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Abstract. We study the revenue volatility of a monopolist selling a divisible good to con-
sumers in the presence of local network externalities among consumers. The utility of con-
sumers depends on their consumption level as well as those of their neighbors in a network
through network externalities. In the eye of the seller, there exist uncertainties in the net-
work externalities, which may be the result of unanticipated shocks or a lack of exact
knowledge of the externalities. However, the seller has to commit to prices ex ante. We
quantify the magnitude of revenue volatility under the optimal pricing in the presence of
those random externalities. We consider both a given uncertainty set (from a robust optimi-
zation perspective) and a known uncertainty distribution (from a stochastic optimization
perspective) and carry out the analyses separately. For a given uncertainty set, we show
that the worst case of revenue fluctuation is determined by the largest eigenvalue of the
matrix that represents the underlying network. Our results indicate that in networks with
a smaller largest eigenvalue, the monopolist has a less volatile revenue. For the known
uncertainty, we model the random noise in the form of a Wigner matrix and investigate
large networks such as social networks. For such networks, we establish that the expected
revenue is the sum of the revenue associated with the underlying expected network exter-
nalities and a term that depends on the noise variance and the weighted sum of all walks
of different lengths in the expected network. We demonstrate that in a less connected net-
work, the revenue is less volatile to uncertainties, and perhaps counterintuitively, the expected
revenue increases with the level of uncertainty in the network. We show that a seller in the
two settings favors the opposite type of network. In particular, if the underlying network is
such that all the edge weights equal 1, the seller in the robust optimization setting prefers
more asymmetry and the seller in the stochastic optimization setting prefers less asymmetry
in the underlying network; by contrast, if the underlying network is such that the sum of all
the edge weights is fixed, the seller in the robust optimization setting prefers less symmetry
and the seller in the stochastic optimization setting prefersmore asymmetry.
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1. Introduction
One assumption in the pricing literature on network
games of strategic complementarities is that the under-
lying network structure is fixed and known; see, for
example, Candogan et al. (2012), Bloch and Quérou
(2013), and Cohen and Harsha (2020). However, in
many practical settings, the seller, who sells to a mar-
ket with local network externalities, may not know the
exact structure of the network nor the exact level of
influence between connected people. This network
uncertainty can be manifested as forecast errors in
defining the network. Moreover, even if a seller knows
the exact number of an influencer’s connections on a

social network such as Facebook, Instagram, or Linke-
dIn, that seller may only have a rough idea of the exact
level of this influence on different connections. In the
aforementioned settings, there is a lack of understand-
ing of the effects of network uncertainty on the seller’s
revenue. Our paper aims at filling this gap.

We consider a model of monopoly pricing in the pres-
ence of local network externalities and study the effects
of random network perturbation on the monopolist’s
revenue. We focus on symmetric network structures—
that is, the externality that one consumer has on another
is the same within a pair. The price, consumption level,
and weighted sum of neighbors’ consumption levels in
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a network determines the consumer’s utility. The under-
lying symmetric network structure is captured by a sym-
metric weight matrix, with entries being the weights of
influence among consumers. The game consists of two
stages: In the first stage, the monopolist selects the price
offered to each consumer ex ante without knowing the
true underlying network externalities or before the realiza-
tion of these externalities. In the second stage, consumers
choose their consumption levels simultaneously, knowing
the true (local) network externalities, in anticipation of
their neighbors’ consumption levels.1 Therefore, the reve-
nue of the seller depends on the underlying (random)
weighted network. We study the effects of variability in
the underlying network structure on the seller’s revenue.

We take two complementary perspectives to quan-
tify the impact of the random or unobservable net-
work structure on the seller’s revenue in equilibrium.
One is from the perspective of robust optimization
with an uncertainty set of possible outcomes, in which
we focus on the worst-case performance in revenue.
The other is from the perspective of stochastic optimi-
zation with known uncertainty, in which we focus on
the expected performance in revenue. In the robust
optimization setting, we assume that the real weights
of the symmetric network are within a given uncer-
tainty set centered around the estimated ones. Specifi-
cally, we assume that the L2 norm between the realized
and the estimated networks is bounded by ε. We then
characterize the worst-case revenue deviation from the
revenue obtained based on the estimated network in
terms of ε and the underlying network structure. In the
stochastic optimization setting, we assume that the
mean of the real network is given by the estimated net-
work and that the uncertainty around the mean is cap-
tured by aWigner matrix. We characterize the expected
revenue deviation from the optimal revenue obtained
based on the estimated network for very large net-
works. Our results could help sellers to estimate their
revenue volatility when they conduct risk assessment.
With this view, for a seller, our results can be inter-
preted as how volatile they estimates of the revenue
could be when facing either unpredictable shocks or a
lack of precise knowledge of the network structure.

For the robust optimization setting, we tightly char-
acterize revenue volatility as a result of unanticipated
changes in the underlying network. We show that the
worst-case volatility for a bounded uncertainty set
regarding the underlying externalities depends on the
spectral properties of the underlying weighted net-
work. In particular, the worst-case volatility relates to
the largest eigenvalue of the underlying network.
Building on this result and adopting the results from
spectral graph theory (namely, the results in Wilfe
1967, Nosal 1970, Lovász and Pelikan 1973, and Hof-
meister 1988), we study how the structural properties
of the underlying network impact revenue volatility.

In particular, we show that adding links and/or
increasing the edge weights increases the revenue vol-
atility. We show that among all connected networks
with equal weights on all connected edges, a chain
network has the smallest revenue volatility, whereas a
complete network has the highest.

For the stochastic optimization setting, we character-
ize the expected revenue volatility for large networks,
such as social networks, in the presence of random net-
work effects. We show that revenue volatility depends
on the noise variance and the weighted sum of all
walks of different lengths in the expected network.
Moreover, we show that the expected realized revenue
grows with the uncertainty in the network. That is, the
larger the revenue volatility is, the higher the seller’s
expected revenue is. In the analysis for this model, we
establish asymptotic properties of the moments of a sto-
chastic matrix that is the addition of a deterministic
matrix and a Wigner matrix, which could be of inde-
pendent interest.

The two risk assessment perspectives embrace net-
work/revenue volatility in the opposite direction. The
robust optimization perspective treats the volatility as
revenue reduction in the worst case, whereas the sto-
chastic optimization perspective views the volatility
as revenue enhancement in expectation. For both set-
tings, we relate revenue volatility to the structural
properties of the underlying symmetric network. We
show that a seller in both settings favors the opposite
type of network. In particular, if the underlying net-
work is such that all the edge weights equal 1, increas-
ing asymmetries in the underlying network reduces
revenue volatility. Hence, in such a network, the seller
in the robust optimization setting prefers more asym-
metry in the underlying network, whereas the seller
in the stochastic optimization setting prefers less
asymmetry in the underlying network. However, if
the sum of all the edge weights is fixed, decreasing
asymmetries in the underlying network reduces reve-
nue volatility. Hence, in such a network, the opposite
preferences hold.

1.1. Literature Review
There exist extensive studies on the strategic and wel-
fare implications of network externalities; see Acemo-
glu et al. (2016) for a survey.

Most related to our paper is the literature on reve-
nue management and pricing in the presence of local
network externalities; see, for example, Candogan
et al. (2012) and Bloch and Quérou (2013). In particu-
lar, Candogan et al. (2012) study the optimal pricing
strategy of a monopolistic seller selling a divisible
good (service) to consumers with local network exter-
nalities, which serves as the base of our model. Their
model takes the form of a network game among
agents that interact locally and is related to a series of
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papers on such games—for example, Ballester et al.
(2006), Bramoullé and Kranton (2007), Corbo et al.
(2007), Hartline et al. (2008), Galeotti and Goyal
(2009), and Bramoullé et al. (2014). As a competitive
version of Candogan et al. (2012), Chen et al. (2018)
study the competitive pricing decisions by firms that
sell substitutable goods to consumers under local net-
work externalities. The authors show that consumers
with a more central role receive lower prices in equili-
brium. Moreover, the authors characterize how the
firm’s profits change as a function of the structure of
the underlying network. We extend this stream of lit-
erature—in particular, Candogan et al. (2012)—by
assuming that the firm faces uncertainty in the under-
lying network that influences consumer purchases,
which in turn impacts the firm’s profit.

In a seminal paper, Galeotti et al. (2010) consider a
game over the network where the individuals’ payoff
depends on both their own actions and the actions of
their neighbors. The authors assume that the network
structure is partially known to the agents and character-
ize how this structure, the nature of externalities, and the
level of information affect the equilibrium outcome and
individual payoffs. By contrast, we assume that the net-
work structure is known by consumers; however, the
seller has only a noisy estimate of this structure.

Fainmesser and Galeotti (2016) consider the sce-
nario in which the monopolist has partial information
about consumers’ network externalities. In particular,
the authors consider asymmetric networks and com-
pute the monopolist’s value of information as the dif-
ference in its profits when it price-discriminates
between consumers based on the knowledge of the
structure versus when it offers a uniform price to all
consumers. The authors adopt a mean-field type of
approach and assume a network generated from the
indegree/outdegree distributions. Zhang and Chen
(2020) study the optimal nonlinear pricing in social
networks in the presence of local externalities. The
authors assume that individuals know the local net-
work structure but that the seller only knows the
global network. For the Erdős-Rényi graph, the
authors show that the optimal pricing policy is a uni-
form price. The authors further show that nonlinear
pricing allows the seller to respond more effectively to
changes in network topology and economic factors
compared with linear pricing. In contrast to these
papers in the line of Galeotti et al. (2010), our paper
has a different information structure. Fainmesser and
Galeotti (2016) and Zhang and Chen (2020) assume
that other than their own degree of connections, con-
sumers face uncertainty about the rest of the network
encapsulated by a degree distribution. However, in
our paper, consumers can observe the exact network
structure, though the sellers face uncertainty when
estimating their profits. Furthermore, in our paper,

the uncertainty that the seller faces is captured by
either a bounded uncertainty set or random uncer-
tainty in the form of a Wigner matrix. Besides, both
our paper and Fainmesser and Galeotti (2016) study
linear pricing, whereas Zhang and Chen (2020) focus
on nonlinear pricing, which allows the firm to screen
the network information.

Cohen and Harsha (2020) study a variant of Cando-
gan et al. (2012) with an indivisible good and derive
efficient approaches to optimally solving the problem.
With the same form of local network effects, Zhou and
Chen (2015; 2016) extend Ballester et al. (2006) to set-
tings where the players are partitioned into leaders and
followers engaging in a two-stage competition game.
Zhou and Chen (2018) further extend their model to
study the optimal decisions of the move sequence and
pricing by a seller. By contrast, we study the impact of
network uncertainty on the seller who faces a market of
consumers with local network externality. We provide
tight characterizations of the impact of uncertainties on
revenue for both known and unknown uncertainties.

More recently, Huang et al. (2021) and Zhang and
Chen (2020) have also studied pricing for a large ran-
dom network. However, their focus is on the benefit of
using discriminative or nonlinear pricing as opposed to
uniform pricing, whereas our focus is on the revenue
volatility under the optimal discriminative prices.

Another stream of literature studies the marketing
and pricing decisions under general network benefit
functions of a global nature (i.e., the network benefit of a
customer depends on the behavior of all (previous) cus-
tomers). Du et al. (2016; 2018) and Wang and Wang
(2017) incorporate global network effects into the dis-
crete choice model and then study the optimal pricing
decisions. Moreover, Hu et al. (2015) investigate the
operations and marketing policies when a firm sells to a
market of sequentially arriving customers under global
network effects. Hu et al. (2020) study the joint decisions
of pricing and sales information disclosure when a firm
sells a good to forward-looking customers who time
their purchases under global network effects.

1.2. Notation
For any matrixM ∈ R

m×n, we use [M]ij orMij to denote
the entry at the ith row and jth column. For a matrix
M, M ≥ 0 means Mij ≥ 0 for all i, j. We show vectors
with boldface letters and numerals (e.g., the vector of
all 1s is denoted by 1). The dimension of vectors and
matrices is specified only when it is not clear from the
context. We denote by ei the vector with ith entry
equal to 1 and the rest of the entries equal to 0. For
any integer n ∈ N, we let [n] � {1, : : : ,n}. We denote
the transposes of vector x and matrix M by x� and
M�, respectively. We denote a weighted undirected
network by (V,W), where V � {1, : : : ,n} represents the
set of nodes and Wij represents the weight of the edge
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between nodes i and j. We consider undirected, sym-
metric networks with nonnegative edge weights (i.e.,
W �W� and W ≥ 0). We use λmax(M) and λmin(M),
respectively, to denote the largest and smallest abso-
lute values among the eigenvalues of the matrix M
and use vmax(M) and vmin(M) to denote their corre-
sponding eigenvectors.2

1.3. Outline
In Section 2, we first describe the model, and then, for
a known symmetric network, we review the equili-
brium outcome, the optimal pricing, and the optimal
revenue as a function of the underlying network. In
Section 3, we study the revenue volatility for the
robust optimization model with a given uncertainty
set of network perturbations. In Section 4, we charac-
terize revenue volatility for the stochastic optimiza-
tion model with a stochastic perturbation. We provide
concluding remarks in Section 5. All proofs are pre-
sented in the online appendix.

2. Pricing with Known Network
Externalities

In this section, we review the network pricing game
with no uncertainty and when the underlying network
is known. We then present the existence of equilibrium
and the characterization of the optimal discriminative
pricing, as shown in Candogan et al. (2012).

2.1. Pricing for Network Externalities Game
The market consists of a set of agents, V � {1, : : : ,n},
residing on a connected network (V,W).3 We let Wij ≥
0 denote the strength of the peer effect between agents
i and j; we assume that the network is symmetric (i.e.,
Wij�Wji for all pairs of i and j). This assumption rep-
resents a setting in which the externality between two
agents depends on the extent of their two-way interac-
tions and is hence symmetric.

We consider a two-stage game between a monopo-
list and n agents. In the first stage, the monopolist
introduces a divisible good in the market and chooses
a vector p ∈ R

n of prices, where pi is the price offered
to the ith agent. In the second stage, the underlying
network is realized, and agents choose the amount of
goods to purchase at their announced price. For each
i ∈ V, we let xi ∈ R+ denote the amount of goods agent
i decides to purchase and refer to it as the action of
agent i. We denote the vector of all actions by
x � (x1, : : : ,xn) ∈ R

n
+. The utility of each agent depends

on that agent’s price, choice, the choice of actions by
other agents, and the underlying network W. The util-
ity of agent i ∈ V is given by

ui(x;W,b,p) � −1
2
x2i + bixi + α

∑
j∈V\{i}

Wijxixj − pixi,

where the first two terms denote the value obtained
by agent i’s own consumption, which is concave in
the purchased quantity; the third term represents the
positive network effect obtained from the consump-
tion by agent i’s neighbors; and the last term is the
purchase cost. We assume α ∈ R+. We also let bi ∈ R be
an agent-specific parameter that represents the opti-
mal individual consumption quantity of agent i in the
absence of network externalities when pi�0. We refer
to bi as the primary value of agent i. The network
externalities, encoded by the weight matrix W, cap-
ture the pattern and strength of interactions among
agents.

In the first stage, the monopolist sets price vector p
to maximize the profit:

max
p

∑
i
xipi − cxi,

where pi denotes the price offered to agent i and c denotes
the marginal production cost. For any W,α,b, and p, we
let (W,α,b,p) denote the consumption game among n
agents in the second stage. In equilibrium, all agents
simultaneously decide on their consumption quantity xi
to maximize their utility given the offered prices in antici-
pation of the consumption levels of all other agents, x−i;
that is, xi ∈ argmaxyi∈R+ui(yi,x−i;W,b,p), where x−i �
(x1, : : : ,xi−1,xi+1, : : : ,xn) denotes the actions of all agents
except agent i.

2.2. Equilibrium Characterization of the
Network Game

Similar to Candogan et al. (2012), we make the follow-
ing assumptions throughout the paper.

Assumption 1 (Regularity). Given the weight matrix W,
we assume α is small enough such that 1

α >maxi∈V
∑

j∈VWij.

Assumption 2 (Positive Consumption with No Network
Effect). We assume that b > c1.

Assumption 1 ensures that, in equilibrium, the con-
sumption levels are bounded, and there exists a sub-
game perfect equilibrium. Assumption 2 ensures that
if the item takes its lowest price (i.e., pi� c for all i),
agents find it beneficial to consume even without any
network effect.

We use the following notation.

Definition 1 (Consumption Game Equilibrium). For any
consumption game (W,α,b,p) with a unique con-
sumption equilibrium, we denote by x(W,α,b,p) its
equilibrium, with a slight abuse of notation. The sub-
game perfect equilibrium of the two-stage pricing-
consumption game is denoted by (p,x), and the optimal
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revenue of themonopolist in this equilibrium is denoted
by R(W,α,b).

We next review the consumption equilibrium for a
given price vector p′ in the second stage and the opti-
mal pricing decision of the seller in the first stage
based on Candogan et al. (2012).

Proposition 1 (The Pricing-Consumption Game (Can-
dogan et al. 2012)). Suppose Assumptions 1 and 2 hold.
We then have the following:

(a) The consumption game (W,α,b,p′) is an exact poten-
tial game, and the myopic best response among agents con-
verges to the unique consumption equilibrium. Moreover, if
b > p′, the consumptions in the equilibrium are strictly posi-
tive and satisfy x(W,α,b,p′) � (I− αW)−1(b−p′).

(b) The equilibrium outcome of the pricing-consumption
two-stage game (W,α,b) is

(p,x) � b+ c1
2

, (I− αW)−1 b− c1
2

( )( )
,

and the optimal revenue of the monopolist is

R(W,α,b) � b− c1
2

( )�
(I −αW)−1 b− c1

2

( )
:

Proposition 1 implies that even though for symmetric
networks the optimal price vector is independent of
the underlying network structure, the firm’s revenue
is a function of the network structure captured by the
matrix of (I− αW)−1, which represents how well con-
nected the agents are in the network.

3. Pricing with Unknown Uncertain
Network Externalities

In this section, we take a robust optimization approach
and characterize how much the revenue changes as a
function of the maximum change in the expected net-
work externalities.

3.1. Revenue Volatility: Uncertainty Set
To state the setting and the results, we first introduce
some notation and definitions. We show that the max-
imum volatility as a result of unknown uncertainties
depends on the largest eigenvalue of the network. We
measure the size of the uncertainty by the L2 norm of
the difference between the estimated and realized net-
works and refer to this size as the perturbation.4 In
this section, for notational convenience, we refer to
λmax(W) and λmin(W) as λmax and λmin, respectively.
For other matrices, such as W̃ , we use λmax(W̃)
explicitly.

Definition 2 (ε-Perturbed Matrices). For a given pertur-
bation level ε, we define the uncertainty set of

ε-perturbed matrices (or networks) as

W(W,ε)¢{W̃ : ‖W − W̃‖2 ≤ ε||W||2,W̃ ≥ 0,W̃
� � W̃}:

For instance, if the seller’s forecast of the externalities
is W and any possible true externalities matrix W̃ sat-
isfies W ∈W(W̃ ,ε), then the forecast accuracy is at
least ε (i.e., the relative distance between W and W̃ is
at most ε). We characterize the revenue volatility
among all ε-perturbed networks and highlight how it
depends on the underlying network characteristics.
Before stating the results, we define revenue volatility.

Definition 3 (Marginal Change and Revenue Volatility).
For a given network W and perturbed network W̃ , we
denote by RV(W,W̃) the maximum marginal change in
the revenue because of the change in network external-
ities, where the maximum is taken over all possible val-
ues of b:

RV(W,W̃)¢ sup
b>c1

|R(W,α,b) −R(W̃ ,α,b)|
R(W,α,b) :

We denote by RV(W,ε) the maximum relative effect
on the seller’s revenue from a perturbation drawn
from the set W(W,ε). For a perturbation level ε, we
define the revenue volatility for a given uncertainty
set as

RV(W,ε)¢ max
W̃∈W(W,ε)

RV(W,W̃):

Because RV(W,W̃) is the maximum relative change in
the revenue for any given perturbation, where the
maximization is taken over all possible primary val-
ues b, RV(W,ε) represents the worst-case change in
the revenue over all ε-level perturbations, and hence, it
captures how volatile the revenue is when the underly-
ing network is drawn from the uncertainty set.

As implied by Proposition 1, the seller’s ex ante
pricing decision stays unchanged in the presence of
perturbation at p � (b+ c1)=2. However, consumers’
consumption levels will change as they observe the
perturbed network effects. These changes will subse-
quently impact the revenue of the seller.

3.2. Tight Upper Bound on Revenue Volatility
Our key result for a given uncertainty set, presented
next, tightly characterizes revenue volatility over the
set of ε-perturbed networks as a function of the largest
eigenvalue of the estimated network.

Theorem 1. Suppose Assumptions 1 and 2 hold. For any
given ε such that

ε <
1

αλmax(W) − 1, (1)

we have that for all W̃ ∈W(W,ε), an interior consumption
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equilibrium exists. Moreover, we have

RV(W,ε) � αλmax(W)ε
1− αλmax(W)(1+ ε) : (2)

The tight bound on the impact of a perturbation
within an uncertainty set on the revenue characterized
in Theorem 1 has the following implications.

First, revenue volatility is increasing in α. Recall that
α is the coefficient of the network externalities and
represents the significance of the network externality
compared with the primary value of an agent for con-
sumption. Therefore, when α is larger, the consump-
tion utility of agents depends more on the network
externalities; hence, the revenue volatility is increasing
in α. Consequently, when two monopolists face the
same level of uncertainty, the monopolist who is sell-
ing a product with a higher dependency on the social
network (i.e., larger α) would experience, in the worst
case, a more significant change in the revenue.

Second, by increasing ε, the uncertainty set of possible
perturbations expands, and thus, the revenue volatility
increases. In view of Theorem 1, the monopolist should
invest more in gathering information on the true net-
work externalities to reduce the size ε of the uncertainty
set and, as a result, to mitigate the revenue volatility.

Third, revenue volatility is increasing in the largest
eigenvalue λmax(W). The largest eigenvalue of W
(with n nodes) can be expressed in terms of the
dynamic mean of node degrees of the network as
λmax(W) � limk→∞(Nk(W)=n)1=k, where Nk(W) repre-
sents the weighted sum of walks in W of length k, and
the weight of each walk is proportional to the product
of the weights of the edges on the walk (Cvetković
1971). Intuitively, λmax(W) represents an aggregate
value of the influence of agents on each other. Such a
higher value represents a larger aggregate influence
and leads to a larger impact of any given network per-
turbation of any size.

Therefore, the revenue volatility increases in λmax(W).
Note that higher connectivity often implies a higher
expected revenue for the monopolist. Our result states
that higher connectivity can also imply a higher revenue
volatility.

3.3. Impact of the Network Structure
In this subsection, we explain how revenue volatility
depends on the network structure by combining The-
orem 1 and the spectral properties of the underlying
network.

Proposition 2. Suppose Assumption 1 holds. For any
ε > 0, we have:

(a) Increasing the weight of any edge increases the revenue
volatility. In particular, for any unweighted network (i.e.,
Wij ∈ {0, 1}, with a weight of 1 for all existing edges), adding
links to the network increases the revenue volatility.

(b) Among all connected unweighted tree networks, the
chain network has the smallest revenue volatility, and the
star network has the largest revenue volatility.

Proposition 2(a) follows from the fact that the largest
eigenvalue increases in the (nonnegative) weights of
the edge of the network. Proposition 2(b) follows theo-
rems 2 and 3 from Lovász and Pelikan (1973), stating
that among connected trees on n vertices, the chain net-
work has the lowest largest eigenvalue, and the star
network has the highest largest eigenvalue. Proposition
2 implies that as the network becomes denser, the exter-
nalities among consumers increase, resulting in more
revenue volatility for any perturbation in the network.
Hence, among unweighted networks, the complete net-
work, with all agents connected, has the largest revenue
volatility. Moreover, the chain network has the lowest
revenue volatility because the connections are spread
out, implying that a given perturbation to the network
structure has the smallest impact on the overall con-
sumption and hence the revenue.

In order to better relate the revenue volatility to the
network properties, we adopt some basic results from
spectral graph theory—more specifically, the results
of Nosal (1970), Hofmeister (1988), and Wilfe (1967).
We first introduce two definitions and then summa-
rize and restate the results that we will use.

Definition 4. For any network whose weights are rep-
resented by the matrixW, we let

dmax(W) � max
1≤i≤n

∑n
j�1

Wij, davg(W) � 1
n

∑n
i, j�1

Wij:

Lemma 1 (Wilfe 1967, Nosal 1970, Hofmeister 1988).
For any adjacency matrix W of an undirected network
(either weighted or unweighted), we have davg(W) ≤
λmax(W) ≤ dmax(W).

Invoking this lemma in Theorem 1, we obtain the
following (with the proof omitted for brevity).

Corollary 1. Given a network W, suppose Assumption 1
holds and ε < 1

αdmax(W) − 1.We have
εα

1
davg(W) − α(1+ ε) ≤ RV(W,ε) ≤ εα

1
dmax(W) − α(1+ ε) :

Moreover, for all d-regular networks (i.e., networks with all
nodes of degree d), we have

RV(W, ε) � εα
1
d − α(1 + ε) :

Corollary 1 implies that for a given number of edges
in the network, denoted by m, the least volatile net-
work is the 2m=n-regular network (recall that n is the
number of nodes/agents in the network). This is
because for any network W, λmax(W) ≥ davg(W) � 2m=n,
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and for the 2m=n-regular network RG, Lemma 1
implies λmax(RG) � dmax(RG) � davg(RG) � 2m=n. This
result shows that from a robust perspective for reve-
nue maximization with endogenous prices, given the
same average degree, the most preferred underlying
network is the regular (balanced) network.

We next illustrate the results of Theorem 1 and Cor-
ollary 1 with numerical examples.

Example 1. We suppose ε < 2=3 and α � 1=5 and com-
pare the revenue volatility of a star network with that
of a complete network, both with four nodes. In the
star network, the adjacency matrix S has Si1 � 1 for all
i ∈ {2, 3, 4} (and sij�0 otherwise). We have λmax(S) ���
3

√
so that RV(S,ε) � ��

3
√

ε=(5− ��
3

√ − ��
3

√
ε). In the com-

plete network, the adjacency matrix C has Cij�1 for
all i, j ∈ {1, : : : , 4}, i≠ j (and Cii�0 for all i). We have
RV(C,ε) � 3ε=(2− 3ε).

Because, for ε ∈ [0, 2=3], we have RV(C,ε) −RV(S,ε) ≥
0 and increasing in ε, the revenue volatility of the com-
plete network is larger than that of the star network, as
established by Proposition 2(a). w

Example 2. Suppose we have 11 agents with α � 1=20
and ε � 1=2. If the underlying network externality
matrix is a complete network with weights equal to 1,
denoted by C, then λmax(C) � 10, and the revenue vol-
atility is 1. If the underlying network externality
matrix is a star network with weights equal to 1,
denoted by S, then we have λmax(S) � 3:16, and the
revenue volatility becomes 0.1. In Figure 1(a), we dis-
play the revenue volatility for a network externality
matrix given by βS+ (1− β)C as a function of β ∈ (0, 1).
We see that as β increases, the revenue volatility
decreases. This is because as β increases, the sum of
the edge weights decreases, and as Proposition 2(a)
establishes, the revenue volatility decreases. In Figure
1(b), we display the revenue volatility for a network
externality matrix given by βS + (1− β)C as a function
of β ∈ (0, 1). Here, S and C are normalized network
externality matrices of star and complete networks,

respectively, such that the sum of the weights in
both networks is equal to 1 (i.e., C � C=

∑
i,jCij and

S � S=
∑

i,jSij); in contrast to the previous case, the rev-
enue volatility increases in β. This is because as β
increases while the sum of the edge weights of the
network is fixed, Corollary 1 establishes that a regular
network (the complete network in this example) is
less volatile. Note that the revenue volatility is
monotonically increasing and convex in the largest
eigenvalue of the underlying network. Moreover,
λmax(βS + (1− β)C) is increasing and convex in β (see
Proposition 3(a)). Therefore, the revenue volatility is
increasing and convex in β. w

Nowwe formalize the observation from the previous
example about the impact of network asymmetry when
the sum of all weights is fixed. Given a regular network
RW and any other network W, we define RW �
RW=

∑
i,jRWij and W �W=

∑
i,jWij. We next show the

following result.

Proposition 3. Given any network W and any regular
network RW on the same set of vertices, we have that

(a) λmax(βW + (1− β)RW) is increasing and convex in
β, and hence, the revenue volatility of βW + (1− β)RW is
increasing and convex in β; and

(b) λmax(βW + (1− β)SW) is increasing in β, where SW is
a subgraph of W over the same set of vertices as W, and hence,
the revenue volatility of βW + (1− β)SW is increasing in β.

Note that as β increases, the network βW + (1− β)RW
becomes less balanced. Then, Theorem 1 and Proposi-
tion 3 imply that when the sum of all weights is fixed,
the revenue volatility increases as the network becomes
less balanced.

4. Pricing with Known Uncertain Network
Externalities

In this section, we characterize the impact of stochastic
uncertainty on the revenue in large networks. We sup-
pose that the monopolist estimates the value of exter-
nalities among agents. Then, the monopolist forecasts

Figure 1. (Color online) (a) The Revenue Volatility for the Network Externality MatrixW � βS+ (1− β)C as a Function of β,
Where S Is the Network Externality Matrix of a Star Network with 11 Nodes (and Weights 1) and C Is the Network Externality
Matrix of a Complete Network with 11 Nodes (and Weights 1); (b) the Revenue Volatility for the Network Externalities W �
βS + (1− β)C as a Function of β, Where S � S=

∑n
i,j�1 Sij and C � C=

∑n
i,j�1Cij

(a) (b)

Note. In both panels, we have α � 1
20 and ε � 1

2.
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the revenue based on the expected value of the exter-
nalities. As mentioned, the optimal price ex ante would
be the same as in the setting with deterministic network
externalities. However, the realized externalities could
differ from the estimates, leading to a different revenue
from that under the estimated externalities.

4.1. Revenue Volatility: Known Uncertainty
In a setting with n consumers, we let W̃n �Wn +Gn

denote the matrix of actual network externalities,
where Gn is a Wigner matrix of small random noises
with mean 0, and Wn is the underlying matrix of
expected network externalities (i.e., the estimate of the
monopolist).

Our goal is to characterize how much the stochastic
uncertainty affects the asymptotic revenue in expecta-
tion. In particular, we show that even though the
additional noise (i.e., Gn) has a mean of 0, the expected
revenue of the seller is not equal to the estimated reve-
nue according to the expected value of externalities
(i.e., Wn). We then exactly characterize the expected
revenue in the presence of such noises. We first define
Wigner matrices; see Anderson et al. (2010, chap. 2).

Definition 5 (Wigner Matrix with Finite Moments). Matrix
Gn ∈ R

n×n is called a Wigner matrix if Gn � n−1=2Yn,
where Yn is a symmetric matrix such that for all i < j,
[Yn]ij are independent and identically distributed
zero-mean random variables with moments equal to
E([Yn]k12), and for all i, [Yn]ii are independent and
identically distributed zero-mean random variables
with moments equal to E([Yn]k11). Moreover, all moments
of Yn are finite; that is, for all k ≥ 1, we have max(E
[|[Yn]ij|k],E[|[Yn]ii|k]) <∞: We denote the variance of
off-diagonal entries by σ2 (i.e., σ2 � E[([Yn]12)2]).

Note that we require the additional assumption that
all finite moments of the entries of matrix Yn are
bounded. Wigner matrices typically only require the
second moments to be bounded.

In what follows, we make an assumption regarding
the noise matrix.

Assumption 3. For a network with n nodes, the noise
matrix Gn is a Wigner matrix with finite moments. More-
over, for all 1 ≤ i ≤ n, we assume that [Gn]ii � 0, the sup-
ports of the random variables are such that Wn +Gn ≥ 0,
and ρ(Wn) is finite.

Assumption 3 on the noise matrix captures a setting
in which the inaccuracies in estimating the external-
ities among different pairs of consumers are identi-
cally distributed with zero mean and bounded
moments. Note that there are n – 1 random variables
(i.e., [Gn]ij, j ∈ [n], j≠ i) that are involved in the utility
of consumer i. Then, the normalization of Yn by

��
n

√
guarantees that for a large n, the overall uncertainty in
consumers’ utilities does not grow with n. In particular,

similar to the central limit theorem, the normalization
by

��
n

√
enables the characterization of the limit of this

matrix and its spectral properties as n grows (see
Wigner 1958). Finally, the assumption Wn +Gn ≥ 0
guarantees that the externalities are nonnegative. For
instance, if minij[Wn]ij > 0 and minij[Gn]ij ≥ −minij
[Wn]ij, thenWn +Gn ≥ 0.

Note that the seller’s optimal ex ante pricing deci-
sion is always p � (b+ c1)=2. This is because thematrix
Wn +Gn is symmetric (see, e.g., Candogan et al. 2012,
corollary 1). Therefore, the optimal price remains the
same evenwhen there is uncertainty regarding the net-
work structure. However, the consumers’ consump-
tion level will depend on the realized and observed
network. This will subsequently impact the realized
revenue of the seller. We define the expected revenue
volatility as the expectation of the difference between
the revenue obtained from Wn and the revenue ob-
tained from the uncertain matrix of network external-
itiesWn +Gn.

Definition 6 (Expected Revenue Volatility Under Ran-
dom Noise). For a given randommatrix Gn, define

ΔR(Wn,Gn) � E[R(Wn,α,b) −R(Wn +Gn,α,b)]
as the expected difference between the revenue esti-
mate when using the expected externalities and the
actual revenue obtained under the realized network
externalities.

4.2. Tight Characterization of Revenue Volatility
In the next theorem, we explicitly characterize, for
each b, the expected revenue volatility as a function of
Wn, α, and the variance of the entries of Gn (i.e.,
σ2 � E

[([Yn]12
)2]). Recall that ρ(Wn) is the spectral

radius of the matrix Wn of the expected weights with
n consumers.

Theorem 2. Suppose the random noise matrix Gn satisfies
Assumption 3. Given an underlying network of external-
ities with mean strengths Wn, if σ ≤ 1=(2α) − ρ(Wn)=2, we
have5

ΔR(Wn,Gn) � − b− c1
2

( )� ∑∞
k�0

αkWk
n

∑∞
i�1

C(i,k)α2iσ2i

( )
b− c1

2

( )

+O
1
n

( )
, (3)

with

C(i,k) �∑k
t�0

∑i

j�1
c( j− 1)C(i− j,k− t), i,k > 0,

C(i, 0) � c(i) � 1
i+ 1

2i
i

( )
,

C(0,k) � 1, (4)

where c( j− 1) is the ( j− 1)th Catalan number.
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Theorem 2 provides an exact asymptotic character-
ization of the expected revenue of the seller and
explains how to compute its value. The proof of this
theorem is presented in Online Appendix B.2, and its
intuition is as follows. We first expand R(Wn,α,b)−
R(Wn +Gn,α,b) (i.e., the difference between the reve-
nue estimate when using the expected externalities and
the actual revenue obtained given the realized net-
work) in terms of the entries of matrices Wn and Gn.
This expansion has a summation over multiple terms,
each involving products of multiple entries of Wn and
Gn. By using properties of Wigner matrices, we first
identify a collection of terms whose expectation is 0.
We then properly group the remaining terms (i.e., those
with a nonzero mean) and use a combinatorial count-
ing argument to prove their coefficient.

We next demonstrate and discuss the implications
of this theorem. First, note that, as (3) immediately
implies, the expected revenue in the presence of
uncertainty for the seller is higher than the revenue
obtained from the expected network. This observation
can be generalized for a general random matrix W by
noting the convexity of R(W) in wij for all i, j and
applying Jensen’s inequality separately for each entry
wij. Nevertheless, Theorem 2, in particular, (3), exactly
characterizes that the asymptotic magnitude of the
revenue volatility increases with (b− c1)�Wk

n(b− c1),
which leads to a higher expected revenue. Note that
the entries of the matrix Wk

n represent the number of
walks of length k between any pair of two nodes.
Therefore, (b− c1)�Wk

n(b− c1) is a weighted sum of
the overall number of walks of length k. As a result,
increasing the number of walks in a network increases
the magnitude of the expected revenue volatility.

We next study the expected revenue volatility under
the stochastic noise by fixing the sum of the network
weights but varying the balance of the network. Recall
that for any networkW, we defineW �W=

∑
i,j Wij, and

let F(W,RW,β) � βW + (1− β)RW , where RW is a regu-
lar network on the same vertices as W. In the next
proposition, we show that when we consider up to the
second-order-connectivity cascade effect, the absolute
value of the right-hand side of (3) increases with β.
This result implies that for networks with a fixed sum
of weights, the absolute value of the revenue volatility,
up to the second-order-connectivity cascade effect, is
decreasing as the network becomesmore balanced.

Proposition 4. Suppose (b− c1)=2 � 1. For a given network
W and for any regular network RW on the same set of vertices,
1�(∑2

k�0 α
kF(W,RW,β)k∑∞

i�1C(i,k)α2iσ2i)1 is increasing in β.

5. Conclusion
We consider the optimal pricing problem of a monop-
olist in selling a network good and focus on the effects
of uncertainty in the underlying network structure.

The firm makes inferences on the underlying network
structure to decide on the pricing decisions and obtain
an estimate of the corresponding revenue. However,
firms may never know the true network externalities
ex ante and therefore may have some uncertainty
about their optimal actions and the resulting revenue.
For the quadratic individual utility with local network
externalities, the optimal pricing decisions stay the
same regardless of the network uncertainty. We quan-
tify the impact of this uncertainty on the optimal
revenue and characterize its dependence on the un-
derlying network structure. In particular, we take both
robust and stochastic optimization perspectives, with
the former characterized by an uncertainty set and the
latter by a probabilistic distribution. In the former
case, we suppose that the estimated matrix of network
externalities is at most ε away from the true matrix of
externalities and then characterize the worst-case re-
lative revenue difference, referred to as revenue vola-
tility. We establish that revenue volatility depends
on the largest eigenvalue of the network externality
matrix, which provides a natural ranking of networks
in terms of the worst-case deviation in their revenues.
In the latter setting, we consider uncertainties in the
form of a modified Wigner matrix and characterize
the expected revenue volatility. The characterization
depends on a weighted sum of all walks of different
lengths in the expected underlying network. From
both perspectives, we relate revenue volatility to the
structural properties of the estimated/expected net-
work. In particular, if all the edge weights equal 1,
we show that for both settings, when the underlying
network is less balanced, revenue volatility is lower.
However, if the sum of all the edge weights is fixed,
we show that for both settings, when the underlying
network is more balanced, revenue volatility is lower.
Nevertheless, the two perspectives favor revenue vol-
atility in the opposite direction. This is because they
reflect the two sides of the same coin, with the former
on the risk under network uncertainty and the latter
on the associated risk premium, though they require
different information structures.

A key assumption that simplifies our analysis is
that the underlying network structure is symmetric;
that is, the network externality one user imposes
on another is mutual. In the setting with unknown
uncertain network externalities, this symmetry assump-
tion allows us to simplify the conditions to be expressed
only in terms of the spectral radius or the maximum
eigenvalue of the externality matrix, under which we
can quantify the revenue volatility. The results could
be much more complicated without the symmetry
assumption, which we leave for future research. In
the setting with known uncertain network external-
ities, this symmetry assumption allows us to resort to
and build on the asymptotic properties of Wigner
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matrices (in particular, Bai and Yin 1988, see theorem
OA.3).

Endnotes
1 Even if consumers only have local network information, the equi-
librium consumption can be achieved through a tâtonnement best-
response process regardless of the starting point.
2 Note that the eigenvector corresponding to the largest eigenvalue
may not be unique. For the largest eigenvalue, we select the corre-
sponding vector with nonnegative entries. Note that such a vector
exists because of the Rayleigh quotient definition of the largest
eigenvalue when the entries of the matrix are all nonnegative. For
the smallest eigenvalue, we choose one of the corresponding vectors
arbitrarily.
3 The connectivity assumption is without loss of generality. If the
network is not connected, we can treat each connected component
as a separate connected network.
4 Throughout the paper, we adopt the L2 norms. The L2 norm of a matrix
W ∈ R

n×n is ||W||2 � supx≠0
||Wx||2||x||2 , where for any vector x � (x1, : : : ,xn),

its L2 norm is ||x||2 � ∑n
i�1 x2i

( )1=2. Note that for symmetric matrices with
nonnegative entries, ||W||2 � λmax(W).
5 A term f(n) is O(1=n) means that there exist n0 and C such that for
all n ≥ n0, |f (n)| ≤ C=n.
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