Online Supplements to “Dynamic Type Matching”

A. An alternative formulation of the 2 x 2 horizontal model

The greedy matching in round 1 allows us to collapse the state space. After round 1, type 1 (resp.,
type 2) demand and type 1 (resp., type 2) supply cannot be both available. In period ¢ with the
state (x,y) = (x1, %2, y1,92), we define the transformed state as z:= (21, 22), where z; = x; —y; and
Zo = Yo — 2. The quantity z; describes the imbalance between type 1 demand and type 1 supply.
A nonnegative z; represents the remaining quantity of type 1 demand after greedy matching with
type 1 supply in period ¢ (the remaining quantity of type 1 supply will be zero). For a negative
value of 21, z; = —z is the remaining quantity of type 1 supply after greedy matching with type 1
demand. Similarly, z; is the remaining quantity of type 2 supply after greedy matching with type
2 demand, whereas z; is the remaining quantity of type 2 demand after greedy matching with type
2 supply. In the rest of this online appendix, unless otherwise specified, we use the word “state” to
refer to the transformed state z. We consider the following cases.

Case 1: z; > 0 and z, > 0. After round 1 matching, a quantity z; of type 1 demand is available to

be matched with a quantity z, of type 2 supply. Let ¢ be the matching quantity in round 2 between
type 1 demand and type 2 supply. We have 0 < ¢ <min{z;,2,}. After round 2 matching, the
remaining quantity of type 1 demand is z; and that of type 2 supply is z2 — ¢. The post-matching
state is therefore (z; — ¢, 22 — q).

Case 2: z; <0 and z, < 0. After round 1 matching, a quantity —z; of type 1 supply is available to

be matched with a quantity —z, of type 2 demand. Let —¢ be the matching quantity in the round
2 between type 2 demand and type 1 supply. We have 0 < —¢ < min{—z;,—2,}, or equivalently,
max {z, 22} < ¢ <0. After round 2 matching, the remaining quantity of type 1 supply is —z; +¢
and that of type 2 demand is —z; + ¢. In other words, the post-matching state is (z; — ¢, 22 — q).

Case 3: 2123 < 0. After round 1 matching, either there is only demand available or only supply

available. The matching quantity in round 2 is ¢ =0. The post-matching state is (z; — ¢,20 — q) =
(21,29) (it is identical to the pre-matching state since there is no matching in round 2).

In any of the above cases, the feasible space of matching decisions in round 2 of period ¢ is:

M(z)={q|0<qg<min(z,22) or max(z,22) <g<0or ¢g=0}. (A1)

To reformulate the problem, we consider the total expected reward received from round 2 match-

ing in period t to the end of period T'.



In period ¢, the matching quantity between type 1 demand and type 2 supply is ¢*, and the
matching quantity between type 2 demand and type 1 supply is ¢~. Thus, a total reward ri,q* +
rh,q~ is received in round 2 of period t.

Since the post-matching state in period ¢ is (z; — q,22 — q) after round 2, in the begin-
ning of period t + 1 the available type 1 demand is «a(z; — q)* + Di*!) available type
2 demand is a(z, — q)~ + DL, available type 1 supply is B(z, — ¢q)~ + Si™, and avail-
able type 2 supply is B(z2 — ¢)* + Sit'. In round 1 of period t + 1, type 1 demand and
type 1 supply will be matched greedily, and so will type 2 demand and type 2 supply.
This results in the total expected reward r!f'Emin {a(21 — )"+ D B(2 —q) + Sf“} +
riy ' Emin {a(zo — q)~ + D5, B(22 — ¢)* 4+ S5t} in round 1 of period ¢ + 1. The state immediately
prior to round 2 of period t+1is (a(z; —q)* +Di = B(21 —q)~ = SIT, B(ze — @) T + S5 — a2y —
)~ —Dy*).

Let us define J;(g,z) as the total expected reward received from round 2 of period ¢ until the end
of period T if the round 2 matching decision in period ¢ is q. We also define U,(z) as the optimal
total expected reward achievable (by using the optimal ¢) from round 2 of period ¢ until the end

of period T'. We are now ready to present the reformulation.

Ui(z) = max J,(q,2) (A.2)

qEM (2)
Ji(¢,2) = 112" + 1547 + i Emin {a(z — q)" + D Bz —q)” + 51}
+~ri3 Emin {a(z2 —q)” + DL B(20 — )T + S§+1}

+y BV (ol — )" + D17 = Blzr —q)” =S, Bz — @) " + 557 —a(ze —q)” = Dy*). (A3)

We show the concavity of J; in the following lemma (for the continuous-valued model).

LEMMA A.1. Consider the problem with continuous-valued state space and matching decisions.
Ui(z) is concave in any of the following regions: z€ R%, z€ Ry xR_, ze R_ xRy and ze€R? For

any given state z, Ji(q,z) is concave in q within its feasible range defined in (A.1).

Proof of Lemma A.1. 'We show that U,(z) is concave for z € R?, and its concavity in the other
regions are similar. If the original (i.e., untransformed) state in the beginning of period ¢ is given
as x1 = z1, 2 =0, y; =0 and y, = 23, the matching quantity in round 1 is zero since there is no
type 2 demand or type 1 supply available. By definition, we have U,(z) = V;(21,0,0, z2). One can
readily show that V;, is concave for the problem with continuous-valued states and decisions. It

follows that U,(z) is concave in z € R?.



Next, we show that J;(q,z) is concave in ¢ for given z. When z,2, <0, ¢ can only be zero, and
thus the result holds trivially. Let us prove that J;(q,2z) is concave in ¢ when z; >0 and 2, > 0,
and the remaining case with z; <0 and 2z, <0 follows by symmetry.

Following our earlier discussions in this supplementary, after round-2 matching in period ¢, the
available type 1 demand is z; — ¢, the available type 2 supply is z; — ¢, and there is no available
type 2 demand or type 1 supply. Therefore, the (untransformed) post-matching levels in period
t+1 are (ug,ug,v1,v2) = (21 — ¢,0,0,25 — q). The sum of the last three terms in (A.3) represents
the expected total discounted reward from the beginning of period ¢+ 1 to the end of period T.
Therefore, J;(q,2) = 75 + YEVii 1 (a(z1 — ¢) + Dit1,0,0,8(22 — q) + S&t). Since Vi, is concave,
Ji(q,z) is concave in q. [

We now prove Proposition 1 for the continuous-valued model based on the reformulation (A.2)—
(A.2), and defer the proof for the discrete-valued model to Online Supplements A.1 (for the case
with o« =/ =1) and A.2 (for the case with « =0 and f=1).

Proof of Proposition 1 (Continuous-valued model). We focus on the matching in round 2, and
only consider the case with z; >0 and z; >0 (the case with z; <0 and 2z, <0 is symmetric).

Using the reformulation (A.2)-(A.3), the optimal matching quantity solves max,enr(z) J:(q,2).
Let us use pg:=2; —q and p, = 29 — q as decision variables in place of q. Then, pg=p, + 21 — 20 =
ps + IB. Since both p; and p, need to be nonnegative, the feasible range of p, is IB~ < p, < 2.

We rewrite J;(q,z) as a function of p,, by substituting ¢ = z2 — ps in (A.3). Given that 0 < ¢ <

min{z, 2o}, we have

Ji(q,2) =1ty (22 — ps) + 71T Emin {oz(pS +IB) + DIt Si“} + 73 E'min {Dg“7 Bps + Sé“}

+ EUt+1(a(ps + IB) + D§+1 - Si—H? Bps + SS—H - Dé-H)a (A4>

which depends on IB, p, and also linearly on z. The sum of the last three terms in (A.4) rep-
resents the expected total discounted reward from period ¢t + 1 to period T, which is equal to
VEVi (eps + IB) + DI, D5 ST Bp, + S5Y) Thus, Ji(q,2) = iy (22 — ps) + 7EVig (e(ps +
IB) 4+ D' DEFY SIH Bp, 4+ SET). We can write J,(q,2) = 7ty25 + Ji(ps, IB), where Ji(p,, IB) :=
—rtops + YEVia (alp, + IB) + Di™, DiH, 17 Bp, + S5,

It is easy to see that .J, is concave in p, (the argument is similar to the proof of concavity
of J,(q,z) with respect to ¢ in Lemma A.1). Let p,,(IB) € argmax,_ s - jt(ps,IB). Since IB~ <
ps < 2o, the optimal decision in terms of p, is p? = min {Zg,pig(IB)}. Thus, the optimal matching
quantity between type 1 demand and type 2 supply is ¢y = 2o — p¥ = 29 — min{zg, DL, (IB)} =
[22 = pl, (IB)]* = [y2 — 22 — p,,(IB)]*. [



A.1. The case with equal carry-over rates

We now consider the case a = . To begin with, we transform the Bellman equations (A.2)—(A.3).

Let us define Uy(z) := —ri 2 — 1tz 4+ Uy(z) and Jy(q,2) := —ri 25 — 1,25 + Ji(q,2). In the

following lemma, we rewrite the equations (A.2)—(A.3).

LEMMA A.2. Suppose a = . Equations (A.2)-(A.3) are equivalent to the following equations:

U,(z) = max J,(q,2) (A.5)

q€M(2z)
Ji(q,2) =y EDI i ESET — (7, 4 by — i —rh gt —rhig
—(ry —varT) (s =) = (rgy —yary ') (2 — @)

+~vEU 1 (a(z — q) + DY — S a2y — q) + 41 — DEFY). (A.6)
Proof of Lemma A.2. Applying the equality min{a,b} =a — (a —b)*, we can rewrite J; as:

Ji(q,z) =riyq" + 14 q” + i EDT +yri  ESH
+yar{{ E(z — q)" —yriT Elo(z — q) + DT = STHT
+yaryy Bz — q)" — it Ela(z — q) + S5 — DT

+vEU (a2 — q) + DT — S a2y — q) + SETE — DI,

Then, by the definition of jt(q,z), we have

Ji(q,2) =yri{ EDY 4 rd LESYT =z =z + (150" — g
+yari ' B(z1 —q)" +yary Bz —q)"

+ ’YEﬁtH(Oé(Zl —q)+ DI = ST a(z —q) + 537 — DiT.

For g € M(z), we can verify that 27 = ¢ + (21 — ¢)* and 25 = ¢* + (22 — ¢)*. By substituting

2 and 2z by ¢" + (21 — ¢)* and ¢ + (25 — ¢)* respectively, we have

Ji(q:2) =yr{T ED{ 4t ESTT =l [g + (21— @) = ol + (2 — @)1 4 (r +rh)a T —rhig
+yar Tt E(z —q)t +yaryi E(z —q) "
+yEU, 1 (a(z — q) + D — 871 oz, — q) + SLH — DL
:'YTiJlrlEDiﬂ + 'YrglESSH - (7451 + 7"52 - 7“§2 - Tél)q+ - 7“31(]

— (i —yarii )z —a) " = (rhy —varyy ) (2 — )"



+ ’YEUt+1(a(Zl - Q) + Diﬂ - SfH, 04(2’2 - Q) + Sé“ - DEH)-

This completes the proof. [
We will show that both functions J, and U, are Li-concave. To that end, we first present a

lemma, which explores the properties of the transformed value function U,.

LEMMA A.3. Suppose that Assumption 2 holds. For any transformed state z in period t and any

€ >0, we have Ut(z+612) - Ut(z) > —(rh =Tl +71)E.

Proof of Lemma A.3. We prove the lemma by induction. The lemma clearly holds for t =T+ 1
since Uz 1(z) = 0. Suppose that it holds for period ¢+ 1. To show that the equality U,(z +1?) —
Uy(z) > —(rky — iy + 7t,)e holds in period t, we consider sufficiently small ¢ > 0 such that, if
2; <0 (i=0,1) then € < |z, without loss of generality. (Note that if the inequality holds for any
sufficiently small & > 0, then Uy(z + Ke12) — Uy(z) = Sr, [Ut(z +ke1?) — Uz + (k — 1)612)} >
— SN by — 7ty 41t e = —(rby — 7ty 41, ) Ke for any positive integer K; thus the result will also
hold for any € > 0.)

Let us denote by § € argmaxye () jt(q,z) the optimal matching quantity in round-2 matching
of period ¢, given the transformed state z. We discuss four cases.

Case 1: z1 >0 and z, > 0.

It is easy to see that ¢+ ¢ is a feasible matching quantity between type 1 demand and type 2
supply under the state (z; + ¢, z, + ), for any € > 0.

Thus, for any € > 0,
ﬁt(zl +5a22 +8) - ﬁt(ZhZZ) 2 jt(q+87zl +€7Z2 +5) - jt((ja”zl?ZQ) - (_ril - T§2 —|—T§2)E,

which is equivalent to U,(z +£12) — Uy(z) > —(rky — 1ty + 7%, )e.
Case 2: z1 <0 and 2z, <0.
Let ¢/ =min{—¢,e}. It is easy to see that §+ ¢’ is a feasible decision under the state z + 1% =

(z21+¢€,22+¢€). Then,

U,(z+¢1%) — Uy(z)
th(cj +e,z+¢el)— jt((j, z)
= — 1l +YEU (a2 — §) + ale — ')+ D — S a2y — §) + a(e — ') + DL — SEHL)

—NEU 1 (o2 — §) + D — ST a2y — §) + DL — SEH



> —rhe’ —ya(ry) =il + i) (e - ),

where the last inequality follows from the induction hypothesis. It follows that,

(rt, —rt, + 1t e+ U (z+€12) — U,(z)
>(rhy — iy +ri)e —rhie —ya(ritt —riF +riT (e —€)

:(ng - Tiz =+ 7’;1 - 7"51)5/ + [(7"52 - 7";2) - '705(7"?2L1 - Tgl) + Th - '70”31} (e—¢€) >0,

which implies the desired result. (The last inequality above follows from Assumption 2.)
Case 3: z1 >0 and 2z, <0.

We have

Uy(z+el)—U,(z)
=J,(0,z +¢1) — J,(0,2)
=— (ry, —yarii')e

+~yEU 1 (az +ae + D — S azy + ae 4+ DL — SEY) — EU,, (2 + D — SHY 2, + DEFL — SEFL

> (rfy —arife —ya(ri — g i,
where the last inequality follows again from the induction hypothesis. It follows that

(7";2 - Tiz ‘1’7”;1)5 + f]t(z +512) - Ut(Z)
>(rhy —T1g +111)e = () —yariTh)e —ya(ryg ! — i3t + i e

:[(7”;2 - 7”§2) - 704(745—51 - 7«31)]5 >0,

where the last inequality follows from Assumption 2.
Case 4: z1 <0 and z, > 0.

We have

U(z+¢e1) — U, ()
:jt(O,Z +€1) — jt(O,Z)
= — (rly —yartie + yEU 1 (az; + ae + D — STz, + ae 4+ DY — S

— ’yEﬁHl(Ozzl + DiJrl — SiJrl, azo + D;+1 — S§+1)



== (ry —vary e —ya(ryl’ — iyt +rif e = =[rh +ya(riy’ — i)

It follows that

(rhy =71 +711)e + Unsa (2 +€1%) = Uiy (2)
>(rhy — 11 +111)E = [ +ya(ri{ —ri3)]e = (r]) —rly)e —ya(rift —r5h)e >0,
where the last inequality holds because of Assumption 2.

Combining the four cases completes the induction. [

LEMMA A.4. Suppose that Assumption 2 holds. The function J,(¢,z) is L*-concave in (q,2) and

U,(z) is L*-concave in z.

Proof of Lemma A.j. We prove the lemma by induction. Ur(z) =0 is Li-concave. Suppose that
U,41(z) is Li-concave. To show that U,(z) is Li-concave, it suffices to prove that U,(z — n1?) is
supermodular in (n,z).

Given the conditions rt, > yarif! and 7%, > yarii', the induction hypothesis and the concavity
of —(-)*, it is easy to see that J,(q—1n,z—n12) is supermodular in (1, ¢, z). This implies that J,(q,z)
is Li-concave in (q,z), and thus it is also supermodular in (q,z). Since the set {(¢,z) |q € M(z)}
is a lattice, U;(z) = maxX,en(s) Ji(¢,2) is supermodular. As a result, the function U,(z — n1?) is
supermodular in z. To show that U, is Li-concave, it suffices to show that U (z—n1?) has increasing
difference in (7, z;) and in (7, 22). In the followings, we show that this is true within four regions
(ie.,z—n1?€R% :={2z]2>0,20>0}, z—n1? € R? :={z|2 <0, <0}, z—n1* € Ry x R_:=
{22, >0,20<0}and z—n1? e R_ xR, :={z]| 2, <0,2, >0}), as well as across the four regions.

For z —n1? € R, we have Uy(z —nl?) = MAX e 0 (z—112) Ji(q,z—n1?) = MAaX, e (z—n12) Ji(q —
1,z — n1?). The feasible set of the maximization problem (on the RHS of the last equality)
is {(q¢,n,2)|z—n1*>0,g—ne M(z—n1?)} = {(q,n,2) |1 < q<min{z,2,}}, which is a lattice.
Because J,(q — 1,2z —n1?) is supermodular in (1, ¢,2), the function U,(z —n12) is supermodular in
(n,2) for n <min{z,2,}. This implies that U,(z —n1) has increasing differences in (1,z,) and in
(n,22) for n <min{z, 25 }.

Similarly, for z — 712 € R2, we have U,(z — n12) = MAX, e M (z—n12) Ji(q — n,z —nl) =
MAXmax{ 2,29} <q<n jt(q — n,z — nl) is supermodular in (n,z) for 1 > max{z,22} because
{(¢,n,2) | max {z, 2} <q<n} is a lattice. Thus, U,(z — 1?) has increasing differences in (1, ;)

and in (1, 29) for n <max{z1,2:}.



Forz—n1? € R, xR_or z—n1? e R_ xR, we have M(z—n1?)={0}. Based on the expression
in (A.6), it is easy to verify that U,(z — n1) = J,(0,z — n1) is supermodular in (1,z) for (1,2) €
R, xR_ and for (n,z) e R_ xR,.

It remains to show that U,(z —712) has increasing differences in (1, 2;) and in (1, z,) across the
4 regions. In the followings, we focus on the difference U,(z + £12) — U,(z) across the boundary
between z —n1* € R? and z—n1? € R x R_. The same property across the other boundaries can
be proved similarly. More specifically, we will prove the following inequality holds for sufficiently

small € > 0.

Ut(Zl,O) — [}t(zl — &, —E) 2 Ut(zl,s) — Ut(Zl — 5,0),

which implies that U,(z —n12) has increasing differences in (1), 2) across the boundary between
z—n1? €eR? and z—n1* € Ry x R_. (The increasing difference property with respect to (7,2) can
be proved similarly.)

Let z; >0 and ¢ € argmaxXge (2, ) jt(q, 21,€). Also, let ¢/ =& — ¢. Then, by using the expression

of J, given in (A.6), we have

(Z(zl,s) — ﬁt(zl —¢,0)
:jt(cj,zl,s) - jt(O, z1 —¢€,0)
= — (111 + Ty = T1o = T51)q = 15,4 — (11 — yarii ) (z1 — §) = (ryy —vargy ') (€ — 4)
+vEU(alz = @) + DIt = S ale — ) + 857 = Dy
—[=(r}y =yar{{")(z1 — ) + EUppa (a2 —€) + D — STH, S5+ — DY)
= — 1€ — e+ G +yar] (e — ¢) +yarg (e — q)
+ EUp (o2 — @) + Dy = 817 a(e — §) + S5 = DI — B (a2 —e) + DY — S, S5 — DY)
t+1 41

_ t t t / 12
=—r € —re+ri(e—&) tyary e +yaryy e

+ EU (a2 —e4¢€') 4+ DI — S ae’ + S8 — DY — EU, (a2, — ) + DI — S Sl pi+t)
Also, for z; >0,

U,(21,0) = Up(z1 — e, —¢)
=J,(0,21,0) — J,(0, 2, — e, —¢)

=~ (riy —vorii )z + 7BV (a2 + Di = S 8537 — Dyt



- [—(ril —yartt) (2 —e) + YEU 1 (a2 — ) + DY — S5 —qe + SEF — DEH)}
=~ (rly —varif)e +yEU 1 (az + DI = S{H S5 — Dyt
—VEU 1 (a(z —€) + DIt — St —qe + SiH1 — DI
=—(ry —vari{')e
+yEU, 1 (az + Dt — S+ Sl DUY) _ BT, (o — ae —e') + DI — S _a(e — ') + SLTH — DY)
+~yEU 1 (a2 —afe — ')+ DIt — 81+ _a(e — ') + SL1 — DL
—VEU (a2 — )+ DL — S+ e 4 SUFE — DI
>—(riy —vyorii)e
+yEU, 1 (az + D — S+ Gl _ DUY) _ BT, (2 — ae —e') + DI — S _a(e — ') + SLTH — DLt
+YEU 1 (a2 — ale — ') + D — S5 e’ + SE — DI

—NEU, 1 (a(z —e) + DIt — g+l gt+l _ pt+t)

where we obtain the inequality by the increasing difference property of ﬁt+1 by induction.

It then follows that

[U(21,0) = U(z1 — e, —&)] - [Us(z1,¢) = Uy(z1 —&,0)]
Zyarii (e — &) +15e —riy(e =€) —raryfle

+yEU, 1 (az, + D — S+ Gl _ DY) _ NEU, () — ae —e') + DI — ST _q(e — ') + SLT — DLt
Let us denote ¢” = e — ¢’ = ¢ (which is between 0 and € by the feasibility of §), and we have

[U(21,0) = Up(21 — €, —€)] = [Us(21,6) — Uy (21 — €,0)]
Briye — rhae” +rarti’e” —qarif! (e ~ ")
+YEU, 1 (az + DI — S G pitt
—VEU, 1 (a2 — ag” + DL — S e’ 4 SIHL — DL
t+1 1 t+1

¢ t _n " t+1 t+1 t+1\ o
27906 — 198" +yary e’ —yaryy (e —€") —ya (T22 —Tiy TT1 )5

2 (13 = ip)e” —yolras' — i3 e + (ry —yaryy (e —€”) 20,

where the second inequality follows from Lemma A.3, and the last inequality holds because of
Assumption 2.
We note that the above proof applies to both the continuous-valued model and the discrete-

valued model (for the latter model, we need to use ¢ =1 in the proof). [
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Proof of Proposition 1 (Discrete-valued model with o= /3). We only consider the case with z; >
0 and 2z, > 0, and the proof for the case with z; <0 and z; < 0 will be symmetric. By (A.6), for
q € M(z) we have:

Ji(q,2) ’le—lHEDt—H +ar 2—2HESH_1 (Til + T§2 - T§2)q - (7"11 'yozrl‘fl)(zl —q)— (7"32 - 'YO”’EJQA)(ZZ —q)

+yEU 1 (a2 — q) + D — 87 oz, — ) + SLHE — DY),

( t+1

Let p, := z, —q and we can rewrite J,(¢,z) as J,(ps, IB) — (rhy —rt, +yart™) zo — (rt, —yartt™) (2, —

25), where

jt(psa IB) 'WJlEDtH + 'YQHEStH (TL + T§2 - riz)ps - (T11 ’yarﬁl)ps - (T22 ’yarégl)ps

+’YEUt+1(OJB +aps + Di“ - Serl?O‘ps + SEH - DEH)'

The rest of the proof is identical to the continuous-valued model. Let p,,(IB) €
argmax, sig- Ji(p, IB). Since U, is Li-concave (Lemma A.4) and any discrete-valued L*-concave
function can be extended to a continuous-valued concave function, we know that J,(p,,IB) is
concave with respect to p,. Since IB~ < p, < 25, the optimal decision in terms of p, is p} =

min {zg, ng (IB )} Thus, the optimal matching quantity between type 1 demand and type 2 supply
is ¢} =z — p} =z —min {25, pl, (IB) } = [22 — pl,(IB)]* = [y — x> — p!,(IB)]*. O

A.2. The case with perishable demand
We consider the case with & =0 and § > 0. In that case, we can rewrite the expression of J;(q,z)

given in (A.3) as follows:

Ji(q,z) =rloqt +rhq” +yrit Emm{DtH Bz1—q)” Sf“}
+rid Emm{D“,B(zg )+—|—S§+1}

+YEU 1 (DY = Bz — @) = ST, B(z2 — q) T + 5511 — D). (A.7)

We show that the optimal matching in round 2 of a period is fully determined by state-
independent threshold levels.

LEMMA A.5. In each period t, there exists state-independent threshold levels ]321 and 1722 such
that,

(i) If z1 >0 and z, > 0, the optimal matching quantity between type 1 demand and type 2 supply

is gt = [22 — max (1B~ 7, }]



11

(ii) If z1 <0 and z, <0, the optimal matching quantity between type 2 demand and type 1 supply
is gby = [—21 — max{IB*,ﬁil}r.
Proof of Lemma A.5. We focus on proving part (i), and the proof of part (ii) is analogous.

Given that z; > 0 and z; > 0 in part (i), we have M(z) = {¢|0<¢<min{z,2}}. Thus for

q € M(z) we can rewrite J;(q,z) as:

Ji(q.z) =riyq + i Emin { DI, ST} +4rf Emin { DS, (20 — q) + 551}

FAEU 1 (DI — S5 B2y — ) + S5 — DL, (A.8)

The sum of the last three terms in the above equation represents the expected total discounted
reward from period ¢+ 1 to period T, which is equal to vEV,, (D", DET S1T Bz, — q) + SEHH).
Let us define p, := 25 — . Since 0 < ¢ <min{z, 2, }, the feasible range of p, is (22 — 2;)T < p, < 25.
Thus, J;(¢,2) = 11222 — riops +YEVip (DI, Dy ST Bps + 857, and maxocg<mingz ) J1(4,2)

is equivalent to

max {=riops +VEVi (DT, DS ST, Bp, 4+ S5t (A.9)

(z2—21) T <ps<z2

Let us define p. = argmax, o {—7i,p +7EVi (DI, DL ST Bp + 55T} I
EV, (DY DEFE S Bp, + Sit1) is concave with respect to p, (which we will prove shortly),
the optimal solution to (A.9) is pi = min {2z, max{(z—2z)",p. }}. Consequently, we can
obtain the optimal matching quantity ¢i% = 20 — pf = 2z — min{zg,max{(zg —zﬂ*,ﬁsl}} =
[22 —max {(z2 — 21) ", }]+ =[2— max{IB‘,ﬁgl}]Jr.

Finally, for the continuous-valued model, EV,,,(D{t" D5 ST Bp, + S4t1) is clearly concave
with respect to p,, given the joint concavity of V;,; with respect to all state variables.

For the discrete-valued model, let us define U,(z) := —rt, 2 —rt,2z5 + Uy,(z) as in Online Sup-

plement A.1. Following similar analysis as in Online Supplement A.1, we can show that U, is

Lb-concave for all t. Then, we have

E‘/;+1(D§+1,D§+1, Si-‘rlyﬁps + SS-H)
=yriT Emin { DT, ST + il Emin { DY, Bp, + S5+ } +yEU 1 (DY — ST, Bps + S5 — DY)

=1 EDT 4y Brgy ps +yres  ESyT + yEU (DY = ST Bp, + S5 — Dy,

which is concave with respect to p, due to the Li-concavity of U,. [
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Finally, we note that Lemma A.5 is a stronger result than Proposition 1 for the discrete-valued

model with o = 0. Therefore, the proof of Proposition 1 is also completed.

B. An alternative formulation of the vertical model

We reformulate the vertical model with a transformed system state and the total matching quantity
(@) as the decision variable in each period. For ¢ =1,...,m and j=1,...,n, let &; := 22:13316
and g; := Zi:l Yr (Zo and gy are defined as zero) as the transformed system state, 4; = 22:1 Uy,
and ©; = 3, _, v as the transformed post-matching levels. In addition, let D! = 37 _, D% and
gjt = izl S} be the transformed random variables for new arrivals of demand and supply in period
t. We write X = (Z1,...,&m), Y= 15> ¥n), W= (1, ..., 0m), V= (01,...,7,), D' = (D,...,D!)
and S* = (S,...,5%).

Let Uy, be the k x k upper triangular matrix with all the entries on or above the main diagonal
equal to one. Then the state transformation can be written in a matrix form: xU,, =x and yU, =
y. Equivalently, we can write x =xU_ ! and y =yU, '. Here U, and U, ! are the inverse matrices
of U,, and U,, respectively. One can verify that both U_! and U, ! have all their diagonal entries
equal to 1 and each off-diagonal entry right above an entry on the main diagonal equal to —1.

Let the total matching quantity @@ be the decision variable in period t. Given the transformed
state (X,y), the feasible range of @ is 0 < Q < min{Z,,,¥,}. Under top-down matching, the total
matching quantity @ fulfills a total quantity min{Q,Z;} of types 1,...,i demand combined, and
uses a total quantity min{Q,7;} of types 1,...,j supply combined. Thus, the quantity of type
i demand fulfilled is the total fulfilled quantity of types 1,...,7 demand less the total fulfilled

quantity of types 1,...,i— 1 demand, i.e.,
min {Z;, Q} —min{Z;_1,Q} =Z; — ;1 — (& — Q)" + (T;i-1 — Q) ™.

As a result, type ¢ demand contributes the reward r,[Z; — Z;,_1 — (Z; — Q)" + (Z;_1 — Q)] in period
t. Likewise, type j supply contributes the reward r},[¢; — 7;-1 — (7; — Q)" + (§;-1 — Q) "] in period

t. Consequently, the total reward received in period t is
(5 _ OVt _ S s OVt (5. O
an ~ T = (3= Q) + (Fim +Zns ~ i1 = (5= Q)+ (f-1 — Q)]

:Z(T z+1d fUH‘Z ]+1d Z z+1d ) (& _Q)+ - (T;s _T§+1,d)(37j _Q)+
i=1 i1 ,
o (r

U (e 4 U () — (% — QL") UL ()7 — (5 — Q1)U (x1)"
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where 7}, y=71),,,:=0.

In the end of period ¢, the remaining quantity of types 1,...,7 demand combined is (Z; — Q)™
and the remaining quantity of types 1,...,j supply combined is (g; — Q)*. Thus, the transformed
post-matching levels are given by (u,v) = ((X — Q1™)",(y — Q1")"). The transformed state in
period t +1is (Xep1,¥es1) = (a(X — Q1™)T + D! B(y — Q1™) T + S*1), which can be converted
back to the original state as (x;41,y:+1) = (X1 UL ¥ U Y).

With the total matching quantity in period t equal to @, the maximum total expected reward

achievable from period t to period T is

GH(Q,%,y) =xU, ! (r)" +3U, ' (r))" = (x—Q1")"U_ ! (ry)" — (¥ — Q1) " U, (x)"

+7EVi (a(x—Q1™)TU + DU By - Q1) TUT + 81U (B.10)

given the transformed state (X,y) in period ¢t. The optimal total expected reward from period t to

period T is thus

~ 71 ~ 71 _ ~ ~
W(XUm 7yUn )_OSQHSlg;}nC/\gnGt(Q’X’y)' (B]']')
Let us define
Vi(x,¥) = Vi(xU,,yU, ") —=xU, N (x)" = 30U, (el)". (B.12)
Gi(Q,%,y) :=—xU, ! (x))" —yU, " (r)" + G4(Q, %, 7). (B.13)

We see that Equations (B.10) and (B.11) are equivalent to:

Vitx3) = Gi(%,3)- B.14
"%3) 0<Q<min (£m.in} «(*) (B.14)
ét(Q, %,y) =yE[D™ (e 4y B[S (rt )]

—(x— le)+U;11 (rfi — 'yartdﬂ)T - le)+U;1(ri _ ,yﬁrtﬂ)r

S

+yEVi(a(Xx—Q1™) + D B(y — Q1) + ST (B.15)

Since Viy1(x,y) =0, we have Vi (X,5) = XU (rh)T —yU; ()T
We show the following property for the function \7;(5(, y).

LEMMA B.6. Suppose that Assumption 3 holds. Then, for any period t=1,...,T, the function

Vi(%,¥) is decreasing in x; fori=1,...,m—1 and in y; forallj=1,...,n—1.
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Proof of Lemma B.6. By definition of the function V;, for i=1,...,m — 1, we have

Vi(x+eel",y) - Vi(%,¥)
=Vi(x+ce]" —cef},,y) — (x+ee]" —eefl, ) (ry)" —y(rl)" = Vi(x,y) +x(rg)" — y(r))"

=Vi(x+ee]” —cefl,,y) = Vi(x,y) = (rig — i 0)E, (B.16)

where x =%xU, ! and y =yU_ " .
By Lemma E.22, there exists A, > 0 for j/ = 1,...,n and 7 =¢,...,T such that

S a0 > AL <eand Vi(x+ee]” —eeft,,y) — Vi(x, y) <> Do AL (T =TT )
Following (B.16), we have

‘Z(i+6em,$’) - Vi(%,¥)

<Z’7T tz/\T (i = 1la) = (Mg = Tig1.a)e

< Z YTy Z N (i =i ) — (Pig = Tipa)e
=t =1

= i a~™0 i )‘;/(de - th'+1,d) —(rja — Tf+1,d)5
ZO‘ Tt)z)‘T_g —Tit1,a) <0

]_1

Therefore, V,(X,¥) is decreasing in #; for i =1,...,m — 1. Similarly, we can show that V,(X,y) is
decreasing in y; for j=1,...,n—1. O
The following lemma shows the Li-concavity of the functions G, and V;, for the case with equal

carry-over rates and the case with perishable demand.

LEMMA B.7. (i) Suppose that o = 8 > 0. Then, V,(X,¥) is Li-concave in (X,¥) for t =
L, T+1, and @t(Q,i,y) is Li-concave in (Q,%,y) fort=1,...,T.
(ii) Suppose that o =0 < (3. Then, f/t(fc,y) is Li-concave iny fort=1,...,T+1, and ét(Q,i,y)
is Li-concave in (Q,%X,y) fort=1,...,T.

Proof of Lemma B.7. (i) We first consider the case with a= 8 > 0. The proof is by induction on
t. Clearly, Vi (%,¥) = —xU; L (r})T—yU; ' (r))" is Li-concave in (X,¥). We suppose that V;,1 (X, )
is Lf-concave in (X, ). Then by definition of Li-concavity, for any given D™ and S™*, V,, | (ax +
D! ay +St!) is Li-concave in (%, ). (Note that since a = 8, we simply replace 8 by a hereafter.)

Since @ <min{Z,,,7,}, we have
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‘7t+1 (01(5( - Q]_n)—i- + :Dt—i—l7 a(y _ le,)+ ‘I’ St+1)

= ‘7;4_1(0[(5([17m_1] - Cglmil)jL + f)ﬁ:;il],a('j‘m - Q) + Dfrjla a(y[l,n—l] - anil)Jr + Sﬁ:}lfuaa(gn - Q) + szJrl)v

which is L*-concave in (Q,X,y) by applying Chen et al. (2014, Lemma 4) and noting the mono-
tonicity proved in Lemma B.6. (The notation X[1,m—1] represents the first m — 1 entries of the vector
X.) By Simchi-Levi et al. (2014, Proposition 2.3.4(c)), Epu+1 gi+1 Vi (a(x — Q1) + D! a(y —
Q1™)* + 8" 1)] is Li-concave in (Q,X,¥), thus the last term in (B.15) is Li-concave in (Q, %, ¥). The
other terms in (B.15) are Lf-concave in (Q,X,y), because —(Z; — Q)" is supermodular in (Q, Z;),
—(g; — Q)" is supermodular in (Q, 7;/) and L*-concavity is preserved under any nonnegative linear
combination. Since the other terms are linear, G,(Q,%,¥) is Li-concave in (Q,%,¥). By Simchi-Levi
et al. (2014, Proposition 2.3.4(e)), V;(X,¥) is L*-concave in (X,¥). This completes the induction.
(ii) The proof is again based on induction. As in the proof of part (i), Vi1 (X, y) is Li-
concave. Suppose that f/tﬂ(fc,jf) is Lf-concave in y, for any given X. Since a = 0, we have
Bgie gin [V (a(x — Q1m)F + DL B(y — Q1) + S = Epear gt Vi (D, (3 — Q1) +
S™*1)] is independent of X. Again by applying Chen et al. (2014, Lemma 4) and noting the mono-
tonicity proved in Lemma B.6, it is Lf-concave in y. It follows that é’t(Q,i,y) is Li-concave in
(Q,y) for any given x. From (B.15), we see that G4(Q,%,¥) depends on % only through the term
—(%—Q1™)*U; ! (r}, — yarit!)T, which is Li-concave in (X, Q). Thus, G4(Q,%,¥) is L*-concave in
(Q,%,¥). As in the proof of part (i), it follows from Simchi-Levi et al. (2014, Proposition 2.3.4(e))

that V,(X,y) is L*-concave in y, for any given x.  [J

B.1. The 1-step-lookahead heuristic for the vertical model

The 1-step-lookahead heuristic assumes greedy matching from the next period to the end of the
horizon. Recall that we denote by V;?(x,y) the total expected reward received under the greedy
policy from period ¢ to period T', given that the (original) state in period ¢ is (x,y). The heuristic
chooses the matching quantities in period ¢ to maximize the sum of the immediate reward in period
t and the future expected reward V?(x,y). In the following, we explore properties of the function
V?(x,y) and the 1-step-lookahead heuristic.

As earlier, we consider the transformed state (X,y) defined by Z; := ZZ=1 x; and g; 1= Z£=1 Yks
and let V4(x,¥) := V?(x,y) — XU (r})T —yU- ! (r!)T. The following lemma presents the recursive
equations satisfied by the function V,? (x,y).

Given the transformed state (X,y) in period t, we define G{(Q,X,y) as the expected total

discounted reward from period t to period T, if we apply top-down matching up to the total
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matching quantity @ in period ¢, and apply greedy matching from period ¢t+1 to period T'. Further,
we let GY(Q,%,¥) := —xU ! (r})T—y U (r))T+ GY(Q, %,¥). Similar to how we derived G,(Q, X, ¥)

defined in (B.10), we can express G7(Q,X,y) as:

G{(Q,%,y) =xU, Hr)) +yU, ' (r))" — (x—Q1™)" U, '(ry)" — (y —Q1™)" U, *(r})"

+YEVE, (a(X— Q1)UL+ DU B(y — Q1) YU L+ SHIULY). (B.AT)

By substituting V)%, by V%, according to the relation V%, (x,y) = V%, (%, ¥) + XU (r})T +

yU 1(r!)", we have

G(Q,%,5) =yED" (x{ )T +yES (2l
— (X = Q1) U (rh —vyary™)" = (y - Q1) YU, (x) —yfr )"

S

+EVS (a(x —Q1™)T + D B(y — Q1) T + S, (B.18)

LEMMA B.8. The functions Vi?(x,y), t=1,...,T, satisfy the following equations:

VI(%,y) =yED" (i) +yES™ (xl)T
— (X =g, 1)U (2 —yox )T = (§ — 2,17 U (2l — 4Bt

+YEVS (- §,1™) + DU, B(F — 7,17 +SU,). (B.19)

Proof of Lemma B.8. Recall that G}(Q,x,y) as the expected total discounted reward from
period t to period T, if we apply top-down matching up to the total matching quantity @) in period
t, and apply greedy matching from period ¢+ 1 to period T'. Similar to how we derived G;(Q,X,¥)
defined in (B.10), we can express G7(Q,X,y) as:

G(Q,%,y) =xU, ! (r))" +yU, ' (r)" = (x = Q1) U, ' (ry)" — (¥ - Q1")"U, ' (x])"

+ 7BV, (a(x—Q1™)TU, + DU B(y — Q17)TU, P+ STULY).

If greedy matching is used in period ¢, the total matching quantity @ is Z,, A §, := min{Z,,, J, }.
Thus,
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=Go(Tm A Gn, X, )

=xU. ) (r)"+yU, (1) — (X = 2 A1) UL () = (F = T A5, 17) UL (1))
+yEVE 1 (X = & A G, 1)U+ D B(Y — 3 A, 1)UL+ ST

=yED ()T Ay ES T ()T + XU ()" + 50, (x)
— (X =T A1) UL (v = yarg™ ) = (7 = @ AGR1")TUL (x — BT

+VEVE (a(X = F AGa1™) T+ DU, BT — Fm AJn1™) T +STHIU,). (B.20)

Note that in the last equality above, we have substituted V,2., with V7.

Finally, we note that (X — Z,, A7,1™)" = (X —9,1™)" and (y — Z,, Ay, 1) T = (¥ — Z,,1™)T.

In fact, if Z; < ¢, then Z; < Z,, Ay, and thus (Z; — &,, Ay,)" =0. If &; > §,, then Z,, > Z; > 7,, and
thus (Z; — 2, AGn)t = (Z; — o) = T; — g It follows that (Z; — Z,, AJn)" = (Z; — 7)™ and therefore
(X = Zm AP, 1™)" = (X —g,1™)". Likewise, we can show that (¥ — Z,, Ay,1")" = (y — Z,,1™)".

Equation (B.19) then follows from (B.20). O

We further show the monotonicity of the function V(X,¥).

LEMMA B.9. Suppose that Assumption 3 holds. For any periodt=1,...,T, the function V4 (X,¥)

is decreasing in T; for alli=1,...,m—1 and iny; forallj=1...,n—1.

Proof of Lemma B.9. We will show by induction that V¢(X+ ce*,¥) decreases in ;.

It is trivial to prove for t =T+ 1, given that V;?(%,y) = —xU_ ' (r})T—yU ' (r"). Let us suppose
that V4, (%,¥) is decreasing in ;.

To show that V?(%X,¥) is decreasing in Z; (1 <i<m — 1), we note that —(% — 7,1™)t U (r}, —

t+1

A e i Ti11.4)] is decreasing in ;. According to

yar, 21:1(571‘ — n)t[(rly — 7°;§+1,d) — yo(ryy
the induction hypothesis, the last term in (B.19), yEV%, (a(X — §,1™)TU;! + DU B(Y —
En1™)tUT 4 81U is decreasing in #; (1 <4< m —1). Thus, all terms in (B.19) are either
constant or decreasing in #;. This completes the induction and shows that V;%(X,¥) is decreasing
in #;. We show that it is also decreasing in g; (1 <j<n—1) similarly. O

The following Lemma B.10 is concerned about the concavity of the functions V;(%,y). We note
that for the discrete-valued model, concavity is not defined for the multivariate function 1715(5(,37).
Nevertheless, it is easy to see from (B.20) that for any integral-valued state (x,y), the value of
f/t(fc,y) coincides with its value in the continuous-valued model. Therefore, the function f/t(fc,y)
in the discrete-valued model can be naturally extended to the one in the continuous-valued model.

In that sense, Lemma B.10 is also applicable to the discrete-valued model.
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LEMMA B.10. Suppose that Assumption 3 holds. For any t =1,...,T, the function V;(X,§) is
concave i (X1 m—1], Y[1,n-1])-

Proof of Lemma B.10. The proof is based on induction. First, Vj‘fﬂ(i,y) =0 is concave. Sup-
pose that f/til is concave in (X, m—1],¥[1,n-1])-

The terms —(x — 7,1™) U (r}, — ar,™)T and —(y — 7,,1")TU (r! — Brith)T are concave due
to the concavity of the function f(z):= —a*. It remains to show that EV/, (a(X — §,1™)" +
D! B(y — #,,1™) T + S1) is concave in (X(m—1], Y[1,n-1])-

Consider two transformed states (X{1,m—1], Tm, ¥[1,n—1), Un) and (x[1 m—1]> & 7 ,yfm_l],gjn). For \; >

0 and Ay >0 such that Ay +X =1, and i=1,...,m — 1, we have

()‘15([11"1*1] + )‘Qifhm—l] B gnlm_l)Jr < )\1(52[1,71171] - Zjnlm_l)Jr + )\z(ifl,m—ﬂ - ﬂnlm_1)+7 (B.21)

where the inequalities follow from the convexity of the function f(z):=x".

Similarly, we have
()\15’[1,7171] + >\2$’E17n—1] - jm]-n_l)-"_ S )\1(5’[1,n71] - i'm]-n_l)-i_ + )\Z(S’fl,n—l] - jnln_1)+- (B22)

It follows from (B.21) and (B.22) and the fact that V;%, is decreasing in x; and y; for i =
m—1,j=1,...,n—1 (Lemma B.9)

yeeey

‘211(@()\15( + XX = MG, 1" = Ny, 1) + D, BY + Xy — MiTn 1" — XoZ), 1) T + StH)
=V (MR ) + XXy gy — a1 )+ Dt1 1 Q(Em — )T+ D,

B(Aly[l,n—l] + )\QSffl’n_l] - '%m]-n_l) + sfii,1]7 B(gn - jm)-i_ + S’Z+1)

>V MR m1 = a1 )T+ D]+ Xefa(Xy gy — 01T+ DL ] e(En — §a) T+ DL,

MIBE -1 = Fn 1"+ S+ 2B 0y — Fn 1"+ SE ] B — E) T S
>\ Vi (@i my = Gu 1™+ DL (@ — 5a) T+ D
By~ En L") S B — F) T+ S
+ XV (K] ey = a1 )T+ D (@ — G0) T + DL
B ner) = &™) Sy B — )T+ S
where the last inequality follows from the induction hypothesis of the concavity of Vf_’H with respect

t0 (X[1.m—1)s ¥[1,n_17)- This proves that EV% (a(X —§,1™)* + D", (¥ — &,,1")* +S*+!) is concave

in (Xp1,m-1],¥n,n-1)), and therefore completes the induction. [
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LEMMA B.11. Suppose that o = (. For the given transformed state (X,y), the function
G‘f(Q,f{,S/) defined in (B.18) is concave with respect to the total matching quantity Q within its
feasible range 0 < Q < Z,,, A Jp, := min{Z,,,, ¥ }

Proof of Lemma B.11. Suppose that Q < &, Afj,. Let X1 := (X — Q1™)* + D! and yit! :=
a(y —Q1")t 4+ S, We have

VA3
:nyDt‘f‘Z(rfi‘l’Q)T +7Est+2(r7;+2)T
_ (itJrl o g;+11m)+U;Ll (r:ﬁl-‘rl o ,Yarfi+2)T _ (yt+1 o '%fnjl 1n)+v;1(r1;+1 . ,)/IBI‘Z+2)T

+VEVS,(a(x M — gt 1™t £ DU, B(TH - a8V, (B.23)

The first two terms in (B.23) are constants. We examine each of the remaining terms.

Fori=1,...,m—1, we have

@ - gt = [a(@ - Q)F — al — Q) + DI - 517
(@~ )+ DI -5t Q<

0(Q—5.)+ D =851 i Q>

Thus, (2! — §271)* is increasing and convex with respect to Q.

For i =m, we have

(71— GE)F = (B = G = [an — Q) — a(ga— Q) + DI — 1] = [a(@, — ) + Dt — 5:41]

which is constant with respect to Q.

Likewise, (75" — &4

)t is increasing and convex in @ for j=1,...,n—1, and is constant (more
. - +
specifically, equal to [a(gn — Tp) +SEFL — fol} ) in Q for j=n.

The third term in (B.23) can be written as:

m

(& =g UL e e = = Y (@ -G [l =i ) — el =i )]

i=1

which is decreasing and concave in @), if Assumption 3 holds.
Symmetrically, the fourth term in (B.23), ('t —2LH117) TV 1 (rit! —~rit2)T s also decreasing

and concave in @, if Assumption 3 holds.
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We now examine the last term in (B.23). We have

Vt-+2( ( t+1 yt+11m) +Dt+2,ﬂ( t+1 Elln)++gt+2)

=Via(a(X( ),y = 9. 1)+ D (@t - g T+ D
T gy = T )T ST a(@ - 2+ 50)
=Via(a(Xf,y — 0, 1)+ D ala(@n —§a) + Dyt = ST+ DI,

ATy — T 1) ST ala(Ga — &) + ST - DT 4 5.

Lt gy = (R, = G517 and Voo i= (757 = 8471777 Then, T (a(x+! -

ghriymy+ 1+ D2, Byttt — ztri1n)+ gt“) can be rewritten as:

m

Vt+2(0‘u[1 m—1] + Dt1 m—1]> sl @ — Gn) + qujl - gyterl]Jr + Dfrjla

V(1 1] +St1n 1) a[a@n_i”m)‘f’gfzﬂ_Df;jl]Jr‘i‘SZH)-

By Lemmas B.9 and B.10, the above function is decreasing and concave in (U -1}, Vi1,n—1]). Ear-
lier, we have shown that both G ;1 = (ifffin_l] — g1 * and Vi o1 = (Srfffi_l] —gtnht
are increasing and convex in (). We know that the composition of a decreasing concave function
and an increasing convex function is still decreasing and concave. Thus, the function V%, (c(X!*! —
grtirm)t £ D2 B(yitt — #0H117) T 4 §+2) is decreasing and concave in Q. Thus, the last term in
(B.23) is also concave. It follows that V2, (x!*1, 1) = V2 (a(X — Q1™)* + D! B(y — Q1")*

St*+1) is concave in Q.

Finally, we show that the function

GY(Q,%,¥) =— (X —Q1™) U H(r) — ary™)" — (y —Q1™) U (rl — rith)"
+EVS (a(X — Q1™ + D B(y — Q1) + S (B.24)

is concave in Q). We have just shown that the last term in (B.24) is concave in Q). The term

—(X— QUM TU (rh—ax) == > (@ = Q)T [(rigt — i) — e =i )]
i=1
is concave in @, and so is the term —(§ — Q1™)* U} (r! — Brit1)T likewise. As a result, GY(Q, X, ¥)
is concave in Q.
We note that even though the proof of the lemma presented above is based on the concavity

of f/,; and is thus for the continuous-valued model, the function Gt in the discrete-valued model
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can be naturally extended to its counterpart in the continuous-valued model. Therefore, in the
discrete-valued model, G, is also concave with respect to Q. [

We further present and prove two lemmas.

LeEMMA B.12. Let 8 :=(d1,...,0,-1,0,...,0) be n-dimension vector such that 0 <d; <y <--- <

d;—1 <&, Among the factors (X,y) and 68, the difference V(%5 — &) — VA(X,¥) depends only on

6, SEm and S’[l,jfl]'
Likewise, for an m-dimension vector 6 := (0,...,0;,_1,0,...,0) such that0 <6, <0y <---<0; 1 <

e, the difference V(X —0,¥) — VA (X,¥) depends only on 0, <, §, and X[1,i—1]-

Proof of Lemma B.12. We focus on the first difference V?(x,y — 8) — V(X,¥), and the other
difference will satisfy the desired property by symmetry.

We prove the lemma by induction. Since V7 (X y—0) - 1% L1(X,¥) =0, the difference clearly
satisfies the lemma for ¢t =T + 1. Suppose the desired property is satisfied for ¢t + 1. We consider
two cases for t.

Case 1: T, <Yj_1.

In this case, there exists 1 < j' <j —1 such that g1 <Z,, < g;. Since T,,, < Gj—1 < Y, (X —

7, 1™)* reduces to the zero vector. By (B.19) in Lemma B.8, we have

VI (%,5) =vED" (xi™) T + v EST (x5 )T — (Fpjrn) — T 1777 TH (UL X BN T (gl gyt T

+YEVS (D B(Y — 3,17) T + S,

where UL nx[1n] jg a submatrix consist of the j'th to the nth rows and all the columns of U,,.

Also, there exists j” such that j' <j” <j—1and g;v_1 —0;#_1 < Ty, <Fj» — 6;». It follows that

‘/;9 (5'(75, _ 5) :,YEDt+1(rg+1)T +,7Est+1(ri+1)T _ (S’[j”,n] _ a[j”,n] _ ‘%mlnfjlurl)(Ug//,n]x[l,n])fl(ri _ ,_yﬁrt;rl)T

+yEVE (DY B(F — 8 — &,17) T ST,
‘We then have

V(%,y —8) — VY (%.5)
= — (S’[j”,n] — (s[j//’n] - jmln_j +1)(U[g ,n}x[l,n])—l(ri — ’}/IBI'Z—’_I)T
+ (T n) — En 1 (U ) T (] — g

+YEVS (DY — 8 — 2, 1")7 + S =BV, (D B(F — 2,1") " + 8
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=— (Y — Oy — T 1777 TH(UY P ED) 7L (- gty

A (Fyrm) — B 1777 QLT RIXLA) =1 (gt oy gty

n S

+ (T = B 2O T ] — e ()T
+EVE, (D" B(F = 6 — £,1") T + 8" — BV, (D B(§ — £, 17) T + 87

=80 (UL ) T el — Bl 4 (Fgg gy — B 1) (UF X T (el — gt

S

+YEVS (DL B(Y = 8 — &, 1") T + S =y EVS, (D™ B(Y — 2, 17) 7 + ST, (B.25)

Clearly, the first two terms in (B.25) depends only on 8, y1 ;1) and Z,,. It remains to show that
the remaining term, YEV (D", B(§ — 8 — #,,1")* + S™+1) —yEVZ (D", B(§F — #,,17) " + S'+1)
satisfies the same property.

Let us write Y := B(§ — 6 — ,,1") T + S, and Y’ = B(§ — Z,,1")" + S+, We have

X =B ) = O ) — F 1777 1) + S
:/B(y[j//’n] S +1) + i+l ﬁ(s[j//’n]
:ij”,n] - /B(S[j”,n]u
Yol i~ Y _~7 -~ ~ 1577 Qt+1
Yij gy =07 7 =Yy = Yy = Y oy — (B(YU’J”—” —Eml )+ S[jhj“—l]) ’
and ?fll,j’—l] = qu,_l] =071, (Note that 0* represents the k-dimension zero vector.)
Let us denote p:= (0j/717ﬂ<y[j’,j"—1] - -%m]-juij/) + gf;;}j”—l]756[j”,n])' Since a[jm] =0""7", we
have = (071, B(Fyr jn—1) — Fm 1P —9) + Sf-;;}j//_l],,86[]‘//7j—1],0n_j+1). We see that Y/ =Y’ — p.

(We note that p is a random vector.) By the induction hypothesis, we have the difference

YEVS (DL By — 6 — £,1")" + 8 — 7BV (DY B(F — #,,17)F + ST

=y BV (DY — p) =BV, (DY),

depends only on Yfm—l] and .

Further, ?fl,jfl] =B(¥pj-1 — Tm7) T + Sfffgl‘—u depends only on y; ;_1 and Z,,. p depends
only on yp ;_1, 6 and Z,,. Therefore, the difference 'yEVtil(f)t“,B(jf -0 —T,1") 7T + St“) —
YEVS (D™, B(§ — #,,1") " +S"*1) depends only on &, ¥, 1 and F,,.

It then follows that the desired result holds for ¢.

Case 2: &, > Yj_q.
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Since dj;,) =0"7*! (ie., the (n — j + 1)-dimension zero vector), we have
(¥ =0 —2,1")" = (0", (Fjjm — 1" 7T F) = (¥ — 2 1") "

By (B.19) in Lemma B.8, we have 1744 (X,y—90)— 174 (%,¥) = 0. Therefore, the result holds trivially.
Combining both cases, we conclude that Vi?(%,y — ) — V/(X,¥) depends only on &, Yii,j—1] and
T O

LEMMA B.13. For € >0 and t =1,...,T, the difference V(X + €17,y + €17, ) — VI (X,¥)
depends only on € and (Xp1i—1),Y[1,j-1]> Tm>Un), where 1;t,, represents an m-dimension vector with

the ith to mth entries equal to 1 and all other entries equal to 0 (the meaning of 17, is similar).

]
Proof of Lemma B.153. We first focus on the case in which Z,, < ¢,. Under this condition, we
have (x —,1™)" =0 and [x + €1}, — (§n +€)1™]" < (X — §,1™)" = 0. We further discuss two

possibilities, namely, Z,, > y;_; and Z,, <¥;_1.

If ,, > y;_1, then (y —2,1")" = (Oj‘l, (Yijn) — 5;m1n—j+1)+)7 and
~ n ~ n + ) — Ind ~ n—j I ~ n
[y-l—el[jﬁn] — (Zm+e)1 } = (03 L (Yijn) — Tl J“)*) =(y—Z.1"M".

Then, by (B.19) in Lemma B.8, we can readily verify that V(% + €1y, y +elf ) — VI(%,5) =0,
which clearly satisfies the lemma.

If 2,, <g;_1, there exists j' such that 1 <j'<j—1 and g;_y <Z,, <gy;. We have

(S/ — :i“mln)+ — (Oj —1,5,[j/7j71] _ i“mlj_j 7(5,“,’"] _ jmln—j+1)+)

~ n - n + g ~ ~ Y ~ - n—i
[y+61[j7n]_($m+6)1} :(O] Lo = @+ OV (S0 — Tl J+1)+)'

Let & := (071, 5y 1) — Zm177 — [Jr5-1] — (Zm + €)1977]F,079+1) which depends only on

+
-1} &m and e. We have [§ + €1l | — (&, +€)1"] = (§ —£,,1")* — 4.

jim]

By (B.19) in Lemma B.8, we have

VO&+el],,y+ell ) — Vi (%¥)

[2,m

=0U, (r, — B

S

+YEVS (D B(F — 3,,1") T — B+ S —yEVS (D' B(F — 7,17 T + 8.

By Lemma B.12, the difference yEVS,, (D!, (¥ — ,,1")* — B3 +S**1) — yEV, (D, B(3 —
Z,m1")t 4+ S't1) depends only on & and the first j — 1 entries of (§ — #,,1")*. The first j — 1 entries



24

of (y —%,1")" depends only on yp ;_1) and Z,,. Consequently, the difference nyVtH(Dt“,ﬁ(Sr -
Epm1™)t — B8 + S — yEVE (D B(F — #,,1") 4+ S**1) depends only on ¥y ; 1], %, and .
Thus, the difference V(% + e1f 1y +elf 1) — V4 (%,¥) depends only on Yii,j-1], & and e.

Now we consider the case with Z,, > ¥,. By symmetry, we can infer that difference f/tg (x 4+

el y+ elg,n]) — f/tg(fc,jf) depends only on X1 ;_1}, ¥» and €. This completes the proof. [

C. Extensions and Additional Results

C.1. Modified Monge condition for non-neighboring pairs

As mentioned in the paper, we can extend Definition 2 to allow a pair to weakly precede a non-
neighboring pair.

DEeFINITION C.1. For two non-neighboring pairs (7, j) and (i’,j’), we say that (i,j) weakly pre-
cedes (7/,j") if there exists a path of demand-supply pairs that connects the two, in one of the
following forms,

(i) (4,

(i) (4,

( ) = (in,jn) = (i, 4); 0
(insin—1) = (in,Jn) = (ing1,Jn) = (4,); or
(iii) (3, ( )= (i )=(i,5); o

(iv) (i, (i, 1) = (i, J2) = (i3, 52) = -+~ (ins dv—1) = (iny Jn) = (v, dn) = (4,9);

such that along this path, each pair weakly precedes the next pair according to Definition 2.

(i1,71) = (i2,71) = (i2,J2) = - (in, N1 in, iy
(ilvjl) — (227j1) — (i27j2) —S ..
) = (i, 2) = (i3, J2) =

(ilajl Zla]Q i37j2 : Z.Naijl ZN,]N

j)=
j) =
j) =
j) =

With Definition C.1, we first prove the following Lemma.

LEMMA C.14. For a given state (x,y) with x; >0 and y; >0, € € [0,2;] and € € [0,y;], there
exist nju >0 and &, >0 for 3" €S, 7" €D and 7 =t,...,T+1 such that Zf:t a1 Z?,,:l Nin <
T —\T— T
Etl? Z‘rztﬁ = Zi”eD fi” SEtQ and

T n m
Vi(x— el + ¢y —ere] +efel)) — Vi(x,y) ZZ [Z n;//(rf,ju—rfju)vLZfﬁ,(r;,j/—r;/j)].

j//:1 =1

Proof of Lemma C.14. We prove the lemma by induction. The result holds trivially for t =T 41
by noting that Vy,;(x,y) =0. Suppose the result holds for ¢+ 1.

For period ¢, we let Q € arg maxqe{q>oluzov>o0} Hi(Q,X,y). For the state (x —e/e" + ¢, e,y —
ete '+ cle ") Q may not be feasible, since less type ¢ demand and type j supply are available.
Based on Q, we can construct a feasible decision for (x — ele] +clell,y — e2e” + eel).

Specifically, we can reduce the matching quantities between type ¢ demand and all supply types

by a total amount [377,_, i» — (2; —&;)]* (which is by how much the decision Q consumes more
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than the available type i demand z; — ¢}), and reduce the matching quantities between type j
supply and demand types by a total amount [Y_,_, §»; — (y; —€#)]" (which is by how much the
decision Q consumes more than the available type j supply y; — 7). In other words, there exists
ntw >0and &, >0 fori” =1,...,mand j”=1,...,m such that 3 ",_, nt, <e;, 3 0,_, & <&}, and
the matching quantities g;;» —nj, (5" =1,...,n) and gi; — &} (" =1,...,m) are feasible for the
state (x —eje]" +¢; el y —ere} +erel,).

In the meantime, we also increase the matching quantity between type i demand and type j”
supply by 77?,, and the matching quantity between type j’ supply and type " demand by &}, for
all 4 and j”. This leads to the matching decision Q := Q — Z],,_lnj,,emi” — > LSimens " +
D iy M€ A iy e, which is feasible for the state (x —eje}" +efell,y —fe} +-ejel).

Let us denote by u and v the post-matching levels under the state (x,y) and the decision Q in

period t. Define €}, = ale; — > 0 1%n) and €7,y = B(ef — 30—, ). We have:

Vt(x—eie?—l—et €,y — Ete] +€? ;L> ‘/t(X7Y)

>H,(Q,x — el +eie§7,y —eel +eel) — H(Q,x,y)

m
t t
> E 52-// (Ti” i’ T i + E 77]" T/ 7 i'”)

=1 j=1
+’}/EV2+1 Z ’r]ju e ‘l‘ Z 7]]// + ])H_1
I/ 1 I/ =1
ng// e + Zgl// e / St+1) —’}/E‘/t+1(au+Dt+1,,6V+St+1)
=1 =1
:Zgz//("“u i’ T// +Z77J// 7°/ i — Ty //)
=1 // =1
+YEV,i(au— e €] + 6 e + D By — €t2+1e;'n + 6§+1e}7} +8) =BV (au+ D v + S,

(C.26)

Let X1 =au+D"! and Yy, = fv+S"*!. By the induction hypothesis, there exist K7, and
L7, forj"=1,....n,¢"=1,...,mand 7 =t+1,...,T such that ZT g T 1)2 oy KTy <efiy,
T —(r—t— m T
> BTV Ly < €y, and

1 m 1 m 2 n 2 n
Vigr (X — €1€ + €€, Yo — €41€; T €t+1e]‘/) — Vir1 (Xet1, Yerr)

T n m
> D DKL 0 =)+ > L (i — 1)), (C.27)

T=t+1 =1 =1

Let nj, = EK}, and ], = F wforj"=1,...,n,i"=1,... . mand T=t+1,...,T. We have
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x —¢jel’ —i—ete/,y—ete +ejel)) — Vi(x,y)

m
E z” 7“/// T// + g 77]" 7’/ i — Ty //)

”1

+yEVi(ou—e e + e ef + DT v — e ef + e e + S8 =BV (au+ D By 4 ST

m T
2252 (r,,],—ru —i—Zn]nr/,,—r,, ny anur,,, r//~l—Z£~r,,, ;)]

,L‘ll:1 ]H 1 T:t+1 ll =1 ,Lll 1

T
:Z Z?’]Ju T/// 7’// +Z§//T/// 7'// )]

l11 l11

where the first inequality is (C.26) and the second inequality is due to (C.27).

Moreover, Zfztof(“t) Z?//:1 Njn = Z g 177J~ + EZT t+1 ¢ (= ”Z iy K7 < Z;L”:l 7l§~ +
aley, = Zﬂ,, 1775‘// (e — Z;‘L”=1 77§//) = ¢;. Similarly, ZT:tlB O & = Y &+
EET 4187 = Z o1 L =32 & + BTl < D0 & + (6 — 2o &) = €. This com-
pletes the induction. [

LeMMmA C.15. For a state (x,y), any 0 < e <y, 0< ey <y;, we have
Vipi(x—eae]" +ee),y — ee] +eel) — Vi (x,y) > max{(a'y €1, (B7)” 62} 7"/ ;=T i)

Proof of Lemma C.15. By Lemma C.14, there exist nonnegative numbers 77, and &, for
"=1,...,n,i" =1,....mand 7=t +1,...,T + 1 such that ZT g T 1)2 M < e,
> BTN € < e and

Vt+1( —ee]" +eey,y — el +eel) - Vi(x,y)

> S S T — )+ 30 €Ty — ) (C.28)

T=t+1 §’=1 i"'=1

Since (7,7) weakly precedes (7',j’), there exists a “zigzag” path connecting the two arcs, along
which each pair weakly precedes the next pair. Without loss of generality, we suppose that the
path has the form (i,7) = (i1,71) = (i2,71) = (i2,72) = -+ — (e, 5¢) = (i',5") (proof for the other
forms would be analogous). Along the path, (i,jx) weakly precedes (iyi1,Jx), which implies that

H L T ). Thus

Tinie — T1k+1ﬂk = (VQ)T t( g’ 71%+1J

Tz—/j// — T;I—j// = —(T;j// — T'Z—Zj//) = — Z(ﬁki” — Tsz+1j ) (’)/Oé) (r=1)) (Tkak — T§k+1jk)' (ng)
1

=~
Il
—
=~
Il

Likewise, since (iy11,Jx) weakly precedes (iyi1,jx+1), we have
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/-1 -1
T T . — _ o —(T—t) t ot
Tingr =Ty = —(Vinj, —Tinj,) (7, — ri”ij) > —(vp) (rik+1jk Tz‘k+1jk+1)‘ (C.30)
k=1 k=1
Then,
m m n n
Vt+1( x—e€e]' +ee),y — e +62e- ) — Visi(x,y)
T m -1
T—t— 1 —(T—t) ot T—t—1 —(T—t) T t it
Z v /ya z :77]” z: LETRYY rikjk)+ Z v (/YB) Zﬁi” (Tik+1jk+1 Tik+1jk
r=t+1 =1 k=1 r=t+1 =1 k=1
—(r—t) o (r—t) T ot
Z @ § :77J 2 : ey %Jk 2 : 8- 2 :gllz : i1k rik+1jk)
T=t+1 3"=1 k=1 T=t+1 i’=1
-1
-1 t ot -1 t ot
=7 KZ(T%-H% Tikjk)+’y LZ(Tik+1jk+1 Tik--»—ljk)’ (031)
k=1 k=1

where we have denoted K := Y7 i @ T <aleyand L= Zf=t+1 BN & <
B~ le,, for ease of notation.

If K <L, we have

Viri(x—ee]" +eef,y — €zen +ee)) = Viga(x,y)

1 -1
-1 t
e K lk+17k lk]k + Z zk+1jk+1 B lk+13k)] (L K) (rlk+17k+1 B Tik+1jk)
k:l k=1
1
_ 1 t t t
=7 K(Tim B Tiljl) (L K) (le+17k+1 B Tik+1jk)
k=1
1
—1 t t
>’Y K( lue Tiljl) (L K) (le+17k+1 _Tikjk)
k=1

_’y_lK( z“[ 11j1)+7_1(L K)(ngjg 77“;13'1)

:7_1L(T§gj[ thl]l) _1L(r i'37 z_;) (’YB) (Tf/j/ - Tfj)€27 (C32)
where the second inequality holds because i  ; <7i ; (note that (iy,jr) weakly precedes
(i1, Jk))-

If K > L, we have
Vin(x—ee]" +eef,y — e2e] +eef) — Vt+1(X y)
-1 - -1
_1 —1 t t
(K—1L) Z( Tigprdn — lkﬂk )+ L Z Pig g — %+1Jk) + Z(Tikﬂjk n Tikjk)]
k=1 k=1 k=1
-1

-1
(K L) Z( 'Lk+13k lk]k) +,y L( ZEJZ Tfljl)
k=1
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—1
71 -1 t
(K L) ( Zk+1Jk+1 - Zk]k) +7 L( Zzu Tiljl)
k=1
:7_1(K_L)(rfgjg 11]1)+7 lL(rfejg _rfljl)
:VilK(rl?zjz o T§1j1)
>(an) " (rjy —riy)er (C.33)

Combining the two possibilities, we have V,,,(x — €;e]" + €€}, y — €€} + ege;”,) —Vin(x,y) >

max {(ay) e, (67) " e} (rjy — 7). O

LEMMA C.16. Suppose that (i,7) weakly precedes a non-neighboring pair (i, j'). For two feasible
matching decisions Q and Q + eej; " — ee?jf" for the state (x,y) in period t, the latter decision
leads to a weakly higher expected total discounted reward from period t to period T, i.e., Hy(Q +
ce; " —eel " X, y) > H,(Q,x,y).

ij

Proof of Lemma C.16. Let u:=x—1Q" and v :=y —1Q be the post-matching levels for using
the matching decision Q in period ¢ under the state x,y). It is easy to see that the post-matching

levels by using Q + ee};*" — ee”??" are given by u—e; +e; and v—e; +e;. We have

H,(Q+ eel’;?X" — ee”f?", X,y)
o (Q+eef " — e}/ ") +YEV 1 (au — ace; + acey + D' Bv — Bee; + Beej + S
=(ri; —ri)e+ R 0o Q+~yEVi i (ou—ace; + aeey + D', fv — fee; + feej + S™)
>(rf; = riyp)e+ R 0 Q+yEVii i (au+ D™, By +80) 4 (rf ) —7i))e

:Ht(Q7Xay)7

where the inequality follows from Lemma C.15, with €; = ae and e =fe. O

We now present the following proposition that adds to the structural property in Theorem 1.

ProprosITION C.1. There exists an optimal policy 7" ={Q"},_, . such that it satisfies the
property in Theorem 1, and in addition, for any pair (i,7) weakly preceding a non-neighboring
pair (i',7'), in each period t either the matching quantity q/ , =0, the post-matching level ut* =0,

or vj-* = 0. Further, if Assumption 1 is satisfied, the optimal policy also satisfies the property in
Theorem 2.

Proof of Proposition C.1. The proof is similar to that of Theorems 1 and 2. For any matching

policy that does not satisfy the properties in the proposition, we can construct a weakly better
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policy by successively transferring quantity from a weakly preceded pair to the corresponding
preceding pair. In addition to the transferring matching quantities to neighboring pairs, we will
also keep transferring quantity from a pair (i’,5’) to a non-neighboring pair (4, 7), if (i,7) weakly
precedes (i, j') according to Definition C.1. Following the same analysis as in the proof of Theorem
1, we can eventually obtain a feasible policy that satisfies the stated properties. [

As Theorem 1, Proposition C.1 implies that the optimal policy prioritizes a pair over those pairs

it weakly precedes.

C.2. The partial order defined by the modified Monge condition
A partial order < defined over the set of demand-supply pairs {p= (3,j) |i=1,...,m,j=1,...,n}
is a binary relation for comparing (some of) the pairs, such that it satisfies: (i). Reflexivity: p <p
for any pair p; (ii). Antisymmetry: If p; < p, and ps < p1, then p; = po; (iii). Transitivity: If p; < ps
and py < p3, then p; < ps.
It is clear from Definition 2 that any pair weakly precedes itself. Therefore, it satisfies Reflexivity.
In the following, we will show that the modified Monge condition also satisfies transitivity.
Lemma C.17 below shows that the modified Monge condition satisfies transitivity among pairs

that share a common demand/supply type.

LEmMMA C.17. If (i,7) weakly precedes (i,5"), and (i,j") weakly precedes (i,5"), then (i,j) weakly
precedes (i,j"). Likewise, if (i,7) weakly precedes (i',j) and (i, 7) weakly precedes (i",7), then (i,j)
weakly precedes (i",j).

Proof of Lemma C.17 We will prove the first claim in the lemma, and the second claim holds
by symmetry.
Suppose that (i,7) weakly precedes (i,7’) and (7, ;') weakly precedes (i,j"”). By Definition 2, we

t t t+1 t+1 t t t+1 t+1 =11/
have r{; — i, > By(rin; — rimy) and ri, — i > BY(rin, — ) for any demand type . By

t+1 t+1

adding up those two inequalities, we obtain r}; — Tfj,, > ﬁv(ri,,,j — ri,,,j,,) for any demand type i"’.

On the other hand, it is also clear from Definition 2 that rj; >, >rl,. Thus, rf; —rl, >

ﬁ'y(rﬁ,} - r?f,;”)* for any demand type ¢, which implies that (i,5) weakly precedes (i,j"). O

The following lemma shows that the modified Monge condition satisfies transitivity for any three

pairs such that the first and last pairs do not share any demand/supply types.

LeMMA C.18. Suppose that (i,j) weakly precedes (i',7"), and (i',5") weakly (i",7"). Then, (i,J)
weakly precedes (i",5") if i 1" and j # j".
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Proof of Lemma C.18 Since (i, ) weakly precedes (¢, j) and (¢',j’) weakly (i”,j"), there exists
a “zig-zag” path of demand-supply pairs connecting (i, 7) and (¢’,5’) (if (¢,7) and (¢’,5’) are neigh-
boring pairs, the two of them form the path), and another one connecting (7,7) and (¢’,5’), such
that both path have one of the forms given as in Definition C.1 and along both paths each pair
weakly precedes the next pair. Combining those two paths, we obtain a path connecting (,7) and
(i"”,7"), such that it has one of the forms given as in Definition C.1 and along the path each pair
weakly precedes the next pair.

In particular, if the second-to-last pair on the first path (i.e., the one connecting (7, j) and (', 5"))
and the second pair on the second path (i.e., the one connecting (i, ") and (i”,j”)) do not share
any common demand /supply type, the two paths directly form the combined path (i.e., we travel

" 3")). If the aforementioned two pairs

all the pairs on the two paths to travel from (i,7) and (i
share a common demand/supply type, say demand type i’, then we can combine the two paths
but skip the pair (¢/,;j’) to form the combined path (note that according to Lemma C.17, the
second-to-last pair on the first path weakly precedes the second pair on the second path).

By the modified Monge condition for two non-neighboring pairs (Definition C.1), we can conclude
that (i,7) weakly precedes (i”,j"”). O

In the next lemma, we show that the modified Monge condition satisfies transitivity for three

pairs such that the first and last pair share a common demand/supply type.

LeEMMA C.19. Suppose that (i,j) weakly precedes (i',j'), and (', j") weakly precedes (i,j"). Then,
(i,7) weakly precedes (i,35"). Likewise, if (i,7) weakly precedes (i',3'), and (',j") weakly precedes
(i",7), then (i,j) weakly precedes (i",j).

Proof of Lemma C.19 We prove the first claim of the lemma and the second claim holds by
symimetry.

Suppose that (i, ) weakly precedes (i, '), and (¢, j") weakly precedes (7, j"”). We can find a “zig-
zag” path connecting (i,7) and (7, "), such that each pair weakly precedes the next pair along the
path (analogous to the proof of Lemma C.18, we can combine the path connecting (7, j) and (', 5'),
and the path connecting (i, j') and (4, ") to form the path). Without loss of generality, we assume
that the path has the form (i,5) = (i1,71) — (i2,51) — (i2,72) = = = (ie,Jo) — (i1, 50) = (4,75").

Since for k=1,...,1—1, (i}, ji) weakly precedes (ix,1,Ji), we have
t t t+1 t+1
Tigie ™ Tipgain = VAT o — rik+1j”’)7 (C.34)
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for any supply type j”. Likewise, since for k=1,...,0 — 1, (i)41,jx) weakly precedes (ixy1,jk+1),
we have
t t t+1 t+1
Tik+1jk _rik+1jk+1 Z’YB(T umn rmjk+1) (035)

11

for all demand type i"”’. Moreover, (is,j,) weakly preceding (iy,j,) implies that

t t t+1 t+1
Tiéjl B rilj({ 2 OK’Y(T’Z 0" Tzlj”’) (C36)

for any supply type 5"
By summing up (C.34) and (C.35) for k=1,...,£/ —1 and (C.36), we obtain sz =T, 2

~vB(r fﬁ,’,l rt,J,r,l ) for any demand type i”’. On the other hand, it is evident that ! Since

1171 — Z1.7[

t+1 t+1
1 ) 9 ii s i - i g
(i1,41) = (i,7) and (i1,j¢) = (i,5"), we have r}; TZJ > yB(r; 7). By Definition 2, this

shows that (7,7) weakly precedes (i,5”). O

By Lemmas C.17-C.19, we can conclude that the modified Monge condition satisfies transitivity.

Antisymmetry, however, is not necessarily satisfied by the modified Monge condition. It is pos-
sible for two pairs to weakly precede each other. We say that two pairs that precede each other are
equivalent. It readily follows from Lemmas C.17-C.19 that this equivalence relation also satisfies
transitivity. Clearly, it also satisfies the symmetric property (if p; is equivalent to po, then p, is
equivalent to p;) and the reflexive property (any pair p is equivalent to itself). It is well known
that for an equivalence relation with those properties, the set of all demand-supply pairs can be
divided into a number of equivalence classes, which we denote by A,..., Ay. Within each equiva-
lence class, there is at least one pair (since any pair is equivalent to itself), and any two pairs are
equivalent.

It follows from Lemma C.16 and Lemma E.23 in Online Supplement E that transferring matching
quantity from a pair to an equivalent pair would not change the expected discounted reward.
This implies that we can arbitrarily prioritize two equivalent pairs without affecting the expected
discounted reward. Formally, let us assign a unique integer number, referred to as priority number
and denoted by P j), to each demand-supply pair (i,7). The assignment of priority numbers can
be arbitrary, but it cannot be altered. If two pairs (i,7) and (¢/,j") are equivalent, we break the tie
by comparing their priority numbers.

DEFINITION C.2. We define the binary relation < over the set of demand-supply pairs as follows.
For any two pairs (7,7) and (¢,5"), (4,7) < (¢,7') if:

(i). (i,7) weakly precedes, but is not equivalent to (i’,5’); or
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(ii). (4,7) is equivalent to (i’,j") and P j) < Pur .
ProrosiTiON C.2. The binary relation < defined in Definition C.2 is a partial order.

Proof of Proposition C.2 Reflexivity. Any pair (i,7) is equivalent to itself. Since P(; ;) = P ),
we have (i,7) < (4,7) by condition (ii) of Definition C.2.

Antisymmetry. Suppose that (i,7) < (¢/,5') and (¢,5") < (i,7). We need to show that (i,j) =
(¢',7"). If (z,7) weakly precedes but is not equivalent to (i’,j"). Then, according to Definition C.2, it
is impossible to have (i’,j") < (¢,7). Thus, it must be the case that (i,j) and (i, ;') are equivalent.
By condition (ii) of Definition C.2, P; jy = P ;. However, since each pair has a unique priority
number, P; ;) = P j implies that (i,7) = (7', j').

Transitivity. Suppose that (¢,7) < (¢',j") and (i’,5") < (i”,5"). This implies that (i,j) weakly

"

precedes (7',7'), which further weakly precedes (i”,j”). By transitivity of the modified Monge
condition, we know that (i,7) weakly precedes (i”,;j"). If (,7) is not equivalent to (i”,j"”), we
can conclude that (7,7) < (¢”,7"”) by condition (ii) of Definition C.2. Otherwise, we have (4,j) and
(¢",7") weakly precede each other. Then, (i',j") weakly precedes (i, 7), because it weakly precedes
(¢",7"), but (i",5") weakly precedes (i,5). Thus, (i’,5') is equivalent to (¢,7). Analogously, (i, ;')
is also equivalent to (i”,j"”). Therefore, the three pairs (4,7), (i',7) and (i, ;") belong to the same
equivalence class. Since (7,7) = (i',5") and (i’,5") < (4",j"), we have P jy < Py jry < Pyn jry. This
further shows that (i,7) < (¢",7”). O

We can readily verify that all our results in the paper remain true if we replace the “weakly
preceding” relation with the partial order <. In fact, the partial order < is essentially the same as
the modified Monge condition. The only difference is that, when two pairs are equivalent according
to the modified Monge condition, the partial order =< breaks the tie based on the arbitrarily

assigned priority numbers. In light of the antisymmetry property of <, we can assume without loss

of generality that there do not exist two demand-supply pairs that weakly precede each other.

C.3. Endogenous correlation between matching quantities and future supply arrival
We consider an extension that allows the arrival of future supply to depend on the matching
decision in the current period. In this extension, we assume that any supply matched in a period
t may rejoin the system due to customer cancellation/return.

For simplicity, suppose that demand and supply both arrive in discrete (i.e., integer) quantities,
and the matching decision also takes only integer values. Let the supply carry-over rate 8 =1 and

the demand carry-over rate a can be either 0 or 1.
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m

For the matching decision Q = (¢s;)i=1,...,m,j=1,...n used in period ¢, let ¢, :=> " | q;; is the total
quantity of type j supply matched in that period. We suppose that the arrival of type j supply
in the next period ¢ +1 is Si*':= S;H’O + ZZZI X' where SJHI’O is the new supply to join in
period t +1, and X" (k=1,2,...,=1,....,m, t=1,...,T) are i.i.d. binary random variables
representing the possible cancellation/return of each unit of type j supply matched in period t.
We also assume that {X,Z’tﬂ}ww’t, {Df“}vm and {S;+1}Vj,t are independent. Let X be a generic
binary random variable that has the same distribution as X7 (for all k, j and t), and we define
po:=Pr(X =0) and p; :=Pr(X =1).

We note that the above settings allow cancellations/returns to happen only in the beginning of
the next period after the matching is made.

In the following lemma, we show that transferring matching quantity to a pair (¢,7) from a

neighboring pair it weakly precedes improves the expected total matching reward.

LEMMA C.20. Suppose that (i,j) weakly precedes (i,j’). For two matching decisions Q and
Q+el” " — eZ.L,X" that are both feasible for the state (x,y) in period t, we have H,(Q + e[:*" —

i) 1]

e:';'lena X7 }’) Z Ht(Q7 X7y)
To prove Lemma C.20, we require another lemma.

Lemma C.21. Fort=1,...,T, j,j'=1,...,n, and any x and y, the inequality V,(x,y +e;) —

‘/t(x7y +e]) Z _maXT:t,t—‘rl,...,T,i’:l,...,m(r;r/j - TZ'—/]'/)+ Zf:t('Ypl)Tit holds.

Proof of Lemma C.21. We prove the lemma by induction. Clearly, the inequality holds for ¢ =
T+ 1, since V1 =0. Suppose that it also holds for ¢ 4 1.

For ease of notation, let us define A;j, =max,— 1, mir=1,.m(T5; =757

Let Q be the optimal decision in period ¢ for the state (x,y +e;). With the decision Q in period
t, the arrival of type £ supply in period ¢+ 1 is S;tH° + Ziﬁl X{, forany £=1,...,n. We let (u,v)
denote the post-matching levels for using the decision Q in period ¢.

If there exists some 4’ such that g;; > 0, the decision Q - eZ’jX” + e%f" is feasible for the state
(x,y +e;). With the decision Q- e " +e) ", the new arrival of type j supply in period ¢+ 1

§ i — . q .r+1 -/
is S;H’O +53707 ! Xj, the new arrival of type j’ supply in period ¢ +1 is S;Tl"o + ZZ';;F Xi , and

the arrival of type ¢ supply in period t+1 is Sfl’o + Ziﬁl X} for £+ 7,5 Tt is easy to see that
the post-matching levels remain (u,v).
Let us denote Si+':=S;*0 + 300 X/ for £ j, and St =50 4 S35 X3, We have

Vilx,y +e;) 2H (Q — eZLan + eZlﬁn,X,y +ej)
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=1l 47l + ROOQ BV (au+ DL v+ 8 4 X7 ey),
and
Vi(x,y+e;) = Hi(Q,x,y +€;) =R' 0 Q+7EV; 11 (au+ D™ v+ 8 + X7 e;),
Thus,

W(X,Y‘i‘e]") - V;(X,y +ej)

N

ZHt(Q - ezv/jxn + e?ﬁnaxay + ej’) - Ht(anay +ej)

=1l +7h, + 7BV (cu+ D v+ S Xg;lﬂej/) —VEVi1(au+ D v 4 S 4 Xg‘jej)

= — Tf/j + T'Zt'/j/ + Y [E‘/;+1(Ocu + Dt+1, v+ gt+1 —+ ej/) — EVHl(au + Dt+1, v+ St+1 + ej)] P1

T
t t+1 —t—1
> =A% —yp AT E (vp1)”
T=t+1
T

_ t T—1
= Aj,j’ § (yp1)"

T=t

3 : t t _ t

where the second inequality holds because =TT Ty 2 —MaXr—y =1, m(T;j —TZ/j/)Jr = _Aj,j/’

and also because of the induction hypothesis.
If g#; =0 for all i/ =1,...,m, the decision Q is feasible for the state (x,y + €;7). The post
matching levels for using Q in period ¢ under the state (x,y +ej;) are (u,v—e;+ej;). The arrivals

of supply in period ¢t +1 is S + Xg‘jej. We have,
Vi(x,y +e;) > Hi(Q,x,y +ej) =R 0 Q+7EV, i1 (au+ D™ v —e; + ey + 57 + X e).
As shown earlier, we have
Vi(x,y+e;) = Hi(Q,x,y +€;) =R 0 Q+7EV, 1 (au+ D" v+ 8! 4 X7 e;).
It follows that

Vt(x,y—i—ej/) —Vt(x,y—i—ej)
>yEVi 1 (au+D" v —e;+e; +ST 4 Xq?"j e;) = VEViy i (au+ D v 4 S 4 Xg‘jej)

:’}/E‘/;H,l(Oéu + Dt+1,V — ej —+ ej/ —+ gt+1 + X;J eJ) — ’)/E‘/;+1(au + Dt+1, VvV — ej + ej + St+1 + ng e])
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T T T—1 T
—ATEEN T (yp) T T = AL DY ()T T == ALDY (p) T = AL ()T,
T=t+1 T=t+1 T=t T=t

where the second inequality follows from the induction hypothesis. The induction is completed. [J

We can now proceed to prove Lemma C.20.

Proof of Lemma C.20. We first consider the decision Q := Q — emX" With this decision and
the state (x,y), the post-matching levels in period ¢ are given by t =x — 1Q" + e, and v =
y —1Q +e;. The new state in period ¢+ 1 (after arrival of demand and supply) is (X', y'*!):=
(ot + D" BV + SHH1), where St = (SiHL . Sirl) | G = GIFLO SN X4 for ¢ #£ 5 and
St+1 St+1o+zz /1 IX]

If we use the matching decision Q in period ¢ for the state (x,y), the arrival of type j' supply
in period t+1 is S;,Jrl’o + ZZi’l X g/ = 5’? L X;,j/’ and the arrival of any other type ¢ is equal to
5‘;*1. The post-matching levels in period ¢ are given by u —e; and v —e;j.

Similarly, if we use the matching decision Q — e/ + e;; " in period ¢ for the state (x,y), the
arrival of type j supply in period t + 1 is S'H'1 04 qu+1 X = St“ + Xq 1, and the new arrival
of any other type ¢ is equal to Sé“. The post-matching levels in period ¢ are given by u —e; and

V—ej.

The expected total discounted reward achievable by the matching decision Q in period ¢ is:

Ht(Qv X7 Y)
=R'0Q+7EV,si(ali — ae + D7 —ey +87 + X7 )

=R'oQ+vEV, 1 (att — ae; + DL v — ey + S py + YEV,y (i — ae; + D ¥ 4 ST,

mX’I’L

and the expected total discounted reward achievable by Q +e};"" — emX" in period t is:

(Q+emX7L em><n X y)
=rl,—rl, + R o Q+7EV,y (0l — ae; + D v+ S —e; + Xg'jﬂej)

=ri,—ri, +R' o Q+yEV, (an—ae; + D' v+ S —e;)py + YEVi41 (a1 — ae; + D v 4 S p,
Then,

H(Q+ e — el x,y) ~ Hi(Q.x.y)
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+9 [EVisi (0t — ae; + D7 + 8! —e;)) — BV, (0 — ae; + D', v —e; + 8 py
:Tfj - 'I“t'/

)

+vpo [EVtH(ozﬁ —ae; + D" v+ S —ej —e; +ey) — EViyy(ati—ae; + DL v —e; — ey + S+ ej)}

T
t t T T + T—t—1
2T = Ty — e m;}?_l m(ri’j - Ti’j’) YPo E (vp1)
= geeeyd V=150, r=t+1
YPo
7l =T — max (riy —ri)*
r=t+1,...,T,i'=1,....m 1—7vp

>pto gt — max rh.—rh. )T
- K T:t+1,...,T,i/:1,...,m( v ”) ’

where the first inequality follows from Lemma C.21, and the last inequality holds because 1 —~yp; >
Ypo- By the definition of the modified Monge condition, we have H,(Q + e[;*" — e/ ", x,y) >
H,(Q,x,y). O

With Lemma C.20, many of our results in the paper remain true in the current model setting.
Specifically, Theorems 1 and 2 remain true (the proofs are identical to those for the baseline model,
except that we need to use Lemma C.20 in place of Lemma E.23). Theorem 3 also holds (the proof
is similar to the original proof). Consequently, we still have the same structure for the optimal

policies in the horizontal model (Proposition 3) and the vertical model (Proposition 4).

C.4. Non-additive reward structure for the vertical model
We consider an extension to the vertical model allow for non-additive reward structure for the
vertical model. With the following assumption, all propositions in Section 5 remain true, and the

1-step-lookahead heuristic can be implemented similarly.

ASSUMPTION 5. Fort=1,...,T,
(i) The unit matching reward rf.j is decreasing in i and j;
(ii) For i=1,....m—1and j=1,....n—1, rj; —r{ ;> 'yamaxju:lw_,m(rf;i,l — rfiij,,) and
T~ Tign 208 maXz‘":l,...,m(T’zt»/ijl - T’fff;H);
(i) ri; is supermodular with respect to i and j, i.e., vi;—ri o >l i —riy g fori=1,...,m—1

and j=1,...,n—1.

Part (i) of Assumption 5 innocuously assumes that a demand/supply type with a smaller index
has a higher quality level. (ii) requires that the difference in rewards between a high quality demand
(supply) type and a low quality demand (supply) type is decreasing over time, regardless of the
supply (demand) type they match with. (iii) requires the complementary effect between demand

quality and supply quality.
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We illustrate the assumption by considering the additive/multiplicative hybrid reward structure

t o oo (et t t ot ¢ o " . .
ri; =n(riq +1i,) +rigri,, where n >0, 7, decreases in i, and r}, decreases in j. One can verify that

Assumption 5 is satisfied if and only if:

t t+1 t+1 t t+1 t+1
. n+r; YB(rie —1j 1,‘) n-+r; ya(ryg =1 1,d)
min Zd > T It15) and  min 22> S Lz
L t ot pay t i
1< <m 415, Tie = Tit1,s 155" <n 1+ T Tid — Tit1d

which holds if Assumption 3 (for the additive-reward model) is satisfied and 7 is sufficiently large
(i.e., the additive component of the reward is sufficiently significant, compared with the multiplica-

tive component).

D. Approximation of the expected total discounted reward under the

greedy matching policy by Monte Carlo Simulation
For both the match-down-to heuristic for the horizontal model (see Section 4.2) and the 1-step-
lookahead heuristic for the vertical model (see Section 5.2), we need to evaluate the expected
discounted reward EV}% ;(cu+ D!, fv + S') from period ¢ onward by Monte Carlo simulation.
In this online supplement, we briefly explain the implementation.

Let us draw N sample paths of demand realizations from period ¢t to the end of the hori-
zon, according to their probability distributions. Let us denote the kth sample path by w, =
(@it sttt dlt? sit? s dE sT), for k=1,...,N. For each sample path wy, we have the start-
ing state (x4, yit!) := (au+di", Bv + k™) in period t + 1, and apply greedy matching along
the sample path w; in all subsequent periods to obtain the total discounted matching reward,
which we denote by TR'™(xy,yk,wi). Then, we approximate EV/,(au + D' gv + S*1) by
EVY (au+D"! By 4+ SH) =S TR(x4, yi,wi)/N.

For the match-down-to heuristic for the horizontal model, to determine the protection level
for matching the pair (i,7) we need to evaluate the expected values EV | (a[(Z; — 9;)t + ple” +
D', 8"1) and EVS, (D", B[(&; — ;) +plel +S'!) in (2), for given Z; and ¢ (i.e., the available
demand and supply immediately before we match the pair (i,7)) and protection level p. We can
apply Monte Carlo simulation with (u,v) = ([(Z; — ;)" +ple[”,0") and (u,v)= (0™, [(T; —¥;)” +
ple}) to evaluate the two expected values.

For the 1-step-lookahead heuristic for the vertical model, we need to evaluate the expectation
EVS (a(IB+p)ef* + D', fpe’ +8'+1) in (4) for the given total demand and supply imbalance IB
and the protection level p. To that end, we can apply Monte Carlo simulation with u= (IB +p)el"

and v = pej.
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E. Proofs

Proof of Theorems 1 and 2. We prove Theorems 1 and 2 simultaneously. To that end, we first

present and prove two lemmas (Lemmas E.22 and E.23 as follows).

LEMMA E.22. The following statements hold for all periods.

(i) For any z; >0 and any € € [0,z,], there exists (\],...,\I) >0 for 7 =t,...,T, such that
ST a0 Yo AL <€ and Vi(x — e} +-cel,y) — Vi(x,y) > — STy Do AL, —
Th)-

(ii) For any y; >0 and any € € [0,y;|, there exists (£],...,€]) >0 for 7 =t,...,T, such that
S BTN € < e and Vi(xy — e} +ee) = Vi(xy) = = L, €0, -

Tl

Proof of Lemma E.22. We only need to prove part (i), and the proof of part (ii) follows by
symmetry. We prove part (i) by induction. The result holds for ¢t =7 + 1. Because Vr,1(x,y) =0,
we can simply set )\JT to zero. Suppose that it holds for period ¢+ 1.

Now consider period t. Let Q € argmaxq H,(Q,x,y) be an optimal decision in period ¢ under
the state (x,y) in period t. We will construct a decision Q that is feasible under the state (x —
cel" +ceelly).

Under the latter state (x —ce]” +cel’,y), the capacity of i is reduced by e compared with the
original state (x,y). We need to adjust the matching decision Q accordingly to make it feasible
for that state. In particular, we reduce the matching quantity ¢;; by p; for j =1,...,n, where the

nonnegative numbers iy, ..., u, are defined as follows.

Jj—1
pj =min{g;, (e — Z(jij’)+}v for j=1,...,n.

=1

If Z?,;ll Gijy <e < Zf,zl iy for some 1 < k <n, then one can verify that p; =¢;; for j=1,...,k—1,
pp =€ — Zf,zl Gijr and ;=0 for j =k+1,...,n. In this case, Y37, pu; =¢, and thus Y77 (G;; —
1) =30y Qi = gy M= Gy — e < —e.

If e > Z?,:l Qij, then p; = ¢;; for all j =1,...,n. Therefore, in this case we reduce all the
matching quantities ¢;;, j =1,...,n to zero. We then have Z;.L:l(q}j —pj)=0<z;—e.

On the other hand, under the state (x — ce]” 4 ce}’',y), the capacity of i’ is increased by e
compared with the state (x,y). This allows us to increase the matching quantity ¢,; by p; for all
7=1,...,n.

We define
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Z:U’J mxn_l_zluj m><n

which is feasible for the state (x —ee]* +¢cel}',y). To see this, we have
and Q(1")T =Q(1" Z“J mxn (1) +Z“J mxn(n)1 Z“J +Z“J ()

It follows that (Q(1")"), = DGy = 2ty < — e, (Qamm), = D1 Gy + 2y <
S Guj+e<wy+eand (Q(AMT),, =D Gy <aw for all i #i,47'. Thus, Q(1")" < (x —ee]" +
cel)T.

Therefore, Q is a feasible decision for the state (x — ce!” + eel’,y). Under the decision X, the

total reward received in period t is
n n
REoQRo(Q- D el + 3 ) ~R o QDo+ et
j=1 j=1 j=1

The post-matching levels in period ¢ are

i=x—ce"+cel) —1"Q"=x —ce" +cel) — 1nQT+Z,LLJ ZMJ

Consequently,

Vi(x —ce" +eejy) = Vi(x,y)

ZHt(va - Eezn _’_ge?aY) - Ht(Q)XaY)
=- Zﬂj(rfj - Tf/j)
j=1

+YEVi (ot —a(e =Y p)el +a(e =Y py)ef + D BV + 8 —yEV, (et + D Y+ S,

j=1 j=1

By the induction hypothesis, for each realization of D! and S**!, there exists (A7,...,AT) for
T=t+1,...,T such that thﬂ a~—(r=t=1) Z?’Zl A7 <afe— Z;LZI p;) and
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Vip(ati—a(e =Y pj)el +ale— Y el + D' v +8) — Vi (at+ D gy + 8
j=1 j=1
T

—(t+1) T T
-7 ZA T
T=t+1

Note that A7 is a random variable due to its possible dependency on the random vectors D!

and S, Tt then follows that

Vi(x —ee]" +eel,y) ~ Vi(x,y) > Zug ’VZVT MZEAT TG = Th)-

T=t+1

Since Y7 e @ T AT <ale =07 py), we have YTy + Zf:t-&-l a O AT <
€. Let \j=p; forall j=1,...,n, and \] = EA] for all j=1,...,n and 7=t+1,...,T. The proof
is completed. [

LEMMA E.23. (i) Suppose that (i,7) weakly precedes (i',j) by Definition 2. Then, transferring
matching quantity from (i',j) to (i,7) weakly improves the total expected reward, i.e., H,(Q +
gep; " — 5e§7f”,x,y) > H(Q,x,y), if Q+eefj" — EemX" 1 a feasible decision under the state
(x,5).

(i) Similarly, if (i,j) precedes (i,j'), then H,(Q+ e} " —ee] ", x,y) > Hi(Q,x,y).

Proof of Lemma E.23. We prove part (i) only since part (ii) can be proved analogously. The

m><n

post-matching levels for using Q +cej; " — e/ " are

u=x—-1"(Q+cee]} " —ce /") =x - 1"Q —ce]" +cej) =u—ce]" +cey,

Vv=y -1"(Q+cej; " — €em><”) y—1"Q=v,
where (u,v) are the post-matching levels by using the decision Q in period t. Then,

(Q +6€m><n Eemxn ’y) _ Ht(Q’ny)

=e(r!, — rfj,) +vEVi (cu+D" v+ S — BV, (au+ D' Bv + S, (E.1)

)

By Lemma E.22, there exists (A7,..., A7) such that S ST AL < ae and

T= t+1
T n
Vi (@ + D v+ 8 — Vi (au+ D By + 8 > = 3~ DN AT (T 0T,
T=t+1

Note that A7 is a random variable since it may depend on D**' and S**'.



Since (i,7) weakly precedes (i',j), it is easy to see from Definition 2 that r], — ], <
y= (Tt (r=1) (ri; —ri;) forall €S and r=t+1,...,T. Thus,

Vip1(eu+D* BV 4+ 8™ — Vi (au+ D" gv 487
T

o Z T— (t+1)ZAT T 7“//)

Z Z ,77' (t+1) —(7' t) —(T t)ZAT
T=t+1
T
=- ('704)_1(7";7'/ _Tf/]‘/) Z a~ (==Y ZAJT"
T=t+1 3'=1

>(ya) (rf; —rh;) X ae

:—’y*l(rfj —rf/j)a. (E.2)

Combining (E.1) and (E.2), we have H,(Q +eej;™" —z—:eZ,X",x,y) > H,(Q,x,y). O

Proof of Theorems 1 and 2. We now prove Theorems 1 and 2.

Let Q¥ be a feasible decision in period ¢ under the state (x,y), and (u®,v(*®) be the corre-
sponding post-matching levels.

For a pair (i,7), we consider two kinds of transfers of matching quantities from other pairs to
(i,7), described as follows.

The first kind of transfers transfer matching quantities from a weakly preceded pair to the
corresponding preceding pair. Suppose that uz(-k) > 0. For another pair (¢, 7) such that it is weakly
preceded by (4, ) and q(k) 0, we construct the feasible matching decision Q1) := Q") +§He;; —
§®e;;, where §*) := min {u ,q } By Lemma E.23, Q**+Y weakly outperforms Q(k) Likewise, if

( ) > 0 and there exists another pair (7, j") weakly preceded by (i, 7) such that qij, > 0, we construct
the feasible matching decision Q**+Y := Q) +§We,; —§We, 1, where §*) := min {v]( ,q” } Again
by Lemma E.23, Q*+1) weakly outperforms Q*).

ij’s

The second kind of transfers work as follows. Suppose that there exists two pairs (¢/,j) and (i, j’)
such that 7‘ A+t i > 7"/ +7! s q , > ( and q(k) > 0. Then, we construct the new feasible matching
decision Q(’““) = QW 4 gWel ™ — 5(k)e;7jxn - 5(k)emxn, where 6*) := min {q v ,ql] } It is easy
to see that Q*+1) weakly outperforms Q*), since it leads to a weakly higher matching reward in
period ¢ (because 7}, + 7!, >l 4+ 7l,) than but the same post-matching levels as Q")

We consider the procedure that repeatedly performs the first kind of transfers as long as possible
for the proof of Theorem 1, and consider the procedure repeatedly apply any of the two kinds of
transfers that is still possible for the proof of Theorem 2.
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We define a pair (4,j) as a level 1 pair if it is not weakly preceded by any other pair; inductively,
we define level £ pairs as those pairs weakly preceded only by level £ — 1 pairs, for £ > 2. Since there
are finitely many pairs, the total number of levels is a finite number, which we denote by L.

We can observe that for either kind of transfers, the weakly preceded pair(s) loses matching
quantity. Thus, level 1 pairs never loses matching quantity. Since the matching quantity between
any pair (4, j) cannot exceed min {xz;, y;}, either the procedure stops transferring matching quantity
to level 1 pairs at some time point, or it never stops transfer quantities to level 1 pairs but the
quantities transferred converges to zero. In either case, the quantities received by level 1 pairs
converge to zero. A level 2 pair may lose matching quantity only when we transfer a quantity
to level 1 pairs, and the quantity it loses is equal to the quantity received by the level 1 pair.
This implies that the quantities that level 2 pairs lose converge to zero. As a result, the quantities
received by level 2 pairs should also be equal to zero, since otherwise the matching quantities for
some level 2 pair will grow to infinity.

As the induction hypothesis, let us assume that the matching quantities received by level £ pairs
converges to zero for £ =1,...,k. A level K + 1 pair may lose matching quantity only when the
procedure transfers a matching quantity to some level ¢ pair (¢ < k), and the quantity it loses is
equal to that received by the level £ pair. Thus, by the induction hypothesis, the quantities lost by
level k + 1 pairs converges to zero. It follows that the quantities received by level k + 1 pairs should
also converge to zero, since otherwise the matching quantity for some level x + 1 pair will grow to
infinity. Therefore, by induction we have shown that the matching quantity transferred converges
to zero, i.e., limy_,o 6*) = 0.

Let Q) be a limiting point of the series {Q(k)}kzl,Q,...' Since all Q*)’s are feasible matching
decisions, Q> is also feasible. Clearly, Q™) weakly outperforms any Q®*). We let (u>),v>) be
the post-matching levels corresponding to Q(>). it is easy to see that (u(®),v>) is a limiting point
of the series (u®,v(®).

For the first kind of transfers, we have §(*) = min{ E ),q”} for the type i’ such that (i,7)
weakly precedes (', ), or §%) = min {v(k (k)} for the type j' such that (i,7) weakly precedes
(i,5'). The fact lim_,o, ) = 0 implies that min {u(oo),qz,j )} =0 and mln{ ,qE;O)} =0 for the
corresponding pairs (i, 7) and (4, 7).

For the second kind of transfers, we have 6*) = min {ql(,k ),ql(]k)} for the types " and j’ such that
(i,7) weakly precedes both (i’,7) and (i,j') and rl; + vl >l +rl,. The fact limy_ o d® =0

implies that min {q(,J ),ql(]o/o =0.
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From the above arguments, we see that Q(>) satisfies the properties in Theorems 1 and/or
2. Therefore, we have shown that given any feasible matching decision Q) in period t, we can
construct another feasible decision that weakly outperforms Q(). The above analysis can be
applied to any state in any period. This implies that there exists an optimal matching decision
that satisfies the desired properties in the two theorems. [

Proof of Special Case 2 We show that the highest-(priority)-level pair always weakly precedes
all remaining pairs throughout the procedure of removing demand/supply types. If that is true,
we either match the highest-level pair to the maximum (and move on to the new highest-level pair
after removing the demand/supply type that is exhausted), or stop the matching after partially
matching the highest-level pair.

Suppose that (7,7) is highest-level pair among the remaining pairs, and is of level . By assump-
tion, (4,7) is the only level ¢ pair among the remaining pairs. Let (i, ;') of level ¢ > ¢ be of the
next-highest level among remaining pairs. (If there are multiple remaining pairs of level ¢, we can
arbitrarily choose a pair).

Suppose to the contrary that (i’,5’) is not weakly preceded by (7,7). Then, (i, ;') has a neigh-
boring pair of level ¢ — 1, say (i’,j"), whose supply type has been previously removed.

If ¢/ —1> ¢, then we have removed a lower level pair (i.e., level ¢/ — 1) before a higher level
pair (i.e., level £). This is impossible since we always remove the demand or supply type of the
highest-level pair.

If #/ —1=1¢, then we had two level ¢ pairs when we removed j” (and thus the pair (i,;j")).
This contradicts the assumption that there is always just one pair of the highest level among the
remaining pairs. [J

Proof of Theorem 3. We show that greedy matching between ¢ and j is optimal by induction.
It is easy to verify that greedy matching between ¢ and j is optimal in the final period T'. Suppose
that it is also optimal in period ¢+ 1.

Let Q be an optimal decision in period ¢ under the state (x,y), such that it satisfies the properties
in Theorems 1 and 2. Suppose to the contrary that ¢, < min{z;,y;}. We first show that under
this assumption, both the post-matching levels u! and v§ corresponding to Q are positive, if (i, )
weakly precedes all its neighboring pairs. To prove that, let us suppose to the contrary that u!=0.
Since ¢;; < x;, there is a pair (7, ') such that g;;, > 0. Following Theorem 2, we have g;,; =0 for all
demand type i’ #1i. As a result, vt =yt —>"7"  qv; =y! — ql; > 0. However, both q;; and v being
positive contradicts Theorem 1, given that (i,7) weakly precedes (4,;j'). Thus, both u} and v} are

positive.
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Again by Theorem 1, both u; and v} being positive implies that ¢, =0 and g¢;,;, =0 for all
demand type i’ # ¢ and all supply type j' # j. This means that we can increase the matching
quantity between ¢ and j until it equals min {z;,y;} without the need to change the matching
quantity between any other pair. Next, we will show that increasing the matching quantity between
i and j by €:=min{x;,y;} does not hurt the optimality of Q.

Increasing the matching quantity between ¢ and j by ¢ will increase the matching reward in
period ¢ by r};e, but decrease both the post-matching levels of i and j by €. In other words:

Ht(Q + ge;‘r;xn7x7y) - Ht(Q + ge;;txnj X7Y)
=1}, + 7EVip1(ou’ — age]” + D, gvt — Beel! + 8 — 7 EViy (au’ + D gVt 4 S,

Let us consider the case 8 > « without loss of generality. We have

Vigi(ou® + D —agel”, fv! + S — Beel) =Viy (au’ + D + (8 — a)eel”, vt +S) — Beri !

>Vipa(au’ + D, Bv! 4 87 — Beri!
where the equality is because of the greedy matching of pair (i,j) for the subsequent periods,
and the inequality holds because V,,, is increasing in the state vector (note more demand/supply
always leads to weakly higher reward since the firm has the option of never using the extra

demand /supply). Therefore,
H(Q+eel " x,y) — Hi(Q+ee*", x,y) >(ri, —yfrif')e > 0.

Therefore, we can always weakly improve Q' by increasing the matching quantity ¢f; until it is
equal to min{z;,y;}. It is easy to see that by doing so, properties in Theorems 1 and 2 remain
satisfied. Thus, we can do the same for all pairs (7, j) that are not greedily matched until we obtain
an optimal solution that satisfies the theorem. [

Proof of Proposition 1. 'The proof is based on an alternative formulation of the 2 x 2 horizontal
model in Online Supplement A, and the proof itself is also included in Online Supplement A. [

Proof of Proposition 2. (i) We focus on the case with z; >0 and 2z, > 0 (or equivalently, x; > y;
and w3 <ys) to show that p, (IB) decreases in IB with the rate of decrease less than or equal to 1.

According to Lemma A.4, the function J,(¢,z) (defined by (A.6) in Lemma A.2) is L'-concave,
the optimal matching quantity ¢!% is increasing in both z; and z,, with the rates of increase less

than or equal to 1. By Proposition 1, ¢f5 = [2, — p, (IB)]*. For a given IB, let us choose z; and 2,
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both sufficiently large such that z, — 2o = IB and 2, > p{, (IB). Therefore we have qi5 = z, —p!, (IB),
or equivalently, pl (IB) = 2z, — qi5 = 21 — IB — ¢i5. If we keep z; fixed and increase IB, z, will
increase at the same rate as IB decreases. Since ¢!} increases in z, at a rate no greater than 1,
—qi5 increases in IB at a rate that is no greater than 1. Consequently, pf, (IB) decreases in IB at
a rate no greater than 1.

(ii) Part (ii) of the proposition is proved in Lemma A.5 in Online Appendix A. [

Proof of Lemma 1. Let o and d be the two endpoints of the line segment £, and suppose that
the direction of £ from o to d. We first show that (i, j) weakly precedes (7', j), if j reaches ¢ before
it reaches i, along the direction.

It is clear that dist;.; < disty. ;. By Assumption 3 i), we have r}; = R} —dist;; > R}, —disty; =
74, for all t. To show that (4, j) weakly precedes (7', j), it remains to verify that rj; —rf, > va(rf;.i/l -
rff;,l,) To that end, we have

’I"]?v — Tf’j = (R;f — dlStﬂ;j) - (Rf/ - diStilej) = R,IZ - Rf/ + diSti/(fj — dlSt“;j == Rf - Rf/ + dlStzleZ

)

Now consider another supply type j”. We consider the following two possibilities.

If j” is located between ¢ and endpoint d, we have 7“;:1].,, =0 since 7 is not accessible from j”.

t+1 t+1y\ __ t+1 t t
Then, ya(r;, —riin) =—yor; . <0 <rj—rj,.

If " is located between endpoint o and i, then

Yalr! — i) =yal (R — distic ) — (RY — disty )]

:PYOJ(R?Ll - R:j_1> + ")/a(distiu_j// — diSti<—j”)~

Since j reaches i before ¢’ along the direction, it follows for Assumption 3 ii) that R! — R!, >

ya(RT — REY). We have

va(ritt —rits) =va(RiT = Ry +ya(distyjn — disti )
SR: — Rf/ + ’7a<disti/<_j// — diStu_j//)
SRE - Rf/ + disti/ej// — distigj//

:<Rf - distu_j//) - (Rf/ - diStiu_jN) = rfj// — Tz/j.

Therefore (i,7) weakly precedes (', 7).



46

Conversely, if j reaches i’ before i, it is easy to see that rj; <7 ;- In that case, (,7) does not
weakly precede (i, 7). Thus, (i,7) weakly precedes (i’,7) if and only if j reaches i before i’ along
the direction, provided that both pairs are matchable.

Analogously, we can show that (i,7) weakly precedes (i, ;') if and only if j is closer to ¢ than j’
along the direction.

To show that the strong modified Monge condition is satisfied, let us consider a matchable pair
(4,7) that weakly precedes two other pairs, (i',7) and (i,j'). We need to show that rj; + 1}, >
T4, + 1. It is easy to see that the inequality holds if either (i’,7) or (4,j') is unmatchable. (For
instance, if (i, j) is unmatchable, the inequality holds because rf; > r} » and rt ;= 0.) Suppose that
both (i',j) and (4,;") are matchable. We have dist;. ;s + disty; = (dist;; + dist; ;) + (dist;; +
disty ;) = dist;; + (dist ;s + dist;; + disty.;) = dist;; + distyr. . It follows that T 4t i =
R! —dist;; + Ry — distyr y = R — dist;y + Ry — disty; = ri,j + rl.j,. O

Proof of Proposition 3. The proof follows directly from Lemma 1 and Special Case 1. [
Proof of Corollary 1. The proof follows directly from Theorem 3. [

Proof of Proposition 4. For any demand types 7,7’ and any supply types j, j’, we have r! —i—r =
Tiq T+ 15+ 18 =1l +7);. Thus, the strong modified Monge condition (i.e., Assumption 1) is
satisfied. Moreover, if we remove any demand and/or supply types from the bipartite graph, in the
remaining graph, the demand type and the supply type of the lowest indices form the only pair of
the highest priority level. Thus, the proposition follows from Special Case 2. [

Proof of Lemma 2. A total matching quantity Q in period t implies that the quantity of
demand fulfilled and that of supply used are both equal to Q. Under top-down matching,
demand and supply types with smaller indices are matched first. Therefore, the firm will ful-
fill type 1 demand in period t for the quantity min{Q,xl}. Then, the remaining quantity of
demand to fulfill is Q — min{@,xl} = (Q — x,)". The firm will fulfill type 2 demand for the
quantity min{(Q—azl)Jr,mg} (since demand type 2 is prioritized over all other demand types
except demand type 1). Recursively, the quantity of type i demand to fulfill in period ¢ is
equal to mln{ Q— ZZ, L Zi) ,xi}. Likewise, the quantity of type j supply to fulfill in period
t is mln{ Q- Z;,:l Yjr) ,yj}. Since the reward for fulfilling a unit of type ¢ demand is r! and
that for fulfilling a unit of type j supply is rj, the matching reward received in period t is

S 1m1n{ Q-0 x) ,xi} T mln{(@—zz;llyj,)Jr’yj}. It is easy to see that the
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post matching levels in period ¢ are given by u = (x — Q1™) := ((ac1 -, (T — Q)*) and
v=(y-Q1")" = (11 —Q)",...,(Ym — Q)"). Therefore, the maximum expected total discounted
reward attainable by the total matching quantity Q is given by the expression of G4(Q,x,y) given
in (3). And the optimal reward V;(x,y) can be obtained by maximizing G,(Q,x,y) with respect
to 0 < @Q < min {Z:’;l xi, Z?zl yj} (note that the total matching quantity cannot exceed the total
available demand or supply).

Next, we show the concavity of G,(Q,x,y) with respect to Q.

The expected value function EV;,;(au + D' Bv 4+ S**!) is concave in (u,v) for both the
continuous-valued (state and decision) model and the discrete-valued model with either a« = =1
or «=0,8=1 (In Lemma B.7 in Online Supplement B, we show that in the latter case it is
Lf-concave, which implies concavity.) It follows that G,(Q,X,y) is concave in Q within the interior
of the ranges 7,1 <Q < z; and y,;_; < Q < y,.

Let Z; := 2221 xp and g; = Zi:l yi. Without loss of generality, we assume that Z; € (g;-1,7;).
We show that G is concave in the neighborhood of a breakpoint a = ;. To this end, it suffices
to show that Gi(a + ¢,x,y) — Gi(a,x,y) < Gi(a,x,y) — Gi(a — €,%x,y), where 0 < € < min{Z; —

¥j—1,Y; — Z;}. On the one hand, we have

Gt(avx7y)_Gt(a_€7x7y)
=(r{g + 7)€+ YEVi1(Dpip, 0Xfig1,n] + Diigrng, Sprj—11 875 — Ti) + S5, BY (j+-1,m) + Spj41,m))
—YEV 41 (Do), a6+ Dy, o1 n) + Dipivang, Spjo1), B85 — &) + Be + S, BY i 1,m) + Stj+1,m))-
(E.3)
By Lemma E.22, there exists A}, for j* = 1,...om and 7 =1t + 1,...,T such that

T T—t—1 m T
ZT:t+1 « Zj/zl )\j/ S ag, and

— EVii1 (D o1y, e + Dy axXpigr o] + Diigeings Si—1y, BT — T6) + S5, BY [j+1,m) + Stj+1,m))

+ EVip1 (D s 0tir + Dy + €, aX (a0 + Diivongs Spoj—1), 87 — Ti) + Be+S;, BY[j+1,m) + Spjs1,m))
T m

> Yt Z AL (rTy =1y ) (E4)

T=t+1 3'=1

Combining (E.3) and (E.4), we have

Gt(aaX;Y) - Gt(a - €7X7Y)

T m
>(rig+ri)e—n Z ATt Z No(r =1l o)
j'=1

T=t+1
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+YEVii1 (D 0Xig1,0) + Diigtn)s Spj-11: B85 — i) + 55, BY [j+1,m) + Spj1,m))

—YEVi41(Dp g, Oéwi+1 + D + o€, X200 + Diivon), Sp -1, B(8; — &) + Be + S, BYj+1,m) + Sij+1,m))

>(rly+rt)e—y Z ¥ (ya) ZAT =T )

T=t+1

+vEVii1 (D, 0X i1, + Dt ng, S[l,jfl]yﬂ( U — ;) + S5, BY[j+1,m) + Spjt1,m])

—vEV, 1 (Dpa, 04332’+1 + Dij1 + e, aXjion) +Diirang, Spj—1y, B(8; — i) + Be+ S5, BY i 1,m] + S 1.m))

:(de‘i‘r;‘s)f_ail Z a~ (=70 Z)‘T Tid — z+1 )

T=t+1

+YEVig1(Dpiy, X i1 ) + D[m,n], S1,j-11, B(F; — i) + 55, BY(j+1,m) + Spjt1,m))

= VEVir (D @iy + Digr + €, aX (2,0 + Do), Sy, B9 — ) + Be+ 55, BY (j41,m) + Spj1,m))
Z(de + T;'s)e - (rfd - rf+1,d)5

+YEVip1 (D, X1, + Diisings Spyj—1)s B85 — i) + S5 BY [j+1,m) + Spjs1,m))

—YEVi1 (D, aivt + Divr + o€, aXfivz,n) + Diivang, Spj-1, 875 — &) + Be+ S5, BY (j+1,m) + Spjr1,m))
:(T§+1,d + Tj‘s)f +'YEV;5+1(D 1,45 OXfit1,n] + Diit1,n), Sp -1, B(y; — ;) + SJ75Y[J+1 m] + Spj+1, m])

—YEV 41 (Dp g, amipr + Doy + o€, 0Xiyo.n) + Dijigon), Siii—1), B(9; — &) + Be + S, BYj+1,m] + Spj+1,m))

. . t t I t T—t T J—
where the second inequality holds because rj, — 1, =1l — i, > (ya) 7 (riy — 1l ) =

(ya)"H(r] =77, ;) for 7>t +1 according to Assumption 4. On the other hand, we have

Gila+e,x,y) — Gi(a,x,y)
=(ripra+j.)e
+7EVii1 (D, o — ae+ Dig1, X, + Divan)s Sirj-1p, B8 — i) — Be+ 55, BY 4 1,m) + Spjar.my)

—YEVip1 (D, 021 + Digr, Xson) + Dvong, Sij—11: (U5 — Zi) + S5, BY [j+1,m] + Spj+1,m])-

By the concavity of Vi1, we have Gy(a+¢€,x,y) — Gi(a,X,y) < Gi(a,x,y) — Gi(a — €,x,y). O

Proof of Proposition 5. We use the alternative formulation (B.14)—(B.15) of the model in
Online Supplement B. We first focus on the case with o = 8 > 0, and prove the functional properties
in parts i) and ii) for that case.

(i) By Lemma B.7 i) in Online Appendix B, the function G,(Q,%,y) is Li-concave, a fortiori,
supermodular in (Q,%,y). (Note that L-concavity implies supermodularity.)

By Simchi-Levi et al. (2014, Theorem 2.2.8), the optimal solution to (B.14), denoted by Qt(i, y),

is increasing in x; and y;, for i=1,...,m and j=1,...,n. Given the relation z; = Z;Zl x; and
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g = Zizl y; between the transformed state (X,y) and the original state (x,y), we see that both
% and y increase, as x; or y;. Thus, the optimal total matching quantity Q% (x,y) is increasing in
z; and y;, fori=1,...,mand j=1,...,n.

Next, we show that the rates of increase do not exceed 1. Let € be a positive number. By the
definition of Li-concavity, Gy(Q — &,% — £1™,§ — £1") is supermodular in (Q,%,y,£). Then, for
Q> Q'(%,¥)+e¢, we have

~ A~

ét(Q7§(+ 61m7$’+61n) - éf(@t()E?y) +€7i+61m7§’+ 61”) S éf(Q - 675(75’) - Gf(Qt(ivy)aivy) < 07

where the first inequality is derived by definition of supermodularity and the second inequality is
due to the optimality of Q'. This implies that any matching quantity Q > Q, (X,¥) + € is not better
than Q,(X,y)+ € for the state (X +€e1™,y +€1"). Therefore, Q, (X4 €1™,§ +€1™) < Q,(X,¥) +¢. By
the monotonicity of Q,(X,¥), Qi (X+€1™,¥) < Q,(X+€1™,y+€1") < Q,(X,¥) +e. For 1 <i <m, let
1(; ) be the m-dimension vector with its first i — 1 entries equal to 0, and the remaining entries equal
to 1. We have Q™ (x + ee;,y) = Q' (X + eljm,y) < QX+ 1™, §) < QU(X,¥) + e = Q™ (x,y) +e.
Therefore, the rate of increase of Q**(x,y) with respect to x; is less than or equal to 1. Analogously,
we can show that the rate of increase of Q*(x,y) with respect to y; is less than or equal to 1.

(ii) To show that Q' (x,y) increases faster with respect to z; than x4, (for i=1,...,m —1),
we consider two original states (x + ee’,y) and (x + eel,;,y). Their transformed states can be
ordered as (X + €l ), ¥) > (X +€lpi1,m),¥) (recall that 1y, is the m-dimension vector with the
i-th up to m-th entry being 1 and the rest of the entries being 0). By the monotonicity of Q. (X,¥),
Qu(X+ €Ly, ¥) > Qu(X + €Ly ), ¥). This implies that Q' (x + ee;,y) > Q% (x + e}’ ,y). Thus
we have Q% (x + ee;,y) — QU (x,y) > Q" (x + e, y) — Q" (x,y), which implies that Q" (x,y)
increases faster with respect to x; than z,,,. Analogously we can show that Q' (x,y) increases
faster with respect to y; than y;;4, for j=1,...,n—1.

It remains to prove i) and ii) for the case with « =0 > 3. However, the proof is identical, except

that we use part (i) of Lemma B.7 in the proof rather than part (i) of that lemma. O

Proof of Proposition 6. To prove that the 1-step-lookahead heuristic follows the top-down
matching structure, It suffices to show that for i <4’ and j < j’, in any period ¢ it does not match
any type i’ demand unless type i demand is fully matched, nor any type j’ supply unless all type
7 supply is matched.

For the original state (x,y) and a matching decision Q' = {qu} in period t, let

i=1,...,m;j=1,....,n

u= (uy,...,uy,) and v = (vq,...,v,) be the corresponding post-matching levels of demand and
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m

supply, respectively, g; = J_, ¢;;» be the quantity of type i demand fulfilled in period ¢, and

(3

t

q;= Sy qf//j be the quantity of type j supply fulfilled in period ¢, fori=1,...,mand j=1,...,n.
Assume that Q! depletes type ¢ demand but fulfills a positive quantity of type 7’ in period t, i.e.,

> 0. We will modify Q' such that it will follow the top-down matching

m
u;>0and g =3 Jn_, 4,

structure after the modification, and the expected discounted reward is (weakly) improved.
More specifically, let ¢ := min{u;, ¢}, }. We modify Q' to construct another decision Q' =
{(jfj}i: Lo jeLm by reducing the fulfilled quantity of type i demand by e and the fulfilled quan-

tity of type i demand by the same amount, i.e., ;. = q;. +¢,G;. = q;. — €, and Gjn;n = qjn;n for all

i" #1i and all j”. By doing so, the reward in period t increases by (ri, —rl,)e. In the meantime,
the post-matching levels under the decision Qt become u — ce; + cey and v. Thus, the expected

total discounted reward under greedy matching from period ¢+ 1 to period T changes by
YEVZ, (cu+ D" — ace; + acey, fv + S —yEVE, (acu+ D' Bv 4+ S,

In Online Supplement B, we define the transformed state (X,y) in a period as x := (z1,x; +

3327-”722:1%:”-:2?:1%) and ¥ := (y1, 51 + yg,...,ZLlyk,...,zzzlyk). We also define

VI(x,y) =V (x,y) —x(r)" — y(r))" in Online Supplement B. It follows that

YEVE  (at+ D" v + S —vEVE, (cu+ D" Bv 4 S
=vEVf (au+ D" — ace; + acey, fv + ST —vEVE  (au+ D By + ST

= —~ya(rtt —r5e + BV (a4 D — ae1™ 671 5y 4§ — v BV (et + DY Y 4+ S
> —qa(rif' =iy e,

where @ := (uy,u; + Uy, . .. ,22:1 Uks ooy g W) and V= (v1,01 4 0g, ..., ;=1 Vkseoey D opey Uk)
are the transformed post-matching levels, and the inequality follows from the monotonicity of f/t‘il
(Lemma B.9).

Thus, by modifying Q?, the change in the expected total discounted reward from period ¢ to
period T is at least [(rl, —r%,) —ya(riit —rith)]e > 0. Thus, the modification weakly improves the
expected total discounted reward (assuming greedy matching from period ¢+ 1 onwards).

On the other hand, the modification either reduces the post-matching level of demand type ¢ to
zero, or reduces the total fulfilled quantity of type i demand to zero. (This reduces the violation

of the top-down matching structure.)

If the matching decision in period ¢ depletes type j supply but fulfills a positive quantity of
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type j' supply for some j < j', we can implement a similar modification that weakly improves the
expected total discounted reward and reduces violation of the top-down structure.

If the resulting matching decision does not follow the top-down structure yet, we will keep
implementing similar modifications, and will eventually reach a decision that follows the top-down
structure in period ¢. To show that the 1-step-lookahead heuristic performs weakly better than the
greedy matching policy, we let POSAILLGreedy[t+1,T] e the policy that applies the 1-step-lookahead
policy up to period ¢, and uses greedy matching from period ¢+ 1 to period T'.

The two policies, POSA[I,t],Greedy[t+1,T] and POSA[I,tfl],Greedy[t,T]

coincide with each other in periods
1,...,t—1, and therefore have the same expected rewards in those periods.

For any state in the beginning of period t, the policy POSAILHGreedy[t+1.T] 565 the 1-step-
lookahead policy in that period, which is optimal (for maximizing the total expected reward from

POSA[

period t to period T) given that Lt],Greedy[t+1,7] wi]] use greedy matching from the next

1,t—1],Greedy][t, T

period on. In contrast, the policy POSAl uses greedy matching in period ¢, which is

suboptimal in response to the greedy matching it enforces from period ¢ + 1 to period T'. Con-

POSA[LYLGreedy[t+1.T] Joads to a higher total expected reward from period t to period T

sequently,
than POSAILt—1],Greedy[t,T]  The overall total expected matching reward from period 1 to period T
is higher under POSAL.Greedy[t+1.T] than under POSAL 11, Greedy[t,T],

The 1-step-lookahead policy coincides with POSAILT=1.Greedy[T'T] "and the greedy matching policy
coincides with POSAIL0LGreedy[LT] Thyg the former leads to a higher total expected reward.

For a 2-period problem, it is easy to see that greedy matching (in the descending order of unit
rewards) is optimal for period 2. Thus, in period 1, the 1-step-lookahead policy is optimal. [

Proof of Proposition 7. Since the 1-step-lookahead heuristic follows the top-down matching
structure, the corresponding matching decision in period ¢ can be determined by the total matching
quantity Q). In Online Supplement B.1, given the transformed state (X,y) in period ¢, we define
G{(Q,x,y) as the expected total discounted reward from period ¢ to period T, if we follow the
top-down matching up to the total quantity () in period ¢, and enforce greedy matching there-
after (see (B.17)). We also define G¥(Q,%,¥) := —xU;!(r})T — yU; 1 (r!)" + GY(Q,%,¥) in Online
Supplement B.1. To determine the total matching quantity in period t for the 1-step-lookahead
heuristic, we solve maxo<g<min{zn 5.} Gi (@, X, ¥).

Following the top-down matching structure, type ¢ demand will be matched with type j supply
only after all demand of types 1,...,7—1 and all supply of types 1,...,j — 1 are completely fulfilled

in period ¢. Thus, matching between type i demand and type j supply is possible only if z;,_; < y;
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and Z; > y;-1. (If Z;_1 > g;, type j supply is already depleted before we start to fulfill type 4
demand; if Z; <g;_1, type i demand is already depleted before we start to fulfill type j supply.)
Suppose that the 1-step-lookahead heuristic does match (4,7) in period ¢. Then, the matching
of (i,j) starts when the total matching quantity ) reaches max {Z;_,y;_1} (this is when all types
1,...,i—1 demand and all types 1, ..., j — 1 supply are both completely fulfilled), and stops when it
reaches min {Z;,7;} (this is when either types ¢ demand or type j supply is completely exhausted).
To determine the matching quantity between i and j for the 1-step-lookahead heuristic in period

t, we solve the following problem:

m(g‘x Gé](Qaivy)a

s.t. max{fui_l,ﬂj_l} §Q§m1n{a~zz,gj} (E5)

If Q ;. ;) is an optimal solution to (E.5), the 1-step-lookahead heuristic should match (i, j) for the
quantity Q ;) — max {Z;_1,7,_1}. Within the feasible range max {#;_,§;_1} < Q < min {&;, 7}, we
can rewrite the function G¥(Q,%,¥) given in (B.18) as:

G?(Q7i75’) ")/EDtJrl( t+1) +’}’Est+1( t+1)
(Xh m] —Q1m Z-‘rl)( - )[z ,m]x[1, m]( 'YOKI'Z-H)
— (Y — Q1" TV, 1)[37"]X1”]( — 4Bt

+VEVE (D @R — QL) + D S BT — QL) + 8. (E6)

[4,m]

G (Q%9) .
tT Wlth
respect to Q. (In the case where GY(Q,%,¥) is not differentiable with respect to @, we can con-

To maximize GY(Q,%,y) within the feasible range, we examine its derivative

sider its maximum subgradient with respect to () instead; in the case where states, decisions and
demand /supply realizations take integer values only, we can consider the difference instead.)
For ease of notation, we write X!*1(Q) := (D'[ff“z1 1 (Xjim) — QL) + ﬁff%) and y'*H(Q) :=

(Slflj1 1 B im — QL4 + S‘fﬁ]) From (E.6), we have

0GY(Q,%,3)
oQ
=riy—yorift + 1l —yorlt +ylim E VI XN Q+e), T (Q+e)) — Vtil(ﬁtﬂ(@),i’tﬂ(@))]
o id e—0 £

=riq—yarij’ + 15, = yarj]

+~lim Vt+1( tH(Q) — el m, 5’t+1(Q) - 551[j,n]) - Vtil(iHl(Q); }N’HI(Q))} .

a—>0 e

t+1
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Under the condition o = g, it follows from Lemma B.13 that the difference
LV E Q) = aelpym, ¥1(Q) — Belyim) — VAL (XH(Q),571(Q))]  depends only on  the
first @ — 1 entries of x*1(Q) (which is equal to ]3’[5;1 1y)» the first j — 1 entries of yH(Q)
), the last entry of X*'(Q) (which is equal to a(Z,, — Q) + Dit1),
and the last entry of y'+1(Q) (which is equal to B(f, — Q) + S5). Let us define X"*1%(Q) :=
(Dﬁ’zl i & — Q)1 Z+1+D’fﬁl) and y't(Q) := (Sffjl 1 @ — Q)1pjm) +St+1) Since the

first j — 1 entries (resp., first ¢ — 1 entries) and the last entry are equal for x'™(Q) and x'"%*(Q)

(resp., y'T(Q) and y'*(Q)), we have

St+1

(which is equal to S

Vi (X1(Q) — ael, §'7H(Q) — Belyyn) — Vi (X(Q), 5 7(Q))
e
_VEL(ET(Q) — aelyym, §TQ) — Belym) — VEL(XT(Q),5T(Q)) ‘

3

Let us define

GGUQ Ty §n) =7VED T (rGH) +yES™ (xf7)T
— (T = Q)(rly = varif ") = (G — Q)(r}, —yari ) + ¥ BV (XH(Q),5(Q))
=yED" (xg) +yESTH (r ) = (&0 — Q) (rig —varid ") — (§u — Q)(r}, —yarl?)
VBV (DG al@n — Q)1+ DL S B, — Q)1 + ST,
We can readily verify that G” Q& Tn) = GY(Q,X',¥"), where X' = (01, %, 1™ 1) and §' =
(071, ,1"77+1). Lemma B.11 in Online Supplement B shows that GY(Q,X,¥) is concave in Q for
any given (X,¥), under the condition a = 3. It follows that G¥; 2(Q, T, Jn) is concave in Q.

~ ~ . ~ ~ 8G m ~’VL
Based on the above analysis, we see that for max {Z;_1,79;-1} < Q <min{%;,7,}, 0GH3(Q m.in) =

oQ
79(Q,%,¥ .. . . ~ ~ o~ - - s (= o~
%%”y). This implies that to maximize G{(Q,X%,y) for Q € max{Z;_1,7;-1} < Q <min{Z;,7;},
it is equivalent to maximize G%%(Q, Zm, Jn) with respect to Q within the same range.
17,1t
Let us denote p:=79, — Q. Then, z,, — Q =2,, — ¥, + p= IB + p, where IB :=z%,, — §,. We can

rewrite G” “(Q,%m,Jn) as a function of p and IB, which we denote by G?’,(p, IB), as follows.

ij,t
GL(Q, Ens Tn)
_ng(pJB) =y ED (e T+ EST (2T — (IB + p) (rl, — yarti') — p(rj, ¢ ’yow“tﬂ)

ij,t

FAEV (D alIB+p)17 = e DL S g1t S (B)

[1,s—1]° [i,m]? M [1,5—1] 4,m]

The variable p represents the post-matching available quantity of supply (of all types) in period
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t. The feasible range max{Z;_1,9;-1} < Q <min{Z;,y;} of Q translates to the feasible range 7, —

min {Z;,7;} <p < Y, —max{T;_1,y;_1} of p. To simplify the notation, we denote
i}n,L = gn — min {i‘za g]} ) ﬁn,U = gn — Inax {fiflv gjfl} .

The feasible range of p becomes v,, ;, <p <9, . We note that v,y represents the available supply
quantity (of all types) when the 1-step-lookahead heuristic starts to match (4, j), and 9, , represents
the available supply quantity (of all types) when 7 and j are matched to the maximum extent
(which may or may not happen under the 1-step-lookahead heuristic). We can readily verify that
U,y and v, are the same as the quantities 17;5 v and 17:3 ;, defined in the paper, respectively, if
Zi—1 < y; and Z; > §;—1 (See the discussions following Proposition 6, and recall that matching
between type i demand and type j supply is possible only if Z,_; < g; and Z; > g;_1).
Thus, to solve MAX, ) 55 Y <Q<min {55, ) éfﬁ(@,:ﬁm,ﬂn), it is equivalent to solve:

max  G%'(p,IB). (E.8)

T <p<ipy Ot

Given the concavity of éfj’;(Q, Em, ) With respect to Q, G (p, IB) is concave in p for p > IB~ :=

17,t

max {0, —IB}. For a given value of IB, we define

p.,,(IB) == inf arg max G%',(p, IB). (E.9)
p=IB~

By the definition of V%, (i.e., V4, (X,¥) := V4 (x,y) — XU (x4 )T — U (rt+1)T; see Online
Supplement B.1), we can readily verify that the above equation (E.9) is equivalent to the equa-
tion (4) in the paper. By the concavity of éfj’-f’t(p, IB), the optimal solution to (E.8) is given by
min {@,L,U, ps,,(IB) \/f)mL} (where the bivariate operator V means to take the maximum of the
two inputs). When we start to match (4,j) the available supply quantity (of all types) 0, is
already below pii], (IB), the optimal solution to (E.8) is equal to 0, . In that case, we will not
match (7,7) (nor any pair (¢/,j’) such that i <4 and j' < j, according to the top-down structure),
so that the available supply is not further reduced. If the available supply quantity (of all types)
Oy, is above p;j (IB), the 1-step-lookahead heuristic matches (i,j) until the available quantity of
supply is reduced to either pgij (IB) or v, 1, whichever happens first. In the latter situation (i.e., the

total supply reduces to v, first), we would have matched (i,7) to the maximum extent, whereas

the total available supply is still above piij(IB). Therefore, we either matches ¢ with j to reduce
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the total supply to the target level piij (IB) or as close to it as possible. This is equivalent to the

matching quantity between ¢ and j given in the proposition. [
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