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Abstract. Problem definition: The undesirable but inevitable consequence of running pro-
motions is that consumers can be trained to time their purchases strategically. In this paper, 
we study randomized promotions, where the firm randomly offers discounts over time, as 
an alternative strategy of intertemporal price discrimination. Methodology/results: We 
consider a base model where a monopolist sells a single product to a market with a cons-
tant stream of two market segments. The segments are heterogeneous in both their product 
valuations and patience levels. The firm precommits to a price distribution, and in each 
period, a price is randomly drawn from the committed distribution. We characterize the 
optimal price distribution as a randomized promotion policy and show that it serves as an 
intertemporal price discrimination mechanism such that high-valuation customers would 
make a purchase immediately at a regular price upon arrival, and low-valuation customers 
would wait for a random promotion. Compared against the optimal cyclic pricing policy, 
which is optimal within the strategy space of all deterministic pricing policies, the optimal 
randomized pricing policy beats it if low-valuation customers are sufficiently patient and 
the absolute discrepancy between high and low customer valuations is large enough. We 
extend the model in three directions. First, we consider the case where a portion of custo-
mers are myopic and would never wait. We show that the existence of myopic customers 
is detrimental to the firm’s profitability, and the expected profit from an optimal random-
ized pricing policy decreases as the proportion of myopic customers in the population 
increases. Second, we consider Markovian pricing policies where prices are allowed to be 
intertemporally correlated in a Markovian fashion. This additional maneuver allows the 
firm to reap an even higher profit when low-valuation customers are sufficiently patient by 
avoiding consecutive promotions but, on average, running the promotion more frequently 
with a smaller discount size. Lastly, we consider a model with multiple customer segments 
and show that a two-point price distribution remains optimal, and our conclusion from the 
two-segment base model still holds under certain conditions that are adopted in the litera-
ture. Managerial implications: Our results imply that the firm may want to deliberately 
randomize promotions in the presence of forward-looking customers.
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1. Introduction
Dynamic or contingent pricing is now widely adopted by 
firms in a range of sectors, such as the airline and 
e-commerce industry, and is proven to be a strategy that 
can improve a firm’s bottom line substantially. It is espe-
cially prevalent in online retail markets, even for durable 
goods, because retailers are no longer inhibited by physi-
cal price tags that require time and effort to change manu-
ally. Many firms manipulate prices frequently and, from 

the customers’ point of view, in a somewhat random 
fashion. For example, Figure 1 displays the price trajec-
tory of Apple AirPods Pro on Amazon from its launch in 
November 2019 to April 2020. The price varied between 
its list price of $249.00 and a discounted price of $234.99. 
If a price-sensitive consumer wants to wait for the dis-
count of $14, it is not clear when the promotion might 
happen outside the Christmas shopping season and how 
long it will last.
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When customers are forward-looking, a seller may 
benefit from deliberately varying prices over time in a 
random fashion. Consider a price-insensitive or delay- 
sensitive consumer who wants to buy an AirPods Pro 
arrives at Amazon. Although the consumer is fully aware 
of the possibility of a promotion in the near future by 
checking the historical price trajectory through websites 
such as CamelCamelCamel or Keepa, the random occur-
rence of such a price discount may deter the consumer 
from waiting and result in their purchase at the list 
price upon arrival. Moon et al. (2017, p. 1276) empirically 
show the success of an established North American 
specialty retailer in implementing a committed state- 
independent randomized markdown policy through 
avoiding “‘conditioning’ or ‘training’ its customers to 
wait for markdowns.”1

In comparison with running promotions on predictable 
time instances, there are clearly pros and cons associated 
with randomized pricing. On the one hand, under a ran-
domized price policy, customers cannot reliably predict 
future prices, making it hard to time their purchases. 
Hence randomized pricing would be able to alleviate stra-
tegic customer behavior to some extent compared with a 
deterministic markdown policy, especially when it was 
close to a predetermined promotion time. However, the 
flip side of the coin is that, although customers cannot pre-
dict future prices accurately, they would expect some 
price variations at any point in time and still have a ten-
dency to delay their purchase regardless of when their 
consumption need arises. Thus, it is unclear under what 
conditions randomized pricing would dominate a deter-
ministic pricing policy, such as a static pricing policy or a 
cyclic pricing policy. The former completely eliminates 
strategic customer behavior, and the latter can intertempo-
rally price-discriminate customers (Conlisk et al. 1984). 
Therefore, a full-blown theoretical investigation is needed 
to complement the empirical study by Moon et al. (2017).

To that end, we address a set of questions that require 
formal modeling and a complete scan of the parameter 
and strategy space. For example, how may randomized 
promotions and pricing work to benefit the firm? Is it 
possible that randomized pricing is even worse than a 

static pricing policy?2 Under what conditions does ran-
domized pricing outperform the optimal deterministic 
pricing such as cyclic pricing3 that has been well studied 
in the literature and vice versa? Is it beneficial to further 
expand the search for the optimal pricing strategy from 
randomized prices independently drawn from a price 
distribution to more sophisticated randomized pricing 
policies, such as Markovian pricing, where the price 
process evolves in a Markovian fashion, for example, 
whether there will be a promotion in the next period 
depends on whether there is one in the current period?

We answer these questions with a theoretical model 
in discrete time. In particular, we consider a base model 
where a monopolist sells a single product to two seg-
ments of customers. Customers arrive sequentially at a 
constant rate, and they are heterogeneous in both prod-
uct valuations and patience levels. Upon arrival, a cus-
tomer can choose to purchase the product immediately, 
delay purchases for future periods with the hope of a 
lower price, or leave immediately. The decision of ran-
domized pricing for the firm is to decide on and com-
mit to a price distribution before the sales horizon 
starts, from which a price is randomly drawn in each 
period of the sales horizon.

First, we characterize customers’ best responses to 
randomized pricing and structural properties that opti-
mal randomized pricing policies must obey. It turns 
out, under any optimal randomized pricing policies, 
high-valuation customers would either purchase or 
leave immediately upon arrival, whereas low-valuation 
customers would either buy immediately if the price 
happens to be sufficiently low or delay the purchase. 
We then construct a simple two-point price distribution 
with the higher price to be the valuation of high-type 
customers and prove its optimality by showing that 
such a distribution can attain an upper bound of the 
firm’s expected profit. Under this two-point price distri-
bution (when it is nondegenerate to a single mass 
point), high-valuation customers would always pur-
chase immediately upon arrival, whereas low valuations 
would always purchase with the lower discounted price 
either immediately or in a future period. That is, the opti-
mal randomized pricing policy serves as an intertemporal 
price discrimination mechanism such that high-valuation 
customers would make a purchase immediately at a 
regular price upon arrival, and low-valuation customers 
would wait for a promotion.

Next, we investigate the firm’s profitability, consumer 
surplus, social welfare, and surplus allocation across the 
two market segments under the optimal randomized 
pricing policy. We show that, compared with the optimal 
static pricing policy, the optimal randomized pricing pol-
icy yields a higher profit when low-valuation customers 
are sufficiently patient. Hence, randomized pricing either 
dominates or reduces to static pricing. If under the opti-
mal static pricing policy, the low-valuation customers are 

Figure 1. (Color online) Pricing Trajectory of Apple AirPods 
Pro on Amazon from Its Launch in November 2019 to April 
2020 

Source. https://keepa.com/#!product/1-B07ZPC9QD4.
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priced out of the market, then the optimal randomized 
pricing policy leads to (weakly) higher surplus for both 
market segments and hence higher social welfare (which 
is the total surplus of the firm and all customers). Other-
wise, the optimal randomized pricing policy results in a 
lower surplus difference between the two market seg-
ments. Thus, shifting from static pricing to randomized 
pricing leads to a (weakly) higher profit for the firm and, 
moreover, either (weakly) higher social welfare or a 
(weakly) fairer surplus allocation among customers.

We further evaluate the performance of randomized 
pricing policies by benchmarking against cyclic pricing 
policies. We first show that, in our setup, cyclic pricing 
policies arise to be optimal within the strategy space of 
all deterministic policies. Under a cyclic pricing policy, 
the same pricing schedule within a cycle is repeated 
over time. We show that an optimal cyclic pricing pol-
icy follows a (weakly) markdown pattern. Interestingly, 
neither randomized pricing nor cyclic pricing always 
dominates the other over the full parameter space. How-
ever, when low-valuation customers are sufficiently pati-
ent, and the absolute discrepancy in customers’ valuations 
is sufficiently large, an optimal randomized pricing policy 
is more profitable than an optimal cycle deterministic pric-
ing policy. The underlying rationale is as follows. When 
the absolute discrepancy in customers’ valuations is suffi-
ciently large, it is important for the firm to capture most of 
the surplus from high-valuation customers. This can be 
achieved under the optimal randomized pricing policies 
by a low frequency of promotions, and thus the majority 
of high-valuation customers would make a purchase at 
a price equal to their valuation. Meanwhile, the low- 
valuation customers wait for the promotion as they are 
sufficiently patient. Conversely, the optimal cyclic pricing 
policy follows a predetermined price trajectory known to 
all customers. Thus, the firm needs to compensate high- 
valuation customers to prevent them from waiting to pur-
chase at a discounted price, especially when it is closer to 
the end of a cycle. This compensation cuts into the firm’s 
profitability, leading to the underperformance of cyclic 
pricing policies compared with randomized pricing poli-
cies, where high-valuation customers pay at their valua-
tion most of the time.

Last, we extend the base model in three directions. 
First, we consider the case where a portion of customers 
are myopic and would never wait. We show that, in the 
presence of myopic customers, the optimal randomized 
pricing policy still follows a two-point distribution, 
which is composed of a regular price and a discounted 
price that clears the market of strategic low-valuation 
customers from time to time. As the proportion of myo-
pic customers in the population increases, the firm 
may either run promotions less frequently with a lower 
discounted price or run promotions more frequently 
with a higher discounted price. The optimal strategy 
depends on the ratio of valuations between the two 

customer segments. Overall, the existence of myopic 
customers is detrimental to the firm’s profitability, and 
the expected profit from an optimal randomized pricing 
policy decreases as the proportion of myopic customers 
in the population increases. Second, we consider a Mar-
kovian pricing policy, where prices are allowed to be 
intertemporally correlated in a Markovian fashion. We 
show that Markovian pricing may not always dominate 
randomized pricing. However, when it generates a higher 
profit, it does so by avoiding consecutive promotions and 
extracting weakly more profit from low-valuation custo-
mers and strictly more profit from high-valuation custo-
mers than an optimal randomized pricing policy. When 
low-valuation customers are sufficiently patient, the extra 
maneuver with Markovian pricing policies leads to a 
higher expected profit through, on average, running the 
promotion more frequently with a smaller discount size. 
Third, we consider a model with multiple customer seg-
ments. We show that, under certain conditions that are 
also used in the literature, the optimal randomized pricing 
policy still follows a two-point price distribution, under 
which there exists a cutoff on customers’ valuations such 
that any customer with a valuation less than the cutoff 
would choose to wait, whereas any customer with a 
valuation greater than or equal to that cutoff would either 
purchase or leave immediately upon arrival. This ran-
domized pricing policy is guaranteed to outperform an 
optimal static pricing policy when customers of the lowest 
valuation are sufficiently patient. Under the same set of 
conditions that guarantee the optimality of a two-point 
price distribution for randomized pricing, we show that 
when the absolute discrepancies in customers’ valuations 
are large enough, an optimal randomized pricing policy is 
always more profitable than an optimal cyclic pricing 
policy.

Our results imply that firms may want to deliberately 
randomize promotions in the presence of forward- 
looking customers who sequentially arrive because doing 
so can lead to higher profits. As a default assumption in 
the literature of dynamic mechanism design, commitment 
to a randomized pricing policy is practically easier to 
enforce nowadays than ever, thanks to a provable track 
record displayed by price tracker websites such as Camel-
CamelCamel or Keepa. E-commerce websites can develop 
a reputation of running random promotions to train con-
sumers to make an immediate purchase as they see an 
acceptable price upon arrival rather than to wait for a 
lower price.

2. Literature Review
Our paper is related to the economic literature on the 
usage of price dispersion for the purpose of price dis-
crimination. The origin of this stream of literature can 
be traced back to the 1970s. Back then, economists have 
come to recognize that the “law of one price” is no law 
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at all (Varian 1980). A significant degree of price disper-
sion is observed across a wide range of industries. The 
first few papers, including but not limited to Salop 
and Stiglitz (1977), Salop (1977), and Reinganum (1979), 
seek to provide a rationale regarding why multiple 
retailers offer an identical item at different prices con-
temporaneously. This type of price dispersion is also 
referred to as spatial price dispersion. Our work is more 
closely related to a different kind of price dispersion, 
namely temporal price dispersion, where prices vary 
over time, and at any moment, a cross-section of the 
market would exhibit price dispersion. Temporal price 
dispersion is first studied in the seminal paper by Var-
ian (1980), who shows that the existence of temporal 
price dispersion is sustained by information heteroge-
neity in prices. Varian (1980) assumes that there are two 
segments of consumers, that is, consumers who are 
informed of all current prices and consumers who are 
uninformed. Informed consumers would only purchase 
from the lowest-priced seller, whereas uninformed con-
sumers would visit sellers randomly. The author shows 
that when there are both informed and uninformed 
consumers, there is a symmetric mixed equilibrium in 
which all sellers randomize according to the same price 
distribution. In that setting, the existence of temporal 
price dispersion is sustained by information heteroge-
neity in prices. Since then, temporal price dispersion 
has been studied with various twists from the informa-
tion perspective (see Baye and Morgan 2001 and refer-
ences therein). The randomized pricing policy considered 
in our paper is also one type of temporal price dispersion. 
By contrast, we focus on one single firm rather than multi-
ple firms. We unravel the effectiveness of randomized 
pricing policies by a single firm in serving as an intertem-
poral price discrimination mechanism.

Along the line of intertemporal price discrimination, 
researchers have tried to tackle the intertemporal pric-
ing problems with sequentially arriving strategic custo-
mers who are forward-looking and able to time their 
purchases. With strategic customers, the optimal class 
of policies within the strategy space of all deterministic 
policies has been shown to be cyclic pricing policies. For 
example, Conlisk et al. (1984) and Besbes and Lobel 
(2015) study a setting very close to ours with an infinite 
sales horizon and a steady stream of strategic customers 
of heterogeneous valuation or patience levels. A subtle 
difference is that Conlisk et al. (1984) adopt a discount-
ing factor in capturing the customers’ cost of waiting, 
whereas Besbes and Lobel (2015) assume an exogenously 
given shopping window over which a customer compares 
prices. By contrast to the shopping window assumption, 
we assume customers have waiting cost per period as an 
alternative assumption to a discounting factor4 and fully 
endogenize strategic customer behavior as a solution to a 
dynamic program. Similar to Conlisk et al. (1984) and 
Besbes and Lobel (2015), we also show that the optimal 

deterministic pricing policy is a cyclic pricing policy 
among deterministic policies in our setting. Then, we 
identify conditions under which randomized pricing 
outperforms cyclic pricing.

Sobel (1984) extends Conlisk et al. (1984) to account 
for competition and shows that, in the symmetric equi-
librium, competing symmetric sellers use randomized 
(mixed) strategies. The equilibrium strategy has the fol-
lowing form: There exists a finite time length during 
which all sellers charge the regular price to sell to high- 
valuation customers and after which any seller may run 
a promotion. When a promotion or multiple promo-
tions occur, all of the accumulated low-valuation custo-
mers buy from the lowest-price seller, and the process 
repeats. Sinitsyn (2017) builds on Sobel (1984) but assumes 
that the sellers must schedule their price promotion in 
advance over a finite horizon; that is, each seller commits 
to a future period in which to run a promotion to sell to 
low-valuation customers. The author shows that sellers 
often use mixed strategies in equilibrium, choosing the 
future promotion period according to a probability distri-
bution function. In contrast to these papers that study 
competition where randomized (mixed) strategies may 
naturally arise in equilibrium, we study whether a monop-
olist seller can do better by expanding its strategy space 
from deterministic pricing policies to randomized pricing 
policies.

In a parallel setup to the line of Conlisk et al. (1984), 
Besanko and Winston (1990) assume a finite number of 
customers lining up in the beginning of the sales hori-
zon and show the subgame perfect Nash equilibrium 
pricing policy involves intertemporal price discrimina-
tion through price skimming. Liu and Zhang (2013) 
study a competitive version of this setup for two firms 
offering vertically differentiated products. In contrast, 
we follow the line of Conlisk et al. (1984) by assuming 
the entry of new customers over time, which captures 
the sequential customer arrivals in many practical set-
tings, such as purchasing an AirPods Pro online as cus-
tomers’ needs arise over time.

Aviv and Pazgal (2008) show that strategic customer 
behavior suppresses the benefits of price segmentation. 
Chen et al. (2019) point out that static prices eliminate 
any strategic customer behavior and show its competi-
tive ratio is 1� 1=e for a broad class of customer utility 
models. In our model, we characterize sufficient condi-
tions under which randomized pricing reduces to static 
pricing or strictly outperforms static pricing. In addition, 
various operational-level maneuvers, such as rationing by 
deliberately understocking products (Liu and van Ryzin 
2008), implementing a dry period with zero inventory 
(Chen and Chu 2020), displaying one unit of inventory at 
a time (Yin et al. 2009), and offering price guarantees 
under Markovian pricing (Wu et al. 2020),5 have been pro-
posed to reduce the propensity of consumers to strategi-
cally wait for discounts. Contributing to this literature, we 
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study randomized pricing as a mechanism to alleviate 
strategic customer behavior. We identify under what con-
ditions such randomized pricing policies can indeed bene-
fit the firm over static pricing or cyclic pricing.

There are two papers that are closest to this paper: 
Moon et al. (2017) and Wu et al. (2014). Moon et al. 
(2017) introduce randomized pricing as a mechanism of 
intertemporal price discrimination and emphasize the 
customers’ active monitoring as a critical factor in deter-
mining the success of randomized pricing. Other than 
that Moon et al. (2017) is a structural estimation model 
and ours is an analytical model, there are a couple of dis-
tinct differences. First, the models have many differences. 
Moon et al. (2017) study a continuous-time model with an 
infinite sales horizon, a finite initial inventory level, and a 
finite market size, whereas we consider a discrete-time 
model with an infinite horizon, no capacity constraint, 
and a constant stream of new customers (essentially infi-
nitely many customers). Ours is a common setting to 
study strategic consumer behavior (Conlisk et al. 1984, 
Besbes and Lobel 2015). Moon et al. (2017) assume that 
the firm has the information on the remaining numbers 
of customers in the market, whereas we do not. Second, 
the main focuses are different. Moon et al. (2017) compare 
randomized pricing with contingent pricing dependent 
on the inventory level and the remaining numbers of stra-
tegic customers.6 As our model has neither inventory 
constraint nor the information of outstanding strategic 
customers, state-dependent contingent pricing reduces to 
a static pricing policy. In addition to an analytical compar-
ison between randomized and static pricing, we also theo-
retically compare randomized pricing with cyclic pricing, 
which is proven to be optimal among deterministic 
policies.7

Like ours, Wu et al. (2014) also build a model to 
study the impact of randomized pricing policies on a 
firm’s profitability. However, our paper differs from 
Wu et al. (2014) in the following essential aspects. First, 
Wu et al. (2014) adopt an exogenously given shopping 
window to capture customers’ strategic waiting behav-
ior. In their paper, high-valuation customers are assumed 
to wait for up to one period, and low-valuation customers 
would wait for up to a given finite number of periods. In 
contrast, we assume that each segment of customers have 
their own cost of waiting per time period and fully endo-
genize strategic waiting behavior as a solution to an opti-
mal stopping time problem for each individual customer. 
Second, the price distribution considered in Wu et al. 
(2014) is beforehand restricted to a two-point distribution. 
By contrast, we start with general price distributions and 
characterize the sufficient conditions under which a two- 
point distribution is optimal. Last, with our general model, 
we provide a much more comprehensive set of compari-
sons among randomized, static, and cyclic pricing.

In sum, the main contributions of this paper are 
threefold. First, we complement the empirical work of 

Moon et al. (2017) to theorize randomized pricing. Sec-
ond, we show after expanding the strategy space of the 
firm from deterministic policies to random policies, the 
firm can do strictly better and identify conditions under 
which the firm is better off with randomized pricing, 
compared with cyclic pricing. Third, we show that the 
firm can do even better with Markovian pricing, com-
pared with time-independent randomized pricing, and 
characterize the conditions under which a two-point 
price distribution remains optimal with multiple cus-
tomer segments.

3. Model of Randomized Pricing
We consider a monopolist who sells a single product 
over an infinite horizon. The seller uses a randomized 
pricing policy. That is, the firm chooses and announces 
a distribution of prices ex ante, and then a random price 
P is drawn from the chosen distribution for each period. 
In our base model, prices are assumed to be indepen-
dent and identically distributed across different periods, 
which will be relaxed in Section 4.2 where the price pro-
cess follows a Markovian process. We denote the price 
mass or density function by f(p) and the cumulative dis-
tribution function by F(p). Because no customer would 
make a purchase at an infinitely high price, we just con-
sider the support of P to be finite. As general mecha-
nism design without commitment presents well-known 
difficulties (Bester and Strausz 2001), commitment to a 
(potentially randomized) policy is the most common 
approach in the literature nowadays.8

Customers are infinitesimal and arrive sequentially 
over time. We consider a discrete-time model, and the 
customer arrival rate is normalized to one for each time 
period. Each customer purchases up to one unit of the 
product. Upon arrival, a customer decides among three 
options: purchase immediately in the current period, 
wait in the system with the hope of a more favorable 
price in future periods, or leave immediately. If a cus-
tomer chooses to delay the purchase, a waiting cost is 
incurred for each period.9 Customers are heterogeneous 
along two dimensions, namely, valuation and patience 
level. We assume there are two customer segments.10 A 
fraction, α, of low-valuation customers (bargain hun-
ters) value the product at vL, and the remaining, 1� α, 
fraction of customers value the product at vH, where vH 
> vL. The one-period waiting costs for low- and high- 
valuation customers are denoted by cL and cH, respec-
tively. We do not require that low-valuation customers 
be more patient than high-valuation customers, that is, 
cL can be larger than cH.

We assume that customers benefit from waiting, that 
is, a customer’s waiting cost per period is less than their 
valuation. Otherwise, it becomes trivial that customers 
would either purchase the product or leave immedi-
ately upon arrival.
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Assumption (S) (Strategic Customers). Suppose 0 <
cL < vL and 0 < cH < vH.

3.1. Optimal Customer Response
We first characterize the optimal response of customers 
under any given price distribution. It suffices to con-
sider one segment of customers with a valuation of v 
and a one-period waiting cost of c. Suppose a customer 
arrives in period t and makes a purchase in period t′. 
Their utility is thus given by v� pt′ � (t′� t)c, ∀t′ ≥ t. 
Upon arrival, a customer makes a choice among three 
options: buy immediately (buy), delay purchase (wait), 
or leave immediately (quit). The customer surplus of 
quitting and adopting an outside option is assumed to 
be zero. At period t, their utility from purchasing in 
period t′(> t) would be uncertain under a randomized 
pricing policy. Customers are assumed to be rational 
and make decisions to maximize their utilities. Denote 
by Vt(pt) a customer’s maximum utility given price pt 
in the current period t. Vt would be independent of 
time because we consider a stationary system with an 
infinite horizon. Thus, without abuse of notation, we 
omit the subscript and use V throughout the rest of the 
paper. Therefore, V(pt) is given by

V(pt) �max{v� pt
|fflffl{zfflffl}
(buy)

, �c+E[V(P)]
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

(wait)

, 0|{z}
(quit)

}:

We show in the following lemma that customers’ opti-
mal response is governed by a threshold policy. They 
would purchase the product immediately if the price in 
the current period is sufficiently low; otherwise, they 
would either delay the purchase or leave immediately.

Lemma 1. There exists a threshold p ∈ (0, v] such that

V(pt) �
v� pt if pt ≤ p,
[�c+E[V(P)]]+ otherwise:

�

(1) 

Whether a customer would wait or leave depends on 
their valuation v. If a customer’s valuation v is suffi-
ciently high, then the customer is better off waiting for 
a favorable price in future periods. Otherwise, they 
would either buy now or leave immediately. In case of 
ties between acting immediately and later, an agent is 
assumed to act immediately. We apply this tie-breaking 
rule throughout this paper. In particular, a customer, 
who is otherwise indifferent between quitting or buying 
immediately and waiting, is assumed to quit or buy 
immediately. We formalize this result as follows.

Proposition 1 (Threshold Rule of Customer). A customer 
with valuation v would be willing to wait and eventually 
purchase a unit of the product (either immediately or in 
a future period) if v > v∗ �max{v′ |E[(v′�P)+] ≤ c}, and 
their purchase threshold p � v∗. Otherwise, the customer 

would purchase the product if v ≥ pt, or leave immediately 
if v < pt.

Proposition 1 shows that a customer’s decision, in par-
ticular, whether they will wait or leave, depends critically 
on the firm’s choice of the price distribution. This is not sur-
prising in the sense that if a relatively low price can be 
drawn from the price distribution with a high probability, 
then a customer is better off waiting because their expected 
utility from waiting outweighs their waiting cost. Con-
versely, if a low price is not likely to be drawn from the 
price distribution, that is, a customer is expected to wait for 
a long time before seeing a favorable price, then the best 
option for the customer is not to wait. Proposition 1 implies 
that the firm’s choice of the price distribution shapes custo-
mers’ decisions in a critical way.

More precisely, valuation v∗ �max{v′ |E[(v′�P)+] ≤
c} is the break-even point. A customer with a valuation 
exactly at v∗ would be indifferent between waiting and 
not waiting. At this break-even point v � v∗, the expected 
benefit of waiting for one more period, E[(v�P)+], obtain-
ing a surplus v – P when P ≤ v is exactly equal to the one- 
period waiting cost c. A customer whose valuation is 
strictly higher than v∗ would be willing to wait: If the cus-
tomer observes a favorable low price pt ≤ v∗, they would 
buy one unit in period t; otherwise, they would wait, 
because their expected benefit of waiting for one more 
period is always strictly higher than the waiting cost c. In 
period t + 1, the exactly same threshold rule applies because 
the last period cost of waiting, c, has been sunk. As a result, 
a customer with v > v∗ would eventually purchase a unit 
of the product, either immediately upon arrival or in a 
future period. For those customers whose valuation is 
strictly lower than v∗, they would not wait and only make 
a purchase upon arrival when they see a price lower than 
their valuation. For those whose valuation is at v∗, our tie- 
breaking rule assumes that they conform to the latter.

Other than the price distribution, it is apparent that cus-
tomers’ own traits of valuation and waiting cost also affect 
their optimal responses. For a given waiting cost c, per-
haps somewhat counterintuitively, a customer is more 
willing to wait if their valuation is higher because the cus-
tomer’s valuation is more likely to exceed the threshold 
v∗. On the other hand, more intuitively, with a given valu-
ation v, a customer is less willing to wait with a higher 
waiting cost.11 These observations are important to under-
stand the firm’s optimal choice of the price distribution in 
the presence of multiple market segments with heteroge-
neous customer valuations and waiting costs.

Las, we formally summarize the firm’s expected profit 
from one customer segment with valuation v and per- 
period waiting cost c in the following lemma.

Lemma 2 (Firm’s Expected Profit from a Single Seg-
ment). Consider a single market segment with customer valuation 
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v and waiting cost c. Under an arbitrary randomized price dis-
tribution P: 

(i) If v > v∗, the monopolist’s expected profit is E[P |P ≤ v∗].
(ii) Otherwise, the monopolist’s expected profit is F(v)

E[P |P ≤ v].

For the case when customers are willing to wait (i.e., 
v > v∗), they would wait, potentially for many periods, 
until they buy at a price lower than v∗. Hence, the 
monopolist’s expected profit is given by E[P |P ≤ v∗]. 
Of course, one underlying assumption of this expres-
sion is that the firm does not discount future payoffs, 
which is consistent with the long-run average objective 
adopted in a similar setting of Besbes and Lobel (2015). 
For the case when customers are not willing to wait 
(i.e., v ≤ v∗), they would only buy upon arrival seeing a 
price no higher than their valuation v and hence, the 
monopolist’s expected profit is F(v)E[P |P ≤ v]. For both 
cases, the expected profit is no more than v. As an imme-
diate ramification, the optimal randomized pricing policy 
is trivial with only one segment of customers: it reduces to 
an optimal static pricing policy with a price at v.

3.2. Optimal Randomized Pricing Policy
Next, we derive the optimal randomized pricing policy 
with two segments of customers who differ in both 
valuations and patience levels. The flow of this section 
is as follows. We first discuss structural properties that 
an optimal randomized pricing policy must satisfy. 
Then, based on those properties, we construct an opti-
mal price distribution and prove its optimality by 
showing that an upper bound of the expected revenue 
can be attained by such a price distribution.

A benchmark that we will use throughout the rest of 
this section is the optimal static pricing policy, under 
which customers behave myopically and the expected 
profit is given by max{vL, (1� α)vH}. That is, the monop-
olist either sets a static price at vL to sell to both segments 
or sets a static price at vH to sell only to the high-valuation 
customers. When an optimal static pricing policy outper-
forms randomized pricing policies, the price distribution 
in an optimal randomized pricing policy reduces to a 
constant.

To facilitate the following discussion, we determine 
critical thresholds that govern customers’ decisions as 
follows, based on the single-segment analysis in Section 
3.1. That is, a low (respectively, high) valuation cus-
tomer would either purchase or wait if and only if pL <

vL (respectively, pH < vH), where

pi �max{v′ |E[(v′�P)+] ≤ ci}, i � L, H:

3.2.1. Structural Properties. We start by proving some 
key features that an optimal randomized pricing policy 
must satisfy. The properties shed light on market char-
acteristics that the firm can potentially benefit from 
using randomized pricing policies. They also narrow 

down the candidate policies and set the stage for us to 
derive the optimal randomized pricing policy.

Lemma 3 (Absolute Patience Level). An optimal ran-
domized pricing policy reduces to a static pricing policy if 
cL ≥ cH.

Waiting cost parameters cL and cH indicate the absolute 
patience levels for low- and high-valuation customers, 
respectively. Lemma 3 shows that, under any randomized 
pricing policy, the monopolist cannot obtain a higher 
profit than that from an optimal static pricing policy 
when high-valuation customers are more patient. This 
result is not surprising in the sense that when high- 
valuation customers are more patient, they can wait for at 
least as long as low-valuation customers and thus would 
make a purchase at a price no higher than what low- 
valuation customers would pay. The highest price that a 
low-valuation customer would pay is vL. Because the firm 
cannot effectively separate the two segments of customers 
when cL ≥ cH, the optimal expected profit per period can 
be no higher than vL, which is the expected profit under 
the static price vL.

Lemma 4 (Relative Patience Level). An optimal random-
ized pricing policy reduces to a static pricing policy if 
vL=cL ≤ vH=cH.

In Lemma 4, we show a weaker condition, vL=cL ≤

vH=cH (i.e., cL=cH ≥ vL=vH), under which the firm would 
not be better off from a randomized pricing policy. 
Essentially, the ratio of a customer’s valuation and their 
per-period waiting cost, that is, vi=ci, i � L, H, indicates 
their relative patience level. It manifests the maximum 
number of time periods that a customer could potentially 
wait before their utility becomes negative. Lemma 4
shows that the firm can only effectively price discriminate 
two segments when low-valuation customers are rela-
tively more patient. Moon et al. (2017) show, in an online 
appendix, a special case of Lemma 4 when the high- 
valuation customers have zero waiting cost, that is, cH � 0.

Furthermore, as shown in Lemma OS.1 in the online 
appendix, vL=cL > vH=cH is a necessary condition for low- 
valuation customers to wait, and for high-valuation custo-
mers to either purchase or leave immediately under any 
randomized pricing policy. Intuitively, this is a situation 
that benefits the firm the most because the firm can charge 
a higher price for high-valuation customers while at the 
same time setting a lower price randomly once in a while 
and clearing the market of hanging around low-valuation 
customers. This intuition is formally confirmed in the fol-
lowing proposition.12

Proposition 2 (Customer Behavior Under an Optimal 
Randomized Pricing Policy). Under any optimal randomized 
policy that outperforms the optimal static pricing policy, low- 
valuation customers would wait, and high-valuation customers 
would either purchase or leave immediately upon arrival.
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3.2.2. Optimal Price Distribution. Next, we derive the 
optimal randomized pricing policy. Based on Proposition 
2, we only need to focus on those pricing policies under 
which low-valuation customers would wait, whereas 
high-valuation customers would not, that is, vL > pL and 
vH ≤ pH. Recall that pi �max{v′ |E[(v′�P)+] ≤ ci}, i �
L, H. Because E[(v′�P)+] increases in v′, vL > pL and 
vH ≤ pH are equivalent to E[(vL�P)+] > cL and E[(vH 

�P)+] ≤ cH, respectively. An optimal randomized pricing 
policy that satisfies the preceding conditions can be 
derived by solving the following optimization problem, 
with the objective function derived from our preceding 
discussion and the constraints based on Proposition 1:

max
F(p)

αE[P |P ≤ pL] + (1� α)F(vH)E[P |P ≤ vH]

s:t: pL �max{v′ |E[(v′�P)+] ≤ cL},

E[(vL �P)+] > cL,
E[(vH �P)+] ≤ cH:

(2) 

This is a nontrivial problem because we need to opti-
mize a distribution function with no obvious structure 
to exploit. The solution approach we take here is that 
we first find an upper bound of the expected profit 
from Problem (2) and then construct a price distribution 
achieving the upper bound.

Because E[P |P ≤ pL] ≤ E[P |P ≤ vL], we can remove 
pL and obtain a relaxation of the previous optimization 
problem as follows:

max
F(p)

αE[P |P ≤ vL] + (1� α)F(vH)E[P |P ≤ vH]

s:t: E[(vL �P)+] > cL,
E[(vH �P)+] ≤ cH:

(3) 

For any feasible solution of this relaxation, we have 
F(vL) < (cH � cL)=(vH � vL). This is because by the two 
constraints of Problem (3),

cH� cL >E[(vH�P)+]�E[(vL�P)+]
�F(vH)E[vH�P |P≤ vH]�F(vL)E[vL�P |P≤ vL]

≥F(vL)E[vH�P |P≤ vL]�F(vL)E[vL�P |P≤ vL]

� (vH�vL)F(vL):

As such, we restrict our discussion to those distributions 
where this condition is satisfied in the following analysis.

Lemma 5. Let RP be the support of any optimal price dis-
tribution of Problem (3). If there exists p ∈ RP such that 
p > vL, then p � vH.

Lemma 5 shows an important structural property of 
an optimal price distribution for Problem (3). The under-
lying rationale is as follows. First, it does not make sense 
to charge a price greater than vH because neither high- 
valuation nor low-valuation customers would make a 

purchase at such a price. Second, for any feasible solution 
to Problem (3), high-valuation customers would either 
purchase or leave immediately upon arrival. As such, 
whenever a price greater than vL but less than or equal 
to vH is drawn from the price distribution, high-valuation 
customers would always purchase immediately, whereas 
low-valuation customers would wait because the price is 
greater than their valuation. Thus, the best strategy for 
the firm is to charge the highest possible price, that is, vH, 
such that all surplus from high-valuation customers can 
be extracted.

Lemma 6 (Upper Bounds). Let

∆R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αcL

(1� α)(vH � vL)

r

:

(i) When ∆R ≥ 1, the optimal expected profit from (3) is no 
more than that from an optimal static pricing policy;

(ii) When ∆R < 1, 
(a) If ∆R < (cH � cL)=(vH � vL), the optimal expected 

profit from (3) is no more than U1 ≡ αvL + (1� α)
vH � (1� α)cL� 2(1� α)(vH � vL)∆R;

(b) Otherwise, the optimal expected profit from (3) is 
no more than

U2 ≡ αvL + (1� α)vH � (1� α)cH � αcL
vH � vL

cH � cL
:

Based on Lemma 5, we can derive the upper bounds of 
the expected profit from Problem (3), which is summa-
rized in Lemma 6. It turns out that when ∆R ≥ 1, any 
randomized pricing policy is dominated by the optimal 
static pricing policy. It is easy to verify that ∆R increases 
in cL, which implies that randomized pricing policies 
are more likely to be dominated when low-valuation 
customers are less patient. The underlying rationale is 
that the effectiveness of randomized pricing policies 
relies on intertemporal price discrimination of the two 
segments of customers by charging high and low prices 
for high- and low-valuation customers, respectively. 
However, when low-valuation customers are less patient, 
they become less likely to delay their purchases, and thus 
the firm would either lose more low-valuation customers 
or reduce prices to accommodate both low- and high- 
valuation customers. In the case of cL ≥ cH, that is, high- 
valuation customers are more patient than low-valuation 
customers, randomized pricing policies become completely 
ineffective, as shown in Lemma 3. Similarly, we notice that 
∆R decreases in vH � vL. That is, randomized pricing poli-
cies are more likely to be dominated when the difference 
in valuations between two segments becomes smaller. 
When customers’ valuations become closer, high-valuation 
customers can mimic the behavior of low-valuation custo-
mers more easily, making it more costly for the firm to price 
discriminate between the two segments.

When ∆R < 1, we show the upper bounds of the opti-
mal expected profit from Problem (3) in Lemma 6(ii). 
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These upper bounds can be achieved by a two-point 
price distribution, as we will show shortly. In the first 
best solution, when the firm knows the private informa-
tion of each individual customer’s valuation, the opti-
mal expected profit is given by αvL + (1� α)vH, which 
certainly cannot be attained by anonymous posted price 
mechanisms due to information asymmetry and custo-
mers’ self-selection behavior. Lemma 6 shows that, under 
an optimal randomized pricing policy, the profit loss, 
compared with the first best solution, depends on the mar-
ket composition α, per-period waiting costs cL and cH for 
both low- and high-valuation customers, and the differ-
ence in valuations across two market segments vH � vL.

Next, we are ready to discuss optimal randomized 
pricing policies. Similar to Su (2007), we will focus on 
ɛ-optimal policies as a consequence of our restriction to 
anonymous posted price mechanisms. An ɛ-optimal 
policy is defined as follows.

Definition 1 (ɛ-Optimal Policy). For any arbitrarily small 
ɛ > 0, a policy is ɛ-optimal if its revenue is greater than 
1� ɛ fraction of the optimal revenue.13

For brevity, we refer to ɛ-optimal policies as “optimal” 
policies in the rest of the analysis.

Proposition 3 (Optimal Randomized Pricing Policy). 
Suppose

∆R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αcL

(1� α)(vH � vL)

r

< 1:

The following two-point price distribution is optimal:

f (p) �
β∗ if p � p∗,
1� β∗ if p � vH,

(

where β∗ �min{∆R, (cH � cL)=(vH � vL)� δ}, p∗ � vL� cL=β
∗

�η(δ) and δ > 0 is sufficiently small. Moreover, limδ↘0 
η(δ) � 0.

Proposition 3 shows that the firm can attain the opti-
mal profit with a simple two-point distribution. Under 
this two-point price distribution, high-valuation custo-
mers would always purchase immediately upon arrival, 
whereas low valuations would always purchase with 
the lower price of p∗. The lower price from the price dis-
tribution is less than vL by an amount of cL=β

∗. This is 
the “price” the firm has to pay to incentivize low- 
valuation customers to wait (instead of leaving immedi-
ately). The compensation increases in cL but decreases 
in β∗. It is intuitive that the firm needs to compensate 
more with larger cL due to low-valuation customers 
being less patient. The reason why the compensation 
decreases in β∗ is explained as follows: β∗ is the proba-
bility of drawing the lower price from the optimal price 
distribution. When the lower price is drawn, the market 

will be cleared, and all customers who have arrived 
thus far will make a purchase immediately and then 
leave the market. Therefore, if the lower price is drawn 
less frequently, then low-valuation customers are ex-
pected to wait for a longer time on average, rendering 
more compensation required to incentivize them to wait.

Proposition 4. There exists a threshold on cL, below which 
the optimal randomized pricing policy outperforms the opti-
mal static pricing policy.14

The optimal static pricing policy is either to set the 
price at vH to only serve the high-valuation customers, 
often referred to as the margin strategy (if vL <

(1� α)vH), or to set the price at vL to serve both seg-
ments of customers, often referred to as the volume 
strategy (if vL ≥ (1� α)vH). The optimal two-point price 
distribution would allow the firm to achieve an upper 
bound as specified in Lemma 6. Whether the optimal 
expected profit from randomized pricing is greater than 
that from static pricing depends on system parameters. 
When low-valuation customers are sufficiently patient, 
the optimal randomized pricing policy is always better 
than the optimal static pricing policy, as shown in Prop-
osition 4. In particular, when cL converges to zero, the 
upper bound given in Lemma 6 converges to the ex-
pected profit of the first best solution, that is, αvL+

(1� α)vH. That is, when low-valuation customers are 
sufficiently patient, an optimal randomized pricing pol-
icy is able to almost perfectly price discriminate the two 
segments through occasional random promotions to 
clear low-valuation customers, allowing the firm to 
extract almost all surplus from customers.

Corollary 1 (Consumer Surplus and Social Welfare). 
Compared with the optimal static pricing policy, the opti-
mal randomized pricing policy yields: 

(i) If vL < (1� α)vH, higher social welfare, and higher 
consumer surplus for both low-valuation and high-valuation 
customers;

(ii) If vL ≥ (1� α)vH, lower social welfare, and higher con-
sumer surplus for low-valuation customers, but lower consumer 
surplus for high-valuation customers when cH < vH � vL.

(All these statements hold weakly if the optimal random-
ized pricing policy reduces to a static price.)

Corollary 1 illustrates the impact of the optimal ran-
domized pricing policy on social welfare and consumer 
surplus. Let us first discuss social welfare, which is the 
total surplus of the firm and all customers. Under the 
optimal randomized pricing policy, each customer is 
guaranteed to purchase a product either immediately or 
in future periods. As high-valuation customers always 
make a purchase under both the optimal randomized 
and static pricing policies, the loss of efficiency is solely 
due to the cost of waiting from low-valuation customers. 
If vL < (1� α)vH, low-valuation customers are induced to 
wait and make a purchase under the optimal randomized 
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pricing policy but are excluded from the market under 
the optimal static pricing policy (because the optimal 
static price is vH), leading to higher social welfare under 
the optimal randomized pricing policy. Conversely, 
when vL ≥ (1� α)vH, the social welfare is maximized 
under the optimal static pricing policy (because the opti-
mal static price is vL) as there is no efficiency loss. Conse-
quently, the optimal randomized pricing policy would 
only hurt social welfare in this case, with the efficiency 
loss from waiting by low-valuation customers.

On another note, low-valuation customers would 
always weakly benefit from randomized pricing. The 
underlying rationale is that consumer surplus from 
low-valuation customers is always zero under the opti-
mal static pricing policy: They would either purchase at 
a price of vL or leave immediately. However, under the 
optimal randomized pricing policy, the lower price 
from the price distribution, which is less than vL, incen-
tivizes low-valuation customers to wait rather than 
leave immediately and compensates for their expected 
wait cL=β

∗, where 1=β∗ is the expected number of peri-
ods to see the low price. In addition, the optimal policy 
also leaves a tiny amount of positive expected surplus, 
η(δ), for low-valuation customers. If vL < (1� α)vH, con-
sumer surplus from high-valuation customers would 
also be higher under the optimal randomized pricing 
policy. This is because their surplus is always equal to 
zero under the optimal static pricing policy with the 
price of vH; however, under the randomized pricing pol-
icy, some high-valuation customers can purchase at the 
lower price of p∗, leading to a positive surplus for them. 
Consequently, using the optimal randomized pricing 
policy by the firm could result in higher social welfare 
as long as vL < (1� α)vH, because both consumer sur-
plus and the firm’s profit can be higher. However, if 
vL ≥ (1� α)vH, consumer surplus from high-valuation 
customers could be higher under either the optimal ran-
domized or static pricing policy, depending on the sys-
tem parameters.

Last, we compare the difference in consumer surplus 
between low- and high-valuation customers under the 
two alternative pricing policies. Many researchers have 
shown that customers would compare with their peers 
as a reference to evaluate their own payoffs (Ho and Su 
2009). As a result, the difference in the surplus from 
purchasing the product between the two segments of 
customers can be regarded as a measure of fairness. We 
show in the following corollary that the optimal ran-
domized pricing policy would make the surplus alloca-
tion fairer if vL ≥ (1� α)vH.

Corollary 2 (Fairness). Compared with the optimal static 
pricing policy, the discrepancy in consumer surplus between 
low- and high-valuation customers is smaller under the opti-
mal randomized pricing policy if vL ≥ (1� α)vH.

The reason that randomized pricing can be fairer is 
exactly due to the same reason why higher social wel-
fare can be generated. If vL ≥ (1� α)vH, under the opti-
mal static pricing policy of charging vL, high-valuation 
customers enjoy a positive surplus by hiding their 
identity, whereas low-valuation customers have zero 
surpluses. However, under the optimal randomized 
pricing policy, better price discrimination reduces the 
surplus of high-valuation customers while still leaving 
a tiny amount of surpluses on the table for the low- 
valuation customers. As a result, the difference between 
the surpluses of the two segments is reduced. Combin-
ing the two corollaries, we see that implementing the 
optimal randomized pricing, as opposed to the opti-
mal static pricing, either achieves higher social welfare 
benefiting all or a fairer situation among all customers.

3.3. Optimal Deterministic Pricing: Cyclic Pricing
In this section, we seek to gauge the performance of ran-
domized pricing by comparing it against deterministic 
pricing, which has been studied extensively in the litera-
ture. To that end, we first need to derive the optimal 
deterministic pricing policy in our setting, which has not 
been studied before when customers are forward-looking 
and heterogeneous in both valuations and per-period 
waiting costs. Under a deterministic pricing policy, the 
firm needs to determine a sequence of prices p � {pt}t∈N. 
The sequence of prices is public information, announced 
to all customers. For a customer of valuation v and per- 
period waiting cost c, their utility from buying in period 
t′ is given by v� pt′ � (t′� t)c if they arrive in period t. 
They would thus compare net utilities from buying in all 
periods t′ ≥ t and choose to buy in the period where their 
utility is maximized, conditional on it being nonnegative.

We first show that one does not need to consider 
beyond cyclic pricing for the optimal deterministic pric-
ing policy. Under a cyclic pricing policy, there exists an 
integer T such that pt � pt+T for all t, where T is the cycle 
length. The firm’s long-run average expected profit 
with a cyclic pricing policy p is given by

Π(p) � lim
T′→∞

1
T′
XT′

t�1
πt(p), 

where πt(p) is the profit from customers arriving in 
period t. We have πt(p) � πt+T(p) due to prices being 
cyclic, and thus an alternative formulation of the firm’s 
long-run average profit is given by Π(p) � [

PT
t�1 

πt(p)]=T.

Proposition 5 (Optimality of Cyclic Pricing). Cyclic 
deterministic pricing is optimal within the strategy space of 
deterministic policies.15

Proposition 5 significantly narrows down candidates 
for optimal deterministic policies. Our goal is to find a 
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cyclic pricing policy p such that Π(p) is maximized. 
The flow of this section is as follows. We first discuss 
the structural properties of optimal cyclic policies and 
then construct an optimal cyclic policy based on those 
structural results.

3.3.1. Structural Properties. First, it is easy to verify 
that the firm would not charge a price higher than vH, 
the highest valuation from customers, under any opti-
mal cyclic pricing policy. That is, if p � {pt}t∈N is an 
optimal cyclic pricing policy, we have pt ≤ vH for any t.

Lemma 7. An optimal cyclic pricing policy reduces to a 
static pricing policy if cL ≥ cH.

As the counterpart of Lemma 3, Lemma 7 illustrates the 
impact of customers’ patience levels on the structure of the 
optimal cyclic pricing policy. When high-valuation custo-
mers are more patient than low-valuation customers, 
cyclic pricing policies do not perform better than the opti-
mal static pricing policy. This is because high-valuation 
customers would wait for at least as long as low-valuation 
customers and pay no more than low-valuation customers, 
rendering any intertemporal price discrimination mecha-
nism, including cyclic pricing policies, ineffective at all.

Next, we characterize the behavior of high-valuation 
customers under an optimal cyclic pricing policy in 
Proposition 6. Both cyclic deterministic and randomized 
pricing policies are variations of intertemporal price dis-
crimination mechanisms, and thus customers’ behavior 
under the optimal policies is similar. Proposition 6
shows that the optimal cyclic pricing policy will be 
designed in such a way that high-valuation customers 
would have no incentive to wait.

Proposition 6. Under any optimal cyclic pricing policy, 
high-valuation customers would always purchase immedi-
ately upon arrival.

3.3.2. Optimal Cyclic Deterministic Pricing Policy. 
Proposition 6 sets the stage for us to derive optimal 
cyclic pricing policies. For this purpose, we assume cL <

cH in view of Lemma 7. If this assumption fails, the opti-
mal cyclic pricing policy reduces to a static price. We 
construct a cyclic pricing policy and prove its optimality 
in Proposition 7. With such a policy, prices weakly 
decrease over time within each cycle.

Proposition 7 (Optimal Cyclic Deterministic Pricing 
Policy). An optimal cyclic pricing policy is given by

pt′ � vH � [vH � vL + (T � 1)cL + δ� (T � t′)cH]
+,

t′ � 1, 2: : : , T, 

where T is the cyclic length, and δ > 0 is arbitrarily small. 
Under this policy, all low-valuation customers buy in period T, 
and high-valuation customers buy immediately without delay.

Consistent with Conlisk et al. (1984), Proposition 7
shows that the optimal cyclic pricing policy follows a 
markdown pattern. Within a cycle, the prices between 
two consecutive periods either stay constant at vH or 
drop by a size no more than cH, which eliminates the 
incentive for high-valuation customers to wait. More 
precisely, in general, within a cycle, the prices stay cons-
tant at vH for some time (which can be zero), drop by a 
size no more than cH, and then finally drop by a size of 
exactly cH to the end-of-cycle price vL � (T� 1)cL � δ�
(see Figure 2(a) for an illustration). Conversely, low- 
valuation customers would wait patiently in the market 
upon arrival because their waiting is more than fully 
compensated. Eventually, the market of low-valuation 
customers will be cleared at the end of each cycle. There 
is still a loose part in Proposition 7, which is the deter-
mination of the cycle length T. This is a common issue 
for characterizing the optimal cyclic pricing policy (Con-
lisk et al. 1984, Besbes and Lobel 2015). We cannot char-
acterize it analytically in general, but we show that it can 
be computed for a special case (see Proposition 8(i)).

The optimal cyclic pricing policy may reduce to a 
static pricing policy. The following corollary identifies 
two sufficient conditions for such a degeneracy.

Corollary 3. If (i) cH=cL ≤ 2=(1� α) or (ii) vH � vL ≤

cL=(1� α), an optimal cyclic pricing policy reduces to a 
static pricing policy.

By Lemma 7, if cH=cL ≤ 1, the optimal cyclic pricing 
policy reduces to a static price. Corollary 3(i) further 
shows a weaker condition for such a degeneracy. That 
is, when the patience level of high-valuation customers 
relative to low-valuation customers is below a threshold 
of 2=(1� α), cyclic pricing reduces to static pricing, and 
that situation is more likely to occur if there is a larger 
fraction of low-valuation customers. In addition, Corol-
lary 3(ii) shows that if vH � vL ≤ cL=(1� α), that is, 
(1� α)(vH � vL) ≤ cL, the optimal cyclic pricing policy 
reduces to a static price, in which case the benefit of 
intertemporal price discrimination through having low- 
valuation customers wait for one period is no more 
than the waiting cost. Corollary 3 implies that we can-
not say cyclic pricing always outperforms static pricing.

3.4. Performance Comparison
Neither can we have the same ranking of the perfor-
mances of randomized pricing and cyclic pricing for all 
scenarios. We identify the following sufficient condi-
tions under which one does better than the other.

Proposition 8 (Randomized Pricing vs. Cyclic Determi-
nistic Pricing). Suppose vH � vL > cL=(1� α). 

(i) If vH � vL is below the threshold of cH=
�
1+

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� α)=α

p �
=2
�
, the optimal cyclic pricing policy is in 
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the form of the first T – 1 periods priced at vH and the last 
period priced at vL� (T� 1)cL� δ�with the optimal cycle 
length T � ⌊T1⌋ or ⌊T1⌋ + 1, and yields a higher profit than 
an optimal randomized pricing policy, where T1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1�α)(vH � vL � cL)=(αcL)

p
and ⌊x⌋ represents the greatest 

integer that is no more than x.
(ii) If vH � vL is sufficiently large, the optimal cyclic pricing 

policy is in the general form of a series of markdowns and yields 
a lower profit than an optimal randomized pricing policy.

For the rest of this section, we assume vH � vL >

cL=(1� α). Otherwise, by Corollary 3(ii), the optimal cyclic 
pricing policy reduces to a static pricing policy, then we 
can resort to the comparisons between the optimal ran-
domized and static pricing policies studied in Section 3.2.

Proposition 8(i) provides a sufficient condition under 
which cyclic pricing outperforms randomized pricing. 
When the valuation difference between the two seg-
ments vH � vL is below a threshold, the optimal cyclic 
pricing policy is in the form of the first T – 1 periods 
priced at vH and the last period priced at vL � (T�
1)cL � δ�(see Figure 2(a) for an illustration). That is, 
under the optimal cyclic pricing, the frequency of run-
ning a promotion is 1=T. Recall that under the optimal 
randomized pricing policy, the frequency of running a 
promotion is β∗. If we equalize these two frequencies, 
the revenue earned from the high-valuation customers 
would be the same. However, the waiting cost compen-
sation under the cyclic deterministic policy is lower 
than that under the randomized policy because under 
the cyclic deterministic policy, the wait time for a pro-
motion is strictly less than T periods, but under the ran-
domized policy, that is expected to be 1=β∗ periods. As 
a result, it takes less for the cyclic deterministic policy to 
compensate the low-valuation customers and hence 
retain more revenue than the randomized policy. There-
fore, the optimal cyclic pricing policy has a lower pro-
motion frequency, charges a higher promotion price, 
and earns a higher revenue than the optimal random-
ized pricing policy. To illustrate this, we consider an 
example with parameters vH � 10, vL � 5, cH � 8, 
cL � 0:3125, and α � 0:5. The optimal randomized 

pricing policy is to run a promotion with probability 
β � 0:25 and a discount price p∗ � 3:75, which achieves 
a profit of 6.09. On the other hand, the optimal cyclic 
pricing policy is {10, 10, 10, 4:06� δ} with a cycle of four 
periods and achieves a profit of almost 6.29.

Proposition 8(ii) shows that randomized pricing per-
forms better than cyclic pricing when the valuation dif-
ference between the two segments vH � vL is sufficiently 
large. In this case, the optimal cyclic deterministic policy 
is in the general form of a series of markdowns as illus-
trated in Figure 2(b). The underlying rationale can be 
understood by considering a high-valuation customer 
who arrives at the second-to-last period under a cyclic 
deterministic policy. If they waited for a period, they 
would, for sure, obtain the discounted price that is tar-
geted to the low type. However, this is not the case 
under randomized pricing. In any period, if a high- 
valuation customer decided to wait, there would be no 
guarantee at all they would get a discounted price in the 
next period. If the discrepancy between vH and vL is 
large enough, it is important for the firm to capture 
most of the surplus from high-valuation customers. This 
can be achieved under optimal randomized pricing 
policies by maintaining a low frequency of offering the 
discounted price p∗, and thus the majority of high- 
valuation customers would make a purchase at the 
high price vH upon their arrivals. Given that the low- 
valuation customers are sufficiently patient, the firm can 
still capture those customers at the occasional promo-
tions. On the other hand, the optimal cyclic pricing 
policy follows a predetermined price trajectory known 
to all customers. Thus, the firm either gives up the low- 
valuation customers completely by not running promo-
tions at all or adopts a sequence of markdowns by 
capturing the low-valuation at the end of a cycle. How-
ever, neither is ideal. The former loses the low segment 
compared with the optimal randomized pricing, and 
the latter needs to compensate high-valuation custo-
mers to prevent them from waiting through a series of 
markdowns. This compensation cuts into the firm’s 
profitability, again leading to a lower profit compared 
with the optimal randomized pricing. To illustrate 

Figure 2. (Color online) Optimal Cyclic Prices 

(a) (b)
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this, we consider an example with parameters vH � 10, 
vL � 1, cH � 5, cL � 0:1, and α � 0:5. The optimal ran-
domized pricing policy is to run a promotion with prob-
ability β � 0:1054 and a discount price p∗ � 0:05, which 
achieves a profit of 4.50. On the other hand, the optimal 
cyclic pricing policy is {10, 10, 10, 10, 10, 10, 10, 10, 5:1�
δ, 0:1� δ} with a cycle of 10 periods and achieves a 
profit of almost 4.31.

4. Extensions
In this section, we extend the base model in three directions. 
We first consider the case where a portion of customers 
are myopic and study the impact of myopic customers 
on the optimal randomized pricing policy, as well as the 
firm’s expected profit. Then we consider a Markovian 
pricing policy, where prices are allowed to be intertem-
porally correlated in a Markovian fashion, and last, con-
sider a general model with multiple customer segments.

4.1. Myopic Customers
In practice, it may be the case that some customers are 
myopic in the sense that they are not patient or sophisti-
cated enough to wait for promotions in the future. In 
this section, we extend our base model to account for 
myopic customers and study how the optimal random-
ized pricing policy varies with the proportion of myopic 
customers in the population.

Suppose that γ ∈ [0, 1] fraction of customers are strate-
gic, and the remaining customers are myopic, who will 
never wait. We assume that whether a customer is myo-
pic is independent of their valuation. The rest of the set-
tings are the same as the base model in Section 3. Thus, αγ�
(respectively, (1�α)γ) fraction of low-valuation (respec-
tively, high-valuation) customers have a per-period wait-
ing cost cL (respectively, cH). On the other hand, α(1� γ)
(respectively, (1� α)(1� γ)) fraction of low-valuation 
(respectively, high-valuation) customers would never 
wait, that is, their per-period waiting cost is equal to ∞.

It is easy to show that Proposition 2 still holds for stra-
tegic customers by following a similar analysis. That is, 
under any optimal randomized policy that outperforms 
the optimal static pricing policy, strategic low-valuation 
customers would wait, and strategic high-valuation cus-
tomers would either purchase or leave immediately 
upon arrival. Consequently, we can derive the optimal 
randomized pricing policy by solving the following opti-
mization problem:

max
F(p)

αγE[P |P ≤ pL] + α(1� γ)F(vL)E[P |P ≤ vL]

+ (1� α)F(vH)E[P |P ≤ vH]

s:t: pL � max{v′ |E[(v′ � P)+] ≤ cL},

E[(vL � P)+] > cL,
E[(vH � P)+] ≤ cH:

(4) 

The objective function is derived based on Lemma 2, 
and the constraints are given by Proposition 1. Problem 

(4) reduces to Problem (2) when γ�� 1. Denote

∆̃R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αγcL

(1� α)(vH � vL)� α(1� γ)vL

r

:

We show in the proof of Proposition 9 that an optimal 
randomized pricing policy reduces to a static pricing 
policy when either ∆̃R ≥ 1, or ∆̃R does not exist, that is, 
(1� α)(vH � vL) ≤ α(1� γ)vL.

Proposition 9 (Optimal Randomized Pricing Policy with 
Myopic Customers). If ∆̃R < 1, the following two-point 
price distribution is optimal:

f (p) �
β̃
∗ if p � p̃ ∗,

1� β̃∗ if p � vH,

(

where β̃∗ �min{∆̃R, (cH � cL)=(vH � vL)� δ}, p̃ ∗ � vL� cL=β̃
∗

�η(δ) and δ > 0 is sufficiently small. Moreover, limδ↘0 
η(δ) � 0.

In the presence of myopic customers, the optimal ran-
domized pricing policy still follows a two-point distri-
bution that is composed of a regular price equal to vH 
and a discounted price that clears the market of strate-
gic low-valuation customers from time to time. As 
shown in Corollary 4(i), if vL ≤ (1� α)vH, it is optimal 
to run promotions less frequently with a lower dis-
counted price as the proportion of myopic customers in 
the population increases; otherwise, the firm is better 
off running promotions more frequently with a higher 
discounted price. This is because, on the one hand, if 
vL ≤ (1� α)vH; that is, vH is high relative to vL, it is 
imperative to extract surplus from high-valuation custo-
mers. The expected price that a high-valuation customer 
would pay upon arrival is given by β̃∗p̃ ∗ + (1� β̃∗)vH, 
which decreases in β̃∗. As the proportion of myopic 
customers increases, high-valuation customers become 
more important, and thus the firm is better off running 
promotions less frequently, that is, choosing a smaller β̃∗. 
The distribution converges to a constant of vH as γ→ 0. 
On the other hand, if vL > (1� α)vH, it is important for 
the firm to capture surplus from low-valuation custo-
mers. As the proportion of myopic customers increases, 
the firm should run promotions more frequently so that 
it will be able to sell to more myopic low-valuation cus-
tomers. Overall, the existence of myopic customers is 
detrimental to the firm’s profitability, and the expected 
profit from an optimal randomized pricing policy de-
creases as the proportion of myopic customers in the 
population increases, as shown in Corollary 4(ii).

Corollary 4. The following statements hold. 
(i) If vL ≤ (1� α)vH, both β̃∗ and p̃ ∗ increase in γ; other-

wise, they both decrease in γ;
(ii) The expected profit of the optimal randomized pricing 

policy increases in γ.
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4.2. Markovian Pricing
Rather than drawing prices independently from a price 
distribution in the base randomized pricing policy, we 
consider a Markovian pricing policy, where random 
prices over time form a Markov process (Wu et al. 2014, 
2020). A Markovian pricing policy gives more control to 
the firm as the price trajectory is state dependent, and 
we want to investigate whether this extra layer of con-
trol would benefit the firm.

Motivated by the optimal randomized pricing policy 
characterized in Proposition 3, we restrain our discus-
sion to a Markovian pricing policy with only two 
values, that is, a regular price of p and a discounted 
price of pd(≤ vL). We denote the probability transition 
matrix by

M �
�

qL 1� qL
qH 1� qH

�

, 

where qL is the transition probability from pd to pd, and 
qH is the transition probability from p to pd. Similar to 
our discussion in Section 3, under any optimal Markovian 
pricing policy, we can show that high-valuation custo-
mers would always purchase immediately upon arrival, 
whereas low-valuation customers would make a pur-
chase immediately if the price in the current period is pd 
and wait otherwise. Consequently, the optimal regular 
price is given by p � vH, which is assumed to be the case 
in the rest of our analysis.

For a high-valuation customer arriving in period t, 
their utility of buying immediately is given by vH � pt. 
Denote by V(pt) the maximum utility for a low- 
valuation customer arriving in period t, conditional on 
the price in the previous period being vH. Then, V(pt) is 
given by

V(pt) �

�
vL � pd if pt � pd,
�cL +E[V(pt+1)] if pt � vH:

(5) 

We first study the structural property for an optimal 
Markovian pricing policy. Lemma 8 characterizes the 
necessary and sufficient conditions such that high- 
valuation customers would always purchase immedi-
ately upon arrival, whereas low-valuation customers 
would either purchase immediately or wait. They are 
also necessary conditions for a Markovian pricing pol-
icy to be optimal.

Lemma 8. High-valuation customers would always pur-
chase immediately upon arrival, whereas low-valuation cus-
tomers would either purchase immediately or wait if and 
only if qH(vL� pd) > cL and qH(vH � pd) ≤ cH.

Based on Lemma 8, we can derive an optimal Mar-
kovian pricing policy and compare its performance 
with other pricing policies.

Proposition 10 (Optimal Markovian Pricing Policy). Let

∆M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αcL

(1� α)(vH � vL � cL)

r

:

(i) If (1� α)(vH � vL) ≤ cL (under which either ∆M is not 
well defined as a real number or ∆M ≥ 1), an optimal Mar-
kovian pricing policy (and an optimal randomized pricing 
policy as well) reduces to a static pricing policy.

(ii) If 1=2 ≤ ∆M < 1 and (cH � cL)=(vH � vL) > 1, an 
optimal Markovian pricing policy is given by q∗L � 0, q∗H �
1, p∗d � vL � cL � η(δ) for an arbitrarily small δ > 0 and 
limδ↘0η(δ) � 0. Moreover, it is a cyclic pricing policy with 
a cyclic length of two. The expected profit from this optimal 
Markovian pricing policy is always greater than that from an 
optimal randomized pricing policy.

(iii) Otherwise, an optimal Markovian pricing policy is 
given by q∗L � 0, q∗H �min{∆M=(1�∆M), (cH � cL)=(vH �

vL)� δ}, p∗d � vL� cL=q∗H � η(δ) for an arbitrarily small 
δ > 0 and limδ↘0η(δ) � 0. The expected profit from this 
optimal Markovian pricing policy is always greater than that 
from an optimal randomized pricing policy.

There are a couple of interesting observations from 
Proposition 10. First, we show in Proposition 10(i) that, 
when (1� α)(vH � vL) ≤ cL, both an optimal Markovian 
pricing policy and an optimal randomized pricing pol-
icy as a special case of the Markovian policy reduce to a 
static pricing policy. However, when 0 ≤ ∆M < 1, an 
optimal Markovian pricing policy is guaranteed to be 
more profitable than an optimal randomized pricing 
policy, although it may reduce to a cyclic pricing policy 
(see Proposition 10(ii)). Second, q∗L is equal to zero in the 
optimal Markovian pricing policy. That is, after running 
a promotion in one period by charging the lower price 
pd, the firm would not want to do it again immediately 
in the following period. This is sensible because pd 
essentially serves as a market clearing price, and all cus-
tomers who have arrived so far would make a purchase 
and leave immediately with the lower price pd. Then in 
the next period, the system restarts, and the firm would 
be better off charging the higher price to extract surplus 
from high-valuation customers. Such an extra tune-up 
of the Markovian pricing policy potentially avoids run-
ning promotions consecutively and leaving surpluses 
on the table for high-valuation customers. It indeed 
allows the firm to gain higher profit when ∆M < 1, 
which requires the low-valuation customers to be suffi-
ciently patient.

Now we compare the key decision variables in an 
optimal Markovian pricing policy with those in an opti-
mal randomized pricing policy when Markovian pric-
ing dominates randomized pricing. The results are 
summarized in Corollary 5.

Corollary 5. If cL is sufficiently small, p∗d ≥ p∗ and π∗L ≥ β
∗, 

where π∗L is the steady-state probability of p∗d. Moreover, 
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L∗M � 1=π∗L ≤ L∗F � 1=β∗, where L∗M and L∗F are the expected 
length of time periods between two consecutive discounts 
under optimal Markovian pricing and randomized pricing, 
respectively.

By Proposition 10, if cL is sufficiently small, the opti-
mal Markovian pricing policy dominates the optimal 
randomized pricing policy, which further dominates 
the optimal static pricing policy. Interestingly, the opti-
mal Markovian pricing policy would run the promotion 
more often than the optimal randomized pricing policy, 
but with a smaller size of the discount. This is because, 
as explained, the optimal Markovian pricing policy 
avoids running promotions consecutively, and as a 
result, the low-valuation customers need to be compen-
sated more for waiting. To do so, the firm can either 
increase the frequency of promotions but, at the same 
time, increase the discount price or, alternatively, de-
crease the frequency of promotions but offer a more 
appealing discount price. The former is more profitable 
for the firm, as it reduces the surplus left to the high- 
valuation customers arriving in the promotional period. 
Overall, such a Markovian tune-up ensures incentive 
compatibility for low-valuation customers to wait while 
reducing the surplus enjoyed by high-valuation custo-
mers if they happen to arrive at a promotion period.

Finally, we confirm our intuition that Markovian pric-
ing fares better than randomized pricing because it ex-
tracts weakly more surplus from both market segments.

Corollary 6. If vH � vL > cL and ∆M < 1, an optimal Mar-
kovian pricing policy can extract weakly more profit from low- 
valuation customers and strictly more profit from high-valuation 
customers than an optimal randomized pricing policy.

Under the condition that vH � vL > cL and ∆M < 1, by 
Proposition 10, Markovian pricing dominates random-
ized pricing. It does so by smartly running promotions 
and avoiding leaving surpluses on the table to the high- 
valuation customers, as in randomized pricing, while 
still keeping the low-valuation customers incentive- 
compatible to wait for a promotion.

4.3. Multiple Customer Segments
Next, we consider an extension of the base model with 
n customer segments. A fraction αi of customers are of 
type i, who value the product at vi. Without loss of gen-
erality, we assume vi < vi+1, for i � 1, 2, : : : , n� 1. The 
one-period waiting cost for type i customers is denoted 
by ci. We make the following assumptions in this 
section.

Assumption (W) (Customers May Wait). Suppose 0 <
ci < vi, i � 1, 2, : : : , n.

Assumption (O) (Ordered Waiting Costs). Suppose c1 <
c2 <⋯ < cn.

Assumption (W) is an extension of Assumption (S) 
for multiple customer segments. The model becomes 
trivial if it is violated because customers would either 
purchase the product or leave immediately upon arrival. 
Assumption (O) implies that the waiting cost per period 
is higher for customers with a higher valuation. This 
assumption is innocuous in the sense that, as we will 
show in Lemma 9 and Lemma A.5 in the online appen-
dix, if c1 ≥ c2 ≥⋯≥ cn, both an optimal randomized pric-
ing policy and an optimal deterministic pricing policy 
reduce to a static pricing policy. In other words, if there 
exists a pair of i and j(> i) such that ci ≥ cj, neither ran-
domized pricing policies nor deterministic pricing poli-
cies are able to effectively price discriminate the two 
segments. Thus, this scenario is as if they belong to the 
same segment, and our analysis is still applicable with 
the number of customer segments reduced by one.

4.3.1. Optimal Randomized Pricing Policy. Denote the 
power set of the set {1, 2, : : : , n} by Q(n), and, under any 
randomized pricing policy, denote the set of customer 
segments that will wait by W ∈Q(n). The rest of the 
customers will either purchase or leave immediately 
upon arrival. The firm’s problem can be formulated as 
the following optimization problem:

max
F(p),W∈Q(n)

X

i∈W
αiE[P |P ≤ pi] +

X

i∉W
αiF(vi)E[P |P ≤ vi]

s:t: pi �max{v′ |E[(v′�P)+] ≤ ci}, ∀i ∈W,

E[(vi �P)+] > ci, ∀i ∈W,
E[(vi �P)+] ≤ ci, ∀i ∉W: (6) 

The objective function is derived from our discussion in 
Section 3.1, and the constraints are due to Proposition 1. 
Potentially, we may solve Problem (6) by conditioning 
on W and evaluate the corresponding profits from opti-
mal price distributions across all possible W. However, 
this is a nontrivial problem due to (i) conditioning on W, 
we still need to optimize the price distribution, where 
there is no obvious structure that we can exploit; and (ii) 
more critically, the cardinality of the power set Q(n) 
increases exponentially in n. That is, the number of opti-
mization problems that we need to evaluate increases 
exponentially in the number of customer segments. Thus, 
it demands that we start with exploring the structural 
properties of the optimal randomized pricing policy.

A static pricing policy is a special case of randomized 
pricing policies, where the price distribution reduces to a 
constant. The expected profit from an optimal static pric-
ing policy, under which customers behave myopically, is 
given by max1≤j≤n{

Pn
i�j αivj}. We first show a sufficient 

condition under which an optimal randomized pricing 
policy degenerates into a static pricing policy.
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Lemma 9 (Impact of Patience Level). If v1=c1 ≤ v2=c2 
≤⋯≤ vn=cn, there exists k ∈ {1, 2, : : : , n} for any random-
ized pricing policy such that 

(i) Any customer of a valuation greater than vk will wait;
(ii) Any customer of a valuation less than or equal to vk 

will either purchase or leave immediately upon arrival.
Under the previous condition, an optimal randomized 

pricing policy reduces to a static pricing policy.

As the counterpart of Lemma 4, Lemma 9 shows that, 
under the condition vi=ci ≤ vj=cj (i.e., ci=cj ≥ vi=vj), ∀i < j, 
the firm would not be better off with any price randomi-
zation. We make some observations. First, Lemma 9 pro-
vides justification for Assumption (O) because it implies 
that, under c1 ≥ c2 ≥⋯≥ cn that completely flips the order 
in Assumption (O), an optimal randomized pricing policy 
reduces to a static pricing policy. That is, under any ran-
domized pricing policy, the monopolist cannot obtain a 
higher profit than that from an optimal static pricing pol-
icy when customers of higher valuations have lower wait-
ing costs per period. Second, as shown in the proof of 
Lemma 9, vi=ci > vj=cj, ∀i < j, is a necessary condition 
for customers of a lower valuation to wait and customers 
of a higher valuation to either purchase or leave immedi-
ately under any randomized pricing policy. Intuitively, 
this is a situation that benefits the firm the most because 
the firm can charge higher prices for customers of higher 
valuations while at the same time setting lower prices 
randomly once in a while and clearing the market of 
hanging-around customers of lower valuations. How-
ever, vi=ci > vj=cj, ∀i < j, is not a sufficient condition for 
this to happen. We are able to identify one sufficient 
condition.

Assumption (R) (Ranked Valuation Decay). Suppose 
v1� c1 ≥ v2 �c2 ≥⋯≥ vn� cn.

Assumption (R) says that though upon arrival, cus-
tomer valuations are ordered such that type 1 has the low-
est valuation, the order is reversed if all wait. That is, type 
1 customers have the highest residual valuation after wait-
ing (for one period), so they have more incentive to wait. 
An analogous assumption is made in Golrezaei et al. 
(2020) for two customer types (see Figure 1 therein).16

Proposition 11 (Optimality of Two-Price Randomized 
Pricing Policy). Under the additional Assumption (R), an 
optimal randomized pricing policy follows a two-point price 
distribution. In particular, under the optimal two-point 
price distribution: 

(i) There exists kr ∈ {1, : : : , n} such that any customer 
with a valuation less than vkr would choose to wait, while 
any customer with a valuation greater than or equal to vkr 

would either purchase or leave immediately upon arrival;
(ii) The lower price point is less than v1;
(iii) The higher price point is equal to vhr , where hr �

arg maxkr≤j≤n
�Pn

i�j αivj
�
.

Proposition 11 is handy when it comes to identifying 
the optimal randomized pricing policy. First, it shows 
that under the additional Assumption (R), customer 
behavior is sorted in the sense that there exists a cutoff 
kr in type, where any customer with valuation less than 
vkr would choose to wait, whereas any customer with a 
valuation greater than or equal to vkr would either pur-
chase or leave immediately upon arrival. Consequently, 
instead of solving 2n optimization problems as sug-
gested in Problem (6), we only need to evaluate n 
optimization problems to identify the optimal price dis-
tribution, which represents a significant improvement 
computationally. Second, for a given kr, n segments of 
customers have three types of behavior under the opti-
mal randomized pricing policy that turns out to follow 
a two-point distribution: Those low-valuation custo-
mers from type 1 to type kr� 1 would wait for the dis-
count price (lower than v1, so that type 1 customers feel 
worthwhile waiting), those high-valuation customers 
from type hr and above would always buy upon arrival, 
and those customers with types in between only buy at 
the discount price or leave immediately upon arrival. 
The latter intermediate case would not exist when there 
were two customer segments.

4.3.2. Optimal Cyclic Pricing Policy. As shown in the 
proof of Proposition 5, the optimal customers’ response 
under any cyclic pricing policy can be summarized 
as follows.

Corollary 7 (Optimal Customer Response Under Cyclic 
Pricing). The optimal customer response can be character-
ized as follows: There exist kc ∈ {1, 2, : : : , n} and k0 ∈ {1, 
2, : : : , kc� 1} such that, 

(i) Any customer of valuation greater than or equal to vkc 

will either buy or leave immediately upon arrival;
(ii) Any customer of valuation less than vk0 will leave 

immediately upon arrival;
(iii) Furthermore, there exists τi for any type i customer, 

k0 ≤ i < kc, such that they leave immediately upon arrival if 
they arrive before the τth

i period within a cycle; otherwise, 
they will wait to buy at the end of a cycle.

Following a similar approach as the case with two 
customer segments, we investigate structural properties 
and then construct an optimal cyclic policy based on 
them. The optimal cyclic pricing policy is summarized 
in the following proposition, and results on structural 
properties are relegated to Online Appendix B.

Proposition 12 (Optimal Cyclic Pricing). Under the addi-
tional Assumption (R), an optimal cyclic pricing policy 
has the following characterizations: 

(i) For any i < kc� 1, we haveτi ≤ τi+1. In particular, 
τ1 � 1;
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(ii) Moreover, if v1 ≥ (α2+⋯ +αn)v2 ≥⋯≥ αnvn, the opti-
mal pricing schedule is given by 

pT �min1≤i<kc{vi � (T� τi)ci}� δ�

and 
pt �min{vkc , pT + (T� t)ckc}, t � 1, 2, : : : , T� 1, 

where δ > 0 is arbitrarily small.

Similar to that of Proposition 11, to derive more insights 
and structural properties of the optimal cyclic pricing pol-
icy, we restrict ourselves with the additional Assumption 
(R). We make some observations from Proposition 12. 
First, under the stipulated condition, customers of the 
lowest valuation would definitely buy at the end of a 
cycle, whereas customers of a higher valuation tend to 
wait as it comes closer to the end of a cycle. Intuitively, 
this is a very favorable situation for the firm due to the 
following. (1) Customers of the lowest valuation have 
the lowest per-period waiting cost. Thus, the incentive 
provided for their waiting is not too costly for the 
firm. (2) The firm is able to extract surplus from a large 
fraction of customers of lower valuations at the end of 
a cycle.

Moreover, we are able to characterize the optimal 
pricing schedule if we further assume that v1 ≥ (α2+

⋯ +αn)v2 ≥⋯≥ αnvn. In this case, the optimal static 
price is given by v1, which is often referred to as volume 
strategy. Under the optimal cyclic pricing policy, the 
price level across two consecutive periods either stays 
constant at vkc or drops by a size no more than ckc , 
which eliminates the incentive for customers of a valua-
tion greater than or equal to vkc to wait. More precisely, 
in general, within a cycle, the prices stay constant at vkc 

for some time (which can be zero), drop by a size no 
more than ckc and then finally drop by a size of exactly 
ckc to the end-of-cycle price min1≤i<kc{vi� (T� τi)ci}

�δ. Conversely, customers of a valuation less than vkc 

would wait patiently in the market upon arrival (condi-
tional on being sufficiently close to the end of a cycle) 
because their waiting is more than fully compensated. 
Eventually, the market of customers of lower valuations 
will be cleared at the end of a cycle.

4.3.3. Randomized Pricing vs. Cyclic Pricing. Performance 
comparison between optimal randomized pricing poli-
cies and optimal cyclic pricing policies with n customer 
segments is summarized as follows.

Proposition 13 (Randomized Pricing vs. Cyclic Pricing). 
Under the additional Assumption (R) and v1 ≥ (α2+⋯ 
+αn)v2 ≥⋯≥ αnvn, we have 

(i) The problem with n customer segments is equivalent 
to the problem with two customer segments in which the 
Pkr�1

j�1 αj fraction of customers have valuation vkr�1 and 

per-period waiting cost ckr�1, and the rest fraction of custo-
mers have valuation vkr and per-period waiting cost ckr .

(ii) If vkr � vkr�1 > ckr�1 and vkr � vkr�1 < ckr= 1+ 1
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j�kr
αj
�Pkr�1

j�1 αj

q �
, an optimal cyclic pricing policy 

yields a higher profit than an optimal randomized pricing 
policy.

(iii) There exists a threshold on vkc � vkc�1, above which 
an optimal cyclic pricing policy yields a lower profit than an 
optimal randomized pricing policy.

As the counterpart of Proposition 8, Proposition 13
shows that our conclusion from the two-segment case 
remains in the general case with n customer segments 
under certain conditions. In particular, Proposition 13 is 
derived under the extra Assumption (R) and the condition 
v1 ≥ (α2+⋯ +αn)v2 ≥⋯≥ αnvn. The former condition 
ensures that an optimal randomized pricing policy follows 
a two-point price distribution, with the lower price being 
less than v1 and the higher price equal to vhr � vkr , with the 
identity ensured by the latter condition. We supplement 
this theoretical result with comprehensive numerical stud-
ies in Online Appendix C for additional insights.

5. Conclusion
In this paper, we consider randomized pricing as an 
alternative dynamic pricing strategy. We show that, com-
pared with the optimal static pricing policy, the optimal 
randomized pricing policy always benefits the firm in 
terms of profitability when customers of the lowest valu-
ation are sufficiently patient. We further gauge the per-
formance of an optimal randomized pricing policy by 
comparing it against cyclic pricing policies, which arise 
to be optimal among deterministic policies. In this case, 
neither policy always dominates the other. However, 
when the valuation differences among customers are suf-
ficiently large, an optimal randomized pricing policy 
yields higher profit than cyclic pricing policies. We ex-
pect that these results will continue to hold when custo-
mers discount utilities for future periods. Furthermore, 
customers’ patience levels can differ significantly among 
different types of products, such as hedonic versus utili-
tarian products. Our model provides useful guidance for 
firms regarding whether randomized pricing can be ben-
eficial, evaluated at the estimated parameters, no matter 
which type of product it is.

We model randomized pricing as a price distribution 
that a firm commits itself to, and a price is randomly 
drawn from this distribution in each time period. This 
is, arguably, a stylized model for randomized pricing, 
which allows us to analyze the problem analytically. 
However, a randomized pricing policy may manifest 
itself in different ways in practice. The key essence of 
randomized pricing, compared with deterministic pric-
ing, is that prices shall appear somewhat randomly from 
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the perspective of customers, which hinders their ability 
to predict prices accurately. For instance, firms might 
well adopt deterministic pricing algorithms that depend 
on factors, such as the marginal cost of procuring/selling 
a product, which are not directly observable to custo-
mers. Because of a random disruption at the supply 
source or a fluctuation in the inventory level, prices gen-
erated by the pricing algorithms may vary accordingly, 
which would seem random in the eye of consumers, as 
they have no visibility of these price-governing states 
and thus are not able to predict the future promotions. 
Our results show that the firm may benefit from this 
“randomization” without deliberation, especially when 
the variation in customer valuations is significant.
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Endnotes
1 In an online appendix, Moon et al. (2017) also numerically show when 
randomized pricing outperforms a deterministic markdown schedule.
2 In an online appendix, Moon et al. (2017) analytically show that 
deterministic markdowns are preferred over the optimal random-
ized price policy in the extreme case when the waiting cost of high 
valuation customers is zero.
3 A cyclic pricing policy is commonly observed in practice, even for 
durable goods. Take games for Nintendo Switch as an example. 
Other than the usual seasonal promotions (such as discounts on 
Mario games on March 10th to celebrate “Mario Day” and promo-
tions of horror games around Halloween), digital games would go 
on sale at Nintendo’s digital store each Thursday, so patient gamers 
will be able to purchase games at a discounted price (source: 
https://bucketlist.games/do-nintendo-switch-games-ever-go-on- 
sale-how-to-find-lowest-prices/).
4 We allow customers to have heterogeneous waiting costs per 
period, whereas Conlisk et al. (1984) assume the same discounting 
factor for all customers.
5 There are several major differences between our paper and Wu 
et al. (2020). On the demand side, Wu et al. (2020) assume that cus-
tomers have an exponentially distributed lifetime with price moni-
toring costs, whereas in our model, there is neither any price 
monitoring cost nor a shopping window, but instead, customers 
incur waiting costs. On the supply side, Wu et al. (2020) assume a 
menu cost for each price change, whereas we do not have such a 
cost. Wu et al. (2020) focus on price guarantees under Markovian 
pricing, whereas we compare randomized versus cyclic pricing.
6 The state in Moon et al. (2017) is time independent.
7 Moon et al. (2017, appendix F) compare randomized pricing with 
a deterministic price schedule that may be analogous to cyclic pric-
ing in the case of no inventory constraint. For a special case, it is 
shown that the deterministic price schedule dominates randomized 
pricing. We identify general conditions under which randomized 
pricing dominates cyclic pricing.
8 Under the assumption of perfect commitment, a mechanism 
design problem reduces to an optimization problem subject to the well- 
known incentive compatibility constraints because of the revelation 

principle. However, the revelation principle generally fails when the 
mechanism designer cannot credibly commit to an outcome induced by 
the mechanism.
9 An alternative way of modeling utility loss because of customer 
waiting is to discount future payoffs. Charging waiting cost propor-
tional to the wait time is more common in the operations literature. 
Our main results shall hold qualitatively for the discounting scheme 
under some conditions.
10 An extension with multiple segments of customers is studied in 
Section 4.3.
11 Customers’ optimal response under randomized pricing policies 
closely resembles the searching behavior as commonly observed in 
the search literature (Lippman and Mccall 1976, Weitzman 1979). In 
a typical search model, an agent pays a cost to sample a new item 
with a random reward, whereas analogously, in our model, a cus-
tomer is able to sample a new random price by waiting for one 
more time period (and pay a per-period waiting cost c). As a result, 
customers’ optimal response, as characterized in Proposition 1, can 
be viewed as a variation of the well-known reservation price policy. 
That is, v∗ is the reservation price for a customer with valuation v 
and per-period waiting cost c. The customer will stop waiting and 
purchase immediately if the price in the time period is no greater 
than v∗ (should the customer decide to wait in the first place).
12 We present the result here to facilitate the flow; however, the 
proof of this result relies on many of the following analyses, and we 
thus suggest readers to postpone the reading of the proof until the 
end of this section.
13 More specifically, for any arbitrarily small ɛ > 0, there exists a suf-
ficient small δ > 0 such that the revenue of a policy that depends on 
δ�is greater than 1� ɛ fraction of the optimal revenue. Because we 
assume that in case of ties between acting immediately and later, an 
agent is assumed to act immediately, by offering a sufficiently small 
δ�off a price, we could induce one segment of customers to wait 
rather than to buy immediately so to achieve intertemporal price 
discrimination. This is why we achieve the ɛ-optimality because we 
leave a small amount of surpluses to some customers. But with δ�
made infinitesimally small, we almost achieve the full optimality. 
The ɛ-optimality does not affect our comparison between two 
ɛ-optimal policies because the ɛ values for both policies can be 
made sufficiently small, so the comparison always holds for sure.
14 We obtain a more general set of sufficient conditions in the proof 
of Proposition 4.
15 We prove the result under the general case with n customer segments.
16 In particular, if customers of type i have a discount factor γi ∈ (0, 1], 
Assumption (R) would be equivalent to γ1v1 ≥ γ2v2 ≥⋯≥ γnvn.
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