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A. Proofs of Results in the Main Body

Proof of Lemma 1. Note that V(p;) = max{v — p;, —c + E[V(P)],0}, which is equivalent to
V(p:) = max{v — p;, [—c+ E[V(P)]]*}. It is easy to see that v — p; is decreasing in p;, and [—c +
E[V(P)]]T is independent of p;. On the one hand, v — 0 =wv > [—c+ E[V(P)]]T, because V(p,) =
max{v —p;, —c+ E[V(P)],0} <v —p, <wv. On the other hand, v —v =0 <[—c+ E[V(P)]]*. Thus,
there exists a threshold p € (0,v] such that v —p, > [—c+ E[V(P)]]" if and only if p, <p. Conse-
quently, V(p,) is in the form of Equation (1). O

Proof of Proposition 1. Denote v* = max{v’ | E[(v — P)*] < c}. Since no customer would make
a purchase at an infinitely high price, we just consider the support of P as being finite. It is easy
to verify that E[(v/ — P)"] is weakly increasing in v' and eventually strictly increasing in v’ for v’
higher than the upper end of P’s finite support, E[(0 — P)*] =0 < ¢ and 1}1/111;0 E[(v/ —P)t|=0c0>c.
Hence, the existence of v* is guaranteed.

Consider first when v > v*. We prove by contradiction that a customer with valuation v would
be willing to wait and eventually purchase a unit of product in a future period. Suppose on the
contrary, the customer would not wait by either purchasing the product now or leaving immediately.
Under the assumption of zero utility from the outside option, the customer would purchase the
product if and only if v > p;. Thus, under the stipulation that the customer would not wait by
either purchasing the product now or leaving immediately, we must have E[V(P)] =E[(v— P)*]. In
such a case, her expected utility from waiting, i.e., —c+ E[V(P)], must be less than or equal to 0,
which means that E[(v — P)*] < ¢ due to E[V(P)] =E[(v — P)*]. On the other hand, recall that by
definition, v* = max{v’ | E[(v' — P)*] < ¢}. Because v > v*, we have E[(v — P)"] > ¢, which leads to
a contradiction. Hence, a customer with valuation v > v* would be willing to wait and eventually

purchase a unit of product.



Next, we prove that the customer’s purchase threshold p is equal to v*, meaning that a customer
with valuation v > v* would make a purchase if and only if the price in the focal period is less
than or equal to v*. First, as shown above, we must have —c+ E[V(P)] > 0 when v > v*. Given a

purchase theshold p (its existence is guranteed by Lemma 1), we have E[V(P)] = F(p)E[v — P|P <

p| + F(p)[—c+E[V(P)]], which implies that
Elv— P|P —c
s (08.1)

Thus, we have v —p — (—c+E[V(P)]) = (—F(p)E[p — P|P <p|+c)/F(p) >0, where the inequality

is guaranteed by Lemma 1. This implies E[(p — P)*| = F(p)E[p — P|P <p| <c. As v* = max{v' |
E[(v" — P)*] < ¢} by definition, we conclude that v* > p. Lastly, we prove by contradiction that
p = v*. Suppose v* > p. Because v — p, > —c + E[V(P)] if and only if p, < p, we have v —v* <
—c+E[V(P)] = (F(p)E[v — P|P < p|] — ¢)/F(p), which is equivalent to F(p)E[v* — P|P < p|] > c.
Because v* > p, we have F(p)E[v* — P|P < p] < F(v*)E[v* — P|P <v*] = E[(v* — P)*] < ¢, which
leads to a contradiction. Hence, the behavior of a customer with valuation v > v* should be as
characterized in Proposition 1.

Next consider the case when v < v*. We first show by contradiction that the customer would
either purchase the product now or leave immediately. Suppose the customer would be willing to
wait, which means that her expected utility from waiting must be greater than zero, i.e., —c +
E[V(P)] > 0. Based on Lemma 1, there exists a threshold p such that the customer would be willing
to wait if and only if the price in the current period is greater than p. Thus Equation (OS.1) still
holds, which implies that —c+ E[V (P)] = (F(p)E[v — P|P <p|] —¢)/F(p) > 0. This is equivalent to
F(p)E[v — P|P < p| > c. Based on Lemma 1, we also know that v —p > —c+ E[V(P)] >0, i.e.,
v > p. Coupling with the increasing monotonicity of F'(v')E[v — P|P <¢'] in v’ for any v' <,
we have E[(v — P)*] = F(v)E[v — P|P <wv| > F(p)E[v — P|P < p|] > ¢, which implies that v > v*
because E[(v' — P)*] is increasing in v" and v* = max{v’ | E[(v' — P)*] < ¢}. This contracts to
the aforementioned condition that v < v*. Hence, a customer with valuation v < v* would either
purchase the product now or leave immediately. Under the assumption of zero utility from the
outside option, her purchase threshold is simply her valuation v, meaning that the customer would

purchase the product if and only if v > p;. We thus obtain the announced results. [J



Proof of Lemma 2. (i) If v > v*, customers will wait until the price is no more than p = v*, as
shown in Proposition 1. The probability that customers purchase in the nth period after arrival
is given by (F(g))ni1 F(p), and if they indeed make a purchase in a period, the firm’s expected

profit is E[P|P < p|. Consequently, the monopolist’s expected profit ex ante is

(F(p)"" F(pE[P|P<p|= lim F(p)E[P|P < p @)

D) = PP Sp=ElPIP <y,

n=1

where the second equality is due to F(p) < 1.

(ii) If v <wv*, customers will either buy with a price no more than v or quit immediately. Con-
sequently, the expected profit is F'(v)E[P|P <wv]. O

Proof of Lemma 3. Note that p’ =max{v'|E[(v' — P)"] <¢;}, i =L, H. Because E[(v' — P)*] is
increasing in v’ and ¢y > ¢y, we have BL > EH . Next, we consider three mutually exclusive but
collectively exhaustive cases: (al) p" > p"” > vy >wvp; (bl) vy > p”, vy <p"; (cl) vy > vy >ph >
p".

(al) p» > p"” > vy > vy. Due to Proposition 1, neither customers with a high-valuation nor
customers with a low valuation would wait. Consequently, the firm’s expected profit, as shown in
Lemma 2, is given by

aF(vp)E[P|P <v]+ (1 —«a)F(vy)E[P|P <vg]
=aF(vp)E[P|P <vr]+ (1 —a)[F(vg) — F(vy)]|E[Plvp < P <wvg|+ (1 —a)F(v)E[P|P < wvg]
=F(v)E[P|P <wp]+ (1 —a)[F(vy) — F(vy)|E[Plvr, < P <wg]
<wvpF(vr)+ (1 —a)vg[F(vy) — F(vr)] <max{v, (1 — @)vg } F(vyg) < max{vr, (1 —a)vg},
where the first inequality is due to E[P|P < wv;] < E[vp|P <wr] <wp and E[Plv, < P <wg] <
Elvg|vr, < P <wvg]=wvy. Thus, in the case when BL EQH > vy > v, the expected profit from the
optimal randomized pricing is no greater than that from the optimal static pricing policy.

(b1) vy > p™, vy <p". In this case, customers with a high-valuation will wait until the price
is no higher than p”, but customers with a low valuation will quit the market immediately if the
price is higher than their valuation v;. According to Lemma 2, the monopolist’s expected profit is
given by

aF (v, )E[P|P <wvi]+ (1 — a)E[P|P < p"].



Consider first when QH <wy. Then, we have
aF (v)E[P|P <wi]+ (1 —)E[P|P < p"] < av,F(vy) + (1 —a)p” <avpF(vp) + (1 — a)v, <wy,

where the first inequality is due to E[P|P <wv;] <E[v,|P <wv,] <wv; and E[P|P < p"] <E[p”|P <
’UH] = EH
Next consider the circumstance when vy > QH > vy,. The condition implies that E[P|P < QH 1<

E[P|P <wvg]. Then, we have

aF (vp)E[P|P <vi]+ (1 —)E[P|P < p"]

<aF(vy)E[P|P <v]+ (1 —a)E[P|P <wvy| < a?ézj“)) E[P|P <wvp]+ (1 —a)E[P|P <wvy]
~aF(vp)E[P|P <wvp]+ (1 —a)F(vy)E[P|P <vy] _max{vg, (1 —a)vy}F(vy) el oo
- F(’UH) < F(’UH) - { L7(1 ) H}a

where the second inequality is due to 0 < F'(vy) <1, and the last inequality is based on the proof
in (al).

(c1) vg > vy > p* > p”. In this case, based on Proposition 1, both customers with a high-
valuation and customers with a low valuation would be willing to wait. As a result, the expected

profit, as shown in Lemma 2, is given by
aE[P|P <p"]+ (1 - a)E[P|P <p"]<ap”+ (1 —a)p” <uy,

where the first inequality is due to E[P|P < p*] <p" and E[P|P < p"] <p", the second inequality
is due to vy, > p* > p*.
We thus obtained the announced results. [

Proof of Lemma 4. Based on Lemma 3, we can restrict our discussion to the situation when
¢ < cy. Note that p’ = max{v'|E[(v — P)"] < ¢;}, i = L, H. Because ¢; < ¢y implies that p” < p”,
we need to consider four mutually exclusive but collective exhaustive cases: (a2) vy < QL, vy < QH ;
(b2) vy, <ph g >p™; (c2) vy > ph vy <p™; (d2) vy > ph vy > pf.

Under the case (a2), based on Proposition 1, we know that neither high-valuation customers
nor low-valuation customers would wait. Then following a similar approach as in the proof of case

(al) in Lemma 3, we can show that an optimal static pricing policy dominates randomized pricing



policies. Under the case (b2), due to Proposition 1, low-valuation customers would never wait but
high-valuation customers would wait in the system with the hope of a favorable price in future
periods. The case is similar to the case (bl) in the proof of Lemma 3, and we can show that an
optimal static pricing policy dominates randomized pricing policies following a similar approach.
Next we show in an auxiliary lemma below that case (c2) cannot happen under the condition

that 2L < 22
Ccr, CH
LEmMmA OS.1. Z—i > ’Cj—g is a mecessary condition for (c2).
Proof of Lemma OS.1. By Proposition 1, (¢2) implies that F(v)E[v, — P|P <wvp] = E[(vL —
P)t]>c¢p and F(vy)E[vy — P|P <vy]=E[(vg — P)"] <cy. Then, we have
Cy Z F(’UH)E[UH — P|P S UH] > F(UL)E[’UH — P|P S ’UL] == ’UHF(’UL) — F(UL)E[P‘P S ’UL],
and
cr < F(UL)E[’UL — P‘P < ’UL] = ULF(’UL) — F(’UL)E[P|P < ’UL].
The above two inequalities suggest that

cu vy —E[P|P <wyp] vH
Cy, UL—E[P|PS’UL] ”UL7

where the second inequality is due to (vyg —E[P|P <w])vy — (vp —E[P|P <vi])vg = (vyg —
v )E[P|P <wvg] > 0. We thus obtain the announced result. [

Lastly, we show that the optimal static pricing policy outperforms randomized pricing policies
under (d2), i.e., v, >p", vy >p”, and ‘;—’L{ < Z—f By Propositions 1, we know that customers would
either purchase immediately or wait. Due to Lemma 2, the corresponding expected profit is given
by

aE[P|P < p"]+ (1 — a)E[P|P < p"].
On the one hand, p" = max{v'|E[(v' — P)*] < ¢, }, and then for any v > p”, we have E[(v—P)*] > ¢;.

Consequently, F(vy,)E[v, — P|P < wg] = E[(v, — P)*] > ¢, due to vy > p”. On the other hand,

p" = max{v'|E[(v/ — P)*] < ¢y}, which implies F(p”)E[p" — P|P <p"] =E[(p" — P)T] < cy. We



H
also observe that CC—IL{ > %—L, which can be shown with the same approach as that in the proof of
Lemma OS.1.
Consider first when p” <wv,. We have aE[P|P < p*]+ (1 — a)E[P|P < p"] <ap” + (1 —a)p” <

vy <max{vr, (1 —a)vg}. That is, the firm is worse off under a randomized pricing policy.

Next consider the scenario when p” > v;. We start by showing that F'(v;) < ;E:ii . This is true
because
cy —cp > F(QH)E[QH —P|P SQH] — F(vp)E[vy, — P|P <wy]
> F(vp)E[p" — P|P <wi] — F(vy)E[vy — P|P <wp] = (p" —vr)F(vy),
where the first inequality is due to F(vy,)E[v, — P|P <wv;] > ¢, and F(p")E[p" — P|P <p"] <cy,

and the second inequality is due to QH > vr. As a result, we have

aE[P|P <p"]+ (1 - )E[P|P < p"] <aE[P|P <wi]+ (1 —a)p”

<o g ) aman <a o o —w)) + - a)p”

= il vL+(1—a— acL >pH.

Cu —CL Cg —CL

The first inequality is due to p* < v, the second inequality is due to vy F(v,) — F(v,)E[P|P <

vp] = F(vp)E[v, — P|P <w] > ¢p, and the third inequality is due to F(vy) < ;ﬁ;%

,,UL'

If (1—a)—a—L— <0, then we have

cg—c¢cr, —

Chy Qacy, Cy QCy,
a v+ (1—a— pf <« v+ 1—a— v, =vr, <max{v, (1—a)vg},
CH —CL Cy—CL/) ™ CH —CL CH —CL

where the first inequality is due to v, <]3H. Otherwise, i.e., if (1 —a)—a—L— >0, we have

CH—CI,
CHy acy, Qcy, CHy
o vp+1—a— pH<a v+ 1—a— —r
Cyg —Cr, Cg—Cr ) — Cyg —Cr, Cyg —Cp, Cr,

=(1- oc)c—HvL <(1—a)vy <max{vr, (1 —a)vy}.
Ccr

H
The first inequality is due to i—i’ > %—L, and the second inequality is due to ';—’L{ < Z—fz O
Proof of Proposition 2. Recall the four mutually exclusive but collective exhaustive cases con-

sidered in the proof of Lemma 4: (a2) vy, <p", vy <p; (b2) vy <p" vy > p¥; (c2) vy > ph oy <

p"; (d2) vy, > p*, vy > p”. We already show that a randomized pricing policy cannot outperform

an optimal static pricing policy under (a2) and (b2). Under the case (c2), low-valuation customers



would make a purchase immediately or wait in the system, while high-valuation customers would
either purchase the product upon arrival or leave immediately. Thus, all we need to show is that
case (d2) is dominated by either (c¢2) or an optimal static pricing policy.

Based on Proposition 1 and Lemma 2, we can derive the optimal expected profit under case (d2)

by solving the following optimization problem.

I;l(&t)){ aE[P|P <p"]+ (1 - a)E[P|P < p"].
" P p

st. p" =max{v'|E[(v' — P)T] <cp},
(0S.2)
p" = max{v'|E[(v' — P)] <},

E[(vy — P)Y]>cr, E[(vg —P)"]>cpy.

If p <wy, we have aE[P|P < p"|+ (1 — a)E[P|P < p”] < ap® + (1 — a)p" < vy, which suggests
that the optimal randomized pricing policy under case (d2) reduces to a static pricing policy. Thus
we only need to restrict our attention to the case when QH > vr. Suppose F(p) is an optimal
solution to problem (OS.2). Because no customer would buy at a price greater than vy, the upper
bound of an optimal distribution will be no more than vy, i.e., F(vy)=1.

Based on Proposition 1 and Lemma 2, the optimal expected profit under case (¢2) can be derived
by solving problem (2). We construct a price distribution G(p) as follows: G(p) is the same as F'(p)
for any p < QH , and it takes one single value of vy for any p > QH , with a probability mass equal
to 1 — F(p™). We first show that G(p) is a feasible solution of problem (2). Because G(p) is equal
to F(p) for any p <wv;, <p", we have E¢[(v, — P)*] > ¢, and p* = max{v'|E[(v/ — P)*] < ¢} =
max{v'|[E¢[(v — P)*] < ¢, }. On the other hand, Eqlvy — Plp” < P <wvy| =0 as G(p) takes only
one value of vy for any p > QH. Consequently, G(vy)Eg[vy — P|P <wvy| = G(QH)EG[UH — P|P <
p"] = F(p")Elvy — P|P < p”] < ¢y, where the last equality is due to the definition of p. Thus,
G(p) is a feasible solution of problem (2).

Lastly, we prove that case (d2) is dominated by case (c2) by showing that the expected profit

from F(p) is lower than that from G(p):



aE[P|P < p"]+ (1 - a)E[P|P < p"]

=aE[P|P <p"]+ (1 - a)F(p")E[P|P <p"]+ (1 - a)(1 - F(p™))E[P|P < p"]

<aE[PIP <p"]+(1—a)F(p")E[PIP <p"]+(1—a)(1—F(p"))vn

=aEg[P|P <p"|+(1-a)G(p")Ec[P|P <p"]+ (1 - a)(1-G(p"))Ec[P|p" < P <vg]

=aE¢[P|P <p"]+ (1 - a)G(vy)Ec[P|P < vy],
where the inequality is due to p” < vy, and the last equality is due to G(vy) = F(vy) = 1. We thus
obtain the announced result. [J

Proof of Lemma 5. Suppose F(p) is a feasible solution for the optimization problem (3). We can
construct another distribution, say G(p), as follows. G(p) is equal to F(p) for any p <v;. However,
under G(p), the distribution has only one value, namely vy, above vy, and its corresponding
probability mass is equal to 1 — F'(vy). Because G(p) is equal to F(p) for any p <wr, it is easy
to verify that G(vr)Eg[vr — P|P <wvr] > ¢ holds. On the other hand, Eg[vg — Plvp < P <wy| =
0 as G(p) has only one value of vy for any p > v. Consequently, G(vy)Egvy — P|P < vy] =
G(vr)Eglvy — P|P <wvp]+ [G(vy) — G(vr)]|Eglvy — Plv, < P <wvy] = G(vy)Eglvy — P|P <wp] =
F(vy)EJvy — P|P <vi] < F(vyg)E[vyg — P|P <wvg] < cy. Thus, G(p) is also a feasible solution. To
establish the announced result, we next show that the expected profit under G(p) always dominates
that under F(p). That is,
aE[P|P <vr]+ (1 —a)F(vy)E[P|P <wvg]

=aE[P|P <wvi]+ (1 —a)F(v)E[P|P <wvr]4+ (1 —a)[F(vyg) — F(vy)]E[Plvr, < P <wg]

<aEg[P|P <wvp]+ (1 —a)G(vL)Eg[P|P <wvp]+ (1 —a)vy(l— F(v))

=aEg[P|P <vr]+ (1 —a)G(vyg)Eg[P|P < vy,
where the inequality is due to F(vy) <1 and E[P|v;, < P <wvgy] < E[vg|vy, < P <wvy| =wvy, and
the second equality is due to vy[l — F(vr)] =vg[l — G(vy)] = [G(vy) — G(vr)]|Eg[Plvr < P <wvg].
The inequality is strict if F'(p) takes any value other than vy within the interval (v, vy]|. We thus

obtain the announced result. O

Proof of Lemma 6. Denote 3= F(vy) and U(B) = avy + (1 — a)vyg — (1 —a)er, — 2L — (1 =



a)B(vy —vy). We first show that U(f) is an upper bound for the expected profit from the opti-
mization problem (3). Suppose F(p) is an optimal solution for (3). Then, the expected profit under
F(p) satisfies

aE[P|P <vr]+ (1 —«a)F(vg)E[P|P < wvg]

=aE[P|P <wvp]+ (1 —a)[F(vy)E[P|P <wv.]+ (1 —F(vy))vn]

<avp — FOZZ"; (1= @) () = ex+ (1= Flor) Jon]
=avy + (1 —a)vg — (1 —a)ep, — % —(1—a)B(vg —vz),

where 5 = F(vy). The first equality is due to Lemma 5, and the inequality is due to ¢ <

F(vp)E[v, — P|P <wp]=v F(vy) — F(vp)E[P|P <wyg).

(1) 6%753[3) =% —(1—a)(vg —vy). If (l_a)”(‘f}f{_%) >1, a[égi) is guaranteed to be greater than or

acy,

equal to 0, because 5 < 1. That is, U(3) is increasing in § when T

> 1. Consequently,

UPB)<avy+(1—a)vyg —(1—a)c, —acy, — (1 —a)(vg —vp) =vp —cp <max{vg, (1 —a)vy}.

(ii) Because 8%—?) = — (1—a)(vg —vy) is decreasing in 3, U(B) is concave in f3. 8[{])7;[3) =0is
realized at 8= O—fﬁﬁ Recall that any feasible solution to Problem (3) satisfies 5 < ﬁ

: acy, CH—CL, : : : * acy,
Consequently, if , / oo < voos the maximum of U(/3) is realized at f* = e (e o)

and thus U(8) < U; = U(B*). Otherwise, U(B) < U(E=L — ) =av, + (1 — a)vyg — (1 — a)cy —

VH VL

OZCL% —n(0), where limg\ o7(d) =0. Thus, we obtain the announced results. O

Proof of Proposition 3. Recall that the optimal profit given by Problem (2) is bounded from

: acy, CH—CJ, : acy, CH—CJ,
above by U; if 4/(1_(1)(%_%) < gh—, or by U, if 4/(1_(1)(%_%) > . Next we show that

the two-point distribution shown in the theorem is a feasible solution to Problem (2), and the

corresponding profit converges to the upper bounds when § converges to 0.
For the feasibility, we notice that E[(v, — P)*] = 8*(vp — p*) = cL + 8™n(6) > ¢, and E[(vy —
P)*]=p*(vy —p*) = B*(va —vL) +cL+ B*n(6) < cy, which is due to 0 < 5* < % and 7(0) N\, 0.

Thus the two-point distribution is a feasible solution to Problem (2).

Next we prove the optimality of the two-point distribution. Consider first when (1—04)%’%

SH_CL The expected profit is given by

Vg —V],



10

aE[P|P <p*|4 (1 — a)F(vy)E[P|P < wvy]

QCy,

5 (1= )" (vg —vr) = [+ (1 —a)B7n(d)

=av, + (1 —a)vy — (1 —a)cr, —
=Ur = (a+ (1 —a)57)n(9).

acy, crI
Next when ,/ a0 > A e the expected profit is given by

aE[P|P <p*|4+ (1 — a)F(vy)E[P|P < vy]

=avy + (1 —a)vyg — (1 —a)ep — aﬁc*L —(1-a)B (vg —vi) — [+ (1 —a)B"n(d)

— 1
=Us — |av, 2= (1 a)(v — )| 6~ [a+ (1—a)B]n(s).
Cg —Cp, 7UH—UL —

We thus obtain the announced result. [J
Proof of Proposition 4. To facilitate the discussion, we first prove an auxiliary lemma as

described below.

LeEMMA OS.2. (i) The necessary and sufficient conditions for Uy > vy, and Uy > (1 —a)vy are

given by /UHCLUL _Z and /UHCLUL (1 /UH e ), respectively;

(ii) The necessary and sufficient conditions for Uy > vy and Uy > (1 — a)vy are given by m +

% <1 and a% > (1 — «a)ey, respectively.

Proof of Lemma 0S.2. (i) Uy —vp = (1—a)(vg —v) — (1 — a)egp — 2y/a(1 —a)ep(vg — vy,

(1 —a)(vyg —vr) [1 — chva -2,/ (1_a)°(“f)2_%)} Thus, U; > vy if and only if m < 171_

On the other hand, U, — (1 — a)vyg = avy — (1 — a)ep — 2¢/a(l —a)ep(vag —vr) = (1 — a)(vy —

IS

Q

avr, _ Cr, _ acy, _ : : Cr,
vr) [(lfa)(vavL) o — 2 7(1%)(%7%)]. Thus, U; > (1 — a)vyg if and only if Tt <

o vH

11— ( Vi —vg, 1)

(i) Uz — v = (1 = a)og — vr) = (1 = a)en — acy =L = (1 — a)(ve -
vr) [1— - (1_a)o(‘zz_%)] Thus, U > vp if and only if - + —L—— < 1. On the
other hand, Uy — (1 — a)vyg = av, — (1 — a)ey — ochZZ:zf = a”LiZ:ii”H — (1 — a)cy. Thus,
Uy > (1 — a)vgy if and only if a% >(1—a)eyg. O

Now we are ready to prove the main results. Consider first when vy > (1 — a)vy. Recall that,

. acy, cH—cCr, acy, . . . s
if Tar =0 < o—or and Toer—p < 1, the profit with an optimal randomized pricing

policy is U, based on Lemma 6. The profit with an optimal static pricing policy is vy when
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vy, > (1 —a)vy. To this end, we only need to compare U; and vy,. Based on Lemma OS.2(i), U; > vy,

if and only if 1/_1%3 Moreover, 1/_1% < /%%, which is due to Va(l —ya)<1—a=

v 7UL

(14 a)(1—+/a). As such, , | T ts oy <1 is guaranteed by the condition /-5 < 1_1‘_/5

QCL CH—CL . . . . . . .
If 1> \ Toee= 2 s the profit with an optimal randomized pricing policy is

approximately U,, by Lemma 6. Thus, we only need to compare U, and vy. According to

Lemma 0S.2(ii), Uz > vy if and only if - + 5k < 1. Moreover, we can show that

vp, 1-a)(eg—cL)

acy, acy,

ot < T adler e because ooy < g < 1, where the second inequality is due to

acy,
(1—a)(vg—vr)

At e < 1. Consequently,

vg—vL —a)(eg—cr)

< 1 is guaranteed by the condition UHCH

—vp,

+

acy,

=) en—op) < 1-

Consider next when vy < (1 — a)vy, ie., avy < (1 — a)(vg — vr). The profit with an opti-

mal static pricing policy is (1 — a)vy. Based on Assumption (S), we have ¢, < vy, and thus

\/ i a Lot o < \/ a ok < 1. Then following a similar approach as described in the preced-

Y vy — —a)(vg—vr)

ing paragraphs, we can obtain the conditions that an optimal randomized pricing policy dominates
an optimal static pricing policy. That is, if 1/(1_(];(“52{ — < ZZ o, the condition is given by

—L_ (1 [ — ) Otherwise, the condition is given by q*LE—°LYH > (] — q)cy.
v =V, v —vL, CH—CL

To sum up, an optimal randomized pricing policy outperforms an optimal static pricing policy

if Z—i > Z—g and the following conditions hold.

(i) v > (1 —a)vg.

acy,
(1-a)(vg—vr)

(b) Otherwise

cy acy,
P vg—vL + (1—a)(cg—cL) <l

(i) vp < (1 —a)vy

acy, CH—CL cr /_a vy .
(1—a)(vg—vr) < vg—vr’ \/ vm—vr <Vi-a (\/ VH—VL 1)’

(b) Otherwise, a”if]# > (1—a)ey.

L

When ¢, is sufficiently small, either the set of conditions (i)-(a) or (ii)-(a) is satisfied, and we
thus obtain the desired result. [
Proof of Corollary 1. Under the optimal randomized pricing policy, the expected profit from

low valuation and high-valuation customers are given by E[P|P < p*] and F(vg)E[P|P < vy],
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(p")E[vr,—P|P<p*]—cy,
F(p*)

respectively. The surplus of low-valuation customers is r +cy,, according to Equa-

tion (OS.1), and the surplus of high-valuation customers is E[(vy — P)"]. Based on Lemma 5,

F(vy)=1, and thus F(vy)E[P|P <wvy|+E[(vy — P)"] =vg. Consequently, the total social welfare

under an optimal randomized pricing policy is given by

F(p*)E[v, —PIP<p]-cL
F(pr)

= <vL - FE;*) —i—cL) +(1—a)vy.

a <E[P]P§p*]—i— —i—cL) +(1—a)vy

When vy < (1 — a)vy, the optimal static price is vy and the corresponding social welfare is (1 —
a)vg, which is less than « (vL — %é*) + cL> + (1 —a)vy. In this case, the surplus of all customers is
equal to zero under the optimal static pricing policy, which is thus less than that under an optimal
randomized pricing policy. On the other hand, when v;, > (1 — «)vy, the optimal static price is vy,
and the corresponding social welfare is avy, + (1 — «)vg, which is greater than « (v L — ﬁé*) + CL> +
(1 — a)vy. In this case, the surplus for low-valuation customers is also zero under the optimal
static pricing policy, while customer surplus for high-valuation customers is given by vy — vy.
Recall that, under the optimal randomized pricing policy, the surplus of high-valuation customers
is E[(vyg — P)*], which is less than or equal to ¢y according to the constraint in the optimization
problem (2). Thus, the surplus of high-valuation customers under the optimal randomized pricing
policy would be lower when cy < vy — vy, and we obtain the announced results. [

Proof of Corollary 2. Under the optimal randomized pricing policy, the surplus of low-valuation

. F(p™)E[vy, —P|P<p*]—c
customers is L& EML—PIP<pT]zes

+ ¢r, according to Equation (OS.1), and the surplus of high-

F(p*)
valuation customers is E[(vg — P)*]. Due to Proposition 3, F(B*)E[ULIJ(Q?SB*FCL +cp=vp —p*—
%cb and E[(vg — P)"] = F(p*)(vyg — p*). Therefore, the difference of the two is given by (vy —

v) — F(p*) (UH —-p" - %é*)) Because vy > v > p* + %é*), the difference in consumer surplus
between high-valuation and low-valuation customers would be less than vy —v,. When vy, > (1 —
a)vg, the optimal static pricing policy is to charge a fixed price of vz, and thus the difference in
consumer surplus would be exactly vy —vy. We thus obtain the announced result. [

Proof of Proposition 5. We prove the result for the general case with n customer segments. A

fraction «; of customers are of type-i, who value the product at v; and incur per-period waiting time
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¢;. Without loss of generality, we assume that ¢; < ¢y <--- < ¢,. This is an innocuous assumption

as we do not require v; < v; for any 7 < j. We first prove an auxiliary lemma.

LEMMmaA OS.3. Without loss of generality, we assume that c; < cy < --- < c¢,. Consider any deter-
ministic pricing policy. If a customer with valuation v;, for any i € {1,...,n}, arriving in period 1
purchases in period j, then

(i) any customer with valuation v; arriving in period t € {2, ..., 7} will purchase in period j;

(ii) any customer with valuation vy, for any i’ < i, arriving in period t € {1,...,7} will not pur-

chase earlier than period j, should she ever purchase.

Proof of Lemma 0S.3. First, we prove Lemma OS.3(i). A customer with valuation v; arriving in
period 1 purchases in period j implies that p; 4+ (j —1)¢; = rglzi{l{l?t +(t—1)¢;} and pj+(j—1)e; <.
As a direct consequence, we have p,; + (j — 1)¢; = rtgitlgl{pt + (t—1)¢;}, for any ¢ =2,3...,4. Thus,
all type-i customers arriving in period ¢ € [2, j] will purchase in period j.

Next, we show that any customer with valuation v}, for any i’ < i, arriving in period t € [1, j]
will only purchase in period j or afterwards, should she ever purchase. Because p; + (j — 1)¢; <
pe+ (t—1)¢; for any t <j, we have p; —p;, < (t —j)¢; < (t — j)e for any ' < i, which implies that
p;j+(J—1)cy <pi+ (t —1)cy. We thus obtained the announced result. O

Note that under any deterministic pricing policy, a customer upon arrival would either leave
immediately without purchasing or choose to purchase a unit of the product (either immediately or
in a future period). We first show that under any deterministic pricing policy, there exists a cutoff
period, say period T', such that all customers arriving before or during period 7" would have left by
the end of period T. Without loss of generality, suppose type-i is the lowest type of customers who
would make a purchase at some point under such a pricing policy. That is, any customer of type-i,
1 < 1, always leaves immediately. Then our preceding statement that any customer arriving before
or during period T" would have left by the end of the period holds automatically for customers of
type-i, for any i <.

Consider a customer with valuation v;. Suppose that ¢; > 1 is the first period that a customer with

valuation v; would choose to purchase the product. That is, all customers with valuation v; arriving
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before period t; would leave immediately without purchasing. Denote the period in which the type-i
customer arriving in period ¢; makes the purchase as 7. Based on Lemma 0OS.3(i), any customer
with valuation v; arriving in period ¢ € {t, +1,...,T} will make a purchase in period T. We first
prove by contradiction that any customer with valuation v;, i € {i +1,...,n}, arriving in period
t € {ti,...,T} would make a purchase no later than period 7', should she ever purchase. Suppose
on the contrary, a customer with valuation vy, ¢/ € {i +1,...,n}, arriving in period t' € {t,,..., T},
would make a purchase in period 7" > T. Then Lemma OS.3(ii) would imply that any customer
with valuation v; arriving in period ¢’ will not purchase earlier than period 7", which contradicts
with the aforementioned result. Thus, any type-i customer, 7 > ¢, arriving between period ¢; and

period T would have left (with or without purchasing) by the end of period 7.

Next we show by contradiction that any customer with valuation v;, i € {i+1,...,n}, arriving in
period t € {1,...,t; — 1} would make a purchase no later than period 7', should she ever purchase.
Suppose a customer with valuation vy, ¢’ € {i+1,...,n}, arriving in period ¢ € {1,...,t; — 1} would

make a purchase in period 7" > T. By Lemma 0S.3(i), any customer with valuation v, arriving
in period t € {t;,...,T} would make a purchase in period 7", which however contradicts with the
result in the preceding paragraph. Thus, any type-i customer, ¢ > ¢, arriving between period 1 and
period t; — 1 would have left (with or without purchasing) by the end of period T

Therefore, under any deterministic pricing policy, there exists a period 7" such that all customers
arriving between period 1 and period T would have left by the end of period T'. This statement also
holds for, a fortiori, any optimal deterministic pricing policy, say p* = {p; }+en. Following a similar
approach, we can show that starting from period T + 1, there exists a T” such that all customers
arriving between period T+ 1 and period T+ T” would have left by the end of period T4+ T". Due
to the optimality of the pricing policy, we must have T'=T" and p; = pr4¢, t € {1,...,T}, and thus
we obtain the announced result. [

Proof of Lemma 7. Consider the scenario when c¢;, > cy. If low-valuation customers arriving in
period ¢ would make a purchase with price py < vy, then high-valuation customers arriving in the
same period would also pay no more than py because py + (t' — t)cyg < py + (t' — t)cr, <wvp <vg.

In this case, m(p) <wvr. On the other hand, if low-valuation customers in period ¢ choose to leave
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without purchasing, then the firm’s profit is bounded below by (1 — a)vy, i.e., m(p) < (1 — @)vy.
Therefore, II(p) = £ i m(p) <max{vp, (1 —a)vy}. O
t=1

Proof of Proposition 6. Suppose p = {pi1,pa,...,pr} is an optimal cyclic pricing policy where
some high-valuation customers would wait. Without loss of generality, we assume that high-
valuation customers arriving in period 1 would wait and purchase in period j > 1. That is, p; +
(J—Deyg =min{p1,po+cu,....,pr+(T'—1)cy} and p; + (j — 1)cy <vg. As a direct consequence,
we have p; + (j —t)cg =min{p;, prr1 +cu,...,pr + (T —t)cu}, for any t =2,3...,j. Next we show
that any high-valuation customers arriving in period ¢, where 1 <t < j, would always purchase in
period j. Clearly, for a customer arriving in period ¢, purchasing in period j dominates the option
of purchasing in any period between ¢t and T'. To this end, we need to show that the customer
is worse off if she purchases in any period between 7'+ 1 and T'+ ¢ — 1. Due to p; + (j — 1)cy =
min{py,ps +cu,...,pr + (I' = 1)cy}, we have p; + (j — Veg <ppy + (t' — Dey, t =1,2,...,t — 1.
Coupling with the fact that py = pryv, we have p; + (j —t)ey <py+ ' —t)cy =prow + (' —t)en <
prav + (T + 1 —t)cy. As a result, any high-valuation customer arriving in period ¢ € [1, 5] would
make a purchase in period j.

Next we show that any low-valuation customer arriving in period ¢ € [1, j] would also purchase
in period j. We restrict our discussion to the case when cy > ¢, because the optimal cyclic pricing
policy degenerates into a static pricing policy when cy < ¢y, based on Lemma 7. Because p; + (j —
1)eg <pi+ (t—1)cy for any t < j, we have p; —py < (t — j)en < (t — j)cr, which implies that p; +
(j—1Der <pi+(t—1)cr. That is, low-valuation customers arriving in period ¢ € [1, j| would make a
purchase in period j and afterwards if they would ever purchase. Now we show that low-valuation
customers arriving in period ¢ € [1, j] will never purchase after period j by contradiction. Suppose
low-valuation customers purchase in period j’ > j. Let us denote s = ?ig,f,ﬂ?{pi +(i—1)cy}. Recall

YA
that p; + (j — ey = min{p1,ps + cu,...,pr + (T — 1)en}, then p; + (j — ew <ps + (s — 1)cq.
However, if p; + (j — 1)eg = ps + (s — 1)cy, note s < j, with tie-breaking rule, the high-valuation
customers arriving in period t € [1, s] would make a purchase in period s, which contradicts with the

result that any high-valuation customer arriving in period ¢ € [1, j] would make a purchase in period

j from the previous paragraph. Therefore, we have p; + (j — 1)cy < ps + (s — 1)cy. Then, we can
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design a new pricing policy p’, which is exactly the same as p except for p.,. We let p’. + (s —1)cy =
p;j+(j—1)cy, and then p’ > p; because s < j. Now we will show that the behavior of low-valuation
customers under the new policy is exactly the same as before, however, the firm’s profit from
high-valuation customers would be higher with p’. Consider the low-valuation customers’ behavior,
since low-valuation customers purchase in period j' > j under policy p, thus py + (' — 1)c =
min{py,ps +cr,...,pr + (I'—1)cp}. Then, note s < j, we have py + (j' —1)cp, <p; + (j — 1)er =
pi+(i—Ven—(G—(cu—cr) =pi+(s—Leu—(G—1)(en —cr) <p+(s—1)en—(s—1)(cu —cr) =
Py + (s —1)cr. As a result, we have p), + (j' — 1)ep = min{p},ps +cr,...,pp + (T —1)cp } because
p’ is exactly the same as p except for p/. Then low-valuation customers arriving in period ¢ € [1, j]
will also purchase in period j' under the new policy. It is easy to see pjy o + (j' +T —t)cp =
min{py,, +(T+1—t)cr,pppo+(T+2—t)cp, ..., phr + (2T —t)cy} for t=5+1,j+2...,T. Then
low-valuation customers arriving in period ¢ € [j + 1, 7] will purchase in a period between period ¢
and T or in period j' + T under policy p’, which is as same as that under policy p. Consider the
high-valuation customers, recall that p/, + (s —1)cy =p; + (j — 1)y = min{p1, pa +cy, ..., pr+ (T —
1)cm }, then the high-valuation customers arriving in period t € [1, s] purchase in period s with price
pl, > p; by tie-breaking rule under policy p’. And the high-valuation customers arriving in period
t € [s+1, ] still purchase in period j. It is easy to see p, o+ (s +T —t)cy =pj r+(+T —t)cy =
min{pr , +(T+1—t)ey,ppo+ (T +2—t)ch,...,php+ (2T —t)cy} fort =j+1,54+2...,T. Then
high-valuation customers arriving in period t € [j 4 1,T] will purchase in a period between period ¢
and T or in period s+ T under policy p’. For the first case, the behavior of high-valuation customer
is as same as that under policy p. For the second case, high-valuation customers arriving in period
t € [j +1,T] will purchase in period j 41" with price p; 7 =p; < p), = p,,, under policy p. Thus
the firm’s profit from high-valuation customers would be higher or equal to that under policy p.
The result contradicts with the assumption that p is an optimal cyclic pricing policy. Thus we
conclude that low-valuation customers arriving in period ¢ € [1, j] also purchase in period j.
Following the same approach, we can show that if high-valuation customers arriving in period
j+1 choose to purchase in period j+k, then all customers arriving in period ¢t € [j+1, 7+ k| will pur-

chase in period j+ k. That is, the cyclic policy p can be decomposed into many mini cycles. Without
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of loss generality, we assume that there are m mini cycles, where the length of each mini cycle is

m

denoted by n;, [=1,...,m and )_ n; =T. Denote the profit from customers who made a purchase
=1
in period t by 7;(p). Then, II(p) = [n17,, (P) + n2Tny 40y (P) + - - + N Ty £ngtrtnmm (P)] /T Denote
Ty +notetnpe (P) = MAX{ Ty 4ngteeotmy (P), 1 =1,2,...,m}. Then, we have II(p) < n, 4not-.tmpe (P)-
Last, we show that p cannot be an optimal cyclic pricing policy by contradiction. If p is an
optimal cyclic pricing policy, then II(p) > max{vy, (1 — a)vg} because a static pricing policy is a
special case of cyclic pricing policies. The analysis in preceding paragraphs shows that all customers
arriving in period ¢ € [1, j| would make a purchase in period j under policy p. Thus, for any ¢ < j,
if low-valuation customers purchase in period j, 7,(p) = p; < vy; otherwise, only high-valuation
customers would make a purchase in period j, and thus 7,(p) = (1 — a)p; < (1 — @)vy. Therefore,
the average expected profit from this mini cycle cannot exceed max{vy,(l — a)vg}, and thus

I(p) < Tny4ngt-tny- (P) <max{vy, (1 — a)vy }, which contradicts to the optimality of p. [

Proof of Proposition 7. Suppose p = {pi1,pa,...,pr} is an optimal cyclic pricing policy. Let us

L

denote by pL. =min{p,ps +cr,...,pr+ (T —1)c}, and t&,  the earliest time period such that

pr +(tE, —1)c, =pk,,. Following the same approach as that in the proof of Proposition 6, we can

min

show that any low-valuation customer arriving in period ¢t € {1,2,...,tZ. } will purchase in period
th. with price p,. . Thus, p,.  <wvp — (t&, —1)cy, because any low-valuation customer arriving in

L

period 1 purchases in period ¢;;; . On the other hand, high-valuation customers will not wait under

an optimal cyclic pricing policy as shown in Proposition 6. Thus, py <p,. + (t&

min

—t')ey, where

t'e{1,2...,tk. 1. Otherwise, high-valuation customers would be better off postponing purchase

L

until period t%; . Because py <wvpy, we have

pr <min{vy, pr + (e, —t)en}y <min{vg, vy — (t5, — e+ (Eh, —t)en}

=vpg — [ —vp + (th — Der — (i — t)en] ™

Thus, the profit in the first ¢Z. is bounded from above by
tin
S mp)=(1—a)(p+pat-+pr )+athpr
o thin

<(1-a) Z(UH —[om —vr + (th — Der — (tr — t)en] ™) + oty (ve — (th, — De).
i=1
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tL

The upper bound can be approximated by py = vy — [vg — v + (t5,, — 1)ep +6 — (L, —t)en|t

for ' =1,2...,tk, . Tt is easy to verify that p; > py > --- > p,. . Furthermore, we have p,. =

min* .
min min

v = [vr = vr + (b — Vew + 0 = (b — trn)en] = v — (tn — Dep — 0 and thus pr (8, —
1)ep, =wvp — 6. For any t' € {1,2...,tk, —1}, py is equal to either vy or vy — [vy — vy + (tk,, —
Dep +6 = (thn — t)en] = v — (th — Der + (th — ¢)en — 0. If py = vp, then py + (' — 1)c, =

vg + (' — 1)ep > vy — 8. On the other hand, if py = vy — (t&

min

— Dep, + (L, — ')ew — 6, then

L

min

py+ (t' —1)ep =vp + (&, —t)(cyg — cz) — 5, which is again greater than vy — § because t' <t

L

and cy > cg. Thus all low type customers will wait until period ¢, to purchase. We can then

L

follow the same approach and show that optimal prices from period ¢, + 1 onward are simply

replications of {p;,ps,...,p,z }. Thus, T'=tL, | and the optimal expected profit under policy p is

T
given by I(p) = 7 - m(p). O
t=1
Proof of Corollary 3. (i) Based on Proposition 7, the profit from an optimal cyclic pricing policy
is given by

ZT: vg—[vg —vp+ (T —1)ep +6 — (T —t)ey]™
I(T) = (1— )22

+a(vy — (T —1)cp —9)

T
i v, = (T = 1)ep + (T —t')en)
<(1—a)= T +a(vy — (T —1)cp)
=(1—a)——cy+ (vp — (T —=1)ey) <vp <max{vy, (1 —a)vy},

where the first inequality is due to 6 >0 and [vg — v + (T — V)ep +6 — (T —t')ey]™ > vy —vp +
(T'—1)cr, +0 — (T —t')cy, and the second inequality is due to ¢y /e, <2/(1 — ). A static pricing
policy can achieve a profit of max{v;, (1 —a)vg}, with either the volume strategy of pricing at vy,
or the margin strategy of pricing at vyz. Thus we obtain the announced result.

(ii) Based on Proposition 7, the profit from an optimal cyclic pricing policy is given by

i vg —[vg —vp + (T —1V)ep+0 — (T —t)ey] ™
() = (1— )= .
T-1 1

v + T(UL —(T—1)er) | +a(v, — (T —1)er) = R(T),

+a(vy — (T —1)cp —9)

<(1-a)

where the first inequality is due to 6 > 0 and vy — [vg —vp + (T —1)ep + 0 — (T —t')ey]t <wvpy for t' <
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T — 1. Taking the first order derivative with respect to T', we have R'(T") = (1 — o) "2—5—L — acy,

which is no more than 0 when vy — vy, <c¢r. Now we consider ¢, < vy —vp <cr /(1 —a), then

Vg — VL —CL

R(T)=(1-a) "

—ac, <(1—a)(vg —vp —cr) —ac, <0,

where the first inequality is due to T > 1, the second inequality is due to vy — vy <ecp/(1 — ).
Hence, R(T) is decreasing in T'. Consequently, II(T) < R(T') < R(1) = v, < max{vr, (1 — a)vg}.
Thus we obtain the announced result. [J

Proof of Proposition 8. First, we show that if an optimal cyclic pricing policy is in the form
of the first T'— 1 periods priced at vy and the last period priced at v, — (T — 1)c;, — 0, then it
is always better than an optimal randomized pricing policy. Moreover, under the conditions that
vg —vr >cp/(1—a) and vy —vg, < CH/ (1 + %\/%), the optimal cyclic pricing policy is in this
form. Suppose a cyclic pricing policy is in the form of the first T'— 1 periods priced at vy and the
last period priced at vy — (T — 1)cg, — 0, by the proof of Corollary 3 (ii), then the profit of this
policy is II(T) = R(T) — (1 — )70 — ad. It is easy to verify that R'(T) is decreasing in T when

vy —vg >cr /(1 —a) > ¢, and thus we conclude that R(T") is concave, with its maximum achieved

at Ty, = % Since a cyclic length should be an integer, the maximum of R(T") is thus
given by max{R(|T1]), R(|T1|+1)}, where |z | represents the greatest integer that is no more than
x. Note that max{R(|11]), R(|11]+1)} is an upper bound of the profit of an optimal cyclic pricing
policy. Let T'= |13 | or T'= |7} | + 1, then this cyclic pricing policy is asymptotically optimal. Note
R(T) is concave and decreasing when T > Ty, then R(|Ty|+1) > R(Ty+1) since Ty +1> |T1] + 1.
Consequently, max{R(|7} ), R(|T1] +1)} > R(T1 +1), i.e.,, R(T1 +1) is a lower bound of the profit

of an optimal cyclic pricing policy. Hence, we have

T 1
R(T1+1):(1—a) T j—]_UH—i_T +1(UL_T10L) +a(vL—Tch)
1 1
1
:avL+(1fa)vH7(1foz)cholech(1fa)T1+1(vavacL)

1
>avp+ (1—a)vg — (1—a)ep —aTier, — (1— a)?(vH —wvp —cp)
1

=av, + (1 —a)vy — (1 —a)ey, — 2/ a(l —a)cp(vg — v, —cr)

>avp + (1 —a)vg — (1 —a)ep, —2v/a(l —a)ey(vy —v) = Uy,
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where the first inequality is due to T} > 0 and vy — vy, > ¢ /(1 — ) > ¢, the second inequality is due

(I—a)(vg—vp—cp)
acy,

to ¢ > 0, the second equality is due to 17 = . Based on Lemma 6, the expected
profit of an optimal randomized pricing policy is either U; or U,. Note that U; > U,. Now we will
prove vy —vp +(T'—1)ep +6 — (T —t)eg <O0for t' =1,2,...,T—1 when T'= [T ] or T=|T} |+ 1
under the condition vy — vy < cy / (1 + %\/%), which induces the cyclic pricing policy is in the

form of the first T'— 1 periods priced at vy and the last period priced at vy, — (7' —1)c, — §. Thus,

we have

1 /1-
UH*UL‘F(T*].)CL—’—&*(T*tI)CH<’UH*UL+T10L*CHS’UH*’UL-FE @

(v —vp) —ey <0,

where the first inequality is due to § >0, T = |11 or T'= |11| + 1, ' <T —1, the second inequality

[e3%

is due to Ticy, = \/(lfa)cL(”vaLch) is maximized at ¢ = (vg — vr)/2, the third inequality is due
to vy —vp < CH/ (1 + %\/%) Hence, we get the announced result of Proposition 8(i).

Next, we show under the conditions that vg — vy > ¢r/(1 — ) and vy — vy is higher than a
threshold, an optimal randomized pricing policy is always better. Since the optimal cyclic pricing
policy is in the form of the prices staying constant at vz for some time, dropping by a size no more
than ¢y and then dropping by a size of exactly cy to the end-of-cycle price v, — (T — 1)c, — 6 by
Proposition 7. By the previous paragraph, we know that if an optimal cyclic pricing policy is in the
form of the first T'— 1 periods priced at vy and the last period priced at v, — (7' — 1)cy, — 0, then it
is always better than an optimal randomized pricing policy. Therefore, if an optimal randomized
pricing policy is always better, then the optimal cyclic pricing policy should be in the general form
of a series of markdowns as illustrated in Figure 2(a). By Corollary 3(i), we just need to consider
the case ¢y /cr, >2/(1—«). Based on Proposition 7, the profit from an optimal cyclic pricing policy

is given by
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i vg—[vg —vp+ (T —1)ep +6 — (T —t)ey]™
I(T) = (1—a)™=2

+ (v, — (T —1)eg, —0)

T
Z vg —vg —vp+ (T —1)ep — (T —t)eg]™
<(l—-a)= T +a(vp — (T —1)ey)
<(1-a) Jo_vn ~fou v % (TT_ Dew = (T = Hen]"di +a(v — (T —1)cr)
(1= o)+ a(vn — (T—1)eg) — (1 —ay L =ve = (T = Derl” _ H(T),

QTCH

where the first inequality is due to § > 0, and the second is due to vy — [vg — vy + (T — 1)cr —

(T — t)cy]™ being monotonically decreasing in ¢. Taking the first order derivative with respect
2

to T, we have H'(T) = —acy, + (1 — a)% —(1- a);c—LH. It is easy to verify that H'(T')

is decreasing in 7', and thus we conclude that H(T') is concave, with its maximum achieved at

T, =, /4=2lu —vL—c1)? The upper bound for the profit of a cyclic pricing policy is thus given by

2
2acpecg+(l1—a)ct

Tyc2 c
H(Tz)=avy+ (1 —a)vg —a(Ty — 1)ep — aTser — (1 — «) 02 L (1- a)c—L(vH —wvp —cp).
H H
Based on Lemma 6, the expected profit of an optimal randomized pricing policy is either U; or Us,.

Note that U; > U, and Uy = avp, + (1 — a)vg — (1 — a)ey — OéCL%. Now we show H(Ty) < Uy if

CH—C

vy — vy, 18 higher than a threshold. First, we show T3 > 24 :Zi if vy — vy, is higher than a threshold.

CH

i — YHZYL _ l—o — _vg=vp . l-a T ;
Since Tp — A=k = Sacren (=) (vg —vr) en=er ™\ aepentizme L it is sufficiently to

(1—a) > 1
’ 2achH+(1—a)ch (cg—cr)?’

which is

show T, — % is increasing in vy — vr. In other words

equivalent to (1 —a)(c% —2crcy) > 2acpey. It is easy to verify (1 —a)(c%; —2crey) > 2acpcg when

ci/er >2/(1 —a). Consequently, we have —aTycr < —acy, ZZ:Zf Hence, a sufficient condition for

H(Ty) < U, is given by

T 2
2L — (]. —Oé)ch(UH —vrL —CL) < —(1 —a)cH.

—a(Ty —1)ep — (1 —a) - o

Note the left hand of the inequality is decreasing in vy — vy, when cy and ¢y, are given. In other
words, there is a threshold on vz — vy above which the inequality holds. We thus obtain the
announced result of Proposition 8(ii). O

Proof of Proposition 9. We first prove an auxiliary lemma below, which gives an upper bound

for Problem (4).
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LEMMA OS.4. Let Ap= \/ o
(i) When (1 —a)(vg —vr) < a(l —v)vr +ayer, the optimal expected profit from (4) is no more
than that from an optimal static pricing policy;
(ii) When (1 —a)(vy —vg) > a(l =)oy +avyer, ie., Ap <1,
(a) if A < ﬁ, the optimal expected profit from (4) is no more than U, = ayv, + (1 —

a)vg — (1 —avy)er —2[(1 — o) (vg —vp) —a(l — 'y)vL]AR;

(b) otherwise, the optimal expected profit from (4) is no more than Uy = ayvy, + (1 — a)vy —

a(l—7)es — (1 - a)ey — aryep 22 4 a1 — v, S5,

Proof of Lemma 0S.4. Denote 8= F(v;,) and U(8) = aryv + (1 —a)vyg — (1 — ay)ey, — L —
(1 —a)B(vy —vy) + a(l —y)Bv,. We first show that U(83) is an upper bound for the expected
profit from the optimization problem (4). Suppose F'(p) is an optimal solution for (4). Then, the
expected profit under F'(p) satisfies

ayE[P|P <p"]+ (1 — @) F(vi)E[P|P < vgg] + a(1 — 7) F(01)E[P|P < vy
<arE[PIP < vy) + (1— ) F(ugE[PIP < vy + a(1 —7) F(v, JE[PIP < v,

—ayE[PIP < vg] + (1~ a)[F(0,)E[PIP < v.] + (1 - F(u,))ou] + a1 —7)F (v, EIP|P < v,

<ayvp — ;{(VUCLL) +(1—a)[vpF(vy)—cp+ (1= F(vp))vg| + a(l =) v, F(v) — cr]
=ayvr + (1 —a)og — (1 —ay)er — OWBCL — (1= a)B(va —vr) + a(l —v)Buy,

where 3 = F(vy). The first inequality is due to p” < vy, the second inequality is due to ¢, <
E[(vp, — P)T]=v,F(vy) — F(vy)E[P|P < wp], and the first equality is due to Lemma 5, which also

holds for problem (4) by following a similar proof. Taking the derivative of U(8) with respect to

B, we have agg@) = aggL —(1—a)(vg —vr)+a(l —v)vg.

(i) If (1 —a)(vg —v) < a(l —v)v, + ayer, 8%2‘3) is guaranteed to be greater than or equal
to 0 because 8 < 1. That is, U(f) is increasing in 8 when (1 — a)(vy —vy) < (1 —y)vg, + aryey.
Consequently, U(8) < U(1) = ayv, + (1 —a)vg — (1 —ay)ep —ayer, — (1—a) (vg —vp) + ol =)o, =

vy —cp <max{vr, (1 —a)vg}.

(i) If (1 —a)(vg —vp) > a(l — y)vy + avyer, U(B) is concave in S. ag(ﬁm = 0 is realized

at [ = \/ (1_a)(UH_aT7LC)L_a(1_7)UL. Recall that any feasible solution to problem (4) satisfies 8 <
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22 f,L Consequently, if \/(1 I av'f)L i < f}’; 2L , the maximum of U(f) is realized at 5* =
\/(1—a)(vH—av’Ych—a(1—7)vL’ and thus U(B) SU = U(/B*) Otherwise, U(/B) < U(chg 101]; —d) =ayvr +

(I—a)og —a(l =y)er — (1= a)ey — ayer E=E 4 ol — y)vp =1L —1(0), where limgs 07(5) =0.

VH VL

Thus, we obtain the announced results. [

Lemma OS.4 shows that the optimal profit given by problem (4) is bounded below by U, if

—a(l-v)vr vg—vg’ vp)—a(l-y)vp = vg—vL

\/(17a)(va(yi;’y;)L < SH=L o1 by U, if \/(1 IO oYeL > SH-CL Next we show that
the two-point distribution shown in the theorem is a feasible solution to problem (4), and the
corresponding profit converges to the upper bounds when d converges to 0.

For the feasibility, we notice that E[(v, —P)*] = f*(vy — P) =cL + B*n(0) > ¢y, and
E[(v, — P)*] = B*(vy — p) = B*(vy — o) + 1, + B () < ¢y, which is due to §* < oi—k and

7(6) (0. Thus the two-point distribution is a feasible solution to problem (4).

Next we prove the optimality of the two-point distribution. Consider first when

\/ e MCL < SH=°L The expected profit is given by

Yvg—vp)—a(l-y)vy ~ vg-vg

CYE[P|P < "]+ (1 — ) F(on )E[P|P < vyr] 4+ (1 = 7)F (v, )E[P|P < vy

c ~ -
—ayvs+ (L= a)oy — (L= ay)e, = 25 = (1=a)B vy + (1= a7)F"vr — [y + (1= a7)BIn(o)
=Us — [ay + (1 = a7) 5]n(6).
Next when ) (UH_QUWLC)L_QO_W)UL > zg f}i the expected profit is given by

ayE[P|P <p*| + (1 — ) F(vg)E[P|P <wvg] +a(l —7)F(vy))E[P|P < wvg]

=ayvr + (1= a)oy — (1 - a)er — 25 — (1= ) vm + (1 — a9)Fvr — [y + (1 = ay) (o)
=0, - [amsz:” (- &) en - ) +all = )| 6~ [ar+ (1 - ar)F T (o).
L ey 0

We thus obtain the announced result. O
Proof of Corollary 4. We first consider the monotonicity of 3* and P with respect to . Note

that
OAZ, _ acp[(1—a)vg —vg]
9y [(1—a)(vg —vr) —a(l =)o)

Thus, Agis increasing in v if v, < (1 —a)vy, and decreasing in -y otherwise. As a direct consequence,

both 3* —mln{AR, % —5} and p* = vy, — B—* —n(9) are increasing in v if vy < (1 — a)vgy, and

decreasing in - otherwise.
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We next consider the monotonicity of the expected profit from the optimal randomized pricing
policy with respect to 7. Based on Lemma OS.4, we know that the optimal expected profit is

bounded above by either U, or U,. First taking the derivative of U, with respect to v, we have

oU 1— —wvp) —a(l— .
- L — vy +acy — acy[(1—a)(vg —vr) —a(l —y)vr] +ayerav, vy +acs — 2 _ qu, Ap.
Y

Vaye[(1—a)(vg —vr) —a(l —v)vL] R

acy,
AR

Agr < 1. Next we show that Ap > cp/vp. It (1 — a)vy < vg, Ap = \/ avyep, >

As L + avpAgr is convex in Apg, we have + av,Agp < avy, + acp for any cp /v <

AgR

(1-a)(vg—vp)—a(l-Y)v,
1/% = l% > f}—’g If (1 —a)vyg > vp, the profit of the optimal static pricing pol-
icy is given by (1 — a)vy. Thus, we have U; > (1 — a)vy, which implies ayv, > (1 — ay)e, +

2[(1 — a)(vy —v) — a(l = )v]Agr > [(1 — @) (vy — vr) — a(l — y)vy]Ag. This is equivalent to

VI —a)(vg —v) —a(l—7)v, < % Consequently, Ap = \/(17a)(vH7avFYLc)Lfa(17'y)vL > Zzii = f}—i,

aU;

and thus we conclude 5

> 0. Next we show that 02 increases in 7. Recall that U= (72 when
% < AR < 1. As shown in Lemma OS.1, % > Z—g is a necessary condition for low-valuation

customers to wait, and for high-valuation customers to either purchase or leave immediately under

any randomized pricing policy. It is easy to verify i—i < % due to Z—i > Z—Z, and thus

8U2 Vg — UL, Cxg —Cp, Cxg —Cp, Vg — Uy,
— =QUp+ac, —aC,——— —QU,—————— =« 1—— vy —Cp— > 0.
oy CH —Cr, Vg — UL Vg — UL,

The expected profit from the optimal randomized pricing policy differs from the upper bounds
U, and U, only by an infinitesimal term, and therefore we obtain the announced results. [
Proof of Lemma 8. Consider the low-valuation customers first. Based on the transition matrix

M and Equation (5), we have E[V(P)] = qu (vr, —pa) + (1 — qu)[—c + E[V(P)]], and thus E[V (P)] =

1

—11 Tow valuation customers would wait for a price of p, if and only if —c;, +E[V (P)] >

VL, —Pg—C
L —Pd L™ gy

0, i.e., gqg(vr — pa) > cr. Similarly, we can show that high-valuation customers always purchase
immediately if and only if ¢y (vg —pg) <cgyg. O

Proof of Proposition 10. Denote by m; and 7y the steady state probabilities for py and vy,

respectively. Solving the equations (7wp,7g)M = (np,7x) and 7y + 75 =1, we have 7 = 1*‘;1[,7}[‘5"11-17
and Ty = ﬁ. Under an optimal Markovian pricing policy, low-valuation customers always
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purchase with price p,, while high-valuation customers purchase immediately upon arrival. Thus,

the average expected profit under an optimal Markovian pricing policy is given by
(M) =apg+ (1 — ) (mrps+ (1 — 71)vm)

qH 1
<apg+ (1 —« + v
SOPg ( )(1+qud 1+qn H>

cy, qdu Ccr 1 M
<a(vy ——)+ (1 —« vy — —) + v =U .
(12 2£)+ >[1+QH<L Lyl H} (an)

The first inequality holds because 7, = 1_quH+qH increases in ¢;, and I1(M) decreases in 77, and thus

its maximum is realized when ¢; = 0. The second inequality is due to qx (v — pg) > cr. Let g, =0
and qg =vr — ;—ﬁl —n(6) for an arbitrarily small § > 0 and lims o7(0) = 0. Then II(M) converges to
the upper bound UM (qy) when § converges to 0. Therefore, the optimal Markovian pricing policy
is letting ¢; =0 and ¢; = v — ;TLJ —n(d). Now we turn to the optimal gz. Taking the derivative of

UM (qy) with respect to g, we have

T T e s e G B
9qn U5 (A+au)?  (14+au)® |\ au acr |
() I vy —vr < ep or Ay = [yt = 2 1

When vy — vy, <cp, we have

0 ) =alvn = )+ (1= ) |12 (= )+ o

qu 14+qy qu 14qu

Cr dy Cr, 1
<alvy — —)+ (1 —« v — — )+ v +c
<afop = L)+ >[1+QH<L Ly L>]

=vr, — asl < v, <max{vy, (1 —a)vy}.
du

Therefore, when vy — vy, < ¢, a Markovian pricing policy is strictly dominated by an optimal static

pricing policy. Consider vy —vy, > ¢, then A, is well-defined as a real number. Because 0 < gz <1,

we have (F2L0)2 — (14 L)2 > 4. Thus if U=2tlth) <4 e, Ay = \/<— > 1

Ccr, 1—a)(UH—UL—CL) - 5’

M
then WTSH) > 0. Coupling with ¢y < % as shown in Lemma 8, UM (qy) is maximized at

qH:min{l,f;CL —(5}. When 0 < %ﬁ <1,ie., Ay= \/L > 1, we have

H—VL (1-a)(vg—vp—cr)

¢, > (1—a)(vyg —vy). Consequently,

1 1 1
UM(qu) <UM(1) = vy —ep)+ (1 - a)(§(UL —cp)+ §UH) =vp—cpL+ 5(1 —a)(vg —vp +cp)
1 1 1
<wp—cp+ 5(1 —a)er + 5CL = VL~ Hacy <max{vg, (1 —a)vg}.
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That is, if Ay = \/ W > 1, an optimal Markovian pricing policy reduces to a static

—vp—cr) —

pricing policy.

Next we show that an optimal randomized pricing policy also reduces to a static pricing policy

when Ay = \/ # > 1 or when A,; is not well-defined as a real number. Note that

vg—vp—cp) —

the preceding conditions is equivalent to ¢y > (1 — a)(vyg — vr). Lemma OS.2 shows that the

necessary and sufficient conditions for U; > vy, and U, > vy are given by UHCva < i/g and

CH + acy,
vVH—vL (1—a)(cg—cL)

< 1, respectively. Now we show that U; < vy or Uy < vy when ¢, > (1 —
a)(vg —vg). When Ap <1 and Ag < %, Lemma 6 shows that the expected profit from an

optimal randomized pricing policy is no more than U;. In this case, as ¢, > (1 — a)(vyg —vr), we

have ,/UHCva >Vli—a> 1/71% since 0 < a < 1, and thus the expected profit from an optimal

randomized pricing policy cannot be greater than v;. On the other hand, when ﬁ <Agr<1,

Lemma 6 shows that the expected profit from an optimal randomized pricing policy is no more

than U,. In this case, we have —£— 4 — 2L > _°L_ 4 %L >] 4L > 1,
vg—vr = (l-a)leg—cr) 7 vg—vp = (1—o)(cg—cr) cH—cr,

where the second inequality is due to the condition ¢z, > (1 — «)(vg — vr), and the last inequality

is due to 0 < % < 1. Therefore, an optimal randomized pricing policy also reduces to a static

pricing policy when ﬁ <Agp<1.

s cH—CcL
(i) If 1/2 < Ap <1 and b 1.

As shown in the previous paragraph, UM (q;) is maximized at ¢z = min {1, SZ :f}i — 5} when 1/2 <

Ay < 1. Coupling with % >1, we have ¢;; =1 and g3 =vr — & —n(6) = vy — ¢z —n(d). Since
H

we have shown ¢; =0, then 7} = lquzifiq;l =1/2 and 7y = p{;%iqfq;l = 1/2. Then the Markovian

pricing policy reduces to a cyclic pricing policy with a cyclic length of 2. Next we show that UM (q3;)

is greater than U(/3*), which is the expected profit from an optimal randomized pricing policy. We

have

* (&3 q;—[ CL 1
UM(q )za(v —>+ l—a [ (v —)—i— v]
" ) T g g ) g

cL cL Qu
=avr+(l—a)vg — (1 -« —a——(1- Vg — U
b (e — (1= 0) g~ — (1) (o i)
>avp + (1 —a)vg — (1 —a) L —ac—L—(l—a) b (vg —vp)

>avr + (1 —a)vy — (1 —a)cp — a—i —(1—a)p*(vg —vr) =U(5),
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which the first inequality is due to UM (¢};) > UM (qy), for any gy < Hﬁfji and 8* < ﬁ, and
the second inequality is due to 5* > 0.

(iii) Otherwise.
Consider the case that 1/2 < A,; <1 and % < 1. From the analysis in the previous paragraph,

note

> 1, we know that g}, :min{l,lcj”ﬁ—é} = SHZ°L _ § —mln{ A cm=cr —5}

A
1-Apn Vg —v], v — UL 1-Ap 7 vg—vp,

acy,

. (1—a)(vg—vr—cr) . _ ac 1 : _
Consider the case when ~——"""HL—L=CL2 > 4 je., Ay = \/m <i Solving &Y - ;H —0,

1 — _Am (‘JH)
T . It is easy to verify that 2 >0 for any gy < 1= AM

acy,

we have gz =

UM (

Otherwise 6q;H ) <0. Coupling with gy < ﬁ as shown in Lemma 8, the maximum of U (¢p)

is realized when gy = min{l_AA”M, EZ :f)’; -9 } in this case. At the optimality, ¢; =0, and p} =

L

UL = n(d). With the same approach in the proof of case (ii), we have the expected profit from
this optimal Markovian pricing policy is greater than that from an optimal randomized pricing
policy. O

Proof of Corollary 5. According to Lemma 6(i) and Proposition 10(i), if Az > 1 or Ay >
1, randomized or Markovian pricing policy is dominated by the optimal static pricing policy.

Note Agr < Ay, then we only consider the case Ar < Ajr < 1. Based on Proposition 3, 5* =

mln{AR, SH_°L —5} = min{ a L HEL —5} <1, and p* =wvy — 2% — (). Because

VH—VL —a)(vg—vg)’ vg—vL B*
(1-a)(wvg—vr—cr) acy, _ VH—VL—CL acy, Vg —vp—C[,
< acy, 1) (1—a)(vg—vg) \/ Vg —vL, (1—a)(vg—vr,) < \/ vy —v, < 1 we have
1 acy, _ acy, 43
T >\ Toer =D when A,y = \/—(lfavavach) < 1. Based on Proposition 10,
O(CL
* . Ay cH—CJ, _ . 1 CH—CL *
¢7; = min { TAL g — 5} = mm{ e RN (5} or ¢;; =1. As a result, ¢5; >
DZCL
8%, and thus pszL—%—n(é)Zg =g —;—*—77(5).
ZCL then B* = SE=°L _ §, Note H="L — §j <
vH 1’L (1—a)(vyg—vr) (1— cz)('uH vy, —cr) 1’ v —vL, vy —vg, -
OLCL
% < 1, by Proposition 10(iii), we have ¢} = 2=t — §. Consequently, we have 7} =

VH —V],

* *
95 __ 4y * __ Q%
1-q; +a3; — l+ag <quy=p"

acy, CH—CJ, < 1 CH—CJ, * acy,
It V =) on—on) < vg—vg = C—ap—i-o and =0k > 1, then §° = [ l—y, and

°rL

* *
¢;; = 1, based on Proposition 10(ii). As a result, we have 7} = 1_;’1(1* = 11’;* = 1. Because we
L H H

restrict our discussion to the case when an optimal randomized pricing policy dominates an optimal

static pricing policy, all conditions in Lemma OS.2 shall be satisfied. That is, when v, > (1 —
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a)vg, we have (1*04)?212*%) < Zg:zi and chva < f/_lffz Consequently, 8* = m =
Vit ok \/71 2 1& < L =m;. On the other hand, when vy, < (1 — a)vy, we have
e O(‘jz_% < gz_f}i and UHCLUL (1 /UH - 1). Consequently, 8* = %
Vis e (\/j 1) 1+f < 1 =}, where the first inequality is due to v, < (1 —
a)vg, ie., = 1
It < o S iy, e S L then 57— % and
&L
qy = % — 0, based on Proposition 10(iii). Recall that 73 = 11%;1 is increasing in ¢y, then - + 5 <
T < \/u—(xmfﬁ’ which is due to 8* = m <qy= ﬁ —0< <1—a>(vH1—vL—eL>,1’
1 A
It is easy to see 157 <pB*r= \/(1_0)?52_%) < \/(1-@@205%—%)‘ Therefore, we can’t say m; > [3* or

w3 < B* in this case.

acp 1 cHg—cfL, P  acp, x
(1—a)(vg—vr) (-a)(vg—vp—cp) < vg—vp’ then f* = A—a)(vg—vg)’ and gy

a(‘L
or 1. If = L we have 7 = -1 — L =
(1— a)(vH vr— cL)_1 qH (1— a)(vH—vL—cL)_l’ L 1+qH (A—a)(vg—vp—cr)
D(CL QCL C!CL
acyr, > acy, — % o . .
ROy \/(1_a)(UH_UL) B*. If ¢;; =1, we have shown in the preceding paragraph that

w3 > * in this case.
To sum up, comparing an optimal Markovian pricing policy with an optimal randomized pricing

policy, we have

) If \/ T a)(:;;LUL —5 < 1, then g3 > 8* and pj; > p*, where * and p* are given by Proposition

.o CH—CJ, < acy, * *.
(ii) If =L < T e \/(1 a<UH ETI , then 7 < 8%;
CVCL
acy, CH=CL « 1 cH—CL __@cr
(iii) If ooy < vipe < . and JE=L > 1, or o)) <
QCL
1 CH
w,1<”{ o then g 2 7.

acy,

When ¢, is sufficiently small, the sets of conditions (i) and (iii) are satisfied, and we thus obtain
the desired result.

Lastly, we show L3, =1/m; and L% = 1/8*. For an optimal Markovian pricing policy, when
the price of current period ¢ is pjj, then the probability of next period’s price is also p} is ¢} .
Moreover, for j > 2, the discount price appears in period i+ j for the first time, then its probability

s (1—q;)(1—qp)2q. Thus Ly, =q; + > 5(1—q;)(1 — qj;)7 2q;- Let

=2
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S=> j(l—-g)A—ap) gy =200—ap)ai+ Y i1 —a;) (1 —g;,) ai

Jj=2 Jj=3

=2(1—qp)ay + > G+ —a1)(1—a) 'di,

=2
then (1—q;)S=>"7(1—¢})(1—¢})" ¢} Therefore,
j=2

oo

GrS =201 g+ > G+ —a))1—q) Z] 1—g))(1— g3 a5
j=2
* * G *\j—1 * * . * 17(17(]}1})” * *
=(1—q1)qx 2+Z<1_QH) =(1—q1)qx 2“‘11}1(1_‘11{) 1—(1—q3) =(1—q;)(1+aqp)-
= n—00 qH

Note ¢ =0 and 7} = —2H— = Gir_ ,then S=(1—¢;)(1+1/qy), and L, =q; +S=1+1/q}; =
L H H

1/7;. For an optimal randomized pricing policy, when the price of current period i is p*, then the

probability of discount price p* appears in period i + j for the first time is 5*(1 — B*)7~1. Then

Ly =% jp*(1—p*)’~ 1. Consequently,
j=1

B'Ly =Ly~ L?—Z]B *)H—Zjﬁ*(l—
=B +Zyﬁ (1-8 Z]ﬁ (1-8
j=2
=ﬂ*+Z(J’+1)5*(1—ﬂ*)j—Zjﬁ*(l—ﬂ )

N L l-(1-p)n
= Br(1-py" =pim Sy =

Therefore, L}, =1/*. O

Proof of Corollary 6. First we show it is true for low-valuation customers. By Corollary 5, we
know pj; > p*. Recall the low-valuation customers always buy with the price pj and p* under an
optimal Markovian and randomized pricing policy, respectively.

Next we consider high-valuation customers. Since high-valuation customers will buy immediately

under both polices, we have
Ui (az) = mipa+ (L= )vm,  Un(B*)=8"p" + (1= B")vm,

where U}(qy) and Ug(B*) are the expected profit earned from high-valuation cus-

tomers under an optimal Markovian and randomized pricing policy, respectively. Now we
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will show U}(q};) > Un(B*). According to Proposition 3, (* = min{AR, “H L —(5} =

Vg —vL
. acy, CH—CL * _ ‘L _ iti =
mln{ T a) (o or)? v —oe 5} <1, and p* = v — (6). Based on Proposition 10, g},

: Ay cH—cp M 1 cHg—cp * * i _
min — = min -0, or =1. Note 77 = —H+ =
{17AM’ Vg —VL, (5 (lfa)(va'uLch)717 VH—VL qH L liqz+q}ﬁ‘l
q* aLL

H
Ty, thus,

*

Qi Qir
§) —
1+q*Hn( ) 1+qj

UIJL\I/[(Q;I):WZPZ"‘G_WE)UH:UH_CL_ (vg —vL —cL),

Un(B") =mppg+ (1 =7} )vg =vm —cp — B'n(8) — " (v —vr).

Note limg o7(8) = 0. Therefore, if we want to show U} (q};) > U (B*), it is equivalent to verify

*
J_ig;{(’l)}[ — VL —CL) <IB*(’UH —'UL).

If CH=CL < acrp < 1 then ﬁ* — fH—°L __ 6 Note CH—CL <

vE—vL — (I-a)(vg—vr) \/(lfa)(va’vacL) 1’ VH VL ’ vg—vL —
acy, -

acy,

e * _ CH—C q7
T aoe—s <1, by Proposition 10(iii), we have q}; = P 5. Hence, we have 1+ZI}; (vyg — v —

cr) < @i (vg —vp —cp) < 8*(vg —vr), where the first inequality is due to 0 < ¢}; < 1, and the second

is due to ¢;, > 0.

acy, cyg—cy, 1 CH—CL, * e
If Tt < ror < R and ol > 1, then S oo oy Note

acy,

(1—a)(vg—vp—cr) 1 —vp—cr)
acy, -

1< \/ L ,le., \/# > 1, then ¢}, = 1, based on Proposition 10(ii). Hence,

we have

*

Ay
1+4q3

1 1
(UH_'UL_CL):i(UH_UL_CL)<§\/UH_UL_CL\/UH_UL

Vg — VL —CL

<\/(1_a)(O‘CL o= = /o =

- \/(1 s o —ve) = B (v — i),

)(ver — v,
acy, CHg—CJ, 1 CHg—CJ, * / acy,
If (1_0‘)(”H_7)L) < VH—VL S \/(170‘>(”H7UL70L)71 and VH—VL S 17 then 5 o (1—a)(1)H—UL)’ and
DCCL
a5 = % — 0, based on Proposition 10(iii). Hence, we have

*

qH Qcy,
Vg — V7, —C < Vg — U7, —C
Ty g o~ v ) \/<1—a><vH—vL—cL>(H L=e)

<\/(1_a)(acL Vg —vp —epy/og — g,

Vg — VL —CL)

Sy o =) = (o o).

)(vm —vr,
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where the first inequality is due to —L- is increasing in ¢}, and ¢}, = <HL=°L — §j < SH=°L <

1+q; vy VL, VH—VL T
L , and the second inequality is due to ¢z > 0.
(—a)(wg—vp—cp) 1
O(CL
oCL L CH—CL = then fB* = ——2L ____ and ¢} =
\V Q—o)(vg—vp) (1 (-a)(up—vp—cp) UL ) < vg—vr’ B (1-a)(vg—vr) 9u
or 1. If = 1 we have —H_ — L =
(1— a)(vH vy, — cL)71 qH (l_a)(”H_UL_CL)fl’ 1+qH (A—a)(vg—vp—cr)
OLCL &CL &CL
acy,
\/(1—a)<vH—vL—cL)' Hence,
a5 acy, acy,
*(UH_UL_CL): Vg —vp —cr < VUg — U
1+4+q3 —o -«

:\/(1_ acg )(UH—UL)zﬁ*(vH—vL).

a)(vg —vg

If ¢5; = 1, we have shown in the preceding paragraph that 1+ 1 (’UH —wvp —cp) < B*(vg — o) in this
case. [J

Proof of Lemma 9. In order to show the result, we first prove an auxiliary lemma.

LEmMA OS.5. f% < 2'—2 s a necessary condition that type-i; customers would wait and type-is
1 22

customers would either purchase or leave immediately, for any i, < is.
Proof of Lemma 0S.5. According to Lemma OA.1, type-i; customers wait and type-i, cus-

i1 11 11 21
tomers either purchase or leave immediately imply that > v, — > Bx; > > Bixi, — > Bix; =
j=1 =1 =1

Jj=1

i2 i
¢, and ) Bvi, — Y Bixj < ¢, respectively. Thus, we have
i=1 i=1

i i2 i1 i1
Ciy 2 E Bjviy — E Bjxr; > E Bjvi, — E Bix;,
j=1 =1 j=1 j=1
and
it i
Ciy < E ijil — E ﬂjxj.
=1 j=1
Rearranging the above two inequalities, we have

io io
Zlﬁj% =2 Bz

ji= = i
Cia | 77 : S Yia

. 1 1 .
Y By — Y By
j=1 j=1

2 12 i1 i
where the second inequality is due to (Z Biviy — Y Bjx]) vy, — <Z Biviy, — Bja:J) v, =
i=1 i=1 i=1 i=1

@2 i (51
) < Yo Bivio— Y ﬁjacj> + (viy —vi,) Y Bjz; > 0. We thus obtain the announced result. [
j=1

j=i1+1 j=i1+1
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Lemma OS.5 and the condition ;—1 > -+ > ¢ imply that there exists a k such that any customer
with valuation greater than v, will wait, and any customer with valuation less than or equal to
v, will either purchase or leave immediately upon arrival, under any randomized pricing policy.
Thus, based on Lemma OA.1, its optimal expected profit can be derived by solving the following

problem.

s.t. Zﬁjvi—Zﬁjxjﬁci, VZSk,
j=1 j=1

i i
Zﬁjxi—Zﬁjx]‘:Ci, Vz>k,
j=1 j=1

x; <wv;,Vi <k, and x; <wv;,Vi>k, and Zﬂizl,

i=1

(0S.3)

i i i
where m; =Y Bz, Vi<k,and m; =Y B;x; / > ; otherwise.
j=1 j=1 j=1
First consider the case when £ =mn — 1 or n. In this case, we have

n n 1 n n n
2 Ty = Zai Z Bjx; = Brw1 + 22 ;i By + -+ By, < max {Z ail'j} < max {Zawj} )
1= 1= 1= 1=y

i=1 =1
where the last term indicates the expected profit under an optimal static pricing policy.

Next consider the case when k= 0. We will prove the dominance of static pricing by induction.
When n = 2, the profit function is given by aix; + aq[f1z1 + (1 — B1)xs], and constraints are

Bi(vy —x1) > ¢p and fy(x2 — 1) = co. That is, 1 < vy — 1711 and xo =21 + 2—21 Thus, we have

1T +062[/81.§U1 + (]. — Bl)wg] =T +a2 (/6:)11 — 1) Co <V — % +O[2 <l811 — 1) Co = h(ﬁl),

where the equality is due to x, =2, + 2—21 and a; + oy =1, and the inequality is due to z; <wv; — %

Taking the derivative of h(3;) with respect to (31, we have %;11) = % If ¢; > agcq, () is
increasing in f; and thus h(8;) < h(1) =v; —¢;. If ¢ < agee, h(B;) is decreasing in 5 and thus
h(B1) < h(ci/v1) =y (Z—i — 1) Cy < QQ%CQ < @9, where the first inequality is due to v; — ;—11 >0,
and the last inequality is due to % > % So the expected profit from any randomized pricing policy

is less than or equal to the expected profit from the optimal static pricing policy, which is given

by max{v, avy}.



33

Now suppose that, under the case when k£ =0, an optimal randomized pricing policy reduces to
the optimal static pricing policy for n — 1, Vn > 3. We next show that this statement also holds for

n. Based on Problem (0OS.3), we can rewrite the expected profit function as:

Zn:omr—ax +--+a x ot +a, (z, —c,)
= Qg . [ L S _
— 2% n n Bl + . + /Bn71 n n mnj)»
n
where z,, = T,,_1 + % Taking the derivative of > a;m; with respect to (81 + -+ B,_1),
" i=1
8( £ aiﬂi) (an—1+an) S
i=1 _ lap_1Tan)tp_1—Qncn : : : :
we have e ey S v ey e o If (ap_1+ an)Cno1 > ey, Zaﬂri is increasing in

i=1

814+ Br_1. Thus, it is optimal to let 81 +---+ B,_1 =1 and 3, =0, which reduces to the case

with n —1 types of customers. On the other hand, if (a,,_1 + @) cn—1 < anCy, zn: a;m; is decreasing
=1

in 81+ -+ B,_1. In this case, it is optimal to let 81 +---+ Bn_1 =61+ - + Bn_a, i.€., 1 =0,

which again reduces to the case with n — 1 types of customers. We thus establish the result for n.

Lastly, consider the case when 1 <k <n—2. Again, we prove the dominance of static pricing by

induction. When n =3 and k=1, the profit function is given by a8z, + a2% +az[frz +

IBQIQ + (]. — /31 — ﬁg).’ﬁg], and COHStI‘athS are 61 (Ul — I’l) S Cy, ,61 (.132 — 1,'1) = Ca, and (ﬁl —+ ﬂg)l’g —

B1x1 — PBaxe = c3. Thus, we have x5 = x5 + ;i;z, and we can rewrite the profit function as:

3
Co C3 —C2
T =01 011 0y | o — ——— | + a3 | T2+ —cC3 | .
g 15171 2(2 514‘52) 3(2 B+ B, 3>

i=1

3
3< > ai'n'l)
i=1 —

Taking the derivative of the profit function with respect to (51 + B2), we have 56, 753)

Wﬁ%. If (a2 + a3)ca > azes, profit is maximized by letting 51 + B2 = 1. Plugging 8, + 52 =1

into the profit function, we have

3
Zaiﬂ'i = oSz + (e + o3) (22 — ¢2) = a1 frzy + (a0 + asz) (Bizy + foxa)
i=1

< max{x, (az + az)rs} <max{vy, (az + az)vs},

where the second equality is due to f;(zs — 1) = ¢o. On the other hand, if (ay + az)cs < azes,

profit is maximized by letting £, = 0. Plugging 3> =0 into the profit function, we have

3
c cs3—¢C 1
Zaiﬂi = a1 5171+ <3’32 - 2> +as (3’32 + 22 C3> = a1 121+ oz + o [1‘1 + < — 1) Cs} )
2 B 5 B

1
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where the second equality is due to zo =z, + 2

o(Eom)
1 o a3zcs3

=017 —

7. Taking the derivative of the profit function with

respect to 31, we have

which is increasing in 8;. Thus, the profit function

9B1 B2
3
> a;m; is convex in 3;. Here we need to consider two cases separately: 5 < - and B1 > o v1
i=1
When (; > Ty e have o = 2 —|— 2 < vy due to z; <wv;. On the other hand, when §; < 7;721)1

$1:$2—;%<U1 due to x5 < ws.

Consider first when ; <

— ¢, for any small

C

0 > 0. Combining with the condition z; =z, — ;—21 >0, B must be greater than i Thus, in order

to show the dominance of static pricing policy, we only need to prove that the expected profit

evaluated at 3, = ;—i and 3, = - fvl are less than the expected profit from an optimal static pricing

policy. Plugging 5, = % and x, = vy — d into the profit function, we have

ZOJ 7 =—(ou B+ aa+a3)d+ ag (1}2—1> c3 < Qg <U2—1> c3< g (113_1> €3 < (i3s3,

Co Co C3

where the first equality is due to z; = x4 — ;—21 = —4¢, and the second inequality is due to ;’3 > f}i

Next plugging §; = UQC_QUI and zo = v, — J into the profit function, we have

3
Z Ca V2 — Uy
oG < g V1 + QU1 + Qa3 | U1 + —1 C3| .
— V2 — U1 Ca
i=

Consider three sub-cases.

(a) v; > azvs. Because Cl > 9B = 239 we have ¢; > azcz. Furthermore, because (g +as3)cs < azes

V3 agvg’

(ag+az)ea _ ca ~ c3 __ ascs Pk : iys
and (ootas)oe = o > = oo, we have azvs > (g + a3)vy. Combining the preceding conditions,

we have v; > (ay + a3)ve. That is, vy > 1. Therefore,

C2 Vg — Uy
Q V1 + QU + Q3 [U1 + —1 C3
Vg — Uy Co
Ca Vg — U1
= —a; | 1— v + a3 —1)cs
Vg — U1 Ca
V2 — Uy C2 V2 — Uy U1
=V1 — -1 (6731 V1 — Q3C3 < v — -1 —Cy — C1 S U1,
C2 V2 — U1 C2 (%

a1v2

s> 1 and ¢; > ases, and the second inequality is due to

where the first inequality is due to
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(b) v1 < (g + a3)vy < agus, ie., =122 < 1. In this case, we have

7 vo—vy
Ca Vg — Uy
(e7) V1 + U + a3 | U1 + -1 C3
Va2 — Uy C2
Vg — U1 U3
<o v + oy +ag |V + —1)—cy
V2 — Uy Ca V2
C2 (%1 Ca
= V1 + V1 + a3ty + 33 — 33 | — + —
V2 — Uy (% V2
C2 Co U1 %1
= V1 — Q33— + Qi3V3 + (OZQ + 053)’1)2— — QgV3—
Vg — Uy % U2 %
Ca Co U1 C2
<oy V1 — Q3V3— + 33 < —Co — V1 — + Q3VU3 = Q3V3,
V2 — Uy V2 % V2

where the second inequality is due to (ag + a3)ve < aizvs, and the third inequality is due to % <1

and v; < asvs.

(c) (a4 az)ve < vy < azuz. If ay v;fvl V1 > aizcs, we have

Vo — U
v1+a2v1+a3[v1+<2 1—1>03]

C2

V2 — U C2
=1 — —1 O —V1 — (3C3 < V1.
C2 V2 — U1

On the other hand, if a; —2—v; < azcs, we have

v2—v1

Ca V2 — Uy
Qaq v + vy + s |vg + —1)cs
Vg2 — Uy Ca

V2 — Uy

V2 — Uy

<V + 31 + Qi3C3
Co

Va2 — Uy

<aV1 + a3v1 + Q33 < s,

V2

where the second inequality is due to ¢, < vy, and the third inequality is due to (a4 a3)ve < azvs.

Now we prove that under the condition g, < v;f an optimal randomized pricing policy reduces

’U17

to the optimal static pricing policy. The case when 3, > U;_Qvl is trivial, as, when plugging in 5; =1,
the profit function reduces to x;, which is less than or equal to v;.
Now suppose that, under the case when 1 <k <n — 2, an optimal randomized pricing policy

reduces to an optimal static pricing policy for n — 1, Vn > 3. We next show that this statement

also holds for n. Based on Problem (0S.3), we can rewrite the expected profit function as:

- Ck+1
E ;i =0+t r1 4+ Orxg) T -
o 1P1T1 k(B121 Brr) k+1< k+1 B1+"'+5k+1)

+ot < Cnt >+ ( )
cetay g gy — —m——— O (T, — Cr)
' LBt Bu
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where z,, = ©,,_1 + % Taking the derivative of > a;m; with respect to (81 + -+ B,_1),
=1

8(% OtiTl'i) n

i=1 (ap—1+an)en—1—ancn If R . .
= . [0 7% Oy )Cp1 = O, C Q;7; 1S 1Increasing in
O(B1++++Bn—1) (B1t-+Bn—1)? (Qn1 + an)en-1 2 ncn, 1121 L &

814+ Bn_1. Thus, it is optimal to let 81 +---+ B,_1 =1 and 3, =0, which reduces to the case

we have

n
with n — 1 types of customers. On the other hand, if (c,,_1 + @, )cn—1 < ancy, Y, aym; is decreasing
i=1

in 81+ -+ B,_1. In this case, it is optimal to let 81 +---+ 8,1 =01+ - + Bn_a, i.€., B_1 =0,
which again reduces to the case with n — 1 types of customers. We thus obtain the announced
result. O

Proof of Proposition 11. Consider any randomized pricing policy. First we prove by contradic-
tion that, under the condition v; —¢; > vy — ¢y > -+- > v, — ¢, a customer with valuation v;, will

not wait, if type-i; customers do not wait, V; < 5. Suppose there exists iy > iy, where type-i;

customers do not wait but type-is customers wait. By Proposition 1, we have

i1 i1 i2 i2
E Biviy, — E Bix; < ¢y, and E Biviy — g Bix; > ¢y .
i=1 i=1 i=1 i=1

Bix; < ¢;;. Combining with the

i
—

i9 2 i1
Because z; > v;,, Vi > iy, we have ) fiv;, — > Bixi < Y Biviy, —
; i=1 i=1

i=1 %

12 ()
inequality > Bivi, — > Bix; > ¢y, we have
= i—1

=1 =

12
Z/Bi(vig - Uil) > Cig - Cil 2 Uig - Ui17
i=1

where the second inequality is due to v;, —¢;, > v;, —¢;,. However, the above inequality contradicts

i3
to > f; <1. Thus, we obtain the announced result.
1=1

The implication of this result is that there always exists 1 <k, <n, such that any customer with
valuation greater than or equal to vy, does not wait, and any customer with valuation smaller than
vy, will wait. Hence, we get Proposition 11(i). Consequently, based on Lemma OA.1, the optimal

T

policy with such induced customer behavior can be derived by solving:
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n
Hﬁla;cX E OéjT('j
s =

J J
s.t. Zﬂil‘j—ZBixi:Cj, Vj<k?r7
i=1 i=1 (0S.4)

i:ﬁivj - i:ﬁﬂz <g¢j, Vij>k,
i=1 i=1

n
x; <vj,j <k, and z; <v;,j > k,, and Zﬁjzl,
j=1

where 7; = Zj;ﬂle/iﬁl, if 7 < k,; Otherwise, m; = Zj:lﬁzxz The set of conditions Zj:lﬁixj —
Zj:lﬂi:ri =c¢;,Vj <k, imply that
1=y = C2/Br=a5—C2/B1— (c3—c2)/(BL+ Pa)
= =ap1— /1= (3 —c2)/(Br 4 B2) -+ — (Chym1 — Cito—2) [ (Br + B2+ -+ + B —2)-

Due to the assumption ¢; < ¢y < --- < ¢,, we have
vi—ci/Br>ve— /B >vs— /i — (cs—¢2)/(Br+ Ba) > -
>, 1— C2/Pr— (e —2)/(Br+ B2) -+ = (Crp—1 — Chp—2) /(B + B2 + -+ 4 Br,—2) > @1,
where the last inequality is due to xy,_1 < wvg,—1. As the profit function is increasing in z;, Vj,
the optimal =7 is given by xf = vy, 1 — /B — (3 —¢c2)/(B1 4+ B2) -+ — (Cpp1 — Chp—2) /(B1 + B2 +
-+ + B, —2) — 6. The optimal x}, Vj € {2,...,k,} can be derived by solving the system of equations
:215133; - ‘

optimal z; into the objective function, and ignoring the sufficiently small §, we have

Xn:ozﬂ' —a (v C2 C3 —C2 Ckp—1 — Ck,. >—i—a (v Clpr—1 >+
=0 Vg1 — — — e 2 | Vo1 —
o o B Bt 5o Br+ B2+ + Br,—2 B+ B2

Ckp—1
P14 Ba+ -+ Br,—1
+an ((Bi+ B2+ + Br—1) V-1 — i1 + Bie, Ok, + -+ Bavy)

J
‘:lﬁix;‘ =¢;,Vj < k., and the optimal z}, Vj >k, is given by 7 = v;. Plugging the

7

+ o, —1 ('Ukr—l — > + oy, (B + B2+ + Brr—1)Vkp—1 — Crype1 + By Uk, ) + -+ -

It is easy to verify that the profit function is increasing in 5y, (814 52), -+, (B1+Ba+ -+ Brp—1)-

Thus, the profit is maximized when 8y = 85 =+ = Bk, _2 = Br,.—1 = 0. Next consider §;, Vj > k.
a(i QT n

The partial derivative of the profit function with respect to ; is given by % => v —
Jj i=j

a,vy,. Denote h, = argmax » (a;v;). The profit is maximized when £, =1 — 1, and the rest are
ke<j<n i=j

all equal to 0. We thus obtain the announced result. U
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Proof of Proposition 12. The existence of k. is guaranteed by Corollary OA.1. Next we show
that 7, > 7, for any 1 <i<k.—1, and 7y = 1. Because v;; — ¢;11 <v; —¢;, we have v, — (T —
Tiz1)Civ1 < v; — (T — 7i41)c;. Thus, we know that 7; < 7;,; based on the definition of 7;, for any
1<i<k.—1. We show 7, =1 by contradiction. Suppose 71 > 1. Then, the optimal expected profit
per period from period 1 to period 7 — 1 is given by f: vy, which is less than the expected

ol
profit from an optimal static pricing policy. Thus, we ]can increase profit by getting rid of these
time periods, which contradicts to the optimality of the policy. The optimal pricing schedule can
be constructed according to Lemma OA.3. In particular, p; = 12}13%{1)1» — (T —7;)e;} — 0, and the
price in the t** period of a cycle is given by p, = min{v,,,pr + (T —t)cp, }. O

Proof of Proposition 13. Proposition 13(i) can be shown as follows. By Proposition 11, under
the condition vy —¢; > vy — ¢y > -+ - > v,, — ¢,,, an optimal randomized pricing policy follows a two-
point price distribution, with the lower price being less than v; and the higher price equal to vy,..
Under the condition vy > (g + -+ + @y, )vg > +++ > @0, h,. = k.. Then again by Proposition 11,
customers of types from 1 to k. — 1 behave the same as type k, — 1 and customers of types from

k, to n behave the same as type k.. Hence, the problem with n customer segments is equivalent to

. . . kp—1 . .
the case with two customer segments in which the Zszl o fraction of customers have valuation
vk,—1 and per-period waiting cost ¢, _; and the rest fraction of customers have valuation vy, and
per-period waiting cost c,..

To prove Proposition 13(ii), we first prove an auxiliary lemma.

LEMMA OS.6. Under the conditions v{ — ¢y > Vg — Cy > -+ > Up_1 — Cpq > Uy, — Cp, aNd Uy >
(g + -+ 4 a,)vg >+ > v, and consider a cyclic pricing policy with a price of vy, in the first
T — 1 periods, a price of vy_1 — (T —1)cp_1 — 9§ in the last period. If vy —v_1 > cp_1 and vy — V1

is below the threshold ck/ (1 +3

(i) The optimal cycle length for this policy is either |Ti] or |Ti| + 1, where T} =

n k—1
> aj(vg — v — ck_l)/ > ajcr—1 and |x] represents the greatest integer that is no more
j=k j=1
than x;
(i) Any customer with valuation greater than or equal to vy will buy immediately upon arrival,

and customer with valuation smaller than vy, will wait to purchase in the last period of a cycle.
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Proof of Lemma OS.6. Consider a cyclic pricing policy where the firms charges v, in the first
T — 1 periods, and vy_; — (T — 1)¢;_; — J in the T period within a cycle. We first derive the
optimal cycle length assuming that any customer with valuation greater than or equal to v, will
buy immediately upon arrival, and any customer with valuation smaller than v, will wait to

purchase in period T. Based on Proposition 12, the expected profit from this policy is given
k=1

by IT) = > a;j(vs—1 — (T — 1)eg—1 — ) + > a; (T —1Dvg +vg—y — (T'—1)cx—y — 0] /T. Denote
j=1 j=k
k—1 n
R(T)=> aj(vg—1 — (T —1)cp—1)+ > a; [(T — 1)vg +vp—1 — (T'— 1)cx_1] /T by ignoring the small
Jj=1 =k

d in II(T). Taking the derivative of R(T") with respect to T', we have

n k—1

N Vg — Vg—1 — Ck—1

= g 8% T2 - E QjCr—1,
j=k j=1

which is decreasing in T under the condition vy — vy_; > ¢x_1. Thus, we conclude that R(T) is

n k—1
concave, and it is maximized with T} = \/Z a;(vy —vg—1—ck-1) / > ajci_1. Thus, the optimal
=k j=1

cycle length T* is given by either |7} | or |11 ]+ 1, where |z] represents the greatest integer that
is less than or equal to z. Note that max{R(|71]), R(|71] +1)} is an upper bound of the expected
profit from this cyclic pricing policy.

Next we show that under the conditions specified in the Lemma and the cycle length T, any
customer with valuation greater than or equal to v, will buy immediately upon arrival, and any
customer with valuation smaller than v, will wait to purchase in period T™. Because v; 1 — v; <
Civ1— ¢ < (T* = 1)(¢iy1 —¢;), we have vy — (T* — 1)y = 1S1111Si]£171(vi —(T* —1)¢;) < vy. Thus, in
order to show that any customer with valuation smaller than or equal to v,_; will wait to purchase
in period T*, it suffices to prove vy_1 — (T — 1)¢—1 > 0. Note that T* is equal to either |7} ] or

| T} | + 1. Thus, one sufficient condition is given by ;’Z—j >T). This condition holds as:

2

V2 k— k—1
E QU — 1/ E Q;Cr—1 = > E Oéj’l)k,/ E Q;Cr—1 > E aJ Vi — V-1 —Cr—1 / E Q;Cr—1,
j=1 j=1

Ckl Ckl

k—1
where the first inequality is due to vx_; > ¢,—1 and the second inequality is due to ) ajv,_1 >

j=1
n

> QU

ik
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Lastly, we show that any customer with valuation greater than v,_; will buy immediately upon
arrival. As v; —¢; > v;11 — €41, for any k <i<n—1, it suffices to show that pr« +c¢, =vp_1 — (T —
1)cx—1 — 0 + ¢ > vi,. We have

Vg — Vg1 + (T" = 1)1+ — ¢4,

<Up — Vg—1 +T1Cr1 —C

n k-1
(Uk — V1)
Svk—kal—i-f ZOCJ‘ Zaj—ck<0,

where the first inequality is due to T* = |T7| or [Ti] + 1, the second inequality is due to

n k—1
Tick—1=4| > ojcr_1(vgy —vk—1 — k1) / D o is maximized with ¢,y = (vy — v,_1)/2, and the
j=k j=1
n k—1
third inequality is due to vy —v,_1 < ci / 1+ % Yoy / > aj; |. We thus obtain the announced
j=k j=1
result. [

Now we are ready to prove Proposition 13(ii). Based on Proposition 11 and conditions speci-
fied in the proposition, we know that an optimal randomized pricing policy follows a two-point
price distribution. In particular, under the optimal two-point price distribution, there exists k,
such that any customer with valuation less than vy, would wait to purchase, while any customer
with valuation greater than or equal to v, would buy immediately upon arrival. Based on the

proof of Proposition 11, the expected profit from an optimal randomized pricing policy is given

kr—1 n
by > aj(vk,—1 — Cr—1/B1) + D ;j(B1vg,—1 — k-1 + (1 — B1)vg,.). The function is maximized
Jj=1 Jj=kr

kr—1 n kr—1 n
when 3, = \/ S oajcr—1 /) > aj(vk, —vk,.—1), with a value of Y ajvp. 1+ Y. vk, — 1) —
Jj=1 j j

Jj=kr j=1 j=kr

We next show that this optimal randomized pricing policy is dominated by a cyclic pricing

policy. Consider a cyclic pricing policy where the price is equal to vy, in the first T'—1 periods, and
Vg, —1 — (T'—1)cg,—1 — d in the last period. Lemma OS.6 shows that any customer with valuation
greater than or equal to vg, buy immediately upon arrival, while any customer with valuation less
than vy, would wait to purchase at period 7'. Based on the proof of Lemma OS.6, its optimal profit

is given by max{R(|711]), R(|T1] +1)}. Also, we know from the proof of Lemma OS.6 that R(T)
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is concave and decreasing, for any 7' > T}, and thus we have R(|Ty|+ 1) > R(T} + 1). That is, the

expected profit from this cyclic pricing is bounded below by R(7; +1). We have

kr—1

- T, 1
R(Tl + 1) = Z (o7 |: Vg, + (Ukr—l — Tlckr_l)] + Z Oéj (’Ukr—l — Tlckr_l)
= T +1 T +1 =
kr—1 kr—1 1
= Z Vg, -1 + Zaj Vg — Chy1) ZajTlckT 1— Z%T +1(vkr Vi1 — Chp—1)
j=kr j=1 j=kr
k»r 1 kr—1
> Z%% 1‘1*21;043 Uk, — Chy—1) Zangckr 1— zk:OégT Uk — Vkp—1 — Chyp—1)
J T J r

kr—1 kp—1
—E %UIHFE a; (Vk, — Cr,—1) E @ E 0 Cp, -1 (Vk, — Vkp—1 = Cpipm1)

j=kr Jj=kr

kr—1 kr—1 n
> E :%Ukr—mLE ; (Vg, — Crp—1) E Qg E i Cry—1(Vky — Vipm1) |

j=kr Jj=kr

where the first inequality is due to vy, — vk,.—1 > ¢, -1, and the second equality is due to T} =
n kr—1
> aj(vg, — Vg —1—Ck—1) /Y, @jck.—1. We thus obtain Proposition 13(ii).
i=ky j=1
Next we prove Proposition 13(iii). Based on Proposition 12, we know that, under an optimal

cyclic pricing policy, there exists a k. € {1,...,n} such that any customer with valuation greater
than or equal to vy, would either purchase or leave immediately upon arrival. On the other hand,
a type-i, 1 <1i < k., customer would wait upon arrival if she arrives no earlier than the 7" period
with a cycle. In particular, 3 =1 <7 <... <7, ;. Thus, the expected profit from an optimal

cyclic pricing policy is:

 Uke [k, —pr — (T —t)cr )™ ket

Z al T + Z Q;pr
j=1

Jj=ke

T
n Sop, — ok, —v1+ (T —1)e; — (T —t)ep, ] ket

< Zajt:1 T —{—Zaj(vl—(T—l)cl)

J=ke

HMH

n T ke—1
Vg — Vg, =01+ (T — D)oy — (T —t)ep | Tdt &
<Za]f0 k [k) 1 ( T )1 ( )k] +ZOZJ(’U1—(T—1)C]_)

Jj=ke j=1
ke—1 n
. [k, =01 + (T = Der ]
Jzk oV, + Z a;(vy— (T —1)cy) —]; a; Ter, =H(T),

where the second inequality is due to pr < vy — (T' — 1)¢;, and the third inequality is due to

Vkp — [V — 01 + (T —1)e; — (T —t)cy,]T being monotonically decreasing in ¢. Taking the first order
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kce—1

v —v1—c1)? n c2
derivative of H(T') with respect to T', we have H'(T) = — Z ajer+ Z aj(’“cz%#l) - g,
Jj=ke ¢ Jj=ke ¢

which is decreasing in T'. Thus, we conclude that H(T') is concave in 7', and its maximum is realized

i aj (v, —v1—cy)?
when T =T, = k]C kf . Consequently, the expected profit from an optimal cyclic
2 Z ajercg,+ Z a; c
Jj=kc

pricing policy is bounded above by

kc—1 n ke—1 n
(Vke —v1— 1)
H(TQ)—Zajvl+Zajvkc— Zaj(Tg—l)cl— Zozj T
j=1 Jj=ke Jj=1 Jj=ke
N Tt K o
_ZOZJ o —ZO(]' (Ukc_vl_cl)
Jj=ke ¢ J=ke ¢
ke—1 n ke—1 ke—1 n T c
2¢1
< Z a,vy + Z OV, Z a;(Ty—1)c; — Z a;They — Z a; %,
Jj=1 J=ke Jj=1 Jj=1 J=ke ¢
= c
— > a——(v, —v1 — ),
C
Jj=kec ¢
f}i aj(vg, —v1—c1)? ﬁ}:ﬂ aj(vg,—v1—e1)?
where the inequality is due to Ty = | 2= > |
2 Z a]clckc—i- E ajc 1 2 21 ajc1ck,
=
Lastly, based on the proof of Prop051t10n 11, we know that the expected profit from a randomized
ke—1 n
pricing policy can be derived by maximizing Y o;(vg,—1 —Cko—1/B81)+ Y. j(B1Vke—1 —Cho—1+(1—
j=1 j=ke

B1)vk,) over By € [0,1]. Plugging 81 = ¢y, —1/[vk.—1 —v1+ (T2 —1)cy] (in which case, vy, 1 —cx.—1/01 =

— (Tz — 1)¢y) into the profit function, we have

ke—1 n ke—1 ke—1

ZOéjU1+ZO<;UkC Za] (T, —1)c; — Za — ket Za]ck_

Vg — 1—'U1+(T2—1

So in order to show that an optimal randomized pricing policy outperforms an optimal cyclic

pricing policy, it suffices to show H(Ty) < U. It is easy to verify that To(T — 1)/(vg, — Vg.—1) 1S

2
Tocq

increasing in vy, — vy, 1 when vy, — vy, 1 is sufficiently large. Consequently, we have — Z Qe <

Jj=ke

n

. "Ukc UkC,1 UkC—UkC71 . .
Zk Ot Che—1 < — Zk O o o (T —Tjey Che1- Comparing against the upper bound of
J=Ke J c

H(T3), we know that one sufficient condition for H(T3) < U is given by

ke—1

n
T Ckc—l
— OZJ 2C1 — Oé] Ukc_vkc 1~ Cke— 1 — OéjCkcfl.

Jj=ke j=kec

Because the left hand of the inequality is decreasing in vy, — vg,_1, and thus the inequality is

guaranteed when vy, — vy, is sufficiently large. We thus obtain Proposition 13(iii). O
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B. Proofs of Results in the Online Appendix

Proof of Lemma OA.1. Consider a randomized pricing policy, where the set of types of cus-
tomers who will wait is denoted by W. First we prove that §; and x;, Vi, are properly defined
by showing that u;_; <u;. If i ¢ W, we have u; =v; > v,y >u;_;. If i €W and i — 1 € W, then
we know that u; = ]f > Ui = 21'71 because p increases in c¢. The only non-trivial case is when
i€ W and i —1¢W. In this case, we have E[(v;_1 — P)¥] <¢;_1 < ¢;. So based on the definition
of pj =max{v' | E[(v/ — P)*] < ¢}, we have u; Z]j > v;,_1 = u;_;. Based on the definition of x;, it is
easy to verify that z; < gj <w, VieW, and z; <wv;, Vi ¢ W. Furthermore, the support of the price
distribution of an optimal randomized pricing policy will never include any price greater than v,,,
as no customers will purchase at those price points. Thus, an optimal policy must satisfy Zn: B;=1.

i=1

For any i € W, we can rewrite the condition as E[(v; — P)*] = Y Bjv; — > Bix; < ¢, Vi ¢
j=1 j=1

W, based on the definitions of f; and ;. Similarly, for any i € W, we have F(p*)E[p’ — P|P <

p'l= > Bip" — > Bjx; < ¢;. Because x; < p', Vi € W, we have
o o Jj=1 o J

Jj=1

Bixi — 37 By < 30 Bipt —
=1 j=1 j=1

>~ Bjx; < ¢;. Notice that the profit function Y a,m; is increasing in x; because both E[P|P < p’] =
i=1 i= -

=1

Yo Bixi ) > B; and F(v)E[P|P <w;]= ) Bx; increase in x;, Vi. Thus, the following condition
j=1 j=1 j

Jj=1

i Bjx; — i Bjx; = ¢; must be satisfied for an optimal policy; Otherwise, we can always improve
j=1 j=1
profit by increasing x;. Note that when ¢ = 1, this constraint is guaranteed to be satisfied as the left
hand side of the inequality is zero. So we resort to the initial condition derived in Proposition 1,
i.e., f1v1 — B1x1 > c1, should type-1 customers wait. Consequently, we can find the optimal policy,
in the space of all policies where type-i customers, Vi € W, wait and the rest purchase or leave
immediately, by solving Problem (OA.1). O

Proof of Lemma OA.2. Consider a set of randomized pricing policies, which includes all policies
under which type-1 customers would wait, and the rest of customers either purchase or leave

immediately upon arrival. Based on Lemma OA.1, the optimal policy in the set can be derived by

solving the following optimization problem:
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n J
max oyx1+ g ajE Bix;
X
o j=2 i=1

s.t.  Bivr — Bz >,
J J
Zﬂﬂ’j—Zﬂi%SCj, i=2,3,....n
=1 i=1

x1 <vq, and z; <v;,5=2,3,...,n, and Z,szl.

(08.5)

Next we show that, when ¢, is sufficiently small, the optimal value of the objective function in
Problem (0S.5) is greater than the expected profit from an optimal static pricing policy, which

n
is given by max {Z Q;v; }, by induction. The case when n =2 is proved in Proposition 4. Now

i<n |5

suppose that the result holds when n =k, and we next show that it also holds when n =%+ 1.

k+1 k41
Consider first the trivial case when max {Z Q; vj} = max{z Q; vj}. In this case, we can
i1<k+1

simply let Bry1 =0, and adopt the optimal randomized pricing policy when n = k. Its expected

k41
profit is guaranteed to be greater than max { Z Q; ’UJ}

k+1
Next consider the case when rgl?i{l { Z Q; Uj} = v 41Uk+1. Conditional on f5;, Vje{l,...,k+1},
J

the objective function of Problem (OS.5) is increasing in x;, Vj € {1,...,k+1}. Therefore, Problem
(0S.5) is maximized when x; = v; — % — 0, for any sufficiently small 0, and z; =v;, Vje{2,...,k+

1}. Thus, we can reformulate Problem (OS.5) as:

k+1
mgux a1 <U1 —_ = = 5> + Zag <Z /Bzvz C1— /81 )
k+1

Zﬂz <cg—01,V]€{2 ., k+1}, and ZBJ:L
j=1

(0S.6)

k+1

J
Denote U(f5) = a; (vl - —) + Z a; <Z Biv; — cl>. Thus, the derivatives of U () with respect to
=1

Bj, j=2,...,k, are given by

AUB)  aiey <A AU(B) <~ .
0B B T% + ;awl — Qpy1Uky1, and 0B; N Z-Z_;awj — k11, J =23,k

k+1 k+1
Recall that max { > o } = Q1Uk41 = Y, a;v;. Thus, we can conclude that U(3) is decreasing
Jsk+ i=j

in B; and the profit is maximized when 3; =0, Vj € {2,...,k}. Ignoring ¢, Problem (OS.6) can

thus be simplified as a single variable optimization problem below.
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ket 1
c
I%aX o (1)1 - Bl> + E a;(Bivr —c1) + (1= Bi) w10k
1 1 :
j=2

(0S.7)
s.t. ﬁl(vj—v1)<cj—cl, \V/jE{2,,k+].}
ou k+1
The solution to the first order condition aéf) =+ > vy — a1 =0 s given by gy =
1 i=2
. When §; (v; —v;) <¢;—c1, Vj€{2,...,k+1}, which holds when ¢, is sufficiently
Q1 Vg1 — Z a;vy
small, the expected profit with 8; = 37 is given by:
k+1
(v ——=)+ ZOé (Brvr — + (1= B1) k10541
Jj=2

k+1 k41
=1V + Qg 1Vk 1 — 24 | Q1C1 | Qpy1VUpyr — E o1 | — E Qa;Cy,
j=2

i=2
which is greater than ay,1vxy1 when ¢; is sufficiently small. This completes the proof. [

Proof of Lemma OA.3. We first show that consumer behavior is consistent with the definition
of ky and k. under the price schedule as constructed in Lemma OA.3. For any ky, <1i < k., it suffices
to show that either pr + (T'—t)c; < p; or py > v;, for any t > ;. If p,+ ¢, > vy, for any t < s < T,
then we have p; > vg, > v;. On the other hand, if ps + ¢, < vy, for all £ < s <7, then we have
Pt =DPis1+Ch. =Diaa+2ck. = - =pr+ (T —t)cr, >pr+ (T —t)c; due to ¢; < ¢y, for any ko <i < k..
Next consider any ¢ > k.. In this case, we need to show that either p, <p, 11+ ¢; or pyg + ¢ > v;
for any ¢t <T. If pyi1 + cx, < vy, we have py = pii1 + ek, < pry1 + ¢, for any @ > k.. On the other
hand, if p;11 + ¢, > vi,., we have p, 1 > v; —¢; for any i < k;, and p; < pyy1 + ¢k, < pryq +¢; for any
1> ky, if k; exists. If k; does not exist, simply we have p; 1 > v; — ¢; for any ¢ > k..

We next show that this price policy is optimal. First consider period T'. Based on the definition
of 7;, we have v; — (T — 7;)¢; > pr, for any ko <i < k.. Thus, pr < mln {v — (T —7;)c;} and the

ko <i<
optimal price for period T is given by pr = . rgln {vi = (T'—1;)¢;} — 0. Next we work backwards
and consider period ¢ < T. Consider first the case when p;11 + ¢, < vg.. In this case, we prove
Pt < Pig1 + ¢k, by contradiction. Suppose p; > pyy1 + ci.. Then, we have vy, —p, < vV, — pig1 — Ci.
Combining with the condition p;,; + ¢, < vy, we have vy, — pi1 — ¢, > max{0, v, —p;}. That is,

a customer with valuation vy, is better off purchasing at period ¢+ 1, which contradicts to the fact

that a customer with valuation vy, will not wait. Consequently, the optimal price is p; = p;41 + ¢,
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if piy1 + cx, < vg,. Last consider the case when p;1 + ¢, > vi,. Following a similar approach as

described above, we can show that p; <p;1 +cy,, if k; exists. Thus, if (o, +- - + ) (D1 + k) >

max {(a;+-- -+ ay)v;}, the profit maximizing price is given by p; = piy1 + ¢x,. On the other hand,
cSt<hg

if (g, + -+ ) (Pey1 +cx,) < max {(a; + -+ 4+ a,)v; }, the profit maximizing price is given by
cSi<lky

vy,, where [, = ir%mix{(ai + -4 a,)v}. Ik does not exist, p;y + ¢; > v; for k. <4, then the
c<i<ky

firm could charge the optimal price p, = v;, without worrying about customers’ strategic waiting
behavior. We thus obtain the announced result. [J

Proof of Lemma OA.4. We prove the result by showing that any policy as characterised in
Lemma OA.3 follows a (weakly) markdown pattern. For any given cyclic pricing policy p =
{p1,p2,...,pr}, we show p, > p,;.1, Vt <T —1 by induction. Because a customer with valuation v;,
for any ko <1 < k., will wait to purchase in period T', we have pr < p;, for any t <T — 1. Hence, we
have pr > pr_;. Now suppose that p; .1 > p;12, and next we prove p; > p;.1. Let us consider three
cases.
(a) pra2+ cr, < pir1+ ek, <vg,.. Based on Lemma OA.3, we have p, = p;1 + Cr, > pra2+ Ch, = Pit1-
(b) prao + k. < vk, < Piy1 + k.. Based on Lemma OA.3, we have piy1 = piio + ¢, < Uy, and
p: > vg, . Hence, we can conclude that p; > p;y;.
(¢) Vg, < Pra2 + Cr, < Pis1 + ck,. It is easy to verify that k, > k1 due to p;i1 > piyo. To complete
the proof, we need to further consider three sub-cases.
(cl) k; and k;,; do not exist. In this case, we have p, =p, 11 =v;.
(c2) k; does not exist but k., exists. If p, 11 =w;,,, then we have p, =v; > v, , = p;41 due to the
definitions of [ and ;. If p;y1 = pyyo + ¢, ,, which happens under the condition that (ozkt+1 +- 4
o) (a2 +cryy ) > max {(o+-- 4 ay)vi}, then we have rﬁ&g{{(ai - Fan)vi} > (o, +F

ke<i<kii1

W)Uy sy = (g + o 00) (D2 + Gy ) > . max {(a;+- -+ ay)v;}, where the second inequality
cSt<kiq1

is due to pyo + cx,,, < Uk,,,-The condition rlg%)i({(az + -t a)u > kcéril?é+1{(az + 4o}
implies that [ > k1. Thus, we have p; =v; > vy, | > prya+ Crypy = Pisa-
(c3) ki and kyyq exist. If pryy = vy, then either p; = pyy1 + cx,, which is greater than p;,,, or

p: = vy, which again is greater than p;,, = v, , due to k; > k;y,. Next consider the case when

Di+1 = Dey2 + Chyyy - In this case, either p; = p;y1 + c,, which is greater than p,.;, or p, =v;,. To
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prove p; > pyy1 when p, = v;,, we first prove k; must be greater than k;y, by contradiction. Sup-
pose k; = ki1, then we have v, = v;,, . Combining with the condition that p;11 = py2 + k.,

we have (akt+1 + 4 ) (Prao + th+1) > (ozlt+1 4+ .4+ ozn)vlﬂrl = glggc {(a; + -+ ap)vi} >
cX? t+1

(ryy + -+ @n)(Pes1 + Cx,,, ), which contradicts to p,y1 > pryo. Thus, we have k; > kyy1. Under

this condition, we have kcngl?g(kt{(ai b an)vit > (g, o an)Uk > (g ) (P

Chysr) > kcglgéﬂ{(ai + -+ 4 ay)vi}, where the second inequality is due to p;yo + Cp,; < Uk,

and the last inequality is due to p,41 = piyo + ci,,,- The condition max {(a; + -+ ap)v} >
cSi<kg

, max {(oi + -4 an)v;} implies that I, > ki, leading to p, = vy, > vk, > Peyo + Crpyy = Pigr-
c<i<kiyi

We thus obtain the announced results. [
Proof of Lemma OA.5. We first prove Lemma OA.5(i). With a bit abuse of notation, we denote
the total profit generated by customers with valuation greater than or equal to vy, in period ¢ by

n
7. We first show that, for any ¢, there exists k. <, such that m, < > «;(pr + (T —t)c;,). Consider
=iy

first when p;y1 + ¢, < vg,. In this case, we have p, = p;1 + ¢, < vy, according to Lemma OA.3. As

any customer with valuation greater than or equal to vy, will not wait, the incentive compatibility

constraint is given by p; < pr + (T — t)cx.. Consequently, we have m, = > a;ps < > ai(pr+ (T —

i=ke i=ke
t)cy, ). Second, we consider the case when p; 1 + ¢, > vg, and p, = pi1 + ¢, < vk, . In this case, any
customer with valuation greater than or equal to vy, will buy immediately in period ¢, and thus it
must satisfy that p, < pr+ (T'—t)cy,. Consequently, we have 7, = Xn’; a;pr < Zn]; a;(pr+ (T —t)cy,).
The third case is p;y1 + ¢, > vk, and p, = v;,. In this case, any ;utstomer v;itth valuation greater
than or equal to v;, will buy immediately in period ¢, and thus it must satisfy that p; = v, <
pr+ (T —t)c;,. Consequently, we have 7, = an: opr = an: a;uy, < an: a;(pr+(T'—t)c,). Last consider
i=l i=l i=ly

the case pyy1 + ¢k, > vy, and p; = v;. In this case, any customer with valuation greater than or

equal to v; will buy immediately in period ¢, and thus it must satisfy that p; = v; <pr + (T —t)q.

?

n n n
Consequently, we have m, = > a;p; = > ;v <> ay(pr + (T —t)q).
i=l i=l =l
Recall that 7; is defined as follows. Any type-i customer will leave immediately upon arrival if
she arrives before the 7/" period within a cycle; Otherwise, she will wait till the end of the cycle to

purchase. Next we show that 7;,; <, for any kg <i < k.— 1. Due to ¢;/v; > cy/vy > -+ > ¢, /v,

and v; — (T — 7;)c; > 0, it is easy to verify that “1—t > 2L > % — T _ . which implies that

Cit1=Ci — Ciyl — &
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Viy1 — (T = 1)¢iv1 > v, — (T — 7;)e; > pr. That is, any customer with valuation vy, arriving in
period 7; will wait to purchase in period 7', and thus we have 7, <7, Vi <k.— 1.

Now we are ready to show that the expected profit from an optimal cyclic pricing is bounded
above by the expected profit from an optimal static pricing policy. We first consider the case when
Tiy = 1. As 7,41 <75, we have 7; = 1, for any kg <@ < k.. Hence, the expected profit from an optimal

cyclic pricing policy is bounded above by:

ke—1
=S+ S
i=kg
ke—1
< Z Zai(pT + (T =t)ei,)/T + Z Q;pr
t=1 i=1i; i:ko
T n
SZZai [(T ) }/T-FZ%PT
t=1 i=i; i—ko
u Ck, T-1 -
< T
e {Z a} i T
i=k 0 i=ko
n Ck n
< {Z} D~ (T D),
i=k = ko

where the second inequality is due to ¢; > k. and f}i < %, the third inequality is due to i; >
0

i

k. and Z a;v;, < max {Za vk}, and the last inequality is due to pr < vy, — (T" — 1)cy,.

i—iy 1<k<n

it o { S f 22

1<k<n

< Z @;Ck,, then max {Zavk} kOT L+ Z a;(vg, — (T'— 1)eg,) <

2v
ko i=ko 1<k<n i=kg

Z v, < max {Zaivk}; Otherwise, it is easy to verify that 1max {Zavk} kOT L+

i=kg 1<k<n
n

> a;(vg, — (T'—1)cy,) is increasing in T'— 1. Because of T'—1 < Ckﬂ, we have

i=k

i=kg 0
n
Cko
max E ;U + E (67} ’Uko ]‘)Cko < max E ;U < max E ;U .
1<k<n . 1<k<n 1<k<n -y
1=kq 1=

Next consider the case when 7, > 1. In this case, each cycle can be decomposed into a couple
of separable mini cycles, namely, [1, 7,1 — 1], [Tk.—1, Tke—2 — 1], -+, [Tk, T]. We prove an optimal
cyclic pricing policy reducing to a static pricing policy by showing that the average profit per
period within each mini cycle is no more than the expected profit from an optimal static pricing
policy, i.e., max {Z o vk}. Consider the first mini cycle [1,74._1]. No customers arriving in these

time periods will wait. Customers with valuation greater than or equal to vy, will purchase or leave
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immediately upon arrival, and thus the average profit per period is no more than krg%i( { > vk}

which is less than or equal to max {Z o% vk}. Next consider the last mini cycle [y, T]. Within
this mini cycle, it is as if 7, = 1, and the cycle length is T'— 7, + 1. Based on our preceding
discussion, we know that the expected profit per period is bounded above by the expected profit
from the optimal static pricing policy.

To that end, we only need to consider the mini cycles [r;,1,7; — 1], for any ko < j < k. —2. We

show below that the average profit per period within any mini cycle [r;,1,7; — 1] is bounded above

by:
Ti—1 ke—1
Z /(T = Tjy1) + Z o;pr
t=Tj41 i=j+1
T]71 n ke—1
<) ailpr + (T —t)e,) /(75— 7551) + Y ipr
t=T;41 =0t i=j+1
7i—1
C
Jj+1
<y Zaz[ 00, ] =7y £ apr
t=Tj41 1=0t +1 =741
n
Cjt1 2T — 1, — 75 41 +1
SmaX{Eaiv}] ]2] +E a;pr
1<k<n v
i — Jt+l i=7+1

2T — 1. — 1
< max {Za Vg } Gl 7 TJ+1+ + Z (Vi1 — (T —Tj41)Cj41)

1<k<n Vi1 ~
i=j

< max {Zaﬂ)k} UJ,H (T —7j41) + Z a;(Vj41 = (T = Tj11)cjh1),
- k

J+1 i=j+1

where the second inequality is due to i; > k. and % < %, the third inequality is due to i; > k. >
37 J
j+1 and Z a;v;, < @an{z aivk}, the fourth inequality is due to vj41 — (T'— Tj41)¢j01 > D1y

=iy i=k

n
. . . Cjy
and the last inequality is due to 7;.; < 7; — 1. Because max { > vy } vji =5 Oéivjﬂv;i =
i=j+1

> @;cji1, we know that max {Za Uk } (T Tjv1)+ Z a;(vji1— (T —Tj41)cj41) is increas-
i=j7+1

=5 1<k<n
ing in T'— 7;4;. Combining with the condition that T'— 7,4, < JI
€j

n
Cj+1
max Ea (T —7; +Eav —(T -7 ¢jy1) < max gav
1§k§n{ iV k} ]+1) 7( Jj+1 ( ]+1) J-‘rl [<hon k

v,
J+1 i=j+1

we have

Thus, we obtain Lemma OA.5(i).

Next we prove Lemma OA.5(ii). Consider first the case when 7, = 1. Following a similar approach
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as that of the proof of Lemma OA.5(i), we show that the expected profit from an optimal cyclic

pricing policy is bounded above by:

ke—1
<Z7rt/T+ZalpT
i=kg -
<ZZO[’ pT+ zt /T—l-ZOész
t=1 i=1i¢ i=kg

<D D al(T=)es)/T+ ) aupr

t=1 i=iy i=kg

<ZZO" t)cit)/T+Zai(vko—(T_1>Ck0)

t=1 i=1¢ i=kg

<233 (T - t)ex, /T+Zazvko (T —1)cr,)

=1 i=kg i=kg

where the third inequality is due to i; > k., the fourth inequality is due to pr < wvg, — (T — 1)ck,,
and the fifth inequality is due to ¢;/¢; < kzn: ak/an:‘ o <2 Zn: ak/kﬁ: ay, for any 1 <i<j<n.
= = = =J
Thus, an optimal cyclic pricing policy reduces to a static pricing policy in this case.
Next consider the case when 75, > 1. Let [; = argmin{7; < 74, }, and we denote recursively l,, ;1 =

ko<i<kc

zlxrg min{ﬂ <,,}. The largest properly defined m is denoted by M. As a result, any cycle can be
m<i<ke

decomposed into many separable mini cycles, namely, [1,7,, — 1], [71,,,7i,,_, — 1], = [Ty 7o — 1],
[Tky, T']. We prove an optimal cyclic pricing policy reducing to a static pricing policy by showing that
the average profit per period within each mini cycle is no more than the expected profit per period
from an optimal static pricing, namely, max {Z Q; vk}. Consider the first mini cycle [1,7;,, — 1].
Because only customers with valuation greater than or equal to vy, will either purchase or leave
immediately upon arrival, and no customers arriving in these periods will wait, the average profit
per period is thus no more than kcrr<1%)<(n { > vk} which is no more than 1r£11§1<xn { > a; vk}. Next
consider the last mini cycle [ry,,T"]. This mini cycle effectively reduces to the case as if 7,, = 1 with

a cycle length of T'— 75, +1, and thus we know that the expected profit per period is bounded above

by the expected profit from an optimal static pricing policy based on the preceding discussions.
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Thus, we just need to consider [7; 7,, — 1] for any ko <l,,41 < 5. The average profit per period

m-+17?
within this mini cycle is bounded above by:

Tlmfl ke—1
Z ﬂt/(Tlm m+1 Z Q;pr
t:Tlerl 1= lm+1
Tl — 1 ke—1
< 3 Sl =06/~ )+ S cur
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Tlm n
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‘rlmfl n n
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(2T T1 +1 Tlm+1 n
E : alclm+1+ E : Q; Ulm+1_ T_Tlm+1 m+1 E : QiU s

i=lm 41 i=lm 41 i=lm 11

where the second inequality is due to #; > k., the third inequality is due to pr <, — (T -

m+1

Tlm+1 )clm+1 ’

the fourth inequality is due to ¢;/c; < > ozk/ > ayg, for any 1 <i < j <n, and the
= —

last inequality is due to 7 <, —1. Thus, we obtain the announced result. [J

m—+1
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