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Online Appendix to

“Technical Note—A Simple Heuristic Policy for Stochastic

Distribution Inventory Systems with Fixed Costs”

A. Technical Proofs

In this section, we present technical proofs of some important theoretical results. The proof of

other results can be found in Zhu et al. (2020).

Proof of Lemma 3. Let Γ̂i(IPi(t)) be the expected cost rate at Retailer i, with the fixed costs of

Type II irregular shipments excluded, when the inventory position at Retailer i is IPi(t). We first

construct an upper bound for Γ̂i(IPi(t)) as follows.

• If IPi(t) > ri, then Retailer i is in either a regular or irregular shipment interval. To obtain

an upper bound on Γ̂i(IPi(t)), we charge the larger one between expected cost rates of the regular

and irregular shipment intervals, i.e., Γ̂i(IPi(t)) ≤ max{Gi(IPi(t)),Ci(ri,Qi)}. Moreover, by the

definition of wi, it follows that max{Gi(IPi(t)),Ci(ri,Qi)} ≤max{Gi(wi),Ci(ri,Qi)}. Therefore, if

IPi(t)> ri, Γ̂i(IPi(t))≤max{Gi(wi),Ci(ri,Qi)}.

• If IPi(t)≤ ri, which implies Retailer i must be in an irregular shipment interval, then we have

Γ̂i(IPi(t)) =Gi(IPi(t)).

Next, we link the upper bound with the echelon inventory level of the warehouse. Obviously,

Γ̂(IL0(t)) =
∑N

i=1 Γ̂i(IPi(t)). Let OI+0 (t) denote the on-hand inventory at the warehouse at time t.

It follows that IL0(t) = OI+0 (t) +
∑N

j=1 IPj(t). Under the modified echelon (r,Q) policy, we have

IPj(t)≤ rj +Qj for any j ∈ [N ]+. It follows that

OI+0 (t) + IPi(t) = IL0(t)−
∑
j 6=i

IPj(t)≥ IL0(t)−
∑
j 6=i

(rj +Qj). (1)

If OI+0 (t)> 0, by the definition the modified echelon (r,Q) policy, we have ri < IPi(t)≤ ri +Qi for

any i ∈ [N ]. Then as mentioned above, Γ̂i(IPi(t))≤max{Gi(wi),Ci(ri,Qi)}, and thus Γ̂(IL0(t)) =∑N

i=1 Γ̂i(IPi(t))≤
∑N

i=1 max{Gi(wi),Ci(ri,Qi)}. It is easy to see that (4) always holds.

We next focus on the case OI+0 (t) = 0. Then (1) can be rewritten as

IPi(t) = IL0(t)−
∑
j 6=i

IPj(t)≥ IL0(t)−
∑
j 6=i

(rj +Qj). (2)

Note that if IPi(t)≤ ri, it follows that IL0(t)−
∑

j 6=i(rj+Qj)≤ IPi(t)≤ ri. Consequently, we have

Gi(IPi(t)) ≤max{Gi(IL0(t)−
∑

j 6=i(rj +Qj)),Gi(ri)} ≤max{Gi(IL0(t)−
∑

j 6=i(rj +Qj)),Gi(wi)}

due to the convexity of Gi(·). Therefore, the upper bound of Γ̂i(IPi(t)) is given as follows.
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Γ̂i(IPi(t))≤


max{Gi(wi),Ci(ri,Qi)} if IL0(t)−

∑
j 6=i

(rj +Qj)> ri,

max{Gi(IL0(t)−
∑
j 6=i

(rj +Qj)),Gi(wi),Ci(ri,Qi)} otherwise.

(3)

We prove the desired result (4) by induction. We shall start from the case N = 2.

• If both retailers’ inventory position is larger than ri, i.e., IPi(t) > ri for i = 1,2, we charge

max{Gi(wi),Ci(ri,Qi)} for both retailers. Then, the result (4) clearly holds.

• Suppose only one retailer’s inventory position is larger than ri. If IP1(t) > r1 and

IP2(t) ≤ r2, by (3), we charge max{G1(w1),C1(r1,Q1)} for Retailer 1, and max{G2(IL0(t) −

r1 − Q1),G2(w2),C2(r2,Q2)} for Retailer 2. That is, Γ̂(IL0(t)) ≤ max{G1(w1),C1(r1,Q1)} +

max{G2(IL0(t)−r1−Q1),G2(w2),C2(r2,Q2)}= Γ̄2(IL0(t)). Similarly, if IP1(t)≤ r1 and IP2(t)> r2,

one can show that Γ̂(IL0(t))≤ Γ̄1(IL0(t)). Therefore, Γ̂(IL0(t))≤maxi=1,2 Γ̄i(IL0(t)).

• Third, suppose both retailers’ inventory position is no larger than ri, i.e., IPi(t)≤ ri for i= 1,2.

Then we charge Gi(IP1(t)) for both retailers, and thus we have

Γ̂(IL0(t)) =
2∑
i=1

Γ̂i(IPi(t)) =G1(IP1(t)) +G2(IL0(t)− IP1(t))≡ f2(IP1(t))

≤max{G1(r1 +Q1) +G2(IL0(t)− r1−Q1),G1(IL0(t)− r2−Q2) +G2(r2 +Q2)}= max
i=1,2

Γ̄i(IL0(t)),

where the inequality is due to the convexity of f2(·) and IL0(t) − r2 − Q2 ≤ IP1(t) ≤ r1 + Q1.

Therefore, the result (4) holds for N = 2.

We assume (4) holds for N = k. That is,

Γ̂(
k∑
i=1

IPi(t)) =
k∑
i=1

Γ̂i(IPi(t)) = Γ̂1(IPi(t)) + Γ̂2(IPi(t)) + · · ·+ Γ̂k−1(IPk−1(t)) + Γ̂k(
k∑
i=1

IPi(t)−
k−1∑
i=1

IPi(t))

≤ max
i=1,2,...,k

Γ̄ki (
k∑
i=1

IPi(t)), (4)

where Γ̄ki (
∑k

i=1 IPi(t)) denotes Γ̄i(IL0(t)), as defined in Lemma 3, in case of N = k, i.e.,

Γ̄ki (
k∑
i=1

IPi(t)) =
∑

j 6=i,j≤k

max{Gj(wj),Cj(rj,Qj)}+
max{Gi(wi),Ci(ri,Qi)} if

k∑
i=1

IPi(t)−
∑

j 6=i,j≤k

(rj +Qj)> ri,

max{Gi(
k∑
i=1

IPi(t)−
∑

j 6=i,j≤k

(rj +Qj)),Gi(wi),Ci(ri,Qi)} otherwise.

(5)
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We next show (4) also holds for N = k+1. For ease of statement, we first introduce the expression

Γ̄i(IL0(t)) in case of N = k+ 1, denoted as Γ̄k+1
i (IL0(t)), as follows.

Γ̄k+1
i (IL0(t)) =

∑
j 6=i,j≤k+1

max{Gj(wj),Cj(rj,Qj)}+
max{Gi(wi),Ci(ri,Qi)} if IL0(t)−

∑
j 6=i,j≤k+1

(rj +Qj)> ri,

max{Gi(IL0(t)−
∑

j 6=i,j≤k+1

(rj +Qj)),Gi(wi),Ci(ri,Qi)} otherwise.

(6)

It follows that

Γ̄k+1
i (IL0(t)) = Γ̄ki (IL0(t)− rk+1−Qk+1) + max{Gk+1(wk+1),Ck+1(rk+1,Qk+1)} (7)

Now we are ready to show the desired results.

Γ̂(IL0(t)) =
k∑
i=1

Γ̂i(IPi(t)) + Γ̂k+1(IL0(t)−
k∑
i=1

IPi(t))

≤ max
i=1,2,...,k

Γ̄ki (
k∑
i=1

IPi(t)) + Γ̂k+1(IL0(t)−
k∑
i=1

IPi(t))≡ fk+1(
k∑
i=1

IPi(t)),

≤max{ max
i=1,2,...,k

Γ̄ki (IL0(t)− rk+1−Qk+1) + Γ̂k+1(rk+1 +Qk+1),

max
i=1,2,...,k

Γ̄ki (
k∑
i=1

ri +Qi) + Γ̂k+1(IL0(t)−
k∑
i=1

(ri +Qi))}

≤max{ max
i=1,2,...,k

Γ̄ki (IL0(t)− rk+1−Qk+1) + max{Gk+1(wk+1),Ck+1(rk+1,Qk+1)},

max
i=1,2,...,k

Γ̄ki (
k∑
i=1

ri +Qi) + Γ̂k+1(IL0(t)−
k∑
i=1

(ri +Qi))}

= max{ max
i=1,2,...,k

Γ̄k+1
i (IL0(t)), max

i=1,2,...,k
Γ̄ki (

k∑
i=1

ri +Qi) + Γ̂k+1(IL0(t)−
k∑
i=1

(ri +Qi))}

= max{ max
i=1,2,...,k

Γ̄k+1
i (IL0(t)),

k∑
j=1

max{Gj(wj),Cj(rj +Qj)}+ Γ̂k+1(IL0(t)−
k∑
i=1

(ri +Qi))}

≤max{ max
i=1,2,...,k

Γ̄k+1
i (IL0(t)), Γ̄k+1(IL0(t))}= max

i=1,2,...,k+1
Γ̄i(IL0(t))}.

The first equality follows from (2). The first inequality follows from (4). The second inequality

is due to the convexity of fk+1(·) and IL0(t) − rk+1 − Qk+1 ≤
∑k

i=1 IPi(t) ≤
∑k

i=1(ri + Qi). The

third inequality is because we charge max{Gk+1(wk+1),Ck+1(rk+1,Qk+1)} for Retailer k+ 1 when

its inventory position is rk+1 +Qk+1, i.e., Γ̂k+1(rk+1 +Qk+1)≤max{Gk+1(wk+1),Ck+1(rk+1,Qk+1)}.

The second equality follows from (7). The third equality follows from the definition of Γ̄ki (·); see

(5). The last inequality holds true due to (3) and IL0(t)−
∑k

i=1(ri +Qi)≤ IPk+1(t)≤ rk+1 +Qk+1.

The last equality follows from (6). �
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Proof of Theorem 1. By (4) and the definition of Ĝ(y) in (5), we obtain

Γ̂(IL0(t))≤ Γ̄(IL0(t)) = Ĝ(IL0(t)) +
N∑
i=1

Ci(ri,Qi). (8)

We denote by Γ0(IP0(t)) the total expected cost rate of all installations at time t when the inventory

position of the warehouse is IP0(t), where we exclude the fixed costs incurred at the warehouse and

the fixed costs of Type II irregular shipment intervals incurred at retailers. By such a definition,

Γ0(IP0(t)) constitutes two parts: (i) the inventory holding cost at the warehouse, and (ii) the

total costs at all retailers excluding the fixed costs in Type II irregular shipment intervals. Then,

according to the cost accounting scheme, we have

Γ0(IP0(t)) =E[h0(IP0(t)−D0)] +E[Γ̂(IP0(t)−D0)] (9)

≤E[h0(IP0(t)−D0)] +E[Ĝ(IP0(t)−D0)] +
N∑
i=1

Ci(ri,Qi) = Λ0(IP0(t)) +
N∑
i=1

Ci(ri,Qi),

where the inequality follows from (8), and the last equality from (6).

Because the warehouse has an unlimited supply form the external supplier, under the modified

echelon (r,Q) policy, the inventory position of the warehouse, IP0(t), is uniformly distributed on

{r0 + 1, . . . , r0 +Q0}. Therefore, by the definition of Γ0(IP0(t)), the long-run average system-wide

cost, with the fixed costs of Type II irregular shipment intervals incurred at retailers being excluded,

can be bounded as

1

Q0

[
λ0K0 +

∫ r0+Q0

r0

Γ0(y)dy
]
≤ 1

Q0

[
λ0K0 +

∫ r0+Q0

r0

[Λ0(y) +
N∑
i=1

Ci(ri,Qi)]dy
]

= Ĉ0(r0,Q0) +
N∑
i=1

Ci(ri,Qi), (10)

where the inequality is due to (9) and the equality holds true due to (7).

Finally, by incorporating the upper bound on the fixed cost of Type II irregular shipment inter-

vals, we can obtain that the long-run average system-wide cost can be bounded as: C(r,Q) ≤

Ĉ0(r0,Q0) +
∑N

i=1Ci(ri,Qi) +λ0K/Q0. �

Proof of Theorem 2. (i) As shown in Lemma 4 in Zhu et al. (2020), the cost lower bound is∑N

i=0C
∗
i . As shown in (12), the upper bound cost is

∑N

i=1C
∗
i + C̃∗0 . It follows that the MERQD

policy is at least 1+(C̃∗0 −C∗0 )/(
∑N

i=1C
∗
i +C∗0 )-optimal. The last result can be obtained by showing

(
∑N

i=1C
∗
i + C̃∗0 )/(

∑N

i=1C
∗
i + C∗0 ) ≤ C̃∗0/C

∗
0 . It suffices to show (

∑N

i=1C
∗
i + C̃∗0 )C∗0 ≤ (

∑N

i=1C
∗
i +

C∗0 )C̃∗0 . Then, the desired result directly holds because C∗0 ≤ C̃∗0 .
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(ii) By (8) and the definition of (r̂, Q̂), we have that for any (r0,Q0), C∗B ≤C(r̂, Q̂)≤
∑N

i=1C
∗
i +

Ĉ0(r0,Q0) +λ0K/Q0. By Lemmas 1(iii) and 2(ii) in Zhu et al. (2020), we can obtain that for any

(r0,Q0),

C∗B ≤C(r̂, Q̂)≤
N∑
i=1

C∗i + Ĉ0(r0,Q0) +
λ0K

Q0

≤
N∑
i=1

C∗i + Ĉ0(r0,Q0) +
λ0C

∗
mQ

∗
m

2λmQ0

≤
N∑
i=1

C∗i + ε(
Q0

Q̂∗0
)Ĉ∗0 +

λ0C
∗
mQ

∗
m

2λmQ0

. (11)

Recall that Ĉ∗0 and Q̂∗0 are the optimal cost and order quantity for Ĉ0(r0,Q0), respectively. There-

fore, the last inequality follows from Lemma 1(iii) in Zhu et al. (2020). We select Q0 in (11) as

Q̌0 ≡ arg min
Q0

{
ε(
Q0

Q̂∗0
)Ĉ∗0 +

λ0C
∗
mQ

∗
m

2λmQ0

}
=

√
(Q̂∗0)

2Ĉ∗0 + (λ0C∗mQ
∗
m)Q̂∗0/λm

Ĉ∗0
= Q̂∗0

√
1 +

λ0C∗mQ
∗
m

λmĈ∗0 Q̂
∗
0

.

By replacing Q0 in (11) with Q̌0, we can obtain a new upper bound: C∗B ≤C(r̂, Q̂)≤
∑N

i=1C
∗
i +

Ĉ∗0

√
1 + λ0C∗mQ∗m

λmĈ∗0 Q̂
∗
0
. It follows that the relative gap between C∗B and C(r̂, Q̂) is bounded as

(C(r̂, Q̂)−C∗B)/C∗B ≤ Ĉ∗0
(√

1 +
λ0C∗mQ

∗
m

λmĈ∗0 Q̂
∗
0

−β2

)
/C∗B ≤ Ĉ∗0

(√
1 +

λ0C∗mQ
∗
m

λmĈ∗0 Q̂
∗
0

−β2

)
/(β2Ĉ

∗
0 +

N∑
i=1

C∗i )

≤ Ĉ∗0
(√

1 +
λ0C∗mQ

∗
m

λmĈ∗0 Q̂
∗
0

−β2

)
/(β2Ĉ

∗
0 +C∗m).

To obtain the desired result, it is sufficient to show the following stronger statement: for any

x1, x2 > 0, x2(
√

1 +λ0x1/(λmx2β1)−β2)/(β2x2+x1)≤ α≡max{
√

λ0
2β1β2λm

+ 1
4
− 1

2
, 1
β2
−1}, which is

equivalent to α2x2+[2β2α(1+α)−λ0/(λmβ1)]x+β2
2α(α+2)+β2

2−1≥ 0 for any x> 0. By verifying

that (1) 2β2α(1 +α)−λ0/(λmβ1)≥ 0 when α≥
√

λ0
2β1β2λm

+ 1
4
− 1

2
; and (2) β2

2α(α+ 2) +β2
2 − 1≥ 0

when α≥ 1
β2
− 1, the desired result is obtained.

We prove the alternative bound mentioned in Footnote 2. Following part (ii), it suffices to show

that the quadratic function α2x2 + [2β2α(1 + α)− λ0/(λmβ1)]x + β2
2α(α + 2) + β2

2 − 1 ≥ 0 when

α≥ λ0/(2(β1β2λm+
√

(β2
2 − 1)(β1λm)2 +β1β2λmλ0)) under the condition (β2

2−1)(β1λm)+β2λ0 ≥ 0.

The bound is then established by verifying that the quadratic function f(x) = α2x2 + [2β2α(1 +

α)− λ0/(λmβ1)]x+ β2
2α(α+ 2) + β2

2 − 1 has a zero discriminant, i.e., ∆ = 4α2(1− λ0β2/(λmβ1))−

4αβ2λ0/(λmβ1) + (λ0/(λmβ1))
2 = 0. �

Proof of Theorem 3. To prove asymptotic optimality of the modified echelon (r,Q) policy, it
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is sufficient to first show the following statements: (i) limK0/Km→∞ β1 =∞ and limK0/Km→∞ β2 = 1;

(ii) limh0/hm→0 β1 =∞ and limh0/hm→0 β2 = 1; (iii) limh0/pm→0 β1 =∞ and limh0/pm→0 β2 = 1.

(i) Let ri(Qi) = arg minri Ci(ri,Qi) for i = 0,1,2, . . . ,N . Define Ai(Qi) ≡ QiGi(ri(Qi)) −∫ Qi
0
Gi(ri(y))dy. By Lemma 1 in Zhu et al. (2020), Ai(Qi) is a continuous and strictly increasing

function such that Ai(Q
∗
i ) = λiKi and Ai(0) = 0. Let A−1i (x) be the inverse function of Ai(Qi). Then,

Q∗i =A−1i (λiKi) and A−1i (0) = 0. Similarly, let r̂0(Q0) = arg minr0 Ĉ0(r0,Q0) and define Â0(Q0)≡

Q0Λ0(r̂0(Q0)) −
∫ Q0

0
Λ0(r̂0(y))dy. Let Â−10 (x) be the inverse function of Â0(Q0). Then, Q̂∗0 =

Â−10 (λ0K0) and Â−10 (0) = 0. Let γ =Km/K0. We have limK0/Km→∞ β1 = limK0/Km→∞
Â−1

0 (λ0K0)

A−1
m (λmKm)

=

limγ→0
Â−1

0 (λ0K0)

A−1
m (λmγK0)

=
Â−1

0 (λ0K0)

A−1
m (λmK0)

limγ→0
A−1
m (λmK0)

A−1
m (λmγK0)

=∞, where the last equality follows from the fact

that A−1m (x) is continuous and A−1m (0) = 0.

It remains to show limK0/Km→∞ β2 = 1. Recall that A0(Q) and Â0(Q) are both increasing convex

functions. Let r(Q0) = arg minr0 C0(r0,Q0). Define H0(Q)≡G0(r(Q)) and Ĥ0(Q)≡ Λ0(r̂0(Q)). It

follows that A′0(Q) =QH0(Q) and Â′0 =QĤ0(Q). By Lemma 3(i) in Zhu et al. (2020), we have

lim
Q→∞

H ′0(Q) =
h0p

h0 + p
, lim

Q→∞
Ĥ ′0(Q) =

h0p

h0 + p
, (12)

where p= mini∈[N ]+{pi}. With the above analysis, under the condition Km > 0, we can obtain

lim
K0/Km→∞

β2 = lim
γ→0

H0[A
−1
0 (λ0Km/γ)]

Ĥ0[Â
−1
0 (λ0Km/γ)]

= lim
γ→0

H ′0[A
−1
0 (λ0Km/γ)]

dA−1
0 (λ0Km/γ)

dγ

Ĥ ′0[Â
−1
0 (λ0Km/γ)]

dÂ−1
0 (λ0Km/γ)

dγ

= lim
γ→0

H ′0[A
−1
0 (λ0Km/γ)]

Ĥ ′0[Â
−1
0 (λ0Km/γ)]

lim
Q→∞

Â′0(Q)

A′0(Q)

= lim
γ→0

H ′0[A
−1
0 (λ0Km/γ)]

Ĥ ′0[Â
−1
0 (λ0Km/γ)]

lim
Q→∞

QĤ ′0(Q)

QH ′0(Q)
= 1,

where the second equality is due to the L’Hospital’s Rule, the third from the rules for taking

derivative of inverse functions, and the last from (12).

(ii) Let ξ ≡ h0/hm. Then Gm(y) can be written as Gm(y) =E[hm(y−Dm(t, t+Lm])+(hm+ξhm+

pm)(y−Dm(t, t+Lm])−]. It follows that for any pm > 0 and hm > 0, Q∗m converges to a constant

when ξ→ 0. Then we proceed to show that limξ→0 Q̂
∗
0 =∞. Let H̄0(Q)≡ h0p

h0+p
Q, Ā0(Q)≡ h0p

2(h0+p)
Q2,

and Q̄0 ≡
√

2λ0K0(h0+p)

h0p
. Then, it is easy to check that Ā′0 =QH̄ ′0(Q) and Ā0(Q̄0) = λ0K0. Because

Ĥ0(Q) is an increasing convex functions, by (12), we have Ĥ ′0(Q)≤ h0p
h0+p

= H̄ ′0(Q), which implies

that Â′0(Q)≤ Ā′0(Q). Note that Â0(0) = Ā0(0) = 0. Therefore, we must have Â0(Q)≤ Ā0(Q). We
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then have Â0(Q̄0)≤ Ā0(Q̄0) = λ0K0. Because Â0(Q̂
∗
0) = λ0K0 and Â0(Q) is an increasing function,

we have Q̂∗0 ≥ Q̄0. On the other hand, because K0 > 0 and limξ→0 Q̄0 =
√

2λ0K0(ξhm+p)

ξhmp
=∞, we

have limξ→0 Q̂
∗
0 =∞. Therefore, we have limξ→0 β1 =∞.

It remains to show limξ→0 β2 = 1. Recall that we always have C∗0 ≤ Ĉ∗0 ≤ Ĉ0(r
∗
0,Q

∗
0), where the

second equality follows from the definition of Ĉ∗0 . Therefore, it suffices to show limξ→0 Ĉ0(r
∗
0 ,Q

∗
0) =

limξ→0C
∗
0 . Following the same logic of showing limξ→0 Q̂

∗
0 =∞, one can easily prove limξ→0Q

∗
0 =∞.

Then we have limξ→0
C∗0

Ĉ0(r
∗
0 ,Q
∗
0)

= limξ→0
H0(Q

∗
0)

Ĥ0(Q
∗
0)

= limξ→0
H′0(Q

∗
0)

Ĥ′0(Q
∗
0)

= limξ→0

ξhmp

ξhm+p

ξhm[
∑N
i=1

(pi+ξhm)−ξhm]∑N
i=1

(pi+ξhm)

= 1,

where the second equality holds by the L’Hospital’s Rule, and the third holds due to (12).

(iii) The proof emulates that of (ii). Let µ ≡ h0/pm. Then Gm(y) can be written as Gm(y) =

E[hm(y−Dm(t, t+Lm]) + (hm+µpm+pm)(y−Dm(t, t+Lm])−]. It follows that for any pm > 0 and

hm > 0, Q∗m converges to a constant when µ→ 0. In addition, in this case we have limµ→0 Q̄0 =√
2λ0K0(µpm+p)

µpmp
=∞. Therefore, we have limµ→0 Q̂

∗
0 =∞ and limµ→0 β1 =∞. To see limµ→0 β2 = 1,

note that in this case we have limµ→0
C∗0

Ĉ0(r
∗
0 ,Q
∗
0)

= limµ→0

µpmp
µpm+p

µpmp
µpm+p

= 1. �

B. Numerical Experiments
B.1. Overall Performance

Although we can efficiently compute the cost upper bound of our heuristic (see Theorem 1), the

exact computation of the real cost of the heuristic is technically challenging. To evaluate the exact

performance, we use the Monte Carlo simulation method to compute the long-run average cost

of the inventory system under this heuristic policy. We denote by C̃ the real cost obtained by

the Monte Carlo simulation, which is a sample mean with a sample error less than 0.05 and a

95% confidence interval. Unless otherwise mentioned, C̃ is computed under the inventory position

priority rule in which retailers are replenished based on the reverse order of their inventory position.

We define the following percentage:

δ1 ≡
C̃ −C∗

C∗
× 100%,

which is an upper bound on the performance gap of our heuristic because we benchmark it with the

cost lower bound. The complete test set of primitive values is given by L0 ∈ {0,1,2}, L1 ∈ {0,1,2},

K0 ∈ {100,200,600}, K1 ∈ {10,20,40}, h0 ∈ {0.05,0.1,0.2}, h1 ∈ {0.3,0.5,1}, p1 ∈ {3,5,10}, and

λ1 ∈ {3,5,7}, with the other primitives fixed as N = 2, L2 = 1, K2 = 20, h2 = 0.5, p2 = 5, and λ2 = 5.

All combinations of these primitives provide 38 = 6561 test instances.

The numerical results are summarized in Table 1. The average gap δ1 between the cost lower
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Average (%) Standard deviation (%) Minimum (%) Maximum (%)
δ1 5.76 3.07 1.45 20.30

δ1 ≤ 5% ≤ 10% ≤ 20% ≤ 20.3%
Number of instances 3263 5833 6558 6561

Cumulative percent (%) 49.73 88.90 99.95 100
Table 1 Overview of the performance of the modified echelon (̂r, Q̂) policy.

bound and the cost of the MERQD policy is around 5.76%, with a minimum of about 1.45%.

Table 1 shows that the maximum δ1 in our test is no more than 21%, i.e., the MERQD policy

can guarantee at least 1.21-optimality for our test instances. Moreover, the gap δ1 is less than

10% in about 90% instances, and less than 20% in 99.95% instances. Because the optimal policy

is unknown and we benchmark the performance of our heuristic against the induced penalty lower

bound, our heuristic may perform even better than the results reported in Table 1. For discussions

on the effectiveness of the lower bound, see Axsäter et al. (2002), Gallego et al. (2007), and Doğru

et al. (2009).

We relegate the detailed numerical experiments to an online supplement Zhu et al. (2020).

Specifically, through extensive numerical studies, we investigate the impacts of system primitives

on the performance of our heuristic, compare the performance of the MERQD policy with that

of the echelon-stock (r,Q) policy used in Chen and Zheng (1997), and test the robustness of the

MERQD policy with respect to the allocation rule at the warehouse.
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Gallego G, Özer Ö, Zipkin P (2007) Bounds, heuristics, and approximations for distribution systems. Oper.

Res. 55(3):503–517.

Zheng YS (1992) On properties of stochastic inventory systems. Management Sci. 38(1):87–103.

Zhu H, Chen F, Hu M, Yang Y (2020) Supplement to “a simple heuristic policy for stochastic distribution

inventory systems with fixed shipment costs”. ssrn.com/abstract=3606084, online supplement.

ssrn.com/abstract=3606084

	Introduction
	Literature Review
	Model

	Cost Analysis
	Outline of the Upper Bound Construction
	Cost Upper Bound Construction
	Shipment Intervals.
	Cost Assessment in Cycles.
	Cost Upper Bound.


	Heuristic Policy: Performance Bounds and Asymptotic Optimality
	Performance Bounds and Asymptotic Optimality

	Numerical Study
	Conclusion
	Technical Proofs
	Numerical Experiments
	Overall Performance


