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A. Proofs of Results in the Main Body

Proof of Lemma 1. Note that V (pt) = max{v − pt,−c + E[V (P )],0}, which is equivalent to

V (pt) = max{v − pt, [−c+ E[V (P )]]+}. It is easy to see that v − pt is decreasing in pt, and [−c+

E[V (P )]]+ is independent of pt. On the one hand, v − 0 = v > [−c+ E[V (P )]]+, because V (pt) =

max{v− pt,−c+ E[V (P )],0} ≤ v− pt < v. On the other hand, v− v = 0≤ [−c+ E[V (P )]]+. Thus,

there exists a threshold p ∈ (0, v] such that v− pt ≥ [−c+ E[V (P )]]+ if and only if pt ≤ p. Conse-

quently, V (pt) is in the form of Equation (1). �

Proof of Proposition 1. Denote v∗ = max{v′ | E[(v′−P )+]≤ c}. Since no customer would make

a purchase at an infinitely high price, we just consider the support of P as being finite. It is easy

to verify that E[(v′−P )+] is weakly increasing in v′ and eventually strictly increasing in v′ for v′

higher than the upper end of P ’s finite support, E[(0−P )+] = 0< c and lim
v′↗∞

E[(v′−P )+] =∞> c.

Hence, the existence of v∗ is guaranteed.

Consider first when v > v∗. We prove by contradiction that a customer with valuation v would

be willing to wait and eventually purchase a unit of product in a future period. Suppose on the

contrary, the customer would not wait by either purchasing the product now or leaving immediately.

Under the assumption of zero utility from the outside option, the customer would purchase the

product if and only if v ≥ pt. Thus, under the stipulation that the customer would not wait by

either purchasing the product now or leaving immediately, we must have E[V (P )] = E[(v−P )+]. In

such a case, her expected utility from waiting, i.e., −c+E[V (P )], must be less than or equal to 0,

which means that E[(v−P )+]≤ c due to E[V (P )] = E[(v−P )+]. On the other hand, recall that by

definition, v∗ = max{v′ | E[(v′−P )+]≤ c}. Because v > v∗, we have E[(v−P )+]> c, which leads to

a contradiction. Hence, a customer with valuation v > v∗ would be willing to wait and eventually

purchase a unit of product.
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Next, we prove that the customer’s purchase threshold p is equal to v∗, meaning that a customer

with valuation v ≥ v∗ would make a purchase if and only if the price in the focal period is less

than or equal to v∗. First, as shown above, we must have −c+E[V (P )]> 0 when v > v∗. Given a

purchase theshold p (its existence is guranteed by Lemma 1), we have E[V (P )] = F (p)E[v−P |P ≤

p] + F̄ (p)[−c+E[V (P )]], which implies that

E[V (P )] =
F (p)E[v−P |P ≤ p]− c

F (p)
+ c. (OS.1)

Thus, we have v− p− (−c+E[V (P )]) = (−F (p)E[p−P |P ≤ p] + c)/F (p)≥ 0, where the inequality

is guaranteed by Lemma 1. This implies E[(p− P )+] = F (p)E[p− P |P ≤ p]≤ c. As v∗ = max{v′ |

E[(v′ − P )+] ≤ c} by definition, we conclude that v∗ ≥ p. Lastly, we prove by contradiction that

p = v∗. Suppose v∗ > p. Because v − pt ≥ −c + E[V (P )] if and only if pt ≤ p, we have v − v∗ <

−c+ E[V (P )] = (F (p)E[v − P |P ≤ p]− c)/F (p), which is equivalent to F (p)E[v∗ − P |P ≤ p] > c.

Because v∗ > p, we have F (p)E[v∗ − P |P ≤ p] ≤ F (v∗)E[v∗ − P |P ≤ v∗] = E[(v∗ − P )+] ≤ c, which

leads to a contradiction. Hence, the behavior of a customer with valuation v > v∗ should be as

characterized in Proposition 1.

Next consider the case when v ≤ v∗. We first show by contradiction that the customer would

either purchase the product now or leave immediately. Suppose the customer would be willing to

wait, which means that her expected utility from waiting must be greater than zero, i.e., −c+

E[V (P )]> 0. Based on Lemma 1, there exists a threshold p such that the customer would be willing

to wait if and only if the price in the current period is greater than p. Thus Equation (OS.1) still

holds, which implies that −c+E[V (P )] = (F (p)E[v−P |P ≤ p]− c)/F (p)> 0. This is equivalent to

F (p)E[v − P |P ≤ p] > c. Based on Lemma 1, we also know that v − p ≥ −c + E[V (P )] > 0, i.e.,

v > p. Coupling with the increasing monotonicity of F (v′)E[v − P |P ≤ v′] in v′ for any v′ ≤ v,

we have E[(v − P )+] = F (v)E[v − P |P ≤ v] ≥ F (p)E[v − P |P ≤ p] > c, which implies that v > v∗

because E[(v′ − P )+] is increasing in v′ and v∗ = max{v′ | E[(v′ − P )+] ≤ c}. This contracts to

the aforementioned condition that v ≤ v∗. Hence, a customer with valuation v ≤ v∗ would either

purchase the product now or leave immediately. Under the assumption of zero utility from the

outside option, her purchase threshold is simply her valuation v, meaning that the customer would

purchase the product if and only if v≥ pt. We thus obtain the announced results. �
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Proof of Lemma 2. (i) If v > v∗, customers will wait until the price is no more than p= v∗, as

shown in Proposition 1. The probability that customers purchase in the nth period after arrival

is given by
(
F̄ (p)

)n−1
F (p), and if they indeed make a purchase in a period, the firm’s expected

profit is E[P |P ≤ p]. Consequently, the monopolist’s expected profit ex ante is

∞∑
n=1

(
F̄ (p)

)n−1
F (p)E[P |P ≤ p] = lim

n→∞
F (p)E[P |P ≤ p]

1−
(
F̄ (p)

)n
1− F̄ (p)

= E[P |P ≤ p] = E[P |P ≤ v∗],

where the second equality is due to F̄ (p)< 1.

(ii) If v ≤ v∗, customers will either buy with a price no more than v or quit immediately. Con-

sequently, the expected profit is F (v)E[P |P ≤ v]. �

Proof of Lemma 3. Note that pi = max{v′|E[(v′−P )+]≤ ci}, i= L,H. Because E[(v′−P )+] is

increasing in v′ and cL ≥ cH , we have pL ≥ pH . Next, we consider three mutually exclusive but

collectively exhaustive cases: (a1) pL ≥ pH ≥ vH > vL; (b1) vH > pH , vL ≤ pL; (c1) vH > vL > pL ≥

pH .

(a1) pL ≥ pH ≥ vH > vL. Due to Proposition 1, neither customers with a high-valuation nor

customers with a low valuation would wait. Consequently, the firm’s expected profit, as shown in

Lemma 2, is given by

αF (vL)E[P |P ≤ vL] + (1−α)F (vH)E[P |P ≤ vH ]

= αF (vL)E[P |P ≤ vL] + (1−α)[F (vH)−F (vL)]E[P |vL <P ≤ vH ] + (1−α)F (vL)E[P |P ≤ vL]

= F (vL)E[P |P ≤ vL] + (1−α)[F (vH)−F (vL)]E[P |vL <P ≤ vH ]

≤ vLF (vL) + (1−α)vH [F (vH)−F (vL)]≤max{vL, (1−α)vH}F (vH)≤max{vL, (1−α)vH},

where the first inequality is due to E[P |P ≤ vL] ≤ E[vL|P ≤ vL] ≤ vL and E[P |vL ≤ P ≤ vH ] ≤

E[vH |vL ≤ P ≤ vH ] = vH . Thus, in the case when pL ≥ pH ≥ vH > vL, the expected profit from the

optimal randomized pricing is no greater than that from the optimal static pricing policy.

(b1) vH > pH , vL ≤ pL. In this case, customers with a high-valuation will wait until the price

is no higher than pH , but customers with a low valuation will quit the market immediately if the

price is higher than their valuation vL. According to Lemma 2, the monopolist’s expected profit is

given by

αF (vL)E[P |P ≤ vL] + (1−α)E[P |P ≤ pH ].



4

Consider first when pH ≤ vL. Then, we have

αF (vL)E[P |P ≤ vL] + (1−α)E[P |P ≤ pH ]≤ αvLF (vL) + (1−α)pH ≤ αvLF (vL) + (1−α)vL ≤ vL,

where the first inequality is due to E[P |P ≤ vL]≤ E[vL|P ≤ vL]≤ vL and E[P |P ≤ pH ]≤ E[pH |P ≤

vH ] = pH .

Next consider the circumstance when vH > pH > vL. The condition implies that E[P |P ≤ pH ]≤

E[P |P ≤ vH ]. Then, we have

αF (vL)E[P |P ≤ vL] + (1−α)E[P |P ≤ pH ]

≤αF (vL)E[P |P ≤ vL] + (1−α)E[P |P ≤ vH ]≤ αF (vL)

F (vH)
E[P |P ≤ vL] + (1−α)E[P |P ≤ vH ]

=
αF (vL)E[P |P ≤ vL] + (1−α)F (vH)E[P |P ≤ vH ]

F (vH)
≤ max{vL, (1−α)vH}F (vH)

F (vH)
= max{vL, (1−α)vH},

where the second inequality is due to 0<F (vH)≤ 1, and the last inequality is based on the proof

in (a1).

(c1) vH > vL > pL ≥ pH . In this case, based on Proposition 1, both customers with a high-

valuation and customers with a low valuation would be willing to wait. As a result, the expected

profit, as shown in Lemma 2, is given by

αE[P |P ≤ pL] + (1−α)E[P |P ≤ pH ]≤ αpL + (1−α)pH < vL,

where the first inequality is due to E[P |P ≤ pL]≤ pL and E[P |P ≤ pH ]≤ pH , the second inequality

is due to vL > p
L ≥ pH .

We thus obtained the announced results. �

Proof of Lemma 4. Based on Lemma 3, we can restrict our discussion to the situation when

cL < cH . Note that pi = max{v′|E[(v′−P )+]≤ ci}, i=L,H. Because cL < cH implies that pL < pH ,

we need to consider four mutually exclusive but collective exhaustive cases: (a2) vL ≤ pL, vH ≤ pH ;

(b2) vL ≤ pL, vH > pH ; (c2) vL > p
L, vH ≤ pH ; (d2) vL > p

L, vH > p
H .

Under the case (a2), based on Proposition 1, we know that neither high-valuation customers

nor low-valuation customers would wait. Then following a similar approach as in the proof of case

(a1) in Lemma 3, we can show that an optimal static pricing policy dominates randomized pricing
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policies. Under the case (b2), due to Proposition 1, low-valuation customers would never wait but

high-valuation customers would wait in the system with the hope of a favorable price in future

periods. The case is similar to the case (b1) in the proof of Lemma 3, and we can show that an

optimal static pricing policy dominates randomized pricing policies following a similar approach.

Next we show in an auxiliary lemma below that case (c2) cannot happen under the condition

that vL
cL
≤ vH

cH
.

Lemma OS.1. vL
cL
> vH

cH
is a necessary condition for (c2).

Proof of Lemma OS.1. By Proposition 1, (c2) implies that F (vL)E[vL − P |P ≤ vL] = E[(vL −

P )+]> cL and F (vH)E[vH −P |P ≤ vH ] = E[(vH −P )+]≤ cH . Then, we have

cH ≥ F (vH)E[vH −P |P ≤ vH ]>F (vL)E[vH −P |P ≤ vL] = vHF (vL)−F (vL)E[P |P ≤ vL],

and

cL <F (vL)E[vL−P |P ≤ vL] = vLF (vL)−F (vL)E[P |P ≤ vL].

The above two inequalities suggest that

cH
cL

>
vH −E[P |P ≤ vL]

vL−E[P |P ≤ vL]
>
vH
vL
,

where the second inequality is due to (vH −E[P |P ≤ vL])vL − (vL−E[P |P ≤ vL])vH = (vH −

vL)E[P |P ≤ vL]> 0. We thus obtain the announced result. �

Lastly, we show that the optimal static pricing policy outperforms randomized pricing policies

under (d2), i.e., vL > p
L, vH > p

H , and cH
cL
≤ vH

vL
. By Propositions 1, we know that customers would

either purchase immediately or wait. Due to Lemma 2, the corresponding expected profit is given

by

αE[P |P ≤ pL] + (1−α)E[P |P ≤ pH ].

On the one hand, pL = max{v′|E[(v′−P )+]≤ cL}, and then for any v > pL, we have E[(v−P )+]> cL.

Consequently, F (vL)E[vL − P |P ≤ vL] = E[(vL − P )+] > cL due to vL > pL. On the other hand,

pH = max{v′|E[(v′ − P )+]≤ cH}, which implies F (pH)E[pH − P |P ≤ pH ] = E[(pH − P )+]≤ cH . We
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also observe that cH
cL
>

pH

vL
, which can be shown with the same approach as that in the proof of

Lemma OS.1.

Consider first when pH ≤ vL. We have αE[P |P ≤ pL] + (1−α)E[P |P ≤ pH ]≤ αpL + (1−α)pH <

vL ≤max{vL, (1−α)vH}. That is, the firm is worse off under a randomized pricing policy.

Next consider the scenario when pH > vL. We start by showing that F (vL)< cH−cL
pH−vL

. This is true

because

cH − cL >F (pH)E[pH −P |P ≤ pH ]−F (vL)E[vL−P |P ≤ vL]

>F (vL)E[pH −P |P ≤ vL]−F (vL)E[vL−P |P ≤ vL] = (pH − vL)F (vL),

where the first inequality is due to F (vL)E[vL−P |P ≤ vL]> cL and F (pH)E[pH −P |P ≤ pH ]≤ cH ,

and the second inequality is due to pH > vL. As a result, we have

αE[P |P ≤ pL] + (1−α)E[P |P ≤ pH ]≤ αE[P |P ≤ vL] + (1−α)pH

<α

(
vL−

cL
F (vL)

)
+ (1−α)pH <α

(
vL−

cL
cH − cL

(pH − vL)

)
+ (1−α)pH

=α
cH

cH − cL
vL +

(
1−α− αcL

cH − cL

)
pH .

The first inequality is due to pL < vL, the second inequality is due to vLF (vL)− F (vL)E[P |P ≤

vL] = F (vL)E[vL−P |P ≤ vL]> cL, and the third inequality is due to F (vL)< cH−cL
pH−vL

.

If (1−α)−α cL
cH−cL

≤ 0, then we have

α
cH

cH − cL
vL+

(
1−α− αcL

cH − cL

)
pH <α

cH
cH − cL

vL+

(
1−α− αcL

cH − cL

)
vL = vL ≤max{vL, (1−α)vH},

where the first inequality is due to vL < p
H . Otherwise, i.e., if (1−α)−α cL

cH−cL
> 0, we have

α
cH

cH − cL
vL +

(
1−α− αcL

cH − cL

)
pH <α

cH
cH − cL

vL +

(
1−α− αcL

cH − cL

)
cH
cL
vL

=(1−α)
cH
cL
vL ≤ (1−α)vH ≤max{vL, (1−α)vH}.

The first inequality is due to cH
cL
>

pH

vL
, and the second inequality is due to cH

cL
≤ vH

vL
. �

Proof of Proposition 2. Recall the four mutually exclusive but collective exhaustive cases con-

sidered in the proof of Lemma 4: (a2) vL ≤ pL, vH ≤ pH ; (b2) vL ≤ pL, vH > pH ; (c2) vL > pL, vH ≤

pH ; (d2) vL > pL, vH > pH . We already show that a randomized pricing policy cannot outperform

an optimal static pricing policy under (a2) and (b2). Under the case (c2), low-valuation customers
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would make a purchase immediately or wait in the system, while high-valuation customers would

either purchase the product upon arrival or leave immediately. Thus, all we need to show is that

case (d2) is dominated by either (c2) or an optimal static pricing policy.

Based on Proposition 1 and Lemma 2, we can derive the optimal expected profit under case (d2)

by solving the following optimization problem.

max
F (p)

αE[P |P ≤ pL] + (1−α)E[P |P ≤ pH ].

s.t. pL = max{v′|E[(v′−P )+]≤ cL},

pH = max{v′|E[(v′−P )+]≤ cH},

E[(vL−P )+]> cL, E[(vH −P )+]> cH .

(OS.2)

If pH ≤ vL, we have αE[P |P ≤ pL] + (1−α)E[P |P ≤ pH ]≤ αpL + (1−α)pH < vL, which suggests

that the optimal randomized pricing policy under case (d2) reduces to a static pricing policy. Thus

we only need to restrict our attention to the case when pH > vL. Suppose F (p) is an optimal

solution to problem (OS.2). Because no customer would buy at a price greater than vH , the upper

bound of an optimal distribution will be no more than vH , i.e., F (vH) = 1.

Based on Proposition 1 and Lemma 2, the optimal expected profit under case (c2) can be derived

by solving problem (2). We construct a price distribution G(p) as follows: G(p) is the same as F (p)

for any p≤ pH , and it takes one single value of vH for any p > pH , with a probability mass equal

to 1−F (pH). We first show that G(p) is a feasible solution of problem (2). Because G(p) is equal

to F (p) for any p ≤ vL < pH , we have EG[(vL − P )+] > cL and pL = max{v′|E[(v′ − P )+] ≤ cL} =

max{v′|EG[(v′ − P )+]≤ cL}. On the other hand, EG[vH − P |pH < P ≤ vH ] = 0 as G(p) takes only

one value of vH for any p > pH . Consequently, G(vH)EG[vH − P |P ≤ vH ] = G(pH)EG[vH − P |P ≤

pH ] = F (pH)E[vH − P |P ≤ pH ]≤ cH , where the last equality is due to the definition of pH . Thus,

G(p) is a feasible solution of problem (2).

Lastly, we prove that case (d2) is dominated by case (c2) by showing that the expected profit

from F (p) is lower than that from G(p):
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αE[P |P ≤ pL] + (1−α)E[P |P ≤ pH ]

=αE[P |P ≤ pL] + (1−α)F (pH)E[P |P ≤ pH ] + (1−α)(1−F (pH))E[P |P ≤ pH ]

<αE[P |P ≤ pL] + (1−α)F (pH)E[P |P ≤ pH ] + (1−α)(1−F (pH))vH

=αEG[P |P ≤ pL] + (1−α)G(pH)EG[P |P ≤ pH ] + (1−α)(1−G(pH))EG[P |pH <P ≤ vH ]

=αEG[P |P ≤ pL] + (1−α)G(vH)EG[P |P ≤ vH ],

where the inequality is due to pH < vH , and the last equality is due to G(vH) = F (vH) = 1. We thus

obtain the announced result. �

Proof of Lemma 5. Suppose F (p) is a feasible solution for the optimization problem (3). We can

construct another distribution, say G(p), as follows. G(p) is equal to F (p) for any p≤ vL. However,

under G(p), the distribution has only one value, namely vH , above vL, and its corresponding

probability mass is equal to 1− F (vL). Because G(p) is equal to F (p) for any p ≤ vL, it is easy

to verify that G(vL)EG[vL−P |P ≤ vL]> cL holds. On the other hand, EG[vH −P |vL <P ≤ vH ] =

0 as G(p) has only one value of vH for any p > vL. Consequently, G(vH)EG[vH − P |P ≤ vH ] =

G(vL)EG[vH − P |P ≤ vL] + [G(vH)−G(vL)]EG[vH − P |vL < P ≤ vH ] =G(vL)EG[vH − P |P ≤ vL] =

F (vL)E[vH −P |P ≤ vL]≤ F (vH)E[vH −P |P ≤ vH ]≤ cH . Thus, G(p) is also a feasible solution. To

establish the announced result, we next show that the expected profit under G(p) always dominates

that under F (p). That is,

αE[P |P ≤ vL] + (1−α)F (vH)E[P |P ≤ vH ]

=αE[P |P ≤ vL] + (1−α)F (vL)E[P |P ≤ vL] + (1−α)[F (vH)−F (vL)]E[P |vL <P ≤ vH ]

≤αEG[P |P ≤ vL] + (1−α)G(vL)EG[P |P ≤ vL] + (1−α)vH(1−F (vL))

=αEG[P |P ≤ vL] + (1−α)G(vH)EG[P |P ≤ vH ],

where the inequality is due to F (vH) ≤ 1 and E[P |vL < P ≤ vH ] ≤ E[vH |vL < P ≤ vH ] = vH , and

the second equality is due to vH [1−F (vL)] = vH [1−G(vL)] = [G(vH)−G(vL)]EG[P |vL <P ≤ vH ].

The inequality is strict if F (p) takes any value other than vH within the interval (vL, vH ]. We thus

obtain the announced result. �

Proof of Lemma 6. Denote β = F (vL) and U(β) = αvL + (1− α)vH − (1− α)cL − αcL
β
− (1−
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α)β(vH − vL). We first show that U(β) is an upper bound for the expected profit from the opti-

mization problem (3). Suppose F (p) is an optimal solution for (3). Then, the expected profit under

F (p) satisfies

αE[P |P ≤ vL] + (1−α)F (vH)E[P |P ≤ vH ]

=αE[P |P ≤ vL] + (1−α)[F (vL)E[P |P ≤ vL] + (1−F (vL))vH ]

<αvL−
αcL
F (vL)

+ (1−α)[vLF (vL)− cL + (1−F (vL))vH ]

=αvL + (1−α)vH − (1−α)cL−
αcL
β
− (1−α)β(vH − vL),

where β = F (vL). The first equality is due to Lemma 5, and the inequality is due to cL <

F (vL)E[vL−P |P ≤ vL] = vLF (vL)−F (vL)E[P |P ≤ vL].

(i) ∂U(β)

∂β
= αcL

β2
− (1−α)(vH−vL). If

√
αcL

(1−α)(vH−vL)
≥ 1, ∂U(β)

∂β
is guaranteed to be greater than or

equal to 0, because β ≤ 1. That is, U(β) is increasing in β when
√

αcL
(1−α)(vH−vL)

≥ 1. Consequently,

U(β)≤ αvL + (1−α)vH − (1−α)cL−αcL− (1−α)(vH − vL) = vL− cL ≤max{vL, (1−α)vH}.

(ii) Because ∂U(β)

∂β
= αcL

β2
− (1−α)(vH − vL) is decreasing in β, U(β) is concave in β. ∂U(β)

∂β
= 0 is

realized at β =
√

αcL
(1−α)(vH−vL)

. Recall that any feasible solution to Problem (3) satisfies β < cH−cL
vH−vL

.

Consequently, if
√

αcL
(1−α)(vH−vL)

< cH−cL
vH−vL

, the maximum of U(β) is realized at β∗ =
√

αcL
(1−α)(vH−vL)

,

and thus U(β) ≤ U1 = U(β∗). Otherwise, U(β) ≤ U( cH−cL
vH−vL

− δ) = αvL + (1− α)vH − (1− α)cH −

αcL
vH−vL
cH−cL

− η(δ), where limδ↘0 η(δ) = 0. Thus, we obtain the announced results. �

Proof of Proposition 3. Recall that the optimal profit given by Problem (2) is bounded from

above by U1 if
√

αcL
(1−α)(vH−vL)

< cH−cL
vH−vL

, or by U2 if
√

αcL
(1−α)(vH−vL)

≥ cH−cL
vH−vL

. Next we show that

the two-point distribution shown in the theorem is a feasible solution to Problem (2), and the

corresponding profit converges to the upper bounds when δ converges to 0.

For the feasibility, we notice that E[(vL − P )+] = β∗(vL − p∗) = cL + β∗η(δ) > cL, and E[(vH −

P )+] = β∗(vH −p∗) = β∗(vH −vL) + cL+β∗η(δ)≤ cH , which is due to 0<β∗ < cH−cL
vH−vL

and η(δ)↘ 0.

Thus the two-point distribution is a feasible solution to Problem (2).

Next we prove the optimality of the two-point distribution. Consider first when
√

αcL
(1−α)(vH−vL)

<

cH−cL
vH−vL

. The expected profit is given by
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αE[P |P ≤ p∗] + (1−α)F (vH)E[P |P ≤ vH ]

=αvL + (1−α)vH − (1−α)cL−
αcL
β∗
− (1−α)β∗(vH − vL)− [α+ (1−α)β∗]η(δ)

=U1− (α+ (1−α)β∗)η(δ).

Next when
√

αcL
(1−α)(vH−vL)

≥ cH−cL
vH−vL

, the expected profit is given by

αE[P |P ≤ p∗] + (1−α)F (vH)E[P |P ≤ vH ]

=αvL + (1−α)vH − (1−α)cL−
αcL
β∗
− (1−α)β∗(vH − vL)− [α+ (1−α)β∗]η(δ)

=U2−

[
αvL

vH − vL
cH − cL

1
cH−cL
vH−vL

− δ
− (1−α)(vH − vL)

]
δ− [α+ (1−α)β∗]η(δ).

We thus obtain the announced result. �

Proof of Proposition 4. To facilitate the discussion, we first prove an auxiliary lemma as

described below.

Lemma OS.2. (i) The necessary and sufficient conditions for U1 > vL and U1 > (1−α)vH are

given by
√

cL
vH−vL

< 1−
√
α√

1−α and
√

cL
vH−vL

<
√

α
1−α

(√
vH

vH−vL
− 1
)

, respectively;

(ii) The necessary and sufficient conditions for U2 > vL and U2 > (1−α)vH are given by cH
vH−vL

+

αcL
(1−α)(cH−cL)

< 1 and α vLcH−cLvH
cH−cL

> (1−α)cH , respectively.

Proof of Lemma OS.2. (i) U1 − vL = (1− α)(vH − vL)− (1− α)cL − 2
√
α(1−α)cL(vH − vL) =

(1 − α)(vH − vL)
[
1− cL

vH−vL
− 2
√

αcL
(1−α)(vH−vL)

]
. Thus, U1 > vL if and only if

√
cL

vH−vL
< 1−

√
α√

1−α .

On the other hand, U1 − (1 − α)vH = αvL − (1 − α)cL − 2
√
α(1−α)cL(vH − vL) = (1 − α)(vH −

vL)
[

αvL
(1−α)(vH−vL)

− cL
vH−vL

− 2
√

αcL
(1−α)(vH−vL)

]
. Thus, U1 > (1 − α)vH if and only if

√
cL

vH−vL
<√

α
1−α

(√
vH

vH−vL
− 1
)

.

(ii) U2 − vL = (1 − α)(vH − vL) − (1 − α)cH − αcL
vH−vL
cH−cL

= (1 − α)(vH −

vL)
[
1− cH

vH−vL
− αcL

(1−α)(cH−cL)

]
. Thus, U2 > vL if and only if cH

vH−vL
+ αcL

(1−α)(cH−cL)
< 1. On the

other hand, U2 − (1 − α)vH = αvL − (1 − α)cH − αcL
vH−vL
cH−cL

= α vLcH−cLvH
cH−cL

− (1 − α)cH . Thus,

U2 > (1−α)vH if and only if α vLcH−cLvH
cH−cL

> (1−α)cH . �

Now we are ready to prove the main results. Consider first when vL ≥ (1− α)vH . Recall that,

if
√

αcL
(1−α)(vH−vL)

< cH−cL
vH−vL

and
√

αcL
(1−α)(vH−vL)

< 1, the profit with an optimal randomized pricing

policy is U1, based on Lemma 6. The profit with an optimal static pricing policy is vL when
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vL ≥ (1−α)vH . To this end, we only need to compare U1 and vL. Based on Lemma OS.2(i), U1 > vL

if and only if
√

cL
vH−vL

< 1−
√
α√

1−α . Moreover, 1−
√
α√

1−α <
√

1−α
α

, which is due to
√
α(1−

√
α) < 1− α =

(1 +
√
α)(1−

√
α). As such,

√
αcL

(1−α)(vH−vL)
< 1 is guaranteed by the condition

√
cL

vH−vL
< 1−

√
α√

1−α .

If 1 >
√

αcL
(1−α)(vH−vL)

≥ cH−cL
vH−vL

, the profit with an optimal randomized pricing policy is

approximately U2, by Lemma 6. Thus, we only need to compare U2 and vL. According to

Lemma OS.2(ii), U2 > vL if and only if cH
vH−vL

+ αcL
(1−α)(cH−cL)

< 1. Moreover, we can show that

αcL
(1−α)(vH−vL)

< αcL
(1−α)(cH−cL)

because cH−cL
vH−vL

< cH
vH−vL

< 1, where the second inequality is due to

cH
vH−vL

+ αcL
(1−α)(cH−cL)

< 1. Consequently,
√

αcL
(1−α)(vH−vL)

< 1 is guaranteed by the condition cH
vH−vL

+

αcL
(1−α)(cH−cL)

< 1.

Consider next when vL ≤ (1 − α)vH , i.e., αvL ≤ (1 − α)(vH − vL). The profit with an opti-

mal static pricing policy is (1 − α)vH . Based on Assumption (S), we have cL < vL, and thus√
αcL

(1−α)(vH−vL)
<
√

αvL
(1−α)(vH−vL)

≤ 1. Then following a similar approach as described in the preced-

ing paragraphs, we can obtain the conditions that an optimal randomized pricing policy dominates

an optimal static pricing policy. That is, if
√

αcL
(1−α)(vH−vL)

< cH−cL
vH−vL

, the condition is given by√
cL

vH−vL
<
√

α
1−α

(√
vH

vH−vL
− 1
)

; Otherwise, the condition is given by α vLcH−cLvH
cH−cL

> (1−α)cH .

To sum up, an optimal randomized pricing policy outperforms an optimal static pricing policy

if vL
cL
> vH

cH
and the following conditions hold.

(i) vL ≥ (1−α)vH .

(a) If
√

αcL
(1−α)(vH−vL)

< cH−cL
vH−vL

,
√

cL
vH−vL

< 1−
√
α√

1−α ;

(b) Otherwise, cH
vH−vL

+ αcL
(1−α)(cH−cL)

< 1.

(ii) vL < (1−α)vH .

(a) If
√

αcL
(1−α)(vH−vL)

< cH−cL
vH−vL

,
√

cL
vH−vL

<
√

α
1−α

(√
vH

vH−vL
− 1
)

;

(b) Otherwise, α vLcH−cLvH
cH−cL

> (1−α)cH .

When cL is sufficiently small, either the set of conditions (i)-(a) or (ii)-(a) is satisfied, and we

thus obtain the desired result. �

Proof of Corollary 1. Under the optimal randomized pricing policy, the expected profit from

low valuation and high-valuation customers are given by E[P |P ≤ p∗] and F (vH)E[P |P ≤ vH ],
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respectively. The surplus of low-valuation customers is
F (p∗)E[vL−P |P≤p∗]−cL

F (p∗) +cL, according to Equa-

tion (OS.1), and the surplus of high-valuation customers is E[(vH − P )+]. Based on Lemma 5,

F (vH) = 1, and thus F (vH)E[P |P ≤ vH ]+E[(vH −P )+] = vH . Consequently, the total social welfare

under an optimal randomized pricing policy is given by

α

(
E[P |P ≤ p∗] +

F (p∗)E[vL−P |P ≤ p∗]− cL
F (p∗)

+ cL

)
+ (1−α)vH

=α

(
vL−

cL
F (p∗)

+ cL

)
+ (1−α)vH .

When vL < (1−α)vH , the optimal static price is vH and the corresponding social welfare is (1−

α)vH , which is less than α
(
vL− cL

F (p∗) + cL

)
+(1−α)vH . In this case, the surplus of all customers is

equal to zero under the optimal static pricing policy, which is thus less than that under an optimal

randomized pricing policy. On the other hand, when vL ≥ (1−α)vH , the optimal static price is vL

and the corresponding social welfare is αvL+(1−α)vH , which is greater than α
(
vL− cL

F (p∗) + cL

)
+

(1 − α)vH . In this case, the surplus for low-valuation customers is also zero under the optimal

static pricing policy, while customer surplus for high-valuation customers is given by vH − vL.

Recall that, under the optimal randomized pricing policy, the surplus of high-valuation customers

is E[(vH −P )+], which is less than or equal to cH according to the constraint in the optimization

problem (2). Thus, the surplus of high-valuation customers under the optimal randomized pricing

policy would be lower when cH < vH − vL, and we obtain the announced results. �

Proof of Corollary 2. Under the optimal randomized pricing policy, the surplus of low-valuation

customers is
F (p∗)E[vL−P |P≤p∗]−cL

F (p∗) + cL, according to Equation (OS.1), and the surplus of high-

valuation customers is E[(vH − P )+]. Due to Proposition 3,
F (p∗)E[vL−P |P≤p∗]−cL

F (p∗) + cL = vL − p∗ −
F̄ (p∗)
F (p∗)cL, and E[(vH −P )+] = F (p∗)(vH − p∗). Therefore, the difference of the two is given by (vH −

vL) − F̄ (p∗)
(
vH − p∗− cL

F (p∗)

)
. Because vH > vL ≥ p∗ + cL

F (p∗) , the difference in consumer surplus

between high-valuation and low-valuation customers would be less than vH − vL. When vL ≥ (1−

α)vH , the optimal static pricing policy is to charge a fixed price of vL, and thus the difference in

consumer surplus would be exactly vH − vL. We thus obtain the announced result. �

Proof of Proposition 5. We prove the result for the general case with n customer segments. A

fraction αi of customers are of type-i, who value the product at vi and incur per-period waiting time
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ci. Without loss of generality, we assume that c1 < c2 < · · ·< cn. This is an innocuous assumption

as we do not require vi < vj for any i < j. We first prove an auxiliary lemma.

Lemma OS.3. Without loss of generality, we assume that c1 < c2 < · · ·< cn. Consider any deter-

ministic pricing policy. If a customer with valuation vi, for any i∈ {1, . . . , n}, arriving in period 1

purchases in period j, then

(i) any customer with valuation vi arriving in period t∈ {2, . . . , j} will purchase in period j;

(ii) any customer with valuation vi′, for any i′ < i, arriving in period t ∈ {1, . . . , j} will not pur-

chase earlier than period j, should she ever purchase.

Proof of Lemma OS.3. First, we prove Lemma OS.3(i). A customer with valuation vi arriving in

period 1 purchases in period j implies that pj +(j−1)ci = min
t≥1
{pt+(t−1)ci} and pj +(j−1)ci < vi.

As a direct consequence, we have pj + (j − 1)ci = min
t≥t′
{pt + (t− 1)ci}, for any t′ = 2,3 . . . , j. Thus,

all type-i customers arriving in period t∈ [2, j] will purchase in period j.

Next, we show that any customer with valuation v′i, for any i′ < i, arriving in period t ∈ [1, j]

will only purchase in period j or afterwards, should she ever purchase. Because pj + (j − 1)ci ≤

pt + (t− 1)ci for any t≤ j, we have pj − pt ≤ (t− j)ci ≤ (t− j)ci′ for any i′ < i, which implies that

pj + (j− 1)ci′ ≤ pt + (t− 1)ci′ . We thus obtained the announced result. �

Note that under any deterministic pricing policy, a customer upon arrival would either leave

immediately without purchasing or choose to purchase a unit of the product (either immediately or

in a future period). We first show that under any deterministic pricing policy, there exists a cutoff

period, say period T , such that all customers arriving before or during period T would have left by

the end of period T . Without loss of generality, suppose type-i is the lowest type of customers who

would make a purchase at some point under such a pricing policy. That is, any customer of type-i,

i < i, always leaves immediately. Then our preceding statement that any customer arriving before

or during period T would have left by the end of the period holds automatically for customers of

type-i, for any i < i.

Consider a customer with valuation vi. Suppose that ti ≥ 1 is the first period that a customer with

valuation vi would choose to purchase the product. That is, all customers with valuation vi arriving
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before period ti would leave immediately without purchasing. Denote the period in which the type-i

customer arriving in period ti makes the purchase as T . Based on Lemma OS.3(i), any customer

with valuation vi arriving in period t ∈ {ti + 1, . . . , T} will make a purchase in period T . We first

prove by contradiction that any customer with valuation vi, i ∈ {i+ 1, . . . , n}, arriving in period

t ∈ {ti, . . . , T} would make a purchase no later than period T , should she ever purchase. Suppose

on the contrary, a customer with valuation vi′ , i
′ ∈ {i+ 1, . . . , n}, arriving in period t′ ∈ {ti, . . . , T},

would make a purchase in period T ′ > T . Then Lemma OS.3(ii) would imply that any customer

with valuation vi arriving in period t′ will not purchase earlier than period T ′, which contradicts

with the aforementioned result. Thus, any type-i customer, i≥ i, arriving between period ti and

period T would have left (with or without purchasing) by the end of period T .

Next we show by contradiction that any customer with valuation vi, i∈ {i+1, . . . , n}, arriving in

period t∈ {1, . . . , ti− 1} would make a purchase no later than period T , should she ever purchase.

Suppose a customer with valuation vi′ , i
′ ∈ {i+1, . . . , n}, arriving in period t′ ∈ {1, . . . , ti−1} would

make a purchase in period T ′ > T . By Lemma OS.3(i), any customer with valuation vi′ arriving

in period t ∈ {ti, . . . , T} would make a purchase in period T ′, which however contradicts with the

result in the preceding paragraph. Thus, any type-i customer, i≥ i, arriving between period 1 and

period ti− 1 would have left (with or without purchasing) by the end of period T .

Therefore, under any deterministic pricing policy, there exists a period T such that all customers

arriving between period 1 and period T would have left by the end of period T . This statement also

holds for, a fortiori, any optimal deterministic pricing policy, say p∗ = {p∗t}t∈N. Following a similar

approach, we can show that starting from period T + 1, there exists a T ′ such that all customers

arriving between period T + 1 and period T +T ′ would have left by the end of period T +T ′. Due

to the optimality of the pricing policy, we must have T = T ′ and pt = pT+t, t∈ {1, . . . , T}, and thus

we obtain the announced result. �

Proof of Lemma 7. Consider the scenario when cL ≥ cH . If low-valuation customers arriving in

period t would make a purchase with price pt′ ≤ vL, then high-valuation customers arriving in the

same period would also pay no more than pt′ because pt′ + (t′ − t)cH ≤ pt′ + (t′ − t)cL ≤ vL < vH .

In this case, πt(p)≤ vL. On the other hand, if low-valuation customers in period t choose to leave
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without purchasing, then the firm’s profit is bounded below by (1−α)vH , i.e., πt(p)≤ (1−α)vH .

Therefore, Π(p) = 1
T

T∑
t=1

πt(p)≤max{vL, (1−α)vH}. �

Proof of Proposition 6. Suppose p = {p1, p2, . . . , pT} is an optimal cyclic pricing policy where

some high-valuation customers would wait. Without loss of generality, we assume that high-

valuation customers arriving in period 1 would wait and purchase in period j > 1. That is, pj +

(j− 1)cH = min{p1, p2 + cH , . . . , pT + (T − 1)cH} and pj + (j− 1)cH < vH . As a direct consequence,

we have pj + (j− t)cH = min{pt, pt+1 + cH , . . . , pT + (T − t)cH}, for any t= 2,3 . . . , j. Next we show

that any high-valuation customers arriving in period t, where 1≤ t≤ j, would always purchase in

period j. Clearly, for a customer arriving in period t, purchasing in period j dominates the option

of purchasing in any period between t and T . To this end, we need to show that the customer

is worse off if she purchases in any period between T + 1 and T + t− 1. Due to pj + (j − 1)cH =

min{p1, p2 + cH , . . . , pT + (T − 1)cH}, we have pj + (j − 1)cH ≤ pt′ + (t′ − 1)cH , t′ = 1,2, . . . , t− 1.

Coupling with the fact that pt′ = pT+t′ , we have pj +(j− t)cH ≤ pt′+(t′− t)cH = pT+t′+(t′− t)cH <

pT+t′ + (T + t′ − t)cH . As a result, any high-valuation customer arriving in period t ∈ [1, j] would

make a purchase in period j.

Next we show that any low-valuation customer arriving in period t ∈ [1, j] would also purchase

in period j. We restrict our discussion to the case when cH > cL because the optimal cyclic pricing

policy degenerates into a static pricing policy when cH ≤ cL, based on Lemma 7. Because pj + (j−

1)cH ≤ pt + (t− 1)cH for any t≤ j, we have pj − pt ≤ (t− j)cH < (t− j)cL, which implies that pj +

(j−1)cL ≤ pt+(t−1)cL. That is, low-valuation customers arriving in period t∈ [1, j] would make a

purchase in period j and afterwards if they would ever purchase. Now we show that low-valuation

customers arriving in period t∈ [1, j] will never purchase after period j by contradiction. Suppose

low-valuation customers purchase in period j′ > j. Let us denote s= arg min
1≤i≤j−1

{pi+(i−1)cH}. Recall

that pj + (j − 1)cH = min{p1, p2 + cH , . . . , pT + (T − 1)cH}, then pj + (j − 1)cH ≤ ps + (s− 1)cH .

However, if pj + (j − 1)cH = ps + (s− 1)cH , note s < j, with tie-breaking rule, the high-valuation

customers arriving in period t∈ [1, s] would make a purchase in period s, which contradicts with the

result that any high-valuation customer arriving in period t∈ [1, j] would make a purchase in period

j from the previous paragraph. Therefore, we have pj + (j − 1)cH < ps + (s− 1)cH . Then, we can
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design a new pricing policy p′, which is exactly the same as p except for p′s. We let p′s+(s−1)cH =

pj +(j−1)cH , and then p′s > pj because s < j. Now we will show that the behavior of low-valuation

customers under the new policy is exactly the same as before, however, the firm’s profit from

high-valuation customers would be higher with p′. Consider the low-valuation customers’ behavior,

since low-valuation customers purchase in period j′ > j under policy p, thus pj′ + (j′ − 1)cL =

min{p1, p2 + cL, . . . , pT + (T − 1)cL}. Then, note s < j, we have pj′ + (j′ − 1)cL ≤ pj + (j − 1)cL =

pj+(j−1)cH−(j−1)(cH−cL) = p′s+(s−1)cH−(j−1)(cH−cL)< p′s+(s−1)cH−(s−1)(cH−cL) =

p′s + (s− 1)cL. As a result, we have p′j′ + (j′ − 1)cL = min{p′1, p′2 + cL, . . . , p
′
T + (T − 1)cL} because

p′ is exactly the same as p except for p′s. Then low-valuation customers arriving in period t∈ [1, j]

will also purchase in period j′ under the new policy. It is easy to see p′j′+T + (j′ + T − t)cL =

min{p′T+1 + (T + 1− t)cL, p′T+2 + (T + 2− t)cL, . . . , p′2T + (2T − t)cL} for t= j+ 1, j+ 2 . . . , T . Then

low-valuation customers arriving in period t∈ [j+ 1, T ] will purchase in a period between period t

and T or in period j′+ T under policy p′, which is as same as that under policy p. Consider the

high-valuation customers, recall that p′s+(s−1)cH = pj +(j−1)cH = min{p1, p2 +cH , . . . , pT +(T −

1)cH}, then the high-valuation customers arriving in period t∈ [1, s] purchase in period s with price

p′s > pj by tie-breaking rule under policy p′. And the high-valuation customers arriving in period

t∈ [s+1, j] still purchase in period j. It is easy to see p′s+T + (s+T − t)cH = p′j+T +(j+T − t)cH =

min{p′T+1 + (T + 1− t)cH , p′T+2 + (T + 2− t)cH , . . . , p′2T + (2T − t)cH} for t= j+ 1, j+ 2 . . . , T . Then

high-valuation customers arriving in period t∈ [j+1, T ] will purchase in a period between period t

and T or in period s+T under policy p′. For the first case, the behavior of high-valuation customer

is as same as that under policy p. For the second case, high-valuation customers arriving in period

t ∈ [j + 1, T ] will purchase in period j + T with price pj+T = pj < p′s = p′s+T under policy p. Thus

the firm’s profit from high-valuation customers would be higher or equal to that under policy p.

The result contradicts with the assumption that p is an optimal cyclic pricing policy. Thus we

conclude that low-valuation customers arriving in period t∈ [1, j] also purchase in period j.

Following the same approach, we can show that if high-valuation customers arriving in period

j+1 choose to purchase in period j+k, then all customers arriving in period t∈ [j+1, j+k] will pur-

chase in period j+k. That is, the cyclic policy p can be decomposed into many mini cycles. Without
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of loss generality, we assume that there are m mini cycles, where the length of each mini cycle is

denoted by nl, l= 1, . . . ,m and
m∑
l=1

nl = T . Denote the profit from customers who made a purchase

in period t by π̃t(p). Then, Π(p) = [n1π̃n1(p) +n2π̃n1+n2(p) + · · ·+nmπ̃n1+n2+···+nm(p)]/T . Denote

π̃n1+n2+···+nl∗ (p) = max{π̃n1+n2+···+nl(p), l= 1,2, . . . ,m}. Then, we have Π(p)≤ π̃n1+n2+···+nl∗ (p).

Last, we show that p cannot be an optimal cyclic pricing policy by contradiction. If p is an

optimal cyclic pricing policy, then Π(p)≥max{vL, (1−α)vH} because a static pricing policy is a

special case of cyclic pricing policies. The analysis in preceding paragraphs shows that all customers

arriving in period t∈ [1, j] would make a purchase in period j under policy p. Thus, for any t≤ j,

if low-valuation customers purchase in period j, π̃t(p) = pj < vL; otherwise, only high-valuation

customers would make a purchase in period j, and thus π̃t(p) = (1−α)pj ≤ (1−α)vH . Therefore,

the average expected profit from this mini cycle cannot exceed max{vL, (1 − α)vH}, and thus

Π(p)≤ π̃n1+n2+···+nl∗ (p)<max{vL, (1−α)vH}, which contradicts to the optimality of p. �

Proof of Proposition 7. Suppose p = {p1, p2, . . . , pT} is an optimal cyclic pricing policy. Let us

denote by pLmin = min{p1, p2 + cL, . . . , pT + (T − 1)cL}, and tLmin the earliest time period such that

ptL
min

+(tLmin−1)cL = pLmin. Following the same approach as that in the proof of Proposition 6, we can

show that any low-valuation customer arriving in period t∈ {1,2, . . . , tLmin} will purchase in period

tLmin with price ptL
min

. Thus, ptL
min

< vL− (tLmin−1)cL because any low-valuation customer arriving in

period 1 purchases in period tLmin. On the other hand, high-valuation customers will not wait under

an optimal cyclic pricing policy as shown in Proposition 6. Thus, pt′ ≤ ptL
min

+ (tLmin− t′)cH , where

t′ ∈ {1,2 . . . , tLmin}. Otherwise, high-valuation customers would be better off postponing purchase

until period tLmin. Because pt′ ≤ vH , we have

pt′ ≤min{vH , ptL
min

+ (tLmin− t′)cH}<min{vH , vL− (tLmin− 1)cL + (tLmin− t′)cH}

= vH − [vH − vL + (tLmin− 1)cL− (tLmin− t′)cH ]+.

Thus, the profit in the first tLmin is bounded from above by

tLmin∑
t=1

πt(p) = (1−α)(p1 + p2 + · · ·+ ptL
min

) +αtLminptL
min

< (1−α)

tLmin∑
i=1

(vH − [vH − vL + (tLmin− 1)cL− (tLmin− t′)cH ]+) +αtLmin(vL− (tLmin− 1)cL).
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The upper bound can be approximated by pt′ = vH − [vH − vL + (tLmin − 1)cL + δ − (tLmin − t′)cH ]+

for t′ = 1,2 . . . , tLmin. It is easy to verify that p1 ≥ p2 ≥ · · · ≥ ptL
min

. Furthermore, we have ptL
min

=

vH − [vH − vL + (tLmin − 1)cL + δ − (tLmin − tLmin)cH ] = vL − (tLmin − 1)cL − δ and thus ptL
min

+ (tLmin −

1)cL = vL − δ. For any t′ ∈ {1,2 . . . , tLmin − 1}, pt′ is equal to either vH or vH − [vH − vL + (tLmin −

1)cL + δ − (tLmin − t′)cH ] = vL − (tLmin − 1)cL + (tLmin − t′)cH − δ. If pt′ = vH , then pt′ + (t′ − 1)cL =

vH + (t′ − 1)cL > vL − δ. On the other hand, if pt′ = vL − (tLmin − 1)cL + (tLmin − t′)cH − δ, then

pt′ + (t′ − 1)cL = vL + (tLmin − t′)(cH − cL)− δ, which is again greater than vL − δ because t′ < tLmin

and cH > cL. Thus all low type customers will wait until period tLmin to purchase. We can then

follow the same approach and show that optimal prices from period tLmin + 1 onward are simply

replications of {p1, p2, . . . , ptL
min
}. Thus, T = tLmin, and the optimal expected profit under policy p is

given by Π(p) = 1
T

T∑
t=1

πt(p). �

Proof of Corollary 3. (i) Based on Proposition 7, the profit from an optimal cyclic pricing policy

is given by

Π(T ) = (1−α)

T∑
t′=1

vH − [vH − vL + (T − 1)cL + δ− (T − t′)cH ]+

T
+α(vL− (T − 1)cL− δ)

< (1−α)

T∑
t′=1

[vL− (T − 1)cL + (T − t′)cH ]

T
+α(vL− (T − 1)cL)

= (1−α)
T − 1

2
cH + (vL− (T − 1)cL)≤ vL ≤max{vL, (1−α)vH},

where the first inequality is due to δ > 0 and [vH − vL + (T − 1)cL + δ− (T − t′)cH ]+ ≥ vH − vL +

(T − 1)cL + δ− (T − t′)cH , and the second inequality is due to cH/cL ≤ 2/(1−α). A static pricing

policy can achieve a profit of max{vL, (1−α)vH}, with either the volume strategy of pricing at vL

or the margin strategy of pricing at vH . Thus we obtain the announced result.

(ii) Based on Proposition 7, the profit from an optimal cyclic pricing policy is given by

Π(T ) = (1−α)

T∑
t′=1

vH − [vH − vL + (T − 1)cL + δ− (T − t′)cH ]+

T
+α(vL− (T − 1)cL− δ)

< (1−α)

[
T − 1

T
vH +

1

T
(vL− (T − 1)cL)

]
+α(vL− (T − 1)cL)≡R(T ),

where the first inequality is due to δ > 0 and vH− [vH−vL+(T −1)cL+δ−(T −t′)cH ]+ ≤ vH for t′ ≤
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T −1. Taking the first order derivative with respect to T , we have R′(T ) = (1−α) vH−vL−cL
T2 −αcL,

which is no more than 0 when vH − vL ≤ cL. Now we consider cL < vH − vL ≤ cL/(1−α), then

R′(T ) = (1−α)
vH − vL− cL

T 2
−αcL ≤ (1−α)(vH − vL− cL)−αcL ≤ 0,

where the first inequality is due to T ≥ 1, the second inequality is due to vH − vL ≤ cL/(1− α).

Hence, R(T ) is decreasing in T . Consequently, Π(T ) < R(T ) ≤ R(1) = vL ≤max{vL, (1− α)vH}.

Thus we obtain the announced result. �

Proof of Proposition 8. First, we show that if an optimal cyclic pricing policy is in the form

of the first T − 1 periods priced at vH and the last period priced at vL − (T − 1)cL − δ, then it

is always better than an optimal randomized pricing policy. Moreover, under the conditions that

vH − vL > cL/(1−α) and vH − vL < cH
/(

1 + 1
2

√
1−α
α

)
, the optimal cyclic pricing policy is in this

form. Suppose a cyclic pricing policy is in the form of the first T − 1 periods priced at vH and the

last period priced at vL − (T − 1)cL − δ, by the proof of Corollary 3 (ii), then the profit of this

policy is Π(T ) = R(T )− (1− α) 1
T
δ − αδ. It is easy to verify that R′(T ) is decreasing in T when

vH −vL > cL/(1−α)> cL, and thus we conclude that R(T ) is concave, with its maximum achieved

at T1 =
√

(1−α)(vH−vL−cL)

αcL
. Since a cyclic length should be an integer, the maximum of R(T ) is thus

given by max{R(bT1c),R(bT1c+1)}, where bxc represents the greatest integer that is no more than

x. Note that max{R(bT1c),R(bT1c+1)} is an upper bound of the profit of an optimal cyclic pricing

policy. Let T = bT1c or T = bT1c+1, then this cyclic pricing policy is asymptotically optimal. Note

R(T ) is concave and decreasing when T ≥ T1, then R(bT1c+ 1)≥R(T1 + 1) since T1 + 1≥ bT1c+ 1.

Consequently, max{R(bT1c),R(bT1c+ 1)} ≥R(T1 + 1), i.e., R(T1 + 1) is a lower bound of the profit

of an optimal cyclic pricing policy. Hence, we have

R(T1 + 1) = (1−α)

[
T1

T1 + 1
vH +

1

T1 + 1
(vL−T1cL)

]
+α(vL−T1cL)

= αvL + (1−α)vH − (1−α)cL−αT1cL− (1−α)
1

T1 + 1
(vH − vL− cL)

>αvL + (1−α)vH − (1−α)cL−αT1cL− (1−α)
1

T1

(vH − vL− cL)

= αvL + (1−α)vH − (1−α)cL− 2
√
α(1−α)cL(vH − vL− cL)

>αvL + (1−α)vH − (1−α)cL− 2
√
α(1−α)cL(vH − vL) =U1,
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where the first inequality is due to T1 > 0 and vH−vL > cL/(1−α)> cL, the second inequality is due

to cL > 0, the second equality is due to T1 =
√

(1−α)(vH−vL−cL)

αcL
. Based on Lemma 6, the expected

profit of an optimal randomized pricing policy is either U1 or U2. Note that U1 ≥U2. Now we will

prove vH − vL + (T − 1)cL + δ− (T − t′)cH ≤ 0 for t′ = 1,2, . . . , T − 1 when T = bT1c or T = bT1c+ 1

under the condition vH −vL < cH
/(

1 + 1
2

√
1−α
α

)
, which induces the cyclic pricing policy is in the

form of the first T − 1 periods priced at vH and the last period priced at vL− (T − 1)cL− δ. Thus,

we have

vH −vL+ (T −1)cL+ δ− (T − t′)cH < vH −vL+T1cL− cH ≤ vH −vL+
1

2

√
1−α
α

(vH −vL)− cH < 0,

where the first inequality is due to δ > 0, T = bT1c or T = bT1c+1, t′ ≤ T −1, the second inequality

is due to T1cL =
√

(1−α)cL(vH−vL−cL)

α
is maximized at cL = (vH − vL)/2, the third inequality is due

to vH − vL < cH
/(

1 + 1
2

√
1−α
α

)
. Hence, we get the announced result of Proposition 8(i).

Next, we show under the conditions that vH − vL > cL/(1− α) and vH − vL is higher than a

threshold, an optimal randomized pricing policy is always better. Since the optimal cyclic pricing

policy is in the form of the prices staying constant at vH for some time, dropping by a size no more

than cH and then dropping by a size of exactly cH to the end-of-cycle price vL− (T − 1)cL− δ by

Proposition 7. By the previous paragraph, we know that if an optimal cyclic pricing policy is in the

form of the first T −1 periods priced at vH and the last period priced at vL− (T −1)cL− δ, then it

is always better than an optimal randomized pricing policy. Therefore, if an optimal randomized

pricing policy is always better, then the optimal cyclic pricing policy should be in the general form

of a series of markdowns as illustrated in Figure 2(a). By Corollary 3(i), we just need to consider

the case cH/cL > 2/(1−α). Based on Proposition 7, the profit from an optimal cyclic pricing policy

is given by
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Π(T ) = (1−α)

T∑
t′=1

vH − [vH − vL + (T − 1)cL + δ− (T − t′)cH ]+

T
+α(vL− (T − 1)cL− δ)

< (1−α)

T∑
t′=1

vH − [vH − vL + (T − 1)cL− (T − t′)cH ]+

T
+α(vL− (T − 1)cL)

< (1−α)

∫ T
0
vH − [vH − vL + (T − 1)cL− (T − t)cH ]+dt

T
+α(vL− (T − 1)cL)

= (1−α)vH +α(vL− (T − 1)cL)− (1−α)
[vH − vL + (T − 1)cL]2

2TcH
≡H(T ),

where the first inequality is due to δ > 0, and the second is due to vH − [vH − vL + (T − 1)cL −

(T − t)cH ]+ being monotonically decreasing in t. Taking the first order derivative with respect

to T , we have H ′(T ) = −αcL + (1− α) (vH−vL−cL)2

2cHT
2 − (1− α)

c2L
2cH

. It is easy to verify that H ′(T )

is decreasing in T , and thus we conclude that H(T ) is concave, with its maximum achieved at

T2 =
√

(1−α)(vH−vL−cL)2

2αcLcH+(1−α)c2
L

. The upper bound for the profit of a cyclic pricing policy is thus given by

H(T2) = αvL + (1−α)vH −α(T2− 1)cL−αT2cL− (1−α)
T2c

2
L

cH
− (1−α)

cL
cH

(vH − vL− cL).

Based on Lemma 6, the expected profit of an optimal randomized pricing policy is either U1 or U2.

Note that U1 ≥U2 and U2 = αvL + (1−α)vH − (1−α)cH −αcL vH−vLcH−cL
. Now we show H(T2)<U2 if

vH−vL is higher than a threshold. First, we show T2 >
vH−vL
cH−cL

if vH−vL is higher than a threshold.

Since T2 − vH−vL
cH−cL

=
√

1−α
2αcLcH+(1−α)c2

L
(vH − vL) − vH−vL

cH−cL
−
√

1−α
2αcLcH+(1−α)c2

L
cL, it is sufficiently to

show T2 − vH−vL
cH−cL

is increasing in vH − vL. In other words, (1−α)

2αcLcH+(1−α)c2
L
> 1

(cH−cL)2
, which is

equivalent to (1−α)(c2
H−2cLcH)> 2αcLcH . It is easy to verify (1−α)(c2

H−2cLcH)> 2αcLcH when

cH/cL > 2/(1−α). Consequently, we have −αT2cL <−αcL vH−vLcH−cL
. Hence, a sufficient condition for

H(T2)<U2 is given by

−α(T2− 1)cL− (1−α)
T2c

2
L

cH
− (1−α)

cL
cH

(vH − vL− cL)<−(1−α)cH .

Note the left hand of the inequality is decreasing in vH − vL when cH and cL are given. In other

words, there is a threshold on vH − vL above which the inequality holds. We thus obtain the

announced result of Proposition 8(ii). �

Proof of Proposition 9. We first prove an auxiliary lemma below, which gives an upper bound

for Problem (4).
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Lemma OS.4. Let ∆̃R =
√

αγcL
(1−α)(vH−vL)−α(1−γ)vL

.

(i) When (1−α)(vH − vL)≤ α(1− γ)vL +αγcL, the optimal expected profit from (4) is no more

than that from an optimal static pricing policy;

(ii) When (1−α)(vH − vL)>α(1− γ)vL +αγcL, i.e., ∆̃R < 1,

(a) if ∆̃R <
cH−cL
vH−vL

, the optimal expected profit from (4) is no more than Ũ1 ≡ αγvL + (1−

α)vH − (1−αγ)cL− 2[(1−α)(vH − vL)−α(1− γ)vL]∆̃R;

(b) otherwise, the optimal expected profit from (4) is no more than Ũ2 ≡ αγvL + (1−α)vH −

α(1− γ)cL− (1−α)cH −αγcL vH−vLcH−cL
+α(1− γ)vL

cH−cL
vH−vL

.

Proof of Lemma OS.4. Denote β = F (vL) and Ũ(β) = αγvL + (1−α)vH − (1−αγ)cL− αγcL
β
−

(1− α)β(vH − vL) + α(1− γ)βvL. We first show that Ũ(β) is an upper bound for the expected

profit from the optimization problem (4). Suppose F (p) is an optimal solution for (4). Then, the

expected profit under F (p) satisfies

αγE[P |P ≤ pL] + (1−α)F (vH)E[P |P ≤ vH ] +α(1− γ)F (vL)E[P |P ≤ vL]

≤αγE[P |P ≤ vL] + (1−α)F (vH)E[P |P ≤ vH ] +α(1− γ)F (vL)E[P |P ≤ vL]

=αγE[P |P ≤ vL] + (1−α)[F (vL)E[P |P ≤ vL] + (1−F (vL))vH ] +α(1− γ)F (vL)E[P |P ≤ vL]

<αγvL−
αγcL
F (vL)

+ (1−α)[vLF (vL)− cL + (1−F (vL))vH ] +α(1− γ)[vLF (vL)− cL]

=αγvL + (1−α)vH − (1−αγ)cL−
αγcL
β
− (1−α)β(vH − vL) +α(1− γ)βvL,

where β = F (vL). The first inequality is due to pL ≤ vL, the second inequality is due to cL <

E[(vL−P )+] = vLF (vL)−F (vL)E[P |P ≤ vL], and the first equality is due to Lemma 5, which also

holds for problem (4) by following a similar proof. Taking the derivative of Ũ(β) with respect to

β, we have ∂Ũ(β)

∂β
= αγcL

β2
− (1−α)(vH − vL) +α(1− γ)vL.

(i) If (1 − α)(vH − vL) ≤ α(1 − γ)vL + αγcL, ∂Ũ(β)

∂β
is guaranteed to be greater than or equal

to 0 because β ≤ 1. That is, Ũ(β) is increasing in β when (1− α)(vH − vL)≤ α(1− γ)vL + αγcL.

Consequently, Ũ(β)≤ Ũ(1) = αγvL+(1−α)vH−(1−αγ)cL−αγcL−(1−α)(vH−vL)+α(1−γ)vL =

vL− cL ≤max{vL, (1−α)vH}.

(ii) If (1 − α)(vH − vL) > α(1 − γ)vL + αγcL, Ũ(β) is concave in β. ∂Ũ(β)

∂β
= 0 is realized

at β =
√

αγcL
(1−α)(vH−vL)−α(1−γ)vL

. Recall that any feasible solution to problem (4) satisfies β <
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cH−cL
vH−vL

. Consequently, if
√

αγcL
(1−α)(vH−vL)−α(1−γ)vL

< cH−cL
vH−vL

, the maximum of Ũ(β) is realized at β̃∗ =√
αγcL

(1−α)(vH−vL)−α(1−γ)vL
, and thus Ũ(β)≤ Ũ1 = U(β̃∗). Otherwise, Ũ(β)≤ Ũ( cH−cL

vH−vL
− δ) = αγvL +

(1−α)vH −α(1− γ)cL− (1−α)cH −αγcL vH−vLcH−cL
+α(1− γ)vL

cH−cL
vH−vL

− η(δ), where limδ↘0 η(δ) = 0.

Thus, we obtain the announced results. �

Lemma OS.4 shows that the optimal profit given by problem (4) is bounded below by Ũ1 if√
αγcL

(1−α)(vH−vL)−α(1−γ)vL
< cH−cL

vH−vL
, or by Ũ2 if

√
αγcL

(1−α)(vH−vL)−α(1−γ)vL
≥ cH−cL

vH−vL
. Next we show that

the two-point distribution shown in the theorem is a feasible solution to problem (4), and the

corresponding profit converges to the upper bounds when δ converges to 0.

For the feasibility, we notice that E[(vL−P )+] = β̃∗(vL − p̃∗) = cL + β̃∗η(δ) > cL, and

E[(vL−P )+] = β̃∗(vH − p̃∗) = β̃∗(vH − vL) + cL + β̃∗η(δ) ≤ cH , which is due to β̃∗ < cH−cL
vH−vL

and

η(δ)↘ 0. Thus the two-point distribution is a feasible solution to problem (4).

Next we prove the optimality of the two-point distribution. Consider first when√
αγcL

(1−α)(vH−vL)−α(1−γ)vL
< cH−cL

vH−vL
. The expected profit is given by

αγE[P |P ≤ p̃∗] + (1−α)F (vH)E[P |P ≤ vH ] +α(1− γ)F (vL)E[P |P ≤ vL]

=αγvL + (1−α)vH − (1−αγ)cL−
αγcL

β̃∗
− (1−α)β̃∗vH + (1−αγ)β̃∗vL− [αγ+ (1−αγ)β̃∗]η(δ)

=Ũ1− [αγ+ (1−αγ)β̃∗]η(δ).

Next when
√

αγcL
(1−α)(vH−vL)−α(1−γ)vL

≥ cH−cL
vH−vL

, the expected profit is given by

αγE[P |P ≤ p̃∗] + (1−α)F (vH)E[P |P ≤ vH ] +α(1− γ)F (vL)E[P |P ≤ vL]

=αγvL + (1−α)vH − (1−αγ)cL−
αγcL

β̃∗
− (1−α)β̃∗vH + (1−αγ)β̃∗vL− [αγ+ (1−αγ)β̃∗]η(δ)

=Ũ2−
[
αγvL

vH − vL
cH − cL

1
cH−cL
vH−vL

− δ
− (1−α)(vH − vL) +α(1− γ)

]
δ− [αγ+ (1−αγ)β̃∗]η(δ).

We thus obtain the announced result. �

Proof of Corollary 4. We first consider the monotonicity of β̃∗ and p̃∗ with respect to γ. Note

that

∂∆̃2
R

∂γ
=

αcL[(1−α)vH − vL]

[(1−α)(vH − vL)−α(1− γ)vL]2
.

Thus, ∆̃R is increasing in γ if vL ≤ (1−α)vH , and decreasing in γ otherwise. As a direct consequence,

both β̃∗ = min
{

∆̃R,
cH−cL
vH−vL

− δ
}

and p̃∗ = vL− cL
β̃∗
− η(δ) are increasing in γ if vL ≤ (1−α)vH , and

decreasing in γ otherwise.
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We next consider the monotonicity of the expected profit from the optimal randomized pricing

policy with respect to γ. Based on Lemma OS.4, we know that the optimal expected profit is

bounded above by either Ũ1 or Ũ2. First taking the derivative of Ũ1 with respect to γ, we have

∂Ũ1

∂γ
= αvL +αcL−

αcL[(1−α)(vH − vL)−α(1− γ)vL] +αγcLαvL√
αγcL[(1−α)(vH − vL)−α(1− γ)vL]

= αvL +αcL−
αcL

∆̃R

−αvL∆̃R.

As αcL
∆̃R

+ αvL∆̃R is convex in ∆̃R, we have αcL
∆̃R

+ αvL∆̃R < αvL + αcL for any cL/vL <

∆̃R < 1. Next we show that ∆̃R > cL/vL. If (1 − α)vH < vL, ∆̃R =
√

αγcL
(1−α)(vH−vL)−α(1−γ)vL

>√
αγcL

αvL−α(1−γ)vL
=
√

cL
vL

> cL
vL

. If (1 − α)vH ≥ vL, the profit of the optimal static pricing pol-

icy is given by (1 − α)vH . Thus, we have Ũ1 ≥ (1 − α)vH , which implies αγvL > (1 − αγ)cL +

2[(1 − α)(vH − vL) − α(1 − γ)vL]∆̃R > [(1 − α)(vH − vL) − α(1 − γ)vL]∆̃R. This is equivalent to√
(1−α)(vH − vL)−α(1− γ)vL <

αγvL√
αγcL

. Consequently, ∆̃R =
√

αγcL
(1−α)(vH−vL)−α(1−γ)vL

> αγcL
αγvL

= cL
vL

,

and thus we conclude ∂Ũ1
∂γ

> 0. Next we show that Ũ2 increases in γ. Recall that Ũ = Ũ2 when

cH−cL
vH−vL

< ∆̃R < 1. As shown in Lemma OS.1, vL
cL
> vH

cH
is a necessary condition for low-valuation

customers to wait, and for high-valuation customers to either purchase or leave immediately under

any randomized pricing policy. It is easy to verify cL
vL
< cH−cL

vH−vL
due to vL

cL
> vH

cH
, and thus

∂Ũ2

∂γ
= αvL +αcL−αcL

vH − vL
cH − cL

−αvL
cH − cL
vH − vL

= α

(
1− cH − cL

vH − vL

)(
vL− cL

vH − vL
cH − cL

)
> 0.

The expected profit from the optimal randomized pricing policy differs from the upper bounds

Ũ1 and Ũ2 only by an infinitesimal term, and therefore we obtain the announced results. �

Proof of Lemma 8. Consider the low-valuation customers first. Based on the transition matrix

M and Equation (5), we have E[V (P )] = qH(vL−pd)+(1−qH)[−cL+E[V (P )]], and thus E[V (P )] =

vL−pd−cL 1−qH
qH

. Low valuation customers would wait for a price of pd if and only if−cL+E[V (P )]>

0, i.e., qH(vL − pd) > cL. Similarly, we can show that high-valuation customers always purchase

immediately if and only if qH(vH − pd)≤ cH . �

Proof of Proposition 10. Denote by πL and πH the steady state probabilities for pd and vH ,

respectively. Solving the equations (πL, πH)M = (πL, πH) and πL +πH = 1, we have πL = qH
1−qL+qH

,

and πH = 1−qL
1−qL+qH

. Under an optimal Markovian pricing policy, low-valuation customers always
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purchase with price pd, while high-valuation customers purchase immediately upon arrival. Thus,

the average expected profit under an optimal Markovian pricing policy is given by

Π(M) =αpd + (1−α)(πLpd + (1−πL)vH)

≤αpd + (1−α)

(
qH

1 + qH
pd +

1

1 + qH
vH

)
<α(vL−

cL
qH

) + (1−α)

[
qH

1 + qH
(vL−

cL
qH

) +
1

1 + qH
vH

]
≡UM(qH).

The first inequality holds because πL = qH
1−qL+qH

increases in qL and Π(M) decreases in πL, and thus

its maximum is realized when qL = 0. The second inequality is due to qH(vL− pd)> cL. Let qL = 0

and qd = vL− cL
qH
−η(δ) for an arbitrarily small δ > 0 and limδ↘0 η(δ) = 0. Then Π(M) converges to

the upper bound UM(qH) when δ converges to 0. Therefore, the optimal Markovian pricing policy

is letting q∗L = 0 and q∗d = vL− cL
qH
− η(δ). Now we turn to the optimal qH . Taking the derivative of

UM(qH) with respect to qH , we have

∂UM(qH)

∂qH
= α

cL
q2
H

− (1−α)
vH − vL− cL

(1 + qH)2
=

αcL
(1 + qH)2

[(
1 + qH
qH

)2

− (1−α)(vH − vL− cL)

αcL

]
.

(i) If vH − vL ≤ cL or ∆M =
√

αcL
(1−α)(vH−vL−cL)

≥ 1.

When vH − vL ≤ cL, we have

UM(qH) =α(vL−
cL
qH

) + (1−α)

[
qH

1 + qH
(vL−

cL
qH

) +
1

1 + qH
vH

]
≤α(vL−

cL
qH

) + (1−α)

[
qH

1 + qH
(vL−

cL
qH

) +
1

1 + qH
(vL + cL)

]
=vL−α

cL
qH

< vL ≤max{vL, (1−α)vH}.

Therefore, when vH−vL ≤ cL, a Markovian pricing policy is strictly dominated by an optimal static

pricing policy. Consider vH−vL > cL, then ∆M is well-defined as a real number. Because 0≤ qH ≤ 1,

we have ( 1+qH
qH

)2 = (1 + 1
qH

)2 ≥ 4. Thus if (1−α)(vH−vL−cL)

αcL
≤ 4, i.e., ∆M =

√
αcL

(1−α)(vH−vL−cL)
≥ 1

2
,

then ∂UM (qH )

∂qH
≥ 0. Coupling with qH < cH−cL

vH−vL
as shown in Lemma 8, UM(qH) is maximized at

qH = min
{

1, cH−cL
vH−vL

− δ
}

. When 0< (1−α)(vH−vL−cL)

αcL
≤ 1, i.e., ∆M =

√
αcL

(1−α)(vH−vL−cL)
≥ 1, we have

cL ≥ (1−α)(vH − vL). Consequently,

UM(qH)≤UM(1) = α(vL− cL) + (1−α)(
1

2
(vL− cL) +

1

2
vH) = vL− cL +

1

2
(1−α)(vH − vL + cL)

≤ vL− cL +
1

2
(1−α)cL +

1

2
cL = vL−

1

2
αcL ≤max{vL, (1−α)vH}.
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That is, if ∆M =
√

αcL
(1−α)(vH−vL−cL)

≥ 1, an optimal Markovian pricing policy reduces to a static

pricing policy.

Next we show that an optimal randomized pricing policy also reduces to a static pricing policy

when ∆M =
√

αcL
(1−α)(vH−vL−cL)

≥ 1 or when ∆M is not well-defined as a real number. Note that

the preceding conditions is equivalent to cL ≥ (1 − α)(vH − vL). Lemma OS.2 shows that the

necessary and sufficient conditions for U1 > vL and U2 > vL are given by
√

cL
vH−vL

< 1−
√
α√

1−α and

cH
vH−vL

+ αcL
(1−α)(cH−cL)

< 1, respectively. Now we show that U1 ≤ vL or U2 ≤ vL when cL ≥ (1 −

α)(vH − vL). When ∆R < 1 and ∆R <
cH−cL
vH−vL

, Lemma 6 shows that the expected profit from an

optimal randomized pricing policy is no more than U1. In this case, as cL ≥ (1−α)(vH − vL), we

have
√

cL
vH−vL

≥
√

1−α > 1−
√
α√

1−α since 0 < α < 1, and thus the expected profit from an optimal

randomized pricing policy cannot be greater than vL. On the other hand, when cH−cL
vH−vL

≤∆R < 1,

Lemma 6 shows that the expected profit from an optimal randomized pricing policy is no more

than U2. In this case, we have cH
vH−vL

+ αcL
(1−α)(cH−cL)

> cL
vH−vL

+ αcL
(1−α)(cH−cL)

≥ 1−α+α vH−vL
cH−cL

> 1,

where the second inequality is due to the condition cL ≥ (1−α)(vH − vL), and the last inequality

is due to 0< cH−cL
vH−vL

< 1. Therefore, an optimal randomized pricing policy also reduces to a static

pricing policy when cH−cL
vH−vL

≤∆R < 1.

(ii) If 1/2≤∆M < 1 and cH−cL
vH−vL

> 1.

As shown in the previous paragraph, UM(qH) is maximized at qH = min
{

1, cH−cL
vH−vL

− δ
}

when 1/2≤

∆M < 1. Coupling with cH−cL
vH−vL

> 1, we have q∗H = 1 and q∗d = vL− cL
q∗
H
− η(δ) = vL− cL− η(δ). Since

we have shown q∗L = 0, then π∗L =
q∗H

1−q∗
L

+q∗
H

= 1/2 and πH =
1−q∗L

1−q∗
L

+q∗
H

= 1/2. Then the Markovian

pricing policy reduces to a cyclic pricing policy with a cyclic length of 2. Next we show that UM(q∗H)

is greater than U(β∗), which is the expected profit from an optimal randomized pricing policy. We

have

UM(q∗H) =α

(
vL−

cL
q∗H

)
+ (1−α)

[
q∗H

1 + q∗H

(
vL−

cL
q∗H

)
+

1

1 + q∗H
vH

]
=αvL + (1−α)vH − (1−α)

cL
1 + q∗H

−α cL
q∗H
− (1−α)

q∗H
1 + q∗H

(vH − vL)

≥αvL + (1−α)vH − (1−α)
cL

1 +β∗
−αcL

β∗
− (1−α)

β∗

1 +β∗
(vH − vL)

>αvL + (1−α)vH − (1−α)cL−α
cL
β∗
− (1−α)β∗(vH − vL) =U(β∗),
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which the first inequality is due to UM(q∗H)≥ UM(qH), for any qH <
cH−cL
vH−vL

and β∗ < cH−cL
vH−vL

, and

the second inequality is due to β∗ > 0.

(iii) Otherwise.

Consider the case that 1/2≤∆M < 1 and cH−cL
vH−vL

≤ 1. From the analysis in the previous paragraph,

note ∆M
1−∆M

≥ 1, we know that q∗H = min
{

1, cH−cL
vH−vL

− δ
}

= cH−cL
vH−vL

− δ = min
{

∆M
1−∆M

, cH−cL
vH−vL

− δ
}

.

Consider the case when (1−α)(vH−vL−cL)

αcL
> 4, i.e., ∆M =

√
αcL

(1−α)(vH−vL−cL)
< 1

2
. Solving ∂UM (qH )

∂qH
= 0,

we have qH = 1√
(1−α)(vH−vL−cL)

αcL
−1

= ∆M
1−∆M

. It is easy to verify that ∂UM (qH )

∂qH
≥ 0 for any qH ≤ ∆M

1−∆M
;

Otherwise ∂UM (qH )

∂qH
≤ 0. Coupling with qH <

cH−cL
vH−vL

as shown in Lemma 8, the maximum of UM(qH)

is realized when qH = min
{

∆M
1−∆M

, cH−cL
vH−vL

− δ
}

in this case. At the optimality, q∗L = 0, and p∗d =

vL− cL
q∗
H
− η(δ). With the same approach in the proof of case (ii), we have the expected profit from

this optimal Markovian pricing policy is greater than that from an optimal randomized pricing

policy. �

Proof of Corollary 5. According to Lemma 6(i) and Proposition 10(i), if ∆R ≥ 1 or ∆M ≥

1, randomized or Markovian pricing policy is dominated by the optimal static pricing policy.

Note ∆R < ∆M , then we only consider the case ∆R < ∆M < 1. Based on Proposition 3, β∗ =

min
{

∆R,
cH−cL
vH−vL

− δ
}

= min
{√

αcL
(1−α)(vH−vL)

, cH−cL
vH−vL

− δ
}
< 1, and p∗ = vL − cL

β∗ − η(δ). Because(√
(1−α)(vH−vL−cL)

αcL
− 1
)√

αcL
(1−α)(vH−vL)

=
√

vH−vL−cL
vH−vL

−
√

αcL
(1−α)(vH−vL)

<
√

vH−vL−cL
vH−vL

< 1, we have

1√
(1−α)(vH−vL−cL)

αcL
−1

>
√

αcL
(1−α)(vH−vL)

when ∆M =
√

αcL
(1−α)(vH−vL−cL)

< 1. Based on Proposition 10,

q∗H = min
{

∆M
1−∆M

, cH−cL
vH−vL

− δ
}

= min

{
1√

(1−α)(vH−vL−cL)
αcL

−1

, cH−cL
vH−vL

− δ

}
or q∗H = 1. As a result, q∗H ≥

β∗, and thus p∗d = vL− cL
q∗
H
− η(δ)≥ p∗ = vL− cL

β∗ − η(δ).

If cH−cL
vH−vL

≤
√

αcL
(1−α)(vH−vL)

< 1√
(1−α)(vH−vL−cL)

αcL
−1

, then β∗ = cH−cL
vH−vL

− δ. Note cH−cL
vH−vL

− δ ≤√
αcL

(1−α)(vH−vL)
< 1, by Proposition 10(iii), we have q∗H = cH−cL

vH−vL
− δ. Consequently, we have π∗L =

q∗H
1−q∗

L
+q∗
H

=
q∗H

1+q∗
H
< q∗H = β∗.

If
√

αcL
(1−α)(vH−vL)

< cH−cL
vH−vL

≤ 1√
(1−α)(vH−vL−cL)

αcL
−1

and cH−cL
vH−vL

> 1, then β∗ =
√

αcL
(1−α)(vH−vL)

, and

q∗H = 1, based on Proposition 10(ii). As a result, we have π∗L =
q∗H

1−q∗
L

+q∗
H

=
q∗H

1+q∗
H

= 1
2
. Because we

restrict our discussion to the case when an optimal randomized pricing policy dominates an optimal

static pricing policy, all conditions in Lemma OS.2 shall be satisfied. That is, when vL ≥ (1 −
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α)vH , we have
√

αcL
(1−α)(vH−vL)

< cH−cL
vH−vL

and
√

cL
vH−vL

< 1−
√
α√

1−α . Consequently, β∗ =
√

αcL
(1−α)(vH−vL)

=√
α

1−α

√
cL

vH−vL
<
√

α
1−α

1−
√
α√

1−α =
√
α

1+
√
α
< 1

2
= π∗L. On the other hand, when vL < (1−α)vH , we have√

αcL
(1−α)(vH−vL)

< cH−cL
vH−vL

and
√

cL
vH−vL

<
√

α
1−α

(√
vH

vH−vL
− 1
)

. Consequently, β∗ =
√

αcL
(1−α)(vH−vL)

=√
α

1−α

√
cL

vH−vL
< α

1−α

(√
1
α
− 1
)

=
√
α

1+
√
α
< 1

2
= π∗L, where the first inequality is due to vL < (1 −

α)vH , i.e., vH
vH−vL

< 1
α

.

If
√

αcL
(1−α)(vH−vL)

< cH−cL
vH−vL

≤ 1√
(1−α)(vH−vL−cL)

αcL
−1

and cH−cL
vH−vL

≤ 1, then β∗ =
√

αcL
(1−α)(vH−vL)

, and

q∗H = cH−cL
vH−vL

−δ, based on Proposition 10(iii). Recall that π∗H =
q∗H

1+q∗
H

is increasing in q∗H , then β∗

1+β∗ <

π∗H <
√

αcL
(1−α)(vH−vL−cL)

, which is due to β∗ =
√

αcL
(1−α)(vH−vL)

< q∗H = cH−cL
vH−vL

−δ < 1√
(1−α)(vH−vL−cL)

αcL
−1

.

It is easy to see β∗

1+β∗ <β
∗ =
√

αcL
(1−α)(vH−vL)

<
√

αcL
(1−α)(vH−vL−cL)

. Therefore, we can’t say π∗L ≥ β∗ or

π∗L ≤ β∗ in this case.

If
√

αcL
(1−α)(vH−vL)

< 1√
(1−α)(vH−vL−cL)

αcL
−1

< cH−cL
vH−vL

, then β∗ =
√

αcL
(1−α)(vH−vL)

, and q∗H =

1√
(1−α)(vH−vL−cL)

αcL
−1

or 1. If q∗H = 1√
(1−α)(vH−vL−cL)

αcL
−1

, we have π∗L =
q∗H

1+q∗
H

= 1√
(1−α)(vH−vL−cL)

αcL

=√
αcL

(1−α)(vH−vL−cL)
≥
√

αcL
(1−α)(vH−vL)

= β∗. If q∗H = 1, we have shown in the preceding paragraph that

π∗L ≥ β∗ in this case.

To sum up, comparing an optimal Markovian pricing policy with an optimal randomized pricing

policy, we have

(i) If
√

αcL
(1−α)(vH−vL−cL)

< 1, then q∗H ≥ β∗ and p∗d ≥ p∗, where β∗ and p∗ are given by Proposition

3;

(ii) If cH−cL
vH−vL

≤
√

αcL
(1−α)(vH−vL)

< 1√
(1−α)(vH−vL−cL)

αcL
−1

, then π∗L <β
∗;

(iii) If
√

αcL
(1−α)(vH−vL)

< cH−cL
vH−vL

≤ 1√
(1−α)(vH−vL−cL)

αcL
−1

and cH−cL
vH−vL

> 1, or
√

αcL
(1−α)(vH−vL)

<

1√
(1−α)(vH−vL−cL)

αcL
−1

< cH−cL
vH−vL

, then π∗L ≥ β∗.

When cL is sufficiently small, the sets of conditions (i) and (iii) are satisfied, and we thus obtain

the desired result.

Lastly, we show L∗M = 1/π∗L and L∗F = 1/β∗. For an optimal Markovian pricing policy, when

the price of current period i is p∗d, then the probability of next period’s price is also p∗d is q∗L.

Moreover, for j ≥ 2, the discount price appears in period i+ j for the first time, then its probability

is (1− q∗L)(1− q∗H)j−2q∗H . Thus L∗M = q∗L +
∞∑
j=2

j(1− q∗L)(1− q∗H)j−2q∗H . Let
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S =
∞∑
j=2

j(1− q∗L)(1− q∗H)j−2q∗H = 2(1− q∗L)q∗H +
∞∑
j=3

j(1− q∗L)(1− q∗H)j−2q∗H

= 2(1− q∗L)q∗H +
∞∑
j=2

(j+ 1)(1− q∗L)(1− q∗H)j−1q∗H ,

then (1− q∗H)S =
∞∑
j=2

j(1− q∗L)(1− q∗H)j−1q∗H . Therefore,

q∗HS = 2(1− q∗L)q∗H +
∞∑
j=2

(j+ 1)(1− q∗L)(1− q∗H)j−1q∗H −
∞∑
j=2

j(1− q∗L)(1− q∗H)j−1q∗H

= (1− q∗L)q∗H

[
2 +

∞∑
j=2

(1− q∗H)j−1

]
= (1− q∗L)q∗H

[
2 + lim

n→∞
(1− q∗H)

1− (1− q∗H)n

1− (1− q∗H)

]
= (1− q∗L)(1 + q∗H).

Note q∗L = 0 and π∗L =
q∗H

1−q∗
L

+q∗
H

=
q∗H

1+q∗
H

, then S = (1− q∗L)(1 + 1/q∗H), and L∗M = q∗L +S = 1 + 1/q∗H =

1/π∗L. For an optimal randomized pricing policy, when the price of current period i is p∗, then the

probability of discount price p∗ appears in period i+ j for the first time is β∗(1− β∗)j−1. Then

L∗F =
∞∑
j=1

jβ∗(1−β∗)j−1. Consequently,

β∗L∗F =L∗F − (1−β∗)L∗F =
∞∑
j=1

jβ∗(1−β∗)j−1−
∞∑
j=1

jβ∗(1−β∗)j

= β∗+
∞∑
j=2

jβ∗(1−β∗)j−1−
∞∑
j=1

jβ∗(1−β∗)j

= β∗+
∞∑
j=1

(j+ 1)β∗(1−β∗)j −
∞∑
j=1

jβ∗(1−β∗)j

=
∞∑
j=1

β∗(1−β∗)j−1 = β∗ lim
n→∞

1− (1−β∗)n

1− (1−β∗)
= 1.

Therefore, L∗F = 1/β∗. �

Proof of Corollary 6. First we show it is true for low-valuation customers. By Corollary 5, we

know p∗d ≥ p∗. Recall the low-valuation customers always buy with the price p∗d and p∗ under an

optimal Markovian and randomized pricing policy, respectively.

Next we consider high-valuation customers. Since high-valuation customers will buy immediately

under both polices, we have

UM
H (q∗H) = π∗Lp

∗
d + (1−π∗L)vH , UH(β∗) = β∗p∗+ (1−β∗)vH ,

where UM
H (q∗H) and UH(β∗) are the expected profit earned from high-valuation cus-

tomers under an optimal Markovian and randomized pricing policy, respectively. Now we
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will show UM
H (q∗H) > UH(β∗). According to Proposition 3, β∗ = min

{
∆R,

cH−cL
vH−vL

− δ
}

=

min
{√

αcL
(1−α)(vH−vL)

, cH−cL
vH−vL

− δ
}
< 1, and p∗ = vL − cL

β∗ − η(δ). Based on Proposition 10, q∗H =

min
{

∆M
1−∆M

, cH−cL
vH−vL

− δ
}

= min

{
1√

(1−α)(vH−vL−cL)
αcL

−1

, cH−cL
vH−vL

− δ

}
or q∗H = 1. Note π∗L =

q∗H
1−q∗

L
+q∗
H

=

q∗H
1+q∗

H
, thus,

UM
H (q∗H) = π∗Lp

∗
d + (1−π∗L)vH = vH − cL−

q∗H
1 + q∗H

η(δ)− q∗H
1 + q∗H

(vH − vL− cL),

UH(β∗) = π∗Lp
∗
d + (1−π∗L)vH = vH − cL−β∗η(δ)−β∗(vH − vL).

Note limδ↘0 η(δ) = 0. Therefore, if we want to show UM
H (q∗H) > UH(β∗), it is equivalent to verify

q∗H
1+q∗

H
(vH − vL− cL)<β∗(vH − vL).

If cH−cL
vH−vL

≤
√

αcL
(1−α)(vH−vL)

< 1√
(1−α)(vH−vL−cL)

αcL
−1

, then β∗ = cH−cL
vH−vL

− δ. Note cH−cL
vH−vL

≤√
αcL

(1−α)(vH−vL)
< 1, by Proposition 10(iii), we have q∗H = cH−cL

vH−vL
− δ. Hence, we have

q∗H
1+q∗

H
(vH −vL−

cL)< q∗H(vH−vL−cL)<β∗(vH−vL), where the first inequality is due to 0< q∗H ≤ 1, and the second

is due to cL > 0.

If
√

αcL
(1−α)(vH−vL)

< cH−cL
vH−vL

≤ 1√
(1−α)(vH−vL−cL)

αcL
−1

and cH−cL
vH−vL

> 1, then β∗ =
√

αcL
(1−α)(vH−vL)

. Note

1< 1√
(1−α)(vH−vL−cL)

αcL
−1

, i.e.,
√

αcL
(1−α)(vH−vL−cL)

> 1
2
, then q∗H = 1, based on Proposition 10(ii). Hence,

we have

q∗H
1 + q∗H

(vH − vL− cL) =
1

2
(vH − vL− cL)<

1

2

√
vH − vL− cL

√
vH − vL

<

√
αcL

(1−α)(vH − vL− cL)

√
vH − vL− cL

√
vH − vL

=

√
αcL

(1−α)(vH − vL)
(vH − vL) = β∗(vH − vL).

If
√

αcL
(1−α)(vH−vL)

< cH−cL
vH−vL

≤ 1√
(1−α)(vH−vL−cL)

αcL
−1

and cH−cL
vH−vL

≤ 1, then β∗ =
√

αcL
(1−α)(vH−vL)

, and

q∗H = cH−cL
vH−vL

− δ, based on Proposition 10(iii). Hence, we have

q∗H
1 + q∗H

(vH − vL− cL)<

√
αcL

(1−α)(vH − vL− cL)
(vH − vL− cL)

<

√
αcL

(1−α)(vH − vL− cL)

√
vH − vL− cL

√
vH − vL

=

√
αcL

(1−α)(vH − vL)
(vH − vL) = β∗(vH − vL),
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where the first inequality is due to
q∗H

1+q∗
H

is increasing in q∗H and q∗H = cH−cL
vH−vL

− δ < cH−cL
vH−vL

≤

1√
(1−α)(vH−vL−cL)

αcL
−1

, and the second inequality is due to cL > 0.

If
√

αcL
(1−α)(vH−vL)

< 1√
(1−α)(vH−vL−cL)

αcL
−1

< cH−cL
vH−vL

, then β∗ =
√

αcL
(1−α)(vH−vL)

and q∗H =

1√
(1−α)(vH−vL−cL)

αcL
−1

or 1. If q∗H = 1√
(1−α)(vH−vL−cL)

αcL
−1

, we have
q∗H

1+q∗
H

= 1√
(1−α)(vH−vL−cL)

αcL

=√
αcL

(1−α)(vH−vL−cL)
. Hence,

q∗H
1 + q∗H

(vH − vL− cL) =

√
αcL

1−α
√
vH − vL− cL <

√
αcL

1−α
√
vH − vL

=

√
αcL

(1−α)(vH − vL)
(vH − vL) = β∗(vH − vL).

If q∗H = 1, we have shown in the preceding paragraph that
q∗H

1+q∗
H

(vH −vL− cL)<β∗(vH −vL) in this

case. �

Proof of Lemma 9. In order to show the result, we first prove an auxiliary lemma.

Lemma OS.5.
ci1
vi1

<
ci2
vi2

is a necessary condition that type-i1 customers would wait and type-i2

customers would either purchase or leave immediately, for any i1 < i2.

Proof of Lemma OS.5. According to Lemma OA.1, type-i1 customers wait and type-i2 cus-

tomers either purchase or leave immediately imply that
i1∑
j=1

βjvi1 −
i1∑
j=1

βjxj >
i1∑
j=1

βjxi1 −
i1∑
j=1

βjxj =

ci1 and
i2∑
j=1

βjvi2 −
i2∑
j=1

βjxj ≤ ci2 , respectively. Thus, we have

ci2 ≥
i2∑
j=1

βjvi2 −
i2∑
j=1

βjxj >

i1∑
j=1

βjvi1 −
i1∑
j=1

βjxj,

and

ci1 <

i1∑
j=1

βjvi1 −
i1∑
j=1

βjxj.

Rearranging the above two inequalities, we have

ci2
ci1

>

i2∑
j=1

βjvi2 −
i2∑
j=1

βjxj

i1∑
j=1

βjvi1 −
i1∑
j=1

βjxj

>
vi2
vi1
,

where the second inequality is due to

(
i2∑
j=1

βjvi2 −
i2∑
j=1

βjxj

)
vi1 −

(
i1∑
j=1

βjvi1 −
i1∑
j=1

βjxj

)
vi2 =

vi1

(
i2∑

j=i1+1

βjvi2−
i2∑

j=i1+1

βjxj

)
+ (vi2 − vi1)

i1∑
j=1

βjxj > 0. We thus obtain the announced result. �
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Lemma OS.5 and the condition c1
v1
≥ · · · ≥ cn

vn
imply that there exists a k such that any customer

with valuation greater than vk will wait, and any customer with valuation less than or equal to

vk will either purchase or leave immediately upon arrival, under any randomized pricing policy.

Thus, based on Lemma OA.1, its optimal expected profit can be derived by solving the following

problem.

max
β,x

n∑
i=1

αiπi

s.t.
i∑

j=1

βjvi−
i∑

j=1

βjxj ≤ ci, ∀ i≤ k,

i∑
j=1

βjxi−
i∑

j=1

βjxj = ci, ∀ i > k,

xi ≤ vi,∀ i≤ k, and xi < vi,∀ i > k, and
n∑
i=1

βi = 1,

(OS.3)

where πi =
i∑

j=1

βjxj, ∀ i≤ k, and πi =
i∑

j=1

βjxj

/
i∑

j=1

βj otherwise.

First consider the case when k= n− 1 or n. In this case, we have

n∑
i=1

αiπi =
n∑
i=1

αi

i∑
j=1

βjxj = β1x1 +
n∑
i=2

αiβ2x2 + · · ·+αnβnxn ≤max
j

{
n∑
i=j

αixj

}
≤max

j

{
n∑
i=j

αivj

}
,

where the last term indicates the expected profit under an optimal static pricing policy.

Next consider the case when k= 0. We will prove the dominance of static pricing by induction.

When n = 2, the profit function is given by α1x1 + α2[β1x1 + (1 − β1)x2], and constraints are

β1(v1−x1)> c1 and β1(x2−x1) = c2. That is, x1 < v1− c1
β1

and x2 = x1 + c2
β1

. Thus, we have

α1x1 +α2[β1x1 + (1−β1)x2] = x1 +α2

(
1

β1

− 1

)
c2 < v1−

c1

β1

+α2

(
1

β1

− 1

)
c2 ≡ h(β1),

where the equality is due to x2 = x1 + c2
β1

and α1 +α2 = 1, and the inequality is due to x1 < v1− c1
β1

.

Taking the derivative of h(β1) with respect to β1, we have ∂h(β1)

∂β1
= c1−α2c2

β21
. If c1 ≥ α2c2, h(β1) is

increasing in β1 and thus h(β1) ≤ h(1) = v1 − c1. If c1 < α2c2, h(β1) is decreasing in β1 and thus

h(β1)≤ h(c1/v1) = α2

(
v1
c1
− 1
)
c2 <α2

v1
c1
c2 ≤ α2v2, where the first inequality is due to v1− c1

β1
> 0,

and the last inequality is due to c1
v1
≥ c2

v2
. So the expected profit from any randomized pricing policy

is less than or equal to the expected profit from the optimal static pricing policy, which is given

by max{v1, α2v2}.
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Now suppose that, under the case when k= 0, an optimal randomized pricing policy reduces to

the optimal static pricing policy for n−1, ∀n≥ 3. We next show that this statement also holds for

n. Based on Problem (OS.3), we can rewrite the expected profit function as:

n∑
i=1

αiπi = α1x1 + · · ·+αn−1

(
xn−1−

cn−1

β1 + · · ·+βn−1

)
+αn (xn− cn) ,

where xn = xn−1 +
cn−cn−1

β1+···+βn−1
. Taking the derivative of

n∑
i=1

αiπi with respect to (β1 + · · ·+ βn−1),

we have
∂

(
n∑
i=1

αiπi

)
∂(β1+···+βn−1)

=
(αn−1+αn)cn−1−αncn

(β1+···+βn−1)2
. If (αn−1 + αn)cn−1 ≥ αncn,

n∑
i=1

αiπi is increasing in

β1 + · · ·+βn−1. Thus, it is optimal to let β1 + · · ·+βn−1 = 1 and βn = 0, which reduces to the case

with n− 1 types of customers. On the other hand, if (αn−1 +αn)cn−1 <αncn,
n∑
i=1

αiπi is decreasing

in β1 + · · ·+ βn−1. In this case, it is optimal to let β1 + · · ·+ βn−1 = β1 + · · ·+ βn−2, i.e., βn−1 = 0,

which again reduces to the case with n− 1 types of customers. We thus establish the result for n.

Lastly, consider the case when 1≤ k≤ n−2. Again, we prove the dominance of static pricing by

induction. When n= 3 and k= 1, the profit function is given by α1β1x1 +α2
β1x1+β2x2
β1+β2

+α3[β1x1 +

β2x2 + (1− β1 − β2)x3], and constraints are β1(v1 − x1) ≤ c1, β1(x2 − x1) = c2, and (β1 + β2)x3 −

β1x1−β2x2 = c3. Thus, we have x3 = x2 + c3−c2
β1+β2

, and we can rewrite the profit function as:

3∑
i=1

αiπi = α1β1x1 +α2

(
x2−

c2

β1 +β2

)
+α3

(
x2 +

c3− c2

β1 +β2

− c3

)
.

Taking the derivative of the profit function with respect to (β1 + β2), we have
∂

(
3∑
i=1

αiπi

)
∂(β1+β2)

=

(α2+α3)c2−α3c3
(β1+β2)2

. If (α2 +α3)c2 ≥ α3c3, profit is maximized by letting β1 +β2 = 1. Plugging β1 +β2 = 1

into the profit function, we have

3∑
i=1

αiπi = α1β1x1 + (α2 +α3)(x2− c2) = α1β1x1 + (α2 +α3)(β1x1 +β2x2)

≤ max{x1, (α2 +α3)x2} ≤max{v1, (α2 +α3)v2},

where the second equality is due to β1(x2 − x1) = c2. On the other hand, if (α2 + α3)c2 < α3c3,

profit is maximized by letting β2 = 0. Plugging β2 = 0 into the profit function, we have

3∑
i=1

αiπi = α1β1x1 +α2

(
x2−

c2

β1

)
+α3

(
x2 +

c3− c2

β1

− c3

)
= α1β1x1 +α2x1 +α3

[
x1 +

(
1

β1

− 1

)
c3

]
,
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where the second equality is due to x2 = x1 + c2
β1

. Taking the derivative of the profit function with

respect to β1, we have
∂

(
3∑
i=1

αiπi

)
∂β1

= α1x1− α3c3
β21

, which is increasing in β1. Thus, the profit function

3∑
i=1

αiπi is convex in β1. Here we need to consider two cases separately: β1 ≤ c2
v2−v1

and β1 >
c2

v2−v1
.

When β1 >
c2

v2−v1
, we have x2 = x1 + c2

β1
< v2 due to x1 ≤ v1. On the other hand, when β1 ≤ c2

v2−v1
,

x1 = x2− c2
β1
< v1 due to x2 ≤ v2.

Consider first when β1 ≤ c2
v2−v1

. In this case, the optimal x2 is given by x2 = v2− δ, for any small

δ > 0. Combining with the condition x1 = x2− c2
β1
≥ 0, β1 must be greater than c2

v2
. Thus, in order

to show the dominance of static pricing policy, we only need to prove that the expected profit

evaluated at β1 = c2
v2

and β1 = c2
v2−v1

are less than the expected profit from an optimal static pricing

policy. Plugging β1 = c2
v2

and x2 = v2− δ into the profit function, we have

3∑
i=1

αiπi =−(α1β1 +α2 +α3)δ+α3

(
v2

c2

− 1

)
c3 <α3

(
v2

c2

− 1

)
c3 ≤ α3

(
v3

c3

− 1

)
c3 <α3v3,

where the first equality is due to x1 = x2 − c2
β1

=−δ, and the second inequality is due to c2
v2
≥ c3

v3
.

Next plugging β1 = c2
v2−v1

and x2 = v2− δ into the profit function, we have

3∑
i=1

αiπi <α1

c2

v2− v1

v1 +α2v1 +α3

[
v1 +

(
v2− v1

c2

− 1

)
c3

]
.

Consider three sub-cases.

(a) v1 ≥ α3v3. Because c1
v1
≥ c3

v3
= α3c3

α3v3
, we have c1 ≥ α3c3. Furthermore, because (α2 +α3)c2 <α3c3

and (α2+α3)c2
(α2+α3)v2

= c2
v2
≥ c3

v3
= α3c3

α3v3
, we have α3v3 > (α2 + α3)v2. Combining the preceding conditions,

we have v1 > (α2 +α3)v2. That is, α1v2
v2−v1

> 1. Therefore,

α1

c2

v2− v1

v1 +α2v1 +α3

[
v1 +

(
v2− v1

c2

− 1

)
c3

]
=v1−α1

(
1− c2

v2− v1

)
v1 +α3

(
v2− v1

c2

− 1

)
c3

=v1−
(
v2− v1

c2

− 1

)(
α1

c2

v2− v1

v1−α3c3

)
< v1−

(
v2− v1

c2

− 1

)(
v1

v2

c2− c1

)
≤ v1,

where the first inequality is due to α1v2
v2−v1

> 1 and c1 ≥ α3c3, and the second inequality is due to

c1
v1
≥ c2

v2
.
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(b) v1 ≤ (α2 +α3)v2 <α3v3, i.e., α1v2
v2−v1

≤ 1. In this case, we have

α1

c2

v2− v1

v1 +α2v1 +α3

[
v1 +

(
v2− v1

c2

− 1

)
c3

]
≤α1

c2

v2− v1

v1 +α2v1 +α3

[
v1 +

(
v2− v1

c2

− 1

)
v3

v2

c2

]
=α1

c2

v2− v1

v1 +α2v1 +α3v1 +α3v3−α3v3

(
v1

v2

+
c2

v2

)
=α1

c2

v2− v1

v1−α3v3

c2

v2

+α3v3 + (α2 +α3)v2

v1

v2

−α3v3

v1

v2

<α1

c2

v2− v1

v1−α3v3

c2

v2

+α3v3 <
v1

v2

c2− v1

c2

v2

+α3v3 = α3v3,

where the second inequality is due to (α2 +α3)v2 <α3v3, and the third inequality is due to α1v2
v2−v1

≤ 1

and v1 <α3v3.

(c) (α2 +α3)v2 ≤ v1 <α3v3. If α1
c2

v2−v1
v1 ≥ α3c3, we have

α1

c2

v2− v1

v1 +α2v1 +α3

[
v1 +

(
v2− v1

c2

− 1

)
c3

]
=v1−

(
v2− v1

c2

− 1

)(
α1

c2

v2− v1

v1−α3c3

)
≤ v1.

On the other hand, if α1
c2

v2−v1
v1 <α3c3, we have

α1

c2

v2− v1

v1 +α2v1 +α3

[
v1 +

(
v2− v1

c2

− 1

)
c3

]
<α2v1 +α3v1 +α3c3

v2− v1

c2

<α2v1 +α3v1 +α3v3

v2− v1

v2

<α3v3,

where the second inequality is due to c2 ≤ v2, and the third inequality is due to (α2 +α3)v2 <α3v3.

Now we prove that under the condition β1 ≤ c2
v2−v1

, an optimal randomized pricing policy reduces

to the optimal static pricing policy. The case when β1 >
c2

v2−v1
is trivial, as, when plugging in β1 = 1,

the profit function reduces to x1, which is less than or equal to v1.

Now suppose that, under the case when 1 ≤ k ≤ n− 2, an optimal randomized pricing policy

reduces to an optimal static pricing policy for n− 1, ∀n ≥ 3. We next show that this statement

also holds for n. Based on Problem (OS.3), we can rewrite the expected profit function as:

n∑
i=1

αiπi =α1β1x1 + · · ·+αk(β1x1 + · · ·+βkxk) +αk+1

(
xk+1−

ck+1

β1 + · · ·+βk+1

)
+ · · ·+αn−1

(
xn−1−

cn−1

β1 + · · ·+βn−1

)
+αn (xn− cn) ,
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where xn = xn−1 +
cn−cn−1

β1+···+βn−1
. Taking the derivative of

n∑
i=1

αiπi with respect to (β1 + · · ·+ βn−1),

we have
∂

(
n∑
i=1

αiπi

)
∂(β1+···+βn−1)

=
(αn−1+αn)cn−1−αncn

(β1+···+βn−1)2
. If (αn−1 + αn)cn−1 ≥ αncn,

n∑
i=1

αiπi is increasing in

β1 + · · ·+βn−1. Thus, it is optimal to let β1 + · · ·+βn−1 = 1 and βn = 0, which reduces to the case

with n− 1 types of customers. On the other hand, if (αn−1 +αn)cn−1 <αncn,
n∑
i=1

αiπi is decreasing

in β1 + · · ·+ βn−1. In this case, it is optimal to let β1 + · · ·+ βn−1 = β1 + · · ·+ βn−2, i.e., βn−1 = 0,

which again reduces to the case with n− 1 types of customers. We thus obtain the announced

result. �

Proof of Proposition 11. Consider any randomized pricing policy. First we prove by contradic-

tion that, under the condition v1− c1 ≥ v2− c2 ≥ · · · ≥ vn− cn, a customer with valuation vi2 will

not wait, if type-i1 customers do not wait, ∀ i1 < i2. Suppose there exists i2 > i1, where type-i1

customers do not wait but type-i2 customers wait. By Proposition 1, we have

i1∑
i=1

βivi1 −
i1∑
i=1

βixi ≤ ci1 , and

i2∑
i=1

βivi2 −
i2∑
i=1

βixi > ci2 .

Because xi > vi1 , ∀ i > i1, we have
i2∑
i=1

βivi1 −
i2∑
i=1

βixi <
i1∑
i=1

βivi1 −
i1∑
i=1

βixi ≤ ci1 . Combining with the

inequality
i2∑
i=1

βivi2 −
i2∑
i=1

βixi > ci2 , we have

i2∑
i=1

βi(vi2 − vi1)> ci2 − ci1 ≥ vi2 − vi1 ,

where the second inequality is due to vi1−ci1 ≥ vi2−ci2 . However, the above inequality contradicts

to
i2∑
i=1

βi ≤ 1. Thus, we obtain the announced result.

The implication of this result is that there always exists 1≤ kr ≤ n, such that any customer with

valuation greater than or equal to vkr does not wait, and any customer with valuation smaller than

vkr will wait. Hence, we get Proposition 11(i). Consequently, based on Lemma OA.1, the optimal

policy with such induced customer behavior can be derived by solving:
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max
β,x

n∑
j=1

αjπj

s.t.

j∑
i=1

βixj −
j∑
i=1

βixi = cj, ∀ j < kr,

j∑
i=1

βivj −
j∑
i=1

βixi ≤ cj, ∀ j ≥ kr,

xj < vj, j < kr, and xj ≤ vj, j ≥ kr, and
n∑
j=1

βj = 1,

(OS.4)

where πj =
j∑
i=1

βixi

/
j∑
i=1

βi, if j < kr; Otherwise, πj =
j∑
i=1

βixi. The set of conditions
j∑
i=1

βixj −
j∑
i=1

βixi = cj,∀ j < kr imply that

x1 = x2− c2/β1 = x3− c2/β1− (c3− c2)/(β1 +β2)

= · · ·= xkr−1− c2/β1− (c3− c2)/(β1 +β2) · · · − (ckr−1− ckr−2)/(β1 +β2 + · · ·+βkr−2).

Due to the assumption c1 < c2 < · · ·< cn, we have

v1− c1/β1 > v2− c2/β1 > v3− c2/β1− (c3− c2)/(β1 +β2)> · · ·

> vkr−1− c2/β1− (c3− c2)/(β1 +β2) · · · − (ckr−1− ckr−2)/(β1 +β2 + · · ·+βkr−2)>x1,

where the last inequality is due to xkr−1 ≤ vkr−1. As the profit function is increasing in xj, ∀ j,

the optimal x∗1 is given by x∗1 = vkr−1 − c2/β1 − (c3 − c2)/(β1 + β2) · · · − (ckr−1 − ckr−2)/(β1 + β2 +

· · ·+βkr−2)− δ. The optimal x∗j , ∀j ∈ {2, . . . , kr} can be derived by solving the system of equations
j∑
i=1

βix
∗
j −

j∑
i=1

βix
∗
i = cj,∀ j < kr, and the optimal x∗j , ∀ j ≥ kr is given by x∗j = vj. Plugging the

optimal x∗i into the objective function, and ignoring the sufficiently small δ, we have

n∑
j=1

αjπj =α1

(
vkr−1−

c2

β1

− c3− c2

β1 +β2

· · · − ckr−1− ckr
β1 +β2 + · · ·+βkr−2

)
+α2

(
vkr−1−

ckr−1

β1 +β2

)
+ · · ·

+αkr−1

(
vkr−1−

ckr−1

β1 +β2 + · · ·+βkr−1

)
+αkr ((β1 +β2 + · · ·+βkr−1)vkr−1− ckr−1 +βkrvkr) + · · ·

+αn ((β1 +β2 + · · ·+βkr−1)vkr−1− ckr−1 +βkrvkr + · · ·+βnvn) .

It is easy to verify that the profit function is increasing in β1, (β1 +β2), . . . , (β1 +β2 + · · ·+βkr−1).

Thus, the profit is maximized when β2 = β3 = · · ·= βkr−2 = βkr−1 = 0. Next consider βj, ∀ j ≥ kr.

The partial derivative of the profit function with respect to βj is given by
∂

(
n∑
i=1

αiπi

)
∂βj

=
n∑
i=j

αivj −

αnvn. Denote hr = arg max
kr≤j≤n

n∑
i=j

(αivj). The profit is maximized when βhr = 1− β1, and the rest are

all equal to 0. We thus obtain the announced result. �
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Proof of Proposition 12. The existence of kc is guaranteed by Corollary OA.1. Next we show

that τi+1 ≥ τi, for any 1≤ i < kc− 1, and τ1 = 1. Because vi+1− ci+1 ≤ vi− ci, we have vi+1− (T −

τi+1)ci+1 ≤ vi − (T − τi+1)ci. Thus, we know that τi ≤ τi+1 based on the definition of τi, for any

1≤ i < kc− 1. We show τ1 = 1 by contradiction. Suppose τ1 > 1. Then, the optimal expected profit

per period from period 1 to period τ1 − 1 is given by
n∑

j=kc

αjvkc , which is less than the expected

profit from an optimal static pricing policy. Thus, we can increase profit by getting rid of these

time periods, which contradicts to the optimality of the policy. The optimal pricing schedule can

be constructed according to Lemma OA.3. In particular, pT = min
1≤i<kc

{vi− (T − τi)ci}− δ, and the

price in the tth period of a cycle is given by pt = min{vkc , pT + (T − t)ckc}. �

Proof of Proposition 13. Proposition 13(i) can be shown as follows. By Proposition 11, under

the condition v1− c1 ≥ v2− c2 ≥ · · · ≥ vn− cn, an optimal randomized pricing policy follows a two-

point price distribution, with the lower price being less than v1 and the higher price equal to vhr .

Under the condition v1 ≥ (α2 + · · ·+ αn)v2 ≥ · · · ≥ αnvn, hr = kr. Then again by Proposition 11,

customers of types from 1 to kr − 1 behave the same as type kr − 1 and customers of types from

kr to n behave the same as type kr. Hence, the problem with n customer segments is equivalent to

the case with two customer segments in which the
∑kr−1

j=1 αj fraction of customers have valuation

vkr−1 and per-period waiting cost ckr−1 and the rest fraction of customers have valuation vkr and

per-period waiting cost ckr .

To prove Proposition 13(ii), we first prove an auxiliary lemma.

Lemma OS.6. Under the conditions v1 − c1 ≥ v2 − c2 ≥ · · · > vn−1 − cn−1 ≥ vn − cn and v1 ≥

(α2 + · · ·+ αn)v2 ≥ · · · ≥ αnvn, and consider a cyclic pricing policy with a price of vk in the first

T − 1 periods, a price of vk−1− (T − 1)ck−1− δ in the last period. If vk− vk−1 > ck−1 and vk− vk−1

is below the threshold ck

/(
1 + 1

2

√
n∑
j=k

αj

/
k−1∑
j=1

αj

)
,

(i) The optimal cycle length for this policy is either bT1c or bT1c + 1, where T1 =√
n∑
j=k

αj(vk− vk−1− ck−1)

/
k−1∑
j=1

αjck−1 and bxc represents the greatest integer that is no more

than x;

(ii) Any customer with valuation greater than or equal to vk will buy immediately upon arrival,

and customer with valuation smaller than vk will wait to purchase in the last period of a cycle.
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Proof of Lemma OS.6. Consider a cyclic pricing policy where the firms charges vk in the first

T − 1 periods, and vk−1 − (T − 1)ck−1 − δ in the T th period within a cycle. We first derive the

optimal cycle length assuming that any customer with valuation greater than or equal to vk will

buy immediately upon arrival, and any customer with valuation smaller than vk will wait to

purchase in period T . Based on Proposition 12, the expected profit from this policy is given

by Π(T ) =
k−1∑
j=1

αj(vk−1 − (T − 1)ck−1 − δ) +
n∑
j=k

αj [(T − 1)vk + vk−1− (T − 1)ck−1− δ]/T . Denote

R(T ) =
k−1∑
j=1

αj(vk−1− (T − 1)ck−1) +
n∑
j=k

αj [(T − 1)vk + vk−1− (T − 1)ck−1]/T by ignoring the small

δ in Π(T ). Taking the derivative of R(T ) with respect to T , we have

R′(T ) =
n∑
j=k

αj
vk− vk−1− ck−1

T 2
−

k−1∑
j=1

αjck−1,

which is decreasing in T under the condition vk − vk−1 > ck−1. Thus, we conclude that R(T ) is

concave, and it is maximized with T1 =

√
n∑
j=k

αj(vk− vk−1− ck−1)

/
k−1∑
j=1

αjck−1. Thus, the optimal

cycle length T ∗ is given by either bT1c or bT1c+ 1, where bxc represents the greatest integer that

is less than or equal to x. Note that max{R(bT1c),R(bT1c+ 1)} is an upper bound of the expected

profit from this cyclic pricing policy.

Next we show that under the conditions specified in the Lemma and the cycle length T ∗, any

customer with valuation greater than or equal to vk will buy immediately upon arrival, and any

customer with valuation smaller than vk will wait to purchase in period T ∗. Because vi+1 − vi <

ci+1− ci ≤ (T ∗− 1)(ci+1− ci), we have vk−1− (T ∗− 1)ck−1 = min
1≤i≤k−1

(vi− (T ∗− 1)ci)< v1. Thus, in

order to show that any customer with valuation smaller than or equal to vk−1 will wait to purchase

in period T ∗, it suffices to prove vk−1 − (T ∗ − 1)ck−1 ≥ 0. Note that T ∗ is equal to either bT1c or

bT1c+ 1. Thus, one sufficient condition is given by
vk−1

ck−1
≥ T1. This condition holds as:

v2
k−1

c2
k−1

>
vk−1

ck−1

=
k−1∑
j=1

αjvk−1

/ k−1∑
j=1

αjck−1 ≥
n∑
j=k

αjvk

/ k−1∑
j=1

αjck−1 >
n∑
j=k

αj(vk−vk−1−ck−1)

/ k−1∑
j=1

αjck−1,

where the first inequality is due to vk−1 > ck−1 and the second inequality is due to
k−1∑
j=1

αjvk−1 ≥
n∑
j=k

αjvk.
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Lastly, we show that any customer with valuation greater than vk−1 will buy immediately upon

arrival. As vi− ci ≥ vi+1− ci+1, for any k≤ i≤ n−1, it suffices to show that pT∗+ ck = vk−1− (T ∗−

1)ck−1− δ+ ck ≥ vk. We have

vk− vk−1 + (T ∗− 1)ck−1 + δ− ck

<vk− vk−1 +T1ck−1− ck

≤vk− vk−1 +
(vk− vk−1)

2

√√√√ n∑
j=k

αj

/ k−1∑
j=1

αj − ck < 0,

where the first inequality is due to T ∗ = bT1c or bT1c + 1, the second inequality is due to

T1ck−1 =

√
n∑
j=k

αjck−1(vk− vk−1− ck−1)

/
k−1∑
j=1

αj is maximized with ck−1 = (vk − vk−1)/2, and the

third inequality is due to vk−vk−1 < ck

/(
1 + 1

2

√
n∑
j=k

αj

/
k−1∑
j=1

αj

)
. We thus obtain the announced

result. �

Now we are ready to prove Proposition 13(ii). Based on Proposition 11 and conditions speci-

fied in the proposition, we know that an optimal randomized pricing policy follows a two-point

price distribution. In particular, under the optimal two-point price distribution, there exists kr

such that any customer with valuation less than vkr would wait to purchase, while any customer

with valuation greater than or equal to vkr would buy immediately upon arrival. Based on the

proof of Proposition 11, the expected profit from an optimal randomized pricing policy is given

by
kr−1∑
j=1

αj(vkr−1 − ckr−1/β1) +
n∑

j=kr

αj(β1vkr−1 − ckr−1 + (1 − β1)vkr). The function is maximized

when β1 =

√
kr−1∑
j=1

αjckr−1

/
n∑

j=kr

αj(vkr − vkr−1), with a value of
kr−1∑
j=1

αjvkr−1 +
n∑

j=kr

αj(vkr − ckr−1)−

2

√(
kr−1∑
j=1

αj

)
·
(

n∑
j=kr

αjckr−1(vkr − vkr−1)

)
.

We next show that this optimal randomized pricing policy is dominated by a cyclic pricing

policy. Consider a cyclic pricing policy where the price is equal to vkr in the first T −1 periods, and

vkr−1− (T − 1)ckr−1− δ in the last period. Lemma OS.6 shows that any customer with valuation

greater than or equal to vkr buy immediately upon arrival, while any customer with valuation less

than vkr would wait to purchase at period T . Based on the proof of Lemma OS.6, its optimal profit

is given by max{R(bT1c),R(bT1c+ 1)}. Also, we know from the proof of Lemma OS.6 that R(T )
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is concave and decreasing, for any T ≥ T1, and thus we have R(bT1c+ 1)≥R(T1 + 1). That is, the

expected profit from this cyclic pricing is bounded below by R(T1 + 1). We have

R(T1 + 1) =
n∑

j=kr

αj

[
T1

T1 + 1
vkr +

1

T1 + 1
(vkr−1−T1ckr−1)

]
+

kr−1∑
j=1

αj(vkr−1−T1ckr−1)

=

kr−1∑
j=1

αjvkr−1 +
n∑

j=kr

αj(vkr − ckr−1)−
kr−1∑
j=1

αjT1ckr−1−
n∑

j=kr

αj
1

T1 + 1
(vkr − vkr−1− ckr−1)

>

kr−1∑
j=1

αjvkr−1 +
n∑

j=kr

αj(vkr − ckr−1)−
kr−1∑
j=1

αjT1ckr−1−
n∑

j=kr

αj
1

T1

(vkr − vkr−1− ckr−1)

=

kr−1∑
j=1

αjvk +
n∑

j=kr

αj(vkr − ckr−1)− 2

√√√√(kr−1∑
j=1

αj

)(
n∑

j=kr

αjckr−1(vkr − vkr−1− ckr−1)

)

>

kr−1∑
j=1

αjvkr−1 +
n∑

j=kr

αj(vkr − ckr−1)− 2

√√√√(kr−1∑
j=1

αj

)(
n∑

j=kr

αjckr−1(vkr − vkr−1)

)
,

where the first inequality is due to vkr − vkr−1 > ckr−1, and the second equality is due to T1 =√
n∑

j=kr

αj(vkr − vkr−1− ckr−1)

/
kr−1∑
j=1

αjckr−1. We thus obtain Proposition 13(ii).

Next we prove Proposition 13(iii). Based on Proposition 12, we know that, under an optimal

cyclic pricing policy, there exists a kc ∈ {1, . . . , n} such that any customer with valuation greater

than or equal to vkc would either purchase or leave immediately upon arrival. On the other hand,

a type-i, 1≤ i < kc, customer would wait upon arrival if she arrives no earlier than the τ thi period

with a cycle. In particular, τ1 = 1 ≤ τ2 ≤ . . . ≤ τkc−1. Thus, the expected profit from an optimal

cyclic pricing policy is:

Π(T )≤
n∑

j=kc

αi

T∑
t=1

vkc − [vkc − pT − (T − t)ckc ]+

T
+

kc−1∑
j=1

αjpT

<
n∑

j=kc

αj

T∑
t=1

vkc − [vkc − v1 + (T − 1)c1− (T − t)ckc ]+

T
+

kc−1∑
j=1

αj(v1− (T − 1)c1)

<
n∑

j=kc

αj

∫ T
0
vkc − [vkc − v1 + (T − 1)c1− (T − t)ckc ]+dt

T
+

kc−1∑
j=1

αj(v1− (T − 1)c1)

=
n∑

j=kc

αjvkc +

kc−1∑
j=1

αi(v1− (T − 1)c1)−
n∑

j=kc

αj
[vkc − v1 + (T − 1)c1]2

2Tckc
≡H(T ),

where the second inequality is due to pT < v1 − (T − 1)c1, and the third inequality is due to

vkc − [vkc − v1 + (T − 1)c1− (T − t)ckc ]+ being monotonically decreasing in t. Taking the first order
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derivative of H(T ) with respect to T , we have H ′(T ) =−
kc−1∑
j=1

αjc1 +
n∑

j=kc

αj
(vkc−v1−c1)2

2ckcT
2 −

n∑
j=kc

αj
c21

2ckc
,

which is decreasing in T . Thus, we conclude that H(T ) is concave in T , and its maximum is realized

when T = T2 ≡

√√√√√ n∑
j=kc

αj(vkc−v1−c1)2

2
kc−1∑
j=1

αjc1ckc+
n∑

j=kc

αjc
2
1

. Consequently, the expected profit from an optimal cyclic

pricing policy is bounded above by

H(T2) =

kc−1∑
j=1

αjv1 +
n∑

j=kc

αjvkc −
kc−1∑
j=1

αj(T2− 1)c1−
n∑

j=kc

αj
(vkc − v1− c1)2

2T2ckc

−
n∑

j=kc

αj
T2c

2
1

2ckc
−

n∑
j=kc

αj
c1

ckc
(vkc − v1− c1)

<

kc−1∑
j=1

αjv1 +
n∑

j=kc

αjvkc −
kc−1∑
j=1

αj(T2− 1)c1−
kc−1∑
j=1

αjT2c1−
n∑

j=kc

αj
T2c

2
1

2ckc

−
n∑

j=kc

αj
c1

ckc
(vkc − v1− c1),

where the inequality is due to T2 =

√√√√√ n∑
j=kc

αj(vkc−v1−c1)2

2
kc−1∑
j=1

αjc1ckc+
n∑

j=kc

αjc
2
1

>

√√√√√ n∑
j=kc

αj(vkc−v1−c1)2

2
kc−1∑
j=1

αjc1ckc

.

Lastly, based on the proof of Proposition 11, we know that the expected profit from a randomized

pricing policy can be derived by maximizing
kc−1∑
j=1

αj(vkc−1−ckc−1/β1)+
n∑

j=kc

αj(β1vkc−1−ckc−1 +(1−

β1)vkc) over β1 ∈ [0,1]. Plugging β1 = ckc−1/[vkc−1−v1 +(T2−1)c1] (in which case, vkc−1−ckc−1/β1 =

v1− (T2− 1)c1) into the profit function, we have

kc−1∑
j=1

αjv1 +
n∑

j=kc

αjvkc −
kc−1∑
j=1

αj(T2− 1)c1−
n∑

j=kc

αj
vkc − vkc−1

vkc−1− v1 + (T2− 1)c1

ckc−1−
kc−1∑
j=1

αjck ≡U.

So in order to show that an optimal randomized pricing policy outperforms an optimal cyclic

pricing policy, it suffices to show H(T2) < U . It is easy to verify that T2(T2 − 1)/(vkc − vkc−1) is

increasing in vkc−vkc−1 when vkc−vkc−1 is sufficiently large. Consequently, we have −
n∑

j=kc

αj
T2c

2
1

2ckc
≤

−
n∑

j=kc

αj
vkc−vkc−1

(T2−1)c1
ckc−1 < −

n∑
j=kc

αj
vkc−vkc−1

vkc−1−v1+(T2−1)c1
ckc−1. Comparing against the upper bound of

H(T2), we know that one sufficient condition for H(T2)<U is given by

−
kc−1∑
j=1

αjT2c1−
n∑

j=kc

αj
ckc−1

ckc
(vkc − vkc−1− ckc−1)<−

n∑
j=kc

αjckc−1.

Because the left hand of the inequality is decreasing in vkc − vkc−1, and thus the inequality is

guaranteed when vkc − vkc−1 is sufficiently large. We thus obtain Proposition 13(iii). �
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B. Proofs of Results in the Online Appendix

Proof of Lemma OA.1. Consider a randomized pricing policy, where the set of types of cus-

tomers who will wait is denoted by W. First we prove that βi and xi, ∀ i, are properly defined

by showing that ui−1 < ui. If i /∈W, we have ui = vi > vi−1 ≥ ui−1. If i ∈W and i− 1 ∈W, then

we know that ui = pi > ui−1 = pi−1 because p increases in c. The only non-trivial case is when

i ∈W and i− 1 /∈W. In this case, we have E[(vi−1−P )+]≤ ci−1 < ci. So based on the definition

of pi = max{v′ | E[(v′−P )+]≤ c}, we have ui = pi > vi−1 = ui−1. Based on the definition of xi, it is

easy to verify that xi ≤ pi < vi, ∀ i∈W, and xi ≤ vi, ∀ i /∈W. Furthermore, the support of the price

distribution of an optimal randomized pricing policy will never include any price greater than vn,

as no customers will purchase at those price points. Thus, an optimal policy must satisfy
n∑
i=1

βi = 1.

For any i ∈ W, we can rewrite the condition as E[(vi−P )+] =
i∑

j=1

βjvi −
i∑

j=1

βjxj ≤ ci, ∀ i /∈

W, based on the definitions of βi and xi. Similarly, for any i ∈ W, we have F (pi)E[pi − P |P ≤

pi] =
i∑

j=1

βjp
i −

i∑
j=1

βjxj ≤ ci. Because xi ≤ pi, ∀ i ∈ W, we have
i∑

j=1

βjxi −
i∑

j=1

βjxj ≤
i∑

j=1

βjp
i −

i∑
j=1

βjxj ≤ ci. Notice that the profit function
n∑
i=1

αiπi is increasing in xi because both E[P |P ≤ pi] =

i∑
j=1

βjxj

/
i∑

j=1

βj and F (vi)E[P |P ≤ vi] =
i∑

j=1

βjxj increase in xi, ∀ i. Thus, the following condition

i∑
j=1

βjxi−
i∑

j=1

βjxj = ci must be satisfied for an optimal policy; Otherwise, we can always improve

profit by increasing xi. Note that when i= 1, this constraint is guaranteed to be satisfied as the left

hand side of the inequality is zero. So we resort to the initial condition derived in Proposition 1,

i.e., β1v1−β1x1 > c1, should type-1 customers wait. Consequently, we can find the optimal policy,

in the space of all policies where type-i customers, ∀ i ∈W, wait and the rest purchase or leave

immediately, by solving Problem (OA.1). �

Proof of Lemma OA.2. Consider a set of randomized pricing policies, which includes all policies

under which type-1 customers would wait, and the rest of customers either purchase or leave

immediately upon arrival. Based on Lemma OA.1, the optimal policy in the set can be derived by

solving the following optimization problem:
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max
β,x

α1x1 +
n∑
j=2

αj

j∑
i=1

βixi

s.t. β1v1−β1x1 > c1,
j∑
i=1

βivj −
j∑
i=1

βixi ≤ cj, j = 2,3, . . . , n,

x1 < v1, and xj ≤ vj, j = 2,3, . . . , n, and
n∑
j=1

βj = 1.

(OS.5)

Next we show that, when c1 is sufficiently small, the optimal value of the objective function in

Problem (OS.5) is greater than the expected profit from an optimal static pricing policy, which

is given by max
j≤n

{
n∑
i=j

αivj

}
, by induction. The case when n = 2 is proved in Proposition 4. Now

suppose that the result holds when n= k, and we next show that it also holds when n= k+ 1.

Consider first the trivial case when max
j≤k+1

{
k+1∑
i=j

αivj

}
= max

j≤k

{
k+1∑
i=j

αivj

}
. In this case, we can

simply let βk+1 = 0, and adopt the optimal randomized pricing policy when n = k. Its expected

profit is guaranteed to be greater than max
j≤k

{
k+1∑
i=j

αivj

}
.

Next consider the case when max
j≤k+1

{
k+1∑
i=j

αivj

}
= αk+1vk+1. Conditional on βj, ∀ j ∈ {1, . . . , k+1},

the objective function of Problem (OS.5) is increasing in xj, ∀ j ∈ {1, . . . , k+1}. Therefore, Problem

(OS.5) is maximized when x1 = v1− c1
β1
−δ, for any sufficiently small δ, and xj = vj, ∀ j ∈ {2, . . . , k+

1}. Thus, we can reformulate Problem (OS.5) as:

max
β

α1

(
v1−

c1

β1

− δ
)

+
k+1∑
j=2

αj

(
j∑
i=1

βivi− c1−β1δ

)

s.t.

j∑
i=1

βi(vj − vi)< cj − c1,∀ j ∈ {2, . . . , k+ 1}, and
k+1∑
j=1

βj = 1.

(OS.6)

Denote U(β) = α1

(
v1− c1

β1

)
+
k+1∑
j=2

αj

(
j∑
i=1

βivi− c1

)
. Thus, the derivatives of U(β) with respect to

βj, j = 2, . . . , k, are given by

∂U(β)

∂β1

=
α1c1

β2
1

+
k+1∑
i=2

αiv1−αk+1vk+1, and
∂U(β)

∂βj
=

k+1∑
i=j

αivj −αk+1vk+1, j = 2,3, . . . , k.

Recall that max
j≤k+1

{
k+1∑
i=j

αivj

}
= αk+1vk+1 ≥

k+1∑
i=j

αivj. Thus, we can conclude that U(β) is decreasing

in βj and the profit is maximized when βj = 0, ∀ j ∈ {2, . . . , k}. Ignoring δ, Problem (OS.6) can

thus be simplified as a single variable optimization problem below.
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max
β1

α1

(
v1−

c1

β1

)
+

k+1∑
j=2

αj(β1v1− c1) + (1−β1)αk+1vk+1

s.t. β1(vj − v1)< cj − c1, ∀ j ∈ {2, . . . , k+ 1}.

(OS.7)

The solution to the first order condition ∂U(β)

∂β1
= α1c1

β21
+

k+1∑
i=2

αiv1 − αk+1vk+1 = 0 is given by β∗1 =√
α1c1

αk+1vk+1−
k+1∑
i=2

αiv1

. When β∗1(vj−vi)< cj−c1, ∀ j ∈ {2, . . . , k+1}, which holds when c1 is sufficiently

small, the expected profit with β1 = β∗1 is given by:

α1(v1−
c1

β1

) +
k+1∑
j=2

αj(β1v1− c1) + (1−β1)αk+1vk+1

=α1v1 +αk+1vk+1− 2

√√√√α1c1

(
αk+1vk+1−

k+1∑
i=2

αiv1

)
−

k+1∑
j=2

αjc1,

which is greater than αk+1vk+1 when c1 is sufficiently small. This completes the proof. �

Proof of Lemma OA.3. We first show that consumer behavior is consistent with the definition

of k0 and kc under the price schedule as constructed in Lemma OA.3. For any k0 ≤ i < kc, it suffices

to show that either pT + (T − t)ci < pt or pt > vi, for any t≥ τi. If ps + ckc > vkc , for any t < s≤ T ,

then we have pt ≥ vkc > vi. On the other hand, if ps + ckc ≤ vkc , for all t < s ≤ T , then we have

pt = pt+1 +ckc = pt+2 +2ckc = · · ·= pT +(T − t)ckc > pT +(T − t)ci due to ci < ckc for any k0 ≤ i < kc.

Next consider any i≥ kc. In this case, we need to show that either pt ≤ pt+1 + ci or pt+1 + ci > vi

for any t < T . If pt+1 + ckc ≤ vkc , we have pt = pt+1 + ckc ≤ pt+1 + ci, for any i≥ kc. On the other

hand, if pt+1 + ckc > vkc , we have pt+1 > vi− ci for any i < kt, and pt ≤ pt+1 + ckt ≤ pt+1 + ci for any

i≥ kt, if kt exists. If kt does not exist, simply we have pt+1 > vi− ci for any i≥ kc.

We next show that this price policy is optimal. First consider period T . Based on the definition

of τi, we have vi− (T − τi)ci ≥ pT , for any k0 ≤ i < kc. Thus, pT ≤ min
k0≤i<kc

{vi− (T − τi)ci} and the

optimal price for period T is given by pT = min
k0≤i<kc

{vi − (T − τi)ci} − δ. Next we work backwards

and consider period t < T . Consider first the case when pt+1 + ckc ≤ vkc . In this case, we prove

pt ≤ pt+1 + ckc by contradiction. Suppose pt > pt+1 + ckc . Then, we have vkc − pt < vkc − pt+1− ckc .

Combining with the condition pt+1 + ckc ≤ vkc , we have vkc − pt+1− ckc ≥max{0, vkc − pt}. That is,

a customer with valuation vkc is better off purchasing at period t+ 1, which contradicts to the fact

that a customer with valuation vkc will not wait. Consequently, the optimal price is pt = pt+1 + ckc
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if pt+1 + ckc ≤ vkc . Last consider the case when pt+1 + ckc > vkc . Following a similar approach as

described above, we can show that pt ≤ pt+1 + ckt , if kt exists. Thus, if (αkt + · · ·+αn)(pt+1 + ckt)>

max
kc≤i<kt

{(αi+ · · ·+αn)vi}, the profit maximizing price is given by pt = pt+1 +ckt . On the other hand,

if (αkt + · · ·+ αn)(pt+1 + ckt)≤ max
kc≤i<kt

{(αi + · · ·+ αn)vi}, the profit maximizing price is given by

vlt , where lt = arg max
kc≤i<kt

{(αi + · · ·+ αn)vi}. If kt does not exist, pt+1 + ci > vi for kc ≤ i, then the

firm could charge the optimal price pt = vl, without worrying about customers’ strategic waiting

behavior. We thus obtain the announced result. �

Proof of Lemma OA.4. We prove the result by showing that any policy as characterised in

Lemma OA.3 follows a (weakly) markdown pattern. For any given cyclic pricing policy p =

{p1, p2, . . . , pT}, we show pt ≥ pt+1, ∀ t≤ T − 1 by induction. Because a customer with valuation vi,

for any k0 ≤ i < kc, will wait to purchase in period T , we have pT < pt, for any t≤ T −1. Hence, we

have pT > pT−1. Now suppose that pt+1 ≥ pt+2, and next we prove pt ≥ pt+1. Let us consider three

cases.

(a) pt+2 + ckc ≤ pt+1 + ckc ≤ vkc . Based on Lemma OA.3, we have pt = pt+1 + ckc > pt+2 + ckc = pt+1.

(b) pt+2 + ckc ≤ vkc < pt+1 + ckc . Based on Lemma OA.3, we have pt+1 = pt+2 + ckc < vkc , and

pt > vkc . Hence, we can conclude that pt > pt+1.

(c) vkc < pt+2 + ckc < pt+1 + ckc . It is easy to verify that kt ≥ kt+1 due to pt+1 ≥ pt+2. To complete

the proof, we need to further consider three sub-cases.

(c1) kt and kt+1 do not exist. In this case, we have pt = pt+1 = vl.

(c2) kt does not exist but kt+1 exists. If pt+1 = vlt+1
, then we have pt = vl ≥ vlt+1

= pt+1 due to the

definitions of l and lt. If pt+1 = pt+2 + ckt+1
, which happens under the condition that (αkt+1

+ · · ·+

αn)(pt+2 +ckt+1
)> max

kc≤i<kt+1

{(αi+ · · ·+αn)vi}, then we have max
kc≤i
{(αi+ · · ·+αn)vi} ≥ (αkt+1

+ · · ·+

αn)vkt+1
≥ (αkt+1

+ · · ·+αn)(pt+2 +ckt+1
)> max

kc≤i<kt+1

{(αi+ · · ·+αn)vi}, where the second inequality

is due to pt+2 + ckt+1
≤ vkt+1

.The condition max
kc≤i
{(αi + · · ·+ αn)vi} > max

kc≤i<kt+1

{(αi + · · ·+ αn)vi}

implies that l≥ kt+1. Thus, we have pt = vl ≥ vkt+1
≥ pt+2 + ckt+1

= pt+1.

(c3) kt and kt+1 exist. If pt+1 = vlt+1
, then either pt = pt+1 + ckt , which is greater than pt+1, or

pt = vlt , which again is greater than pt+1 = vlt+1
due to kt ≥ kt+1. Next consider the case when

pt+1 = pt+2 + ckt+1
. In this case, either pt = pt+1 + ckt , which is greater than pt+1, or pt = vlt . To
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prove pt ≥ pt+1 when pt = vlt , we first prove kt must be greater than kt+1 by contradiction. Sup-

pose kt = kt+1, then we have vlt = vlt+1
. Combining with the condition that pt+1 = pt+2 + ckt+1

,

we have (αkt+1
+ · · · + αn)(pt+2 + ckt+1

) > (αlt+1
+ · · · + αn)vlt+1

= max
kc≤i<kt+1

{(αi + · · · + αn)vi} ≥

(αkt+1
+ · · ·+ αn)(pt+1 + ckt+1

), which contradicts to pt+1 ≥ pt+2. Thus, we have kt > kt+1. Under

this condition, we have max
kc≤i<kt

{(αi+ · · ·+αn)vi} ≥ (αkt+1
+ · · ·+αn)vkt+1

≥ (αkt+1
+ · · ·+αn)(pt+2 +

ckt+1
) > max

kc≤i<kt+1

{(αi + · · · + αn)vi}, where the second inequality is due to pt+2 + ckt+1
≤ vkt+1

and the last inequality is due to pt+1 = pt+2 + ckt+1
. The condition max

kc≤i<kt
{(αi + · · · + αn)vi} >

max
kc≤i<kt+1

{(αi + · · ·+ αn)vi} implies that lt > kt+1, leading to pt = vlt > vkt+1
≥ pt+2 + ckt+1

= pt+1.

We thus obtain the announced results. �

Proof of Lemma OA.5. We first prove Lemma OA.5(i). With a bit abuse of notation, we denote

the total profit generated by customers with valuation greater than or equal to vkc in period t by

πt. We first show that, for any t, there exists kc ≤ it such that πt ≤
n∑
i=it

αi(pT +(T − t)cit). Consider

first when pt+1 + ckc ≤ vkc . In this case, we have pt = pt+1 + ckc ≤ vkc according to Lemma OA.3. As

any customer with valuation greater than or equal to vkc will not wait, the incentive compatibility

constraint is given by pt ≤ pT + (T − t)ckc . Consequently, we have πt =
n∑

i=kc

αipt ≤
n∑

i=kc

αi(pT + (T −

t)ckc). Second, we consider the case when pt+1 + ckc > vkc and pt = pt+1 + ckt ≤ vkt . In this case, any

customer with valuation greater than or equal to vkt will buy immediately in period t, and thus it

must satisfy that pt ≤ pT +(T − t)ckt . Consequently, we have πt =
n∑

i=kt

αipt ≤
n∑

i=kt

αi(pT +(T − t)ckt).

The third case is pt+1 + ckc > vkc and pt = vlt . In this case, any customer with valuation greater

than or equal to vlt will buy immediately in period t, and thus it must satisfy that pt = vlt ≤

pT +(T−t)clt . Consequently, we have πt =
n∑
i=lt

αipt =
n∑
i=lt

αivlt ≤
n∑
i=lt

αi(pT +(T−t)clt). Last consider

the case pt+1 + ckc > vkc and pt = vl. In this case, any customer with valuation greater than or

equal to vl will buy immediately in period t, and thus it must satisfy that pt = vl ≤ pT + (T − t)cl.

Consequently, we have πt =
n∑
i=l

αipt =
n∑
i=l

αivl ≤
n∑
i=l

αi(pT + (T − t)cl).

Recall that τi is defined as follows. Any type-i customer will leave immediately upon arrival if

she arrives before the τ thi period within a cycle; Otherwise, she will wait till the end of the cycle to

purchase. Next we show that τi+1 ≤ τi, for any k0 ≤ i < kc− 1. Due to c1/v1 ≥ c2/v2 ≥ · · · ≥ cn/vn

and vi − (T − τi)ci ≥ 0, it is easy to verify that
vi+1−vi
ci+1−ci

≥ vi+1

ci+1
≥ vi

ci
= T − τi, which implies that
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vi+1 − (T − τi)ci+1 ≥ vi − (T − τi)ci ≥ pT . That is, any customer with valuation vi+1 arriving in

period τi will wait to purchase in period T , and thus we have τi+1 ≤ τi, ∀ i < kc− 1.

Now we are ready to show that the expected profit from an optimal cyclic pricing is bounded

above by the expected profit from an optimal static pricing policy. We first consider the case when

τk0 = 1. As τi+1 ≤ τi, we have τi = 1, for any k0 ≤ i < kc. Hence, the expected profit from an optimal

cyclic pricing policy is bounded above by:

Π(T ) =
T∑
t=1

πt/T +

kc−1∑
i=k0

αipT

≤
T∑
t=1

n∑
i=it

αi(pT + (T − t)cit)/T +

kc−1∑
i=k0

αipT

≤
T∑
t=1

n∑
i=it

αi

[
(T − t) ck0

vk0
vit

]
/T +

n∑
i=k0

αipT

≤ max
1≤k≤n

{
n∑
i=k

αivk

}
ck0
vk0

T − 1

2
+

n∑
i=k0

αipT

≤ max
1≤k≤n

{
n∑
i=k

αivk

}
ck0
vk0

T − 1

2
+

n∑
i=k0

αi(vk0 − (T − 1)ck0),

where the second inequality is due to it ≥ kc and
cit
vit
≤ ck0

vk0
, the third inequality is due to it ≥

kc and
n∑
i=it

αivit ≤ max
1≤k≤n

{
n∑
i=k

αivk

}
, and the last inequality is due to pT ≤ vk0 − (T − 1)ck0 .

If max
1≤k≤n

{
n∑
i=k

αivk

}
ck0
2vk0
≤

n∑
i=k0

αick0 , then max
1≤k≤n

{
n∑
i=k

αivk

}
ck0
vk0

T−1
2

+
n∑

i=k0

αi(vk0 − (T − 1)ck0) ≤
n∑

i=k0

αivk0 ≤ max
1≤k≤n

{
n∑
i=k

αivk

}
; Otherwise, it is easy to verify that max

1≤k≤n

{
n∑
i=k

αivk

}
ck0
vk0

T−1
2

+

n∑
i=k0

αi(vk0 − (T − 1)ck0) is increasing in T − 1. Because of T − 1≤ vk0
ck0

, we have

max
1≤k≤n

{
n∑
i=k

αivk

}
ck0
vk0

T − 1

2
+

n∑
i=k0

αi(vk0 − (T − 1)ck0)≤ 1

2
max

1≤k≤n

{
n∑
i=k

αivk

}
< max

1≤k≤n

{
n∑
i=k

αivk

}
.

Next consider the case when τk0 > 1. In this case, each cycle can be decomposed into a couple

of separable mini cycles, namely, [1, τkc−1− 1], [τkc−1, τkc−2− 1], · · · , [τk0 , T ]. We prove an optimal

cyclic pricing policy reducing to a static pricing policy by showing that the average profit per

period within each mini cycle is no more than the expected profit from an optimal static pricing

policy, i.e., max
1≤k≤n

{
n∑
i=k

αivk

}
. Consider the first mini cycle [1, τkc−1]. No customers arriving in these

time periods will wait. Customers with valuation greater than or equal to vkc will purchase or leave
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immediately upon arrival, and thus the average profit per period is no more than max
kc≤k≤n

{
n∑
i=k

αivk

}
,

which is less than or equal to max
1≤k≤n

{
n∑
i=k

αivk

}
. Next consider the last mini cycle [τk0 , T ]. Within

this mini cycle, it is as if τk0 = 1, and the cycle length is T − τk0 + 1. Based on our preceding

discussion, we know that the expected profit per period is bounded above by the expected profit

from the optimal static pricing policy.

To that end, we only need to consider the mini cycles [τj+1, τj − 1], for any k0 ≤ j ≤ kc− 2. We

show below that the average profit per period within any mini cycle [τj+1, τj−1] is bounded above

by:

τj−1∑
t=τj+1

πt/(τj − τj+1) +

kc−1∑
i=j+1

αipT

≤
τj−1∑
t=τj+1

n∑
i=it

αi(pT + (T − t)cit)/(τj − τj+1) +

kc−1∑
i=j+1

αipT

≤
τj−1∑
t=τj+1

n∑
i=it

αi

[
(T − t) cj+1

vj+1

vit

]
/(τj − τj+1) +

n∑
i=j+1

αipT

≤ max
1≤k≤n

{
n∑
i=k

αivk

}
cj+1

vj+1

2T − τj − τj+1 + 1

2
+

n∑
i=j+1

αipT

< max
1≤k≤n

{
n∑
i=k

αivk

}
cj+1

vj+1

2T − τj − τj+1 + 1

2
+

n∑
i=j+1

αi(vj+1− (T − τj+1)cj+1)

< max
1≤k≤n

{
n∑
i=k

αivk

}
cj+1

vj+1

(T − τj+1) +
n∑

i=j+1

αi(vj+1− (T − τj+1)cj+1),

where the second inequality is due to it ≥ kc and
cit
vit
≤ cj+1

vj+1
, the third inequality is due to it ≥ kc >

j + 1 and
n∑
i=it

αivit ≤ max
1≤k≤n

{
n∑
i=k

αivk

}
, the fourth inequality is due to vj+1 − (T − τj+1)cj+1 ≥ pT ,

and the last inequality is due to τj+1 < τj − 1. Because max
1≤k≤n

{
n∑
i=k

αivk

}
cj+1

vj+1
≥

n∑
i=j+1

αivj+1
cj+1

vj+1
=

n∑
i=j+1

αicj+1, we know that max
1≤k≤n

{
n∑
i=k

αivk

}
cj+1

vj+1
(T−τj+1)+

n∑
i=j+1

αi(vj+1−(T−τj+1)cj+1) is increas-

ing in T − τj+1. Combining with the condition that T − τj+1 ≤
vj+1

cj+1
, we have

max
1≤k≤n

{
n∑
i=k

αivk

}
cj+1

vj+1

(T − τj+1) +
n∑

i=j+1

αi(vj+1− (T − τj+1)cj+1)≤ max
1≤k≤n

{
n∑
i=k

αivk

}
.

Thus, we obtain Lemma OA.5(i).

Next we prove Lemma OA.5(ii). Consider first the case when τk0 = 1. Following a similar approach
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as that of the proof of Lemma OA.5(i), we show that the expected profit from an optimal cyclic

pricing policy is bounded above by:

Π(T )≤
T∑
t=1

πt/T +

kc−1∑
i=k0

αipT

≤
T∑
t=1

n∑
i=it

αi(pT + (T − t)cit)/T +

kc−1∑
i=k0

αipT

≤
T∑
t=1

n∑
i=it

αi((T − t)cit)/T +
n∑

i=k0

αipT

≤
T∑
t=1

n∑
i=it

αi((T − t)cit)/T +
n∑

i=k0

αi(vk0 − (T − 1)ck0)

≤ 2
T∑
t=1

n∑
i=k0

αi((T − t)ck0)/T +
n∑

i=k0

αi(vk0 − (T − 1)ck0)

=
n∑

i=k0

αivk0 ≤ max
1≤k≤n

{
n∑
i=k

αivk

}
,

where the third inequality is due to it ≥ kc, the fourth inequality is due to pT ≤ vk0 − (T − 1)ck0 ,

and the fifth inequality is due to cj/ci ≤
n∑
k=i

αk

/
n∑
k=j

αk ≤ 2
n∑
k=i

αk

/
n∑
k=j

αk, for any 1 ≤ i < j ≤ n.

Thus, an optimal cyclic pricing policy reduces to a static pricing policy in this case.

Next consider the case when τk0 > 1. Let l1 = arg min
k0<i<kc

{τi < τk0}, and we denote recursively lm+1 =

arg min
lm<i<kc

{τi < τlm}. The largest properly defined m is denoted by M . As a result, any cycle can be

decomposed into many separable mini cycles, namely, [1, τlM − 1], [τlM , τlM−1
− 1], · · · , [τl1 , τk0 − 1],

[τk0 , T ]. We prove an optimal cyclic pricing policy reducing to a static pricing policy by showing that

the average profit per period within each mini cycle is no more than the expected profit per period

from an optimal static pricing, namely, max
1≤k≤n

{
n∑
i=k

αivk

}
. Consider the first mini cycle [1, τlM − 1].

Because only customers with valuation greater than or equal to vkc will either purchase or leave

immediately upon arrival, and no customers arriving in these periods will wait, the average profit

per period is thus no more than max
kc≤k≤n

{
n∑
i=k

αivk

}
, which is no more than max

1≤k≤n

{
n∑
i=k

αivk

}
. Next

consider the last mini cycle [τk0 , T ]. This mini cycle effectively reduces to the case as if τk0 = 1 with

a cycle length of T −τk0 +1, and thus we know that the expected profit per period is bounded above

by the expected profit from an optimal static pricing policy based on the preceding discussions.



51

Thus, we just need to consider [τlm+1
, τlm−1] for any k0 < lm+1 < lM . The average profit per period

within this mini cycle is bounded above by:

τlm−1∑
t=τlm+1

πt/(τlm − τlm+1
) +

kc−1∑
i=lm+1

αipT

≤
τlm−1∑
t=τlm+1

n∑
i=it

αi(pT + (T − t)cit)/(τlm − τlm+1
) +

kc−1∑
i=lm+1

αipT

≤
τlm−1∑
t=τlm+1

n∑
i=it

αi((T − t)cit)/(τlm − τlm+1
) +

n∑
i=lm+1

αipT

≤
τlm−1∑
t=τlm+1

n∑
i=it

αi((T − t)cit)/(τlm − τlm+1
) +

n∑
i=lm+1

αi(vlm+1
− (T − τlm+1

)clm+1
)

≤
τlm−1∑
t=τlm+1

(T − t)
n∑

i=lm+1

αiclm+1
/(τlm − τlm+1

) +
n∑

i=lm+1

αi(vlm+1
− (T − τlm+1

)clm+1
)

=
(2T − τlm+1

− τlm + 1)

2

n∑
i=lm+1

αiclm+1
+

n∑
i=lm+1

αi(vlm+1
− (T − τlm+1

)clm+1
)<

n∑
i=lm+1

αivlm+1
,

where the second inequality is due to it ≥ kc, the third inequality is due to pT ≤ vlm+1
− (T −

τlm+1
)clm+1

, the fourth inequality is due to cj/ci ≤
n∑
k=i

αk

/
n∑
k=j

αk, for any 1 ≤ i < j ≤ n, and the

last inequality is due to τlm+1
< τlm − 1. Thus, we obtain the announced result. �
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