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Online Appendix to the Paper
“No Claim? Your Gain:

Design of Residual Value Extended Warranties

under Risk Aversion and Strategic Claim Behavior”

Lemma 1. Given any xě yě 0, peγx´ eγyq{γ is increasing in γ. Moreover, peγx´ eγyq{γ ě x´ y if γ ą 0;
peγx´ eγyq{γ ď x´ y if γ ă 0.

Proof of Lemma 1. Notice that peγx´ eγyq{γ “ peγpx´yq´ 1q{γ ¨ eγy. Because both peγpx´yq´ 1q{γ and eγy

are non-negative for any γ and xě y, and eγy is increasing in γ for any given y ě 0, then it is sufficient to
show that peγpx´yq´ 1q{γ is increasing in γ.
Consider its first-order derivative with respect to γ

B
`

peγpx´yq´ 1q{γ
˘

Bγ
“
γpx´ yqeγpx´yq´peγpx´yq´ 1q

γ2
.

Let Gpγq :“ eγpx´yq´ 1. Then, BGpγq{Bγ ě 0 and B2Gpγq{Bγ2 ě 0 for any given xě y, so Gpγq is increasing
convex in γ. Note that Gp0q “ 0. Apparently, for any γ ě 0,

Gpγq “Gp0q`

ż γ

0

G1pτqdτ ď γG1pγq.

We note that the above inequality also holds for any γ ď 0 because Gpγq “ Gp0q ´ ∫0
γ G

1pτqdτ ď ´p0 ´
γqG1pγq “ γG1pγq. Thus,

B
`

peγpx´yq´ 1q{γ
˘

Bγ
“
γG1pγq´Gpγq

γ2
ě 0,

and given any xě y ě 0, peγx´ eγyq{γ is increasing in γ. Consider the limit as γ goes to zero, limγÑ0pe
γx´

eγyq{γ “ limγÑ0pxe
γx´ yeγyq “ x´ y. Therefore, peγx´ eγyq{γ ě x´ y if γ ą 0; peγx´ eγyq{γ ď x´ y if γ ă 0.

Furthermore, there exist tighter bounds for peγx´ eγyq{γ, e.g., for any xě yě 0,

minpeγx, eγyq ¨ px´ yq ď peγx´ eγyq{γ “

ż x

y

eγτdτ ďmaxpeγx, eγyq ¨ px´ yq.

Proof of Theorem 1. Apparently, the optimal claim policy has a threshold structure: it is optimal for a
customer with risk attitude γ to place a claim at time t for a failure with repair cost Ct if and only if
Ct ě gpt;γ, rq. Moreover, it is straightforward that gpt;γ, rq is decreasing in t and increasing in r, noting that
t represents the time-to-go.
We next show the monotonic comparative statics of gpt;γ, rq with respect to γ. Suppose gpt;γ, rq ď gpt;γ1, rq
at time t for any γ ą γ1. We will next show gpt`δ;γ, rq ď gpt`δ;γ1, rq for a sufficiently small δą 0. According
to the differential equation (1),

gpt` δ;γ, rq “ gpt;γ, rq´
λtδ

γ

`

Ereγ¨minpCt,gpt;γ,rqqs´ 1
˘

` opδq,

gpt` δ;γ1, rq “ gpt;γ1, rq´
λtδ

γ1
`

Ereγ
1¨minpCt,gpt;γ

1,rqqs´ 1
˘

` opδq.

Then,
`

E
“

eγ¨minpCt,gpt;γ,rqq
‰

´ 1
˘

{γ´
`

E
“

eγ
1¨minpCt,gpt;γ

1,rqq
‰

´ 1
˘

{γ1

ě
`

E
“

eγ
1¨minpCt,gpt;γ,rqq

‰

´ 1
˘

{γ1´
`

E
“

eγ
1¨minpCt,gpt;γ

1,rqq
‰

´ 1
˘

{γ1 “
1

γ1
E
“

eγ
1¨minpCt,gpt;γ,rqq´ eγ

1¨minpCt,gpt;γ
1,rqq

‰

ěE
“

Θ ¨ pminpCt, gpt;γ, rqq´minpCt, gpt;γ
1, rqqq

‰

ěE
“

Θ ¨ pgpt;γ, rq´ gpt;γ1, rqq
‰

,

where Θ “ eγ
1¨minpCt,gpt;γ

1,rqq if γ1 ě 0; Θ “ eγ
1¨minpCt,gpt;γ,rqq if γ ď 0. The first inequality holds because

E
“

eγ¨minpCt,gpt;γ,rqq
‰

´1
˘

{γ is increasing in γ by Lemma 1; the second inequality holds by a similar argument
in the proof of Lemma 1; the third inequality holds because minpCt, xq´minpCt, yq ď px´ yq for any xě y.
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Therefore, gpt` δ;γ, rq´ gpt` δ;γ1, rq ď
`

gpt;γ, rq´ gpt;γ1, rq
˘

¨

´

1´λtδΘ
¯

ď 0. Then, gpt;γ, rq is decreasing

with respect to the risk attitude γ.
The case with γ approaching ´8:

g1pt;´8, rq “ lim
γÑ´8

´
λt
γ

´

E
“

eγ¨minpCt,gpt;γ,rqq
‰

´ 1
¯

“ 0.

Then, gpt;´8, rq “ gp0;´8, rq` ∫ t0 g1ps;´8, rqds“ r.
The case with γ approaching `8: for any positive time t

g1pt;8, rq “ lim
γÑ`8

´
λt
γ

´

E
“

eγ¨minpCt,gpt;γ,rqq
‰

´ 1
¯

“´λtE
“

minpCt, gpt;8, rqq ¨ e
8¨minpCt,gpt;8,rqq

‰

.

If gpt;8, rq ą 0, then g1pt;8, rq “´8 and gpt;8, rq “ gp0;8, rq` ∫ t0 g1ps;8, rqdsă 0 for any positive t, which
is impossible. Thus, the only solution to the above differential equation is gpt;8, rq “ 0 for any positive t.

Proof of Proposition 1. (a). Note that gpt;γ, rq is decreasing in t and gp0;γ, rq “ r. When the time-to-
go t is very small, gpt;γ, rq is sufficiently close to r, so it is optimal for the customer not to claim any
failure since gpt;γ, rq « r ą c. Then, the differential equation (1) becomes g1pt;γ, rq “ ´λt

γ

`

eγc ´ 1
˘

. Solving
the above differential equation and combining with the boundary condition gp0;γ, rq “ r yields gpt;γ, rq “
r´ 1

γ
peγc ´ 1qΛptq. Denote the unique solution to the equation r´ 1{γ ¨ peγc ´ 1qΛptq “ c with respect to t

by t˚. Then, for any t ě t˚, it is optimal to claim all the failures so the differential equation (1) becomes
g1pt;γ, rq “ ´λt

γ

`

eγgpt;γ,rq ´ 1
˘

, with boundary condition gpt˚;γ, rq “ c. Similarly, the unique solution to the

above differential equation is gpt;γ, rq “´ 1
γ

ln
`

1´ e´Λptq`Λpt˚q ¨ p1´ e´γcq
˘

.
(b). Under the exponential distribution, the differential equation (1) can be rewritten as follows

g1pt;γ, rq “´
λt

γ´µ

`

epγ´µqgpt;γ,rq´ 1
˘

.

It is straightforward to verify that function (3) satisfies the differential equation (1) and its boundary con-
dition. In particular,

lim
γÑµ

gpt;γ, rq “ lim
γÑµ

e´Λptqe´pγ´µqrr

1´ e´Λptq ¨
`

1´ e´pγ´µqr
˘ “ e´Λptqr.

Proof of Proposition 2. We first consider the case γ ą 0. Consider the first-order derivative with respect
to γ,

Bwtwpt;γq

Bγ
“

1

γ2EreγRptqs

´

γErRptqeγRptqs´EreγRptqs log
`

EreγRptqs
˘

¯

ě
1

γEreγRptqs

´

ErRptqeγRptqs´ErRptqsEreγRptqs
¯

.

The inequality holds because of the Jensen’s inequality: log
`

EreγRptqs
˘

ď ErlogpeγRptqqs “ γErRptqs. For a
similar reason, ErRptqeγRptqs ě ErRptqseγErRptqs. We will next show a stronger result, i.e., ErRptqeγRptqs ě
ErRptqsEreγRptqs. First, suppose that Rptq takes values from the discrete set tRptq1, . . . ,Rptqnu with respective
probabilities α1, . . . , αn, where α1` ¨ ¨ ¨`αn “ 1. Then,

ErRptqeγRptqs´ErRptqsEreγRptqs “
n
ÿ

i“1

αiRptq
ieγRptq

i

´

n
ÿ

i“1

αiRptq
i

n
ÿ

j“1

αje
γRptqj

“

n
ÿ

i“1

αiRptq
i
´

eγRptq
i

´

n
ÿ

j“1

αje
γRptqj

¯

“

n
ÿ

i“1

αiRptq
i

n
ÿ

j“1

αj

´

eγRptq
i

´ eγRptq
j
¯

“
ÿ

pi,jq

αiαj
`

Rptqi´Rptqj
˘

´

eγRptq
i

´ eγRptq
j
¯

ě 0,

where pi, jq and pj, iq are considered the same pair. The inequality holds because
`

Rptqi ´ Rptqj
˘

¨
´

eγRptq
i
´ eγRptq

j
¯

ě 0 for each pair pi, jq. Similarly, we can show that the inequality also holds when Rptq

has a continuous support set. Therefore, for γ ą 0

Bwtwpt;γq

Bγ
ě

1

γEreγRptqs

´

ÿ

pi,jq

αiαj
`

Rptqi´Rptqj
˘

´

eγRptq
i

´ eγRptq
j
¯¯

ą 0.
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Similarly, we can show that the above inequality also holds for γ ă 0. Thus, wtwpt;γq is increasing in γ.
We next consider the case with γ approaching 0 as follows,

lim
γÑ0

wtwpt;γq “
limγÑ0 B ln

`

EreγRptqs
˘

γ

limγÑ0 Bγ{Bγ
“ lim
γÑ0

ErRptqeγRptqs

EreγRptqs
“ErRptqs.

It completes the proof. ˝

Proof of Proposition 3. Let Nt be a random variable following the Poisson distribution with mean Λptq “
∫ t0 λsds. Notice that

řNt

i“1Ci is a compound Poisson random variable. It is known that the total repair cost
Rptq has the same distribution as

řNt

i“1Ci assuming that the repair costs are i.i.d., independent of the failure
process (see, e.g., Ross 1995). By equation (5),

wtwpt;γq “
1

γ
log

`

EreγRptqs
˘

“
1

γ
log

`

Ereγ
řNt

i“1
Cis

˘

“
1

γ
log

`

E
“

Ereγ
řNt

i“1
Ci |Nts

‰˘

“
1

γ
log

`

E
“

ΠNt
i“1Ere

γCi |Nts
‰˘

“
1

γ
log

`

E
“

MCpγq
Nt
‰˘

“
1

γ
log

`

eΛptq¨pMCpγq´1q
˘

“
Λptq ¨ pMCpγq´ 1q

γ
,

where MCpγq is the moment generating function of the repair cost C, i.e., MCpγq “Ere
γCs. The second last

equality holds because ErxNts “MNt
plogpxqq “ eΛptq¨px´1q.

Apparently, for the constant repair cost

wtwpt;γq “ Λptq ¨ pMCpγq´ 1q{γ “Λptqpeγc´ 1q
L

γ.

Moreover, wtwpt;γqÑΛptqc as γÑ 0 because limγÑ0pe
γc´ 1q

L

γ “ c.
For the exponential distributed repair cost,

wtwpt;γq “
Λptq ¨ pMCpγq´ 1q

γ
“

Λptq

µ´ γ
.

The last equality holds because MCpγq “ µ{pµ´ γq for γ ă µ. Apparently, wtwpt;γqÑΛptq{µ as γÑ 0. ˝

Proof of Proposition 4. The willingness-to-pay wrvwpt;γ, rq is the quality such that the utility of buying
and not buying an RVW is indifferent, taking into account the possible out-of-pocket cost and refund for the
RVW, i.e.,

Er´e´γpv´Rptqqs “´e´γpv´wrvwpt;γ,rq`gpt;γ,rqq.

Combining with equation (5) yields wrvwpt;γ, rq “wtwpt;γq` gpt;γ, rq.
(a). First, we consider the risk-neutral case, i.e., γ “ 0. Note that wtwpt; 0q “ErRptqs by Proposition 2, so
we only need to show hpt; 0, rq “ gpt; 0, rq`ErRptqs. Recall that

B

Bt

`

gpt; 0, rq`ErRptqs
˘

“ λtE
“

Ct´minpCt, gpt; 0, rqq
‰

“ λtE
“`

Ct´ gpt; 0, rq
˘`‰

.

Plugging hpt; 0, rq “ gpt; 0, rq`ErRptqs into equation (4) results in

h1pt; 0, rq “ λtPrpCt ě gpt; 0, rqq
!

ErCt|Ct ě gpt; 0, rqs´ gpt; 0, rq
)

“ λtE
“`

Ct´ gpt; 0, rq
˘`‰

.

Combining it with the boundary condition hp0; 0, rq “ gp0; 0, rq `ErRp0qs “ r, we have obtained hpt; 0, rq “
gpt; 0, rq`ErRptqs at any tě 0 for any given refund r.
Next, we consider the case of γ ą 0. Suppose hpt;γ, rq ě gpt;γ, rq`ErRptqs at some tě 0 for given γ ą 0 and
r. We will next show that for any sufficiently small δ ą 0, hpt` δ;γ, rq ě gpt` δ;γ, rq `ErRpt` δqs. By the
differential equations (1) and (4),

hpt` δ;γ, rq´ gpt` δ;γ, rq´ErRpt` δqs “ hpt;γ, rq´ gpt;γ, rq´ErRptqs` δλt

ˆ
ż 8

gpt;γ,rq

ctdFtpctq

´ p1´Ftpgpt;γ, rqqq ¨ phpt;γ, rq´ErRptqsq` p´1`EreγminpCt,gpt;γ,rqqsq{γ´ErCts

˙

` opδq

“ hpt;γ, rq´ gpt;γ, rq´ErRptqs` δλt

ˆ

´

ż gpt;γ,rq

0

ctdFtpctq´ p1´Ftpgpt;γ, rqqq ¨ phpt;γ, rq´ErRptqsq
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`p´1`EreγminpCt,gpt;γ,rqqsq{γ

˙

` opδq

“
`

hpt;γ, rq´ gpt;γ, rq´ErRptqs
˘`

1´ δλtp1´Ftpgpt;γ, rqqq
˘

` δλt

´

´ErminpCt, gpt;γ, rqqs

` p´1`EreγminpCt,gpt;γ,rqqsq{γ
¯

` opδq

ě
`

hpt;γ, rq´ gpt;γ, rq´ErRptqs
˘`

1´ δλtp1´Ftpgpt;γ, rqqq
˘

ě 0.

The first inequality holds because p´1 ` EreγminpCt,gpt;γ,rqqsq{γ ě ErminpCt, gpt;γ, rqqs for any γ ą 0 by
Lemma 1; the second inequality holds because hpt;γ, rq ě gpt;γ, rq ` ErRptqs. Therefore, hpt;γ, rq ě
gpt;γ, rq `ErRptqs at any tě 0 for given γ ą 0 and r. Similarly, we can show hpt;γ, rq ď gpt;γ, rq `ErRptqs
at any tě 0 for given γ ă 0 and r.
For the comparison between hpt;γ, rq and wrvwpt;γ, rq, suppose hpt;γ, rq ě gpt;γ, rq `wtwpt;γq at some tě 0
for given γ ă 0 and r. We will next show that for a sufficiently small δ ą 0, hpt` δ;γ, rq ě gpt` δ;γ, rq `
wtwpt` δ;γq.
The willingness-to-pay for the TW can be expressed as follows

wtwpt` δ;γq “
1

γ
log

`

EreγRpt`δqs
˘

“
1

γ
log

`

EreγRptq ¨ eγRpt,t`δqs
˘

“wtwpt;γq`
λtδ

γ

`

EreγCts´ 1
˘

` opδq, (21)

where Rpt, t` δq represents the total repair cost from time-to-go t` δ to t. The equality (21) holds because

log
`

EreγRpt,t`δqs
˘

“ log
`

λtδEre
γCts` p1´λtδq` opδq

˘

“ log
`

1`λtδpEre
γCts´ 1q` opδq

˘

“ λtδpEre
γCts´ 1q` opδq.

The last equality holds because of the Taylor expansion. Then, consider

hpt` δ;γ, rq´ gpt` δ;γ, rq´wtwpt` δ;γq “ hpt;γ, rq´ gpt;γ, rq´wtwpt;γq` δλt

ˆ
ż 8

gpt;γ,rq

ctdFtpctq

´ p1´Ftpgpt;γ, rqqq ¨ phpt;γ, rq´ErRptqsq` p´1`EreγminpCt,gpt;γ,rqqsq{γ´pEreγCts´ 1q{γ

˙

` opδq

“ hpt;γ, rq´ gpt;γ, rq´wtwpt;γq` δλt

ˆ

ErCts´ErminpCt, gpt;γ, rqqs

´ p1´Ftpgpt;γ, rqqq ¨ phpt;γ, rq´ gpt;γ, rq´ErRptqsq` p´1`EreγminpCt,gpt;γ,rqqsq{γ´pEreγCts´ 1q{γ

˙

` opδq

“
`

hpt;γ, rq´ gpt;γ, rq´wtwpt;γq
˘`

1´ δλtp1´Ftpgpt;γ, rqqq
˘

` δλt

´

´p1´Ftpgpt;γ, rqqqpwtwpt;γq´ErRptqsq

´ErminpCt, gpt;γ, rqqs`Ere
γminpCt,gpt;γ,rqqs{γ´

`

´ErCts`Ere
γCts{γ

˘

¯

` opδq

ě
`

hpt;γ, rq´ gpt;γ, rq´wtwpt;γq
˘`

1´ δλtp1´Ftpgpt;γ, rqqq
˘

ě 0.

The first inequality holds because wtwpt;γq ď ErRptqs for any t ě 0 and γ ă 0, and by Lemma 1, for any
given γ ă 0,

`

EreγCts´EreγminpCt,gpt;γ,rqqs
˘

{γ ďErCts´ErminpCt, gpt;γ, rqqs;

the second inequality holds because hpt;γ, rq ě gpt;γ, rq`wtwpt;γq. Therefore, hpt;γ, rq ěwrvwpt;γ, rq at any
tě 0 for given γ ă 0 and r. Similarly, we can prove hpt;γ, rq ďwrvwpt;γ, rq at any tě 0 for given γ ą 0 and r.
(b). First, consider the case of γ ă 0. Suppose hpt;γ, rq´ gpt;γ, rq ď hpt;γ, r1q´ gpt;γ, r1q for some tě 0 and
rą r1. Then,
`

hpt` δ;γ, rq´ gpt` δ;γ, rq
˘

´
`

hpt` δ;γ, r1q´ gpt` δ;γ, r1q
˘

“
`

hpt;γ, rq´ gpt;γ, rq
˘

´
`

hpt;γ, r1q´ gpt;γ, r1q
˘

` δλt

ˆ
ż 8

gpt;γ,rq

ctdFtpctq´ p1´Ftpgpt;γ, rqqq ¨ phpt;γ, rq´ErRptqsq` p´1`EreγminpCt,gpt;γ,rqqsq{γ

´

ż 8

gpt;γ,r1q

ctdFtpctq` p1´Ftpgpt;γ, r
1qqq ¨ phpt;γ, r1q´ErRptqsq´ p´1`EreγminpCt,gpt;γ,r

1qqsq{γ

˙

“
`

hpt;γ, rq´ gpt;γ, rq
˘

¨
`

1´ δλtp1´Ftpgpt;γ, rqqq
˘

´
`

hpt;γ, r1q´ gpt;γ, r1q
˘

¨
`

1´ δλtp1´Ftpgpt;γ, r
1qqq

˘

` δλt

ˆ

ErRptqs´ErminpCt, gpt;γ, rqqs` p´1`EreγminpCt,gpt;γ,rqqsq{γ
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´
`

ErRptqs´ErminpCt, gpt;γ, r
1qqs

˘

´
`

Ftpgpt;γ, rqq´Ftpgpt;γ, r
1qq
˘

¨ErRptqs´ p´1`EreγminpCt,gpt;γ,r
1qqsq{γ

˙

“

´

`

hpt;γ, rq´ gpt;γ, rq
˘

´
`

hpt;γ, r1q´ gpt;γ, r1q
˘

¯

¨
`

1´ δλtp1´Ftpgpt;γ, r
1qqq

˘

` δλt

ˆ

´ErminpCt, gpt;γ, rqqs`Ere
γminpCt,gpt;γ,rqqs{γ´

´

´ErminpCt, gpt;γ, r
1qqs`EreγminpCt,gpt;γ,r

1qqs{γ
¯

`
`

Ftpgpt;γ, rqq´Ftpgpt;γ, r
1qq
˘

¨
`

hpt;γ, rq´ gpt;γ, rq´ErRptqs
˘

˙

ď

´

`

hpt;γ, rq´ gpt;γ, rq
˘

´
`

hpt;γ, r1q´ gpt;γ, r1q
˘

¯

¨
`

1´ δλtp1´Ftpgpt;γ, r
1qqq

˘

ď 0.

The first inequality holds because hpt;γ, rq ď gpt;γ, rq`ErRptqs for γ ă 0, and by Lemma 1,

`

EreγminpCt,gpt;γ,rqqs´EreγminpCt,gpt;γ,r
1qqs

˘

{γ ďErminpCt, gpt;γ, rqqs´ErminpCt, gpt;γ, r
1qqs;

the second inequality holds because hpt;γ, rq´gpt;γ, rq ď hpt;γ, r1q´gpt;γ, r1q. Therefore, hpt;γ, rq´gpt;γ, rq

is decreasing in r for any given γ ă 0. Similarly, we can prove that hpt;γ, rq´ gpt;γ, rq is increasing in r for

any given γ ą 0.

Obviously, gpt;γ, rq Ñ8 as rÑ8. We have already known that hpt;γ, rq ´ gpt;γ, rq is monotonic in r for

any given γ and is bounded from below and above, i.e., wtwpt;γq ą hpt;γ, rq ´ gpt;γ, rq ą ErRptqs for any

γ ą 0 and wtwpt;γq ă hpt;γ, rq ´ gpt;γ, rq ăErRptqs for any γ ă 0, so it converges to a limit as r approaches

infinity. To show its limit, we consider its derivative with respect to t. From differential equations (1) and

(4),

B
`

hpt;γ, rq´ gpt;γ, rq
˘

Bt
“ λtPrpCt ą gpt;γ, rqq

!

ErCt|Ct ą gpt;γ, rqs´
`

hpt;γ, rq´ErRptqs
˘

)

`
λt
γ

´

´ 1`E
“

eγ¨minpCt,gpt;γ,rqq
‰

¯

“ λt
EreγCts´ 1

γ
´λt

ż 8

gpt;γ,rq

`eγCt

γ
´Ct

˘

´
`eγgpt;γ,rq

γ
´ gpt;γ, rq

˘

dFtpCtq

`λtPrpCt ą gpt;γ, rqq ¨
`

hpt;γ, rq´ gpt;γ, rq´ErRptqs
˘

.

Apparently, PrpCt ą gpt;γ, rqq ¨
`

hpt;γ, rq ´ gpt;γ, rq ´ ErRptqs
˘

Ñ 0 as gpt;γ, rq Ñ 8 because hpt;γ, rq ´

gpt;γ, rq is bounded. Assume that the moment generating function is finite, i.e., EreγCts is finite. Then,

lim
gpt;γ,rqÑ8

ż 8

gpt;γ,rq

`eγCt

γ
´Ct

˘

´
`eγgpt;γ,rq

γ
´ gpt;γ, rq

˘

dFtpCtq “ 0.

The equality holds because the limit of each integral in the above equation is equal to zero. Thus, it holds

that

B
`

hpt;γ,8q´ gpt;γ,8q
˘

Bt
“ λt

EreγCts´ 1

γ
.

Then, for any given γ, we have

hpt;γ,8q´ gpt;γ,8q“

ż t

0

λs
EreγCss´ 1

γ
dFspCsq “wtwpt;γq.

The second equality holds because

Bwtwpt;γq

Bt
“ lim

δÑ0

wtwpt` δ;γq´wtwpt;γq

δγ
“ lim
δÑ0

log
`

EreγRpt,t`δqs
˘

δγ
“ lim
δÑ0

log
`

λtδEre
γCts` p1´λtδq` opδq

˘

δγ

“ lim
δÑ0

λtδpEre
γCts´ 1q` opδq

δγ
“
λtpEre

γCts´ 1q

γ
.

It completes the proof. ˝
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Proof of Theorem 2. The maximum price of the TW is equal to its willingness-to-pay. Then, the profit of
offering a TW is equal to

wtwpT ;γq´ErRpT qs.

For risk-averse customers with γ ą 0, we have

wrvwpT ;γ, rq´hpT ;γ, rq “wtwpT ;γq` gpT ;γ, rq´hpT ;γ, rq ăwtwpT ;γq´ErRptqs.

The inequality holds for any rą 0 by Proposition 4. For the RVW provider with a positive refund r earns less
profit than the TW, so the RVW degenerates to a TW in a homogeneous market with risk-averse customers,
i.e., r˚ “ 0.
Similarly, for risk-seeking customers, i.e., γ ă 0,

wrvwpT ;γ, rq´hpT ;γ, rq “wtwpT ;γq` gpT ;γ, rq´hpT ;γ, rq ąwtwpT ;γq´ErRptqs.

Notice that the TW loses money for γ ă 0, so the RVW can balance the revenue and the support cost by
offering a sufficiently large refund because Proposition 4 shows that hpT ;γ, rq ´ gpT ;γ, rq Ñ wtwpT ;γq as
rÑ8. ˝

Proof of Theorem 3. To investigate the profitability of the RVW over the TW, we consider the following
comparison

max
r

 

wtwpT ;γbq` gpT ;γb, rq´hpT ;γa, rq
(

ąwtwpT ;γbq´ErRpT qs.

Or equivalently minr
 

hpT ;γa, rq´ gpT ;γb, rq
(

ăErRpT qs. By Theorem 4, hpT ;γa, rq is first increasing in γa
for γa ď 0 and then is decreasing in it for γa ě 0. Then, maxr

 

hpT ;γa, rq´ gpT ;γb, rq
(

is also first increasing
and then decreasing in γa. Denote the two solutions to the following equation with respect to γa,

min
r

 

hpT ;γa, rq´ gpT ;γb, rq
(

“ErRpT qs

by γ
a

and γa, and γ
a
ď γa. Therefore, the RVW is strictly more profitable than the TW if and only if γa ă γa

or γa ą γa. ˝

Proof of Proposition 5. Let αH
`

wtwpT ;γHq´ErRptqs
˘

“wtwpT ;γLq´ErRpT qs. We have

wtwpT ;γHq “
wtwpT ;γLq´αLErRpT qs

αH
.

By Proposition 2, wtwpT ;γHq is increasing in γH , so there exists a unique solution to equation (5) with
respect to γH , denoted by pγH . We remark that if γH ě pγ, it is more profitable for the provider to only serve
type-H customers by charging price wtwpT ;γHq. ˝

Proof of Theorem 4. We will prove this theorem by induction.
(a). Suppose that for a given refund r, wrvwpt;γ, rq ěwrvwpt;γ

1, rq at time-to-go t for any γ ą γ1. We will next
show that the inequality also holds at time-to-go t` δ for a sufficiently small δ ą 0, i.e., wrvwpt` δ;γ, rq ě
wrvwpt` δ;γ

1, rq.
According to the differential equation (1), we have

gpt` δ;γ, rq “ gpt;γ, rq´
λtδ

γ

´

E
“

eγ¨minpCt,gpt;γ,rqq
‰

´ 1
¯

` opδq.

Combing with equation (21), we have

gpt` δ;γ, rq`wtwpt` δ;γq “ gpt;γ, rq`wtwpt;γq`λtδ
EreγCts´E

“

eγ¨minpCt,gpt;γ,rqq
‰

γ
` opδq.

Therefore,
´

gpt` δ;γ, rq`wtwpt` δ;γq
¯

´

´

gpt` δ;γ1, rq`wtwpt` δ;γ
1q

¯

“

´

gpt;γ, rq`wtwpt;γq
¯

´

´

gpt;γ1, rq`wtwpt;γ
1q

¯

`λtδ
´EreγCts´E

“

eγ¨minpCt,gpt;γ,rqq
‰

γ
´
Ereγ

1Cts´E
“

eγ
1¨minpCt,gpt;γ

1,rqq
‰

γ1

¯

` opδq

ě

´

gpt;γ, rq`wtwpt;γq
¯

´

´

gpt;γ1, rq`wtwpt;γ
1q

¯
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`λtδ
´EreγCts´E

“

eγ¨minpCt,gpt;γ,rqq
‰

γ
´
Ereγ

1Cts´E
“

eγ
1¨minpCt,gpt;γ,rqq

‰

γ1

¯

` opδq

ě

´

gpt;γ, rq`wtwpt;γq
¯

´

´

gpt;γ1, rq`wtwpt;γ
1q

¯

ě 0.

The first inequality holds because gpt;γ, rq ď gpt;γ1, rq and E
“

eγ
1¨minpCt,gpt;γ

1,rqq
‰

{γ1 ěE
“

eγ
1¨minpCt,gpt;γ,rqq

‰

{γ1;
the second inequality holds because by Lemma 1,

EreγCts´E
“

eγ¨minpCt,gpt;γ,rqq
‰

γ
ě
Ereγ

1Cts´E
“

eγ
1¨minpCt,gpt;γ,rqq

‰

γ1
;

the last inequality holds because gpt;γ, rq`wtwpt;γq ě gpt;γ
1, rq`wtwpt;γ

1q. Thus, for any given time-to-go t
and refund r, wrvwpt;γ, rq is decreasing with respect to γ no matter whether γ is positive or negative. Notice
that wrvwpt;γ, rq “wtwpt;γq` gpt;γ, rq and gpt;γ, rq is decreasing in γ, so wrvwpt;γ, rq is increasing at a lower
rate than wtwpt;γq.
(b). We first consider the risk-averse customers, i.e., γ ą 0. Suppose that for a given refund r, hpt;γ, rq ď
hpt;γ1, rq for any γ ą γ1 ą 0. Then, we compare hpt` δ;γ, rq and hpt` δ;γ1, rq. From the differential equation
(4),

hpt` δ;γ, rq “ hpt;γ, rq` δλtPrpCt ą gpt;γ, rqq
!

ErCt|Ct ą gpt;γ, rqs´
`

hpt;γ, rq´ErRptqs
˘

)

` opδq

“ hpt;γ, rq` δλt

ˆ
ż 8

gpt;γ,rq

ctdFtpctq´ p1´Ftpgpt;γ, rqq
`

hpt;γ, rq´ErRptqs
˘

˙

` opδq.

Then, we have

hpt` δ;γ, rq´hpt` δ;γ1, rq “ hpt;γ, rq´hpt;γ1, rq` δλt

ˆ
ż gpt;γ1,rq

gpt;γ,rq

ctdFtpctq`
`

Ftpgpt;γ
1, rqq´Ftpgpt;γ, rqq

˘

¨ErRptqs´
`

hpt;γ, rq´hpt;γ1, rq
˘

`
`

Ftpgpt;γ, rqqhpt;γ, rq´Ftpgpt;γ
1, rqqhpt;γ1, rq

˘

˙

` opδq

ď
`

hpt;γ, rq´hpt;γ1, rq
˘

p1´ δλtq` δλt

ˆ

`

Ftpgpt;γ
1, rqq´Ftpgpt;γ, rqq

˘

¨
`

gpt;γ1, rq`ErRptqs
˘

`
`

Ftpgpt;γ, rqqhpt;γ, rq´Ftpgpt;γ
1, rqqhpt;γ1, rq

˘

˙

ď
`

hpt;γ, rq´hpt;γ1, rq
˘

p1´ δλtq` δλt

ˆ

`

Ftpgpt;γ
1, rqq´Ftpgpt;γ, rqq

˘

¨
`

gpt;γ1, rq`ErRptqs´hpt;γ1, rq
˘

˙

ď
`

hpt;γ, rq´hpt;γ1, rq
˘

p1´ δλtq ď 0.

The first inequality holds because gpt;γ, rq ď gpt;γ1, rq; the second inequality holds because hpt;γ, rq ď
hpt;γ1, rq; the third inequality holds because gpt;γ1, rq`ErRptqs ´ hpt;γ1, rq ď 0 for γ1 ą 0 by Proposition 4.
Therefore, for any given time-to-go t and refund r, hpt;γ, rq is decreasing in γ for risk-averse customers.
Next, consider the risk-seeking customers, i.e., γ ă 0. Suppose that for a given refund r, hpt;γ, rq ě hpt;γ1, rq
at some tě 0 for any γ1 ă γ ă 0. Similarly, we have

hpt` δ;γ, rq´hpt` δ;γ1, rq “ hpt;γ, rq´hpt;γ1, rq` δλt

ˆ
ż gpt;γ1,rq

gpt;γ,rq

ctdFtpctq`
`

Ftpgpt;γ
1, rqq

´Ftpgpt;γ, rqq
˘

ErRptqs

ě
`

hpt;γ, rq´hpt;γ1, rq
˘

p1´ δλtq` δλt

´

`

Ftpgpt;γ
1, rqq´Ftpgpt;γ, rqq

˘

¨
`

gpt;γ, rq`ErRptqs
˘

`
`

Ftpgpt;γ, rqqhpt;γ, rq´Ftpgpt;γ
1, rqqhpt;γ1, rq

˘

¯

ě
`

hpt;γ, rq´hpt;γ1, rq
˘

p1´ δλtq` δλt

´

`

Ftpgpt;γ
1, rqq´Ftpgpt;γ, rqq

˘

¨
`

gpt;γ, rq`ErRptqs´hpt;γ, rq
˘

¯

ě
`

hpt;γ, rq´hpt;γ1, rq
˘

p1´ δλtq ě 0.

The first inequality holds because gpt;γ, rq ď gpt;γ1, rq; the second inequality holds because hpt;γ, rq ě
hpt;γ1, rq; the third inequality holds because gpt;γ, rq `ErRptqs ´ hpt;γ, rq ě 0 for γ ă 0 by Proposition 4.
Thus, for given time-to-go t and refund r, hpt;γ, rq is increasing in γ for risk-seeking customers. ˝
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Proof of Theorem 5. For γL ă γH ď pγ, the TW captures both type-L and type-H customers and its profit
is equal to wtwpT ;γLq ´ ErRpT qs. An RVW with refund r and price wrvwpT ;γL, rq captures both market
segments. Consider the following inequality

max
r

!

wtwpT ;γLq` gpT ;γL, rq´αLhpT ;γL, rq´αHhpT ;γH , rq
)

ąwtwpT ;γLq´ErRpT qs,

or equivalently,

min
r

!

´ gpT ;γL, rq`αLhpT ;γL, rq`αHhpT ;γH , rq
)

ăErRpT qs. (22)

Since hpT ;γH , rq is decreasing in γH for any given r by Theorem 4, then minr
 

´gpT ;γL, rq`αLhpT ;γL, rq`
αHhpT ;γH , rq

(

is also decreasing in γH . Therefore, there exists a threshold γH such that inequality (22)
holds for any γH ą γH . Apparently, γH ă pγH .
We have already shown that the RVW is strictly more profitable than the TW for γH P

`

γH ,pγH
˘

. We remark
that the RVW may be more profitable for γH varying in an even larger range. ˝

Proof of Proposition 6. (a). We will use sample path argument to show the monotonic property. For a
Poisson process with a stationary failure rate λH , the optimal claim policy has a threshold gpt;λH , rq for each
failure at time t. Assume that the customer with a stationary failure rate λL adopts the same policy with
threshold gpt;λH , rq. Apparently, the expected refund net of out-of-pocket repair cost taking into account the
risk attitude is greater than that under the failure process with a rate λH because each failure occurs with
a lower probability. Therefore, gpt;λH , rq, that is the net value corresponding to rate λL under the optimal
claim policy is even higher.
(b). For a given refund r, suppose wrvwpt;λ

H , rq ě wrvwpt;λ
L, rq at some tě 0. Next, we will show that the

inequality also holds at time t ` δ for a sufficiently small δ ą 0, i.e., wrvwpt ` δ;λH , rq ě wrvwpt ` δ;λL, rq.
Similar to the proof of Theorem 4, we have the following equations

wrvwpt` δ;λ
H , rq “ wrvwpt;λ

H , rq`λHδ
EreγCts´E

“

eγ¨minpCt,gpt;λ
H ,rqq

‰

γ
` opδq,

wrvwpt` δ;λ
L, rq “ wrvwpt;λ

L, rq`λLδ
EreγCts´E

“

eγ¨minpCt,gpt;λ
L,rqq

‰

γ
` opδq.

Comparing them, we have

wrvwpt` δ;λ
H , rq ěwrvwpt` δ;λ

L, rq.

The inequality holds because wrvwpt;λ
H , rq ě wrvwpt;λ

L, rq, λH ě λL and gpt;λH , rq ď gpt;λL, rq. Notice that
the net value gpt;λ, rq of the RVW is decreasing in failure rate λ, so the willingness-to-pay for the RVW is
increasing at a lower rate than that for the TW. ˝

Proof of Theorem 6. (a). Notice that the willingness-to-pay can be expressed as follows

rwrvwpT ;λ, rq “wtwpT ;λq` rgpT ;λ, rq “
ΛpT q ¨ pMCpγq´ 1q

γ
´

1

γ
ln
`

p1´ e´ΛpT qq` e´γr´ΛpT q
˘

.

Consider its first-order derivative with respect to λ

B rwrvwpT ;λ, rq

Bλ
“
T

γ

ˆ

MCpγq´ 1´
e´ΛpT q´ e´γr´ΛpT q

p1´ e´ΛpT qq` e´γr´ΛpT q

˙

ą
T

γ

ˆ

MCpγq´
1

p1´ e´ΛpT qq

˙

ě 0.

The last inequality holds because of the condition in part (a) of Theorem 6.
(b). Dividing the both sides of equation (15) by pergpt;λ,rq ´ 1q{γ, taking integrals with respect to t and
combining the boundary condition yields the closed-form solution for rgpt;λ, rq

rgpt;λ, rq “´
1

γ
ln
`

p1´ e´Λptqq` e´γr´Λptq
˘

.

For notational convenience, let Πrvwprq “ rwrvwpT ;λL, rq´
`

αLrhrvwpT ;λL, rq`αHrhrvwpT ;λH , rq
˘

. It can be fur-
ther expressed by

Πrvwprq “wtwpT ;λLq´
`

αLλL`αHλH
˘

Tc´
1

γ
ln
´

p1´ e´λ
LT q` e´γr´λ

LT
¯

´
`

αLe´λ
LT `αHe´λ

HT
˘

r.
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Consider the derivatives of Πrvwprq with respect to r.

BΠrvwprq

Br
“

e´γr´λ
LT

p1´ e´λLT q` e´γr´λLT
´
`

αLe´λ
LT `αHe´λ

HT
˘

,

B2Πrvwprq

Br2
“ ´

γp1´ e´λ
LT q ¨ e´γr´λ

LT

`

p1´ e´λLT q` e´γr´λLT
˘2 ă 0.

So, the profit function Πrvwprq is strictly concave in r. Solving the first-order condition BΠrvwprq{Br“ 0 yields
the optimal refund

r˚ “
1

γ
ln

˜

e´λ
LT ¨

`

1´pαLe´λ
LT `αHe´λ

HT q
˘

p1´ e´λLT q ¨ pαLe´λLT `αHe´λHT q

¸

.

It can be verified that r˚ ą 0 because for any λH ą λL,

e´λ
LT ¨

`

1´pαLe´λ
LT `αHe´λ

HT q
˘

ą p1´ e´λ
LT q ¨ pαLe´λ

LT `αHe´λ
HT q.

(c). Solving the equation wtwpT ;λLq´
`

αLλL`αHλH
˘

Tc“ αH
`

wtwpT ;λHq´λHTc
˘

for λH yields

pλH “ λL ¨
pMCpγq´ 1q{γ´αLc

αHpMCpγq´ 1q{γ
.

To show that the RVW is always strictly more profitable than the TW, we compare Πpr˚q to the profit of
the TW, which is equal to wtwpT ;λLq´

`

αLλL`αHλH
˘

Tc, i.e.,

Πpr˚q ąwtwpT ;λLq´
`

αLλL`αHλH
˘

Tc.

Notice that the RVW degenerates to the TW when the refund is equal to zero, i.e., Πp0q “ wtwpT ;λLq ´
`

αLλL`αHλH
˘

Tc. Because Πprq is strictly increasing in r and r˚ ą 0, the above strict inequality holds. ˝

Proof of Proposition 7. (a). We can use the similar arguments as in the proof of Proposition 6 to show
the monotonic property with respect to the repair cost.
(b). For a given refund r, suppose that wrvwpt;C

H , rq ą wrvwpt;C
L, rq at some t ě 0. Next, we will show

wrvwpt` δ;C
H , rq ěwrvwpt` δ;C

L, rq. Similarly,

wrvwpt` δ;C,rq “wrvwpt;C,rq`λtδ
EreγCts´E

“

eγ¨minpCt,gpt;C,rqq
‰

γ
` opδq.

We next compare

wrvwpt` δ;C
H , rq “ wrvwpt;C

H , rq`λtδ
EreγC

H
s´E

“

eγ¨minpCH ,gpt;CH ,rqq
‰

γ
` opδq,

wrvwpt` δ;C
L, rq “ wrvwpt;C

L, rq`λtδ
EreγC

L
s´E

“

eγ¨minpCL,gpt;CL,rqq
‰

γ
` opδq.

Moreover, we have

EreγC
H

s´E
“

eγ¨minpCH ,gpt;CH ,rqq
‰

ěEreγC
H

s´E
“

eγ¨minpCH ,gpt;CL,rqq
‰

ěEreγC
L

s´E
“

eγ¨minpCL,gpt;CL,rqq
‰

.

The first inequality holds because gpt;CH , rq ď gpt;CL, rq; the second inequality holds because function
`

eγx´ eγminpx,gq
˘

is increasing in x and CH is stochastically larger than CL. Therefore, for any given refund
r

wrvwpt` δ;C
H , rq ěwrvwpt` δ;C

L, rq,

which completes the proof. ˝

Proof of Proposition 8. For any given refund r, problem (17) is a linear program. From the constraints,
we have prvw ă ptw ` gpT ;γL, rq ď wtwpT ;γHq ` gpT ;γL, rq. Recall that prvw ď wrvwpT ;γL, rq “ wtwpT ;γLq `
gpT ;γL, rq. Because wtwpT ;γLq ď wtwpT ;γHq, then the maximum price of the RVW is prvw “ wrvwpT ;γL, rq.
Because ptw ď prvw´ gpT ;γH , rq, then the maximum price of the TW is ptw “wrvwpT ;γL, rq´ gpT ;γH , rq. ˝
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Proof of Theorem 7. Comparison between problems (18) and (13) yields that the warranty menu earns
strictly more profit than the RVW alone for any given refund r, i.e.,

max
r

!

gpT ;γL, rq´αLhpT ;γL, rq´αH
`

gpT ;γH , rq`ErRpT qs
˘

)

ąmax
r

!

gpT ;γL, rq´αLhpT ;γL, rq

´αHhpT ;γH , rq
)

.

The inequality holds because hpT ;γH , rq ą gpT ;γH , rq`ErRpT qs for any risk-averse customer and any posi-
tive refund r by Proposition 4.
To show the profit advantage of the menu over the TW alone, consider the following inequality

max
r

!

wtwpT ;γLq` gpT ;γL, rq´αLhpT ;γL, rq´αH
`

gpT ;γH , rq`ErRpT qs
˘

)

ąwtwpT ;γLq´ErRpT qs,

or equivalently,

min
r

!

´ gpT ;γLq`αLhpT ;γL, rq`αHgpT ;γH , rq
)

ă αLErRpT qs. (23)

Since gpT ;γH , rq is decreasing in γH for any given r by Theorem 1, then minr
 

´gpT ;γL, rq`αLhpT ;γL, rq`
αHgpT ;γH , rq

(

is also decreasing in γH . Therefore, there exists a threshold γ1H such that inequality (23) holds
for any γH ą γ1H . Comparing inequalities (22) and (23) and recalling hpT ;γH , rq ą gpT ;γH , rq`ErRpT qs for
γH ą 0 by Proposition 4, we have γ1H ă γH . It completes the proof. ˝
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