to the expected weight of the grouped-walks. To have exactly one

pre-specified node in each connected component, the starting and ending nodes of all sections in

each connected component should be identical, i.e., given the partition ⇡ with exactly t connected

components, we have

81 i t, |[j2⇡i
{s(Qj), d(Qj)}|= 1,

i.e., all walks in the same connected component are closed walks, and all of them share one node

as their starting and ending nodes. Therefore, for a walk p2 GP that satisfies Properties 1 and 2,

we have d(Ti) = s(Qi) = d(Qi) = s(Ti+1), i.e., (T1, . . . , Tk) is a walk from i to j.

We next show that each section Qi is a tree that is traversed exactly twice. To satisfy Inequality

(OA.10) with equality, we must have the following: (a) every connected component should be a

tree, and therefore, the distinct edges forming every walk also form a tree, and (b) all gray sections

in the same connected component should have only one common node, which is the starting node of

these sections. Therefore, each section is a tree, and there is no common node between the sections

in the same connected component. Finally, each edge should be traversed exactly twice (to have

exactly �/2 distinct edges). Therefore, each Qi is a closed walk over a tree traversing each edge of

the tree once in each direction, completing the proof of Property 3.

Combining Properties 1, 2, and 3, we complete the proof of Lemma OA.4. ⇤

We now proceed with the proof of Theorem 2. Using Lemma OA.4, when calculating

w(group-path), in the limit when n goes to infinity, it is su�cient to only consider grouped-walks

between (i, j) with the following properties:
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• All gray sections are closed walks in the form of a tree in which each edge is traversed exactly

twice;

• The white sections form a proper walk from i to j.

We next count, for every white walk between i and j, the number of ways of choosing gray walks

of a given length such that all the preceding properties are satisfied.

Lemma OA.5. Given a white walk of length ! between i and j, the number of walks that satisfy

Property 3 with 2g gray edges is
Qg

i=1(n� i)C(g,!), where C(g,!) is defined recursively as

C(i, k) =
kX

t=0

iX

j=1

c(j� 1)C(i� j, k� t), i, k > 0,

C(i,0) = c(i) =
1

i+1

✓
2i

i

◆
,

C(0, k) = 1,

and c(j � 1) is the (j � 1)-th Catalan number. In the limit as n!1, the number of walks that

satisfy Property 3 with 2g gray edges divided by ngC(g,!) goes to one.

Proof of Lemma OA.5. For any of the grouped-walks with 2g gray edges and ! white edges,

Property 3 implies that the gray sections are closed walks and that there are no common nodes

between the walks representing two distinct gray sections (except for the origin of the walks).

Moreover, each gray section has a tree structure. Consider the grouped-walks between i and j. We

partition these walks into two groups: (1) the group-walks starting with a gray section and (2) the

group-walks starting with a white section.

(1) Grouped-walks starting with a gray section:

In this case, since all gray walks are closed, the gray section starting from i should also return

to i. Let 2t denote the number of edges after which the gray section returns to i for the first

time. Therefore, to form a gray walk that satisfies the above properties, first, an ordered set of t

distinct nodes out of n nodes should be chosen. This ordering can be selected and permuted in
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Qt
i=1(n� i) ways. We also have limn!1

Qt
i=1(n�i)

nt = 1. Since the walk structure is a tree and each

edge is traversed exactly twice, it is implied that the first edge that is traversed by the walk is

traversed in the opposite direction at 2t. (This is because the structure is a tree, and therefore,

the number of paths between i and the first node after i in the given order is unique.) Therefore,

if we remove the first and last edges, we still have a closed walk of a tree form, formed over the

chosen sequence of length 2t� 2 (in this way, we ensure that the first time that the gray section

returns to i is exactly after traversing 2t edges). It is well known that given an ordered sequence of

nodes, the number of ways of making tree-like closed walks that visit these nodes for the first time

in the sequence order is equal to c(t� 1), where c(t) =
Pt

i=1 c(i� 1)c(t� i) is the Catalan number,

representing the number of proper parentheses sequences with t open parentheses.6 After taking

2t edges and returning to i, we have 2(g� t) more edges to traverse in the grouped-walks starting

from i, which we compute recursively. In particular, the rest of the grouped-walks can be formed

in ng�t times C(g� t,!) ways. Therefore, given ! and g, the number of grouped-walks is ng times

Pg
t=1 c(t� 1)C(g � t,!), where t denotes the number of edges before the first time revisiting i,

c(t�1) denotes the number of ways to make tree-like closed walks of length t�1 given an ordered

set of t nodes, and C(g� t,!) denotes the number of ways to make the grouped-walks with g� t

gray edges given !, fixing the order of first-time visits to nodes.

(2) Grouped-walks starting with a white section:

Let j denotes the number of white edges of the white walk appearing in the first section of the

grouped-walks (i.e., the edge j + 1 should be gray). Therefore, the rest of such grouped-walks

start with a gray section, which we explained how to count in the previous part. In particular, as

explained there, we first select an ordered set of g distinct nodes out of n nodes. This ordering

can be selected and permuted in
Qg

i=1(n� i) ways. We also have limn!1

Qg
i=1(n�i)

ng = 1. Therefore,

6 One can show that there is an equivalence between Dyck words of length 2(t� 1) and these walks. In particular,
whenever an edge is visited for the first time in the walk, an x is added to the string, and whenever an edge is visited
for the second time, a y will be added to the sequence.
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the number of grouped-walks starting with a white section with exactly j edges is asymptotically

equal to ng
Pg

t=1C(g� t,!� j)c(t� 1). Note that the summation ensures that edge j+1 is gray.

Combining groups (1) and (2), we obtain

C(g,!) =
gX

t=1

c(t� 1)C(g� t,!)+
!X

j=1

gX

t=1

C(g� t,!� j)c(t� 1) =
!X

j=0

gX

t=1

C(g� t,!� j)c(t� 1),

completing the proof. Note that C(g,!) is a generalization of the Catalan number and is equivalent

to the solution of the following combinatorial problem: “Given ! identical balls and g pairs of

parentheses, count the number of distinct arrangement of balls and parentheses such that the

sequence of parentheses is proper (i.e., at any time, the number of open parentheses is at least as

large as that of the closed ones) and balls are only located where the numbers of open and closed

parentheses are equal.” ⇤

Combining Lemmas OA.3, OA.4, and OA.5, we have

�R(Wn,Gn) =

✓
b� c1

2

◆> 1X

k=0

↵k(Wn)
k

✓
b� c1

2

◆
�
✓
b� c1

2

◆> 1X

k=0

↵k(Wn +Gn)
k

✓
b� c1

2

◆

=

✓
b� c1

2

◆> 1X

k=0

↵k(Wn)
kC(0, k)

✓
b� c1

2

◆
�
✓
b� c1

2

◆> 1X

k=0

↵k(Wn +Gn)
k

✓
b� c1

2

◆

=

✓
b� c1

2

◆>
0

@
1X

k=0

↵k(Wn)
kC(0, k)�

1X

k=0

↵kW k
n

1X

i=0

C(i, k)↵2i�2i

1

A
✓
b� c1

2

◆
+O(

1

n
)

=�
✓
b� c1

2

◆>
0

@
1X

k=0

↵kW k
n

1X

i=1

C(i, k)↵2i�2i

1

A
✓
b� c1

2

◆
+O(

1

n
),

where the third equation follows from Lemma OA.3, Property 3, and Lemma OA.5, completing

the proof of Theorem 2.

Proof of Lemma OA.2. We use Theorem OA.3 of Bai and Yin (1988), presented in the

appendix, to show that ⇢(Wn +Gn)< 1. By definition, Gn =
Ynp
n
, where Yn is a symmetric matrix,

and E[Y11] = 0, E[Y 2
12] = �2 < 1, and E[Y k

12] < 1. Using Theorem OA.3 of Bai and Yin (1988)

implies that

�max(Gn) = �max(
Ynp
n
) = 2�, a.s. (OA.11)
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Moreover, using Assumption 3, we have thatWn+Gn is symmetric and non-negative, which implies

that

⇢(Wn +Gn) =max{|�| : � is an eigenvalue of Wn +Gn}= �max(Wn +Gn) (OA.12)

(see Horn and Johnson 1990, Chapter 8). Moreover, since both Wn and Gn are symmetric, using

Weyl’s inequality (see Horn and Johnson 1990, Theorem 4.3.1), we have

�max(Wn +Gn) �max(Wn)+�max(Gn). (OA.13)

Combining the assumption ↵< 1
⇢(Wn)+2�

with Equations (OA.11), (OA.12), and (OA.13), we have

⇢(↵(Wn +Gn)) = ↵�max(Wn +Gn) ↵�max(Wn)+↵�max(Gn) ↵(⇢(Wn)+ 2�) 1,

completing the proof. ⇤
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