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A. Randomized Pricing

The following notation is used throughout proofs for randomized pricing policies with n customer

segments.

(i) ui = pi, ∀ i∈W, and ui = vi, ∀ i /∈W, where pi is defined in problem (6);

(ii) β1 = F (u1), and βi = F (ui)−F (ui−1), ∀ i > 1;

(iii) x1 = E[P |P ≤ u1], and xi = E[P |ui−1 <P ≤ ui], ∀ i > 1.

With this set of notation, problem (6) can be reformulated as follows, conditional on the set of

customers who will wait.

Lemma OA.1. Consider a set of randomized pricing policies, where the set of customers that

will wait under any policy in the set remains the same, which is denoted by W, and the rest of the

customers will either purchase or leave immediately upon arrival. The optimal policy in this set

can be derived by solving the following optimization problem.

max
β,x

n∑
i=1

αiπi

s.t. β1v1−β1x1 > c1, if 1∈W,
i∑

j=1

βjxi−
i∑

j=1

βjxj = ci, ∀ i∈W \{1},

i∑
j=1

βjvi−
i∑

j=1

βjxj ≤ ci, ∀ i /∈W,

xi < vi, ∀ i∈W,

xi ≤ vi, ∀ i /∈W,
n∑
i=1

βi = 1,

(OA.1)

where πi =
i∑

j=1

βjxj

/
i∑

j=1

βj, ∀ i∈W; Otherwise, πi =
i∑

j=1

βjxj.
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Lemma OA.2. There exists a threshold on c1, below which an optimal randomized pricing policy

outperforms an optimal static pricing policy.OA.1

Lemma OA.2 shows that when customers of the lowest valuation are sufficiently patient, an opti-

mal randomized pricing policy will not reduce to a static pricing policy. The rationale is as follows.

Recall that an optimal static pricing policy is to set the price at vi∗ such that i∗ = arg maxi
n∑
j=i

αjvi.

So one simple way to construct a randomized pricing strategy is to charge vi∗ most of the time but

run random promotions with a discount price lower than v1 once in a while to extract surplus from

customers of the lowest valuation. Because customers of valuation v1 are sufficiently patient, it can

be guaranteed that extra surplus from type-1 customers outweighs the profit loss from customers

of higher valuations due to type-1 customers’ purchases during a promotion that can be run suffi-

ciently infrequently. Thus, a randomized pricing policy constructed as mentioned above outweighs

an optimal static pricing policy, and thus so does an optimal randomized pricing policy.

B. Deterministic Cyclic Pricing

Proposition 5 ensures that we do not need to consider beyond cyclic pricing for optimal determin-

istic pricing. As shown in the proof of Proposition 5, the optimal customers’ response under any

cyclic pricing policy can be summarized as follows.

Corollary OA.1. (Optimal Customer Response under Cyclic Pricing) The opti-

mal customer response can be characterized as follows: there exists kc ∈ {1,2, . . . , n} and k0 ∈

{1,2, . . . , kc− 1} such that,

(i) any customer of valuation greater than or equal to vkc will either buy or leave immediately

upon arrival;

(ii) any customer of valuation less than vk0 will leave immediately upon arrival;

(iii) there exists τi for any type-i customer, k0 ≤ i < kc, such that she leaves immediately upon

arrival if she arrives before the τ thi period within a cycle; Otherwise, she will wait to buy at

the end of a cycle.

OA.1 It boils down to Proposition 4 if n= 2.
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Corollary OA.1(i) shows that there exists a cutoff on customer valuation, denoted by vkc , such

that any customer with a valuation greater than or equal to vkc will never wait. This is a conse-

quence of Assumption (O), which assumes that per-period waiting costs follow an ascending order.

Thus, with the benefit of waiting the same for all types of customers (because they see the same

deterministic price path), it is more costly for customers of a higher valuation to wait. In the other

extreme, Corollary OA.1(ii) says that there may exist a segment of customers of low valuations

who will leave immediately upon arrival. This segment includes those customers whose valuation

is less than pt, ∀ t. Then, we also have a segment of customers of intermediate valuations who will

wait if and only if she arrives sufficiently close to the end of a cycle. Otherwise, her utility from

waiting becomes negative due to the cost of waiting, and thus she is better off leaving immediately

upon arrival.

Given customers’ optimal response as characterized in Corollary OA.1, the firm’s long-run aver-

age expected profit with a cyclic pricing policy p is given by Π(p) = limT ′→∞
1
T ′
∑T ′

t=1 πt(p), where

πt(p) is the profit from customers arriving in period t. We have πt(p) = πt+T (p) due to prices being

cyclic. Our goal is to find a cyclic pricing policy p such that Π(p) is maximized.

Next, we prove some key structural properties that an optimal cyclic pricing policy must satisfy.

We derive these based on the following partial characterization of an optimal cyclic pricing policy.

Lemma OA.3. (Optimal Cyclic Pricing conditional on Cutoffs) The optimal pricing

schedule is in the following form, with kc and k0 defined in Corollary OA.1:

(i) At the T th period, pT = min
k0≤i<kc

{vi− (T − τi)ci}− δ, where δ > 0 is sufficiently small;

(ii) At the tth period, t= 1, . . . , T − 1, we have

(a) if pt+1 + ckc ≤ vkc, pt = pt+1 + ckc;

(b) if pt+1 + ckc > vkc,

pt =


pt+1 + ckt , if (αkt + · · ·+αn)(pt+1 + ckt)> (αlt + · · ·+αn)vlt ,

vlt , if (αkt + · · ·+αn)(pt+1 + ckt)≤ (αlt + · · ·+αn)vlt ,

vl, if kt does not exist,

where kt = arg min
kc≤i

{pt+1 + ci ≤ vi}, lt = arg max
kc≤i<kt

{(αi + · · ·+αn)vi} and l= arg max
kc≤i

{(αi +

· · ·+αn)vi}.
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Lemma OA.3 sheds light on the structure of an optimal cyclic pricing policy. The price at period

T is simply the highest price under which customers’ purchasing decisions are consistent with that

characterized in Corollary OA.1. Then conditional on pT , we can construct the optimal pricing

schedule recursively backward in time. At time period t < T , pt cannot be greater than pt+1 + ckt ,

where kt = arg min
kc≤i

{pt+1 + ci ≤ vi}; otherwise, a customer of valuation vkt is better off waiting

to buy in future periods, which contradicts to the optimal customer response as characterized in

Corollary OA.1. Therefore, subject to this constraint, the optimal price at any time period t < T

is the one that maximizes the firm’s profit in that focal period.

With Lemma OA.3 in hand, we are able to characterize some structural properties of an optimal

cyclic pricing policy. First, we show that an optimal cyclic pricing policy follows a markdown

pattern, which is summarized formally in the lemma below.

Lemma OA.4. (Markdown Pattern) An optimal cyclic pricing policy follows a (weakly)

markdown pattern.

This result is not surprising in the sense that, given that customers of higher valuations would either

buy or leave immediately upon arrival, and customers of lower valuations would wait, the firm has

an incentive to charge higher prices early on in a cycle to extract as much surplus from customers

of higher valuations as possible, and then clear the market of customers of lower valuations when

it approaches the end of a cycle. Having said that, this strategy is only viable when it is incentive

compatible for customers of higher valuations to buy immediately, which implies that the price

reduction in any two consecutive periods shall be less than or equal to the waiting cost of those

customers of higher valuations.

Lemma OA.3 also implies that, under any optimal cyclic pricing policy, the firm will not charge

a price higher than vn, the highest valuation from customers. With this, we are able to identify

two sufficient conditions under which an optimal cyclic pricing policy reduces to a static pricing

policy.

Lemma OA.5. (Degeneration of Optimal Cyclic Pricing to Static Pricing) An opti-

mal cyclic pricing policy reduces to a static pricing policy if either of the following conditions is

satisfied:
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(i) v1/c1 ≤ v2/c2 ≤ · · · ≤ vn/cn;

(ii) ci+1/ci ≤
n∑
j=i

αj

/
n∑

j=i+1

αj, ∀ i < n.

In particular, under condition (i), we have τi+1 ≤ τi, for any k0 ≤ i < kc− 1, where τi is defined in

Corollary OA.1.

As the counterpart of Lemma 9, Lemma OA.5(i) illustrates the impact of customers’ patience

levels on the structure of the optimal cyclic pricing policy. When customers of a higher valuation

are more patient than customers of a lower valuation, i.e., vi/ci ≤ vj/cj, ∀ i ≤ j, cyclic pricing

policies cannot outperform the optimal static pricing policy. In particular, under the condition in

Lemma OA.5(i), among customers with valuation vi, k0 ≤ i < kc− 1 who might wait by Corollary

OA.1, customers of a higher valuation are more patient than customers of a lower valuation in

the sense that they will start to wait earlier within a cycle, i.e., τi+1 ≤ τi, for any k0 ≤ i < kc − 1.

This contributes negatively to the firm’s profit due to: (i) the firm is not able to effectively price

discriminate among customers who will wait as customers of a higher valuation can effectively

mimic the behavior of customers of a lower valuation; (2) the firm needs to charge a lower price at

the end of a cycle to compensate for the waiting of customers of a higher valuation, who also have

a higher per-period waiting cost.

An alternative way to understand Lemma OA.5(i) is as follows. We can rewrite the condition

in Lemma OA.5(i) as ci+1/ci ≤ vi+1/vi, ∀ i < n. That is, if the ratio of per-period waiting costs

of two customer segments is less than the ratio of their valuations, i.e., the discrepancy of per-

period waiting costs of any two neighboring customer types is sufficiently small, any cyclic pricing

policy cannot effectively price discriminate among the two customers. Lemma OA.5(ii) shows an

alternative threshold for the ratio of per-period waiting costs, below which any cyclic pricing policy

cannot outperform an optimal static pricing policy.

C. Performance Comparison: Numerical Results

Analytically, we are able to characterize the optimal randomized pricing policy under certain

conditions with multiple customer segments, as shown in Section 4.3. In this section, we seek to

complement our theoretical analysis with comprehensive numerical studies.
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Figure OA.1 Relative Profit Gap between Optimal Randomized Pricing and Optimal Cyclic Pricing
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Note. Consider the case with two customer segments. Half of them value the product at v1 with a per-period waiting

cost of c1 = 0.1, and the other half value the product at v2 with a per-period waiting cost of c2 = 2.5.

Our first study focuses on the case when there are two segments of customers. The parameters of

the study are specified as follows: one-half of customers value the product at v1 with a per-period

waiting cost of c1 = 0.1, and the other half of customers value the product at v2 with a per-period

waiting cost of c2 = 2.5. We consider 3 scenarios, where v1 takes a value of 3, 4 and 5, respectively.

In each scenario, v2 − v1 ranges from 0 to 10 with an incremental value of 0.05. Figure OA.1

summarizes the relative profit differences between an optimal randomized pricing policy and an

optimal cyclic pricing policy. When the difference between the valuations is marginal, neither policy

can effectively price discriminate the two customer segments, and thus both of them reduce to the

optimal static pricing policy, leading to a zero performance gap. As v2− v1 increases, an optimal

cyclic pricing policy first outperforms an optimal randomized pricing policy, but this relationship

is reversed when v2− v1 becomes sufficiently large. This result corroborates our theoretical finding

in Proposition 13. In particular, the turning points are identical across the three scenarios, which

suggests that whether randomized pricing can outperform cyclic pricing solely depends on the

difference in valuations rather than their absolute values. This result has empirical implications,

as in many circumstances, it is easier to estimate the valuation difference than the valuation itself.

Next, we move on to the case with multiple customer segments. In particular, we will focus on

the case when there are three segments of customers, which proves to be a sufficiently sophisticated

context that allows us to investigate the nuances properly. The setup of the study is as follows:

1/3 of customers have a low valuation of v1 = 3 with a per-period waiting cost of c1 = 0.1, 1/3 of
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Figure OA.2 Optimal Randomized Pricing vs. Optimal Cyclic Pricing when n= 3 and v1 = 3

(a) Relative Profit Gap (b) Optimal Randomized Pricing (c) Optimal Cyclic Pricing

Note. In Figures OA.2(b) and OA.2(c), in those regions of type (I), the corresponding pricing policy reduces to a

static pricing policy; in those regions of type (II), customers of valuations v1 and v2 would wait, and customers of

valuation v3 would buy immediately upon arrival under the corresponding pricing policy; in those regions of type

(III), customers of valuation v1 would wait, customers of valuation v2 would either purchase or leave immediately

upon arrival, and customers of valuation v3 would buy immediately upon arrival under the corresponding pricing

policy.

Figure OA.3 Optimal Randomized Pricing vs. Optimal Cyclic Pricing when n= 3 and v1 = 4

(a) Relative Profit Gap (b) Optimal Randomized Pricing (c) Optimal Cyclic Pricing

Note. Parameters are the same as those in Figure OA.2, except for v1 = 4.

Figure OA.4 Optimal Randomized Pricing vs. Optimal Cyclic Pricing when n= 3 and v1 = 5

(a) Relative Profit Gap (b) Optimal Randomized Pricing (c) Optimal Cyclic Pricing

Note. Parameters are the same as those in Figure OA.2, except for v1 = 5.
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customers have a medium valuation of v2 with a per-period waiting cost of c2 = 0.5, and the rest

1/3 of customers have a high valuation of v3 with a per-period waiting cost of c3 = 2.5. In this

study, v2 − v1 ranges from 0 to 6, and v3 − v2 ranges from 0 to 30. Figure OA.2(a) summarizes

the relative profit gap between optimal randomized pricing policies and optimal cyclic pricing

policies. To facilitate the understanding of Figure OA.2(a), we also plot the customers’ responses

under the optimal randomized pricing and optimal cyclic pricing policies in Figures OA.2(b) and

OA.2(c), respectively. We test the robustness of these observations with other parameters, and

observe similar patterns, see Figures OA.3 and OA.4.

We make some observations from Figure OA.2. First, when the differences of valuations (i.e.,

both v2 − v1 and v3 − v2) are sufficiently small, neither randomized pricing nor cyclic pricing can

effectively price discriminate customers, and thus both of them reduce to an optimal static pricing

policy, leading to zero performance gap. As v2−v1 or v3−v2 increases, cyclic pricing first becomes

effective in price-discriminating customers whereas optimal randomized pricing still reduces to

optimal static pricing, as suggested by the smaller region of type (I) in the bottom left corner of

Figure OA.2(c) than that in OA.2(b). However, as v2 − v1 and v3 − v2 continue to increase, this

relationship is reversed where optimal randomized pricing consistently outperforms optimal cyclic

pricing. This observation is consistent with our analytical result in Proposition 13, even though

the condition v1 − c1 ≥ v2 − c2 ≥ v3 − c3 is not satisfied in the majority of the parameter space in

this study.

Second, the relative performance gap between optimal randomized pricing and cyclic pricing is

nonlinear, which reaches its maximum when both v2 − v1 and v3 − v2 are of medium values. The

rationale is as follows. When both v2 − v1 and v3 − v2 are relatively small, performance gaps are

small, with cyclic pricing dominating randomized pricing under certain circumstances, as discussed

above. As v2 − v1 and/or v3 − v2 increase, the effectiveness of randomized pricing becomes more

salient, as it is able to extract most of the surpluses from customers of higher valuations while

keeping customers of lower valuations waiting in the system, whereas optimal cyclic pricing policies

quickly reduce to optimal static pricing policies, as suggested by the large area of type (I) in Figure

OA.2(c). This is because when the differences in customers’ valuations are large, an optimal cyclic
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pricing policy needs to follow a sequence of markdowns to prevent the high-valuation customers

from waiting, which leaves too much surplus to those customers, rendering its degeneration to

a static pricing policy. On the other end of the spectrum, when the differences in valuations

are extremely large, especially when the highest valuation is significantly higher than the rest,

capturing the surplus from customers of the highest valuation becomes the utmost priority, and thus

an optimal static pricing policy becomes more favorable, compared to those price discrimination

mechanisms. Thus, the performance gap becomes smaller as a result. In fact, when v3 dominates,

no price discrimination policy would be effective, and thus both randomized pricing and cyclic

pricing policies reduce to an optimal static pricing policy. This is reflected by the area of type (I)

in the top left corner in both Figures OA.2(b) and OA.2(c).

Figure OA.5 Relative Profit Gap between Optimal Randomized Pricing and Optimal Cyclic Pricing
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Note. Parameters of this study are consistent with estimates in Moon et al. (2017). In particular, we consider two

customer segments with α1 = 0.18, α2 = 0.82, c1 = 0.2, and c2 = 2.5.

To validate the generality of our results, we run another numerical study by adopting parameters

from the empirical context of Moon et al. (2017). We consider the case with two customer segments,

where 18% of them have a low valuation of v1 with a per-period waiting cost of c1 = 0.2 and 82% of

customers have a high valuation of v2 with a per-period waiting cost of c2 = 2.5.OA.2 In this study,

v1 ranges from 5 to 10 (i.e., equivalent to $50 to $100 in Moon et al. 2017), and v2−v1 varies from 0

OA.2 Under a stationary randomized pricing policy, the monitoring cost estimated in Moon et al. (2017) is equivalent
to customers’ per-period waiting cost in our setting, as both measure the cost for customers to sample another price
point. We also scale the estimated valuations and costs in Moon et al. (2017) down by a factor of 10 to make results
comparable to the rest of our numerical analysis.
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to 10. Figure OA.5 summarizes the relative profit gap between optimal randomized pricing policies

and optimal cyclic pricing policies. Consistent with our findings in Figure OA.1, we observe that

an optimal cyclic pricing policy outperforms an optimal randomized pricing policy when v2 − v1

is relatively small, whereas this dominance is reversed when v2 − v1 becomes sufficiently large.

Moreover, we also see the benefit of randomized pricing generally reaches its maximum when the

differences in customer valuations, v2− v1, are of medium values.
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