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A. Proofs for the Main Results

Proof of Lemma 1. As both Ds and Dm follow the normal distributions, the optimal solu-

tions of (2) under the two scenarios can be expressed as qs = µs + σsz
∗ and qsm = µs + µm +√

σ2
s +σ2

m + 2ρσsσmz
∗, where z∗ = Φ−1(1− cb

pb
). Consequently, the corresponding fill rates can be

written as

ζs =
E[min(Ds, qs)]

E[Ds]
= 1 +

σs
µs

E[min{z∗, ε}],

ζsm =
E[min(Ds +Dm, qsm)]

E[Ds +Dm]
= 1 +

√
σ2
s +σ2

m + 2ρσsσm

µs +µm
E[min{z∗, ε}],

where ε follows the standard normal distribution.

As σm/µm = σs/µs, we can obtain√
σ2
s +σ2

m + 2ρσsσm

µs +µm
=
σs
µs

√
1 +x2 + 2ρx

1 +x
≤ σs
µs
,

where x= µs/µm = σs/σm, and the inequality holds because the correlation coefficient ρ≤ 1.

As E[min{z∗, ε}]≤E[ε] = 0, the above inequality implies that ζsm ≥ ζs. �

Proof of Proposition 1. Let ζ̂ be the customers’ belief on the fill rate and (φ̂s, φ̂m) be the

retailer’s belief on the proportions of store-only customers and omni-customers who purchase offline.

We first characterize customers’ channel choices and retailer’s optimal decision in terms of these

beliefs.

Customer Choice. Given customers’ belief on the fill rate, let (φ̄s, φ̄m) be the resulting propor-

tions of omni-customers and store-only customers who purchase offline. Customers’ utilities from

purchasing online and offline channels are given by (1). Then, customers’ channel choices are as

follows: 1) store-only customers purchase the product if UB
s,b ≥ 0; otherwise, exit the market, or 2)

omni-customers purchase the product from the offline channel if and only if UB
m,b ≥max(0,UB

m,o)

and from the online channel if and only if UB
m,o ≥max(0,UB

m,b). In particular, we can further char-

acterize customers’ choices, (φ̄s, φ̄m), in different parameter regions as follows.

(i) If ζ̂ub − k ≥ (uo − t), then both store-only customers and omni-customers will choose the

offline channel, i.e., (φ̄s, φ̄m) = (1,1).

(ii) If uo − t≥ ζ̂ub − k ≥ 0, then store-only customers will go to the B&M store, whereas omni-

customers will choose the online channel. That is, (φ̄s, φ̄m) = (1,0).
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(iii) If uo − t≥ 0> ζ̂ub − k, then store-only customers will exit the market, and omni-customers

will choose the online channel. That is, neither will go to the B&M store, i.e., (φ̄s, φ̄m) = (0,0).

(iv) If ζ̂ub−k < 0 and uo− t < 0, then both types of customers will exit the market, i.e., (φ̄s, φ̄m) =

(0,0).

Therefore, given customers’ belief on the fill rate ζ̂, the resulting market segmentation (φ̄s, φ̄m) can

be expressed as

(φ̄s, φ̄m) =


(1,1) if ζ̂ ≥ uo−t+k

ub
,

(1,0) if k
ub
≤ ζ̂ < uo−t+k

ub
,

(0,0) if ζ̂ < k
ub
.

(A1)

Retailer’s Optimal Decision. Given retailer’s beliefs (φ̂s, φ̂m) on customers’ choices, let q̄

and ζ̄ be the optimal order quantity for the B&M store and the corresponding resulting fill rate,

respectively. As customers are homogeneous, there are only three possible values of (φ̂s, φ̂m): (0,0),

(1,0), and (1,1). We now analyze the retailer’s optimal decision for the three cases.

(i) If (φ̂s, φ̂m) = (1,1), the retailer’s expected profit is π(q) = pbE[min(Dm +Ds, q)]− cbq. Then,

the optimal order quantity is q̄= qsm, and the corresponding fill rate is ζ̄ = ζsm.

(ii) If (φ̂s, φ̂m) = (1,0), the retailer’s expected profit is π(q) = pbE[min(Ds, q)] − cbq + (po −

co)E[Dm1{t≤uo}]. Consequently, the optimal order quantity is q̄ = qs, and the corresponding

fill rate is ζ̄ = ζs.

(iii) If (φ̂s, φ̂m) = (0,0), the retailer’s expected profit is π(q) = (po − co)E[Dm1{t≤uo}]. Therefore,

the retailer will order nothing from the B&M store and the resulting fill rate is zero, i.e., q̄= 0

and ζ̄ = 0.

In summary, given the belief (φ̂s, φ̂m), the retailer’s optimal decision of q̄ and the corresponding

fill rate ζ̄ can be characterized as

(q̄, ζ̄) =


(qsm, ζsm) if (φ̂s, φ̂m) = (1,1),

(qs, ζs) if (φ̂s, φ̂m) = (1,0),

(0,0) if (φ̂s, φ̂m) = (0,0).

(A2)

RE Equilibrium. Next, we analyze the RE equilibrium, denoted by (qB, φBm, φ
B
s ), by connecting

customers’ choices with the retailer’s optimal decision. The concept of RE equilibrium states 1)

customers’ belief on the fill rate is exactly the realized fill rate, and 2) retailer’s belief on customers’

choices is consistent with the realized one. Specifically, we define the RE equilibrium as follows.

Definition A1 (RE Equilibrium Under BASE). A RE equilibrium (ζ̄, ζ̂, φ̄m, φ̄s, φ̂m, φ̂s, q̄)

should satisfy the following conditions:

(i) Given ζ̂, (φ̄s, φ̄m) satisfies Equation (A1);

(ii) Given (φ̂s, φ̂m), (q̄, ζ̄) satisfies Equation (A2);
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(iii) ζ̄ = ζ̂ and (φ̄s, φ̄m) = (φ̂s, φ̂m).

By Definition A3, we know that there exist only three potential RE equilibria, i.e., (qB, φBs , φ
B
m) =

(qsm,1,1), (qs,1,0), and (0,0,0). In the following cases, we first verify whether these potential

equilibria satisfy the conditions of RE equilibrium. When there exist multiple RE equilibria, we

choose the one which is Pareto-dominant.

Case 1: k ≤ ζsmub − (uo − t). In this case, we first show that (qsm,1,1) and (0,0,0) are RE

equilibria, whereas the existence of (qs,1,0) depends on whether ζsub ≥ k > ζsub− (uo− t) or not.

We take the equilibrium (qsm,1,1) as an example to illustrate how to justify a RE equilibrium.

Specifically, if the retailer expects that both store-only and omni-customers purchase offline, he will

stock qsm in the B&M store by Equation (A2). Meanwhile, if both store-only and omni-customers

believe that the retailer allocates qsm in the B&M store, then they anticipate that the fill rate

is ζsm. As ζsmub − k ≥ (uo − t)≥ 0, they will purchase from the B&M store (see Equation (A1)).

In other words, all beliefs are consistent with the actual outcomes and thus (qsm,1,1) is a RE

equilibrium. A similar argument can be applied to the equilibrium (0,0,0).

We now discuss the possibility of equilibrium (qs,1,0). If the retailer expects that only store-

only customers purchase offline, he will stock qs in the B&M store by Equation (A2). If customers

believe that the retailer allocates qs in the B&M store, then their expected fill rate is ζs. If 0 ≤

ζsub−k < (uo− t), store-only customers purchase offline, while it is not the case for omni-customers

by Equation (A1), i.e., the beliefs are indeed consistent with actual outcomes. However, if ζsub−k≥

(uo− t) (or ζsub− k < 0), both store-only and omni-customers will (or not) go to the B&M store

and customers’ choice would be different from the retailer’s expectation.

We next show that the equilibrium (qsm,1,1) always Pareto-dominates others. Clearly, the equi-

librium (0,0,0) is dominated, as it generates zero payoff for both retailer and customers. Now, we

compare the equilibria (qsm,1,1) and (qs,1,0). On the retailer side, we have

πB(qs|(1,0))−πB(qsm|(1,1))

= (pb− cb)µs + pbσs

∫ ε∗

−∞
εdΦ(ε) + (po− co)µm

−

[
(pb− cb)(µs +µm) + pb

√
σ2
s +σ2

m + 2ρσsσm

∫ ε∗

−∞
εdΦ(ε)

]

= (po− co)µm− (pb− cb)µm− pb(
√
σ2
s +σ2

m + 2ρσsσm−σs)
∫ ε∗

−∞
εdΦ(ε)

= µm((po− co)− (pb− cb)−∆)≤ 0,

where the last inequality holds by Assumption (M).
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Thus, retailer’s profit under equilibrium (qsm,1,1) is larger than that under (qs,1,0). Meanwhile,

by the condition k ≤ ζsmub − (uo − t), omni-customers’ utility under equilibrium (qsm,1,1), i.e.,

ζsmub−k, dominates that under (qs,1,0), i.e., (uo− t), whereas store-only customers’ utility under

equilibrium (qsm,1,1) also dominates as the fill rate is higher, i.e., ζsm ≥ ζs. Therefore, the Pareto-

dominant equilibrium is qB = qsm, and (φBs , φ
B
m) = (1,1).

Case 2: ζsub ≥ k > ζsmub − (uo − t). In this case, omni-customers will never choose the offline

channel as (uo− t)> ζsmub−k. This implies that (qsm,1,1) is not a RE equilibrium. Similar to Case

1, one can show that both (qs,1,0) and (0,0,0) are equilibria and that (qs,1,0) is Pareto-dominant.

Thus, qB = qs and (φBs , φ
B
m) = (1,0).

Case 3: k > ζsub and k > ζsmub− (uo− t). In this case, one can verify that there exists just one

equilibrium, (qB, φBs , φ
B
m) = (0,0,0).

By combining the above cases, we can obtain the desired results. �

Proof of Lemma 2. We first show that qsm ≥ qp. By (4), we have

∂πP (q)

∂q
− ∂πB(q)

∂q

∣∣∣∣
(φ̂s,φ̂m)=(1,1)

= (co− pb)
∂E[min(Dm, (q−Ds)

+)]

∂q
≤ 0, (A3)

where the inequality holds as pb ≥ co and the term E[min(Dm, (q−Ds)
+)] is increasing in q.

As πP (q) is convex, Equation (A3) implies qsm ≥ qp. We now prove that qp ≥ qs. Referring to (2),

qs is the minimizer of πB(q) with φ̂m = 0 and φ̂s = 1. Then, we can show that

∂πB(q)

∂q

∣∣∣∣
(φ̂s,φ̂m)=(0,1)

− ∂πP (q)

∂q
=−co

∂E[min(Dm, (q−Ds)
+)]

∂q
≤ 0,

which implies that qp ≥ qs.

Combining the above results, we can prove that qsm ≥ qp ≥ qs. Recall that ζs =

E[min(Ds, qs)]/E[Ds], ζp =E[min(Ds, qp)]/E[Ds] and ζsm =E[min(Dm +Ds, qsm)]/E[Dm +Ds].

As the fill rates ζs and ζp are increasing in the order quantity, one can easily show that ζp ≥ ζs.

We next show that ζsm could be higher or less than ζp. Actually, if co approaches 0, ζp converges

to ζs, which is no higher than ζsm (see Lemma 1). Moreover, we can see that ζp is increasing in co.

We just need to use a counter example to show that it is possible that ζsm < ζp. Let co approach

pb and Ds =Dm (i.e., ρ= 1, µs = µm), then, qp converges to qsm and

ζp→
E[min(qsm,Ds)]

E[Ds]
=

E[min(2qsm,2Ds)]

E[2Ds]
>

E[min(qsm,Ds +Dm)]

E[Ds +Dm]
= ζsm.

This completes the proof. �
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Proof of Proposition 2. Similar to the proof logic of Proposition 1, we characterize the

equilibria as follows.

Customer Choice. We first investigate customers’ choices among different channels in the

presence of BOPS.

• Omni-customers. With the BOPS channel, omni-customers have four alternative choices:

exiting the market, purchasing offline, online, or through BOPS. By Assumption (U) (i.e., t≤ uo),

omni-customers will always gain a positive utility from purchasing online, and thus, will never

choose to exit the market. Moreover, as uo ≥ ub, omni-customers always prefer the BOPS channel

to the option of purchasing offline. Therefore, omni-customers will choose between the online

and BOPS channels. Specifically, omni-customers purchase from the BOPS channel if and only if

UP
m,ob ≥UP

m,o and the online channel if and only if UP
m,o ≥UP

m,ob.

• Store-only customers. Store-only customers’ utilities from purchasing offline are given by

UP
s,b = ζ̂ub − k. Then, store-only customers purchase the product if UP

s,b ≥ 0; otherwise, exit the

market.

Based on the analysis on customers’ choice, we can derive the resulting market segmentation as

follows.

(i) If k≤ t and k≤ ζ̂ub, store-only customers will go to the B&M store, and omni-customers will

choose the BOPS channel. This means that the total demand for the BOPS channel is Dm,

and that for the B&M store is Ds.

(ii) If k ≤ t and k > ζ̂ub, store-only customers will choose to exit the market, whereas omni-

customers choose the BOPS channel. Then, the total demand for the BOPS channel is Dm

and that for the B&M store is 0.

(iii) If k > t and k≤ ζ̂ub, store-only customers will go to the B&M store, whereas omni-customers

will go to the online channel. Thus, the total demand for the online channel is Dm, and that

for the B&M store is Ds.

(iv) If k > t and k > ζ̂ub, store-only customers will exit the market, and omni-customers will

choose the online channel. This means that the total demand for the online channel is Dm

and that for the B&M store is 0.

We denote by φm the proportion of omni-customers who choose to purchase from BOPS and

by φ̄s the proportion of store-only customers who purchase from the B&M store. Therefore, given

customers’ belief on the fill rate ζ̂, the resulting market segmentation (φ̄s, φm) is given by
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(φ̄s, φm) =


(1,1) if ζ̂ ≥ k

ub
and k≤ t,

(0,1) if ζ̂ < k
ub

and k≤ t,
(1,0) if ζ̂ ≥ k

ub
and k > t,

(0,0) if ζ̂ < k
ub

and k > t.

(A4)

Retailer’s Optimal Decision. We now analyze the retailer’s optimal decision given his beliefs

on the market segmentation (φ̂s, φm). Let q̄ and ζ̄ be retailer’s optimal order quantity and the

corresponding resulting fill rate given his belief, respectively. From the above analysis on the market

segmentation, we restrict retailer’s belief (φ̂s, φm) within the set of (1,1), (1,0), (0,1), and (0,0).

Notice that those omni-customers who choose the BOPS channel, but if not satisfied, will switch

to the online channel. We analyze the retailer’s optimal decision in the following four cases.

(i) If (φ̂s, φm) = (1,1), the retailer’s expected profit is π(q) = pbE[min(Ds, q)] − cbq +

coE[min(Dm, (q−Ds)
+)]+(po−co)E[Dm]. Then, the retailer’s optimal order quantity is q̄= qp

and the corresponding fill rate is ζ̄ = ζp.

(ii) If (φ̂s, φm) = (0,1), the retailer’s expected profit is π(q) = coE[min(Dm, q)] − cbq + (po −

co)E[Dm] . The optimal order quantity is q̄= 0, as

∂π(q)

∂q
= co(1−Φ(

q−µm
σm

))− cb ≤ 0,

where the inequality holds by co ≤ cb. Thus, the corresponding fill rate is ζ̄ = 0.

(iii) If (φ̂s, φm) = (1,0), the retailer’s expected profit is π(q) = pbE[min(Ds, q)] − cbq + (po −

co)E[Dm] . The optimal order quantity is q̄= qs and the corresponding fill rate is ζ̄ = ζs.

(iv) If (φ̂s, φm) = (0,0), the retailer’s expected profit is π(q) = (po−co)E[Dm] . The resulting order

quantity and fill rate are q̄= 0 and ζ̄ = 0, respectively.

Therefore, given retailer’s belief (φ̂s, φm), the optimal order quantity q̄ and the corresponding fill

rate ζ̄ are given by

(q̄, ζ̄) =


(qp, ζp) if (φ̂s, φm) = (1,1),

(qs, ζs) if (φ̂s, φm) = (1,0),

(0,0) if φ̂s = 0.

(A5)

RE Equilibrium. We now turn to analyze the RE equilibrium, which is denoted by (qP , φPs ).

Definition A2 (RE Equilibrium Under BOPS).

A RE equilibrium (ζ̄, ζ̂, φ̄s, φ̂s, q̄) should satisfy the following conditions:

(i) Given ζ̂ and φm, φ̄s satisfies Equation (A4);

(ii) Given φ̂s and φm, (q̄, ζ̄) satisfies Equation (A5);

(iii) ζ̄ = ζ̂ and φ̄s = φ̂s.

According to the above definition, we consider the following four cases.
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Case 1: k≤ t and k≤ ζpub. By (A4), we have φm = 1, and thus by (A5), we have two potential

equilibria, i.e., (qp,1) and (0,0). Similar to Proposition 1, one can verify that both are RE equilibria

and that (qp,1) Pareto-dominates (0,0). Thus, qP = qp and φPs = 1.

Case 2: k ≤ t and k > ζpub. Again, we have two potential equilibria, i.e., (qp,1) and (0,0).

However, in this case, (qp,1) is not a RE equilibrium. Thus, there exists only a single equilibrium,

i.e., qP = 0 and φPs = 0. As the retailer does not store any inventory in the B&M store, omni-

customers will choose the online channel.

Case 3: k > t and k ≤ ζsub. In this case, φm = 0 and there are two equilibria, i.e., (qP , φPs ) =

(qs,1) or (0,0). The former is Pareto-dominant and thus qP = qs and φPs = 1.

Case 4: k > t and k > ζsub. In this case, φm = 0, and the only equilibrium is (qP , φPs ) = (0,0).

As ζp > ζs (see Lemma 2), summarizing the above four cases leads us to the proposition. �

The proofs for Propositions 3, 4 and 5 can be derived by comparing retailer’s expected profits

in various areas, as illustrated in Figure 3. We now illustrate the proofs as follows.

Proof of Propositions 3. We analyze this case by considering the following two cases.

• ζsmub − uo + t < k ≤min(t, ζsub) (i.e., Area (I-2)). By Proposition 1(ii) and Proposition 2(i),

the retailer’s expected profits in the BASE and BOPS models are respectively given by

ΠB = max
q
{pbE[min(Ds, q)]− cbq+ (po− co)E[Dm]};

ΠP = max
q
{pbE[min(Ds, q)]− cbq+ coE[min(Dm, (q−Ds)

+)] + (po− co)E[Dm]}.

Clearly, ΠB ≤ΠP .

• max(ζsmub−uo + t, ζsub)<k≤min(t, ζpub) (i.e., Area (I-3)). By Proposition 1(iii) and Propo-

sition 2(i), the retailer’s expected profits in the BASE and BOPS models are given by

ΠB = max
q
{(po− co)E[Dm]};

ΠP = max
q
{pbE[min(Ds, q)]− cbq+ coE[min(Dm, (q−Ds)

+)] + (po− co)E[Dm]}.

Then, it directly follows that ΠB ≤ΠP .

Combining the above two cases will lead to the result. This is due to the fact that,

[max(ζsmub−uo+t,min(t, ζpub)] = [ζsmub−uo+t,min(t, ζsub)]
⋃

[max(ζsmub−uo+t, ζsub),min(t, ζpub)],

as ζs ≤ ζp. �

Proof of Proposition 4. When ζpub < k ≤ ζsmub − uo + t (i.e., Area (II-1)), we have that

ζsmub−uo + t > ζpub if the region is not empty. As ζsmub ≤ uo, we have t > ζpub, and the condition
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of Proposition 2(iii) becomes k >max{ζpub, ζsub}= ζpub. This means that the case corresponds to

Proposition 2(iii) under the BOPS setting.

By Proposition 1(i) and Proposition 2(iii), we have

ΠB = max
q
{pbE[min(Ds +Dm, q)]− cbq}

= (pb− cb)(µs +µm) + pb
√
σ2
s +σ2

m + 2ρσsσm

∫ ε∗

−∞
εdΦ(ε)

= (pb− cb)(µs +µm) +µm∆ + pbσs

∫ ε∗

∞
εdΦ(ε)

= (pb− cb)µs + pbσs

∫ ε∗

∞
εdΦ(ε) + (pb− cb + ∆)µm,

≥ (pb− cb)µs + pbσs

∫ ε∗

∞
εdΦ(ε) + (po− co)µm,

= max
q
{pbE[min(Ds, q)]− cbq}+ (po− co)µm,

≥ (po− co)E[Dm] = ΠP ,

where the first inequality holds by Assumption (M). Therefore, BOPS hurts the retailer. �

Proof of Proposition 5. When k ≤ min(ζpub, ζsmub − uo + t) (i.e., Area (I-1)), as uo ≥ ub,

we have k ≤ min(ζpub, ζsmub − uo + t) ≤ min(ζpub, t). By Proposition 2(i) and Equation (4), the

retailer’s expected profit in the BOPS model is given by

ΠP = max
q

{
pbE[min(Ds, q)]− cbq+ coE[min(Dm, (q−Ds)

+)] + (po− co)E[Dm]
}
.

Meanwhile, by Proposition 1(i) and Equation (2), the retailer’s expected profit in the BASE

model can be written as

ΠB = max
q
{pbE[min(Dm +Ds, q)]− cbq}

= max
q

{
pbE[min(Ds, q)] + pbE[min(Dm, (q−Ds)

+)]− cbq
}
.

Then, when po→ co, we have πB ≥ πP as

ΠP = max
q
{pbE[min(Ds, q)]− cbq+ coE[min(Dm, (q−Ds)

+)]}

≤ max
q
{pbE[min(Ds, q)]− cbq+ pbE[min(Dm, (q−Ds)

+)]}= ΠB,

in which the inequality holds by co ≤ cb ≤ pb.

Note that

max
q
{pbE[min(Dm +Ds, q)]− cbq}−max

q
{pbE[min(Ds, q)]− cbq}
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= pbE[min(Dm +Ds, µm +µs +
√
σ2
s +σ2

m + 2ρσsσmε
∗)]− cb(µm +µs +

√
σ2
s +σ2

m + 2ρσsσmε
∗)

− pbE[min(Ds, µs +σsε
∗)]− cb(µs +σsε

∗)

= (pb− cb)µm + pb(
√
σ2
s +σ2

m + 2ρσsσm−σs)
∫ ε∗

−∞
εdΦ(ε)

= (pb− cb + ∆)µm. (A6)

If po→ pb− cb + co + ∆, we have πB <πP as

ΠP = max
q
{pbE[min(Ds, q)]− cbq+ coE[min(Dm, (q−Ds)

+)] + (pb− cb + ∆)µm}

= max
q
{pbE[min(Ds, q)]− cbq+ coE[min(Dm, (q−Ds)

+)]}

+max
q
{pbE[min(Dm +Ds, q)]− cbq}−max

q
{pbE[min(Ds, q)]− cbq}

≥ max
q
{pbE[min(Dm +Ds, q)]− cbq}= ΠB,

where the second equality follows from Equation (A6).

Thus, as ΠP is increasing in po, there exists a threshold δS(co) ∈ [co, pb− cb + co + ∆] such that

when po < δS(co), ΠB ≥ΠP , and when po ≥ δS(co), ΠB <ΠP . �

B. High Online Waiting Time (t > uo)

The results in the main body of the paper rely on the assumption that t≤ uo. This assumption

ensures that omni-customers can always gain a positive utility from the online channel and thus,

will not exit the market. In this section, we consider the opposite case, i.e., t > uo, to show that

our main insights are robust. Our analysis only focuses on the case with high online base surpluse

(i.e., uo ≥ ub); the main results also carry over to the case with uo <ub.

The analysis on customers’ choice and retailer’s decision is almost the same as that of the case

with t≤ uo. The only difference is that under the assumption of t > uo, omni-customers will never

choose the online channel, but will choose BOPS, the offline channel or exit the market. See the

proof of Proposition A1 for a detailed description of customers’ choice and retailer’s decision, as

well as the equilibrium analysis. We first characterize the RE equilibrium for the BASE model.

Proposition A1 (REE under BASE with High Online Waiting Cost). At the RE

equilibrium, the inventory level in the B&M store and customers’ channel choices in the offline

channel are as follows:

(i) if k≤ ζsmub, then qB = qsm and (φBs , φ
B
m) = (1,1);

(ii) if ζsmub <k≤ ζsub, then qB = qs and (φBs , φ
B
m) = (1,0);

(iii) if k >max(ζsub, ζsmub), then qB = 0 and (φBs , φ
B
m) = (0,0).

No omni-customers will purchase through the online channel.
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Consider a scenario where omni-customers definitely choose the offline channel. Then, the

retailer’s objective function can be rewritten as

πP (q) = pbE[min(Ds, q)]− cbq+ poE[min(Dm, (q−Ds)
+)]. (A7)

We denote by q
(1)
P the optimal order quantity of (A7). Then, the corresponding fill rate is given

by ζ(1)p =E[min(q
(1)
P ,Ds)]/E[Ds]. Let qm be the optimal order quantity of the newsvendor problem

π(q) = poE[min(Dm, q)]− cbq, where the retail price is the online price, but the supply cost is the

offline cost. The following proposition characterizes the equilibrium.

Proposition A2 (REE under BOPS with High Online Waiting Cost). At the RE

equilibrium, the retailer’s optimal inventory level in the B&M store and customers’ optimal

channel choices are as follows:

(i) if k≤ ζ(1)p ub, then qP = q
(1)
P , φPs = 1, and omni-customers choose BOPS;

(ii) if ζ(1)p ub <k≤ uo, then qP = qm, φPs = 0, and omni-customers choose BOPS.

Moreover, those unsatisfied omni-customers by BOPS will be lost.

When the store visiting cost is low, in equilibrium, store-only customers choose to visit the B&M

store, whereas omni-customers choose to purchase the product via the BOPS channel. In contrast,

when the store visiting cost is high but not higher than uo, in equilibrium, store-only customers

exit the market, whereas omni-customers choose BOPS. In this situation, the local inventory is

only held for omni-customers. Recall that with low online waiting cost (t ≤ uo), omni-customers

unsatisfied by BOPS will switch to the online channel. However, in the case of a high online waiting

cost (t > uo), those omni-customers will be lost as the utility of purchasing online becomes negative.

We now compare BOPS and BASE strategies for t > uo which is also illustrated by Figure A1.

Theorem A1 (BOPS vs. BASE with High Online Waiting Cost). (i) If ζsmub ≤ k≤

uo, BOPS benefits the retailer.

(ii) If k < ζsmub, BOPS hurts the retailer.

When the store visiting cost is relatively high (ζsmub ≤ k≤ uo), no customer would purchase the

product in the BASE model. As BOPS offers an attractive online price and replaces the high online

waiting cost by the intermediate store visiting cost, it incentivizes omni-customers to purchase the

product via the BOPS channel. Such a market expansion effect benefits the retailer (see a similar

effect in Gao and Su 2017b attributing to the so-called “convenience” offered by BOPS). As there

is no demand coming from the offline channel due to the high store visiting cost, the B&M store

now only serves as a pickup location for the omni-customers.
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Figure A1 BOPS over BASE when t > uo
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As the store visiting cost decreases to an intermediate level (ζ(1)p ub ≤ k < ζsmub), both types

of customers choose the offline channel in the BASE model. With BOPS, omni-customers will

migrate from the offline channel to the BOPS channel (i.e., demand depooling). The migration of

omni-customers will lead to a lower fill rate that, in turn, leaves no incentive for the store-only

customers to visit the B&M store. Hence, this demand depooling effect hurts the retailer. When

the store visiting cost further drops to a low level (k < ζ(1)p ub), store-only customers remain in the

offline channel, and omni-customers switch from the offline channel to the BOPS channel. However,

omni-customers’ migration still results in a profit decrease as they now pay a lower online price and

are lost in the event of stockout at the B&M store (due to t≤ uo). In summary, if t > uo and the

store visiting cost is sufficiently low (k < ζsmub), BOPS hurts the retailer. Therefore, although Nash

(2016) recommended Walmart to sell its groceries online, the firm should be careful in this initiative

because, in the case of groceries (as time-sensitive products), when the store visiting cost is low

(e.g., due to the high density of Walmart stores), introducing BOPS may migrate some existing

customers from the high-margin store purchase to a potentially lower-margin BOPS purchase. Due

to the depooling effect, the store may no longer find it profitable to maintain a high service level,

which, in turn, can hurt both the store-only customers and the retailer.

C. Low Online Base Surplus (uo<ub)

As the utility from the offline channel is always higher than that from BOPS, omni-customers never

choose the BOPS channel and instead choose either the online or offline channels. Specifically, when

UP
m,o ≥UP

m,b (i.e., uo−t≥ ub−k), omni-customers will choose the online channel. If UP
m,o <U

P
m,b (i.e.,

uo− t < ub−k), they prefer the offline channel and choose BOPS merely for inventory information

disclosure: they first check the inventory availability in store via BOPS; if the local inventory

is available, they will purchase from the B&M store, and otherwise, choose the online channel.

The retailer cannot differentiate store-only customers and omni-customers, when both choose to
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purchase offline. Hence, the inventory is allocated to those offline customers (possibly from two

streams) proportionally.

Define φm as the proportion of omni-customers who prefer the offline channel. As discussed

above, it can be expressed as

φm =

{
1 if uo− t < ub− k;
0 if uo− t≥ ub− k.

Notice that the retailer can anticipate omni-customers’ decisions φm, because it only depends

on parameters which are assumed to be common knowledge. With a belief φ̂s on the proportion

of store-only customers who purchase through the offline channel, the retailer anticipates there

are a total of φ̂sDs + φmDm offline customers. As the inventory is allocated to those customers

proportionally, the unsatisfied BOPS demand is φmDm(1− q

φ̂sDs+φmDm
)+ and will switch to the

online channel. Therefore, the retailer’s expected profit can be expressed as

πP (q) = pbE[min(φ̂sDs +φmDm, q)]− cbq︸ ︷︷ ︸
Profit from Offline Channel

+(po− co)E[(1−φm)Dm +φmDm(1− q

φ̂sDs +φmDm

)+]︸ ︷︷ ︸
Profit from Online Channel

, (A8)

where the first term is the expected profit obtained from the offline channel, and the second term

is the expected profit obtained from the online channel.

Define qe and qo as the optimal solution of (A8) when (φ̂s, φm) = (1,1) and (0,1), respectively.

The former scenario represents both store-only customers and omni-customers choose the offline

channel, while the latter represents only omni-customers purchase offline. Accordingly, we define

the corresponding fill rate of the former scenario as ζe = E[min{qe,Ds+Dm}]
E[Ds+Dm]

.

Proposition A3 (REE under BOPS When uo <ub). At the RE equilibrium, the retailer’s

optimal inventory level in the B&M store and customers’ optimal channel choices are as follows:

(i) if k≤min(ub−uo + t, ζeub), then qP = qe and (φPs , φm) = (1,1);

(ii) if ub−uo + t≥ k > ζeub,

(ii-1) when pb− cb > po− co, qP = qo and (φPs , φm) = (0,1);

(ii-2) when pb− cb ≤ po− co, qP = 0 and (φPs , φm) = (0,0);

(iii) if ub−uo + t < k≤ ζsub, then, qP = qs and (φPs , φm) = (1,0);

(iv) if k >max(ub−uo + t, ζsub), then qP = 0 and (φPs , φm) = (0,0).

A fraction (1−φm) of omni-customers will purchase through the online channel.

Figure A2 illustrates the RE equilibrium for the case with low online base surplus (i.e., uo <ub).

We discuss the equilibrium by considering two cases: k − t ≥ ub − uo and k − t < ub − uo, which
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Figure A2 Customer choice behavior under BOPS when uo <ub
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Note. ∗In Area IV, the equilibrium is online if pb − cb ≤ po − co and otherwise, offline.

correspond to two separate regions divided by the 45◦ line in Figure A2. The explanation for the

former case (k− t≥ ub−uo) including Areas II and III is similar to the counterpart of uo ≥ ub. In

the latter case (k− t < ub − uo), omni-customers always prefer the offline channel over the online

channel. When the store visiting cost k is below a threshold (Area I), store-only customers will

choose to shop offline. However, when the store visiting cost exceeds the threshold (Area IV),

store-only customers will exit the market. Although omni-customers prefer the offline channel, the

retailer can order nothing for the B&M store so as to force omni-customers to be fulfilled by DC.

In particular, when pb− cb > po− co, it is more profitable for the retailer to serve omni-customers

through the offline channel, and thus, order a positive quantity; otherwise, the retailer has the

incentive to shut down the offline channel. This observation is slightly different from that under

uo ≥ ub. In the corresponding area under uo ≥ ub (see the part of Area II below the 45◦ line),

store-only customers will also exit the market. If po− co < pb− cb, it is always more profitable for

the retailer to close BOPS to force omni-customers to purchase online and be fulfilled by DC.

The following theorem presents the comparison between BOPS and BASE.

Theorem A2. (BOPS vs. BASE When uo <ub)

(i) If ζsmub−uo + t < k≤ t+ub−uo (Areas I-2, I-3, and II-3), BOPS benefits the retailer.

(ii) If ζeub <k≤ ζsmub−uo + t (Area II-1), there exists δE(co) such that

(ii-1) if po ≥ δE(co), BOPS benefits the retailer;

(ii-2) if po < δE(co), BOPS hurts the retailer.

(iii) If k≤min(ζeub, ζsmub−uo + t) (Area I-1), BOPS benefits the retailer.

D. Cross-Selling

In this section, we assume that there is a per unit cross-selling r for those customers visiting the

B&M store. Note that customers who go to the store and experience a stockout still buy other
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stuff and add value by cross-buying. We incorporate this cross-selling revenue into the BASE and

BOPS models and derive the corresponding equilibria as follows.

D.1. BASE Model with Cross-Selling

As the cross-selling does not directly affect customers’ behavior, the corresponding analysis is

identical to that in Section 4.1. Given the belief on the proportion of customers who choose to

purchase offline, the retailer’s expected profit function can be written as

π(q) = pbE[min(φ̂mDm + φ̂sDs, q)]− cbq+ (po− co)E[(1− φ̂m)Dm]

+rE[φ̂mDm + φ̂sDs], (A9)

where the last term represents the revenue from cross-selling in the B&M store.

Proposition A4 (REE for BASE With Cross-Selling). At the RE equilibrium,

retailer’s inventory level assigned to the B&M store and customers’ choices on the offline channel

are as follows:

(i) if k < ζsmub− (uo− t), then qB = qsm and (φBs , φ
B
m) = (1,1);

(ii) if ζsmub− (uo− t)<k < ζsub, then qB = qs and (φBs , φ
B
m) = (1,0);

(iii) if k >max(ζsub, ζsmub− (uo− t)), then qB = 0 and (φBs , φ
B
m) = (0,0);

and (1−φBm) proportion of omni-customers will choose the online channel.

D.2. BOPS Model with Cross-Selling

Under BOPS, the retailer’s expected profit function can be expressed as

π(q) = pbE[min(φ̂sDs, q)]− cbq+ (po + r)E[min(φ̂mDm, (q− φ̂sDs)
+)]

+(po− co)E[(1− φ̂m)Dm + (φ̂mDm− (q− φ̂sDs)
+)+] + rE[φ̂sDs]

= pbE[min(φ̂sDs, q)]− cbq+ (r+ co)E[min(φ̂mDm, (q− φ̂sDs)
+)]

+(po− co)E[Dm] + rE[φ̂sDs]. (A10)

One can readily verify that π(q) is concave in q for any given (φ̂s, φ̂m). Let qC(φ̂s, φ̂m) be the

corresponding optimal solution of (A10). Moreover, we define ζC(φ̂s, φ̂m) = E[qC(φ̂s,φ̂m),Ds]

E[Ds]
.

Lemma A1. (i) qC(1,1)≥ qs and ζC(1,1)≥ ζs.

(ii) qC(0,1)≥ 0 if and only if r+ co ≥ cb.

(iii) ζC(1,1)≥ ζC(0,1) and ζC(1,1)≥ ζp.

Given this lemma, we have the following proposition.
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Proposition A5 (REE for BOPS With Cross-Selling). At the RE equilibrium, the

retailer’s inventory level assigned to the B&M store and customers’ choices on the offline channel

are as follows:

(i) if k≤min(t, ζC(1,1)ub), then qP = qC(1,1) and (φPs , φ
P
m) = (1,1);

(ii) if t < k≤ ζsub, then, qP = qs and (φPs , φ
P
m) = (1,0);

(iii) if ζC(1,1)ub <k≤ t, then,

(iii− 1) when co + r > cb, q
P = qC(0,1) and (φPs , φ

P
m) = (0,1);

(iii− 2) when co + r≤ cb, qP = 0 and (φPs , φ
P
m) = (0,0);

(iv) if k >max(t, ζsub), then qP = 0 and (φPs , φ
P
m) = (0,0).

Moreover, all other unsatisfied omni-customers will buy from the online channel.

D.3. Comparison Between BASE and BOPS Models with Cross-Selling

The comparison result between BOPS and BASE is as follows.

Theorem A3. (Comparison between BOPS and BASE With Cross-Selling)

(i) If ζsmub−uo + t < k≤ t (Areas I-2, I-3 and II-2), then BOPS benefits the retailer.

(ii) If ζC(1,1)ub <k≤ ζsmub−uo + t (Area II-1), then BOPS hurts the retailer.

(iii) If k ≤min(ζpub, ζsmub− uo + t) (Area I-1), there exists a threshold δC(co, r) ∈ [co, co + pb−

cb + r+ ∆] such that

(iii-1) if po < δC(co, r), BOPS hurts the retailer;

(iii-2) if po ≥ δC(co, r), BOPS benefits the retailer.

Moreover, δC(co, r) is increasing in r and δC(co, r)≥ δS(co).

E. Recourse Behavior of Omni-Customers

In the base model, when omni-customers who visit the store experience a stock-out, they are

assumed to be lost, instead of switching to the online channel. In this section, we attempt to relax

this assumption by assuming that those omni-customers who experience a stock-out in store will

switch to the online channel. This relaxation only influences the BASE model, but not the BOPS

model. This is because under BOPS, as a feature of our model, omni-customers can always check

inventory availability of the B&M store via BOPS before visiting the store and naturally switch

to the online channel when facing a stock-out. We first characterize the RE equilibrium under the

BASE model and then compare it with that under BOPS. Again, our analysis only focuses on the

case with high online base surplus (i.e., uo ≥ ub); the main results also carry over to the case with

uo <ub.
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BASE Model. Recall that customers who purchase via the offline channel may face a stockout

risk. Without knowing the exact inventory in the B&M store, customers will first form a belief ζ̂

on the in-stock probability before making their purchase decisions. Based on this belief, customers’

utilities from different channels can be expressed as:

UB
s,b = ζ̂ub− k, UB

m,b = ζ̂ub− k+ (1− ζ̂)(uo− t), UB
m,o = uo− t. (A11)

Different from the lost-sales case, omni-customers’ utility from purchasing offline has an additional

utility uo − t from the switch back to the online channel when the stock-out happens with the

probability (1− ζ̂).

Customer Choice. Store-only customers purchase the product if UB
s,b ≥ 0; otherwise, they exit

the market. For an omni-customer, she purchases the product from the offline channel if and only

if UB
m,b ≥max{0,UB

m,o} and the online channel if and only if UB
m,o ≥max{0,UB

m,b}.

Retailer’s Decision. The retailer cannot differentiate store-only customers and omni-

customers, when both choose to purchase offline. We assume that the inventory is allocated to

those offline customers proportionally. Given the belief (φ̂s, φ̂m) on the proportion of customers

who choose the offline channel, the retailer’s expected profit is given by

π̄B(q) = pbE[min(φ̂mDm + φ̂sDs, q)]− cbq︸ ︷︷ ︸
Profit from Offline Channel

+ (po− co)E[(1− φ̂m)Dm]︸ ︷︷ ︸
Profit from Online Channel

+(po− co)E[(φ̂mDm−
φ̂mDm

φ̂mDm + φ̂sDs

q)+]︸ ︷︷ ︸
Profit from Online Channel

, (A12)

where the last term represents the profit from those omni-customers who switch back to the online

channel when experiencing a stock-out at store.

The optimal solution of

π̄B(q)|(φ̂s,φ̂m)=(1,1) = pbE[min(Dm +Ds, q)]− cbq+ (po− co)E[(Dm−
Dm

Dm +Ds

q)+],

is just qe (a solution of (A8)), and the corresponding fill rate, i.e., E[min(Dm +Ds, qe)]/E[Dm +Ds],

is given by ζe, which represents the fill rate when both store-only customers and omni-customers

visit the local store. Note that ζe ≤ ζsm. However, ζe coulde be larger or smaller than ζs depending

on the demand correlation.

For ease of exploration, we assume that ζe ≥ ζs (or equivalently, the demand correlation ρ is

nonpositive); namely, we assume that the fill rate becomes weakly larger when the two streams of
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customers visit the offline store, compared to the case in which only store-only customers visit the

offline store.

Proposition A6 (REE under BASE with Recourse Behavior of Omni-customers).

At the RE equilibrium, the inventory level in the B&M store and customers’ channel choices in

the offline channel are as follows:

(i) if k≤ ζe(ub−uo + t), then qB = qe and (φBs , φ
B
m) = (1,1);

(ii) if ζe(ub−uo + t)<k≤ ζsub, then qB = qs and (φBs , φ
B
m) = (1,0);

(iii) if k >max(ζsub, ζe(ub−uo + t)), then qB = 0 and (φBs , φ
B
m) = (0,0).

A fraction (1−φBm) of omni-customers will purchase through the online channel.

When the store visiting cost is low, then both store-only customers and omni-customers will

choose to purchase through the offline channel. As the store visiting cost increases to a moderate

level, omni-customers will switch to the online channel because the utility of purchasing is higher

online than offline, whereas store-only customers stick to the offline channel as the associated

utility is still positive. When the store visiting cost is high, no customers will visit the B&M store.

Moreover, those omni-customers who do not choose the offline channel will purchase online.

The following theorem demonstrates the comparison between BASE and BOPS when omni-

customers who visit the store and face a stock-out will switch back to the online channel.

Theorem A4 (BOPS vs. BASE with Recourse Behavior by Omni-Customers).

(i) If ζe(ub−uo + t)<k≤min(t, ζpub), BOPS benefits the retailer.

(ii) If ζpub <k≤ ζe(ub−uo + t), BOPS hurts the retailer.

(iii) If k≤min(ζpub, ζe(ub−uo + t)), there exists δR(co)≥ δS(co) such that

(iii-1) if po < δR(co), BOPS hurts the retailer;

(iii-2) if po ≥ δR(co), BOPS benefits the retailer.

First, it can be seen from Theorem A4 that our main insights still hold. 1) BOPS may benefit or

hurt the retailer depending on the store visiting cost and the online waiting cost. 2) The demand

pooling effect still exists when the online waiting cost is relatively low and the store visiting cost

is even lower. 3) In contrast, the demand depooling effect also exists when both the store visiting

cost and the online waiting cost are relatively high, with the latter even higher.

Second, compared with the lost-sales case, the pooling/depooling effect could be strengthened or

weakened. As the recourse behavior does not affect the BOPS model, it suffices to directly compare

the BASE models with and without recourse (see Propositions 1 and A6). As the explanations
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for the impact of the recourse behavior on pooling and depooling effects are similar, we here only

discuss how the recourse behavior influences the pooling effect.

Impact on Pooling Effect. Consider the area in which without the recourse behavior, omni-

customers choose the online channel, while store-only customers exit the market in the BASE

model. In this situation, without the recourse behavior, BOPS may trigger a pooling effect (the

retailer would use the local inventory to serve both BOPS and store-only customers, resulting in

a higher fill rate). However, the higher utility from the recourse behavior may incentivize omni-

customers to switch from the online channel to the offline. That is, with the recourse behavior,

both omni-customers and store-only customers can choose the offline channel in the BASE model.

Then BOPS does not necessarily lead to a pooling effect. Therefore, the recourse behavior may

lessen the pooling effect.

On the other hand, consider the area in which without the recourse behavior, both store-only

customers and omni-customers choose the offline channel in the BASE model. In this situation,

without the recourse behavior, BOPS may not trigger a pooling effect. The recourse behavior of

omni-customers reduces the lost-sales cost in the B&M store. As a result, the retailer will order less

inventory for the B&M store. It leads to a lower fill rate which forces omni-customers to choose the

online channel in the BASE model. Consequently, the introduction of BOPS under the recourse

behavior may incentivize omni-customers to visit the store, resulting in a pooling effect. That is,

the recourse behavior could amplify the pooling effect.

F. Proofs of the Results in Online Appendix

Proof of Proposition A1. Let ζ̂ be the customers’ belief on the fill rate and (φ̂m, φ̂s) be

the retailer’s belief on the proportions of omni-customers and store-only customers who purchase

offline. We first characterize customers’ channel choices and retailer’s optimal decision in terms of

these private beliefs.

Customer Choice. Given customers’ belief on the fill rate, let (φ̄m, φ̄s) be the resulting propor-

tions of omni-customers and store-only customers who purchase offline. Customers’ utilities from

purchasing online and offline channels are given by (2). Then, customers’ channel choices are as

follows: 1) store-only customers purchase the product if UB
s,b ≥ 0; otherwise, exit the market, or 2)

omni-customers purchase the product from the offline channel if and only if UB
m,b ≥max(0,UB

m,o)

and from the online channel if and only if UB
m,o ≥max(0,UB

m,b). In particular, we can further char-

acterize customers’ choices, (φ̄s, φ̄m), in different parameter regions as follows:

(i) If ζ̂ub − k ≥ 0, then both store-only customers and omni-customers will choose the offline

channel, i.e., (φ̄s, φ̄m) = (1,1).
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(ii) If ζ̂ub− k < 0, then both types of customers will exit the market, i.e., (φ̄s, φ̄m) = (0,0).

Therefore, given customers’ belief on the fill rate ζ̂, the resulting market segmentation (φ̄s, φ̄m) is

expressed as

(φ̄s, φ̄m) =

{
(1,1) if ζ̂ ≥ k

ub
,

(0,0) if ζ̂ < k
ub
.

(A13)

Retailer’s Optimal Decision. Given retailer’s beliefs (φ̂m, φ̂s) on customers’ choices, let q̄

and ζ̄ be the optimal order quantity for the B&M store and the corresponding resulting fill rate,

respectively. As customers are homogeneous, there are three possible values of (φ̂s, φ̂m): (1,1),

(1,0), and (0,0). We now analyze the retailer’s optimal decision for these three cases.

(i) If (φ̂s, φ̂m) = (1,1), the retailer’s expected profit is π(q) = pbE[min(Dm +Ds, q)]− cbq. Then,

the optimal order quantity is q̄= qsm, and the corresponding fill rate is ζ̄ = ζsm.

(ii) If (φ̂s, φ̂m) = (1,0), the retailer’s expected profit is π(q) = pbE[min(Ds, q)]−cbq. Consequently,

the optimal order quantity is q̄= qs, and the corresponding fill rate is ζ̄ = ζs.

(iii) If (φ̂s, φ̂m) = (0,0), the retailer’s expected profit is π(q) = 0. Therefore, the retailer will order

nothing from the B&M store and the resulting fill rate is zero, i.e., q̄= 0 and ζ̄ = 0.

In summary, given the belief (φ̂s, φ̂m), the retailer’s optimal decision of q̄ and the corresponding

fill rate ζ̄ can be characterized as

(q̄, ζ̄) =


(qsm, ζsm) if (φ̂s, φ̂m) = (1,1),

(qs, ζs) if (φ̂s, φ̂m) = (1,0),

(0,0) if (φ̂s, φ̂m) = (0,0).

(A14)

RE Equilibrium. Next, we analyze the RE equilibrium, denoted by (qB, φBm, φ
B
s ), by connecting

customers’ choices with the retailer’s optimal decision. The concept of RE equilibrium states 1)

customers’ belief on the fill rate is exactly the realized fill rate, and 2) retailer’s belief on customers’

choices is just consistent with the realized one. Specifically, we define the RE equilibrium as follows.

Definition A3 (RE Equilibrium Under BASE). A RE equilibrium

(ζ̄, ζ̂, φ̄m, φ̄s, φ̂m, φ̂s, q̄)

should satisfy the following conditions:

(i) Given ζ̂, (φ̄s, φ̄m) satisfies Equation (A13);

(ii) Given (φ̂s, φ̂m), (q̄, ζ̄) satisfies Equation (A14);

(iii) ζ̄ = ζ̂ and (φ̄s, φ̄m) = (φ̂s, φ̂m).

Similar to the proof of Proposition 1, one can obtain the desired result by checking Definition

A3. �
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Proof of Proposition A2. As t > uo, omni-customers will never choose the online channel. We

use the same notation as in Proposition 2.

Customer Choice. Given the belief on the fill rate ζ̂, customers’ channel choices are as follows:

1) store-only customers purchase the product if UP
s,b ≥ 0; otherwise, they exit the market; 2) omni-

customers purchase the product from the BOPS channel if and only if UP
m,ob ≥ 0; otherwise, they

exit the market. The market segmentation is characterized as follows.

(i) If k > uo ≥ ub, both omni-customers and store-only customers will exit the market. That is,

the demand for all channels is zero.

(ii) If uo ≥ k > ζ̂ub, omni-customers will choose the BOPS channel, whereas store-only customers

will exit the market. This means that the total demand for BOPS is Dm and that for the B&M

store is zero.

(iii) If ζ̂ub ≥ k, omni-customers again choose the BOPS channel, whereas store-only customers

will buy from the offline channel. Then, the total demand for BOPS is Dm and that for the B&M

store is Ds.

In summary, given customers’ belief on the fill rate ζ̂, the resulting market segmentation is given

by

(φ̄s, φm) =


(1,1) if ζ̂ ≥ k

ub
,

(0,1) if ζ̂ < k
ub

and k≤ uo,
(0,0) if k > uo.

(A15)

Retailer’s Optimal Decision. Depending on the above analysis, we can restrict the retailer’s

belief on market segmentation (φ̂s, φm) within (0,0), (0,1), and (1,1).

(i) If (φ̂s, φm) = (1,1), the retailer’s expected profit is π(q) = pbE[min(Ds, q)] − cbq +

poE[min(Dm, (q−Ds)
+)] . The optimal order quantity is q̄ = q

(1)
P , and the corresponding fill

rate is ζ̄ = ζ(1)p .

(ii) If (φ̂s, φm) = (0,1), the retailer’s expected profit is π(q) = poE[min(Dm, q)]−cbq . The optimal

order quantity is q̄ = qm, and the corresponding fill rate is ζ̂ = ζm = E[min(Dm,qm)]

µm
. However,

the fill rate for store-only customers is zero.

(iii) If (φ̂s, φm) = (0,0), the retailer does not stock any inventory in the B&M store as there is no

offline demand.

In summary, given the retailer’s belief, the optimal quantity q̄ and the corresponding fill rate ζ̄ are

(q̄, ζ̄) =


(q

(1)
P , ζ(1)p ) if (φ̂s, φm) = (1,1),

(qm, ζm) if (φ̂s, φm) = (0,1),

(0,0) if (φ̂s, φm) = (0,0).

(A16)

RE Equilibrium.
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Definition A4 (RE Equilibrium Under BOPS with t > uo).

A RE equilibrium (ζ̄, ζ̂, φ̄s, φ̂s, q̄) should satisfy the following conditions:

(i) Given ζ̂ and φm, φ̄s satisfies Equation (A15);

(ii) Given φ̂s and φm, (q̄, ζ̄) satisfies Equation (A16);

(iii) ζ̄ = ζ̂ and φ̄s = φ̂s.

We characterize the RE equilibria by considering two cases.

Case 1: k ≤ ζ(1)p ub. In this case, we have φm = 1 and two potential equilibria with (qP , φPs ) =

(q
(1)
P ,1) or (qm,0). The equilibrium (q

(1)
P ,1) always exists, whereas (qm,0) exists only when k > ζmub.

Otherwise, when both customers believe that the retailer holds the inventory level at qm, store-only

customers will purchase as k ≤ ζmub. Meanwhile, when the retailer expects store-only customers’

purchasing, she will order q
(1)
P . Thus, the self-fulfilling prophecy fails. Nevertheless, we next show

that (q
(1)
P ,1) Pareto-dominates (qm,0) regardless of whether (qm,0) is an equilibrium or not.

Under (q
(1)
P ,1), the market segmentation is (φ̂s, φm) = (1,1), whereas under (qm,0), it is (φ̂s, φm) =

(1,0). Clearly, the retailer’s expected profit under the former is larger than that under the latter.

Because pb > po, we have qm <µm + σmΦ−1(1− cb
pb

) = qs and the corresponding fill rate is ζm < ζs.

Thus, by Lemma 2, ζm < ζ(1)p , which implies that customers will gain a higher utility from the

equilibrium (q
(1)
P ,1).

Case 2: uo ≥ k > ζ(1)p ub. In this case, we can verify that φm = 1 and there is only one equilibrium

(qP , φPs ) = (qm,0).

Combining the above cases will yield the desired results. �

Proof of Theorem A1. We prove the results by comparing retailer’s expected profits in various

areas as illustrated in Figure A1.

• k ≤min{ζ(1)p , ζsm}ub (i.e., Area (I)). By Proposition 1(i) and Proposition 2(i), the retailer’s

expected profits in the BASE and BOPS models are respectively given by

ΠB = max
q
{pbE[min(Dm +Ds, q)]− cbq};

ΠP = max
q
{pbE[min(Ds, q)]− cbq+ poE[min(Dm, (q−Ds)

+)]}.

Because pb ≥ po, we have

ΠP = max
q
{pbE[min(Ds, q)]− cbq+ poE[min(Dm, (q−Ds)

+)]}

≤max
q
{pbE[min(Ds, q)]− cbq+ pbE[min(Dm, (q−Ds)

+)]}

= ΠB.
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• ζ(1)p ub < k ≤ ζsmub (i.e., Area (II-1)). By Proposition 1(i) and Proposition 2(ii), the retailer’s

expected profits in the BASE and BOPS models are respectively given by

ΠB = max
q
{pbE[min(Ds +Dm, q)]− cbq};

ΠP = max
q
{poE[min(Dm, q)]− cbq}.

Then, ΠB ≥ΠP as po ≤ pb.

• ζsmub < k (i.e., Area (II-2)). Because ζsm ≥ ζs, this case in the BASE model corresponds to

Proposition 1(iii). Thus, ΠB = 0. Because ΠP is always nonnegative, ΠB ≤ΠP .

Therefore, we can obtain the desired results by combing the above cases. �

Proof of Proposition A3. Similar to the proof logic of Propositions 1 and 2, we can characterize

the customers’ choice as follows.

Customer Choice. Given customers’ belief on the fill rate ζ̂, we can analyze the resulting

market segmentation as follows.

(i) If k ≤ ub− uo + t and k ≤ ζ̂ub, both store-only customers and omni-customers will go to the

offline channel. Then, the total demand for the B&M store is Ds + Dm, and those omni-

customers who find a stockout will switch to the online channel.

(ii) If k≤ ub−uo + t and k > ζ̂ub, store-only customers will exit the market, and omni-customers

will go to the offline channel. Then, the total demand for the offline channel is Dm.

(iii) If k > ub−uo + t and k≤ ζ̂ub, store-only customers will go to the B&M store, whereas omni-

customers will go to the online channel. Then, the total demand for the online channel is Dm

and that for the offline channel is Ds.

(iv) If k > ub−uo + t and k > ζ̂ub, store-only customers will exit the market, and omni-customers

will go to the online channel. Then, the total demand for the online channel is Dm and that

for the offline channel is 0.

In summary, given customers’ belief on the fill rate ζ̂, the resulting market segmentation is given

by

(φ̄s, φm) =


(1,1) if ζ̂ ≥ k

ub
and k≤ ub−uo + t,

(0,1) if ζ̂ < k
ub

and k≤ ub−uo + t,

(1,0) if ζ̂ ≥ k
ub

and k > ub−uo + t,

(0,0) if ζ̂ < k
ub

and k > ub−uo + t.

(A17)

Retailer’s Optimal Decision. We now analyze the retailer’s optimal decision given his beliefs

on the market segmentation (φ̂s, φm). By the above analysis on the market segmentation, we can

see that the feasible market segmentation (φ̂s, φm) will be (1,1), (1,0), (0,1), and (0,0). Thus, we

discuss the following four cases.
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(i) If (φ̂s, φm) = (1,1), the retailer’s expected profit is π(q) = pbE[min(Ds +Dm, q)]− cbq+ (po−

co)E[(Dm− Dm
Ds+Dm

q)+] . The resulting optimal order quantity is q̄= qe, and the corresponding

fill rate is ζ̄ = ζe.

(ii) If (φ̂s, φm) = (0,1), the retailer’s expected profit is π(q) = pbE[min(Dm, q)] − cbq + (po −

co)E[(Dm− q)+] . The resulting optimal order quantity is q̄= qo. Define the corresponding fill

rate of the local store by ζo = E{Dm,qo}
E[Dm]

.

(iii) If (φ̂s, φm) = (1,0), the retailer’s expected profit is π(q) = pbE[min(Ds, q)] − cbq + (po −

co)E[Dm] . The resulting optimal order quantity is q̄ = qs, and the corresponding fill rate is

ζs.

(iv) If (φ̂s, φm) = (0,0), the retailer’s expected profit is π(q) = (po− co)E[Dm] . The optimal order

quantity is q̄= 0 and the fill rate is 0.

Therefore, given retailer’s belief (φ̂s, φm), the optimal order quantity q̄ and the corresponding fill

rate ζ̄ are given by

(q̄, ζ̄) =


(qe, ζe) if (φ̂s, φm) = (1,1),

(qo, ζo) if (φ̂s, φm) = (0,1),

(qs, ζs) if (φ̂s, φm) = (1,0),

(0,0) if (φ̂s, φm) = (0,0).

(A18)

RE Equilibrium. We now turn to analyze the RE equilibrium, which is denoted by (qP , φPs ).

Definition A5 (RE Equilibrium Under BOPS When uo <ub).

A RE equilibrium (ζ̄, ζ̂, φ̄s, φ̂s, q̄) should satisfy the following conditions:

(i) Given ζ̂ and φm, φ̄s satisfies Equation (A17);

(ii) Given φ̂s and φm, (q̄, ζ̄) satisfies Equation (A18);

(iii) ζ̄ = ζ̂ and φ̄s = φ̂s.

According to Definition A5, we consider the following four cases.

Case 1: k ≤ ub − uo + t and k ≤ ζeub. By (A17), we have φm = 1, and thus by (A18), we have

three potential equilibria, i.e., (qe, ζe), (qo, ζo) and (0,0). Similar to Proposition 1, one can verify

that all are RE equilibria and that (qe, ζe) is Pareto-dominant. Thus, qP = qe and φPs = 1.

Case 2: k ≤ ub − uo + t and k > ζeub. Again, we have three potential equilibria, i.e., (qe, ζe),

(qo, ζo) and (0,0). However, as k > ζeub, the store-only customers will exit the market and thus,

(qe, ζe) is not a RE equilibrium. Notice that the equilibrium (0,0) means that the retailer does not

store any inventory in the B&M store so that omni-customers have to choose the online channel.

If pb− cb > po− co, it is more profitable for the retailer to serve omni-customers through the offline

channel and thus, (qo, ζo) dominates (0,0). Thus, there exists only a unique equilibrium, i.e., qP = qo

and φPs = 0. On the other hand, when pb− cb ≤ po− co, it is more profitable for the retailer to serve
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omni-customers through the online channel and thus, (0,0) dominates (qo, ζo), i.e., the only unique

equilibrium is qP = 0 and φPs = 0.

Case 3: k > ub−uo+ t and k≤ ζsub. In this case, φm = 0 and there are two potential equilibria,

i.e., (qs, ζs) and (0,0). Both are RE equilibria. The former is Pareto-dominant and thus qP = qs

and φPs = 1.

Case 4: k > ub−uo+ t and k > ζsub. In this case, φm = 0 and there are two potential equilibria,

i.e., (qs, ζs) and (0,0). However, as k > ζsub, the store-only customers will exit the market and thus,

(qs, ζs) is not a RE equilibrium. The only equilibrium is (qP , φPs ) = (0,0).

Summarizing the above four cases leads us to the proposition. �

Proof of Theorem A2. The results can be derived by comparing retailer’s expected profits in

various areas. We consider the following five cases.

Case 1: k ≤ min(ζeub, ζsmub − uo + t) (i.e., Area I-1). On the one hand, by the equilibrium

analysis in Online Supplement A, the retailer’s expected profit in the BOPS model is given by

ΠP = max
q

{
pbE[min(Ds +Dm, q)]− cbq+ (po− co)E[(Dm−

Dm

Ds +Dm

q)+]

}
.

On the other hand, the retailer’s expected profit in the BASE model is

ΠB = max
q
{pbE[min(Dm +Ds, q)]− cbq}.

Clearly, ΠB ≤ΠP .

Case 2: ζsmub− uo + t < k ≤min(t, ζsub) (i.e., Area I-2). By Proposition 1(ii) and Proposition

A3, the retailer’s expected profits in the BASE and BOPS models are respectively given by

ΠB = max
q
{pbE[min(Ds, q)]− cbq+ (po− co)E[Dm]};

ΠP = max
q
{pbE[min(Ds +Dm, q)]− cbq+ (po− co)E[(Dm−

Dm

Ds +Dm

q)+]}.

Clearly, ΠB ≤ΠP , as Assumption (M) implies that

max
q
{pbE[min(Ds, q)]− cbq+ (po− co)E[Dm]} ≤max

q
{pbE[min(Ds +Dm, q)]− cbq}.

Case 3: max(ζsmub − uo + t, ζsub)< k ≤min(t, ζeub) (i.e., Area I-3). By Proposition 1(iii) and

Proposition A3(i), the retailer’s expected profits in the BASE and BOPS models are given by

ΠB = max
q
{(po− co)E[Dm]};

ΠP = max
q
{pbE[min(Ds +Dm, q)]− cbq+ (po− co)E[(Dm−

Dm

Ds +Dm

q)+]}.
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Then, it directly follows that πB ≤ πP as

ΠP = max
q
{pbE[min(Ds +Dm, q)]− cbq+ (po− co)E[(Dm−

Dm

Ds +Dm

q)+]}

≥ max
q
{pbE[min(Dm, q)]− cbq+ (po− co)E[(Dm− q)+]} ≥ (po− co)E[Dm].

Case 4: max(ζsmub − uo + t, ζeub)< k ≤ t+ ub − uo (i.e., Area II-2). By Proposition 1(iii) and

Proposition A3(ii), the retailer’s expected profits in the BASE and BOPS models (when pb− cb >

po − co) are given by ΠB = maxq{(po − co)E[Dm]} and ΠP = maxq{pbE[min(Dm, q)]− cbq + (po −

co)E[(Dm−q)+]}, Then, it directly follows that ΠB ≤ΠP . On the other hand, when pb−cb ≤ po−co,

we have that ΠB ≤ΠP .

Case 5: ζeub < k≤ ζsmub−uo + t (i.e., Area II-1). By Proposition 1(i) and Proposition A3(iii),

we have ΠB = maxq{pbE[min(Ds +Dm, q)]− cbq} and ΠP = maxq{pbE[min(Dm, q)]− cbq + (po −

co)E[(Dm− q)+]}, respectively.

We can easily verify that when po→ co, we have ΠP ≤ ΠB; whereas when po→∞, ΠP > ΠB.

Moreover, ΠP is increasing in po and ΠB is independent of po. Therefore, there exists a unique

δE(co) such that

max
q
{pbE[min(Ds +Dm, q)]− cbq}= max

q
{pbE[min(Dm, q)]− cbq+ (δE(co)− co)E[(Dm− q)+]}.

If such δE(co) violates Assumption (M), we just let δE(co) = pb− cb + ∆ + co. Consequently, BOPS

benefits the retailer if and only if po ≥ δE(co). �

Proof of Proposition A4. Customers’ choices are the same as those in Proposition 1, and

thus, we obtain

(φ̄s, φ̄m) =


(1,1) if ζ̂ ≥ uo−t+k

ub
,

(1,0) if k
ub
≤ ζ̂ < uo−t+k

ub
,

(0,0) if ζ̂ < k
ub
.

(A19)

We start the analysis with retailer’s decisions as follows.

Retailer’s Optimal Decisions. We have the following three cases.

(i) If (φ̂s, φ̂m) = (1,1), the retailer’s expected profit is π(q) = pbE[min(Dm + Ds, q)] − cbq +

rE[Dm +Ds] , and the resulting optimal order quantity is q̄ = qsm. Then, the corresponding

fill rate is ζ̄ = ζsm.

(ii) If (φ̂s, φ̂m) = (1,0), the retailer’s expected profit is π(q) = pbE[min(Ds, q)] − cbq + (po −

co)E[Dm] + rE[Ds] . Then, the resulting optimal order quantity is q̄= qs, and the correspond-

ing fill rate is ζ̄ = ζs.

(iii) If (φ̂s, φ̂m) = (0,0), the retailer’s expected profit is π(q) = (po− co)E[Dm] , and the resulting

fill rate is 0.
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RE Equilibrium. The equilibrium analysis is similar to Proposition 1. Under the condition po−

co ≤ pb− cb + ∆, we can obtain the desired equilibria by checking the definition of RE equilibrium.

�

Proof of Lemma A1. Part (i) is similar to Lemma 2 as r ≥ 0. We now prove parts (ii) and

(iii) as follows.

(ii) From Equation (A10), qC(0,1) satisfies the first order condition as

∂π(q)

∂q
=
∂[(r+ co)E[min(Dm, q)]− cbq

∂q
= 0.

Clearly, qC(0,1)≥ 0 if and only if r+ co ≥ cb.

(iii) By the optimality condition, qC(1,1) satisfies the first order condition

∂π(q)

∂q
=
∂[pbE[min(Ds, q)]− cbq+ (r+ co)E[min(Dm, (q−Ds)

+)]

∂q

≥ ∂[(r+ co)E[min(Dm, q)]− cbq
∂q

,

which implies that qC(1,1)≥ qC(0,1). As the fill rate increases in the order quantity, it follows that

ζC(1,1)≥ ζC(0,1).

Finally, we prove ζC(1,1)≥ ζp. Notice that qC(1,1) satisfies the first order condition

∂π(q)

∂q
=
∂[E[pbmin(Ds, q)]− cbq+ (r+ co)E[min(Dm, (q−Ds)

+)]

∂q
= 0,

and qp satisfies

∂π(q)

∂q
=
∂[E[pbmin(Ds, q)]− cbq+ coE[min(Dm, (q−Ds)

+)]

∂q
= 0.

Because r≥ 0, it is obvious that qC(1,1)≥ qp, and thus, ζC(1,1)≥ ζp. �

Proof of Proposition A5. Customers’ choices are the same as those under BOPS in Section

4 of ?. We next analyze the retailer’s optimal decisions.

Retailer’s Optimal Decision. The feasible market segmentation (φ̂s, φm) will be (1,1), (1,0),

(0,1), and (0,0). Omni-customers who experience a stock-out case in the B&M store will go to

the online store and unsatisfied store-only customers will be lost. Thus, we have the following four

cases.

(i) If (φ̂s, φm) = (1,1), the retailer’s expected profit is π(q) = pbE[min(Ds, q)] − cbq + (co +

r)E[min(Dm, (q − Ds)
+)] + (po − co)E[Dm] + rE[Ds]. The resulting optimal order quantity

q̄= qC(1,1), and the corresponding fill rate is ζC(1,1).
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(ii) If (φ̂s, φm) = (0,1), the retailer’s expected profit is π(q) = (co + r)E[min(Dm, q)]− cbq+ (po−

co)E[Dm] . Then, when r+ co > cb, the resulting optimal order quantity q̄= qC(0,1), and the

corresponding fill rate is ζC(0,1); when r+ co ≤ cb, q̄= 0 and the fill rate is zero.

(iii) If (φ̂s, φm) = (1,0), the retailer’s expected profit is π(q) = pbE[min(Ds, q)] − cbq + (po −

co)E[Dm] + rE[Ds]. The resulting optimal order quantity is q̄= qs, and the corresponding fill

rate is ζs.

(iv) If (φ̂s, φm) = (0,0), the retailer’s expected profit is π(q) = (po− co)E[Dm] , and the resulting

fill rate is 0.

RE Equilibrium. Given customers’ purchasing behavior and retailer’s ordering policy, by check-

ing the definition of RE equilibrium as that for Proposition 2, we can obtain the desired result.

�

Proof of Theorem A3. The results can be derived by comparing retailer’s expected profits in

various areas.

• k ≤ min(ζC(1,1)ub, ζsmub − uo + t) (i.e., Area (I-1)). Because uo ≥ ub, k ≤

min(ζC(1,1)ub, ζsmub − uo + t) ≤ min(ζC(1,1)ub, t). By Proposition A5(i), the retailer’s expected

profit under BOPS is given by

ΠP = max
q

{
pbE[min(Ds, q)]− cbq+ (co + r)E[min(Dm, (q−Ds)

+)] + (po− co)E[Dm] + rE[Ds]
}
.

By Proposition A4(i), the retailer’s expected profit in the BASE model is

ΠB = max
q
{pbE[min(Dm +Ds, q)]− cbq+ rE[Ds +Dm]}

= max
q

{
pbE[min(Ds, q)] + pbE[min(Dm, (q−Ds)

+)]− cbq+ rE[Ds +Dm]
}
.

Then, when po− co→ 0, i.e., po→ co, we have ΠB ≥ΠP as

ΠP = max
q
{pbE[min(Ds, q)]− cbq+ (co + r)E[min(Dm, (q−Ds)

+)] + rE[Ds]}

≤ max
q
{pbE[min(Ds, q)]− cbq+ pbE[min(Dm, (q−Ds)

+)] + rE[Ds +Dm]}= ΠB,

where the inequality holds by co ≤ cb ≤ pb and E[min(Dm, (q−Ds)
+)]≤E[Dm].

If po− co→ pb− cb + r+ ∆, we have ΠB <ΠP as

ΠP = max
q
{pbE[min(Ds, q)]− cbq+ (co + r)E[min(Dm, (q−Ds)

+)] + (pb− cb + r+ ∆)µm + rµs}

= max
q
{pbE[min(Ds, q)]− cbq+ (co + r)E[min(Dm, (q−Ds)

+)]}

+max
q
{pbE[min(Dm +Ds, q)]− cbq}−max

q
{pbE[min(Ds, q)]− cbq}+ r(µm +µs)
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≥ max
q
{pbE[min(Dm +Ds, q)]− cbq}+ r(µm +µs) = ΠB.

Therefore, as ΠP is increasing in po, there exists a threshold δC ∈ [co, co + pb − cb + r+ ∆] such

that when po < δC , ΠB ≥ΠP , and when po ≥ δC , ΠB <ΠP . Moreover, as Πp−Πc is decreasing in

r, we have that:

• ζsmub−uo+ t < k≤min(t, ζsub) (i.e., Area (I-2)). By Proposition A4(ii) and Proposition A5(i),

the retailer’s expected profits in the BASE and BOPS models are respectively given by

ΠB = max
q
{pbE[min(Ds, q)]− cbq+ (po− co)E[Dm]}+ rµs;

ΠP = max
q
{pbE[min(Ds, q)]− cbq+ (co + r)E[min(Dm, (q−Ds)

+)] + (po− co)E[Dm] + rµs}.

Clearly, ΠB ≤ΠP .

• max(ζsmub−uo + t, ζsub)<k≤min(t, ζC(1,1)ub) (i.e., Area (I-3)). By Proposition A4(iii) and

Proposition A5(i), the retailer’s expected profits in the BASE and BOPS models are given by

ΠB = max
q
{(po− co)E[Dm]};

ΠP = max
q
{pbE[min(Ds, q)]− cbq+ (co + r)E[min(Dm, (q−Ds)

+)] + (po− co)E[Dm] +µs}.

Then, it directly follows that ΠB ≤ΠP .

• max(ζsmub− uo + t, ζC(1,1)ub)< k≤ t (i.e., Area (II-2)). By Proposition A4(iii) and Proposi-

tion A5(iii), the retailer’s expected profits in the BASE and BOPS models are respectively given

by

ΠB = max
q
{(po− co)E[Dm]};

ΠP = max
q
{(co + r)E[min(Dm, q)]− cbq+ (po− co)E[Dm]}.

Clearly, ΠB ≤ΠP .

• ζC(1,1)ub <k≤ ζsmub−uo + t (i.e., Area (II-1)). By Propositions A4(i) and A5(iv), we have

ΠB = max
q
{pbE[min(Ds +Dm, q)]− cbq}+ r(µs +µm)

≥ max
q
{pbE[min(Ds +Dm, q)]− cbq} ≥ (po− co)E[Dm] = ΠP .

Combing all above cases leads to the desired result. �

Proof of Proposition A6. Let ζ̂ be the customers’ belief on the fill rate and (φ̂m, φ̂s) be

the retailer’s belief on the proportions of omni-customers and store-only customers who purchase

offline. We first characterize customers’ channel choices and retailer’s optimal decision in terms of

these private beliefs.
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Customer Choice. Given customers’ belief on the fill rate, let (φ̄m, φ̄s) be the resulting propor-

tions of omni-customers and store-only customers who purchase offline. Customers’ utilities from

purchasing online and offline channels are given by (A11). Then, customers’ channel choices are as

follows: 1) store-only customers purchase the product if UB
s,b ≥ 0; otherwise, exit the market, or 2)

omni-customers purchase the product from the offline channel if and only if UB
m,b ≥max(0,UB

m,o)

and from the online channel if and only if UB
m,o ≥max(0,UB

m,b). In particular, we can further char-

acterize customers’ choices, (φ̄s, φ̄m), in different parameter regions as follows.

(i) If ζ̂ub−k+(1− ζ̂)(uo− t)≥ (uo− t), then both store-only customers and omni-customers will

choose the offline channel, i.e., (φ̄s, φ̄m) = (1,1). The omni-customers will switch to the online

channel when experiencing a stockout.

(ii) If uo− t≥ ζ̂ub−k+(1− ζ̂)(uo− t)≥ 0 and ζ̂ub−k≥ 0, then store-only customers will go to the

B&M store, whereas omni-customers will choose the online channel. That is, (φ̄s, φ̄m) = (1,0).

(iii) If ζ̂ub−k < 0, then store-only customers will exit the market, and omni-customers will choose

the online channel. That is, neither type will go to the B&M store, i.e., (φ̄s, φ̄m) = (0,0).

Therefore, given customers’ belief on the fill rate ζ̂, the resulting market segmentation (φ̄s, φ̄m) is

expressed as

(φ̄s, φ̄m) =


(1,1) if ζ̂ ≥ k

ub−(uo−t)
,

(1,0) if k
ub
≤ ζ̂ < k

ub−(uo−t)
,

(0,0) if ζ̂ < k
ub
.

(A20)

Retailer’s Optimal Decision. Given retailer’s beliefs (φ̂m, φ̂s) on customers’ choices, let q̄

and ζ̄ be the optimal order quantity for the B&M store and the corresponding resulting fill rate,

respectively. As customers are homogeneous, there are only three possible values of (φ̂s, φ̂m): (1,1),

(1,0), and (0,0). We now analyze the retailer’s optimal decision for the three cases.

(i) If (φ̂s, φ̂m) = (1,1), the retailer’s expected profit is π(q) = pbE[min(Dm +Ds, q)]− cbq+ (po−

co)E[(Dm− Dm
Dm+Ds

q)+]. Then, the optimal order quantity is q̄= qe, and the corresponding fill

rate is ζ̄ = ζe.

(ii) If (φ̂s, φ̂m) = (1,0), the retailer’s expected profit is π(q) = pbE[min(Ds, q)] − cbq + (po −

co)E[Dm]. Consequently, the optimal order quantity is q̄= qs, and the corresponding fill rate

is ζ̄ = ζs.

(iii) If (φ̂s, φ̂m) = (0,0), the retailer’s expected profit is π(q) = (po − co)E[Dm]. Therefore, the

retailer will order nothing for the B&M store and the resulting fill rate is zero, i.e., q̄= 0 and

ζ̄ = 0.
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In summary, given the belief (φ̂s, φ̂m), the retailer’s optimal decision of q̄ and the corresponding

fill rate ζ̄ can be characterized as

(q̄, ζ̄) =


(qe, ζe) if (φ̂s, φ̂m) = (1,1),

(qs, ζs) if (φ̂s, φ̂m) = (1,0),

(0,0) if (φ̂s, φ̂m) = (0,0).

(A21)

RE Equilibrium. Next, we analyze the RE equilibrium, denoted by (qB, φBm, φ
B
s ), by connecting

customers’ choices with the retailer’s optimal decision. The concept of RE equilibrium states 1)

customers’ belief on the fill rate is exactly the realized fill rate, and 2) retailer’s belief on customers’

choices is just consistent with the realized one. Specifically, we define the RE equilibrium as follows.

Definition A6 (RE Equilibrium Under BASE). A RE equilibrium

(ζ̄, ζ̂, φ̄m, φ̄s, φ̂m, φ̂s, q̄)

should satisfy the following conditions:

(i) Given ζ̂, (φ̄s, φ̄m) satisfies Equation (A20);

(ii) Given (φ̂s, φ̂m), (q̄, ζ̄) satisfies Equation (A21);

(iii) ζ̄ = ζ̂ and (φ̄s, φ̄m) = (φ̂s, φ̂m).

By Definition A6, we know that there exist only three potential RE equilibria, i.e., (qB, φBs , φ
B
m) =

(qe,1,1), (qs,1,0), and (0,0,0). In the following cases, we first verify whether these potential equi-

libria satisfy the conditions of RE equilibrium. When there exist multiple RE equilibria, we choose

the one which is Pareto-dominant.

Case 1: k ≤ ζe(ub − (uo − t)). In this case, we first show that (qe,1,1) and (0,0,0) are RE

equilibria, whereas the existence of (qs,1,0) as an equilibrium depends on whether ζsub ≥ k >

ζsub− (uo− t) or not. The justification of a RE equilibrium for those cases is similar to Proposition

1.

We next show that the equilibrium (qe,1,1) always Pareto-dominates others. Clearly, the equi-

librium (0,0,0) is dominated, as it generates zero payoff for both the retailer and customers. Now,

we compare the equilibria (qe,1,1) and (qs,1,0). From Proposition 1, we know that π̄B(qs|(1,0)) =

πB(qs|(1,0))≤ πB(qsm|(1,1))< π̄B(qsm|(1,1)), in which the last inequality holds due to the addi-

tional profits from omni-customers’ switching behavior.

The domination of omni-customers’ utility and store-only customers’ utility follows the argument

of Proposition 1. Therefore, the Pareto-dominant equilibrium is qB = qe, and (φBs , φ
B
m) = (1,1).

Case 2: ζsub ≥ k > ζe(ub − (uo − t)). Similar to Case 1, one can show that both (qs,1,0) and

(0,0,0) are equilibria and that (qs,1,0) is Pareto-dominant. Thus, qB = qs and (φBs , φ
B
m) = (1,0).
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Case 3: k > ζsub and k > ζe(ub− (uo− t)). In this case, one can verify that there exists just one

equilibrium, (qB, φBs , φ
B
m) = (0,0,0).

By combining the above cases, we can obtain the desired results. �

Proof of Theorem A4. The first case is similar to the one in Theorem 1, and we omit its

proof.

• ζpub < k ≤ ζe(ub − uo + t). In this case, the retailer’s expected profit in the BASE model can

be written as

Π̄B = max
q
{pbE[min(Dm +Ds, q)]− cbq+ (po− co)E[(Dm−

Dm

Dm +Ds

q)+]}

= max
q

{
pbE[min(Ds, q)] + pbE[min(Dm, (q−Ds)

+)]− cbq+ (po− co)(E[Dm]−E[min(Dm,
Dm

Dm +Ds

q)]

}
.

Then, we have

Π̄B ≤ (po− co)E[Dm] = ΠP .

• k≤min(ζpub, ζe(ub−uo+ t)). Because uo ≥ ub, k≤min(ζpub, ζe(ub−uo+ t))≤min(ζpub, t). By

Proposition 2(i), the retailer’s expected profit in the BOPS model is given by

ΠP = max
q

{
pbE[min(Ds, q)]− cbq+ coE[min(Dm, (q−Ds)

+)] + (po− co)E[Dm]
}
.

When po→ co, we have π̄B ≥ πP as

ΠP = max
q
{pbE[min(Ds, q)]− cbq+ coE[min(Dm, (q−Ds)

+)]}

≤ max
q
{pbE[min(Ds, q)]− cbq+ pbE[min(Dm, (q−Ds)

+)]}= Π̄B,

in which the inequality holds by co ≤ cb ≤ pb.

Note that for any given q, Dm and Ds, we can prove the following inequality:

Dm

Ds +Dm

min{Ds +Dm, q} ≥min(Dm, (q−Ds)
+),

by considering the following three cases:

(a) if q≥Ds +Dm, we have that Dm
Ds+Dm

min{Ds +Dm, q}=Dm = min(Dm, (q−Ds)
+);

(b) if Ds ≤ q <Ds+Dm, we have that Dm
Ds+Dm

min{Ds+Dm, q}= Dm
Ds+Dm

q > q−Ds = min(Dm, (q−

Ds)
+);

(c) if q <Ds, we have that Dm
Ds+Dm

min{Ds +Dm, q}= Dm
Ds+Dm

q > 0 = min(Dm, (q−Ds)
+).
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Therefore, we have E[min(Dm,
Dm

Dm+Ds
q)] ≥ E[min(Dm, (q −Ds)

+)]. It follows that when po→ pb.

This is because

Π̄B ≤ max
q
{pbE[min(Ds, q)]− cbq+ (pb− po + co)E[min(Dm, (q−Ds)

+)]}+ (po− co)EDm

= max
q
{pbE[min(Ds, q)]− cbq+ coE[min(Dm, (q−Ds)

+)]}+ (po− co)EDm = ΠP .

Because ΠP − Π̄B is increasing in po, it ensures that there is a threshold in [co, pb], lower than

which we have ΠP < Π̄B. Moreover, we can verify that when po→ pb− cb + co + ∆ and cb−∆≤ co,

Π̄B <ΠP . This is because

Π̄B ≤ max
q
{pbE[min(Ds, q)]− cbq+ (pb− po + co)E[min(Dm, (q−Ds)

+)]}+ (po− co)EDm

= max
q
{pbE[min(Ds, q)]− cbq+ (cb−∆)E[min(Dm, (q−Ds)

+)]}+ (po− co)EDm

= max
q
{pbE[min(Ds, q)]− cbq+ coE[min(Dm, (q−Ds)

+)]}+ (po− co)EDm = ΠP .

Thus, there exists a threshold δR(co) ∈ [co, pb− cb + co + ∆] such that when po < δR(co), Π̄B ≥ΠP ,

and when po ≥ δR(co), Π̄B <ΠP .

Thus, this completes the proof. �
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