Online Appendix to the Paper
“No Claim? Your Gain:

Design of Residual Value Extended Warranties
under Risk Aversion and Strategic Claim Behavior”

LEMMA 1. Given any x>y =0, (e7® —e)/v is increasing in . Moreover, (e —e"¥) /vy =2z —y if 7> 0;
(7" —e")/y<z—vy if v<O.

Proof of Lemma 1. Notice that (e7® —e")/y = (e7*=¥) — 1)/ €. Because both (¢?@~¥) —1)/y and eV
are non-negative for any v and = >y, and e?¥ is increasing in « for any given y > 0, then it is sufficient to
show that (e7®=%) — 1)/~ is increasing in 7.

Consider its first-order derivative with respect to
8((67(1—11) _ 1)/7) vz —y)er@v) — (e7==v) 1)

= 2

oy y

Let G(v) :=e"@% — 1. Then, dG(v)/dy =0 and 0*G(~)/dv? = 0 for any given z >y, so G(7) is increasing
convex in v. Note that G(0) = 0. Apparently, for any v >0,

G(v)=G(0) + .[: G'(t)dr <~G'(7).

We note that the above inequality also holds for any v < 0 because G(v) = G(0) — fg G'(r)dr < —(0 —
)G (7) =G’ (7). Thus,
(= —1)/7) _4G'(7) -G(y)
2t 72

and given any x >y >0, (e —e¥) /v is increasing in . Consider the limit as v goes to zero, lim, _,¢(e?* —
e)/y =lim,_o(xe” —ye’¥) = x —y. Therefore, (€7 —e")/yzax—yif v>0; (7 —e¥)/y<z—yif v <O0.
Furthermore, there exist tighter bounds for (e7* — ) /v, e.g., for any >y >0,

>0,

min(e?,e?) - (x —y) < (7 —e") /v = J e’ dr <max(e’®, ") (x —y).
Yy

Proof of Theorem 1. Apparently, the optimal claim policy has a threshold structure: it is optimal for a
customer with risk attitude v to place a claim at time t for a failure with repair cost C; if and only if
C, = g(t;,7). Moreover, it is straightforward that g(¢;,r) is decreasing in ¢ and increasing in r, noting that
t represents the time-to-go.

We next show the monotonic comparative statics of g(¢;,r) with respect to . Suppose g(t;v,7) < g(t;v',7)
at time t for any v > +'. We will next show g(t+0;~,r) < g(t+9;7/,r) for a sufficiently small 6 > 0. According
to the differential equation (1),

\i

g(t+837,7) = g(t;y,r) — — (E[er™m( o] —1) + o(d),

gt +8;+r) = g(t;y',r) — ):Ttlé (E[eY min(Cratta’m)] 1) 4 o(5).
Then,
(E[ew»mmct,g(tw,r))] _ 1)/7 _ (E[ew“minwt,g(tw’ﬂ)] — 1)/7’
> (E[ew’-min(ct,g(t:wyv”))] — 1)/,yf — (EI:e"//‘min(ctﬂ(t;"//:f'))] — 1)/7/ — lE[e'y’<min(Ct,g(t;'y,r)) _ e'y’<min(ct,g(t;'y/,r)):|
> B[O - (min(Cy, g(t;,7)) —min(Cy, g(t;7',7)))| = E[© - (g(t;7,7) — g(t:7',1))],

where @ = ¢ ™min(Cra(ty',1) if A/ > (0; © = 7 ™in(C9(t77)) if ~ < 0. The first inequality holds because
E[e”‘min(cmg(t;%”)] — 1)/7 is increasing in v by Lemma 1; the second inequality holds by a similar argument
in the proof of Lemma 1; the third inequality holds because min(C;,z) — min(C;,y) < (z —y) for any = > y.
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Therefore, g(t + 0;7,7) — g(t +6;7/,7) < (9(;v,7) — g(t;7',7)) - (1 —)\t5®) < 0. Then, g(t;,r) is decreasing
with respect to the risk attitude ~.
The case with v approaching —oo:

A ; -
g (t;—o0,r) = lim - (E[e”'m‘“(c"g(t’w”] — 1) =0.
y—o— 7y
Then, g(t; —o0,r) = g(0; —o0,7) + [§¢'(s;—00,7)ds = 7.

The case with v approaching +oo: for any positive time ¢

g (t;0,7) = lim M (E[e""min(ct‘g“”“))] - 1) = f)\tE[min(Ct,g(t; 00,7)) - ew‘mi“(cf‘g(tm”))].
Y—+0 Y
If g(t;00,7) > 0, then ¢'(t;00,7) = —o0 and g(t;0,7) = g(0;00,7) + [¢ g'(s;00,7)ds < 0 for any positive ¢, which
is impossible. Thus, the only solution to the above differential equation is g(¢;00,7) =0 for any positive ¢.
Proof of Proposition 1. (a). Note that g(t;7,r) is decreasing in ¢ and g(0;v,r) = 7. When the time-to-
go t is very small, g(¢;7,r) is sufficiently close to r, so it is optimal for the customer not to claim any
failure since g(t;y,7) ~ > c. Then, the differential equation (1) becomes g'(t;y,7) = =2t (e7° — 1). Solving
the above differential equation and combining with the boundary condition g(0;v,r) = yields g(t;v,r) =
r— %(e”C — 1)A(¢). Denote the unique solution to the equation r — 1/ - (e7° — 1) ( ) = ¢ with respect to ¢
by t*. Then, for any ¢ > t*, it is optimal to claim all the failures so the differential equation (1) becomes
g (t;y,r) = —% (e”g(“’”) — 1), with boundary condition g(t*;~,r) = ¢. Similarly, the unique solution to the
above differential equation is g(t;v,7) = —21In (1 — e~ AOTAET) (1 — em0)).
(b). Under the exponential distribution, the differential equation (1) can be rewritten as follows

__t (e(wfu)g(t;%r) _ 1) )

—
It is straightforward to verify that function (3) satisfies the differential equation (1) and its boundary con-
dition. In particular,

g (t;y,r) =

—A(t) o= (v=—p)7
. . e e r
lim g(¢;7,r) = lim =e
Yo

_A(t)r.
Yo u 1 — e*A(t) . (1 —_ 6*("!*!")7‘)

Proof of Proposition 2. We first consider the case v > 0. Consider the first-order derivative with respect

to 7,
awtw tafy 1
6(7 ! - V2 E[e7F®)] <7E[R(t)ew(t)]_E[ewt)]bg (E[ewt)]))
1

(E[R(t)e”R(”] - E[R(t)]E[evW]) .

Z B ]

The inequality holds because of the Jensen’s inequality log (E[e"?®]) < E[log(e"?®")] = vE[R(t)]. For a
similar reason, E[R(t)e"®®] > E[R(t)]e"PIE®]. We will next show a stronger result, i.e., E[R(t)e??®] >

E[R(t)]E[e"®®]. First, suppose that R(t) takes values from the discrete set { R(t)',..., R(t)" } with respective
probabilities ay,...,a,, where a; +---+ «,, = 1. Then,
E[R(t)e" ] — E[R(t)|E[e"" "] = 2 £yl RO’ Z o R(t Z e
i=1 i=1
- Z ; R (e"/R(t "/R(t)’) Z a R Z o, (ewR(t)l _ evR(t)J)
J Jj=1

= Z ;0 R(t)’ ) (6”2(”1 — e”R(t)]) =0,

(#:9)
where (i,j) and (j,i) are considered the same pair. The inequality holds because (R(t)" — R(t)’) -

eYRM" _ e RM7) > 0 for each pair (i,7). Similarly, we can show that the inequality also holds when R(t)
has a continuous support set. Therefore, for v > 0

Owes (t;7) , i ,.
oy 2 [ R (;})a oy R(t)f) <67R(t) _ eYR®) ) ) <0




Similarly, we can show that the above inequality also holds for v < 0. Thus, w.,(;7) is increasing in ~.
We next consider the case with v approaching 0 as follows,
lim,_o dln (E[e"R")])y E[R(t)e"?®)

lim 1w, (£ ) = , — lim 20 T prre).
el = e AT plene] - PLEO)

It completes the proof. o

Proof of Proposition 3. Let N, be a random variable following the Poisson distribution with mean A(t) =
Jé Xsds. Notice that Zfi’fl C; is a compound Poisson random variable. It is known that the total repair cost
R(t) has the same distribution as Zf\zl C; assuming that the repair costs are i.i.d., independent of the failure
process (see, e.g., Ross 1995). By equation (5),

wa(t7) = ~log (BL™™0]) = = log (Be? 5 1) = = log (B[Be" 5 ¥]))
1 AW): (Mc() ~ 1)

~log (B[, B[ N]]) - Liog (B[Mo(7)™]) = %log (AO-(Me)1) _ ,

v y

where M () is the moment generating function of the repair cost C, i.e., Mc(vy) = E[e”“]. The second last
equality holds because E[z"t] = My, (log(x)) = eA® @1,

Apparently, for the constant repair cost

We(t;7) = A(t) - (Mc(y) —1) /vy = A(t) (e =1) /7.

Moreover, wy,(t;7) — A(t)c as v — 0 because lim,_o(e7 —1) /vy =c.
For the exponential distributed repair cost,

Alt)-(Mc(v)—1) _ A)
Y n="
The last equality holds because M (y) = /(1 — ) for v < p. Apparently, we,(t;v) — A(t)/p as y—0. o
Proof of Proposition 4. The willingness-to-pay we.(t;7,r) is the quality such that the utility of buying
and not buying an RVW is indifferent, taking into account the possible out-of-pocket cost and refund for the
RVW, ie.,

Wiy (t57) =

E[_e*v(v*R(t))] = —e Y wru(ty,r)+g(tv,m)

Combining with equation (5) yields Wy, (;7,7) = we, (6;7) + g(&; 7, 7).
(a). First, we consider the risk-neutral case, i.e., ¥ = 0. Note that w,,(t;0) = E[R(t)] by Proposition 2, so
we only need to show h(t;0,7) = g(¢;0,7) + E[R(¢)]. Recall that

0

57 (9(50,7) + BIR()]) = A E[C, = min(C,, g(t:0,7))] = A E[(C. - g(t; 0,7))"].

Plugging h(t;0,r) = g(t;0,r) + E[R(t)] into equation (4) results in
R'(t;0,7) = A Pr(C, = g(t; Oar)){E[Ct|Ot = 9(t50a7”)] —g(t; Oar)} = )‘tE[(Ct - 9(t3077"))+]-

Combining it with the boundary condition h(0;0,7) = ¢g(0;0,7) + E[R(0)] = r, we have obtained h(t;0,r) =
g(t;0,7) + E[R(t)] at any t >0 for any given refund r.

Next, we consider the case of v > 0. Suppose h(t;vy,r) = g(t;7v,7) + E[R(t)] at some t > 0 for given v > 0 and
r. We will next show that for any sufficiently small § > 0, h(t + 0;7,7) = g(t + &;v,7) + E[R(t + 0)]. By the
differential equations (1) and (4),

h(t +0;7,7) = g(t + 8;7,7) — E[R(t +6)] = h(t;v,7) — g(t;v,7) — E[R(t)] + 0\, (Jw cdFy(cy)

g(t;v,r)

— (1= Fi(g(ty,m) - (Wt y,7) = E[R()]) + (=1 + Bler™(Crotrmi]) fy — E[Ct]) +0(9)

g(t;y,m)
=h(t;y,7) —g(t;y,r) — E[R(t)] + o)\ ( - JO c:dFy(c,) — (1= Fi(g(t;y,7))) - (h(t;y,7) — E[R(t)])



+ (=14 Blermin(Croltmr) /’y) +o(8

= ((t:7.7) — glt:7,7) — BIR(1)]) (1~ 60 (1— Fi(g(t:7,)))) + 6 ~ E[min(Ciug(t:7.7))]
( 1+E[€vmln(0f g(t’YT‘)) /’Y +0
> (h(t;y,m) = g(t57,7) = E[R()]) (1 = 0A(1 = Fu(g(t;7,7)))) = 0.

The first inequality holds because (—1 + E[eY™in(Ct.9tv.m)]) /v > E[min(C;, g(¢;,7))] for any v > 0 by
Lemma 1; the second inequality holds because h(t;v,r) = g(¢;v,r) + E[R(t)]. Therefore, h(t;v,r) =
g(t;y,r) + E[R(t)] at any t = 0 for given v > 0 and r. Similarly, we can show h(t;v,r) < g(t;v,r) + E[R(t)]
at any ¢ >0 for given v <0 and 7.

For the comparison between h(t;v,r) and wyw,(t;7,7), suppose h(t;v,7) = g(t;7,7) + we, (t;7y) at some ¢ =0
for given v < 0 and r. We will next show that for a sufficiently small § >0, h(t + §;7,7) = g(t + §;7,7) +
wtw(t +0; fY)'

The willingness-to-pay for the TW can be expressed as follows

1
Wy (t+ 657) = 5 log (E[e"®+9]) = 5 log (E[eW . RO = (t;) + %6 (E[e™“"]—=1) +0(6), (21)

where R(t,t+ 0) represents the total repair cost from time-to-go ¢ + § to t. The equality (21) holds because

log (E[e"#®+9)]) = log (A JE[e7“*] + (1 — A\i8) + 0(6)) =log (1 + X\, 0(E[e”“*] — 1) + 0(0))
= MO(E[e7°] — 1)+ 0(6).

The last equality holds because of the Taylor expansion. Then, consider

h(t+40;7y,7) = g(t + 0;7,7) — weu(t + 657) = h(t;y,7) — g(t;7,7) — weu(t;77) + M(J cdFy(c,)

g(tsvy,r)

— (1= F,(g(t;7,7))) - (h(tsv,r) = E[R($)]) + (=1 + Ble7™n (st fy — (B[e7] — 1)/7) +0(9)
=h(t;y,7) = g(t;7,7) —we(t;y) + 0N, (E[Ct] — E[min(Cy, g(t;7,7))]
— (L= F(g(t;7.1))) - (h(t; 7, 7) = g(t;7,7) = BIR(E)]) + (=1 + Ble" ™ Coata]) 1y — (E[e7] — 1)/7) +0(9)
= (h(t;y,m) = g(t;7,7) = wea(t;7)) (1 = SX(1 = Fi(g(t;7,7)))) +5At(— (1= Fi(g(t;v,m)(weu(t; ) — E[R(#)])
Blmin(C,,g(t:7,r))] + Ele? ™00y — (= B[C] + E[e]/) ) +0(6)
r)— (

((t v,1) = g(t57,7) —we(t57)) (L= 6A(1 = Fy(g(t;7,7)))) = 0.

The first inequality holds because wy,(t;v) < E[R(t)] for any ¢ >0 and v <0, and by Lemma 1, for any
given v <0,

(Be7!] = Bl ™ #t20]) 1y < B[C,] = Blmin(Con gt 7,7) )

the second inequality holds because h(t;7y,r) = g(t;7,7) + we(t;y). Therefore, h(t;7y,7) = wew(t;7y,7) at any
t >0 for given v < 0 and r. Similarly, we can prove h(t;v,r) < W, (t;7,7) at any t > 0 for given v> 0 and 7.
(b). First, consider the case of v < 0. Suppose h(t;v,r) — g(t;v,7) < h(t;y,r") — g(t;7, ) for some ¢t = 0 and
r>7r'. Then,

(h(t + 037, r)—g(t+8, ) = (h(t+8;7,7") = g(t + 8;7,7")) = (h(t;7,7) — g(t;7,7)) — (h(t;7,7") — g(t;7, 7))
+ 6\ (J( ) cdFy(c)) — (1= Fi(g(t;y,7))) - (h(t;y,7) = E[R(1)]) + (=1 + E[e7™m(Crarm]) /y

_ fo(ot : CtdFt(Ct) + (1 — Ft(g(t§'777"/))) . (h(t§7;7"/) — E[R(t)]) — (_1 + E[e'ymin(ct,g(t;»%,a/))])//y)

— (h(t7,7) — g(t;7,) - (1= N (1 = Fi(g(tiv, 7)) = (Bt 7, 7) — g(t57,)) - (1 =60 (1 = Fy(g(7,7))
+ 6\ (E[R(t)] — E[min(Cy, g(t;7,7))] + (—1+ E[eY™»(Cootmm)]) [y
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— (E[R(t)] — E[min(C,, g(t;v,7)]) — (Fi(g(t;v, 7)) — Fi(g(t;v, 7)) - E[R(t)] — (=1 + E[emmwt’g(t””’”])/7)
= ((h(t; v, 1) = g(t;y,7)) — (h(t;y,7") — g(t;7, T’))) S(1=0X(1 = F(g(t;v,7"))))

0N, ( — E[min(Cy, g(t57,1))] + Ble? ™01 fy — (= Blmin(Cr,g(t:7,17))] + Elemmm( st /)
# (Fla7.0) = Flglti,) - (1(69,7) = g(t7.0) ~ ER(D)
< ((alt7.1) = g(t:7,m) = (At 7.7) = g(t7:1)) ) - (1= 6N (1 = Fulg(t:7,7))) < 0.
The first inequality holds because h(t;v,7) < g(t;v,7) + E[R(t)] for v <0, and by Lemma 1,

(B[ minCestonn] - plerminCostn ) fy < Blmin(Cy g(t:7.7))] — Elmin(Cr.g(t v, r)]:

b

the second inequality holds because h(t;v,7) —g(¢;v,7) < h(t;v,7") — g(¢;y, ). Therefore, h(t;y,r)—g(t;v,r)
is decreasing in r for any given 7 < 0. Similarly, we can prove that h(t;~v,r)— g(¢;7,r) is increasing in r for
any given vy > 0.

Obviously, g(t;~,r) — o0 as r — c0. We have already known that h(t;~y,r) — g(¢;,7) is monotonic in r for
any given v and is bounded from below and above, i.e., we,(t;7) > h(t;7y,r) — g(t;v,r) > E[R(¢t)] for any
v >0 and wy, (t;7y) < h(t;y,7) — g(t;7,7) < E[R(t)] for any v <0, so it converges to a limit as r approaches
infinity. To show its limit, we consider its derivative with respect to ¢. From differential equations (1) and

(4),

Okt TE gtir) _ A Pr(Cy > g(t;, r)){E[Ct|Ct > g(t;,m)] = (R(t;y,7) — E[R(t)])}

ﬁ _ ~-min(Cy,g(t;v,r))
+7(01+E[e C]) o
EleCt] —1 © eYCt e9(tr
Y Gl j (T o) — g(t:7,7))dE,(C,)
v g(t;y,m) v
+APr(C, > g(t;v,7)) - (h(t;v,7) — g(t;v,7) — E[R(1)]).

Apparently, Pr(C; > g(t;,7)) - (A(t;7,7) — g(t;7,7) — E[R(t)]) — 0 as g(t;y,7) — o0 because h(t;y,r) —
g(t;,7) is bounded. Assume that the moment generating function is finite, i.e., E[e7°t] is finite. Then,

0 e¥Ct ev9(tv,r)
Jim (- —(
9t =% Joiymy Y

—g(t;7,7))dF,(Cy) = 0.

The equality holds because the limit of each integral in the above equation is equal to zero. Thus, it holds
that

O (h(t;y,0) — g(t;7y,90)) \ Eleo]-1

ot o ~

Then, for any given v, we have

¢ Ele%]-1
h(t;%OO)—g(t;%OO)=j/\57[ 7] dF,(C,) = we,(t; 7).
0

The second equality holds because

: cy) — . I Eferh(tt+6) I MO E[e ¢t 1—-X\0 1)
awtw(tv ’Y) _ hm wtw(t + 57’)/) wtw(tv,y) — hm Og ( [6 ]) _ hm Og ( t [6 ] + ( t ) + O( ))
ot 50 oy 550 oy 550 oy
. MO(E[eC ] —1)+0(8)  MN(E[eCt]—1)
= lim = .
5—0 5*}/ %

It completes the proof. o



Proof of Theorem 2. The maximum price of the TW is equal to its willingness-to-pay. Then, the profit of
offering a TW is equal to

we(T57) — E[R(T)].
For risk-averse customers with v > 0, we have
W (T37,7) = M(T57,7) = wea (T3 ) + (157, 7) = (T 7,7) <weo(T57) — E[R(2)].

The inequality holds for any r > 0 by Proposition 4. For the RVW provider with a positive refund r earns less
profit than the TW, so the RVW degenerates to a TW in a homogeneous market with risk-averse customers,
ie., r*=0.

Similarly, for risk-seeking customers, i.e., v <0,

Wevo(T57,7) = M(T57,7) = weo (T57) + g(T3v,7) — W(T;7,7) > weo (T 7) — E[R(t)].

Notice that the TW loses money for v < 0, so the RVW can balance the revenue and the support cost by
offering a sufficiently large refund because Proposition 4 shows that h(T;v,7) — g(T;7,r) — we(T;7) as
r—0. O

Proof of Theorem 3. To investigate the profitability of the RVW over the TW, we consider the following
comparison

max {we(T3%) + 9(T3%,7) = M(T37a,7) } > wea(T5 ) — E[R(T)]-

Or equivalently min, {h(T;74,7) — g(T;w,7)} < E[R(T)]. By Theorem 4, h(T';7,,r) is first increasing in v,
for v, <0 and then is decreasing in it for 7, > 0. Then, max,. {h(T; Yas ) — 9(T; s, r)} is also first increasing
and then decreasing in ,. Denote the two solutions to the following equation with respect to ~,,

mrin {h(T; YasT) = 9(T; 7y, 7")} = E[R(T)]

by 7 and7¥,, and y <7,. Therefore, the RVW is strictly more profitable than the TW if and only if v, < 7,
or ¥, >7%,. 0O

Proof of Proposition 5. Let o (we(T;7™) — E[R(1)]) = weu(T57%) — E[R(T)]. We have
we(T37") — a"E[R(T)]

el

W (T577) =

By Proposition 2, w.,(T;v") is increasing in v, so there exists a unique solution to equation (5) with
respect to v, denoted by 7. We remark that if v > 7, it is more profitable for the provider to only serve
type-H customers by charging price wy,(T;~v™7). o

Proof of Theorem 4. We will prove this theorem by induction.
(a). Suppose that for a given refund 7, wey, (t;7,7) = Wew(t;7/,7) at time-to-go ¢ for any v > +'. We will next
show that the inequality also holds at time-to-go t + § for a sufficiently small 6 > 0, i.e., Wy, (t + §;7,7) =
wrvw(t + ;7' T)’
According to the differential equation (1), we have

g(t+8;7,m) = g(t;7,7) — % (E[e”'mm(c“gm’”)] - 1) +0(9).

Combing with equation (21), we have
Eler°t] — E[ev-min(ct,g(tww))]
Y

gt +8;79,7) + we, (E+ 8;9) = g(t;7,7) + we (E;7) + N6 +0(9).

Therefore,
(9(75 +0;7,7) + Wy (t + 03 7)) - (g(t +6;7,7) + we(t +9; ”/)) = (g(t;% r) + we(; 'y))
E[e7Ct] — E[evmin(Ce.g(tsy,r) E[e?'Ct] — E[ey min(Ce.g(t:' 7))
- (g(t;v'yr) +ww(t;7’)) +/\t5( [ = B - | _Ele1-F] > ]

> (g(t;W") +ww(t;7)) - (g(t;v’ﬂ") + wm(t;v’))

) +0(8)



+ A6

E[e7Ct] — E[eymin(Crg(tiv.r)) Ele?' Ct] — BleY min(Cr.g(tiv,m)
( [ ] [ ]_ [ ] [,Y/ ])—1—0(5)

> (g(t;%r) +ww(t;7)) - (g(t;v’ﬂ’) +wm(t;7’)) =0.

The first inequality holds because g(t;7y,r) < g(t;7',r) and E[e? ™in(Cratr'm)] fy/ > ey min(Crg(tinm)]
the second inequality holds because by Lemma 1,

E[e'th] _ E[ev-min(ct,g(t;%r))] E[e'*lct] _ E[e'y/'min(cmg(t;%r))]
= ;

vy v

the last inequality holds because g(t;,7) + ww (;7) = g(t;7/,7) + we, (t;7"). Thus, for any given time-to-go ¢
and refund r, w,.,(t;7,7) is decreasing with respect to v no matter whether v is positive or negative. Notice
that Wy, (67, 7) = we, (¢;7) + g(t;y,7) and g(t;,7) is decreasing in v, S0 W,y (t;7,7) is increasing at a lower
rate than we,(¢;7).

(b). We first consider the risk-averse customers, i.e., v > 0. Suppose that for a given refund r, h(t;v,7) <
h(t;~',r) for any v >~ > 0. Then, we compare h(t +d;~,r) and h(t+ d;7’,7). From the differential equation

(4),
h(t+6;7,m) = h(t;y,7) + 0 Pr(C, >g(t;%r)){E[Ct|Ct > g(t;v,m)] = (h(tsv,r) —E[R(t)])} +0(0)
= h(t;y,r) + 0N q cdFy(c) — (1= Fy(g(t;y,m)) (A(t;y,7) — E[R(t)])) +0(9).

g(tsy,m)

Then, we have

Bt +8:7,1) — h(t + 857',7) = h{t:7,7) — h(ts7/,7) + A, ( ) (()) cdFi(c) + (Fulg(tism) - Fig(t7,1)
- E[R(t)] = (h(t;,7) — h(t;7',r)) + (Fulg(t;7,7)h(t;y,7) —Ft(g(tw’,r))h(tw’,r))> +0(9)

< (1(t927) = At 7)) (1= 83) + 0 ( (B 0(67) = Fula(t9,7) - (o(6s7) + ELR(O)
 (F o)t 0r) = ot r)hey' ) )

(h(t;y,m) = h(t;y',r)) (1= 6A:) + 6X, <( W9t r) = Fulg(ty,7)) - (9(69,7) + E[R(t)] — h(t; 7/, T)))
< (h(t;'y,r) — h(t; 'y’,r))(l —0\) <0.

N

The first inequality holds because g(¢;v,7) < g(t;7/,7); the second inequality holds because h(t;7y,r) <
h(t;~',r); the third inequality holds because g(¢;7',r) + E[R(t)] — h(t;~',7) <0 for 4/ > 0 by Proposition 4.
Therefore, for any given time-to-go ¢ and refund r, h(t;~,r) is decreasing in v for risk-averse customers.
Next, consider the risk-seeking customers, i.e., v < 0. Suppose that for a given refund r, h(t;7y,r) = h(t;v',7)
at some t > 0 for any v’ <y < 0. Similarly, we have

h(t+8;7,7) = h(t+ 8;7',r) = h(t;y,r) — h(t;y,r) + 5\ <Lii:t:) cdFy(c) + (Ft(g(t;fy',r))

— Fi(g(t;,r ))E

(h(t v ) (m77“))(1—5/\0+5At<(Ft(g(t;v’,r))—Ft(g(t;%r))) (9(tv,m) + E[R(1)])

+ (B3, m)h(t7r) = Fg(t:7 )t 1))
(t
(

(h(t;y,r ) h(t; 7, ))(1—5A)+6At(( gt r))—Ft(g(t;%r)))-(g(t;%r)+E[R(t)]—h(twﬂ“)))
(

>
> (h(t;y,r) = h(t;y/, 7)) (1= 6A,) = 0.

The first inequality holds because g¢(t;7,7) < g(¢;7',r); the second inequality holds because h(t;vy,r) =
h(t;~',r); the third inequality holds because g(t;v,r) + E[R(t)] — h(t;7,7) = 0 for v <0 by Proposition 4.
Thus, for given time-to-go ¢ and refund r, h(t;v,r) is increasing in ~ for risk-seeking customers. o



Proof of Theorem 5. For 4% <~ <4, the TW captures both type-L and type-H customers and its profit
is equal to we,(T;v%) — E[R(T)]. An RVW with refund 7 and price w,.,(T;v%,7) captures both market
segments. Consider the following inequality

max {ww(T;yL) +g(T;v%,r) —a"h(T;v",r) — aHh(T;vH,r)} > wy, (T;v") — E[R(T)],
or equivalently,
min { —g(T;9%,r) + a*h(T57%,7) + o™ h(T3y™, 1)} < E[R(T)]. (22)

Since h(T;~v™,7) is decreasing in v for any given r by Theorem 4, then min, { —g(T;~v%,7) + a*h(T;~v%,7) +
o h(T;v",r)} is also decreasing in v*. Therefore, there exists a threshold ¥ such that inequality (22)
holds for any v# > ~#. Apparently, 77 <~%. B
We have already shown that the RVW is strictly more profitable than the TW for v € (v",7"). We remark
that the RVW may be more profitable for v varying in an even larger range. o

Proof of Proposition 6. (a). We will use sample path argument to show the monotonic property. For a
Poisson process with a stationary failure rate A, the optimal claim policy has a threshold g(¢; A, r) for each
failure at time t. Assume that the customer with a stationary failure rate Al adopts the same policy with
threshold g(t; A\”,r). Apparently, the expected refund net of out-of-pocket repair cost taking into account the
risk attitude is greater than that under the failure process with a rate A because each failure occurs with
a lower probability. Therefore, g(¢; A7), that is the net value corresponding to rate AY under the optimal
claim policy is even higher.
(b). For a given refund 7, SUppose Wy, (t; A%, 1) = wey, (t; A¥, ) at some ¢t > 0. Next, we will show that the
inequality also holds at time t + ¢ for a sufficiently small § > 0, i.e., Wy (t + 5 A7) = W (t + 0; AE, 7).
Similar to the proof of Theorem 4, we have the following equations

Ele7Ct] — E[eymin(Ce,gt:A7 1)
Wegy (L + 0 AT 1) = Wee (A7) + NS ] [e ]

~y
E[erCt] — E[ew-min(ct,g(t:ALm))]
Y

Wee (E+ 03 A7) = Wy (B A5, 7) + AL

Comparing them, we have
Wy (4 03 AT 1) = Wi (+ 53 NE, 7).

The inequality holds because Wiy, (t; A7, 1) = wew, (G AX, 1), AT = AF and g(t; A7, r) < g(¢; AF,r). Notice that
the net value g(t; A,r) of the RVW is decreasing in failure rate A, so the willingness-to-pay for the RVW is
increasing at a lower rate than that for the TW. o

Proof of Theorem 6. (a). Notice that the willingness-to-pay can be expressed as follows

AT)-Mc(y)=1) 1

Wy (T A7) = Weo (T35 N) + G(T5M,7) = In ((1 —e MDY ¢ e’”’“’A(T)) )

Y Y
Consider its first-order derivative with respect to A
OWro (T3 N,7) T e MT) _ g=yr=A(T) T 1
ax=7<Md”‘“xyﬁﬁmywwww>>7Md”‘a_fmw =0

The last inequality holds because of the condition in part (a) of Theorem 6.
(b). Dividing the both sides of equation (15) by (e“*™) — 1)/, taking integrals with respect to ¢t and
combining the boundary condition yields the closed-form solution for g(¢; A, r)

1
gt Ar) = - In ((1— e=A0) 4 ¢ =A®)

For notational convenience, let 1., (1) = Wy, (T; A", 1) — (aL?Lm,(T; M)+ ozH%m,(T; )\H,r)). It can be fur-
ther expressed by

1
I (r) = we (T5A") = (" AF + 2" A)Tc— —In ((1 —e M) 4 e‘"’”_kLT> — (aLe_’\LT + aHe_’\HT)r.
v



Consider the derivatives of I, (r) with respect to 7.

Ol (1) e T L _—ALT H_-MHT
or = (1— e—ALT) T ( € +ave )7
PlLn(r) Qe T) T
or? N ((1 —e T 4 e—fw—)\LT)Q ’

So, the profit function II,.,(r) is strictly concave in r. Solving the first-order condition Il (r)/0r = 0 yields
the optimal refund

_ efALT) . (aLefALT + aHef)\HT)

(1

It can be verified that r* > 0 because for any A7 > \F,
e (1- (abe T 4+ aHe’AHT)) >(1—eMT) (ale™T 4 a7,

(c). Solving the equation w.,(T; A") — (" A" + a X) T'c = o (we, (T; M) — A Tc) for A yields

s, (Mc(3) = 1)y —are
ot (Mc(y) —1)/~
To show that the RVW is always strictly more profitable than the TW, we compare II(r*) to the profit of
the TW, which is equal to ws, (T; A") — (a“AF + o X)) T, ie.,

I(r*) > we, (T5 A7) = ("N + o AT) T

Notice that the RVW degenerates to the TW when the refund is equal to zero, i.e., I1(0) = wy,(T;AF) —

(@ AF + o AT) Tc. Because II(r) is strictly increasing in r and r* > 0, the above strict inequality holds. o
Proof of Proposition 7. (a). We can use the similar arguments as in the proof of Proposition 6 to show

the monotonic property with respect to the repair cost.

(b). For a given refund r, suppose that Wy, (t;CH, 1) > wew (t; CT,r) at some ¢ > 0. Next, we will show

W (T + 8;CF 1) = Wy (t + §; CT 7). Similarly,

E[e"/ct] _ E[ewmin(Ctyg(t;Cﬂ'))]

W (6 +0;C,7) = Wiy (8, C, 1) + N0 S

+0(0).

We next compare

E e'yCH —E €'y~min(CH,g(t;CH,r))
Weey (t+ 607 1) = Wee (,C 1) + N6 [ ] [ ]

E[e¢"]— E[e“/‘lin(CL’g(“cL’r))]
Wege(E+ 8507 1) = Wee (8, CF 1) + X5

v

Moreover, we have
E[e“’CH] o E[efy»min(CH,g(t;CH,r))] > E[e“’CH] o E[efy»min(CH,g(t;CL,r))] > E[e”CL] _E[eymin(CL,g(t;CL,r))].

The first inequality holds because g(t;C7,r) < g(t;C¥,r); the second inequality holds because function
(e7® — e¥min(z.9)) is increasing in « and C* is stochastically larger than C'*. Therefore, for any given refund
h

Weg(t+ 8 CF 1) = wee (t+ 5, CF 1),

which completes the proof. o

Proof of Proposition 8. For any given refund r, problem (17) is a linear program. From the constraints,
we have pr < po + 9(T575,7) < weo (T;47) + g(T;7%, 7). Recall that pry, < wew(T;75, 1) = we, (T;7%) +
g(T;~v% 7). Because we,(T;7") < wey(T;v™), then the maximum price of the RVW s pry = Weeu (T57, 7).
Because puy < Proww — g(T;v™,7), then the maximum price of the TW is py, = Wy (T57%,7) — g(T;v™,7). o
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Proof of Theorem 7. Comparison between problems (18) and (13) yields that the warranty menu earns
strictly more profit than the RVW alone for any given refund r, i.e.,

max {g(T; vEr) — ot h(Tsy" ) — o (g(T3y " r) + E[R(T)]) } > max {9(T; v, ) = o h(T5y", )
—a"h(T; 'yH,r)}.
The inequality holds because h(T;~v",7) > g(T;v™,r) + E[R(T)] for any risk-averse customer and any posi-

tive refund r by Proposition 4.
To show the profit advantage of the menu over the TW alone, consider the following inequality

max {wtw(T; )+ g(Tiy",r) — o W(T; " 1) — o™ (g(T54",r) + E[R(T)])} > w,, (T;v") — E[R(T)],
or equivalently,
min { —g(T;~v"%) + o h(T;~",7) + aHg(T;'yH,r)} <a"E[R(T)]. (23)

Since g(T';7",r) is decreasing in v# for any given r by Theorem 1, then min, { — g(T;~v%,7) + a*h(T;~v*,7) +
ol g(T;~+M,r)} is also decreasing in . Therefore, there exists a threshold 7/# such that inequality (23) holds
for any v > ~'. Comparing inequalities (22) and (23) and recalling h(T;~™,r) > g(T;¥",r) + E[R(T)] for
~H > 0 by Proposition 4, we have v'# <~. It completes the proof. o
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