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Abstract. We study a continuous-review, two-echelon inventory system with one central
warehouse, multiple local facilities, and each facility facing random demand. Local fa-
cilities replenish their stock from the central warehouse (or distribution center), which in
turn places orders at an outside supplier with ample supply. Inventory replenishment at
each location incurs a fixed-plus-variable cost for each shipment. The optimal policy re-
mains unknown, and even if it exists, such a policy must be extremely complicated. In-
stead, we evaluate a class of easy-to-implement heuristics, called modified echelon (r, Q)
policies. The parameters for such a heuristic are obtained by solving a set of independent
single-stage systems. We show that the proposed policy is asymptotically optimal, as pairs
of system primitives, such as the ratios of the fixed cost of the central facility to those of the
local facilities, are scaled up. We also show that as the number of retailers grows, the
performance bound of the heuristic converges to a primitive-dependent constant.
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1. Introduction
We consider a distribution system that consists of one
warehouse and multiple stores, or one central dis-
tribution center and multiple local warehouses/last-
mile fulfillment centers, which we refer to as one
warehouse and multiple retailers (OWMR) to stay
consistent with the vast literature. Inventory is con-
tinuously reviewed in the warehouse and at each
retailer. The warehouse (or distribution center) re-
plenishes the retailers (or last-mile fulfillment centers)
and receives stock from an outside supplier. The lo-
cal retailers face random demands. Regardless of its
size, each shipment, either from the supplier to the
warehouse or from the warehouse to a retailer, incurs
operational frictions in the forms of a positive con-
stant lead time and a positive fixed shipment cost.
Holding costs are charged for each unit carried in the
warehouse and at the retailers. Excess demand that
cannot be immediately satisfied by each retailer is
fully backlogged, but incurs a backlogging cost.

Shipment decisions are made with the objective of
minimizing the long-run average system-wide cost.
The optimal policy of such a system, even if it exists,

must be extremely complicated. Our objective is to
identify an easy-to-implement policy that has a the-
oretical foundation, is intuitive, and performs well.
For this purpose,we propose amodified echelon (r,Q)
policy that operates as follows: if the echelon in-
ventory position at installation i is at or below ri and
the upstream installation has positive on-hand in-
ventory, then a shipment is sent to installation i to
raise its echelon inventory position as close as pos-
sible to ri +Qi. Such a modified (r,Q) policy is intu-
itive and easy to implement. However, the exact
system-wide cost of a given modified echelon (r,Q)
policy is difficult to evaluate, which incapacitates
searching for an optimal one. To overcome this
challenge, we adopt a novel approach to derive an
easy-to-compute upper bound for the system-wide
cost. This upper bound can be expressed as the sum
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of N + 1 subsystems, with each location/installation
corresponding to a single-stage subsystem. Based on
this upper bound, we further identify a specific modi-
fied echelon (r,Q) policy with the values of r and Q for
each installation optimizing a single-stage subsys-
tem. The computational procedure and efficiency take
the virtue of a standard single-stage system. More-
over, by comparing the upper bound with a lower
bound of the optimal system-wide cost established by
Chen and Zheng (1994), we can explore asymptotic
optimality results when some pairs of system pa-
rameters, among fixed, holding, and shortage costs,
are scaled up. We also show that as the number of
retailers goes to infinity, the performance bound of the
heuristic converges to a primitive-dependent constant.

2. Literature Review
The OWMR distribution system with random de-
mands has been studied extensively. Various heu-
ristics and evaluation methods have been examined;
see Simchi-Levi and Zhao (2012) for a survey.

For continuous-review OWMRmodels with batch-
ordering policies, Chen and Zheng (1997) examine an
echelon-stock (r,Q) policy and provide an exact cost
evaluation method for total inventory holding and
shortage costs, excluding fixed costs. Several pa-
pers have also considered modified batch-ordering
policies that outperform classical (r,Q) polices; see
Moinzadeh (2002), Axsäter andMarklund (2008), and
Özer (2003). However, none of these studies take into
account any fixed cost at a stage. For OWMRmodels,
only a few papers have considered fixed costs. A
stream of research aims to provide lower bounds
for the optimal system-wide cost. Examples include
Clark and Scarf (1960) and Chen and Zheng (1994).
Another stream aims to develop heuristic policies for
distribution systems with fixed costs. In particular, as
an order may be filled in multiple shipments, two
different accounting schemes are used to log fixed
costs: one is to charge a fixed cost per order (see, e.g.,
Shang et al. 2015) and the other is to charge afixed cost
per shipment. In this paper, we adopt the shipment-
based fixed-cost scheme that is also consistent with
the original work of Clark and Scarf (1960). To our
knowledge, thiswork is the first one to study heuristic
policies for a stochastic distribution system with
shipment-based fixed costs.

For a general distribution system with or without
fixed costs, although most of the heuristic policies
proposed in the literature make intuitive sense, how
good their performance is remains unclear in theory,
not to mention their (asymptotic) optimality. Gallego
et al. (2007) show that one of their heuristic policies is
asymptotically optimal in the number of retailers
within a class of local base-stock policies for distribu-
tion systems without fixed costs. Chu and Shen (2010)

study a distribution system with service-level con-
straints and develop a power-of-two policy, which is
shown to be 1.26-optimal within a class of power-of-
two policies. Although base-stock and power-of-two
policies perform well in single-stage and deterministic
systems, respectively, whether they still perform well in
stochastic distribution systems remains unclear. Apart
from these two papers, we are unaware of other papers
on the optimality or even asymptotic results of heuristic
policies for a stochastic distribution inventory system.
Methodologically, our paper is closely related to

Hu and Yang (2014), who apply a class of modified
echelon (r,Q) policies to a serial inventory system.
However, there exist fundamental differences be-
tween serial and distribution systems. For example,
stock allocation among retailers, as a feature of dis-
tribution systems, is absent in a serial system. Spe-
cifically, in a distribution system, if the on-hand in-
ventory in the warehouse is insufficient to satisfy all
retailers in need, then it is the allocation policy that
determines who among the retailers gets what or not
at all. As a result, the allocation policy determines
inventory flows, and hence, directly affects the system-
wide cost. In addition, the interaction between the
warehouse and a specific retailer in OWMR models
may affect the other retailers because all retailers are
linked through the common warehouse. For example,
after satisfying a retailer’s order, the warehouse may
not have sufficient stock to fully satisfy the subse-
quent order requests from other retailers, thereby
making system dynamics difficult to analyze. These
differences make the detailed analysis of a distribu-
tion system fundamentally different from and more
challenging than that of a serial system.

Contributions
Our contribution is threefold. First, our asymptotic
optimality results demonstrate the robustness of single-
stage (r,Q) inventory policies. That is, (r,Q) policies
based on single-stage systems with some adaptations
can still perform well even in a distribution system.
As the single-stage (r,Q)policy is easy to compute and
implement, this result is of managerial importance
and relevance. Second, our model studies a stochastic
distribution system with fixed shipment costs, which
ismore consistentwith practice in logistics.Wefill in a
gap in literature by developing an easy-to-implement
heuristic policy that is computationally efficient and
asymptotically optimal. Third, compared with other
heuristics developed for distribution systems, our
proposed heuristic policy has an important advantage,
as it does not require a nested integer ratio or syn-
chronized ordering property for the replenishment
policies.1 Our policy imposes no such coordination
requirements on the batch sizes or ordering time, but still
performs efficiently with asymptotic optimality properties.
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3. Model
We consider a firm that manages a two-echelon dis-
tribution inventory system consisting of one ware-
house and N retailers. For notation convenience, we
use [N]+ and [N] to denote the sets of {1, 2, . . . ,N} and
{0, 1, . . . ,N}, respectively. We use retailer i ∈ [N]+ to
denote a specific retailer and installation i ∈ [N] to
denote a specific installation, which can be either the
warehouse i � 0 or a specific retailer i. Retailers are
replenished from the warehouse, which, in turn, is
replenished from an outside supplier with unlimited
stock. Retailer i faces a steam of random demand
following a Poisson process with stationary rate λi.
Demands across retailers are assumed to be inde-
pendent. Moreover, due to independence among dif-
ferent retailers’ demands and the superposition prop-
erty of the Poisson process, the entire system still faces a
Poisson process with a demand rate λ0 ≡ ∑N

i�1 λi. For
installation i, we use Di(t, t + τ] to denote the total
demandof installation iover the time interval (t, t + τ].
For the warehouse, D0(t, t + τ] � ∑N

i�1 Di(t, t + τ] rep-
resents the total demand of all retailers over the time
interval (t, t + τ]. A constant lead time Li > 0 exists for
installation i. That is, any shipment sent out to in-
stallation i at time twill be received by installation i at
time t + Li. Each shipment to installation i incurs a
fixed cost Ki. Without loss of generality, we assume
that the variable ordering cost is zero. Let hi > 0 be the
echelon holding cost rate at installation i. Whenever
retailer i runs out of stock, the unmet demand is fully
backlogged with a backlog cost rate of pi > 0. The
firm’s objective is to determine a replenishment policy
that minimizes the long-run average system-wide cost.
For simplicity, we adopt the notation with subscript i to
denote installation i. Given that the optimal policy of
such a system, even if it exists, must be extremely
complicated, we focus on a class of modified echelon
(r,Q) policies as follows.

Definition 1 (Modified Echelon (r,Q) Policy).
The modified echelon (r,Q) policy consists of re-

plenishment and allocation rules.

Replenishment. The upstream installation ships
to a downstream installation on the basis of its ob-
servation of the echelon inventory position in the
downstream installation: If the echelon inventory
position in installation i is at or below ri and the
upstream installation has positive on-hand inventory,
then a shipment is sent to installation i to raise its echelon
inventory position IPi to ri +Qi as close as possible.

It should be noted that due to the possible shortage
at the warehouse, it is possible that the warehouse fol-
lowing this replenishment rulehasnoon-hand inventory
to ship to a requesting retailer. In such a case, the retailer
keeps on triggering its replenishment request until the
warehouse has some on-hand inventory to ship, and

such a trigger will be terminated only if a shipment
(irrespective of its size) is sent to the retailer to raise its
echelon inventory position IPi > ri. In addition to the
replenishment rule, the modified echelon (r,Q) policy
also includes the following allocation rule.
Allocation. When facing shortages from multiple

retailers, the warehouse can determine an arbitrary
fulfillment sequence. Once the sequence is deter-
mined, the warehouse sequentially fulfills retailers
one at a time and raises their inventory position as
close as possible to their target.
In case of shortages at multiple retailers, our allo-

cation rule is quite flexible and can be in any arbitrary
sequence, including several commonly used rules
such as the first-come, first-served rule, the last-come,
first-served rule, and a priority scheme based on
historic sales. Notably, such a sequence needs not to
be prefixed and can vary over time.

4. Cost Analysis
To facilitate analysis, at time t, we charge the in-
ventory holding cost incurred in the warehouse at
time t + L0, and charge the inventory holding and
backlog costs incurred in retailer i at time t + L0 + Li.
This cost accounting scheme only shifts costs across
time points and hence does not affect the long-run
average expected inventory holding and backlog costs.
Given that the external supplier has ample inven-

tory, a modified echelon (r,Q) policy for the ware-
house operates as a classical echelon (r,Q) policy with
parameters (r0,Q0). Therefore, the steady state of its
inventory position IP0(t) is uniformly distributed
among {r0 + 1, . . . , r0 +Q0}. We useΩ(IP0(t)) to denote
the total expected average cost rate of all retailers at
time twhen the inventory position of thewarehouse is
IP0(t). Following Zheng (1992) and Chen and Zheng
(1994), we assume that discrete units of inventories
can be approximated by continuous variables. Let D0
denote the total demand over (0,L0]. Given an arbi-
trarily modified echelon (r,Q) policy, the long-run
average system-wide cost C(r,Q) can be expressed as

C r,Q( ) � 1
Q0

λ0K0 +
∫ r0+Q0

r0
E h0 y −D0

( )[[
+Ω y

( )]
dy

]
,

(1)
where r � (r0, r1, . . . , rN) ∈ NN+1 and Q � (Q0,Q1, . . . ,
QN) ∈ NN+1. However, considering the possible short-
age in the warehouse, directly computingΩ(IP0(t)) and
C(r,Q) is extremely difficult. To overcome this, we
propose a novel approach for obtaining anupper bound
for C(r,Q). We can construct a specific heuristic by op-
timizing this upper bound and further derive asymptotic
results by comparing this upper bound with an existing
lower bound (see Chen and Zheng 1994).
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4.1. Outline of the Upper Bound Construction
First, we divide the entire time horizon into cycles by
tracing how the first shipment of an order of the
warehouse is sent to a specific downstream retailer.

Definition 2 (Cycle). For j ∈ N, we denote by [Tj,Tj+1)
the jth cycle of retailers, where Tj is the time epoch of
the first unit in the jth order of thewarehouse being sent
to a retailer. That is, Tj is the time epoch when the first
unit in the warehouse’s jth order leaves the warehouse.

The length of a cycle is random and dependent on
the realization of demands. A specific cycle [Tj,Tj+1)
may also be an empty set. In such a case, all units
contained in the jth order of the warehouse are
shipped to a retailer along with one or multiple units
in the (j + 1)th order of the warehouse. Our analysis
focuses on nonempty cycles because retailers incur no
costs for empty cycles. The following lemma char-
acterizes the expected long-run average cycle length.
Somewhat surprisingly, the expected cycle length
depends only on the policy parameters of the ware-
house. The omitted proofs in this paper can be found
in the online appendix.

Lemma 1 (Long-Run Cycle Length). Under any modified
echelon (r,Q) policy, the long-run average expected cycle
length is Q0/λ0, that is, limj→∞ E[(Tj+1 − T1)]/j � Q0/λ0.

We then investigate the shipments from the ware-
house to the retailers over a cycle. To do so, we classify
the shipments from the warehouse to the retailers into
regular and irregular ones, and further classify irregular
shipments into types I and II shipments.

Over any nonempty cycle [Tj,Tj+1), the jth order of
the warehouse is shipped to retailers in one or mul-
tiple, say M ∈ N shipments in total. Among the M
shipments, denote by Mi ∈ Z+ the number of ship-
ments sent to retailer i. Then,

∑N
i�1 Mi � M. Let Tj,m

i be
the time of the mth shipment sent to retailer i over the
cycle [Tj,Tj+1), where m � 1, 2, . . . ,Mi. By definition,
we haveTj ≤ Tj,1

i ≤ · · · ≤ Tj,Mi
i < Tj+1 for any i. Defining

Tj,Mi+1
i ≡ Tj+1,1

i , we call [Tj,m
i ,Tj,m+1

i ) the mth shipment
interval of retailer i over the cycle [Tj,Tj+1). For the
case with Mi � 0, that is, when no shipment is sent to
retailer i, we define Tj,1

i ≡ Tj+1,1
i .

Depending on a retailer’s inventory position at the
beginning and the end of a shipment interval, we
categorize the shipments to retailers and their asso-
ciated shipment intervals as follows.

Definition 3 (Regular and Irregular Shipment (Interval)).
For a shipment interval [Tj,m

i ,Tj,m+1
i ), if IPi(Tj,m

i ) � ri +Qi

and IP−
i (Tj,m+1

i ) � ri, then we call it a regular shipment
interval of retailer i; otherwise, we call it an irregular
shipment interval. Specifically, if IPi(Tj,m

i ) � ri +Qi and
IP−

i (Tj,m+1
i ) < ri, then we call it a type I irregular ship-

ment interval; if IPi(Tj,m
i ) < ri +Qi, then we call it a type

II irregular shipment interval. The shipment associated

with a regular (or type I or II irregular) shipment interval
is called a regular (or type I or II irregular) shipment.

Finally, we adopt different cost assessment schemes
for these shipment types (see Section 4.2.2). Based on
these schemes, we construct a cost upper bound of
retailers’ total expected cost Ω(IP0(t)) over a specific
cycle. Although the total costs of retailers vary across
different cycles, they share the same upper bound (see
Section 4.2.3).

4.2. Cost Upper Bound Construction
In this subsection, we discuss in detail our approach
of constructing the cost upper bound.

4.2.1. Shipment Intervals. For m � 1, . . . ,Mi − 1 with
Mi ∈ N, the shipment interval [Tj,m

i ,Tj,m+1
i ) of retailer i

is located within the cycle [Tj,Tj+1). However, the
shipment interval associatedwith the last shipment in
this cycle, [Tj,Mi

i ,Tj,Mi+1
i ), may not be contained within

the cycle [Tj,Tj+1). The beginning of this interval must
be within this cycle, that is, Tj,Mi

i ≤ Tj+1, which is why
we associate this interval with the cycle [Tj,Tj+1).
However, the end of this shipment interval, Tj,Mi+1

i ,
may be outside the cycle. This occurs when after
shipment at Tj,Mi

i , no shipment is sent to retailer i over
[Tj,Mi

i ,Tj+1) and the next shipment to retailer i occurs at
Tj+1,1
i , which is strictly later than Tj+1.
Whether a shipment interval is regular depends on

the retailer’s inventory positions at the beginning and
end of this interval. The type of an irregular shipment
interval depends only on the inventory position at the
beginning of this interval. To better illustrate how
retailers’ inventory positions evolve within a cycle
with multiple shipment intervals, we display one
scenario of two retailers’ inventory positions over a
cycle [Tj,Tj+1) in Figure 1.
The following lemma shows that the frequency of

both irregular shipments for each retailer and type II
irregular shipments for all retailers can be bounded
by that of cycles.

Lemma 2 (Irregular Shipment Frequency). (i) For any
retailer, there exists at most one irregular shipment interval
within each cycle, regardless of whether the cycle is empty or
not. (ii) Across all retailers, there exists at most one type II
irregular shipment interval within each cycle.

4.2.2. Cost Assessment in Cycles. In this subsection,
we provide a cost assessment over a cycle. For retailer
i ∈ [N]+, following Chen and Zheng (1994), Gi(IPi(t))
denotes its holding and shortage cost rates at time t +
Li in terms of its inventory position at time t,

Gi IPi t( )( ) � E
[
hi IPi t( ) −Di t, t + Li( )( )+.

+ h0 + pi
( )

IPi t( ) −Di t, t + Li( )( )−]. (2)
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We use the following cost assessment schemes for the
three types of shipment within a cycle:

Cost in regular shipment intervals. In a regular
shipment interval, the inventory position of retailer i
gradually drops from ri +Qi to ri. At the time when ri
is reached, another shipment is triggered and the
regular shipment ends. It behaves the same as a
single-stage system with an outside supplier of un-
limited supply; see Zheng (1992). Therefore, the total
expected cost rate, including the fixed, inventory
holding, and backlog costs, of retailer i in a regular
interval is

Ci ri,Qi( ) � λiKi +
∫ ri+Qi

ri
Gi y
( )

dy

Qi
, (3)

where Gi(y) is defined in (2).
Cost in type I irregular shipment intervals. In a

type I irregular shipment interval, the inventory posi-
tion of retailer i initially drops from ri +Qi to ri and
then drops below ri. In the former subinterval, the
expected cost rate is Ci(ri,Qi), which is the same as in a
regular shipment interval, whereas in the latter, the
expected inventory holding and backlog costs are
accrued at a rate equal to Gi(IPi(t)). No inventory
replenishment occurs and thus, no fixed cost is in-
curred in the latter subinterval.

Cost in type II irregular shipment intervals. In a
type II irregular shipment interval, we separately
calculate the fixed cost and holding/backlog costs.
For any time t in a nonempty type II irregular ship-
ment interval of retailer i, the expected inventory
holding and backlog costs are accrued at a rate equal

to Gi(IPi(t)). In addition, a fixed cost Ki, is incurred for
the irregular shipment.
The system-wide costs can be decomposed into

(i) costs in regular shipment intervals, (ii) costs in
type I irregular shipment intervals, (iii) inventory hold-
ing and backlog costs in type II irregular shipment in-
tervals, and (iv) fixed costs in type II irregular shipment
intervals. We next provide the cost upper bounds for
the first three parts and for the last part separately.

4.2.3. Cost Upper Bound. We first provide an upper
bound on the fixed costs associated with type II ir-
regular shipments. FromLemma 2(i), the frequency of
incurring irregular shipment intervals is bounded by
the frequency of cycles. Define K � maxi∈[N]+{Ki}. By
Lemma 2(ii), the fixed cost for type II irregular ship-
ments over any cycle [Tj,Tj+1) �� Ø is incurred at most
once and should not exceed K. Consequently, the
corresponding fixed costs for type II irregular ship-
ments are accrued at a rate that is no more than
K/(Tj+1 − Tj). Then, by Lemma 1, the long-run average
fixed cost for type II irregular shipments has an upper
bound λ0K/Q0. Then we can bound the expected
cost rate of all retailers, excluding the fixed costs for
type II irregular shipments. The bound is expressed in
terms of the echelon inventory level of thewarehouse.
Let IL0(t) denote the echelon inventory level at the
warehouse, that is, the echelon inventory at the
warehouse (the on-hand inventory at the warehouse
plus the inventories at or in transit to all retailers)
minus the total number of customers back-ordered at
all retailers.

Figure 1. (Color online) Illustration of Two Retailers’ Inventory Positions over a Cycle [Tj,Tj+1)
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Lemma 3. For any time t∈ [Tj,Tj+1) ��Ø, the expected cost
rate of all retailers, excluding the fixed costs for type II ir-
regular shipments, denoted by Γ̂(IL0(t)), is upper bounded as

Γ̂ IL0 t( )( ) ≤ Γ̄ IL0 t( )( ) ≡ max
i∈ N[ ]+

Γ̄i IL0 t( )( ), (4)

where

Γ̄i IL0 t( )( ) ≡ ∑
j��i

max Gj wj
( )

,Cj rj,Qj
( ){ }

+

max Gi wi( ),Ci ri,Qi( ){ }
if IL0 t( ) − ∑

j��i
rj +Qj
( )

> ri,

max Gi IL0 t( ) − ∑
j��i

rj +Qj
( )( )

,Gi wi( ),Ci ri,Qi( )
{ }

otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
and wi ≡ argmaxri<z≤ri+Qi{Gi(z)}.

As mentioned, multiple retailers with an inventory
position that is less than their reorder level may exist.
One salient feature of Lemma 3 is that we construct a
cost upper bound for a given retailer i in terms of
IL0(t), instead of IPi(t). To this end, we charge the cost
at a time for retailer i in terms of IL0(t) in the worst-
case scenario, in which the inventory position of all
other N − 1 retailers than retailer i reaches their
highest possible inventory position, that is, rj +Qj. It
implies that retailer i has the lowest possible inven-
tory position, that is, IL0(t) −∑

j��i(rj +Qj), which leads
to a cost upper bound through the convexity of Gi(y).

Although the upper bound in Lemma 3 is given in
terms of IL0(t), the system-wide cost can be bounded
in terms of IP0(t) based on the relationship IL0(t+L0) �
IP0(t) −D0(t, t+L0]. By combining the aforementioned
cost bounds, we are ready to present an upper bound
for the total expected costs by noting that Ω(y) ≤
λ0K/Q0+ E[Γ̂(y −D0)], and derive an upper bound for
C(r,Q) in (1).

We define

Ĝ y
( ) ≡ Γ̄ y

( ) −∑N
i�1

Ci ri,Qi( ), (5)

Λ0 y
( ) ≡ E h0 y −D0

( ) + Ĝ y −D0
( )[ ]

, (6)
Ĉ0 r0,Q0( ) ≡ 1

Q0
λ0K0 +

∫ r0+Q0

r0
Λ0 y

( )
dy

[ ]
. (7)

Recall that Γ̄(·), defined in Lemma 3, is the upper
bound for the expected cost rate of all retailers, ex-
cluding the fixed costs of type II irregular shipments.
Then, Ĉ0(r0,Q0) is the upper bound for the expected
cost rate of all installations, excluding

∑N
i�1 Ci(ri,Qi)

and the fixed costs of type II irregular shipments. As
mentioned,λ0K/Q0 is an upper bound on the long-run
average fixed cost for type II irregular shipments.
Then we have the following system-wide cost up-
per bound.

Theorem 1 (An Upper Bound). For a given modified ech-
elon (r,Q) policy, the long-run average system-wide cost has
an upper bound:

C r,Q( ) ≤ CU r,Q( ) ≡ ∑N
i�1

Ci ri,Qi( ) + Ĉ0 r0,Q0( ) + λ0K
Q0

.

5. Heuristic Policy: Performance Bounds
and Asymptotic Optimality

In this section, we propose a heuristic modified echelon
(r,Q) policy by minimizing the upper bound CU(r,Q).
Directly optimizing CU(r,Q) appears difficult, given
that Ĉ0(r0,Q0) depends on ri andQi, i ∈ [N]+, and may
not be a convex function.
We define (r∗i ,Q∗

i ) as the minimizer of Ci(ri,Qi),
i ∈ [N]+. In our proposed heuristic policy, we choose
parameters (ri,Qi) by optimizing Ci(ri,Qi), without
considering Ĉ0(r0,Q0). That is, we select (ri,Qi) �
(r∗i ,Q∗

i ) for retailer i, whichmeans that the retailers just
use the optimal decisions of their single-stage inventory
problems.With this selection,wehaveCi(r∗i ,Q∗

i ) �C∗i and

C r,Q( ) ri ,Qi( ) � r∗i ,Q
∗
i( ) ≤

∑N
i�1

C∗i + Ĉ0 r0,Q0( )
⃒⃒⃒⃒
⃒ + λ0K

Q0
. (8)

Plugging (7) into (8), we have

C r,Q( ) ri ,Qi( ) � r∗i ,Q
∗
i( )

⃒⃒⃒
≤ ∑N

i�1
C∗i +

1
Q0

λ0K0 +
∫ r0+Q0

r0
Λ0 y

( )
dy

[ ]
+ λ0K

Q0
. (9)

We can further tighten the upper bound in (9) by min-
imizing it over r0 and Q0. Specifically, this can be
achievedby solving the followingoptimizationproblem:

min
r0,Q0

C̃0 r0,Q0( ) ≡ min
r0,Q0

1
Q0

λ0 K0 + K
( )[

+
∫ r0+Q0

r0
Λ0 y

( )
dy

]
.

(10)
Note that Γ̄i(y) (see Lemma 3) may not be convex for
any given ri andQi (i � 1, 2, . . . ,N), but it is convex for
(ri,Qi) � (r∗i ,Q∗

i ). Consequently, with (ri,Qi) � (r∗i ,Q∗
i )

for all i, Ĝ(y) in (5), and hence, Λ0(y) in (6), are convex
functions as well.
Problem (10) is a single-stage inventory system

with a fixed cost equal to K0 + K, and its objective
function C̃0(r0,Q0) is jointly convex in r0 and Q0.
Therefore, the optimal solution can be efficiently
computed. Define (r̃∗0 , Q̃∗

0) ≡ argminr0,Q0 C̃0(r0,Q0). We
construct a heuristic modified echelon (r,Q) policy as

r̂, Q̂
( ) � r̂0, r̂1, . . . , r̂N , Q̂0, Q̂1, . . . , Q̂N

( )
� r̃∗0 , r∗1 , . . . , r∗N , Q̃∗

0 ,Q
∗
1 , . . . ,Q

∗
N

( )
, (11)

and refer to it as the Multi-Echelon (r,Q)Distribution
(MERQD) policy.
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From theorem 1 in Zheng (1992), we have C̃∗0 ≡
C̃0(r̃∗0 , Q̃∗

0) � Λ0(r̃∗0). Comparedwith the bound in (9), a
tighter upper bound on the system-wide cost can be
expressed as

C∗B ≤ C r̂, Q̂
( ) ≡ C r,Q( ) r,Q( )� r̂,Q̂( ) ≤

∑N
i�1

C∗i
⃒⃒⃒⃒
⃒ + C̃∗0 . (12)

We can derive guaranteed bounds on the effec-
tiveness of our heuristic policy by comparing the
upper bound in (12) with the induced-penalty lower
bound C∗ � ∑N

i�0 C∗i established by Chen and Zheng
(1994). Notably, C∗0 may take negative values. Our
main results are based on the assumption that C∗0 > 0.
The following assumption is a sufficient condition for
C∗0 > 0; see lemma 5 of Zhu et al. (2020).

Assumption 1. Assume h0
∑N

i�1(λiLi− C∗
i

h0+pi)+
̅̅̅̅̅̅̅̅̅
2λ0K0h0p
h0+p

√
>0,

where p � mini�1,2,...,N pi.

For notational convenience, let (r̂∗0 ,Q̂∗
0) � argminr0,Q0

Ĉ0(r0,Q0) and Ĉ∗0 � Ĉ0(r̂∗0 , Q̂∗
0).

Theorem 2 (Performance Bounds for General Cases).
We have:

i. The MERQD policy is (1+ C̃∗
0−C∗

0∑N
i�1 C

∗
i+C∗

0
)-optimal, that

is,
∑N

i�1 C
∗
i+C̃∗

0∑N
i�1 C∗

i+C∗
0
-optimal.

ii. The MERQD is max
̅̅̅̅̅̅̅̅̅̅̅̅̅

λ0
2β1β2λm

+ 1
4

√
+ 1

2 ,
1
β2

{ }
-optimal,

where m ∈ argmaxi∈[N]+{Ki}, β1 ≡ Q̂∗
0

Q∗
m
, and β2 ≡ C∗

0

Ĉ∗
0
≤ 1.2

Theorem 2(i) directly follows from comparing the
induced-penalty lower bound with the upper bound
established in (12). Theperformance bound is expressed
in terms of the optimal costs for a set of single-stage,
single-period inventory systems that are simple and
easy to compute. Theorem 2(ii) provides a looser
performance bound that depends on the order size
ratio β1 ≡ Q̂∗

0/Q
∗
m and the cost ratio β2 ≡ C∗0/Ĉ∗0. In a

supplement, figure 1 in Zhu et al. (2020) displays the
contour plot of the performance bound as a function
of β1 and β2. The identified heuristic performs well
when the two ratios are large. Denote f0 ≡ λ0/Q̂∗

0 and
fi ≡ λi/Q∗

i for i ∈ [N]+. The measure fi represents the
replenishment frequency of installation i ∈ [N] under
our heuristic assuming that each installation’s re-
plenishment can always be fulfilled. Then, the per-
formance guarantee in Theorem 2(ii) can be rewritten

as max
̅̅̅̅̅̅̅̅
β0
2β2

+ 1
4

√
+ 1

2 ,
1
β2

{ }
, where β0 ≡ f0/fm is the ratio of

two replenishment frequencies for single-stage in-
ventory systems. This implies that the theoretical
performance bound can be expressed by a replen-
ishment frequency ratio (β0) and a cost ratio (β2) for
single-stage inventory systems, both of which can be
efficiently computed. It is easy to see that the pro-
posed heuristic tends to perform better when β2 is

larger and/or β0 is smaller. For the case with identical
retailers, we can derive a sharper performance bound.

Corollary 1 (Performance Bounds for Identical Retailers).
Suppose that all retailers are identical. The MERQD policy is

max
̅̅̅̅̅̅̅̅̅̅
1

2β1β2
+ 1

4

√
+ 1

2 ,
1
β2

{ }
-optimal, where β1 ≡ Q̂∗

0/Q
∗
i is iden-

tical for all retailers.

It can be observed from Corollary 1 that when β1
and β2 become larger, the bound becomes tighter.
Suppose that β2 is not much smaller than 1, then the
bound in Corollary 1 highly depends on the value of β1.
When N increases, β1 tends to become larger. As we
show in Theorem 4 and Zhu et al. (2020), the per-
formance of the heuristic converges when N → +∞.
The following theorem further demonstrates the

asymptotic optimality of our heuristic if we scale the
dominant relationships of pairs of cost primitives to
the extreme.

Theorem 3 (Asymptotic Optimality). TheMERQD policy is
asymptotically optimal if one of the following conditions
holds: (i) Km > 0 and K0/Km → ∞; (ii) h0/hm → 0; and (iii)
h0/pm → 0, where m ∈ argmaxi∈[N]+{Ki}.
Theorem 3 shows the asymptotic optimality of our

heuristic when some dominant relationships among
system primitives are taken to the extreme. It implies
the conditions under which the heuristic policy is
more likely to perform well. First, a distribution
system typically has larger economies of scales at the
warehouse (or central distribution center) than at re-
tailers (or last-mile fulfillment centers). Second, for an
e-retailer, the last-mile fulfillment centers (or local
distribution centers), particularly those in dense urban
areas with limited land availability (and hence high
rents), incur a higher inventory holding cost than up-
stream distribution centers that are typically located
in suburban areas. Third, the shortage cost of each
retailer tends to be considerably higher than holding
costs. In pursuit of high service levels and consumer
satisfaction, distribution inventory systems usually
adopt a small value of h0/pm; see, for example, 0.05
in Chen and Zheng (1997) and 0.01–0.1 in Shang
et al. (2015).
We next investigate another asymptotic result with

respect to the number of retailers.

Theorem 4. Suppose that all retailers are identical. As
N → +∞, the MERQD policy is (1 + (1 + pi+h0

hi
)(1 + h0

pi
))-

optimal.

We refer readers to Zhu et al. (2020) for other ex-
plicit performance bounds.

6. Numerical Study
We report our numerical study in this section. Through
a set of comprehensive numerical experiments,weverify
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the effectiveness of our heuristic policy and test its
sensitivity to system parameters. Moreover, we com-
pare our heuristic policy with the echelon-stock (r,Q)
policy studied in the literature. Lastly, we also study
the impact of the allocation rule on the performance of
the MERQD policy. Here we summarize main ob-
servations from the numerical experiments:

1. We test the performance of the MERQD policy
for 6,561 instances. In general, the MERQD policy
performs well with an average gap of about 5% above
the cost lower bound and a gap of less than 10% for
about 90% of all instances; see online Appendix B.1.

2. We then study the sensitivity of the MERQD
policy with respect to N, K0, h0, pi, and λi separately.
The MERQD policy performs quite well in most in-
stances, especially when the asymptotic conditions tend
to hold, for example, when h0/hi ≤ 1. Furthermore, the
MERQD policy still performs well when L0 is much
larger than Li; see section 5.1.1 of Zhu et al. (2020).

3. When h0/hi is large, the performance of our
heuristicmay not be as good as those in other cases. To
address this issue, we particularly develop an alter-
native heuristic policy (referred to as heuristic CD
under which the warehouse only acts as a Cross-
Docking distributor without holding any inventory);
see alsoMarklund (2002, 2006), Berling andMarklund
(2006), and Axsäter et al. (2013) for other possible
effective policies. Together with the MERQD policy,
heuristic CD can form a new hybrid policy that
chooses one between the two. For the cases where the
MERQD policy may not perform well, heuristic CD
can greatly improve the performance of the hybrid
policy; see section 5.1.2 of Zhu et al. (2020).

4. We compare our MERQD policy with the so-
called echelon-stock (r,Q) policy used in Chen and
Zheng (1997). Our proposed policy outperforms the
echelon-stock (r,Q) policy in all tested instances, and
the gap can be as large as 9%. Compared with their
policy, our policy generates slightly higher inventory
costs, but a considerably lower fixed cost; see section
5.2 of Zhu et al. (2020).

5. We finally test the robustness of the MERQD
policy with respect to several alternative allocation
rules by the warehouse. The performance of the
MERQD policy seems quite robust to allocation rules
for those instances in which it performs well. For the
instances in which our policy does not perform well,
its performance can be improved by a better alloca-
tion rule. For example, in the scenario with identical
retailers, the inventory position priority rule (in which
retailers are replenished based on the reverse order of
their inventory position) outperforms other rules and
can save more than 4% of the total cost; see section 5.3
of Zhu et al. (2020).

7. Conclusion
We study a classical distribution inventory system
with fixed shipment costs. We develop a class of
modified echelon (r,Q) policies that do not require a
nested integer ratio or synchronized ordering prop-
erty. We examine the effectiveness of the proposed
policy by comparing its performance with a lower
bound of the optimal cost, and identify conditions
under which the heuristic is asymptotically optimal.
Despite the daunting challenges in analyzing an
OWMR system, our work represents the first attempt
to identify easy-to-compute policies with provable
performance guarantees and to derive their asymp-
totic properties for a distribution system with fixed
shipment costs.
Our approach has limitations. First, although our

proposed heuristic achieves superior performance
under those scenarioswith systemprimitives likely to
satisfy asymptotic optimality conditions, it may per-
form poorly in other cases. It is highly desirable to
design an effective heuristic for all scenarios. Second,
our model considers a continuous-review system with
a simple Poisson demand process. However, our cur-
rent analysis cannot be readily extended to account for
a periodic-review system or a continuous-review sys-
tem with a compound Poisson arrival process. It is of
interest to establish theoretical performance bounds for
certain heuristic policies in these two systems. This
work hopefully paves the way for future endeavors.
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Endnotes
1Nested integer ratio indicates that the batch size of the warehouse is
equal to a positive multiple of that of retailers. Synchronized ordering
means that whenever the warehouse receives a shipment from the
supplier, all retailers must simultaneously place an order. Either or
both of the requirements are prevalent in the heuristics proposed in
the literature.
2 In addition, if (β22 − 1)(β1λm) + β2λ0 ≥ 0, then the MERQD policy
can be alternatively shown to be at least 1 + λ0/(2(β1β2λm +̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(β22 − 1)(β1λm)2 + β1β2λmλ0

√
))-optimal; see the proof of Theorem 2 in

the online Appendix. The numerical results show that the bound in
Theorem 2(ii) tends to perform better but not always.
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