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We consider the classic continuous-review N stage serial inventory system with a homogeneous Poisson demand arrival
process at the most downstream stage (Stage 1). Any shipment to each stage, regardless of its size, incurs a positive fixed
setup cost and takes a positive constant lead time. The optimal policy for this system under the long-run average cost
criterion is unknown. Finding a good worst-case performance guarantee remains an open problem. We tackle this problem by
introducing a class of modified echelon 4r1Q5 policies that do not require Qi+1/Qi to be a positive integer: Stage i+ 1 ships
to Stage i based on its observation of the echelon inventory position at Stage i; if it is at or below ri and Stage i+ 1 has
positive on-hand inventory, then a shipment is sent to Stage i to raise its echelon inventory position to ri +Qi as close as
possible. We construct a heuristic policy within this class of policies, which has the following features: First, it has provably
primitive-dependent performance bounds. In a two-stage system, the performance of the heuristic policy is guaranteed to be
within 41 +K1/K25 times the optimal cost, where K1 is the downstream fixed cost and K2 is the upstream fixed cost. We also
provide an alternative performance bound, which depends on efficiently computable optimal 4r1Q5 solutions to N single-stage
systems but tends to be tighter. Second, the heuristic is simple, it is efficiently computable and it performs well numerically; it
is even likely to outperform the optimal integer-ratio echelon 4r1Q5 policies when K1 is dominated by K2. Third, the
heuristic is asymptotically optimal when we take some dominant relationships between the setup or holding cost primitives at
an upstream stage and its immediate downstream stage to the extreme, for example, when h2/h1 → 0, where h1 is the
downstream holding cost parameter and h2 is the upstream holding cost parameter.
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1. Introduction
The multi-echelon serial inventory system is widespread
in supply chains in the retail, manufacturing and service
industries. We consider a classic continuous-review N stage
serial inventory system. Customer demand arises only at the
most downstream stage, Stage 1, and follows a homogeneous
Poisson process. Each stage replenishes inventory only
from its immediate upstream, i.e., Stage 1 replenishes from
Stage 2, etc., and Stage N replenishes from an outside
supplier with unlimited stock. Each shipment from one
stage to its successor, regardless of its size, takes a positive
constant lead time and triggers a positive fixed setup cost.
Excess demand that cannot be satisfied immediately is fully
backlogged. The system is stationary, and the objective is to
minimize the long-run average system-wide cost.

It is well known that the optimal policy of such a system,
even if it exists, must be extremely complex (Clark and Scarf

1962). This observation has caused subsequent research on
multi-echelon, stochastic inventory systems with economies
of scale to focus on heuristic policies. In particular, attention
has been focused on a class of nested integer-ratio echelon
4r1Q5 policies (see, e.g., De Bodt and Graves 1985). “Nested
integer-ratio” refers to the fact that the batch size of any
upstream stage, Qi+1, is equal to a positive integer multiple
of the batch size of an immediate downstream stage, Qi.
(“Nested” here is used to emphasize the difference from the
integer-ratio policies in Roundy 1985 that could allow Qi to
be a positive integer multiple of Qi+1; for simplicity, “nested”
is omitted hereafter.) The integer-ratio policies have proved
to be cost-effective, with a worst-case performance guarantee
in some special settings, e.g., when demand is deterministic
(Atkins and Sun 1995) and in a two-echelon system with zero
lead times at Stage 2 under demand uncertainty (Chen 1999).
However, finding a good guaranteed performance bound for
a general setting with fixed shipment costs and positive lead
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times at each stage remains an unsolved problem. Zipkin
(2000) notes the urgency of addressing this problem:

There are ways to calculate a lower bound on the true optimal
cost. By comparing this bound to the cost of a good (or
the best) echelon 4r1 q5 policy, we can estimate the policy’s
performance relative to all possible alternatives. In this way
researchers [e.g., Chen 1999] have found that, for some
systems, an echelon 4r1 q5 policy performs quite well; the
policy’s cost exceeds the lower bound by only a few percent.
We still lack strong results [ 0 0 0 ], however. Specifically, we
do not have a policy-construction heuristic that is guaranteed
to perform well. This remains a pressing priority for research.

(Zipkin 2000, §8.3.7.2)

In some special settings, which are mentioned previously,
the optimal policies have been shown to be nested in the
sense that, whenever Stage i+ 1 orders, so does Stage i.
The reason is that, in those special settings, any order at
an upstream stage can be delayed until just before the next
shipment to its immediate downstream stage so as to save
inventory holding costs at the upstream stage. However, this
argument no longer holds for a general serial system under
demand uncertainty with positive lead times at each stage,
because an upstream stage cannot in general predict, ahead
of its lead time, exactly when its immediate downstream
stage will reach the reorder point. As a result, the optimal
policies in a general system may not be nested and the need
to confine within the class of integer-ratio echelon 4r1Q5
policies for good heuristics is less compelling.

We introduce a class of continuous-review modified ech-
elon 4r1Q5 policies that do not require Qi+1/Qi to be a
positive integer: Stage i+ 1 ships to Stage i on the basis of
its observation of the echelon inventory position at Stage i;
if the echelon inventory position is at or below ri and
Stage i+1 has positive on-hand inventory, then a shipment is
sent to Stage i to raise its echelon inventory position as close
as possible to ri +Qi. (Because the proposed policies do
not necessarily satisfy integer-ratio constraints, as assumed
in the classic echelon 4r1Q5 models, we coin the term of
modified echelon 4r1Q5 policy.)

The inventory flow processes under the modified echelon
4r1Q5 policy can be completely different from those under
the integer-ratio echelon 4r1Q5 policy, even with the same
set of policy parameters. For example, in a two-stage system,
suppose r1 = 1, Q1 = 5 and Q2 = 10. Consider the following
scenario: at some time when Stage 2 has been out of stock
for a while, the inventory position of Stage 1 drops to −1;
meanwhile, Q2 = 10 units have just arrived at Stage 2.
We compare how this scenario triggers different shipment
quantities under the two policies. Under the integer-ratio
echelon 4r1Q5 policy, the shipment quantity to Stage 1 is
Q1 = 5 units to raise the inventory position of Stage 1 above
r1 = 1. However, under the modified echelon 4r1Q5 policy,
the shipment quantity to Stage 1 is 7 units to raise the
inventory position of Stage 1 to r1 +Q1 = 6. Here we note
that the shipment size to Stage i under the modified echelon

4r1Q5 policy may not be in an integral multiple of Qi, unlike
under the integer-ratio echelon 4r1Q5 policy.

In view of the possibly complicated inventory flow pro-
cesses under a given modified echelon 4r1Q5 policy, it can
be extremely hard to express its exact cost. Nevertheless, we
show that a constructed heuristic modified echelon 4r1Q5
policy, specifically designed for the shipment-based fixed-
cost scheme (see later for a comparison with the batch-based
fixed-cost scheme), has the following features: First, it has
provably primitive-dependent performance bounds. Second,
it is simple and free from the clustering step required in
other heuristics like those in Shang (2008), it can be com-
puted efficiently and it performs well numerically. Third,
it is asymptotically optimal when we take some dominant
relationships between the setup or holding cost primitives at
an upstream stage and its immediate downstream stage to
the extreme.

For performance evaluation, we make the crucial assump-
tion that discrete units of inventories can be approximated
by continuous quantities. That is a common approach in
the inventory literature. For example, the well-known Eco-
nomic Order Quantity (EOQ) formula is often used, even
though the order quantity is usually discrete. Under this
assumption, we show guaranteed performance bounds for
the constructed modified echelon 4r1Q5 policy. In a two-
stage system, the performance of the heuristic policy is
guaranteed to be within 41 + K1/K25 times the optimal
cost (i.e., 1 +K1/K2-optimal hereafter), where K1 is the
downstream fixed cost and K2 is the upstream fixed cost. We
also provide an alternative performance bound that depends
on efficiently computable optimal 4r1Q5 solutions to N
single-stage systems. Specifically, the effectiveness of the
heuristic is shown to be linked to the ratios between Q∗

i+1

and Q∗
i , i = 1121 0 0 0 1N − 11 where Q∗

i is the optimal order
quantity for Stage i in a series of N decomposed single-stage
problems through the induced-penalty cost-allocation scheme
(see Chen and Zheng 1994b). In a two-stage system for
primitives such that Q∗

2/Q
∗
1 ¾ 41 + 1/�−

√
1 + 2/�5/2, we

show that the heuristic policy is 41+�5-optimal. For example,
if Q∗

2 ¾Q∗
1, the heuristic is 1.25-optimal. If the upstream

stage has a higher setup cost or a lower holding cost than
the downstream stage, a situation that will most likely result
in a relatively large value of Q∗

2/Q
∗
1 , the alternative perfor-

mance bound depending on Q∗
2/Q

∗
1 tends to be tighter than

41 +K1/K25-optimality.
Because a shipment to Stage i may contain multiple

batches of size Qi, there are at least two schemes in the
literature for charging fixed setup costs under echelon 4r1Q5
policies: a fixed cost per batch (see, e.g., Chen and Zheng
1998, Shang 2008) and a fixed cost per shipment (see, e.g.,
De Bodt and Graves 1985, Chen and Zheng 1994a). In our
setting with a Poisson arrival process, the two schemes can
be reconciled under an integer-ratio echelon 4r1Q5 policy if
the system is operated in a centralized way, thus avoiding
unnecessary orders at a stage when the immediately upstream
stage is out of stock. But under our proposed modified
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echelon 4r1Q5 policy, the two cost schemes lead to different
outcomes. We adopt the shipment-based fixed-cost scheme
that is consistent with the original work by Clark and Scarf
(1960). We caution that our theoretical performance bounds
do not apply to the batch-based fixed-cost scheme. Heuristics
proposed by Chen and Zheng (1998) and Shang (2008)
within the class of integer-ratio echelon 4r1Q5 policies can
be more cost-effective for the batch-based fixed-cost scheme,
because integer-ratio policies can completely avoid any
partial batch that would be charged with a setup cost as a
full batch under the batch-based cost scheme.

Our contribution to the literature on stochastic serial
inventory systems is fourfold. First, we introduce the class of
modified echelon 4r1Q5 policies that do not require Qi+1/Qi

to be a positive integer. Second, for any arbitrarily given
modified echelon 4r1Q5 policy, we establish an upper bound
on its system-wide long-run average cost. This upper bound
is not only easily computable, but is also convenient for
performance bound analysis. Third, we evaluate the perfor-
mance of a constructed modified echelon 4r1Q5 heuristic by
identifying the gap between the established upper bound and
the induced-penalty lower bound on the optimal cost shown
in Chen and Zheng (1994b). Lastly, we provide asymptotic
optimality results on modified echelon 4r1Q5 policies.

Literature Review

The multi-echelon serial inventory system with stochastic
demand has been studied extensively because of the seminal
work of Clark and Scarf (1960). In a finite-horizon setting
without setup costs, the authors show that an echelon base-
stock policy is optimal for each stage. Federgruen and Zipkin
(1984) extend this result to the infinite-horizon setting. Shang
and Song (2003) and Gallego and Özer (2005) develop easily
implemented heuristics for the optimal echelon base-stock
levels. Gallego and Özer (2003) prove the optimality of
state-dependent, echelon base-stock policies for finite and
infinite horizon problems with advance demand information,
and show that myopic policies are optimal when costs and
demands are stationary. Dong and Lee (2003) show that
the echelon base-stock policy is also optimal under time-
correlated demand processes by using a martingale model of
forecast evolution. Chen (2000a) considers batch-ordering
constraints and establishes the optimality of an echelon
stock 4R1nQ5 policy. More recently, van Houtum et al.
(2007) consider fixed replenishment intervals and show
that the echelon base-stock policy is still optimal; Chao
and Zhou (2009) further take batch ordering into account.
However, all of these results rely on the assumption that no
explicit setup costs are incurred at any stage except the most
upstream stage.

For a serial inventory system with stochastic demand,
Clark and Scarf (1962) point out that the presence of setup
costs, especially at the downstream stages, results in extreme
complexity in the optimal policy. As a result, most of the
growing research on stochastic serial inventory systems with
economies of scale, focuses on simple, cost-effective heuristic

policies, see, e.g., Graves (1985), Moinzadeh and Lee (1986),
Jackson (1988), Svoronos and Zipkin (1988, 1991), Axsäter
(1990, 1993), Chen and Zheng (1994a, 1998), Shang (2008),
Shang and Zhou (2010), and Yang et al. (2011). To evaluate
the performance of a specific heuristic policy, the first step
is to provide the exact measure or bounds on the policy’s
system-wide cost. To the best of our knowledge, De Bodt
and Graves (1985) are the first to study the echelon-stock
4r1 nQ5 policy (i.e., the integer-ratio echelon 4r1Q5 policy)
in stochastic serial inventory systems with setup costs at all
stages, by analyzing an approximate-cost model. Chen and
Zheng (1994a) provide a recursive procedure for computing
various performance measures of echelon-stock 4r1nQ5
policy. For convenience of implementation and coordination
across stages, the two papers focus on integer-ratio policies.
Yet there is still a lack of rigorous argument showing that the
optimal policy for the general serial system with stochastic
demand has to be an integer-ratio policy or has to satisfy the
nestedness property (i.e., whenever Stage i+ 1 orders, so
does Stage i). As observed from the two papers, even for
the integer-ratio policies, the system-wide cost expressions
are too complex to be used further for performance bound
analysis. We provide an easily computable upper bound
on the system-wide cost under any given modified echelon
4r1Q5 policy, that can be used for further performance bound
analysis.

Although most of the heuristic policies proposed in the
literature make intuitive sense, it is unclear how wide the
gap is between a heuristic and an optimal policy. For a
deterministic multi-echelon inventory system, it is well
known that the so-called power-of-two policies perform
surprisingly well. Roundy (1985) shows that for the one-
warehouse multi-retailer distribution system, the performance
gap between an optimal power-of-two policy and the optimal
cost is guaranteed to be within 2% (98%-effective hereafter).
Atkins and Sun (1995) demonstrate that the effectiveness
of power-of-two policies does not change in the serial
system. More recent works that analyze the heuristic policies
with worst-case bounds in deterministic systems include
Chen (2000b), Chan et al. (2002) and Levi et al. (2008a).
In contrast, fewer papers are studying the worst-case bound
of a heuristic policy in the setting with stochastic demand.
Chu and Shen (2010) study a two-echelon distribution
system under demand uncertainty. With a given set of target
service levels, the authors show that a power-of-two policy is
guaranteed to be 1.26-optimal. Works closely related to ours
are Chen (1999) and Levi et al. (2006). The former proposes
a simple and 94%-effective heuristic policy for the two-
stage serial inventory system under a restrictive assumption
that Stage 2 has zero lead times. The latter provides a
3-optimal heuristic policy for a multi-echelon serial system
with correlated, non-stationary demands over a finite horizon.
The applied approach was originally proposed by Levi
et al. (2008b) that consider a capacitated single-location
stochastic inventory system. Other than these two papers, we
are not aware of other works on performance bound analysis
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of heuristic policies for a stochastic multi-echelon serial
inventory system.

The rest of the paper is organized as follows. In §2,
we describe the model in detail. For the main body of
the paper, we focus on the two-stage system; the results
for the multi-stage system are in the Online Appendix
(available as supplemental material at http://dx.doi.org/
10.1287/opre.2014.1291). In §3, we build an upper bound
on the system-wide cost of any given modified echelon
4r1Q5 policy. On the basis of that upper bound, we provide
performance bounds of a constructed modified echelon 4r1Q5
policy. We also explore the asymptotic optimality of the
constructed heuristic with respect to system cost primitives.
In §4, we present numerical results. We finish with §5, in
which we discuss extensions and limitations. Throughout the
paper, � is defined as the positive integer set, and Ɛ as the
expectation operator. All proofs are given in the appendix.

2. Model and Preliminaries
In this section, we first describe our model in detail and then
review some relevant results of Zheng (1992) and Chen and
Zheng (1994b), that will be used in our subsequent analysis.

2.1. Notation and Formulation

As mentioned previously, we consider a firm that manages an
N stage continuous-review serial inventory system, where
Stage 1 is replenished from Stage 2, etc., and Stage N in
turn is replenished from an outside supplier (denoted by
Stage N +1) with unlimited stock. External customer demand
arrives only at Stage 1 according to a Poisson process with a
constant rate �. We denote by D4t1 t+ �7 the total demand
over the time interval 4t1 t+ �7. The transportation lead times
from Stage i+ 1, i = 1121 0 0 0 1N , to its successor, Stage i,
are constant Li > 0. In other words, any shipment sent out by
Stage i+ 1 at time t will be received by Stage i at time t+Li.
Each shipment from Stage i+ 1 to Stage i incurs a fixed
setup cost Ki > 0. Without loss of generality, we assume the
variable order cost to be zero. Whenever Stage 1 runs out of
stock, the unmet demand is fully backlogged with a backlog
cost rate p > 0. Let hi > 0 be the echelon holding cost rate
at Stage i. The firm’s objective is to determine a shipment
policy that minimizes the long-run average system-wide cost.

We proceed to review some concepts that are commonly
used in the literature. Echelon inventory at Stage i is the
inventory on hand at Stage i plus inventories at or in transit
to all its downstream stages. (Note that for Stage 1, echelon
inventory is merely its on-hand inventory.) Echelon inventory
level at Stage i is the echelon inventory at Stage i minus the
total number of customers back-ordered at Stage 1. Echelon
inventory position at Stage i is the sum of echelon inventory
level at Stage i and the inventories in transit to Stage i. For
i = 1121 0 0 0 1N 1 define the following inventory variables at
time t:

Ii4t5= echelon inventory at Stage i,
ILi4t5= echelon inventory level at Stage i,

IP−

i 4t5= echelon inventory position before a shipment is
sent to Stage i at time t,

IPi4t5= echelon inventory position after a shipment is sent
to Stage i at time t,

qi4t5= shipping quantity to Stage i,
B4t5= backorder inventory level at Stage 1,

OI i4t5= on-hand inventory at Stage i before a shipment is
sent to its successor at time t.

The system dynamics are as follows:

Ii4t5= ILi4t5+B4t51

ILi4t +Li5= IPi4t5−D4t1 t +Li71 (1)

IP−

i 4t5= ILi+14t5− OI i+14t51 (2)

IPi4t5= IP−

i 4t5+ qi4t50 (3)

The first equation follows directly from the definitions. The
second equation follows from the fact that the inventory
position of Stage i at time t can be decomposed into
two components: the echelon inventory level of Stage i at
time t +Li and the total demand over 4t1 t +Li7. The third
equation follows from the fact that the echelon inventory
level at Stage i+ 1 is the sum of the on-hand inventory at
Stage i+ 1 and the inventory position at Stage i before a
replenishment is sent. The last equation specifies how an
ordering decision changes the inventory position.

At any time t, the shipping quantity to Stage i, qi4t5, is the
decision variable. Equivalently, by Equation (3), we can think
of the inventory position IPi4t5 as the alternative decision
variable. Note that the shipping quantity qi4t5 to Stage i,
i = 1121 0 0 0 1N − 11 should be non-negative and less than the
on-hand inventory level at its upstream Stage i+ 1, OI i+14t5.
That is, 0 ¶ qi4t5¶ OI i+14t5. By Equations (2) and (3), the
inventory position at Stage i, i = 1121 0 0 0 1N − 1, should
satisfy the following constraint: IP−

i 4t5¶ IPi4t5¶ ILi+14t5.
Because of the unlimited stock at the outside supplier, the
inventory position at Stage N only needs to satisfy the
constraint IP−

N 4t5¶ IPN 4t5.
The total controllable long-run average cost includes

the fixed setup cost, inventory holding cost and backlog
cost. The fixed setup cost incurred for Stage i at time t is
Ki�4qi4t5 > 05=Ki�4IPi4t5 > IP−

i 4t55, where �4 · 5 is the
indicator function. The system-wide inventory holding and
backlog cost rate at time t is given by

N
∑

i=1

hiIi4t5+pB4t5=

N
∑

i=1

hi ILi4t5+ 4p+H15B4t51 (4)

where H1 ≡
∑N

i=1 hi represents the installation holding cost
rate at Stage 1. Then the original problem can be formulated
as follows:

(¢): C∗

¢≡ min
8IPi4t51∀ i1 t9

lim
T→�

1
T
Ɛ

[

∫ T

t=0

N
∑

i=1

Ki�4IPi4t5> IP−

i 4t55

+hi ILi4t5+4p+H15B4t5dt

]

s.t. IP−

i 4t5¶ IPi4t5¶ ILi+14t51i=11210001N −11 and
IP−

N 4t5¶ IPN 4t50
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It is well known that if a positive setup cost is incurred for
each shipment at the downstream stages, the optimal policy,
if one exists, must be extremely complex. In this paper, we
focus on a class of modified echelon 4r1Q5 policies.

Definition 1 (Modified Echelon (r, Q) Policy). Stage
i+ 1 ships to Stage i on the basis of its observation of the
echelon inventory position at Stage i. In particular, if the
echelon inventory position at Stage i is at or below ri and
Stage i+ 1 has positive on-hand inventory, then a shipment
is sent to Stage i to raise its echelon inventory position as
close as possible to ri +Qi.

2.2. Relevant Existing Results

2.2.1. Single-Stage Model. Zheng (1992) studies a
continuous-review, single-stage inventory model with positive
lead time and a fixed setup cost. Let L be the shipment lead
time and G4y5 the expected cost rate accruing at time t +L,
when the inventory position equals y at time t.

Assumption 1 (Regularity). (i) G4y5 is a convex function
and limy→±� G4y5= �.

(ii) There exist a > 0 and b < 0, such that
limy→� G′4y5= a and limy→−� G′4y5= b.

Assume that each shipment incurs a fixed setup cost K. For
such a single-stage problem, it is well known that the optimal
control policy is an 4r1Q5 policy (Zheng 1992), under which
the inventory position in steady state is uniformly distributed
on 8r + 11 0 0 0 1 r +Q9 and is independent of the lead-time
demand (Zipkin 2000, Theorem 6.2.3). Then the long-run
average cost function under any 4r1Q5 policy should take
the following form: C4r1Q5= 6�K +

∑r+Q
y=r+1 G4y57/Q. We

adopt the convention that discrete units of inventories can be
approximated by continuous variables. As mentioned in the
Introduction, such an approximation is widely used in the
inventory literature (see, e.g., Chen 1999, Shang et al. 2009;
see also Zheng 1992 for more discussion). We will follow
that convention in the rest of this paper. Consequently, the
long-run average cost of the single-stage problem can be
approximated as follows:

C4r1Q5=
�K +

∫ r+Q

r
G4y5dy

Q
0 (5)

Clearly, the approximation is adequate when Q is large
enough. The objective is to determine the values of r
and Q that minimize C4r1Q5. For any fixed Q, define
r4Q5≡ arg minr C4r1Q5. If the optimal solution is not unique,
we choose the largest one; this convention will be used
throughout the paper. Also, define C4Q5 ≡ C4r4Q51Q5,
4r∗1Q∗5≡ arg minr1QC4r1Q5 and C∗ ≡C4r∗1Q∗5. Finally,
let H4Q5≡G4r4Q55 and A4Q5≡QH4Q5−

∫ Q

0 H4y5dy.

Lemma 1 (Zheng 1992). Under Assumption 1, the follow-
ing results hold: (i) C4r1Q5 is jointly convex in r and Q.
(ii) G4r4Q55=G4r4Q5+Q5 and G4r∗5=G4r∗ +Q∗5=C∗.

(iii) C4Q5/C∗ ¶ �4Q/Q∗5, where �4q5 = 4q + q−15/2.
(iv) H4Q5 is an increasing convex function,

∫ Q

0 H4y5dy ¾
1
2QH4Q5 and H4Q∗5=C∗. (v) A4Q5 is an increasing func-
tion and A4Q∗5= �K.

By Lemma 1, we further obtain the following properties.

Lemma 2. (i) For any y ∈ 6r∗1 r∗ + Q∗7, G4y5 ¶ C∗.
(ii) �K ¶ 1

2C
∗Q∗.

2.2.2. Lower Bound for Multi-Stage Model. We adopt
the so-called induced-penalty bound on the optimal system-
wide cost C∗

¢, that has been established by Chen and Zheng
(1994b). The authors decompose the original system into
N single-stage systems linked by the induced-penalty cost
functions, which are essentially some penalty costs charged
to an upstream stage if it cannot immediately fulfill an order
request from its successive stage.

Let Di denote the total demand over 401Li7. Define

G14y5≡ Ɛ6h14y−D15+ 4p+H154y−D15
−71

C14r11Q15≡
1
Q1

[

�K1 +

∫ r1+Q1

r1

G14y5dy

]

1
(6)

where x− ≡ max8−x109. Then we can define recursively as
follows: for i = 21 0 0 0 1N ,

Ḡi−14y5≡

{

Gi−14y5−C∗
i−1 if y ¶ r∗

i−11

0 otherwise1

Gi4y5≡ Ɛ6hi4y−Di5+ Ḡi−14y−Di571

Ci4ri1Qi5≡
1
Qi

[

�Ki +

∫ ri+Qi

ri

Gi4y5dy

]

1

(7)

where C∗
i is the minimum of Ci4ri1Qi5 achieved at 4r∗

i 1Q
∗
i 5,

i.e., 4r∗
i 1Q

∗
i 5 ≡ arg minr1QCi4ri1Qi5 and C∗

i ≡ Ci4r
∗
i 1Q

∗
i 5.

Because it is easily verified that Gi4y5 and Ci4r1Q5 are
convex, the traditional optimization methods can efficiently
compute those critical points, r∗

i and Q∗
i , that will be used

to construct our heuristics. Chen and Zheng (1994b) show
that the sum of the optimal costs from these single-stage
problems is a lower bound on C∗

¢.

Lemma 3 (Induced-Penalty Lower Bound; Lemma 2
and Section 5 of Chen and Zheng 1994b). (i) For any
i= 1121 0 0 0 1N 1 Gi4y5 satisfies Assumption 1 with a= hi

and b = −4
∑N

j=i+1 hj +p5, if i < N ; a= hi and b = −p, if
i =N . In addition, Ci4ri1Qi5 is a joint convex function of ri
and Qi.

(ii)
∑N

i=1 C
∗
i ¶C∗

¢.

3. Two-Stage Model
Consider that the two-stage system operates under an arbi-
trarily given modified echelon 4r1Q5 policy, where r =

4r11 r25 ∈�2 and Q= 4Q11Q25 ∈�2. Note that the size of
the shipment to Stage 1 is physically constrained by the
on-hand inventory of Stage 2. Therefore, Stage 1 may not
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be able to raise its echelon inventory position to the desired
level, r1 + Q1. In that case, under the modified echelon
4r1Q5 policy, Stage 2 will feed Stage 1 as much as possible,
and the size of the shipment to Stage 1 can be larger or
smaller than Q1. For instance, if Stage 2 does not have
enough on-hand inventory when Stage 1 reaches the reorder
point, the shipment can be smaller than Q1; on the other
hand, if Stage 2 has run out of stock for a while, the size
of the shipment to Stage 1 after Stage 2 is back in stock
can be larger than Q1. We denote by C4r11Q11 r21Q25, or
C4r1Q5, the long-run average system-wide cost under the
modified echelon 4r1Q5 policy. It is clear that such a policy,
as a feasible solution to Problem 4¢5, provides a cost upper
bound on C∗

¢.

Observation 1. For any r and Q, C∗
¢ ¶C4r1Q5.

Our main objective is to evaluate the effectiveness of
a given modified echelon 4r1Q5 policy. Specifically, we
intend to identify the relative gap between the long-run
average cost under a given modified echelon 4r1Q5 policy,
C4r1Q5, and the optimal cost C∗

¢, which can be expressed as
RG4r1Q5≡ 4C4r1Q5−C∗

¢5/C
∗
¢. As mentioned previously,

the optimal cost C∗
¢ is difficult to be calculated. Thus, we

replace the optimal cost by the induced-penalty lower bound
presented in Lemma 3(ii) to obtain an upper bound on
the relative gap: RG4r1Q5¶ 4C4r1Q5−

∑N
i=1 C

∗
i 5/
∑N

i=1 C
∗
i .

The next step is to provide an upper bound on C4r1Q5 itself.

3.1. An Upper Bound

A critical criterion on a good upper bound for the purpose
of performance bound analysis is whether the upper bound
is convenient for comparison with the lower bound. Next
we will propose a novel approach to obtaining an upper
bound on C4r1Q5 that is convenient for comparison with
the induced-penalty lower bound

∑N
i=1 C

∗
i . Like Chen and

Zheng (1994b), we will use the following cost-accounting
scheme.

Definition 2 (Cost Accounting Scheme). At time t, we
charge the inventory holding cost of Stage 2 incurred at
time t +L2, and charge the inventory holding and backlog
costs of Stage 1 incurred at time t +

∑2
i=1 Li.

This cost accounting scheme only shifts costs across
time points and hence, does not affect the long-run average
inventory holding and backlog costs. It has an intuitive
interpretation: an order placed by Stage 2 at time t does not
have an effect on the inventory holding cost of Stage 2 until
time t+L2, and does not have an effect on the inventory
holding and backlog cost of Stage 1 until time t +

∑2
i=1 Li

or later.

3.1.1. Outline of the Approach. Without the integer-
ratio assumption, it is extremely hard to identify the exact
regeneration points of the system operated under a given
modified echelon 4r1Q5 policy. Instead, we track the first
shipment time of an order placed by Stage 2 and being

sent to Stage 1. These time points are not necessarily the
regeneration points of the system, because the system states
(for example, the inventory positions of all stages) at these
epochs are not necessarily the same. Nevertheless, these
time epochs provide a structured way to analyze and bound
the total operating costs. The time interval between two
consecutive such time epochs can be loosely called a “cycle”
for Stage 1.

Our approach is as follows. Because Stage 2 has an
unlimited outside supplier, its expected cost rate can be
accounted for by the standard approach (see, e.g., Zheng
1992). With Stage 1, in contrast, that is much more difficult.
To tackle the difficulty, we first attempt to build an upper
bound on Stage 1’s expected cost rate in terms of IL24t5.
This involves categorizing “cycles” at Stage 1 into regular
and irregular shipment periods. In a regular shipment period,
Stage 1’s inventory position gradually decreases from r1 +Q1

to r1 unit by unit. Because of such regularity, the expected
cost rate can again be handled by the standard approach. We
treat irregular shipment periods by considering their setup
costs, and inventory holding and backlog costs separately.
Bounding of the irregular shipment period’s setup costs is
done by bounding the frequency of irregular shipment periods
(see Observation 4). On the other hand, an upper bound on
the irregular shipment period’s inventory holding and backlog
costs can be expressed in terms of IL24t5 (see Lemma 6).
Combining all costs at both stages, we can bootstrap an
upper bound on C4r1Q5 from IL24t5, whose distribution, by
Equation (1), is linked to the uniform distribution of the
steady-state echelon inventory position of Stage 2, IP24t5.

3.1.2. Cycles. Because Stage 2 is replenished from an
incapacitated outside supplier, Stage 2 can always success-
fully raise its echelon inventory position from r2 to r2 +Q2

after placing an order of size Q2, under a given modified
echelon 4r1Q5 policy. For convenience of analysis, we view
the time period between two consecutive orders of Stage 2,
with Q2 flow units in each order, as a “cycle.” To track how
shipments are dispatched, flow units are ranked in chronolog-
ical order of shipments, with an arbitrary tie-breaking rule
within the same shipment. Without loss of generality, units
are assumed to flow between stages in a first-in-first-out
manner. For each stage, we define a “cycle” rigorously as
follows.

Definition 3 (Cycle). For any Stage i, i= 112, we call
6T

j
i 1 T

j+1
i 5, for any j ∈ �, the jth cycle, where T

j
i is the

time epoch of the 1st unit, contained in the jth order of
Stage 2, being sent to Stage i.

Because the modified echelon 4r1Q5 policy is not neces-
sarily nested, there may not be an accompanying shipment
to Stage 1 for each order arriving at Stage 2. As a result,
the placing of an order from the outside supplier at time
epoch T

j
2 that triggers an immediate shipment of Q2 units to

Stage 2 may not lead to an immediate cross-dock shipment
of Q1 units to Stage 1 at time T

j
2 +L2. That is, T j

1 may be
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Table 1. Illustration of a modified echelon 4r1Q5 policy.

Inventory levels at Stage 2 Inventory levels at Stage 1
Time t Realized demand {[inventory in transit], [on-hand inventory]} {[inventory in transit], [on-hand inventory]}

t = 0 ⇒2 86411151 0 0 0 1 411757, zero} {zero, two}
t = 1 D40117= 4 {zero, [(1, 7)]} ⇒1 86411151 0 0 0 1 411657, two backlogged}
t = 2 D41127= 2 {zero, [(1, 7)]} {zero, [(1, 5), (1, 6)]}
t = 3 D42137= 1 ⇒2 86421151 0 0 0 1 4217571 64117579 {zero, [(1, 6)]}
t = 305 D4313057= 1 86421151 0 0 0 1 421757, zero} ⇒1{[(1, 7)], zero}
t = 405 D430514057= 0 {zero, 6421151 0 0 0 1 421757} {zero, [(1, 7)]}
t = 5 D4405157= 1 {zero, 6421551 421651 421757} ⇒1 86421151 0 0 0 1 421457, zero}
t = 6 D45167= 4 {zero, zero} ⇒1 86421551 421651 421757, zero}
t = 7 D46177= 1 ⇒2 86431151 0 0 0 1 431757, zero} {zero, [(2, 6), (2, 7)]}
t = 8 D46177= 2 {zero, [(3, 5), (3, 6), (3, 7)]} ⇒1 86431151 0 0 0 1 431457, zero}

Notes. 4r11 r21Q11Q25= 401214175 and L1 = L2 = 1. The sign ⇒i indicates that there is a shipment on the way to Stage i, and 4j1 k5 is the kth unit
in the j th order of Stage 2.

strictly greater than T
j

2 +L2. Moreover, for Stage 1, it is
likely that a cycle 6T

j
1 1 T

j+1
1 5 is an empty set. In that case,

the entire jth order of Stage 2 is shipped to Stage 1 together
with the 1st shipment of the 4j + 15th order of Stage 2. Next
we present an example to illustrate the definition of cycles.
To facilitate discussion, we first index each flow unit by the
time of its shipment from the outside supplier. Specifically,
we denote, by Unit 4j1 k5, the kth unit in the jth order of
Stage 2 to be released into the serial system by the outside
supplier.

Example 1 (Cycles). Consider a modified echelon 4r1Q5
policy with 4r11 r21Q11Q25= 401214175 and L1 =L2 = 1.
Table 1 illustrates the unit flow between stages, given a
stream of realized demand. For simplicity, the last unit of
demand in any listed interval of time is assumed to arrive
exactly on the integral time epoch; e.g., a customer arrives
exactly at t = 0, leaving the on-hand inventory of Stage 1
at two units, the 4th unit of demand in time interval 40117
arrives exactly at t = 1, and the unit of demand in time
interval 4313057 arrives exactly at t = 305. We first show
how the modified echelon 4r1Q5 policy is implemented. For
instance, when the second customer in time period 60117
arrives, Stage 1’s inventory position drops to r1 = 0. However,
at that time, there is no on-hand inventory at Stage 2 and
hence, no shipment will be triggered until time t = 1, when
a shipment arrives at Stage 2. Because IP−

1 4t = 15= −2,
a shipment with a size of six units from Stage 2 to Stage 1
is triggered so as to increase the IP14t = 15 to the desirable
level r1 +Q1 = 4. Or, for another example, at time t = 305,
a customer arrival causes IP−

1 4t = 3055 to hit r1 = 0 and
hence triggers a shipment from Stage 2 that contains all its
on-hand inventory (only one unit in this case), although,
unfortunately, Stage 2 does not have enough on-hand stock
to raise IP14t = 3055 to the desired level of r1 +Q1 = 4.
Note that the shipments to Stage 1 can be larger or smaller
than Q1 under modified echelon 4r11Q15 policy; see, e.g.,
t = 1 and t = 305. By definition, T j

i is the time epoch at
which Unit 4j115 is shipped to Stage i. Along the sample
path presented in Table 1, for Stage 2, T 1

2 = 0, T 2
2 = 3, and

T 3
2 = 7, whereas for Stage 1, T 1

1 = 1, T 2
1 = 5 and T 3

1 = 8.
Thus, 60135 and 63175 are the cycles of Stage 2, whereas
61155 and 65185 are the cycles of Stage 1. �

3.1.3. Regular and Irregular Shipments. Because of
the unlimited outside supply, cycles of Stage 2 are “standard”
under any echelon 4r21Q25 policy, as in a single-stage system.
However, Stage 1 is different. We zoom into each cycle
of Stage 1 to investigate possible shipment behavior. Our
analysis concentrates on non-empty cycles because Stage 1
incurs no costs for empty cycles. Over any non-empty cycle
6T

j
1 1 T

j+1
1 5, the jth order of Stage 2 will be shipped to

Stage 1 in one or more, say M ∈ �, shipments in total.
Let T j1 l

1 be the time of the lth shipment over 6T j
1 1 T

j+1
1 5,

where l = 1121 0 0 0 1M . By definition, T j11
1 ≡ T

j
1 and we

have 6T
j

1 1 T
j+1

1 5=
⋃M

l=16T
j1 l

1 1 T
j1 l+1

1 51 where T
j1M+1

1 ≡ T
j+1

1 .
We call 6T j1 l

1 1 T
j1 l+1

1 5 the lth shipment period over the cycle
6T

j
1 1 T

j+1
1 5. Depending on the inventory positions of Stage 1

at the beginning and the end of a shipment period, we
categorize Stage 1’s shipment periods into the following
two types.

Definition 4 (Regular and Irregular Shipment
Period). For any shipment period 6T

j1 l
1 1 T

j1 l+1
1 5, l =

11 0 0 0 1M , if IP14T
j1 l

1 5= r1 +Q1 and IP−

1 4T
j1 l+1

1 5= r1, we
call it a regular shipment period; otherwise, we call it an
irregular shipment period.

Example 2 (Shipment Periods). We revisit Example 1 to
illustrate the concept of shipment periods. Over the cycle
61155 of Stage 1, two shipments are sent from Stage 2, at
time t = 1 and t = 305. That is, T 111

1 = 1 and T 112
1 = 305. By

definition, T 113
1 ≡ T 2

1 = 5. Then this cycle is a union of two
shipment periods, i.e., 61155= 6113055∪ 6305155. Because
IP14t = 15 = 4 = r1 +Q1 and IP−

1 4t = 3055 = 0 = r1, the
first shipment period 6113055, is a regular shipment period.
However, because IP14t = 3055= 1 < 4 = r1 +Q1, the second
shipment period 6305155, is an irregular shipment period.
Moreover, Because IP−

1 4t = 15= −2, t = 1 is the ending
point of an earlier irregular shipment period. Note that the
situations where t = 305 and t = 1 are the two types of
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Figure 1. Illustration of Stage 1’s inventory position
over a cycle.

IP1(t)

r1 + Q1

r1

T1
j, 1 = T1

j

t

T1
j, 2 T1

j, M – 1 T1
j, M T1

j, M + 1 = T1
j + 1...

instances we imply in the definition of an irregular shipment
period, namely, the starting inventory position of a shipment
period IP14T

j1 l
1 5 6= r1 +Q1, and the ending inventory position

of a shipment period IP−

1 4T
j1 l+1

1 5 6= r1. �
For some modified echelon 4r1Q5 policies, we may further

characterize their cycles and shipment periods. For example,
consider a special case where Q2 <Q1 and r2 +Q2 ¶ r1.
In this case, Stage 1’s echelon inventory position will
never reach r1 +Q1, and any shipment to Stage 2 will be
immediately sent to Stage 1 at the moment it arrives at
Stage 2. That is, T j

1 = T
j

2 +L2. Then, the cycles of Stage 1
are defined by 6T

j
2 +L21 T

j+1
2 +L25. Over any of these cycles,

there is only one shipment that is an irregular shipment, and
hence the cycle itself is an irregular shipment period.

In general, Figure 1 illustrates how Stage 1’s inventory
position may change over a cycle. We show that the first
M − 1 (possibly zero) shipment periods in any cycle have to
be regular. Intuitively, that is because at the beginning of
those shipment periods, there is enough on-hand inventory
at Stage 2 to raise Stage 1’s echelon inventory position
IP1 to r1 + Q1. However, the last shipment period in a
cycle may not be regular, with the following two scenarios
that are not mutually exclusive. First, at the beginning of
the last shipment period, Stage 2 does not have enough
inventory to raise Stage 1’s inventory position to r1 +Q1; i.e.,
IP14T

j1M
1 5 < r1 +Q1. Second, at the end of the last shipment

period, Stage 2 is out of stock and Stage 1’s inventory
position is below r1; i.e., IP−

1 4T
j1M+1

1 5 < r1.

Lemma 4 (Irregular Shipment Frequency). There exists
at most one irregular shipment period in each cycle of
Stage 1, whether the cycle is empty or not.

3.1.4. Cost Assessment in Cycles. We evaluate and
bound the expected cost rate for the two types of ship-
ment periods. First we consider regular shipment peri-
ods. Over each regular shipment period 6T

j1l
1 1 T

j1 l+1
1 5,

l = 1121 0 0 0 1M − 1, Stage 1’s inventory position gradually

drops from r1 + Q1 to r1, at which another shipment is
triggered and the regular shipment period ends. On the
condition that Stage 1 is in a regular shipment period, the
expected cost rate at Stage 1 should be the same as that
in the single-stage problem when Stage 1 has access to an
outside supplier with unlimited supply (Zheng 1992). See
also the expected cost-rate expression of Stage 1 in Chen
(1999), where Stage 1 is always in a regular shipment period
under any integer-ratio 4r1Q5 policy.

Observation 2 (Cost in Regular and Irregular Ship-
ment Period). (i) The expected cost rate at Stage 1 in
a regular shipment period is C14r11Q15 = 41/Q156�K1 +

∫
r1+Q1
r1

G14y5dy7, where G14y5 is defined in (6). (ii) For any
time t in a non-empty irregular shipment period 6T

j1M
1 1 T

j+1
1 5,

Stage 1’s expected inventory holding and backlog cost
accrues at a rate equal to G14IP14t55; furthermore, there is a
fixed setup cost, K1, incurred for the irregular shipment.

3.1.5. Cost Upper Bound. Lemma 4 implies that the
setup cost, K1, for a (possible) irregular shipment period is
incurred at most once in any cycle 6T

j
1 1 T

j+1
1 5. Consequently,

we have the following result.

Observation 3. For any time t ∈ 6T
j

1 1 T
j+1

1 5 6= Ø, setup
costs for irregular shipment periods accrue at a rate that is
no more than K1/4T

j+1
1 − T

j
1 5.

It is necessary to calculate the long-run average expected
“cycle” length to assess the long-run average setup costs for
irregular shipment periods. The following lemma provides an
exact value for this quantity that is equal to the ratio between
the batch size Q2 and the demand rate �, independent of
inventory levels at any stage.

Lemma 5 (Cycle Length). Under any echelon 4r1Q5 pol-
icy, for each Stage i = 112, the long-run average expected
cycle length limj→� Ɛ64T j+1

i − T 1
i 57/j =Q2/�.

Combining Observation 3 and Lemma 5, we immediately
have an upper bound on the long-run average setup cost for
irregular shipment periods, as follows.

Observation 4. The long-run average setup cost for irregu-
lar shipment periods has an upper bound �K1/Q2.

Next we bound the expected cost rate at Stage 1, excluding
setup costs for irregular shipment periods. Though the upper
bound is provided in terms of Stage 2’s echelon inventory
level IL24t5, we will eventually bound the total costs of
both stages in terms of IP24t5, based on the relationship
IL24t + L25 = IP24t5 − D4t1 t + L27. This facilitates our
analysis because IP24t5 is distributed uniformly.

Lemma 6. For any time t ∈ 6T
j

1 1 T
j+1

1 5 6= �, the expected
cost rate at Stage 1 excluding an irregular shipment period’s
setup costs, denoted by â̂14IL24t55, can be bounded as
follows:

â̂14IL24t55¶
{

G14IL24t55 if IL24t5¶ r11

max8G14�151C14r11Q159 otherwise1

where �1 ≡ arg maxr1<z¶r1+Q1
8G14z59.
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Combining all cost terms of both stages, we are ready to
present an upper bound on C4r1Q5. For notation convenience,
let Ĉ14r11Q15 ≡ C14r11Q150 Then, as with the induced-
penalty cost allocation scheme (7), we define

Ĝ14y5≡

{

G14y5−C14r11Q15 if y ¶ r11

max801G14�15−C14r11Q159 otherwise1

å24y5≡ Ɛ6h24y−D25+ Ĝ14y−D2571

Ĉ24r21Q25≡
1
Q2

[

�K2 +

∫ r2+Q2

r2

å24y5dy

]

0

(8)

Note that Ĝ14y5 may not be convex for any given r1 and Q1,
but it is indeed so for 4r11Q15= 4r∗

1 1Q
∗
15.

Theorem 1 (An Upper Bound). For any given modified
echelon 4r1Q5 policy, the long-run average system-wide cost
has an upper bound: C4r1Q5¶∑2

i=1 Ĉi4ri1Qi5+�K1/Q2.

3.2. Effectiveness and Asymptotic Optimality

Now we construct a modified echelon 4r1Q5 heuristic
policy and investigate its performance in the two-stage serial
system by identifying the gap between the induced-penalty
lower bound (see §2.2.2) and its upper bound established in
Theorem 1. We will also explore conditions under which
this heuristic policy is asymptotically optimal.

3.2.1. Heuristic. In the heuristic, for Stage 1, we select
4r11Q15= 4r∗

1 1Q
∗
15, which minimizes C14r11Q15 (see its def-

inition in §2.2.2). With this selection, we have Ĉ14r11Q15=

C14r
∗
1 1Q

∗
15 = C∗

1 . By Lemma 2(i) and the fact that r∗
1 <

�1 ¶ r∗
1 + Q∗

1, we have G14�15 ¶ C∗
1 . Then, by Defini-

tions (7) and (8), Ḡ14y5 = Ĝ14y5, which in turn implies
that G24y5=å24y5 and C24r21Q25= Ĉ24r21Q25. Combining
Observation 1 and Theorem 1, we immediately have

C∗

¢¶C4r1Q5 �4r11Q15=4r∗
1 1Q

∗
15
¶C∗

1 +C24r21Q25+
�K1

Q2

0 (9)

Then we can tighten the upper bound in (9) by optimizing
r2 and Q2. Specifically, we solve the following optimization
problem:

min
r21Q2

C̃24r21Q25≡min
r21Q2

{

C24r21Q25+
�K1

Q2

}

=min
r21Q2

1
Q2

[

�4K1 +K25+
∫ r2+Q2

r2

G24y5dy

]

0

(10)

Problem (10) is a single-stage problem with a fixed setup
cost equal to K1 +K2, and its objective function C̃24r21Q25

Table 2. Performance bound dependent on Q∗
2/Q

∗
1 .

Q∗
2/Q

∗
1 ∈ [0.0429, 0.134) 6001341003825 600382115 61130215 630211�5

Performance bound 3-opt. 2-opt. 1.5-opt. 1.25-opt. 1.1-opt.

is jointly convex in r2 and Q2 (see §2.2.1). Therefore, the
optimal solution can be efficiently computed (see Federgruen
and Zheng 1992). Define 4r̃∗

2 1 Q̃
∗
25≡ arg minr21Q2

C̃24r21Q25.
We construct a heuristic modified echelon 4r1Q5 policy
as follows:

4r̂1 Q̂5= 4r̂11 Q̂11 r̂21 Q̂25= 4r∗

1 1Q
∗

11 r̃
∗

2 1 Q̃
∗

250 (MERQ)

3.2.2. Effectiveness. The following theorems show the
effectiveness of the heuristic policy.

Theorem 2 (4K11K25-Dependent Performance Bound).
The modified echelon 4r̂1 Q̂5 policy in (MERQ) is at least
41 +K1/K25-optimal.

Theorem 2 provides a primitive-dependent performance
bound of the heuristic policy that depends only on fixed-
cost primitives K1 and K2. If K2 ¾ K1 which tends to
hold in practice, then the heuristic policy is guaranteed
to be 2-optimal. Realizing that this performance bound,
though very simple, may be loose, we propose an alternative
performance bound that requires more computational efforts
but can provide tighter bounds.

Theorem 3 (Alternative Performance Bound). (i) The
absolute gap between C∗

¢ and C4r̂1 Q̂5 is bounded as follows:
0 ¶C4r̂1 Q̂5−C∗

¢ ¶C∗
2 4
√

1 +C∗
1/4�

∗
1C

∗
2 5− 15, where �∗

1 ≡

Q∗
2/Q

∗
1 .

(ii) The modified echelon 4r̂1 Q̂5 policy in (MERQ) is at
least 1 + 1/424�∗

1 +
√

�∗
155-optimal.

Theorem 3 provides a performance bound that depends
on Q∗

1 and Q∗
2 , which are optimal solutions to two single-

stage systems and can be computed efficiently. Both the
absolute and relative performance gaps of the heuristic are
decreasing in �∗

1 =Q∗
2/Q

∗
10 If the ratio �∗

1 is not too small,
the identified heuristic provides a good performance bound.
As an immediate result of Theorem 3, we have the following
corollary.

Corollary 1. For any � > 0, if the system primitives
are such that Q∗

2/Q
∗
1 ¾ 41 + 1/�−

√
1 + 2/�5/2, then the

modified echelon 4r̂1 Q̂5 policy in (MERQ) is at least 41+�5-
optimal. In particular, we have the performance bounds
listed in Table 2.

Because we do not have closed-form expressions for Q∗
1

and Q∗
2, we draw some insights from their deterministic

counterparts to see when the ratio Q∗
2/Q

∗
1 tends to be large.

By definition, Q∗
i , i = 112, is the optimal solution to a single-

stage system (see §2.2.1), where the fixed cost is Ki, the
expected inventory holding and backlog cost function is Gi4y5
and demands arrive following a Poisson process with rate �.
When demand is assumed to be a deterministic constant
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stream, ceteris paribus, the single-stage system boils down
to the classic EOQ model with backorders allowed, which is
considered as the first-order approximation of the stochastic
model. It is easily verified that the deterministic counterparts
of Q∗

1 and Q∗
2 are Qd

1 =
√

2�K141/h1 + 1/4p+h255 and
Qd

2 =
√

2�K241/h2 + 1/p5, respectively. If h2 ¶ h1 and K1 ¶
K2, we always have Qd

1 ¶Qd
2 . This suggests that Q∗

1 ¶Q∗
2

tends to hold if h2 ¶ h1 and K1 ¶K2. We make the following
remarks on the relationships between cost primitives in
practical settings that indicates when the heuristic policy in
(MERQ) is more likely to perform well.

Remark 1 (Fixed Cost). In a supply chain where the
upstream stage procures products overseas and the down-
stream stage sells them domestically, the fixed cost incurred
tends to be higher at the upstream stage than at the down-
stream stage.

In such a supply chain, there are usually larger economies
of scale at the upstream stage. For instance, a standard
container shipped by sea or a pallet of air cargo from an
overseas manufacturer to a distribution center has a higher
fixed cost than a truckload sent from the distribution center
to a nearby retailer. We caution that our bounds can be
loose if the upstream stage has a lower fixed cost than the
downstream stage.

Remark 2 (Holding Cost). The echelon inventory hold-
ing cost tends to be lower at an upstream stage than that at
a downstream stage.

The echelon inventory holding cost hi at any Stage i
usually includes financing costs and physical handling costs.
Suppose ci is the variable order cost per unit at Stage i; then
the financing cost is r · ci, where r is the interest rate. The
variable order cost is usually lower at the upstream stage
than that at the downstream stage; thus the financing cost is
usually lower at the upstream stage. Physical handling also
tends to be less expensive at the upstream stage. For instance,
a downtown retail store would have a higher out-of-pocket
inventory holding cost rate than a suburban warehouse.

3.2.3. Asymptotic Optimality. In the practical settings
mentioned in Remarks 1 and 2, it is expected that Q∗

2/Q
∗
1

is more likely to be larger than 1, and hence a very good
performance bound, e.g., 1.25-optimality, can be guaranteed
for the heuristic regardless of the values of other system
primitives. The following theorem further confirms asymp-
totic optimality of this heuristic if we take the dominant
relationships of cost primitives to the extreme.

Theorem 4 (Asymptotic Optimality). The modified ech-
elon 4r̂1 Q̂5 policy in (MERQ) is asymptotically optimal
if one of the following conditions holds: (i) K1/K2 → 0.
(ii) h2/h1 → 0.

We link Theorem 4 to existing results in the literature.
First, when K2 is fixed and K1 is scaled down such that
K1/K2 → 0, the series of scaled systems converge to one

with setup costs incurred only at the upstream stage. Thus,
our result is consistent with the existing finding that an
echelon 4r1Q5 policy is optimal for such a system (see, e.g.,
Chen and Zheng 1994b). Second, when h1 is fixed and h2

is scaled down such that h2/h1 → 0, the series of scaled
systems converge to one in which Stage 2 will order an
infinite amount just at the beginning of the horizon, and
the Stage 1 problem is reduced to a single-stage problem
with an 4r1Q5 policy known to be optimal (see, e.g., Zheng
1992).

4. Numerical Experiments
In this section, we present a set of comprehensive numerical
experiments. The goal of this numerical study is threefold.
First, we verify the effectiveness of the heuristic policy
and test its sensitivity to system primitives with a large set
of examples. Second, we verify the asymptotic optimality
demonstrated in Theorem 4. Third, we compare our heuristic
policy with integer-ratio 4r1Q5 policies.

To test the performance of the heuristic, we compare
the upper bound of its system-wide cost (see Theorem 1
and (9)) with the induced-penalty lower bound of the optimal
cost (see Lemma 3). Hence, the actual performance of the
proposed heuristic should be better than the performance
reported here. We denote by C̄4r̂1 Q̂5 the cost upper bound
of the heuristic, and by LB the induced-penalty lower bound.
We define the following percentage difference:

�4r̂1 Q̂5≡
C̄4r̂1 Q̂5− LB

LB
× 100%1

which is an upper bound on the effectiveness of the heuristic
policy.

We examine two-stage systems with eight primitives:
lead times L1 and L2, setup costs K1 and K2, holding
costs h1 and h2, the shortage penalty cost p and arrival
rate �. The complete test set of primitive values is given by:
L1 ∈ 8002, 0.5, 1, 2, 59, � ∈ 821 5, 15, 209, K2 ∈ 810, 30,
50, 100, 2009, h2 ∈ 80011 0.2, 0.5, 1, 29, p ∈ 80051 1, 3, 109
with other primitives fixed as L2 = 1, K1 = 10, h1 = 2. All
combinations of these primitives provide 5 × 4 × 5 × 5 × 4 =

21000 test instances. To investigate the effect of the ratio
�∗

1 =Q∗
2/Q

∗
1 on the performance of the heuristic, we present

the numerical results in Table 3 by classifying them according
to the value of �∗

1. As expected, we can see from Table 3
that the heuristic tends to perform better as the ratio �∗

1 is
larger, although not monotonically. When �∗

1 ∈ 4212057, the
average optimality gap achieves 0061%. When �∗

1 > 405 with
a total of 662 instances, the average optimality gap is no
more than 0006% and the worst performance is only 0051%
that indicates that the heuristic is almost optimal for these
instances. In the case of �∗

1 ∈ 4111057, the average optimality
gap is around 1052% that is consistent with our theoretical
result that the heuristic is 1.25-optimal. A natural question is
whether the performance of the heuristic is consistent within
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Table 3. Overall performance of modified echelon 4r̂1 Q̂5 policies.

Range of �∗
1 =Q∗

2/Q
∗
1 40117 4111057 4105127 4212057 4205137 4313057 4305147 4414057 4405157 451�5

Number of instances 23 138 198 186 230 200 209 154 174 488
Average �4r̂1 Q̂5 4%5 1.28 1.52 1.33 0.61 0.50 0.23 0.16 0.15 0.06 0.05
st. dev. of �4r̂1 Q̂5 4%5 0.80 0.79 0.94 0.61 0.46 0.29 0.23 0.24 0.10 0.07
Minimum of �4r̂1 Q̂5 4%5 0.39 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Maximum of �4r̂1 Q̂5 4%5 3.42 3.38 3.63 2.31 1.96 1.40 1.28 1.13 0.51 0.46

Table 4. Primitives for base scenario.

L1 L2 K1 K2 h1 h2 p �

2 1 10 100 2 1 3 5

each range of �∗
1. To answer that question, we define the

standard deviation (denoted by st. dev.) for each range as

st0 dev0≡

√

4Individual Error − Average �15
2

Number of Instances
1

which measures the variation of �4r̂1 Q̂5 within each range.
We can see from Table 3 that the st0 dev0 in each range is
relatively small and decreases as �∗

1 increases. This set of
numerical results shows that the effectiveness of the heuristic
is consistent within each range.

4.1. Sensitivity of Model Primitives

We investigate the effect of system primitives on the perfor-
mance of the heuristic. To that end, we set a base scenario and

Table 5. Comparisons between lower bounds and upper bounds under various K2 and h2.

h2 K2 r∗
1 = r̂1 Q∗

1 = Q̂1 r∗
2 Q∗

2 r̂2 Q̂2 �∗
1 LB UB �4r̂1 Q̂5 4%5

2 10 7 10 7 11 6 14 101 4106361 4201926 1034
30 7 10 5 16 4 19 106 4900639 4902433 0037
50 7 10 3 21 2 23 201 5403771 5404876 0020

100 7 10 0 29 −1 31 209 6403240 6403771 0008
200 7 10 −5 41 −5 42 401 7805235 7805419 0002

1 10 6 11 8 12 7 17 1009 3003858 3008014 1037
30 6 11 6 20 5 24 1082 3603789 3605382 0044
50 6 11 4 27 4 28 2045 4006223 4006515 00072

100 6 11 2 37 1 39 3036 4805221 4805579 00074
200 6 11 −2 52 −2 53 4073 5907721 5907847 00021

0.5 10 6 10 8 17 7 23 107 2400472 2404436 1065
30 6 10 7 27 6 31 207 2806264 2807185 0032
50 6 10 6 34 5 38 304 3108546 3109042 0016

100 6 10 4 48 3 51 408 3708378 3708543 00044
200 6 10 1 68 0 71 608 4603527 4603710 00039

0.2 10 5 11 9 24 8 34 2018 1903626 1906224 1034
30 5 11 8 41 7 47 3073 2204304 2205076 0034
50 5 11 7 52 7 57 4073 2405725 2406085 0015

100 5 11 6 73 5 78 6064 2805414 2805650 0008
200 5 11 4 103 4 106 9036 3401794 3401852 0002

0.1 10 5 11 10 33 9 47 3 1703108 1704988 1009
30 5 11 9 56 8 66 5009 1905334 1905949 0031
50 5 11 8 73 8 79 6064 2100753 2100998 0012

100 5 11 7 102 7 107 9027 2309291 2309393 0004
200 5 11 6 144 5 148 13009 2709842 2709878 0

vary the primitive values once at a time. Table 4 summarizes
the values of all primitives in the base scenario.

The numerical results on sensitivity are presented in
Tables 5–7. Table 5 demonstrates the effectiveness of the
heuristic under various values of K2 and h2. It is observed
that the heuristic performs better as K2 increases and is
almost optimal when K2 = 200 with the ratio K1/K2 = 1/20.
That is consistent with Theorem 4(i), which states that the
heuristic is asymptotically optimal as K1/K2 → 00 Table 5
also shows that the performance of the heuristic tends to be
better as h2 becomes smaller, though not monotonically. Note
that the alternative performance bound links the effectiveness
to the ratio of Q∗

2/Q
∗
1 . As h2 decreases, Q∗

2 becomes larger,
but Q∗

1 does not change, and thus, the ratio of Q∗
2/Q

∗
1

becomes larger and the performance tends to be better.
Table 6 illustrates the effectiveness of the heuristic under
various values of � and p. It is observed that the effectiveness
does not seem monotone in p or �. Table 7 shows how
the lead time of Stage 1, L1, affects the effectiveness of
the heuristic. It is observed that the effectiveness seems to
increase in L1, though Q∗

2/Q
∗
1 seems to decrease in L1. This
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Table 6. Comparisons between lower bounds and upper bounds under various � and p.

� p r∗
1 = r̂1 Q∗

1 = Q̂1 r∗
2 Q∗

2 r̂2 Q̂2 �∗
1 LB UB �4r̂1 Q̂5 4%5

2 0.5 −1 8 −22 35 −23 36 4038 1708350 1708396 00026
1 0 7 −12 28 −13 30 4 2109137 2109328 00087
3 1 7 −3 24 −3 25 3043 2803382 2803691 0011

10 3 6 3 21 2 23 305 3403645 3404061 0012
20 4 6 4 22 4 23 3067 3704369 3704689 00085

5 0.5 2 13 −29 55 −31 58 4023 3108924 3109187 00082
1 4 11 −14 45 −15 47 4009 3803572 3803797 00059
3 6 11 2 37 1 39 3036 4805221 4805579 00074

10 9 10 10 34 10 36 304 5709641 5800123 00083
20 11 9 13 34 13 35 3078 6207535 6207819 00045

15 0.5 17 22 −31 95 −34 99 4032 6709317 6709553 00035
1 19 21 −5 78 −7 82 3071 7901425 7901949 00066
3 24 18 22 64 21 68 3056 9607356 9608254 00093

10 29 16 37 59 36 62 3069 11300254 11300854 00053
20 31 16 42 58 41 62 3063 12101066 12102110 00086

20 0.5 25 25 −28 110 −32 116 404 8307988 8308512 0006
1 28 23 3 90 1 94 3091 9607415 9607862 00046
3 33 21 34 74 33 77 3052 11700624 11701090 00040

10 39 19 50 69 50 72 3063 13508600 13509287 00051
20 42 18 56 68 56 70 3078 14501236 14501645 00028

Table 7. Comparisons between lower bounds and upper bounds under various L1.

L1 r∗
1 = r̂1 Q∗

1 = Q̂1 r∗
2 Q∗

2 r̂2 Q̂2 �∗
1 LB UB �4r̂1 Q̂5 4%5

0.2 −2 8 −7 37 −7 39 40625 3705574 3705993 0011
0.5 −1 9 −5 37 −6 39 4011 3903931 3904321 00099
1 1 10 −3 37 −3 38 307 4204770 4204932 00038
2 6 11 2 37 1 39 3036 4805221 4805579 00074
5 21 12 16 37 15 39 3008 6600201 6600594 00059

Table 8. Performance of modified echelon 4r̂1 Q̂5 policies when Q∗
2 <Q∗

1 .

K2 K1 r∗
1 = r̂1 Q∗

1 = Q̂1 r∗
2 Q∗

2 r̂2 Q̂2 �∗
1 LB UB �4r̂1 Q̂5 4%5

10 20 5 14 7 12 5 20 0086 3304201 3404253 3001
50 3 20 5 12 0 29 006 3909605 4304241 8067
80 1 25 3 13 −3 35 0052 4408682 5002240 11094

100 0 28 2 13 −5 39 0046 4706625 5403480 14003
200 −4 40 −2 13 −12 53 0033 5807656 7003018 19063
300 −6 47 −5 13 −18 65 0028 6703711 8301980 23049
500 −11 62 −9 12 −27 83 0019 8100860 10304457 27058

observation cautions that though the effectiveness of the
heuristic can be linked to the value of Q∗

2/Q
∗
1 , the sensitivity

of Q∗
2/Q

∗
1 may not move in the same direction as that of the

heuristic performance.

4.2. Performance When Q∗
2 <Q∗

1

By Corollary 1, the heuristic is at least 1.25-optimal when
Q∗

2 ¾Q∗
1 . We are particularly interested in the performance

of the heuristic for the case of Q∗
2 <Q∗

1. We vary K1 ∈

82015018011001200130015009 and let K2 = 10 with other
primitives fixed as in Table 4. Most of the cases here,
in which K1 is more than a double-digit multiple of K2,
would be extremely rare in practical settings. There are

two observations from Table 8. First, despite the strong
dominance of K1 over K2, which is rare, the value of �∗

1
is hardly ever very low. For example, �∗

1 is around 0019
even when K1 = 500, which is 50 times of K2. In most
of the cases, �∗

1 is above 00134 and therefore the heuristic
is at least 2-optimal by Corollary 1. Second, we observe
consistently that the actual effectiveness is much better than
the theoretical bound. For example, the effectiveness of the
heuristic can be as good as 1.2758-optimal, even though �∗

1
is as small as 0019. For this particular case when �∗

1 = 0019,
the theoretical performance bound is 1.7989-optimal by
Corollary 1.

We caution that the performance of our heuristic policy
decreases when �∗

1 =Q∗
2/Q

∗
1 becomes smaller. When �∗

1 is
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Table 9. Comparisons between modified echelon 4r̂1 Q̂5 policies and the optimal integer-ratio 4rn1Qn5 policies.

� K2 rn1 Qn
1 rn2 Qn

2 C4rn1Qn5 r̂1 Q̂1 r̂2 Q̂2 C4r̂1 Q̂5 or UB LB �4rn1Qn5 4%5 �4r̂1 Q̂5 4%5

L1 = 1, L2 = 2, K1 = 10, h1 = 005, h2 = 1, p = 5
1 5 0 6 1 6 803828 0 7 1 7 803948 800216 4050 4065

100 0 8 −1 16 1702446 0 7 −1 17 1701451 1701317 0066 0008
200 0 8 −2 24 2205396 0 7 −2 23 2203690 2203692 0077 00009
400 0 8 −3 32 3000028 0 7 −3 31 2908456 2908456 0053 0

5 5 4 14 12 14 2104394 4 16 11 15 2105758 2006433 3086 4051
100 4 18 8 36 4103823 4 16 7 37 4101538 4101448 0058 0002
200 4 17 5 51 5301838 4 16 5 51 5208492 5208355 0066 00026
400 5 14 1 70 6909265 4 16 1 71 6905690 6905613 0052 0001

10 5 9 19 26 19 3302192 9 22 25 21 3303534 3201126 3045 3086
100 8 25 20 50 6104478 9 22 19 53 6101632 6101264 0053 0006
200 8 24 16 72 7801643 9 22 16 72 7706698 7706614 0065 0001
400 10 20 10 100 10108232 9 22 11 100 10103087 10103039 0051 00005

15 5 14 23 41 23 4304355 13 28 39 26 4306150 4200567 3028 3070
100 13 31 33 62 7800018 13 28 32 64 7706335 7706118 0050 0003
200 13 29 29 87 9804661 13 28 28 88 9708904 9708676 0061 0002
400 15 25 21 125 12704852 13 28 22 122 12608234 12608215 0052 00005

L1 = 1, L2 = 2, K1 = 100, h1 = 005, h2 = 1, p = 5
1 10 −1 15 −1 15 1705833 −1 21 −2 17 1708676 1401869 23094 25094

20 −1 15 −1 15 1802500 −1 21 −2 17 1804559 1506931 16029 17060
50 −1 16 −1 16 2001719 −1 21 −2 19 2003289 1807718 7046 8029

100 −2 19 −2 19 2209605 −1 21 −3 22 2301310 2204025 2049 3025
5 10 2 32 7 32 4201400 1 47 5 37 4205875 3404419 22035 23065

20 2 33 7 33 4306654 1 47 4 39 4403012 3707927 15054 17022
50 2 37 6 37 4709091 1 47 4 43 4803893 4407731 7000 8007

100 1 42 5 42 5401384 1 47 3 49 5404414 5208987 2043 2092
10 10 6 46 19 46 6205360 4 67 16 52 6301548 5105881 21022 22042

20 6 47 19 47 6406939 4 67 15 55 6505001 5603312 14085 16027
50 6 53 17 53 7007028 4 67 14 61 7104751 6602391 6074 7090

100 5 60 16 60 7905638 4 67 13 70 7909998 7707434 2034 2090
15 10 11 55 32 55 7903476 8 82 27 65 8004344 6509332 20034 21099

20 10 58 31 58 8109860 8 82 27 67 8208912 7107467 14027 15053
50 10 64 30 64 8903438 8 82 26 75 9002690 8308715 6052 7063

100 9 74 27 74 10002038 8 82 24 86 10007649 9709737 2028 2085

very small, our heuristic can perform poorly. The reason is as
follows. In our heuristic, when determining Q̂2, we balance
the cost terms of C24r21Q25 and �K1/Q2 (see Problem (10)).
To obtain the alternative performance bound, we compare
the sum of these two cost terms evaluated at Q2 = Q̂2 with
C24r

∗
2 1Q

∗
25 that is part of the lower bound. Considering the

term C24r21Q25 alone, intuitively, it is more desirable to
force Q̂2 to be as close to Q∗

2 as possible. However, when Q∗
1

is large, e.g., induced by an extremely large K1, our heuristic
requires Q̂2 to be large as well, hence deviating from Q∗

2 , to
dampen the effect of high setup cost K1 that might otherwise
be incurred more often for irregular shipment periods.

4.3. Comparison with Integer-Ratio (r1Q) Policies

Now we compare numerically the proposed modified eche-
lon 4r̂1 Q̂5 heuristic policy with the integer-ratio echelon
4r1Q5 policy (i.e., echelon 4r1 nQ5 policy) that also charges
shipment-based fixed costs; see, e.g., Chen and Zheng
(1994a). For some special cases of policy parameters, we
show analytically that the two types of policies are equiv-
alent in the sense of generating the same sample path of
inventory flows.

Lemma 7. For a two-stage system under any modified ech-
elon 4r1Q5 = 4r11 r21Q11Q25 policy, if r2 −Q2 ¶ r1 and
Q2 ¶Q1, then the long-run average cost is the same as that
under an integer-ratio policy with the policy parameters
4r1Q′5= 4r11 r21Q21Q25.

We denote by rni and Qn
i the policy parameters for Stage i

of the optimal integer-ratio 4r1Q5 policy, and by C4rn1Qn5
its system-wide cost. We list numerical comparisons between
our heuristic and the optimal integer-ratio 4r1Q5 policy in
Table 9, where the first half scenarios are adopted directly
from Table 1 of Chen and Zheng (1994a). By Lemma 7, we
can calculate the real cost of those modified echelon 4r̂1 Q̂5
policies that satisfy r̂2 − Q̂2 ¶ r̂1 and Q̂2 ¶ Q̂1, because
they are equivalent to integer-ratio 4r1Q5 policies whose
explicit cost expression has been given by Chen and Zheng
(1994a). Therefore, we replace the cost upper bound C̄4r̂1 Q̂5
by the real cost in evaluating the heuristic’s effectiveness
for these instances. It can be seen from Table 9 that for
these cases, our proposed heuristic policy, equivalent to a
specific integer-ratio 4r1Q5 policy, performs no better than
the optimal integer-ratio 4r1Q5 policy. These cases provide
strong evidence to show that the well-studied integer-ratio
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policies are also very efficient in many scenarios. On the other
hand, for these cases, again by the equivalency established in
Lemma 7, if the optimal integer-ratio 4r1Q5 policy happens
to satisfy rn2 −Qn

2 ¶ rn1 and Qn
1 =Qn

2 (which is indeed the
case for all our test instances such that r̂2 − Q̂2 ¶ r̂1 and
Q̂2 ¶ Q̂1), the modified echelon 4r1Q5 policy with policy
parameters 4r1Q5 = 4rn1 1 r

n
2 1Q

n
21Q

n
25 is equivalent to the

optimal integer-ratio 4r1Q5 policy. Hence, for all our test
instances, there exists a modified echelon 4r1Q5 policy that
is at least as good as the optimal integer-ratio 4r1Q5 policy.

We also observe that our heuristic is more likely to
outperform the optimal integer-ratio 4r1Q5 policy when
Q̂2 > Q̂1 or K2 > K1. By design, the modified echelon
4r1Q5 policies are more flexible than the integer-ratio 4r1Q5
policies. First, modified echelon 4r1Q5 policies do not
require Q2 to be an integral multiple of Q1. This flexibility
can be desirable when the system primitives intrinsically
demand an 4r1Q5 policy at each stage that does not satisfy
the integer-ratio constraint across stages. Second, under a
modified echelon 4r1Q5 policy, the actual shipment quantity
from Stage 2 to Stage 1 may not be an integral multiple
of Q1 and can be of any size no greater than the on-hand
inventory of Stage 2. This flexibility at the operational level
can be valuable when the downstream stage has been starved
of inventory. The disadvantage of modified echelon 4r1Q5
policies is that the frequency of incurring Stage 1’s fixed
setup costs can be high because of shipments that may be
less than full batches. Our numerical comparisons show that
the benefits of more flexible modified echelon 4r1Q5 policies
tend to outweigh the costs when Q̂2 > Q̂1 or K2 >K1, either
of which is more likely to result in less frequent partial
shipments to Stage 1.

Moreover, it can be observed that our heuristic policy
is very sensitive to K2 and seems to converge quickly
and become near-optimal as K2 increases, whereas the
effectiveness of the optimal integer-ratio 4r1Q5 policies
does not seem to converge quickly when K2 becomes larger.
Both policies tend to perform better when � becomes larger
without demonstrating any strictly monotone relationship
in �.

5. Conclusion
In this paper, we have studied the classic serial inventory
system. In the presence of setup costs per shipment at
downstream stages, the optimal policy is unknown. We have
studied a class of modified echelon 4r1Q5 policies that do
not have Qi+1/Qi to be integer-ratioed. We have evaluated
the performance of a constructed modified echelon 4r1Q5
heuristic policy by identifying its performance gap with
the optimal cost, and explored conditions under which the
heuristic policy is asymptotically optimal.

Our results can be extended in several directions. First,
we extend most of our results for the two-stage system to a
multiple-stage system (see Online Appendix A). Second,
because an assembly system can be transformed into a serial

system under some mild conditions (see Rosling 1989),
similar results can be obtained for assembly systems. Third,
our results may also hold in the setting with stochastic
sequential lead times such that orders do not cross in time,
for which we leave the verification to future research.

Our approach has limitations. First, in our model, we
consider a continuous-review system with a simple Poisson
demand process. However, our current analysis cannot be
readily extended to account for a periodic-review system or
a continuous-review system with a compound Poisson arrival
process. (It is worth noting that even Chen 1999’s 94%-
effective result is not readily extendable to these settings.)
The reason for that is as follows. For the periodic-review
system, shipment decisions are made only at the end of each
period, and thus, unlike the continuous-review system with a
Poisson arrival process, a replenishment is not necessarily
triggered when the echelon inventory position falls exactly
to a preset level even with ample supply. Therefore, the
analysis on the steady-state distribution of echelon inventory
positions becomes very complicated. The echelon inventory
position at the end of each period has a jump with the size of
the realized demand, instead of a gradual decrease in steps
of one unit. As a result, even for the single-stage periodic-
review model, the steady-state inventory position under an
4s1 S5 policy no longer follows a uniform distribution over
8s + 11 0 0 0 1 S9, but with a complex steady-state distribution
(see Morse 1959). Thus, for a two-stage system, even when
Stage 1 is always in a regular shipment period, the expected
cost of Stage 1 does not have a simple form like that in
the continuous-review system with Poisson demand (see
Equation (5)). Because the performance bound analysis relies
crucially on the properties of Equation (5), our analysis
cannot be readily extended to the periodic-review system.
For similar reasons, our results are not readily extendable
to the continuous-review system with a compound Poisson
arrival process.

Supplemental Material
Supplemental material to this paper is available at http://dx.doi.org/
10.1287/opre.2014.1291.
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Appendix. Proofs
Proof of Lemma 2. (i) For any y ∈ 6r∗1 r∗ +Q∗7, there exists
� ∈ 60117 such that y =�r∗ + 41 −�54r∗ +Q∗5. By the convexity
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of G4y5, G4y5=G4�r∗ + 41 −�54r∗ +Q∗55¶�G4r∗5+ 41 −

�5G4r∗ + Q∗5 = C∗, where the last equality is because of
Lemma 1(ii).

(ii) From Lemma 1(v), A4Q∗5=Q∗H4Q∗5−
∫ Q∗

0 H4y5dy = �K0
Then, Lemma 1(iv) implies that �K ¶Q∗H4Q∗5− 1

2Q
∗H4Q∗5=

1
2Q

∗H4Q∗5= 1
2Q

∗C∗. �

Proof of Lemma 4. We prove the lemma by contradiction. Suppose
over the cycle 6T

j
1 1 T

j+1
1 5 of Stage 1, there exist two irregular

shipment periods. First, it must be the case that at the end of the
first irregular shipment period, the inventory position of Stage 1
exactly hits r1; otherwise if the inventory position of Stage 1 drops
below r1 at the end of the first irregular shipment period, there is
a contradiction: By the stipulation that there exist two irregular
shipment periods in the cycle 6T

j
1 1 T

j+1
1 5, at the end of the first

irregular shipment period, there must be a second shipment to
Stage 1 containing units from the jth order of Stage 2. This implies
that at the end of the first shipment period, Stage 2 should have
some on-hand inventory to raise the inventory position of Stage 1
above r1; otherwise, the second shipment containing units of the
jth order of Stage 2 would not exist. Second, by the conclusion of
the first part and the definition of an irregular shipment period, the
first irregular shipment period must start with an inventory position
of Stage 1 less than r1 +Q1. However, again, that contradicts
the assumption that there is a second shipment containing units
from the jth order of Stage 2. That is because under our modified
echelon 4r1Q5 policy, at the beginning of the first irregular shipment
period, Stage 2 must use its jth order to raise Stage 1’s echelon
inventory position as close as possible to r1 +Q1; hence if at the
beginning of the first irregular shipment period, Stage 1’s inventory
position is still below r1 +Q1 after replenishment, units in the jth
order of Stage 2 must have all been shipped to Stage 1 and there
can be no second shipment containing units of the jth order of
Stage 2. It is worth noting that this proof always holds without
assuming Q1 ¶Q2. �

Proof of Lemma 5. Stage 2. Because Stage 2 orders from an
amply stocked supplier, for any j , there are Q2 units of demand in
total over the 4j + 15th cycle 6T

j
2 1 T

j+1
2 5 at Stage 2 by Definitions 1

and 3. Because demand arrives following a homogeneous Poisson
process with rate �, the expectation of the length of any cycle j
at Stage 2 is Ɛ6T j+1

2 − T
j

2 7=Q2/�. Hence, the result holds for
Stage 2.

Stage 1. The order in the jth cycle will arrive at Stage 2 at
time T

j
2 +L2. Denote by ãt

j
1 the time lag, for the first time, in

receiving units contained in this order at Stage 1, i.e., ãtj1 ≡ T
j

1 −

4T
j

2 +L25. Clearly, ãtj1 ¾ 0. By the definition of T j
2 , we know that

IP−
2 4T

j
2 5= r2, IP24T

j
2 5= r2 +Q21 and IL24T

j
2 +L25= IP24T

j
2 5−

D4T
j

2 1 T
j

2 +L27= r2 +Q2 −D4T
j

2 1 T
j

2 +L270 At time T
j

2 +L2 before
units contained in the Stage 2’s jth order are sent to Stage 1, there
are at most 4r2 −D4T

j
2 1 T

j
2 +L27− r15

+ units in addition to r1 in
Stage 1’s inventory position. Let t4x5≡ inf8t¾ 0 �D401 t7¾ x90
Thus, for all j , we have

0¶ãt
j
1 ¶ t

(

r2 −D4T
j

2 1T
j

2 +L27−r1

)+¶ t4r2 −r15
+0 (11)

Note that the lower and upper bound on ãt
j
1 depend only on the

policy parameters. Therefore,

lim
j→�

Ɛ6T j+1
1 −T 1

1 7/j

= lim
j→�

Ɛ64T j+1
2 +L2 +ãt

j+1
1 5−4T 1

2 +L2 +ãt1
157/j

= lim
j→�

8Ɛ6T j+1
2 −T 1

2 7/j+Ɛ6ãtj+1
1 −ãt1

17/j9

= lim
j→�

Ɛ6T j+1
2 −T 1

2 7/j= jQ2/4j�5=Q2/�1

where the third equality follows from (11) and the second-to-last
equality is because of Ɛ6T j+1

2 − T
j

2 7=Q2/� for all j . Therefore,
the result also holds for Stage 1. �

Proof of Lemma 6. If IL24t5¶ r1, by the definition of modified
4r11Q15 policy at Stage 1, then IP14t5= IL24t5¶ r1, which implies
that Stage 1 must be in an irregular shipment period at time t.
Therefore, in this case, â̂14IL24t55=G14IP14t55=G14IL24t55.

If IL24t5 > r1, the inventory position of Stage 1 must be in the
range 4r11 r1 +Q17, i.e., r1 < IP14t5¶ r1 +Q1. In this case, it is
possible that Stage 1 is either in a regular or in an irregular shipment
period. To obtain an upper bound on â̂14IL24t55, we charge the larger
one between expected cost rates of the regular and irregular ship-
ment period. That is, â̂14IL24t55¶ max8G14IP14t551C14r11Q159¶
max8G14�151C14r11Q159, where the last inequality follows from
the definition of �1 and the fact that r1 < IP14t5¶ r1 +Q1. �

Proof of Theorem 1. Note that because the entire horizon is a
union of cycles 6T

j
1 1 T

j+1
1 5 for all j ∈�, the upper bound stated in

Lemma 6 holds for any time. By the definition of Ĝ14y5 in (8),
we obtain

â̂14IL24t55¶ Ĝ14IL24t55+C14r11Q150 (12)

We denote by â24IP24t55 the total expected cost rate of both
stages at time t when the inventory position of Stage 2 is IP24t5,
excluding the setup costs incurred at Stage 2 and the setup costs
incurred at Stage 1 for irregular shipment periods. By this definition,
â24IP24t55 constitutes two parts: (i) the inventory holding cost
at Stage 2, and (ii) the total costs at Stage 1 excluding irregular
shipment period’s setup costs. That is, according to the cost
accounting scheme (see Definition 2),

â24IP24t55= Ɛ6h24IP24t5−D257+ Ɛ6â̂14IP24t5−D257

¶ Ɛ6h24IP24t5−D257+ Ɛ6Ĝ14IP24t5−D257

+C14r11Q15

=å24IP24t55+C14r11Q151 (13)

where the first equality follows from (1), the inequality from (12),
and the last equality from (8).

Because Stage 2 has an unlimited supply from the external
supplier, under the modified echelon 4r1Q5 policy, the inventory
position of Stage 2, IP24t5, is uniformly distributed on 8r2 +

11 0 0 0 1 r2 +Q29. Therefore, by the definition of â24IP24t55, the
long-run average system-wide cost, excluding the setup costs
incurred at Stage 1 for irregular shipment periods, can be expressed
under the continuous approximation and bounded as:

1
Q2

[

�K2 +

∫ r2+Q2

r2

â24y5dy

]

¶ 1
Q2

[

�K2 +

∫ r2+Q2

r2

6å24y5+C14r11Q157dy

]

=

2
∑

i=1

Ĉi4ri1Qi51 (14)

where the inequality is because of (13).
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Finally, combining (14) and Observation 4, we find that the
long-run average system-wide cost can be bounded as: C4r1Q5¶
∑2

i=1 Ĉi4ri1Qi5+�K1/Q2. �

Proof of Theorem 2. We have C∗
1 + C∗

2 ¶ C∗
¢ ¶ C4r̂1 Q̂5 ¶

C∗
1 +C24r

∗
2 1Q

∗
25+ 4�K15/Q

∗
2 =C∗

1 +C∗
2 + 4K1/K2544�K25/Q

∗
25¶

C∗
1 + 41 +K1/K25C

∗
2 ¶ 41 +K1/K254C

∗
1 +C∗

2 5, where the first
inequality is due to the induced-penalty lower bound (see Lemma 3)
and the second and third inequalities are because of (9) and the
optimal selection of 4r̃∗

2 1 Q̃
∗
25. �

Proof of Theorem 3. We have

C∗

¢ ¶C4r̂1 Q̂5¶C∗

1 +C24r21Q25+
�K1

Q2

¶C∗

1 + �

(

Q2

Q∗
2

)

C∗

2 +
C∗

1Q
∗
1

2Q2
1 (15)

where the first and second inequalities are because of (9) and the
optimal selection of 4r̃∗

2 1 Q̃
∗
25, and the third inequality is due to

Lemma 1(iii) and Lemma 2(ii). Then, we can further tighten up the
upper bound in (15) by selecting Q2 as

Q̌2 ≡ arg min
Q2

{

�

(

Q2

Q∗
2

)

C∗

2 +
C∗

1Q
∗
1

2Q2

}

=

√

4Q∗
25

2C∗
2 +Q∗

1Q
∗
2C

∗
1

C∗
2

=Q∗

2

√

1 +
C∗

1

�∗
1C

∗
2

0

(i) By (15), we have 0 ¶C4r̂1 Q̂5−C∗
¢ ¶C∗

1 + �4Q̌2/Q
∗
25C

∗
2 +

C∗
1Q

∗
1/42Q̌25 − C∗

¢ ¶ C∗
1 + �4Q̌2/Q

∗
25C

∗
2 + C∗

1Q
∗
1/42Q̌25 −

4C∗
1 +C∗

2 5=C∗
2 4
√

1 +C∗
1 /4�

∗
1C

∗
2 5− 15, where the third inequality

is because of the induced-penalty lower bound (see Lemma 3)
and the last equality follows from the selection of Q2 = Q̌2 and
r2 = r24Q̌25.

(ii) 4C4r̂1 Q̂5 − C∗
¢5/C

∗
¢ ¶ C∗

2 4
√

1 +C∗
1 /4�

∗
1C

∗
2 5 − 15/C∗

¢ ¶
C∗

2 4
√

1 +C∗
1 /4�

∗
1C

∗
2 5− 15/4C∗

1 +C∗
2 5, where the first inequality

is by part (i) and the second inequality holds because of the
induced-penalty lower bound (see Lemma 3). To obtain the
desired result, it is sufficient to prove the following stronger state-
ment: for any x11 x2 > 0, 6x24

√

1 + x1/4�
∗
1x25− 157/4x1 + x25¶

� ≡ 1/424�∗
1 +

√

�∗
155, which is equivalent to �24x1/x25

2 +

62�41 +�5− 1/�∗
174x1/x25+ �42 + �5¾ 0. The result follows

immediately by verifying that the quadratic function f 4x5= �2x2 +

62�41 + �5− 1/�∗
17x + �42 + �5 has a zero discriminant, i.e.,

ã= 4�2 − 4�41 +�5/�∗
1 + 1/4�∗

15
2 = 0. �

Proof of Corollary 1. It is easily verified that if �∗
1 =Q∗

2/Q
∗
1 ¾

41 + 1/�−
√

1 + 2/�5/2 ≡ F 4�5, then 1 + 1/424�∗
1 +

√

�∗
155¶

1 +�, and by Theorem 3, 41 +�5-optimality can be guaranteed.
In particular, F 4�= 0015= 411−

√
215/2 ' 3021, F 4�= 00255=

1025, F 4�= 0055= 43−
√

55/2 ' 00382, F 4�= 15= 42−
√

35/2 '

00134, and F 4�= 25= 4105 −
√

25/2 ' 000429. �

Proof of Theorem 4. It follows from Theorem 3(ii) that to prove
asymptotic optimality of the modified echelon 4r̂1 Q̂5 policy, it is
sufficient to show the following statements: (i) limK1/K2→0 �

∗
1 = �;

(ii) limh2/h1→0 �
∗
1 = �.

(i) Let ri4Qi5≡ arg minri
Ci4ri1Qi5. For i = 112, define Ai4Qi5≡

QiGi4ri4Qi55−
∫ Qi

0 Gi4ri4y55dy. By Lemma 1(v) and Zheng (1992),
Ai4Qi5 is a continuous and strictly increasing function such that
Ai4Q

∗
i 5= �Ki and Ai405= 0. Let A−1

i 4x5 be the inverse function

of Ai4Qi5. Then, Q∗
i =A−1

i 4�Ki5 and A−1
i 405= 00 Let � ≡K1/K2

and we have

lim
K1/K2→0

�∗

1 = lim
K1/K2→0

A−1
2 4�K25

A−1
1 4�K15

= lim
�→0

A−1
2 4�K25

A−1
1 4��K25

=
A−1

2 4�K25

A−1
1 4�K25

lim
�→0

A−1
1 4�K25

A−1
1 4��K25

= �1

where the last equality follows from the fact that A−1
i 4x5 is

continuous and A−1
1 405= 0.

(ii) Let � ≡ h2/h1. Then, G14y5 can be written as G14y5 =

Ɛ6h14y−D157+Ɛ64h1 + �h1 +p54y−D15
−7. It follows that for

any given p > 0 and h1 > 0, Q∗
1 converges to a finite constant,

when � → 0. Next, it is sufficient to show that lim�→0 Q
∗
2 =

�. Let H̄24Q5≡ 44h2p5/4h2 + p55Q, A24Q5≡ 44h2p5/424h2 +

p555Q2, Q̄2 ≡
√

42�K24h2 +p55/4h2p5. Then, it is easy to check
that Ā′

24Q5 = QH̄ ′
24Q5 and Ā24Q̄25 = �K2. Define H24Q5 =

G24r24Q55. Then, A′
24Q5 = QH ′

24Q5. By Lemma 1(iv) and
Lemma 3(i), H ′

24Q5¶ 4h2p5/4h2 +p5= H̄ ′
24Q5, which implies

that A′
24Q5 ¶ Ā′

24Q5. Note that A2405 = Ā2405 = 0. Therefore,
we must have A24Q5 ¶ Ā24Q5. It then follows that A24Q̄25 ¶
Ā24Q̄25= �K2. Because A24Q

∗
25= �K2 and A24Q5 is an increasing

function, we have Q∗
2 ¾ Q̄2. On the other hand, because K2 >

0, lim�→0 Q̄2 = lim�→0

√

42�K24�h1 +p55/4�h1p5= �. Hence
lim�→0 Q

∗
2 = � and therefore, lim�→0 �

∗
1 = �. �

Proof of Lemma 7. It suffices to show that the inventory flows
under the two policies are the same. Note that the initial inventory
levels do not affect the long-run average cost. Thus, without loss
of generality, we assume that the initial inventory levels under
both policies satisfy IP2 = IP1 = r1. This assumption implies that
the sum of initial inventories in transit to and on hand at Stage 2
equals zero. Notice that given any demand sample path, if both
policies have the same policy parameters r2 and Q2, the shipment
processes from the outside supplier to Stage 2 under both polices
are the same, with the same amount Q2 in each shipment.

Next we prove the following results by induction.
R1. Under both policies, the on-hand inventory level of Stage 2

satisfies OI24t5= 0 or Q2.
R2. Under both policies, the amount in each shipment from

Stage 2 to Stage 1 is Q2.
R3. Under both policies, the inventory levels at both stages are

the same.
The induction is conducted with respect to the arrival time of a

shipment from the outside supplier to Stage 2. Let tm be the arrival
time of the mth shipment from the outside supplier to Stage 2. With
the initial inventory levels, OI24t5= 0, t ∈ 601 t15, and OI24t5=Q2,
t = t1, i.e., R1 holds just before time t1. The first shipment from
the outside supplier to Stage 2 will reach Stage 1 just at time t1
under both policies, i.e., R2 holds at time t1. For both stages, given
any demand sample path, the flow-in and flow-out processes under
both policies are the same before time t1, and so, therefore, are the
inventory levels. That is, R3 holds before time t1. Now suppose all
the results hold just before tm.

We first prove OI24t
−
m5= 0 by contradiction. If OI24t

−
m5 6= 0, then

by R1, OI24t
−
m5=Q2. Denote by ION24t5 the sum of inventories in

transit to and on hand at Stage 2 at time t. Clearly, ION24t
−
m5¾ 2Q2.

Note that IP24t
−
m5¶ r2 +Q2. Thus, IP14t

−
m5= IP24t

−
m5−ION24t

−
m5¶

r2 +Q2 − 2Q2 = r2 −Q2 ¶ r1, where the last inequality follows
from the policy stipulation in Lemma 7. This result implies that the
4m− 15th shipment must be shipped before time t−m . Consequently,
at time tm, there is only the mth shipment on hand at Stage 2.
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By R3, we know that all the inventory levels under both policies
are the same before time tm; that implies that under both policies,
IP1 will fall to r1 at the same time, denoted by t̂m. Note that t̂m
could be tm, which means that IP1 has already been at or below r1,
when the mth shipment arrives at Stage 2. In this case, it is clear
that the mth shipment will be shipped to Stage 1 immediately
under both policies. Now, consider the case t̂m > tm. The shipment
quantity should be min8OI24t̂m51Q19= min8Q21Q19=Q2. Overall,
under both policies, the mth shipment with Q2 units will be
shipped to Stage 1 at the same time before the 4m+ 15th shipment
arrives at Stage 2. As a result, given any demand sample path, the
inventory levels at both stages are the same under both policies
before time tm+1. That is, R2 and R3 also hold before time tm+1.
Clearly, OI24t5=Q2 when t ∈ 6t1 t̂m5, and OI24t5= 0 when t ∈

6t̂m1 tm+15; i.e., R1 holds before time tm+1. Therefore, the induction
is completed. �
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