
Online Supplements to “Dynamic Type Matching”

A. An alternative formulation of the 2× 2 horizontal model

The greedy matching in round 1 allows us to collapse the state space. After round 1, type 1 (resp.,

type 2) demand and type 1 (resp., type 2) supply cannot be both available. In period t with the

state (x,y) = (x1, x2, y1, y2), we define the transformed state as z := (z1, z2), where z1 = x1−y1 and

z2 = y2− x2. The quantity z1 describes the imbalance between type 1 demand and type 1 supply.

A nonnegative z1 represents the remaining quantity of type 1 demand after greedy matching with

type 1 supply in period t (the remaining quantity of type 1 supply will be zero). For a negative

value of z1, z−1 =−z1 is the remaining quantity of type 1 supply after greedy matching with type 1

demand. Similarly, z+
2 is the remaining quantity of type 2 supply after greedy matching with type

2 demand, whereas z−2 is the remaining quantity of type 2 demand after greedy matching with type

2 supply. In the rest of this online appendix, unless otherwise specified, we use the word “state” to

refer to the transformed state z. We consider the following cases.

Case 1: z1 ≥ 0 and z2 ≥ 0. After round 1 matching, a quantity z1 of type 1 demand is available to

be matched with a quantity z2 of type 2 supply. Let q be the matching quantity in round 2 between

type 1 demand and type 2 supply. We have 0 ≤ q ≤ min{z1, z2}. After round 2 matching, the

remaining quantity of type 1 demand is z1 and that of type 2 supply is z2− q. The post-matching

state is therefore (z1− q, z2− q).

Case 2: z1 < 0 and z2 < 0. After round 1 matching, a quantity −z1 of type 1 supply is available to

be matched with a quantity −z2 of type 2 demand. Let −q be the matching quantity in the round

2 between type 2 demand and type 1 supply. We have 0≤−q ≤min{−z1,−z2}, or equivalently,

max{z1, z2} ≤ q ≤ 0. After round 2 matching, the remaining quantity of type 1 supply is −z1 + q

and that of type 2 demand is −z2 + q. In other words, the post-matching state is (z1− q, z2− q).

Case 3: z1z2 < 0. After round 1 matching, either there is only demand available or only supply

available. The matching quantity in round 2 is q = 0. The post-matching state is (z1− q, z2− q) =

(z1, z2) (it is identical to the pre-matching state since there is no matching in round 2).

In any of the above cases, the feasible space of matching decisions in round 2 of period t is:

M(z) = {q | 0≤ q≤min(z1, z2) or max(z1, z2)≤ q≤ 0 or q= 0} . (A.1)

To reformulate the problem, we consider the total expected reward received from round 2 match-

ing in period t to the end of period T .
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In period t, the matching quantity between type 1 demand and type 2 supply is q+, and the

matching quantity between type 2 demand and type 1 supply is q−. Thus, a total reward rt12q
+ +

rt21q
− is received in round 2 of period t.

Since the post-matching state in period t is (z1 − q, z2 − q) after round 2, in the begin-

ning of period t + 1 the available type 1 demand is α(z1 − q)+ + Dt+1
1 , available type

2 demand is α(z2 − q)− + Dt+1
2 , available type 1 supply is β(z1 − q)− + St+1

1 , and avail-

able type 2 supply is β(z2 − q)+ + St+1
2 . In round 1 of period t + 1, type 1 demand and

type 1 supply will be matched greedily, and so will type 2 demand and type 2 supply.

This results in the total expected reward rt+1
11 Emin

{
α(z1− q)+ +Dt+1

1 , β(z1− q)−+St+1
1

}
+

rt+1
22 Emin

{
α(z2− q)−+Dt+1

2 , β(z2− q)+ +St+1
2

}
in round 1 of period t+1. The state immediately

prior to round 2 of period t+ 1 is (α(z1− q)+ +Dt+1
1 −β(z1− q)−−St+1

1 , β(z2− q)+ +St+1
2 −α(z2−

q)−−Dt+1
2 ).

Let us define Jt(q,z) as the total expected reward received from round 2 of period t until the end

of period T if the round 2 matching decision in period t is q. We also define Ut(z) as the optimal

total expected reward achievable (by using the optimal q) from round 2 of period t until the end

of period T . We are now ready to present the reformulation.

Ut(z) = max
q∈M(z)

Jt(q,z) (A.2)

Jt(q,z) = rt12q
+ + rt21q

−+ γrt+1
11 Emin

{
α(z1− q)+ +Dt+1

1 , β(z1− q)−+St+1
1

}
+ γrt+1

22 Emin
{
α(z2− q)−+Dt+1

2 , β(z2− q)+ +St+1
2

}
+ γEUt+1(α(z1− q)+ +Dt+1

1 −β(z1− q)−−St+1
1 , β(z2− q)+ +St+1

2 −α(z2− q)−−Dt+1
2 ). (A.3)

We show the concavity of Jt in the following lemma (for the continuous-valued model).

Lemma A.1. Consider the problem with continuous-valued state space and matching decisions.

Ut(z) is concave in any of the following regions: z∈R2
+, z∈R+×R−, z∈R−×R+ and z∈R2

− For

any given state z, Jt(q,z) is concave in q within its feasible range defined in (A.1).

Proof of Lemma A.1. We show that Ut(z) is concave for z∈R2
+, and its concavity in the other

regions are similar. If the original (i.e., untransformed) state in the beginning of period t is given

as x1 = z1, x2 = 0, y1 = 0 and y2 = z2, the matching quantity in round 1 is zero since there is no

type 2 demand or type 1 supply available. By definition, we have Ut(z) = Vt(z1,0,0, z2). One can

readily show that Vt is concave for the problem with continuous-valued states and decisions. It

follows that Ut(z) is concave in z∈R2
+.
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Next, we show that Jt(q,z) is concave in q for given z. When z1z2 < 0, q can only be zero, and

thus the result holds trivially. Let us prove that Jt(q,z) is concave in q when z1 ≥ 0 and z2 ≥ 0,

and the remaining case with z1 < 0 and z2 < 0 follows by symmetry.

Following our earlier discussions in this supplementary, after round-2 matching in period t, the

available type 1 demand is z1 − q, the available type 2 supply is z2 − q, and there is no available

type 2 demand or type 1 supply. Therefore, the (untransformed) post-matching levels in period

t+ 1 are (u1, u2, v1, v2) = (z1 − q,0,0, z2 − q). The sum of the last three terms in (A.3) represents

the expected total discounted reward from the beginning of period t+ 1 to the end of period T .

Therefore, Jt(q,z) = rt12q + γEVt+1(α(z1 − q) +Dt+1
1 ,0,0, β(z2 − q) + St+1

2 ). Since Vt+1 is concave,

Jt(q,z) is concave in q. �

We now prove Proposition 1 for the continuous-valued model based on the reformulation (A.2)–

(A.2), and defer the proof for the discrete-valued model to Online Supplements A.1 (for the case

with α= β = 1) and A.2 (for the case with α= 0 and β = 1).

Proof of Proposition 1 (Continuous-valued model). We focus on the matching in round 2, and

only consider the case with z1 ≥ 0 and z1 ≥ 0 (the case with z1 < 0 and z2 < 0 is symmetric).

Using the reformulation (A.2)–(A.3), the optimal matching quantity solves maxq∈M(z) Jt(q,z).

Let us use pd := z1− q and ps = z2− q as decision variables in place of q. Then, pd = ps + z1− z2 =

ps + IB. Since both pd and ps need to be nonnegative, the feasible range of ps is IB− ≤ ps ≤ z2.

We rewrite Jt(q,z) as a function of ps, by substituting q = z2− ps in (A.3). Given that 0≤ q ≤

min{z1, z2}, we have

Jt(q,z) =rt12(z2− ps) + rt+1
11 Emin

{
α(ps + IB) +Dt+1

1 , St+1
1

}
+ rt+1

22 Emin
{
Dt+1

2 , βps +St+1
2

}
+EUt+1(α(ps + IB) +Dt+1

1 −St+1
1 , βps +St+1

2 −Dt+1
2 ), (A.4)

which depends on IB, ps and also linearly on z2. The sum of the last three terms in (A.4) rep-

resents the expected total discounted reward from period t + 1 to period T , which is equal to

γEVt+1(α(ps + IB) + Dt+1
1 ,Dt+1

2 , St+1
1 , βps + St+1

2 ) Thus, Jt(q,z) = rt12(z2 − ps) + γEVt+1(α(ps +

IB) +Dt+1
1 ,Dt+1

2 , St+1
1 , βps + St+1

2 ). We can write Jt(q,z) = rt12z2 + J̌t(ps, IB), where J̌t(ps, IB) :=

−rt12ps + γEVt+1(α(ps + IB) +Dt+1
1 ,Dt+1

2 , St+1
1 , βps +St+1

2 ).

It is easy to see that J̌t is concave in ps (the argument is similar to the proof of concavity

of Jt(q,z) with respect to q in Lemma A.1). Let ps2(IB) ∈ arg maxps≥IB− J̌t(ps, IB). Since IB− ≤

ps ≤ z2, the optimal decision in terms of ps is p∗s = min
{
z2, p

t
s2

(IB)
}

. Thus, the optimal matching

quantity between type 1 demand and type 2 supply is qt∗12 = z2 − p∗s = z2 −min
{
z2, p

t
s2

(IB)
}

=

[z2− pts2(IB)]+ = [y2−x2− pts2(IB)]+. �
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A.1. The case with equal carry-over rates

We now consider the case α= β. To begin with, we transform the Bellman equations (A.2)–(A.3).

Let us define Ũt(z) := −rt11z
+
1 − rt22z

+
2 + Ut(z) and J̃t(q,z) := −rt11z

+
1 − rt22z

+
2 + Jt(q,z). In the

following lemma, we rewrite the equations (A.2)–(A.3).

Lemma A.2. Suppose α= β. Equations (A.2)–(A.3) are equivalent to the following equations:

Ũt(z) = max
q∈M(z)

J̃t(q,z) (A.5)

J̃t(q,z) =γrt+1
11 EDt+1

1 + γrt+1
22 ESt+1

2 − (rt11 + rt22− rt12− rt21)q+− rt21q

− (rt11− γαrt+1
11 )(z1− q)+− (rt22− γαrt+1

22 )(z2− q)+

+ γEŨt+1(α(z1− q) +Dt+1
1 −St+1

1 , α(z2− q) +St+1
2 −Dt+1

2 ). (A.6)

Proof of Lemma A.2. Applying the equality min{a, b}= a− (a− b)+, we can rewrite Jt as:

Jt(q,z) =rt12q
+ + rt21q

−+ γrt+1
11 EDt+1

1 + γrt+1
22 ESt+1

2

+ γαrt+1
11 E(z1− q)+− γrt+1

11 E[α(z1− q) +Dt+1
1 −St+1

1 ]+

+ γαrt+1
22 E(z2− q)+− γrt+1

22 E[α(z2− q) +St+1
2 −Dt+1

2 ]+

+ γEUt+1(α(z1− q) +Dt+1
1 −St+1

1 , α(z2− q) +St+1
2 −Dt+1

2 ).

Then, by the definition of J̃t(q,z), we have

J̃t(q,z) =γrt+1
11 EDt+1

1 + γrt+1
22 ESt+1

2 − rt11z
+
1 − rt22z

+
2 + (rt12 + rt21)q+− rt21q

+ γαrt+1
11 E(z1− q)+ + γαrt+1

22 E(z2− q)+

+ γEŨt+1(α(z1− q) +Dt+1
1 −St+1

1 , α(z2− q) +St+1
2 −Dt+1

2 ).

For q ∈M(z), we can verify that z+
1 = q+ + (z1 − q)+ and z+

2 = q+ + (z2 − q)+. By substituting

z+
1 and z+

2 by q+ + (z1− q)+ and q+ + (z2− q)+ respectively, we have

J̃t(q,z) =γrt+1
11 EDt+1

1 + γrt+1
22 ESt+1

2 − rt11[q+ + (z1− q)+]− rt22[q+ + (z2− q)+] + (rt12 + rt21)q+− rt21q

+ γαrt+1
11 E(z1− q)+ + γαrt+1

22 E(z2− q)+

+ γEŨt+1(α(z1− q) +Dt+1
1 −St+1

1 , α(z2− q) +St+1
2 −Dt+1

2 )

=γrt+1
11 EDt+1

1 + γrt+1
22 ESt+1

2 − (rt11 + rt22− rt12− rt21)q+− rt21q

− (rt11− γαrt+1
11 )(z1− q)+− (rt22− γαrt+1

22 )(z2− q)+
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+ γEŨt+1(α(z1− q) +Dt+1
1 −St+1

1 , α(z2− q) +St+1
2 −Dt+1

2 ).

This completes the proof. �

We will show that both functions J̃t and Ũt are L\-concave. To that end, we first present a

lemma, which explores the properties of the transformed value function Ũt.

Lemma A.3. Suppose that Assumption 2 holds. For any transformed state z in period t and any

ε > 0, we have Ũt(z + ε12)− Ũt(z)≥−(rt22− rt12 + rt11)ε.

Proof of Lemma A.3. We prove the lemma by induction. The lemma clearly holds for t= T +1

since ŨT+1(z)≡ 0. Suppose that it holds for period t+ 1. To show that the equality Ũt(z + ε12)−

Ũt(z) ≥ −(rt22 − rt12 + rt11)ε holds in period t, we consider sufficiently small ε > 0 such that, if

zi < 0 (i= 0,1) then ε < |zi|, without loss of generality. (Note that if the inequality holds for any

sufficiently small ε > 0, then Ũt(z + Kε12) − Ũt(z) =
∑K

k=1

î
Ũt(z + kε12)− Ũt(z + (k− 1)ε12)

ó
≥

−
∑K

k=1(rt22− rt12 + rt11)ε=−(rt22− rt12 + rt11)Kε for any positive integer K; thus the result will also

hold for any ε > 0.)

Let us denote by q̂ ∈ arg maxq∈M(z) J̃t(q,z) the optimal matching quantity in round-2 matching

of period t, given the transformed state z. We discuss four cases.

Case 1: z1 ≥ 0 and z2 ≥ 0.

It is easy to see that q̂+ ε is a feasible matching quantity between type 1 demand and type 2

supply under the state (z1 + ε, z2 + ε), for any ε > 0.

Thus, for any ε > 0,

Ũt(z1 + ε, z2 + ε)− Ũt(z1, z2)≥ J̃t(q̂+ ε, z1 + ε, z2 + ε)− J̃t(q̂, z1, z2) = (−rt11− rt22 + rt12)ε,

which is equivalent to Ũt(z + ε12)− Ũt(z)≥−(rt22− rt12 + rt11)ε.

Case 2: z1 < 0 and z2 < 0.

Let ε′ = min{−q̂, ε}. It is easy to see that q̂+ ε′ is a feasible decision under the state z + ε12 =

(z1 + ε, z2 + ε). Then,

Ũt(z + ε12)− Ũt(z)

≥J̃t(q̂+ ε′,z + ε1)− J̃t(q̂,z)

=− rt21ε
′+ γEŨt+1(α(z1− q̂) +α(ε− ε′) +Dt+1

1 −St+1
1 , α(z2− q̂) +α(ε− ε′) +Dt+1

2 −St+1
2 )

− γEŨt+1(α(z1− q̂) +Dt+1
1 −St+1

1 , α(z2− q̂) +Dt+1
2 −St+1

2 )
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≥− rt21ε
′− γα(rt+1

22 − rt+1
12 + rt+1

11 )(ε− ε′),

where the last inequality follows from the induction hypothesis. It follows that,

(rt22− rt12 + rt11)ε+ Ũt(z + ε12)− Ũt(z)

≥(rt22− rt12 + rt11)ε− rt21ε
′− γα(rt+1

22 − rt+1
12 + rt+1

11 )(ε− ε′)

=(rt22− rt12 + rt11− rt21)ε′+
[
(rt22− rt12)− γα(rt+1

22 − rt+1
12 ) + rt11− γαrt+1

11

]
(ε− ε′)≥ 0,

which implies the desired result. (The last inequality above follows from Assumption 2.)

Case 3: z1 ≥ 0 and z2 < 0.

We have

Ũt(z + ε1)− Ũt(z)

=J̃t(0,z + ε1)− J̃t(0,z)

=− (rt11− γαrt+1
11 )ε

+ γEŨt+1(αz1 +αε+Dt+1
1 −St+1

1 , αz2 +αε+Dt+1
2 −St+1

2 )−EŨt+1(z1 +Dt+1
1 −St+1

1 , z2 +Dt+1
2 −St+1

2 )

≥− (rt11− γαrt+1
11 )ε− γα(rt+1

22 − rt+1
12 + rt+1

11 )ε,

where the last inequality follows again from the induction hypothesis. It follows that

(rt22− rt12 + rt11)ε+ Ũt(z + ε12)− Ũt(z)

≥(rt22− rt12 + rt11)ε− (rt11− γαrt+1
11 )ε− γα(rt+1

22 − rt+1
12 + rt+1

11 )ε

=[(rt22− rt12)− γα(rt+1
22 − rt+1

12 )]ε≥ 0,

where the last inequality follows from Assumption 2.

Case 4: z1 < 0 and z2 ≥ 0.

We have

Ũt(z + ε1)− Ũt(z)

=J̃t(0,z + ε1)− J̃t(0,z)

=− (rt22− γαrt+1
22 )ε+ γEŨt+1(αz1 +αε+Dt+1

1 −St+1
1 , αz2 +αε+Dt+1

2 −St+1
2 )

− γEŨt+1(αz1 +Dt+1
1 −St+1

1 , αz2 +Dt+1
2 −St+1

2 )
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=− (rt22− γαrt+1
22 )ε− γα(rt+1

22 − rt+1
12 + rt+1

11 )ε=−[rt22 + γα(rt+1
11 − rt+1

12 )]ε.

It follows that

(rt22− rt12 + rt11)ε+ Ũt+1(z + ε12)− Ũt+1(z)

≥(rt22− rt12 + rt11)ε− [rt22 + γα(rt+1
11 − rt+1

12 )]ε= (rt11− rt12)ε− γα(rt+1
11 − rt+1

12 )ε≥ 0,

where the last inequality holds because of Assumption 2.

Combining the four cases completes the induction. �

Lemma A.4. Suppose that Assumption 2 holds. The function J̃t(q,z) is L\-concave in (q,z) and

Ũt(z) is L\-concave in z.

Proof of Lemma A.4. We prove the lemma by induction. ŨT (z)≡ 0 is L\-concave. Suppose that

Ũt+1(z) is L\-concave. To show that Ũt(z) is L\-concave, it suffices to prove that Ũt(z− η12) is

supermodular in (η,z).

Given the conditions rt11 ≥ γαrt+1
11 and rt22 ≥ γαrt+1

22 , the induction hypothesis and the concavity

of −(·)+, it is easy to see that J̃t(q−η,z−η12) is supermodular in (η, q,z). This implies that J̃t(q,z)

is L\-concave in (q,z), and thus it is also supermodular in (q,z). Since the set {(q,z) | q ∈M(z)}

is a lattice, Ũt(z) = maxq∈M(z) J̃t(q,z) is supermodular. As a result, the function Ũt(z − η12) is

supermodular in z. To show that Ũt is L\-concave, it suffices to show that Ũ(z−η12) has increasing

difference in (η, z1) and in (η, z2). In the followings, we show that this is true within four regions

(i.e., z− η12 ∈ R2
+ := {z | z1 ≥ 0, z2 ≥ 0}, z− η12 ∈ R2

− := {z | z1 ≤ 0, z2 ≤ 0}, z− η12 ∈ R+ ×R− :=

{z | z1 ≥ 0, z2 ≤ 0} and z− η12 ∈R−×R+ := {z | z1 ≤ 0, z2 ≥ 0}), as well as across the four regions.

For z− η12 ∈ R2
+, we have Ũt(z− η12) = maxq∈M(z−η12) J̃t(q,z− η12) = maxq−η∈M(z−η12) J̃t(q −

η,z − η12). The feasible set of the maximization problem (on the RHS of the last equality)

is {(q, η,z) | z− η12 ≥ 0, q− η ∈M(z− η12)} = {(q, η,z) | η≤ q≤min{z1, z2}}, which is a lattice.

Because J̃t(q− η,z− η12) is supermodular in (η, q,z), the function Ũt(z− η12) is supermodular in

(η,z) for η ≤min{z1, z2}. This implies that Ũt(z− η1) has increasing differences in (η, z1) and in

(η, z2) for η≤min{z1, z2}.

Similarly, for z − η12 ∈ R2
−, we have Ũt(z − η12) = maxq−η∈M(z−η12) J̃t(q − η,z − η1) =

maxmax{z1,z2}≤q≤η J̃t(q − η,z − η1) is supermodular in (η,z) for η ≥ max{z1, z2} because

{(q, η,z) |max{z1, z2} ≤ q≤ η} is a lattice. Thus, Ũt(z− η12) has increasing differences in (η, z1)

and in (η, z2) for η≤max{z1, z2}.
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For z−η12 ∈R+×R− or z−η12 ∈R−×R+, we have M(z−η12) = {0}. Based on the expression

in (A.6), it is easy to verify that Ũt(z− η1) = J̃t(0,z− η1) is supermodular in (η,z) for (η,z) ∈

R+×R− and for (η,z)∈R−×R+.

It remains to show that Ũt(z− η12) has increasing differences in (η, z1) and in (η, z2) across the

4 regions. In the followings, we focus on the difference Ũt(z + ε12)− Ũt(z) across the boundary

between z− η12 ∈R2
+ and z− η12 ∈R+×R−. The same property across the other boundaries can

be proved similarly. More specifically, we will prove the following inequality holds for sufficiently

small ε > 0.

Ũt(z1,0)− Ũt(z1− ε,−ε)≥ Ũt(z1, ε)− Ũt(z1− ε,0),

which implies that Ũt(z− η12) has increasing differences in (η, z2) across the boundary between

z−η12 ∈R2
+ and z−η12 ∈R+×R−. (The increasing difference property with respect to (η, z1) can

be proved similarly.)

Let z1 > 0 and q̂ ∈ arg maxq∈M(z1,ε) J̃t(q, z1, ε). Also, let ε′ = ε− q̂. Then, by using the expression

of J̃t given in (A.6), we have

Ũt(z1, ε)− Ũt(z1− ε,0)

=J̃t(q̂, z1, ε)− J̃t(0, z1− ε,0)

=− (rt11 + rt22− rt12− rt21)q̂− rt21q̂− (rt11− γαrt+1
11 )(z1− q̂)− (rt22− γαrt+1

22 )(ε− q̂)

+ γEŨt+1(α(z1− q̂) +Dt+1
1 −St+1

1 , α(ε− q̂) +St+1
2 −Dt+1

2 )

− [−(rt11− γαrt+1
11 )(z1− ε) +EŨt+1(α(z1− ε) +Dt+1

1 −St+1
1 , St+1

2 −Dt+1
2 )]

=− rt11ε− rt22ε+ rt12q̂+ γαrt+1
11 (ε− q̂) + γαrt+1

22 (ε− q̂)

+EŨt+1(α(z1− q̂) +Dt+1
1 −St+1

1 , α(ε− q̂) +St+1
2 −Dt+1

2 )−EŨt+1(α(z1− ε) +Dt+1
1 −St+1

1 , St+1
2 −Dt+1

2 )

=− rt11ε− rt22ε+ rt12(ε− ε′) + γαrt+1
11 ε′+ γαrt+1

22 ε′

+EŨt+1(α(z1− ε+ ε′) +Dt+1
1 −St+1

1 , αε′+St+1
2 −Dt+1

2 )−EŨt+1(α(z1− ε) +Dt+1
1 −St+1

1 , St+1
2 −Dt+1

2 )

Also, for z1 > 0,

Ũt(z1,0)− Ũt(z1− ε,−ε)

=J̃t(0, z1,0)− J̃t(0, z1− ε,−ε)

=− (rt11− γαrt+1
11 )z1 + γEŨt+1(αz1 +Dt+1

1 −St+1
1 , St+1

2 −Dt+1
2 )
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−
î
−(rt11− γαrt+1

11 )(z1− ε) + γEŨt+1(α(z1− ε) +Dt+1
1 −St+1

1 ,−αε+St+1
2 −Dt+1

2 )
ó

=− (rt11− γαrt+1
11 )ε+ γEŨt+1(αz1 +Dt+1

1 −St+1
1 , St+1

2 −Dt+1
2 )

− γEŨt+1(α(z1− ε) +Dt+1
1 −St+1

1 ,−αε+St+1
2 −Dt+1

2 )

=− (rt11− γαrt+1
11 )ε

+ γEŨt+1(αz1 +Dt+1
1 −St+1

1 , St+1
2 −Dt+1

2 )− γEŨt+1(αz1−α(ε− ε′) +Dt+1
1 −St+1

1 ,−α(ε− ε′) +St+1
2 −Dt+1

2 )

+ γEŨt+1(αz1−α(ε− ε′) +Dt+1
1 −St+1

1 ,−α(ε− ε′) +St+1
2 −Dt+1

2 )

− γEŨt+1(α(z1− ε) +Dt+1
1 −St+1

1 ,−αε+St+1
2 −Dt+1

2 )

≥− (rt11− γαrt+1
11 )ε

+ γEŨt+1(αz1 +Dt+1
1 −St+1

1 , St+1
2 −Dt+1

2 )− γEŨt+1(αz1−α(ε− ε′) +Dt+1
1 −St+1

1 ,−α(ε− ε′) +St+1
2 −Dt+1

2 )

+ γEŨt+1(αz1−α(ε− ε′) +Dt+1
1 −St+1

1 , αε′+St+1
2 −Dt+1

2 )

− γEŨt+1(α(z1− ε) +Dt+1
1 −St+1

1 , St+1
2 −Dt+1

2 ),

where we obtain the inequality by the increasing difference property of Ũt+1 by induction.

It then follows that

[Ũ(z1,0)− Ũ(z1− ε,−ε)]− [Ũt(z1, ε)− Ũt(z1− ε,0)]

≥γαrt+1
11 (ε− ε′) + rt22ε− rt12(ε− ε′)− γαrt+1

22 ε′

+ γEŨt+1(αz1 +Dt+1
1 −St+1

1 , St+1
2 −Dt+1

2 )− γEŨt+1(αz1−α(ε− ε′) +Dt+1
1 −St+1

1 ,−α(ε− ε′) +St+1
2 −Dt+1

2 )

Let us denote ε′′ = ε− ε′ = q̂ (which is between 0 and ε by the feasibility of q̂), and we have

[Ũt(z1,0)− Ũt(z1− ε,−ε)]− [Ũt(z1, ε)− Ũt(z1− ε,0)]

≥rt22ε− rt12ε
′′+ γαrt+1

11 ε′′− γαrt+1
22 (ε− ε′′)

+ γEŨt+1(αz1 +Dt+1
1 −St+1

1 , St+1
2 −Dt+1

2 )

− γEŨt+1(αz1−αε′′+Dt+1
1 −St+1

1 ,−αε′′+St+1
2 −Dt+1

2 )

≥rt22ε− rt12ε
′′+ γαrt+1

11 ε′′− γαrt+1
22 (ε− ε′′)− γα

(
rt+1

22 − rt+1
12 + rt+1

11

)
ε′′

≥(rt22− rt12)ε′′− γα(rt+1
22 − rt+1

12 )ε′′+ (rt22− γαrt+1
22 )(ε− ε′′)≥ 0,

where the second inequality follows from Lemma A.3, and the last inequality holds because of

Assumption 2.

We note that the above proof applies to both the continuous-valued model and the discrete-

valued model (for the latter model, we need to use ε= 1 in the proof). �
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Proof of Proposition 1 (Discrete-valued model with α= β). We only consider the case with z1 >

0 and z2 > 0, and the proof for the case with z1 < 0 and z2 < 0 will be symmetric. By (A.6), for

q ∈M(z) we have:

J̃t(q,z) =γrt+1
11 EDt+1

1 + γrt+1
22 ESt+1

2 − (rt11 + rt22− rt12)q− (rt11− γαrt+1
11 )(z1− q)− (rt22− γαrt+1

22 )(z2− q)

+ γEŨt+1(α(z1− q) +Dt+1
1 −St+1

1 , α(z2− q) +St+1
2 −Dt+1

2 ).

Let ps := z2−q and we can rewrite J̃t(q,z) as J̌t(ps, IB)−(rt22−rt12 +γαrt+1
11 )z2−(rt11−γαrt+1

11 )(z1−

z2), where

J̌t(ps, IB) =γrt+1
11 EDt+1

1 + γrt+1
22 ESt+1

2 + (rt11 + rt22− rt12)ps− (rt11− γαrt+1
11 )ps− (rt22− γαrt+1

22 )ps

+ γEŨt+1(αIB+αps +Dt+1
1 −St+1

1 , αps +St+1
2 −Dt+1

2 ).

The rest of the proof is identical to the continuous-valued model. Let ps2(IB) ∈

arg maxps≥IB− J̌t(ps, IB). Since Ũt+1 is L\-concave (Lemma A.4) and any discrete-valued L\-concave

function can be extended to a continuous-valued concave function, we know that J̌t(ps, IB) is

concave with respect to ps. Since IB− ≤ ps ≤ z2, the optimal decision in terms of ps is p∗s =

min
{
z2, p

t
s2

(IB)
}

. Thus, the optimal matching quantity between type 1 demand and type 2 supply

is qt∗12 = z2− p∗s = z2−min
{
z2, p

t
s2

(IB)
}

= [z2− pts2(IB)]+ = [y2−x2− pts2(IB)]+. �

A.2. The case with perishable demand

We consider the case with α= 0 and β > 0. In that case, we can rewrite the expression of Jt(q,z)

given in (A.3) as follows:

Jt(q,z) = rt12q
+ + rt21q

−+ γrt+1
11 Emin

{
Dt+1

1 , β(z1− q)−+St+1
1

}
+ γrt+1

22 Emin
{
Dt+1

2 , β(z2− q)+ +St+1
2

}
+ γEUt+1(Dt+1

1 −β(z1− q)−−St+1
1 , β(z2− q)+ +St+1

2 −Dt+1
2 ). (A.7)

We show that the optimal matching in round 2 of a period is fully determined by state-

independent threshold levels.

Lemma A.5. In each period t, there exists state-independent threshold levels p̄ts1 and p̄ts2 such

that,

(i) If z1 > 0 and z2 > 0, the optimal matching quantity between type 1 demand and type 2 supply

is qt∗12 =
[
z2−max

{
IB−, p̄ts2

}]+
;
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(ii) If z1 < 0 and z1 < 0, the optimal matching quantity between type 2 demand and type 1 supply

is qt∗21 =
[
−z1−max

{
IB−, p̄ts1

}]+
.

Proof of Lemma A.5. We focus on proving part (i), and the proof of part (ii) is analogous.

Given that z1 ≥ 0 and z2 ≥ 0 in part (i), we have M(z) = {q | 0≤ q≤min{z1, z2}}. Thus for

q ∈M(z) we can rewrite Jt(q,z) as:

Jt(q,z) =rt12q+ γrt+1
11 Emin

{
Dt+1

1 , St+1
1

}
+ γrt+1

22 Emin
{
Dt+1

2 , β(z2− q) +St+1
2

}
+ γEUt+1(Dt+1

1 −St+1
1 , β(z2− q) +St+1

2 −Dt+1
2 ). (A.8)

The sum of the last three terms in the above equation represents the expected total discounted

reward from period t+ 1 to period T , which is equal to γEVt+1(Dt+1
1 ,Dt+1

2 , St+1
1 , β(z2− q) +St+1

2 ).

Let us define ps := z2− q. Since 0≤ q≤min{z1, z2}, the feasible range of ps is (z2− z1)+ ≤ ps ≤ z2.

Thus, Jt(q,z) = rt12z2− rt12ps + γEVt+1(Dt+1
1 ,Dt+1

2 , St+1
1 , βps + St+1

2 ), and max0≤q≤min{z1,z2} Jt(q,z)

is equivalent to

max
(z2−z1)+≤ps≤z2

{
−rt12ps + γEVt+1(Dt+1

1 ,Dt+1
2 , St+1

1 , βps +St+1
2 )

}
. (A.9)

Let us define p̄ts1 := arg maxps≥0

{
−rt12ps + γEVt+1(Dt+1

1 ,Dt+1
2 , St+1

1 , βps +St+1
2 )

}
. If

EVt+1(Dt+1
1 ,Dt+1

2 , St+1
1 , βps + St+1

2 ) is concave with respect to ps (which we will prove shortly),

the optimal solution to (A.9) is p∗s = min
{
z2,max

{
(z2− z1)+, p̄ts1

}}
. Consequently, we can

obtain the optimal matching quantity qt∗12 = z2 − p∗s = z2 − min
{
z2,max

{
(z2− z1)+, p̄ts1

}}
=[

z2−max
{

(z2− z1)+, p̄ts1
}]+

=
[
z2−max{IB−, p̄ts1}

]+
.

Finally, for the continuous-valued model, EVt+1(Dt+1
1 ,Dt+1

2 , St+1
1 , βps + St+1

2 ) is clearly concave

with respect to ps, given the joint concavity of Vt+1 with respect to all state variables.

For the discrete-valued model, let us define Ũt(z) := −rt11z
+
1 − rt22z

+
2 +Ut(z) as in Online Sup-

plement A.1. Following similar analysis as in Online Supplement A.1, we can show that Ũt is

L\-concave for all t. Then, we have

EVt+1(Dt+1
1 ,Dt+1

2 , St+1
1 , βps +St+1

2 )

=γrt+1
11 Emin

{
Dt+1

1 , St+1
1

}
+ γrt+1

22 Emin
{
Dt+1

2 , βps +St+1
2

}
+ γEUt+1(Dt+1

1 −St+1
1 , βps +St+1

2 −Dt+1
2 )

=γrt+1
11 EDt+1

1 + γβrt+1
22 ps + γrt+1

22 ESt+1
2 + γEŨt+1(Dt+1

1 −St+1
1 , βps +St+1

2 −Dt+1
2 ),

which is concave with respect to ps due to the L\-concavity of Ũt. �
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Finally, we note that Lemma A.5 is a stronger result than Proposition 1 for the discrete-valued

model with α= 0. Therefore, the proof of Proposition 1 is also completed.

B. An alternative formulation of the vertical model

We reformulate the vertical model with a transformed system state and the total matching quantity

Q as the decision variable in each period. For i = 1, . . . ,m and j = 1, . . . , n, let x̃i :=
∑i

k=1 xk

and ỹj :=
∑j

k=1 yk (x̃0 and ỹ0 are defined as zero) as the transformed system state, ũi =
∑i

k=1 uk

and ṽj =
∑i

k=1 vk as the transformed post-matching levels. In addition, let D̃t
i =

∑i

k=1D
t
k and

S̃tj =
∑j

k=1S
t
k be the transformed random variables for new arrivals of demand and supply in period

t. We write x̃ = (x̃1, . . . , x̃m), ỹ = (ỹ1, . . . , ỹn), ũ = (ũ1, . . . , ũm), ṽ = (ṽ1, . . . , ṽn), D̃t = (D̃t
1, . . . , D̃

t
m)

and S̃t = (S̃t1, . . . , S̃
t
n).

Let Uk be the k× k upper triangular matrix with all the entries on or above the main diagonal

equal to one. Then the state transformation can be written in a matrix form: xUm = x̃ and yUn =

ỹ. Equivalently, we can write x = x̃U−1
m and y = ỹU−1

n . Here U−1
m and U−1

n are the inverse matrices

of Um and Un, respectively. One can verify that both U−1
m and U−1

n have all their diagonal entries

equal to 1 and each off-diagonal entry right above an entry on the main diagonal equal to −1.

Let the total matching quantity Q be the decision variable in period t. Given the transformed

state (x̃, ỹ), the feasible range of Q is 0≤Q≤min{x̃m, ỹn}. Under top-down matching, the total

matching quantity Q fulfills a total quantity min{Q, x̃i} of types 1, . . . , i demand combined, and

uses a total quantity min{Q, ỹj} of types 1, . . . , j supply combined. Thus, the quantity of type

i demand fulfilled is the total fulfilled quantity of types 1, . . . , i demand less the total fulfilled

quantity of types 1, . . . , i− 1 demand, i.e.,

min{x̃i,Q}−min{x̃i−1,Q}=x̃i− x̃i−1− (x̃i−Q)+ + (x̃i−1−Q)+.

As a result, type i demand contributes the reward rtid[x̃i− x̃i−1− (x̃i−Q)+ +(x̃i−1−Q)+] in period

t. Likewise, type j supply contributes the reward rtjs[ỹj − ỹj−1− (ỹj −Q)+ + (ỹj−1−Q)+] in period

t. Consequently, the total reward received in period t is

m∑
i=1

rtid[x̃i− x̃i−1− (x̃i−Q)+ + (x̃i−1−Q)+] +
n∑
j=1

rtjs[ỹj − ỹj−1− (ỹj −Q)+ + (ỹj−1−Q)+]

=
m∑
i=1

(rtid− rti+1,d)x̃i +
n∑
i=1

(rtjs− rtj+1,d)ỹj −
m∑
i=1

(rtid− rti+1,d)(x̃i−Q)+−
n∑
i=1

(rtjs− rtj+1,d)(ỹj −Q)+

=x̃U−1
m (rtd)

T + ỹU−1
n (rts)

T− (x̃−Q1m)+U−1
m (rtd)

T− (ỹ−Q1m)+U−1
n (rts)

T
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where rtm+1,d = rtn+1,s := 0.

In the end of period t, the remaining quantity of types 1, . . . , i demand combined is (x̃i −Q)+

and the remaining quantity of types 1, . . . , j supply combined is (ỹj −Q)+. Thus, the transformed

post-matching levels are given by (ũ, ṽ) = ((x̃ −Q1m)+, (ỹ −Q1n)+). The transformed state in

period t+ 1 is (x̃t+1, ỹt+1) = (α(x̃−Q1m)+ + D̃t+1, β(ỹ−Q1n)+ + S̃t+1), which can be converted

back to the original state as (xt+1,yt+1) = (x̃t+1U
−1
m , ỹt+1U

−1
n ).

With the total matching quantity in period t equal to Q, the maximum total expected reward

achievable from period t to period T is

Gt(Q, x̃, ỹ) =x̃U−1
m (rtd)

T + ỹU−1
n (rts)

T− (x̃−Q1m)+U−1
m (rtd)

T− (ỹ−Q1m)+U−1
n (rts)

T

+ γEVt+1(α(x̃−Q1m)+U−1
m + D̃t+1U−1

m , β(ỹ−Q1n)+U−1
n + S̃t+1U−1

n ) (B.10)

given the transformed state (x̃, ỹ) in period t. The optimal total expected reward from period t to

period T is thus

Vt(x̃U−1
m , ỹU−1

n ) = max
0≤Q≤x̃m∧ỹn

Gt(Q, x̃, ỹ). (B.11)

Let us define

Ṽt(x̃, ỹ) := Vt(x̃U−1
m , ỹU−1

n )− x̃U−1
m (rtd)

T− ỹU−1
n (rts)

T. (B.12)

G̃t(Q, x̃, ỹ) :=−x̃U−1
m (rtd)

T− ỹU−1
n (rts)

T +Gt(Q, x̃, ỹ). (B.13)

We see that Equations (B.10) and (B.11) are equivalent to:

Ṽt(x̃, ỹ) = max
0≤Q≤min{x̃m,ỹn}

G̃t(x̃, ỹ). (B.14)

G̃t(Q, x̃, ỹ) = γE[Dt+1(rt+1
d )T] + γE[St+1(rt+1

s )T]

− (x̃−Q1m)+U−1
m (rtd− γαrt+1

d )T− (ỹ−Q1m)+U−1
n (rts− γβrt+1

s )T

+ γEṼt+1(α(x̃−Q1m)+ + D̃t+1, β(ỹ−Q1n)+ + S̃t+1) (B.15)

Since VT+1(x,y)≡ 0, we have ṼT+1(x̃, ỹ)≡−x̃U−1
m (rtd)

T− ỹU−1
n (rts)

T.

We show the following property for the function Ṽt(x̃, ỹ).

Lemma B.6. Suppose that Assumption 3 holds. Then, for any period t= 1, . . . , T , the function

Ṽt(x̃, ỹ) is decreasing in xi for i= 1, . . . ,m− 1 and in yj for all j = 1, . . . , n− 1.
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Proof of Lemma B.6. By definition of the function Ṽt, for i= 1, . . . ,m− 1, we have

Ṽt(x̃ + εemi , ỹ)− Ṽt(x̃, ỹ)

=Vt(x + εemi − εemi+1,y)− (x + εemi − εemi+1)(rtd)
T−y(rts)

T−Vt(x,y) + x(rtd)
T−y(rts)

T

=Vt(x + εemi − εemi+1,y)−Vt(x,y)− (rtid− rti+1,d)ε, (B.16)

where x = x̃U−1
m and y = ỹU−1

n .

By Lemma E.22, there exists λτj′ ≥ 0 for j′ = 1, . . . , n and τ = t, . . . , T such that∑T

τ=tα
−(τ−t)∑n

j′=1 λ
τ
j′ ≤ ε and Vt(x+εemi −εemi+1,y)−Vt(x,y)≤

∑T

τ=t γ
τ−t∑n

j′=1 λ
τ
j′(r

τ
ij′− rτi+1,j′).

Following (B.16), we have

Ṽt(x̃ + εemi , ỹ)− Ṽt(x̃, ỹ)

≤
T∑
τ=t

γτ−t
n∑

j′=1

λτj′(r
τ
ij′ − rτi+1,j′)− (rtid− rti+1,d)ε

≤
T∑
τ=t

γτ−tγ−(τ−t)α−(τ−t)
n∑

j′=1

λτj′(r
t
ij′ − rti+1,j′)− (rtid− rti+1,d)ε

=
T∑
τ=t

α−(τ−t)
n∑

j′=1

λτj′(r
t
id− rti+1,d)− (rtid− rti+1,d)ε

=[
T∑
τ=t

α−(τ−t)
n∑

j′=1

λτj′ − ε](rtid− rti+1,d)≤ 0.

Therefore, Ṽt(x̃, ỹ) is decreasing in x̃i for i= 1, . . . ,m− 1. Similarly, we can show that Ṽt(x̃, ỹ) is

decreasing in ỹj for j = 1, . . . , n− 1. �

The following lemma shows the L\-concavity of the functions G̃t and Ṽt, for the case with equal

carry-over rates and the case with perishable demand.

Lemma B.7. (i) Suppose that α = β > 0. Then, Ṽt(x̃, ỹ) is L\-concave in (x̃, ỹ) for t =

1, . . . , T + 1, and G̃t(Q, x̃, ỹ) is L\-concave in (Q, x̃, ỹ) for t= 1, . . . , T .

(ii) Suppose that α= 0<β. Then, Ṽt(x̃, ỹ) is L\-concave in ỹ for t= 1, . . . , T +1, and G̃t(Q, x̃, ỹ)

is L\-concave in (Q, x̃, ỹ) for t= 1, . . . , T .

Proof of Lemma B.7. (i) We first consider the case with α= β > 0. The proof is by induction on

t. Clearly, ṼT+1(x̃, ỹ) =−x̃U−1
m (rtd)

T− ỹU−1
n (rts)

T is L\-concave in (x̃, ỹ). We suppose that Ṽt+1(x̃, ỹ)

is L\-concave in (x̃, ỹ). Then by definition of L\-concavity, for any given D̃t+1 and S̃t+1, Ṽt+1(αx̃+

D̃t+1, αỹ+ S̃t+1) is L\-concave in (x̃, ỹ). (Note that since α= β, we simply replace β by α hereafter.)

Since Q≤min{x̃m, ỹn}, we have
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Ṽt+1(α(x̃−Q1n)+ + D̃t+1, α(ỹ−Q1m)+ + S̃t+1)

= Ṽt+1(α(x̃[1,m−1]−Q1m−1)+ + D̃t+1
[1,m−1], α(x̃m−Q) + D̃t+1

m , α(ỹ[1,n−1]−Q1n−1)+ + S̃t+1
[1,n−1], α(ỹn−Q) + S̃t+1

n ),

which is L\-concave in (Q, x̃, ỹ) by applying Chen et al. (2014, Lemma 4) and noting the mono-

tonicity proved in Lemma B.6. (The notation x̃[1,m−1] represents the first m−1 entries of the vector

x̃.) By Simchi-Levi et al. (2014, Proposition 2.3.4(c)), ED̃t+1,S̃t+1 [Ṽt+1(α(x̃−Q1m)+ + D̃t+1, α(ỹ−

Q1n)+ + S̃t+1)] is L\-concave in (Q, x̃, ỹ), thus the last term in (B.15) is L\-concave in (Q, x̃, ỹ). The

other terms in (B.15) are L\-concave in (Q, x̃, ỹ), because −(x̃i′ −Q)+ is supermodular in (Q, x̃i′),

−(ỹj′−Q)+ is supermodular in (Q, ỹj′) and L\-concavity is preserved under any nonnegative linear

combination. Since the other terms are linear, G̃t(Q, x̃, ỹ) is L\-concave in (Q, x̃, ỹ). By Simchi-Levi

et al. (2014, Proposition 2.3.4(e)), Ṽt(x̃, ỹ) is L\-concave in (x̃, ỹ). This completes the induction.

(ii) The proof is again based on induction. As in the proof of part (i), ṼT+1(x̃, ỹ) is L\-

concave. Suppose that Ṽt+1(x̃, ỹ) is L\-concave in ỹ, for any given x̃. Since α = 0, we have

ED̃t+1,S̃t+1 [Ṽt+1(α(x̃−Q1m)+ + D̃t+1, β(ỹ−Q1n)+ + S̃t+1)] =ED̃t+1,S̃t+1 [Ṽt+1(D̃t+1, β(ỹ−Q1n)+ +

S̃t+1)] is independent of x̃. Again by applying Chen et al. (2014, Lemma 4) and noting the mono-

tonicity proved in Lemma B.6, it is L\-concave in ỹ. It follows that G̃t(Q, x̃, ỹ) is L\-concave in

(Q, ỹ) for any given x̃. From (B.15), we see that G̃t(Q, x̃, ỹ) depends on x̃ only through the term

−(x̃−Q1m)+U−1
m (rtd− γαrt+1

d )T, which is L\-concave in (x̃,Q). Thus, G̃t(Q, x̃, ỹ) is L\-concave in

(Q, x̃, ỹ). As in the proof of part (i), it follows from Simchi-Levi et al. (2014, Proposition 2.3.4(e))

that Ṽt(x̃, ỹ) is L\-concave in ỹ, for any given x̃. �

B.1. The 1-step-lookahead heuristic for the vertical model

The 1-step-lookahead heuristic assumes greedy matching from the next period to the end of the

horizon. Recall that we denote by V g
t (x,y) the total expected reward received under the greedy

policy from period t to period T , given that the (original) state in period t is (x,y). The heuristic

chooses the matching quantities in period t to maximize the sum of the immediate reward in period

t and the future expected reward V g
t (x,y). In the following, we explore properties of the function

V g
t (x,y) and the 1-step-lookahead heuristic.

As earlier, we consider the transformed state (x̃, ỹ) defined by x̃i :=
∑i

k=1 xi and ỹj :=
∑j

k=1 yk,

and let Ṽ g
t (x̃, ỹ) := V g

t (x,y)− x̃U−1
m (rtd)

T− ỹU−1
n (rts)

T. The following lemma presents the recursive

equations satisfied by the function Ṽ g
t (x,y).

Given the transformed state (x̃, ỹ) in period t, we define Gg
t (Q, x̃, ỹ) as the expected total

discounted reward from period t to period T , if we apply top-down matching up to the total
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matching quantity Q in period t, and apply greedy matching from period t+1 to period T . Further,

we let G̃g
t (Q, x̃, ỹ) :=−x̃U−1

m (rtd)
T− ỹU−1

n (rts)
T +Gg

t (Q, x̃, ỹ). Similar to how we derived Gt(Q, x̃, ỹ)

defined in (B.10), we can express Gg
t (Q, x̃, ỹ) as:

Gg
t (Q, x̃, ỹ) =x̃U−1

m (rtd)
T + ỹU−1

n (rts)
T− (x̃−Q1m)+U−1

m (rtd)
T− (ỹ−Q1m)+U−1

n (rts)
T

+ γEV g
t+1(α(x̃−Q1m)+U−1

m + D̃t+1U−1
m , β(ỹ−Q1n)+U−1

n + S̃t+1U−1
n ). (B.17)

By substituting V g
t+1 by Ṽ g

t+1 according to the relation V g
t+1(x,y) = Ṽ g

t+1(x̃, ỹ) + x̃U−1
m (rtd)

T +

ỹU−1
n (rts)

T, we have

G̃g
t (Q, x̃, ỹ) =γEDt+1(rt+1

d )T + γESt+1(rt+1
s )T

− (x̃−Q1m)+U−1
m (rtd− γαrt+1

d )T− (ỹ−Q1m)+U−1
n (rts− γβrt+1

s )T

+ γEṼ g
t+1(α(x̃−Q1m)+ + D̃t+1, β(ỹ−Q1n)+ + S̃t+1). (B.18)

Lemma B.8. The functions Ṽ g
t (x,y), t= 1, . . . , T , satisfy the following equations:

Ṽ g
t (x̃, ỹ) =γEDt+1(rt+1

d )T + γESt+1(rt+1
s )T

− (x̃− ỹn1m)+U−1
m (rtd− γαrt+1

d )T− (ỹ− x̃m1n)+U−1
n (rts− γβrt+1

s )T

+ γEṼ g
t+1(α(x̃− ỹn1m)+ + Dt+1Um, β(ỹ− x̃m1n)+ + St+1Un). (B.19)

Proof of Lemma B.8. Recall that Gg
t (Q, x̃, ỹ) as the expected total discounted reward from

period t to period T , if we apply top-down matching up to the total matching quantity Q in period

t, and apply greedy matching from period t+ 1 to period T . Similar to how we derived Gt(Q, x̃, ỹ)

defined in (B.10), we can express Gg
t (Q, x̃, ỹ) as:

Gg
t (Q, x̃, ỹ) =x̃U−1

m (rtd)
T + ỹU−1

n (rts)
T− (x̃−Q1m)+U−1

m (rtd)
T− (ỹ−Q1m)+U−1

n (rts)
T

+ γEV g
t+1(α(x̃−Q1m)+U−1

m + D̃t+1U−1
m , β(ỹ−Q1n)+U−1

n + S̃t+1U−1
n ).

If greedy matching is used in period t, the total matching quantity Q is x̃m∧ ỹn := min{x̃m, ỹn}.

Thus,

V g
t (x̃, ỹ)
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=Gt(x̃m ∧ ỹn, x̃, ỹ)

=x̃U−1
m (rtd)

T + ỹU−1
n (rts)

T− (x̃− x̃m ∧ ỹn1m)+U−1
m (rtd)

T− (ỹ− x̃m ∧ ỹn1m)+U−1
n (rts)

T

+ γEV g
t+1(α(x̃− x̃m ∧ ỹn1m)+U−1

m + Dt+1, β(ỹ− x̃m ∧ ỹn1n)+U−1
n + St+1)

=γEDt+1(rt+1
d )T + γESt+1(rt+1

s )T + x̃U−1
m (rtd)

T + ỹU−1
n (rts)

T

− (x̃− x̃m ∧ ỹn1m)+U−1
m (rtd− γαrt+1

d )T− (ỹ− x̃m ∧ ỹn1m)+U−1
n (rts− γβrt+1

s )T

+ γEṼ g
t+1(α(x̃− x̃m ∧ ỹn1m)+ + Dt+1Um, β(ỹ− x̃m ∧ ỹn1n)+ + St+1Un). (B.20)

Note that in the last equality above, we have substituted V g
t+1 with Ṽ g

t+1.

Finally, we note that (x̃− x̃m ∧ ỹn1m)+ = (x̃− ỹn1m)+ and (ỹ− x̃m ∧ ỹn1n)+ = (ỹ− x̃m1n)+.

In fact, if x̃i ≤ ỹn, then x̃i ≤ x̃m∧ ỹn and thus (x̃i− x̃m∧ ỹn)+ = 0. If x̃i > ỹn, then x̃m ≥ x̃i > ỹn and

thus (x̃i− x̃m∧ ỹn)+ = (x̃i− ỹn)+ = x̃i− ỹn. It follows that (x̃i− x̃m∧ ỹn)+ = (x̃i− ỹn)+ and therefore

(x̃− x̃m ∧ ỹn1m)+ = (x̃− ỹn1m)+. Likewise, we can show that (ỹ− x̃m ∧ ỹn1n)+ = (ỹ− x̃m1n)+.

Equation (B.19) then follows from (B.20). �

We further show the monotonicity of the function Ṽ g
t (x̃, ỹ).

Lemma B.9. Suppose that Assumption 3 holds. For any period t= 1, . . . , T , the function Ṽ g
t (x̃, ỹ)

is decreasing in x̃i for all i= 1, . . . ,m− 1 and in yj for all j = 1 . . . , n− 1.

Proof of Lemma B.9. We will show by induction that Ṽ g
t (x̃ + εemi , ỹ) decreases in x̃i.

It is trivial to prove for t= T +1, given that Ṽ g
t (x̃, ỹ)≡−x̃U−1

m (rtd)
T− ỹU−1

n (rts)
T. Let us suppose

that Ṽ g
t+1(x̃, ỹ) is decreasing in x̃i.

To show that Ṽ g
t (x̃, ỹ) is decreasing in x̃i (1≤ i≤m− 1), we note that −(x̃− ỹn1m)+U−1

m (rtd−

γαrt+1
d )T = −

∑m

i=1(x̃i − ỹn)+[(rtid − rti+1,d) − γα(rt+1
id − rt+1

i+1,d)] is decreasing in x̃i. According to

the induction hypothesis, the last term in (B.19), γEṼ g
t+1(α(x̃ − ỹn1m)+U−1

m + D̃t+1U−1
m , β(ỹ −

x̃m1n)+U−1
n + S̃t+1U−1

n ) is decreasing in x̃i (1 ≤ i ≤m− 1). Thus, all terms in (B.19) are either

constant or decreasing in x̃i. This completes the induction and shows that Ṽ g
t (x̃, ỹ) is decreasing

in x̃i. We show that it is also decreasing in ỹj (1≤ j ≤ n− 1) similarly. �

The following Lemma B.10 is concerned about the concavity of the functions Ṽt(x̃, ỹ). We note

that for the discrete-valued model, concavity is not defined for the multivariate function Ṽt(x̃, ỹ).

Nevertheless, it is easy to see from (B.20) that for any integral-valued state (x̃, ỹ), the value of

Ṽt(x̃, ỹ) coincides with its value in the continuous-valued model. Therefore, the function Ṽt(x̃, ỹ)

in the discrete-valued model can be naturally extended to the one in the continuous-valued model.

In that sense, Lemma B.10 is also applicable to the discrete-valued model.
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Lemma B.10. Suppose that Assumption 3 holds. For any t= 1, . . . , T , the function Ṽ g
t (x̃, ỹ) is

concave in (x̃[1,m−1], ỹ[1,n−1]).

Proof of Lemma B.10. The proof is based on induction. First, Ṽ g
T+1(x̃, ỹ)≡ 0 is concave. Sup-

pose that Ṽ g
t+1 is concave in (x̃[1,m−1], ỹ[1,n−1]).

The terms −(x̃− ỹn1m)+U−1
m (rtd−αrt+1

d )T and −(ỹ− x̃m1n)+U−1
n (rts− βrt+1

s )T are concave due

to the concavity of the function f(x) := −x+. It remains to show that EṼ g
t+1(α(x̃ − ỹn1m)+ +

D̃t+1, β(ỹ− x̃m1n)+ + S̃t+1) is concave in (x̃[1,m−1], ỹ[1,n−1]).

Consider two transformed states (x̃[1,m−1], x̃m, ỹ[1,n−1], ỹn) and (x̃′[1,m−1], x̃m, ỹ
′
[1,n−1], ỹn). For λ1 ≥

0 and λ2 ≥ 0 such that λ1 +λ2 = 1, and i= 1, . . . ,m− 1, we have

(λ1x̃[1,m−1] +λ2x̃
′
[1,m−1]− ỹn1m−1)+ ≤ λ1(x̃[1,m−1]− ỹn1m−1)+ +λ2(x̃′[1,m−1]− ỹn1m−1)+, (B.21)

where the inequalities follow from the convexity of the function f(x) := x+.

Similarly, we have

(λ1ỹ[1,n−1] +λ2ỹ
′
[1,n−1]− x̃m1n−1)+ ≤ λ1(ỹ[1,n−1]− x̃m1n−1)+ +λ2(ỹ′[1,n−1]− x̃n1n−1)+. (B.22)

It follows from (B.21) and (B.22) and the fact that Ṽ g
t+1 is decreasing in xi and yj for i =

1, . . . ,m− 1, j = 1, . . . , n− 1 (Lemma B.9)

Ṽ g
t+1(α(λ1x̃ +λ2x̃

′−λ1ỹn1
m−λ2ỹ

′
n1

m)+ + D̃t+1, β(λ1ỹ +λ2ỹ
′−λ1x̃m1n−λ2x̃

′
m1n)+ + S̃t+1)

=Ṽ g
t+1(α(λ1x̃[1,m−1] +λ2x̃

′
[1,m−1]− ỹn1m−1)+ + D̃t+1

[1,m−1], α(x̃m− ỹn)+ + D̃t+1
m ,

β(λ1ỹ[1,n−1] +λ2ỹ
′
[1,n−1]− x̃m1n−1)+ + S̃t+1

[1,n−1], β(ỹn− x̃m)+ + S̃t+1
n )

≥Ṽ g
t+1(λ1[α(x̃[1,m−1]− ỹn1m−1)+ + D̃t+1

[1,m−1]] +λ2[α(x̃′[1,m−1]− ỹn1m−1)+ + D̃t+1
[1,m−1]], α(x̃m− ỹn)+ + D̃t+1

m ,

λ1[β(ỹ[1,n−1]− x̃m1n−1)+ + S̃t+1
[1,n−1]] +λ2[β(ỹ′[1,n−1]− x̃m1n−1)+ + S̃t+1

[1,n−1]], β(ỹn− x̃m)+ + S̃t+1
n )

≥λ1Ṽ
g
t+1(α(x̃[1,m−1]− ỹn1m−1)+ + D̃t+1

[1,m−1], α(x̃m− ỹn)+ + D̃t+1
m ,

β(ỹ[1,n−1]− x̃m1n−1)+ + S̃t+1
[1,n−1], β(ỹn− x̃m)+ + S̃t+1

n )

+λ2Ṽ
g
t+1(α(x̃′[1,m−1]− ỹn1m−1)+ + D̃t+1

[1,m−1], α(x̃m− ỹn)+ + D̃t+1
m ,

β(ỹ′[1,n−1]− x̃m1n−1)+ + S̃t+1
[1,n−1], β(ỹn− x̃m)+ + S̃t+1

n )

where the last inequality follows from the induction hypothesis of the concavity of Ṽ g
t+1 with respect

to (x̃[1,m−1], ỹ[1,n−1]). This proves that EṼ g
t+1(α(x̃− ỹn1m)+ +D̃t+1, β(ỹ− x̃m1n)+ + S̃t+1) is concave

in (x̃[1,m−1], ỹ[1,n−1]), and therefore completes the induction. �
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Lemma B.11. Suppose that α = β. For the given transformed state (x̃, ỹ), the function

G̃g
t (Q, x̃, ỹ) defined in (B.18) is concave with respect to the total matching quantity Q within its

feasible range 0≤Q≤ x̃m ∧ ỹn := min{x̃m, ỹn}

Proof of Lemma B.11. Suppose that Q≤ x̃m∧ ỹn. Let x̃t+1 := α(x̃−Q1m)+ + D̃t+1 and ỹt+1 :=

α(ỹ−Q1n)+ + S̃t+1. We have

Ṽ g
t+1(x̃t+1, ỹt+1)

=γEDt+2(rt+2
d )T + γESt+2(rt+2

s )T

− (x̃t+1− ỹt+1
n 1m)+U−1

m (rt+1
d − γαrt+2

d )T− (ỹt+1− x̃t+1
m 1n)+V−1

n (rt+1
s − γβrt+2

s )T

+ γEṼ g
t+2(α(x̃t+1− ỹt+1

n 1m)+ + Dt+2Um, β(ỹt+1− x̃t+1
m 1n)+ + St+2Vn). (B.23)

The first two terms in (B.23) are constants. We examine each of the remaining terms.

For i= 1, . . . ,m− 1, we have

(x̃t+1
i − ỹt+1

n )+ =
î
α(x̃i−Q)+−α(ỹn−Q) + D̃t+1

i − S̃t+1
n

ó+
=


î
α(x̃i− ỹn) + D̃t+1

i − S̃t+1
n

ó+
if Q≤ x̃i,î

α(Q− ỹn) + D̃t+1
i − S̃t+1

n

ó+
if Q> x̃i.

Thus, (x̃t+1
i − ỹt+1

n )+ is increasing and convex with respect to Q.

For i=m, we have

(x̃t+1
i − ỹt+1

n )+ = (x̃t+1
m − ỹt+1

n )+ =
î
α(x̃m−Q)−α(ỹn−Q) + D̃t+1

i − S̃t+1
n

ó+
=
î
α(x̃m− ỹn) + D̃t+1

m − S̃t+1
n

ó+
,

which is constant with respect to Q.

Likewise, (ỹt+1
j − x̃t+1

m )+ is increasing and convex in Q for j = 1, . . . , n− 1, and is constant (more

specifically, equal to
î
α(ỹn− x̃m) + S̃t+1

m − D̃t+1
n

ó+
) in Q for j = n.

The third term in (B.23) can be written as:

−(x̃t+1− ỹt+1
n 1m)+U−1

m (rt+1
d − γαrt+2

d )T =−
m∑
i=1

(x̃t+1
i − ỹt+1

n )+
[
(rt+1
id − rt+1

i+1,d)− γα(rt+2
id − rt+2

i+1,d))
]
,

which is decreasing and concave in Q, if Assumption 3 holds.

Symmetrically, the fourth term in (B.23), (ỹt+1− x̃t+1
m 1n)+V−1

n (rt+1
s −γβrt+2

s )T, is also decreasing

and concave in Q, if Assumption 3 holds.
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We now examine the last term in (B.23). We have

Ṽ g
t+2(α(x̃t+1− ỹt+1

n 1m)+ + D̃t+2, β(ỹt+1− x̃t+1
m 1n)+ + S̃t+2)

=Ṽ g
t+2(α(x̃t+1

[1,m−1]− ỹ
t+1
n 1m−1)+ + D̃t+2

[1,m−1], α(x̃t+1
m − ỹt+1

n )+ + D̃t+2
m ,

α(ỹt+1
[1,n−1]− x̃

t+1
m 1n−1)+ + S̃t+2

[1,n−1], α(ỹt+1
n − x̃t+1

m ) + S̃t+2
n )

=Ṽ g
t+2(α(x̃t+1

[1,m−1]− ỹ
t+1
n 1m−1)+ + D̃t+2

[1,m−1], α[α(x̃m− ỹn) + D̃t+1
m − S̃t+1

n ]+ + D̃t+2
m ,

α(ỹt+1
[1,n−1]− x̃

t+1
m 1n−1)+ + S̃t+2

[1,n−1], α[α(ỹn− x̃m) + S̃t+1
n − D̃t+1

m ]+ + S̃t+2
n ).

Let ũ[1,m−1] := (x̃t+1
[1,m−1]− ỹt+1

n 1m−1)+ and ṽ[1,n−1] := (ỹt+1
[1,n−1]− x̃t+1

m 1n−1)+. Then, Ṽ g
t+2(α(x̃t+1−

ỹt+1
n 1m)+ + D̃t+2, β(ỹt+1− x̃t+1

m 1n)+ + S̃t+2) can be rewritten as:

Ṽ g
t+2(αũ[1,m−1] + D̃t+2

[1,m−1], α[α(x̃m− ỹn) + D̃t+1
m − S̃t+1

n ]+ + D̃t+1
m ,

αṽ[1,n−1] + S̃t+2
[1,n−1], α[α(ỹn− x̃m) + S̃t+1

n − D̃t+1
m ]+ + S̃t+2

n ).

By Lemmas B.9 and B.10, the above function is decreasing and concave in (ũ[1,m−1], ṽ[1,n−1]). Ear-

lier, we have shown that both ũ[1,m−1] = (x̃t+1
[1,m−1]− ỹt+1

n 1m−1)+ and ṽ[1,n−1] = (ỹt+1
[1,n−1]− x̃t+1

m 1n−1)+

are increasing and convex in Q. We know that the composition of a decreasing concave function

and an increasing convex function is still decreasing and concave. Thus, the function Ṽ g
t+2(α(x̃t+1−

ỹt+1
n 1m)+ + D̃t+2, β(ỹt+1− x̃t+1

m 1n)+ + S̃t+2) is decreasing and concave in Q. Thus, the last term in

(B.23) is also concave. It follows that Ṽ g
t+1(x̃t+1, ỹt+1) = Ṽ g

t+1(α(x̃−Q1m)+ + D̃t+1, β(ỹ−Q1n)+ +

S̃t+1) is concave in Q.

Finally, we show that the function

G̃g
t (Q, x̃, ỹ) =− (x̃−Q1m)+U−1

m (rtd−αrt+1
d )T− (ỹ−Q1m)+U−1

n (rts−βrt+1
s )T

+ γEṼ g
t+1(α(x̃−Q1m)+ + D̃t+1, β(ỹ−Q1n)+ + S̃t+1) (B.24)

is concave in Q. We have just shown that the last term in (B.24) is concave in Q. The term

−(x̃−Q1m)+U−1
m (rtd−αrt+1

d )T =−
m∑
i=1

(x̃t+1
i −Q)+

[
(rt+1
id − rt+1

i+1,d)− γα(rt+2
id − rt+2

i+1,d))
]

is concave in Q, and so is the term −(ỹ−Q1m)+U−1
n (rts−βrt+1

s )T likewise. As a result, G̃g
t (Q, x̃, ỹ)

is concave in Q.

We note that even though the proof of the lemma presented above is based on the concavity

of Ṽt and is thus for the continuous-valued model, the function G̃t in the discrete-valued model
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can be naturally extended to its counterpart in the continuous-valued model. Therefore, in the

discrete-valued model, G̃t is also concave with respect to Q. �

We further present and prove two lemmas.

Lemma B.12. Let δ := (δ1, . . . , δj−1,0, . . . ,0) be n-dimension vector such that 0≤ δ1 ≤ δ2 ≤ · · · ≤

δj−1 ≤ ε, Among the factors (x̃, ỹ) and δ, the difference Ṽ g
t (x̃, ỹ− δ)− Ṽ g

t (x̃, ỹ) depends only on

δ, x̃m and ỹ[1,j−1].

Likewise, for an m-dimension vector θ := (θ, . . . , θi−1,0, . . . ,0) such that 0≤ θ1 ≤ θ2 ≤ · · · ≤ θi−1 ≤

ε, the difference Ṽ g
t (x̃−θ, ỹ)− Ṽ g

t (x̃, ỹ) depends only on θ, ε, ỹn and x̃[1,i−1].

Proof of Lemma B.12. We focus on the first difference Ṽ g
t (x̃, ỹ− δ)− Ṽ g

t (x̃, ỹ), and the other

difference will satisfy the desired property by symmetry.

We prove the lemma by induction. Since Ṽ g
T+1(x̃, ỹ− δ)− Ṽ g

T+1(x̃, ỹ)≡ 0, the difference clearly

satisfies the lemma for t= T + 1. Suppose the desired property is satisfied for t+ 1. We consider

two cases for t.

Case 1: x̃m < ỹj−1.

In this case, there exists 1 ≤ j′ ≤ j − 1 such that ỹj′−1 ≤ x̃m < ỹj′ . Since x̃m < ỹj−1 ≤ ỹn, (x̃−

ỹn1
m)+ reduces to the zero vector. By (B.19) in Lemma B.8, we have

Ṽ g
t (x̃, ỹ) =γEDt+1(rt+1

d )T + γESt+1(rt+1
s )T− (ỹ[j′,n]− x̃m1n−j

′+1)(U[j′,n]×[1,n]
n )−1(rts− γβrt+1

s )T

+ γEṼ g
t+1(D̃t+1, β(ỹ− x̃m1n)+ + S̃t+1),

where U[j′,n]×[1,n]
n is a submatrix consist of the j′th to the nth rows and all the columns of Un.

Also, there exists j′′ such that j′ ≤ j′′ ≤ j− 1 and ỹj′′−1− δj′′−1 ≤ x̃m < ỹj′′ − δj′′ . It follows that

Ṽ g
t (x̃, ỹ− δ) =γEDt+1(rt+1

d )T + γESt+1(rt+1
s )T− (ỹ[j′′,n]− δ[j′′,n]− x̃m1n−j

′′+1)(U[j′′,n]×[1,n]
n )−1(rts− γβrt+1

s )T

+ γEṼ g
t+1(D̃t+1, β(ỹ− δ− x̃m1n)+ + S̃t+1).

We then have

Ṽ g
t (x̃, ỹ− δ)− Ṽ g

t (x̃, ỹ)

=− (ỹ[j′′,n]− δ[j′′,n]− x̃m1n−j
′′+1)(U[j′′,n]×[1,n]

n )−1(rts− γβrt+1
s )T

+ (ỹ[j′,n]− x̃m1n−j
′+1)(U[j′,n]×[1,n]

n )−1(rts− γβrt+1
s )T

+ γEṼ g
t+1(D̃t+1, β(ỹ− δ− x̃m1n)+ + S̃t+1)− γEṼ g

t+1(D̃t+1, β(ỹ− x̃m1n)+ + S̃t+1)
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=− (ỹ[j′′,n]− δ[j′′,n]− x̃m1n−j
′′+1)(U[j′′,n]×[1,n]

n )−1(rts− γβrt+1
s )T

+ (ỹ[j′′,n]− x̃m1n−j
′′+1)(U[j′′,n]×[1,n]

n )−1(rts− γβrt+1
s )T

+ (ỹ[j′,j′′−1]− x̃m1j
′′−j′)(U[j′,j′′−1]×[1,n]

n )−1(rts− γβrt+1
s )T

+ γEṼ g
t+1(D̃t+1, β(ỹ− δ− x̃m1n)+ + S̃t+1)− γEṼ g

t+1(D̃t+1, β(ỹ− x̃m1n)+ + S̃t+1)

=δ[j′′,n](U
[j′′,n]×[1,n]
n )−1(rts− γβrt+1

s )T + (ỹ[j′,j′′−1]− x̃m1j
′′−j′)(U[j′,j′′−1]×[1,n]

n )−1(rts− γβrt+1
s )T

+ γEṼ g
t+1(D̃t+1, β(ỹ− δ− x̃m1n)+ + S̃t+1)− γEṼ g

t+1(D̃t+1, β(ỹ− x̃m1n)+ + S̃t+1). (B.25)

Clearly, the first two terms in (B.25) depends only on δ, ỹ[1,j−1] and x̃m. It remains to show that

the remaining term, γEṼ g
t+1(D̃t+1, β(ỹ−δ− x̃m1n)+ + S̃t+1)−γEṼ g

t+1(D̃t+1, β(ỹ− x̃m1n)+ + S̃t+1)

satisfies the same property.

Let us write Ỹ′′ := β(ỹ− δ− x̃m1n)+ + S̃t+1, and Ỹ′ = β(ỹ− x̃m1n)+ + S̃t+1. We have

Ỹ′′[j′′,n] =β(ỹ[j′′,n]− δ[j′′,n]− x̃m1n−j
′′+1) + S̃t+1

=β(ỹ[j′′,n]− x̃m1n−j
′′+1) + S̃t+1−βδ[j′′,n]

=Ỹ′[j′′,n]−βδ[j′′,n],

Ỹ′′[j′,j′′−1] =0j
′′−j′ = Ỹ′[j′,j′′−1]− Ỹ′[j′,j′′−1] = Ỹ′[j′,j′′−1]−

Ä
β(ỹ[j′,j′′−1]− x̃m1j

′′−j′) + S̃t+1
[j′,j′′−1]

ä
,

and Ỹ′′[1,j′−1] = Ỹ′[1,j′−1] = 0j
′−1. (Note that 0k represents the k-dimension zero vector.)

Let us denote µ := (0j
′−1, β(ỹ[j′,j′′−1] − x̃m1j

′′−j′) + S̃t+1
[j′,j′′−1], βδ[j′′,n]). Since δ[j,n] = 0n−j+1, we

have µ := (0j
′−1, β(ỹ[j′,j′′−1] − x̃m1j

′′−j′) + S̃t+1
[j′,j′′−1], βδ[j′′,j−1],0

n−j+1). We see that Ỹ′′ = Ỹ′ − µ.

(We note that µ is a random vector.) By the induction hypothesis, we have the difference

γEṼ g
t+1(D̃t+1, β(ỹ− δ− x̃m1n)+ + S̃t+1)− γEṼ g

t+1(D̃t+1, β(ỹ− x̃m1n)+ + S̃t+1)

=γEṼ g
t+1(D̃t+1, Ỹ′−µ)− γEṼ g

t+1(D̃t+1, Ỹ′),

depends only on Ỹ′[1,j−1] and µ.

Further, Ỹ′[1,j−1] = β(ỹ[1,j−1] − x̃m1j−1)+ + S̃t+1
[1,j−1] depends only on ỹ[1,j−1] and x̃m. µ depends

only on ỹ[1,j−1], δ and x̃m. Therefore, the difference γEṼ g
t+1(D̃t+1, β(ỹ − δ − x̃m1n)+ + S̃t+1) −

γEṼ g
t+1(D̃t+1, β(ỹ− x̃m1n)+ + S̃t+1) depends only on δ, ỹ[1,j−1] and x̃m.

It then follows that the desired result holds for t.

Case 2: x̃m ≥ ỹj−1.
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Since δ[j,n] = 0n−j+1 (i.e., the (n− j+ 1)-dimension zero vector), we have

(ỹ− δ− x̃m1n)+ =
(
0j−1, (ỹ[j,n]− x̃m1n−j+1)+

)
= (ỹ− x̃m1n)+.

By (B.19) in Lemma B.8, we have Ṽ g
t (x̃, ỹ−δ)− Ṽ g

t (x̃, ỹ) = 0. Therefore, the result holds trivially.

Combining both cases, we conclude that Ṽ g
t (x̃, ỹ− δ)− Ṽ g

t (x̃, ỹ) depends only on δ, ỹ[1,j−1] and

x̃m. �

Lemma B.13. For ε > 0 and t = 1, . . . , T , the difference Ṽ g
t (x̃ + ε1m[i,m],y + ε1n[j,n]) − Ṽ

g
t (x̃, ỹ)

depends only on ε and (x̃[1,i−1], ỹ[1,j−1], x̃m, ỹn), where 1m[i,m] represents an m-dimension vector with

the ith to mth entries equal to 1 and all other entries equal to 0 (the meaning of 1n[j,n] is similar).

Proof of Lemma B.13. We first focus on the case in which x̃m ≤ ỹn. Under this condition, we

have (x̃− ỹn1m)+ = 0 and [x̃ + ε1m[j,m] − (ỹn + ε)1m]+ ≤ (x̃− ỹn1m)+ = 0. We further discuss two

possibilities, namely, x̃m ≥ ỹj−1 and x̃m < ỹj−1.

If x̃m ≥ ỹj−1, then (ỹ− x̃m1n)+ =
(
0j−1, (ỹ[j,n]− x̃m1n−j+1)+

)
, andî

ỹ + ε1n[j,n]− (x̃m + ε)1n
ó+

=
(
0j−1, (ỹ[j,n]− x̃m1n−j+1)+

)
= (ỹ− x̃m1n)+.

Then, by (B.19) in Lemma B.8, we can readily verify that Ṽ g
t (x̃+ ε1m[i,m],y + ε1n[j,n])− Ṽ

g
t (x̃, ỹ) = 0,

which clearly satisfies the lemma.

If x̃m < ỹj−1, there exists j′ such that 1≤ j′ ≤ j− 1 and ỹj′−1 ≤ x̃m < ỹj′ . We have

(ỹ− x̃m1n)+ =
Ä
0j
′−1, ỹ[j′,j−1]− x̃m1j−j

′
, (ỹ[j,n]− x̃m1n−j+1)+

äî
ỹ + ε1n[j,n]− (x̃m + ε)1n

ó+
=
Ä
0j
′−1, [ỹ[j′,j−1]− (x̃m + ε)1j−j

′
]+, (ỹ[j,n]− x̃m1n−j+1)+

ä
.

Let δ := (0j
′−1, ỹ[j′,j−1] − x̃m1j−j

′ − [ỹ[j′,j−1] − (x̃m + ε)1j−j
′
]+,0n−j+1), which depends only on

ỹ[1,j−1], x̃m and ε. We have
î
ỹ + ε1n[j,n]− (x̃m + ε)1n

ó+
= (ỹ− x̃m1n)+− δ.

By (B.19) in Lemma B.8, we have

Ṽ g
t (x̃ + ε1m[i,m],y + ε1n[j,n])− Ṽ

g
t (x̃, ỹ)

=δU−1
n (rts− γβrt+1

s )T

+ γEṼ g
t+1(D̃t+1, β(ỹ− x̃m1n)+−βδ + S̃t+1)− γEṼ g

t+1(D̃t+1, β(ỹ− x̃m1n)+ + S̃t+1).

By Lemma B.12, the difference γEṼ g
t+1(D̃t+1, β(ỹ− x̃m1n)+− βδ + S̃t+1)− γEṼ g

t+1(D̃t+1, β(ỹ−

x̃m1n)+ + S̃t+1) depends only on δ and the first j−1 entries of (ỹ− x̃m1n)+. The first j−1 entries
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of (ỹ− x̃m1n)+ depends only on ỹ[1,j−1] and x̃m. Consequently, the difference γEṼ g
t+1(D̃t+1, β(ỹ−

x̃m1n)+ − βδ + S̃t+1) − γEṼ g
t+1(D̃t+1, β(ỹ − x̃m1n)+ + S̃t+1) depends only on ỹ[1,j−1], x̃m and ε.

Thus, the difference Ṽ g
t (x̃ + ε1m[i,m],y + ε1n[j,n])− Ṽ

g
t (x̃, ỹ) depends only on ỹ[1,j−1], x̃m and ε.

Now we consider the case with x̃m > ỹn. By symmetry, we can infer that difference Ṽ g
t (x̃ +

ε1m[i,m],y + ε1n[j,n])− Ṽ
g
t (x̃, ỹ) depends only on x̃[1,i−1], ỹn and ε. This completes the proof. �

C. Extensions and Additional Results

C.1. Modified Monge condition for non-neighboring pairs

As mentioned in the paper, we can extend Definition 2 to allow a pair to weakly precede a non-

neighboring pair.

Definition C.1. For two non-neighboring pairs (i, j) and (i′, j′), we say that (i, j) weakly pre-

cedes (i′, j′) if there exists a path of demand-supply pairs that connects the two, in one of the

following forms,

(i) (i, j) = (i1, j1)→ (i2, j1)→ (i2, j2)→ · · · (iN , jN−1)→ (iN , jN) = (i, j); or

(ii) (i, j) = (i1, j1)→ (i2, j1)→ (i2, j2)→ · · · (iN , jN−1)→ (iN , jN)→ (iN+1, jN) = (i, j); or

(iii) (i, j) = (i1, j1)→ (i1, j2)→ (i3, j2)→ · · · (iN , jN−1)→ (iN , jN) = (i, j); or

(iv) (i, j) = (i1, j1)→ (i1, j2)→ (i3, j2)→ · · · (iN , jN−1)→ (iN , jN)→ (iN+1, jN) = (i, j);

such that along this path, each pair weakly precedes the next pair according to Definition 2.

With Definition C.1, we first prove the following Lemma.

Lemma C.14. For a given state (x,y) with xi > 0 and yj > 0, ε1t ∈ [0, xi] and ε2t ∈ [0, yj], there

exist ητj′′ ≥ 0 and ξτi′′ ≥ 0 for j′′ ∈ S, i′′ ∈D and τ = t, . . . , T + 1 such that
∑T

τ=tα
−(τ−t)∑n

j′′=1 η
τ
j′′ ≤

ε1t ,
∑T

τ=t β
−(τ−t)∑

i′′∈D ξ
τ
i′′ ≤ ε2t and

Vt(x− ε1temi + ε1te
m
i′ ,y− ε2tenj + ε2te

n
j′)−Vt(x,y)≥

T∑
τ=t

γτ−t[
n∑

j′′=1

ητj′′(r
τ
i′j′′ − rτij′′) +

m∑
i′′=1

ξτi′′(r
τ
i′′j′ − rτi′′j)].

Proof of Lemma C.14. We prove the lemma by induction. The result holds trivially for t= T +1

by noting that VT+1(x,y)≡ 0. Suppose the result holds for t+ 1.

For period t, we let Q̂∈ arg maxQ∈{Q≥0|u≥0,v≥0}Ht(Q,x,y). For the state (x− ε1temi + ε1te
m
i′ ,y−

ε2te
n
j + ε2te

n
j′), Q̂ may not be feasible, since less type i demand and type j supply are available.

Based on Q̂, we can construct a feasible decision for (x− ε1temi + ε1te
m
i′ ,y− ε2tenj + ε2te

n
j′).

Specifically, we can reduce the matching quantities between type i demand and all supply types

by a total amount [
∑n

j′′=1 q̂ij′ − (xi− ε1
t )]

+ (which is by how much the decision Q̂ consumes more
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than the available type i demand xi − ε1
t ), and reduce the matching quantities between type j

supply and demand types by a total amount [
∑m

i′′=1 q̂i′j − (yj − ε2
t )]

+ (which is by how much the

decision Q̂ consumes more than the available type j supply yj − ε2
t ). In other words, there exists

ηtj′′ ≥ 0 and ξti′′ ≥ 0 for i′′ = 1, . . . ,m and j′′ = 1, . . . ,m such that
∑n

j′′=1 η
t
j′′ ≤ ε1

t ,
∑m

i′′=1 ξ
t
i′′ ≤ ε2

t , and

the matching quantities qij′′ − ηtj′′ (j′′ = 1, . . . , n) and qi′′j − ξti′′ (i′′ = 1, . . . ,m) are feasible for the

state (x− ε1temi + ε1te
m
i′′ ,y− ε2tenj + ε2te

n
j′′).

In the meantime, we also increase the matching quantity between type i′ demand and type j′′

supply by ηtj′′ and the matching quantity between type j′ supply and type i′′ demand by ξti′′ , for

all i′′ and j′′. This leads to the matching decision ‹Q := Q̂ −
∑n

j′′=1 η
t
j′′e

m×n
ij′′ −

∑m

i′′=1 ξ
t
i′′e

m×n
i′′j +∑n

j′′=1 η
t
j′′e

m×n
i′j′′ +

∑m

i′′=1 ξ
t
i′′e

m×n
i′′j′ , which is feasible for the state (x− ε1temi + ε1te

m
i′′ ,y− ε2tenj + ε2te

n
j′′).

Let us denote by u and v the post-matching levels under the state (x,y) and the decision Q̂ in

period t. Define ε1t+1 = α(ε1t −
∑n

j′′=1 η
t
j′′) and ε2t+1 = β(ε2t −

∑m

i′′=1 ξ
t
i′′). We have:

Vt(x− ε1temi + ε1te
m
i′ ,y− ε2tenj + ε2te

n
j′)−Vt(x,y)

≥Ht(‹Q,x− ε1temi + ε1te
m
i′ ,y− ε2tenj + ε2te

n
j′)−Ht(Q̂,x,y)

≥
m∑

i′′=1

ξti′′(r
t
i′′j′ − rti′′j) +

n∑
j′′=1

ηtj′′(r
t
i′j′′ − rtij′′)

+ γEVt+1(α[u− (ε1t −
n∑

j′′=1

ηtj′′)e
m
i + (ε1t −

n∑
j′′=1

ηtj′′)e
m
i′ ] + Dt+1,

β[v− (ε2t −
m∑

i′′=1

ξti′′)e
n
j + (ε2t −

m∑
i′′=1

ξti′′)e
n
j′ ] + St+1)− γEVt+1(αu + Dt+1, βv + St+1)

=
m∑

i′′=1

ξti′′(r
t
i′′j′ − rti′′j) +

n∑
j′′=1

ηtj′′(r
t
i′j′′ − rtij′′)

+ γEVt+1(αu− ε1t+1e
n
i + ε1t+1e

n
i′ + Dt+1, βv− ε2t+1e

m
j + ε2t+1e

m
j′ + St+1)− γEVt+1(αu + Dt+1, βv + St+1).

(C.26)

Let Xt+1 = αu + Dt+1 and Yt+1 = βv + St+1. By the induction hypothesis, there exist Kτ
j′′ and

Lτi′′ for j′′ = 1, . . . , n, i′′ = 1, . . . ,m and τ = t+1, . . . , T such that
∑T

τ=t+1α
−(τ−t−1)

∑n

j′′=1K
τ
j′′ ≤ ε1t+1,∑T

τ=t+1 β
−(τ−t−1)

∑m

i′′=1L
τ
i′′ ≤ ε2t+1 and

Vt+1(Xt+1− ε1t+1e
m
i + ε1t+1e

m
i′ ,Yt+1− ε2t+1e

n
j + ε2t+1e

n
j′)−Vt+1(Xt+1,Yt+1)

≥
T∑

τ=t+1

γτ−t−1[
n∑

j′′=1

Kτ
j′′(r

τ
i′j′′ − rτij′′) +

m∑
i′′=1

Lτi′′(r
τ
i′′j′ − rτi′′j)]. (C.27)

Let ητj′′ =EKτ
j′′ and ξτi′′ =ELτi′′ for j′′ = 1, . . . , n, i′′ = 1, . . . ,m and τ = t+ 1, . . . , T . We have
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Vt(x− ε1temi + ε1te
m
i′ ,y− ε2tenj + ε2te

n
j′)−Vt(x,y)

≥
m∑

i′′=1

ξti′′(r
t
i′′j′ − rti′′j) +

n∑
j′′=1

ηtj′′(r
t
i′j′′ − rtij′′)

+ γEVt+1(αu− ε1t+1e
m
i + ε1t+1e

m
i′ + Dt+1, βv− ε2t+1e

n
j + ε2t+1e

n
j′ + St+1)− γEVt+1(αu + Dt+1, βv + St+1)

≥
m∑

i′′=1

ξti′′(r
t
i′′j′ − rti′′j) +

n∑
j′′=1

ηtj′′(r
t
i′j′′ − rtij′′) +

T∑
τ=t+1

γτ−t[
n∑

j′′=1

ητj′′(r
τ
i′j′′ − rτij′′) +

m∑
i′′=1

ξτi′′(r
τ
i′′j′ − rτi′′j)]

=
T∑
τ=t

γτ−t[
n∑

j′′=1

ητj′′(r
τ
i′j′′ − rτij′′) +

m∑
i′′=1

ξτi′′(r
τ
i′′j′ − rτi′′j)],

where the first inequality is (C.26) and the second inequality is due to (C.27).

Moreover,
∑T

τ=tα
−(τ−t)∑n

j′′=1 η
τ
j′′ =

∑n

j′′=1 η
t
j′′ + E

∑T

τ=t+1α
−(τ−t)∑n

j′′=1K
τ
j′′ ≤

∑n

j′′=1 η
t
j′′ +

α−1ε1t+1 =
∑n

j′′=1 η
t
j′′ + (ε1t −

∑n

j′′=1 η
t
j′′) = ε1t . Similarly,

∑T

τ=t β
−(τ−t)∑m

i′′=1 ξ
τ
i′′ =

∑m

i′′=1 ξ
t
i′′ +

E
∑T

τ=t+1 β
−(τ−t)∑m

i′′=1L
τ
i′′ =

∑m

i′′=1 ξ
t
i′′ + β−1ε2t+1 ≤

∑m

i′′=1 ξ
t
i′′ + (ε2t −

∑m

i′′=1 ξ
t
i′′) = ε2t . This com-

pletes the induction. �

Lemma C.15. For a state (x,y), any 0< ε1 <xi, 0< ε2 < yj, we have

Vt+1(x− ε1emi + ε1e
m
i′ ,y− ε2enj + ε2e

n
j′)−Vt+1(x,y)≥max

{
(αγ)−1ε1, (βγ)−1ε2

}
(rti′j′ − rtij).

Proof of Lemma C.15. By Lemma C.14, there exist nonnegative numbers ητj′′ and ξτi′′ for

j′′ = 1, . . . , n, i′′ = 1, . . . ,m and τ = t + 1, . . . , T + 1 such that
∑T

τ=t+1α
−(τ−t−1)

∑n

j′′=1 η
τ
j′′ ≤ ε1,∑T

τ=t β
−(τ−t−1)

∑m

i′=1 ξ
τ
i′′ ≤ ε2 and

Vt+1(x− ε1emi + ε1e
m
i′ ,y− ε2emj + ε2e

m
j′ )−Vt(x,y)

≥
T∑

τ=t+1

γτ−t−1[
n∑

j′′=1

ητj′′(r
τ
i′j′′ − rτij′′) +

m∑
i′′=1

ξτi′′(r
τ
i′′j′ − rτi′′j)]. (C.28)

Since (i, j) weakly precedes (i′, j′), there exists a “zigzag” path connecting the two arcs, along

which each pair weakly precedes the next pair. Without loss of generality, we suppose that the

path has the form (i, j) = (i1, j1)→ (i2, j1)→ (i2, j2)→ · · · → (i`, j`) = (i′, j′) (proof for the other

forms would be analogous). Along the path, (ik, jk) weakly precedes (ik+1, jk), which implies that

rtikjk − r
t
ik+1jk

≥ (γα)τ−t(rτikj′′ − r
τ
ik+1j

′′). Thus

rτi′j′′ − rτij′′ =−(rτi1j′′ − r
τ
i`j
′′) =−

`−1∑
k=1

(rτikj′′ − r
τ
ik+1j

′′)≥−(γα)−(τ−t))
`−1∑
k=1

(rtikjk − r
t
ik+1jk

). (C.29)

Likewise, since (ik+1, jk) weakly precedes (ik+1, jk+1), we have
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rτi′′j′ − rτi′′j =−(rτi′′j1 − r
τ
i′′j`

) =−
`−1∑
k=1

(rτi′′jk − r
τ
i′′jk+1

)≥−(γβ)−(τ−t)
`−1∑
k=1

(rtik+1jk
− rtik+1jk+1

). (C.30)

Then,

Vt+1(x− ε1emi + ε1e
m
i′ ,y− ε2enj + ε2e

n
j′)−Vt+1(x,y)

≥
T∑

τ=t+1

γτ−t−1(γα)−(τ−t)
n∑

j′′=1

ητj′′

`−1∑
k=1

(rtik+1jk
− rtikjk) +

T∑
τ=t+1

γτ−t−1(γβ)−(τ−t)
m∑

i′′=1

ξτi′′

`−1∑
k=1

(rtik+1jk+1
− rtik+1jk

)

=γ−1

T∑
τ=t+1

α−(τ−t)
n∑

j′′=1

ητj′′

`−1∑
k=1

(rtik+1jk
− rtikjk) + γ−1

T∑
τ=t+1

β−(τ−t)
m∑

i′′=1

ξτi′′

`−1∑
k=1

(rtik+1jk+1
− rtik+1jk

)

=γ−1K
`−1∑
k=1

(rtik+1jk
− rtikjk) + γ−1L

`−1∑
k=1

(rtik+1jk+1
− rtik+1jk

), (C.31)

where we have denotedK :=
∑T

τ=t+1α
−(τ−t)∑n

j′′=1 η
τ
j′′ ≤ α−1ε1 and L :=

∑T

τ=t+1 β
−(τ−t)∑m

i′′=1 ξ
τ
i′′ ≤

β−1ε2, for ease of notation.

If K ≤L, we have

Vt+1(x− ε1emi + ε1e
m
i′ ,y− ε2enj + ε2e

n
j′)−Vt+1(x,y)

≥γ−1K[
`−1∑
k=1

(rtik+1jk
− rtikjk) +

`−1∑
k=1

(rtik+1jk+1
− rtik+1jk

)] + γ−1(L−K)
`−1∑
k=1

(rtik+1jk+1
− rtik+1jk

)

=γ−1K(rti`j` − r
t
i1j1

) + γ−1(L−K)
`−1∑
k=1

(rtik+1jk+1
− rtik+1jk

)

≥γ−1K(rti`j` − r
t
i1j1

) + γ−1(L−K)
`−1∑
k=1

(rtik+1jk+1
− rtikjk)

=γ−1K(rti`j` − r
t
i1j1

) + γ−1(L−K)(rti`j` − r
t
i1j1

)

=γ−1L(rti`j` − r
t
i1j1

) = γ−1L(rti′j′ − rtij)≥ (γβ)−1(rti′j′ − rtij)ε2, (C.32)

where the second inequality holds because rtik+1jk
≤ rtikjk (note that (ik, jk) weakly precedes

(ik+1, jk)).

If K >L, we have

Vt+1(x− ε1emi + ε1e
m
i′ ,y− ε2enj + ε2e

n
j′)−Vt+1(x,y)

≥γ−1(K −L)
`−1∑
k=1

(rtik+1jk
− rtikjk) + γ−1L[

`−1∑
k=1

(rtik+1jk+1
− rtik+1jk

) +
`−1∑
k=1

(rtik+1jk
− rtikjk)]

=γ−1(K −L)
`−1∑
k=1

(rtik+1jk
− rtikjk) + γ−1L(rti`j` − r

t
i1j1

)
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≥γ−1(K −L)
`−1∑
k=1

(rtik+1jk+1
− rtikjk) + γ−1L(rti`j` − r

t
i1j1

)

=γ−1(K −L)(rti`j` − r
t
i1j1

) + γ−1L(rti`j` − r
t
i1j1

)

=γ−1K(rti`j` − r
t
i1j1

)

≥(αγ)−1(rti′j′ − rtij)ε1. (C.33)

Combining the two possibilities, we have Vt+1(x− ε1emi + ε1e
m
i′ ,y− ε2enj + ε2e

n
j′)− Vt+1(x,y)≥

max{(αγ)−1ε1, (βγ)−1ε2} (rti′j′ − rtij). �

Lemma C.16. Suppose that (i, j) weakly precedes a non-neighboring pair (i′, j′). For two feasible

matching decisions Q and Q + εem×nij − εem×ni′j′ for the state (x,y) in period t, the latter decision

leads to a weakly higher expected total discounted reward from period t to period T , i.e., Ht(Q +

εem×nij − εem×ni′j′ ,x,y)≥Ht(Q,x,y).

Proof of Lemma C.16. Let u := x−1QT and v := y−1Q be the post-matching levels for using

the matching decision Q in period t under the state x,y). It is easy to see that the post-matching

levels by using Q + εem×nij − εem×ni′j′ are given by u− ei + ei′ and v− ej + ej′ . We have

Ht(Q + εem×nij − εem×ni′j′ ,x,y)

=Rt ◦ (Q + εem×nij − εem×ni′j′ ) + γEVt+1(αu−αεei +αεei′ + Dt+1, βv−βεej +βεej′ + St+1)

=(rtij − rti′j′)ε+ Rt ◦Q + γEVt+1(αu−αεei +αεei′ + Dt+1, βv−βεej +βεej′ + St+1)

≥(rtij − rti′j′)ε+ Rt ◦Q + γEVt+1(αu + Dt+1, βv + St+1) + (rti′j′ − rtij)ε

=Ht(Q,x,y),

where the inequality follows from Lemma C.15, with ε1 = αε and ε2 = βε. �

We now present the following proposition that adds to the structural property in Theorem 1.

Proposition C.1. There exists an optimal policy π∗ = {Qt∗}t=1,...,T such that it satisfies the

property in Theorem 1, and in addition, for any pair (i, j) weakly preceding a non-neighboring

pair (i′, j′), in each period t either the matching quantity qt∗i′j′ = 0, the post-matching level ut∗i = 0,

or vt∗j = 0. Further, if Assumption 1 is satisfied, the optimal policy also satisfies the property in

Theorem 2.

Proof of Proposition C.1. The proof is similar to that of Theorems 1 and 2. For any matching

policy that does not satisfy the properties in the proposition, we can construct a weakly better
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policy by successively transferring quantity from a weakly preceded pair to the corresponding

preceding pair. In addition to the transferring matching quantities to neighboring pairs, we will

also keep transferring quantity from a pair (i′, j′) to a non-neighboring pair (i, j), if (i, j) weakly

precedes (i′, j′) according to Definition C.1. Following the same analysis as in the proof of Theorem

1, we can eventually obtain a feasible policy that satisfies the stated properties. �

As Theorem 1, Proposition C.1 implies that the optimal policy prioritizes a pair over those pairs

it weakly precedes.

C.2. The partial order defined by the modified Monge condition

A partial order � defined over the set of demand-supply pairs {ρ= (i, j) | i= 1, . . . ,m, j = 1, . . . , n}

is a binary relation for comparing (some of) the pairs, such that it satisfies: (i). Reflexivity: ρ� ρ

for any pair ρ; (ii). Antisymmetry: If ρ1 � ρ2 and ρ2 � ρ1, then ρ1 = ρ2; (iii). Transitivity: If ρ1 � ρ2

and ρ2 � ρ3, then ρ1 � ρ3.

It is clear from Definition 2 that any pair weakly precedes itself. Therefore, it satisfies Reflexivity.

In the following, we will show that the modified Monge condition also satisfies transitivity.

Lemma C.17 below shows that the modified Monge condition satisfies transitivity among pairs

that share a common demand/supply type.

Lemma C.17. If (i, j) weakly precedes (i, j′), and (i, j′) weakly precedes (i, j′′), then (i, j) weakly

precedes (i, j′′). Likewise, if (i, j) weakly precedes (i′, j) and (i′, j) weakly precedes (i′′, j), then (i, j)

weakly precedes (i′′, j).

Proof of Lemma C.17 We will prove the first claim in the lemma, and the second claim holds

by symmetry.

Suppose that (i, j) weakly precedes (i, j′) and (i, j′) weakly precedes (i, j′′). By Definition 2, we

have rtij − rtij′ ≥ βγ(rt+1
i′′′j − r

t+1
i′′′j′) and rtij′ − rtij′′ ≥ βγ(rt+1

i′′′j′ − r
t+1
i′′′j′′) for any demand type i′′′. By

adding up those two inequalities, we obtain rtij − rtij′′ ≥ βγ(rt+1
i′′′j − r

t+1
i′′′j′′) for any demand type i′′′.

On the other hand, it is also clear from Definition 2 that rtij ≥ rtij′ ≥ rtij′′ . Thus, rtij − rtij′′ ≥

βγ(rt+1
i′′′j − r

t+1
i′′′j′′)

+ for any demand type i′′′, which implies that (i, j) weakly precedes (i, j′′). �

The following lemma shows that the modified Monge condition satisfies transitivity for any three

pairs such that the first and last pairs do not share any demand/supply types.

Lemma C.18. Suppose that (i, j) weakly precedes (i′, j′), and (i′, j′) weakly (i′′, j′′). Then, (i, j)

weakly precedes (i′′, j′′) if i 6= i′′ and j 6= j′′.
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Proof of Lemma C.18 Since (i, j) weakly precedes (i′, j′) and (i′, j′) weakly (i′′, j′′), there exists

a “zig-zag” path of demand-supply pairs connecting (i, j) and (i′, j′) (if (i, j) and (i′, j′) are neigh-

boring pairs, the two of them form the path), and another one connecting (i, j) and (i′, j′), such

that both path have one of the forms given as in Definition C.1 and along both paths each pair

weakly precedes the next pair. Combining those two paths, we obtain a path connecting (i, j) and

(i′′, j′′), such that it has one of the forms given as in Definition C.1 and along the path each pair

weakly precedes the next pair.

In particular, if the second-to-last pair on the first path (i.e., the one connecting (i, j) and (i′, j′))

and the second pair on the second path (i.e., the one connecting (i′, j′) and (i′′, j′′)) do not share

any common demand/supply type, the two paths directly form the combined path (i.e., we travel

all the pairs on the two paths to travel from (i, j) and (i′′, j′′)). If the aforementioned two pairs

share a common demand/supply type, say demand type i′, then we can combine the two paths

but skip the pair (i′, j′) to form the combined path (note that according to Lemma C.17, the

second-to-last pair on the first path weakly precedes the second pair on the second path).

By the modified Monge condition for two non-neighboring pairs (Definition C.1), we can conclude

that (i, j) weakly precedes (i′′, j′′). �

In the next lemma, we show that the modified Monge condition satisfies transitivity for three

pairs such that the first and last pair share a common demand/supply type.

Lemma C.19. Suppose that (i, j) weakly precedes (i′, j′), and (i′, j′) weakly precedes (i, j′′). Then,

(i, j) weakly precedes (i, j′′). Likewise, if (i, j) weakly precedes (i′, j′), and (i′, j′) weakly precedes

(i′′, j), then (i, j) weakly precedes (i′′, j).

Proof of Lemma C.19 We prove the first claim of the lemma and the second claim holds by

symmetry.

Suppose that (i, j) weakly precedes (i′, j′), and (i′, j′) weakly precedes (i, j′′). We can find a “zig-

zag” path connecting (i, j) and (i, j′′), such that each pair weakly precedes the next pair along the

path (analogous to the proof of Lemma C.18, we can combine the path connecting (i, j) and (i′, j′),

and the path connecting (i′, j′) and (i, j′′) to form the path). Without loss of generality, we assume

that the path has the form (i, j) = (i1, j1)→ (i2, j1)→ (i2, j2)→ · · · → (i`, j`)→ (i1, j`) = (i, j′′).

Since for k= 1, . . . , l− 1, (ik, jk) weakly precedes (ik+1, jk), we have

rtikjk − r
t
ik+1jk

≥ γα(rt+1
ikj
′′′ − rt+1

ik+1j
′′′), (C.34)
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for any supply type j′′′. Likewise, since for k = 1, . . . , `− 1, (ik+1, jk) weakly precedes (ik+1, jk+1),

we have

rtik+1jk
− rtik+1jk+1

≥ γβ(rt+1
i′′′jk
− rt+1

i′′′jk+1
), (C.35)

for all demand type i′′′. Moreover, (i`, j`) weakly preceding (i1, j`) implies that

rti`j` − r
t
i1j`
≥ αγ(rt+1

i`j
′′′ − rt+1

i1j′′′
), (C.36)

for any supply type j′′′.

By summing up (C.34) and (C.35) for k = 1, . . . , ` − 1 and (C.36), we obtain rti1j1 − r
t
i1j`
≥

γβ(rt+1
i′′′j1
− rt+1

i′′′j`
) for any demand type i′′′. On the other hand, it is evident that rti1j1 ≥ r

t
i1j`

. Since

(i1, j1) = (i, j) and (i1, j`) = (i, j′′), we have rtij − rtij′′ ≥ γβ(rt+1
i′′′j − r

t+1
i′′′j′′)

+. By Definition 2, this

shows that (i, j) weakly precedes (i, j′′). �

By Lemmas C.17–C.19, we can conclude that the modified Monge condition satisfies transitivity.

Antisymmetry, however, is not necessarily satisfied by the modified Monge condition. It is pos-

sible for two pairs to weakly precede each other. We say that two pairs that precede each other are

equivalent. It readily follows from Lemmas C.17–C.19 that this equivalence relation also satisfies

transitivity. Clearly, it also satisfies the symmetric property (if ρ1 is equivalent to ρ2, then ρ2 is

equivalent to ρ1) and the reflexive property (any pair ρ is equivalent to itself). It is well known

that for an equivalence relation with those properties, the set of all demand-supply pairs can be

divided into a number of equivalence classes, which we denote by A1, . . . ,AN . Within each equiva-

lence class, there is at least one pair (since any pair is equivalent to itself), and any two pairs are

equivalent.

It follows from Lemma C.16 and Lemma E.23 in Online Supplement E that transferring matching

quantity from a pair to an equivalent pair would not change the expected discounted reward.

This implies that we can arbitrarily prioritize two equivalent pairs without affecting the expected

discounted reward. Formally, let us assign a unique integer number, referred to as priority number

and denoted by P(i,j), to each demand-supply pair (i, j). The assignment of priority numbers can

be arbitrary, but it cannot be altered. If two pairs (i, j) and (i′, j′) are equivalent, we break the tie

by comparing their priority numbers.

Definition C.2. We define the binary relation � over the set of demand-supply pairs as follows.

For any two pairs (i, j) and (i′, j′), (i, j)� (i′, j′) if:

(i). (i, j) weakly precedes, but is not equivalent to (i′, j′); or
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(ii). (i, j) is equivalent to (i′, j′) and P(i,j) ≤ P(i′,j′).

Proposition C.2. The binary relation � defined in Definition C.2 is a partial order.

Proof of Proposition C.2 Reflexivity. Any pair (i, j) is equivalent to itself. Since P(i,j) = P(i,j),

we have (i, j)� (i, j) by condition (ii) of Definition C.2.

Antisymmetry. Suppose that (i, j) � (i′, j′) and (i′, j′) � (i, j). We need to show that (i, j) =

(i′, j′). If (i, j) weakly precedes but is not equivalent to (i′, j′). Then, according to Definition C.2, it

is impossible to have (i′, j′)� (i, j). Thus, it must be the case that (i, j) and (i′, j′) are equivalent.

By condition (ii) of Definition C.2, P(i,j) = P(i′,j′). However, since each pair has a unique priority

number, P(i,j) = P(i′,j′) implies that (i, j) = (i′, j′).

Transitivity. Suppose that (i, j) � (i′, j′) and (i′, j′) � (i′′, j′′). This implies that (i, j) weakly

precedes (i′, j′), which further weakly precedes (i′′, j′′). By transitivity of the modified Monge

condition, we know that (i, j) weakly precedes (i′′, j′′). If (i, j) is not equivalent to (i′′, j′′), we

can conclude that (i, j)� (i′′, j′′) by condition (ii) of Definition C.2. Otherwise, we have (i, j) and

(i′′, j′′) weakly precede each other. Then, (i′, j′) weakly precedes (i, j), because it weakly precedes

(i′′, j′′), but (i′′, j′′) weakly precedes (i, j). Thus, (i′, j′) is equivalent to (i, j). Analogously, (i′, j′)

is also equivalent to (i′′, j′′). Therefore, the three pairs (i, j), (i′, j′) and (i′′, j′′) belong to the same

equivalence class. Since (i, j)� (i′, j′) and (i′, j′)� (i′′, j′′), we have P(i,j) ≤ P(i′,j′) ≤ P(i′′,j′′). This

further shows that (i, j)� (i′′, j′′). �

We can readily verify that all our results in the paper remain true if we replace the “weakly

preceding” relation with the partial order �. In fact, the partial order � is essentially the same as

the modified Monge condition. The only difference is that, when two pairs are equivalent according

to the modified Monge condition, the partial order � breaks the tie based on the arbitrarily

assigned priority numbers. In light of the antisymmetry property of �, we can assume without loss

of generality that there do not exist two demand-supply pairs that weakly precede each other.

C.3. Endogenous correlation between matching quantities and future supply arrival

We consider an extension that allows the arrival of future supply to depend on the matching

decision in the current period. In this extension, we assume that any supply matched in a period

t may rejoin the system due to customer cancellation/return.

For simplicity, suppose that demand and supply both arrive in discrete (i.e., integer) quantities,

and the matching decision also takes only integer values. Let the supply carry-over rate β = 1 and

the demand carry-over rate α can be either 0 or 1.
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For the matching decision Q = (qij)i=1,...,m,j=1,...,n used in period t, let qt·j :=
∑m

i=1 q
t
ij is the total

quantity of type j supply matched in that period. We suppose that the arrival of type j supply

in the next period t+ 1 is St+1
j := St+1,0

j +
∑qt·j

k=1X
j,t+1
k , where St+1,0

j is the new supply to join in

period t+ 1, and Xj,t+1
k (k = 1,2, . . ., j = 1, . . . ,m, t= 1, . . . , T ) are i.i.d. binary random variables

representing the possible cancellation/return of each unit of type j supply matched in period t.

We also assume that
{
Xj,t+1
k

}
∀k,i,t,

{
Dt+1
i

}
∀i,t and

{
St+1
j

}
∀j,t are independent. Let X be a generic

binary random variable that has the same distribution as Xj,t+1
k (for all k, j and t), and we define

p0 := Pr(X = 0) and p1 := Pr(X = 1).

We note that the above settings allow cancellations/returns to happen only in the beginning of

the next period after the matching is made.

In the following lemma, we show that transferring matching quantity to a pair (i, j) from a

neighboring pair it weakly precedes improves the expected total matching reward.

Lemma C.20. Suppose that (i, j) weakly precedes (i, j′). For two matching decisions Q and

Q + em×nij − em×nij′ that are both feasible for the state (x,y) in period t, we have Ht(Q + em×nij −

em×nij′ ,x,y)≥Ht(Q,x,y).

To prove Lemma C.20, we require another lemma.

Lemma C.21. For t= 1, . . . , T , j, j′ = 1, . . . , n, and any x and y, the inequality Vt(x,y + ej′)−

Vt(x,y + ej)≥−maxτ=t,t+1,...,T,i′=1,...,m(rτi′j − rτi′j′)+
∑T

τ=t(γp1)τ−t holds.

Proof of Lemma C.21. We prove the lemma by induction. Clearly, the inequality holds for t=

T + 1, since VT+1 ≡ 0. Suppose that it also holds for t+ 1.

For ease of notation, let us define ∆t
j,j′ = maxτ=t,t+1,...,T,i′=1,...,m(rτi′j − rτi′j′)+.

Let Q̂ be the optimal decision in period t for the state (x,y +ej). With the decision Q̂ in period

t, the arrival of type ` supply in period t+ 1 is St+1,0
` +

∑q̂·`
k=1X

`
k, for any `= 1, . . . , n. We let (u,v)

denote the post-matching levels for using the decision Q̂ in period t.

If there exists some i′ such that q̂i′j > 0, the decision Q̂− em×ni′j + em×ni′j′ is feasible for the state

(x,y + ej′). With the decision Q̂− em×ni′j + em×ni′j′ , the new arrival of type j supply in period t+ 1

is St+1,0
j +

∑q̂·j−1

k=1 Xj
k, the new arrival of type j′ supply in period t+ 1 is St+1,0

j′ +
∑q̂·j′+1

k=1 Xj′

k , and

the arrival of type ` supply in period t+ 1 is St+1,0
` +

∑q̂·`
k=1X

`
k for ` 6= j, j′. It is easy to see that

the post-matching levels remain (u,v).

Let us denote S̃t+1
` := St+1,0

` +
∑q̂·`

k=1X
`
k for ` 6= j, and S̃t+1

j := St+1,0
j +

∑q̂·j−1

k=1 Xj
k. We have

Vt(x,y + ej′)≥Ht(Q̂− em×ni′j + em×ni′j′ ,x,y + ej′)
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=− rti′j + rti′j′ + Rt ◦ Q̂ + γEVt+1(αu + Dt+1,v + S̃t+1 +Xj′

q̂·j′+1ej′),

and

Vt(x,y + ej) =Ht(Q̂,x,y + ej) =Rt ◦ Q̂ + γEVt+1(αu + Dt+1,v + S̃t+1 +Xj
q̂·j

ej),

Thus,

Vt(x,y + ej′)−Vt(x,y + ej)

≥Ht(Q̂− em×ni′j + em×ni′j′ ,x,y + ej′)−Ht(Q̂,x,y + ej)

=− rti′j + rti′j′ + γEVt+1(αu + Dt+1,v + S̃t+1 +Xj′

q̂·j′+1ej′)− γEVt+1(αu + Dt+1,v + S̃t+1 +Xj
q̂·j

ej)

=− rti′j + rti′j′ + γ
î
EVt+1(αu + Dt+1,v + S̃t+1 + ej′)−EVt+1(αu + Dt+1,v + S̃t+1 + ej)

ó
p1

≥−∆t
j,j′ − γp1∆t+1

j,j′

T∑
τ=t+1

(γp1)τ−t−1

=−∆t
j,j′

T∑
τ=t

(γp1)τ−t,

where the second inequality holds because −rti′j+rti′j′ ≥−maxτ=1,...,T,i′=1,...,m(rτi′j−rτi′j′)+ =−∆t
j,j′ ,

and also because of the induction hypothesis.

If q̂i′j = 0 for all i′ = 1, . . . ,m, the decision Q̂ is feasible for the state (x,y + ej′). The post

matching levels for using Q̂ in period t under the state (x,y+ej′) are (u,v−ej +ej′). The arrivals

of supply in period t+ 1 is S̃t+1 +Xj
q̂·j

ej. We have,

Vt(x,y + ej′)≥Ht(Q̂,x,y + ej′) =Rt ◦ Q̂ + γEVt+1(αu + Dt+1,v− ej + ej′ + S̃t+1 +Xj
q̂·j

ej).

As shown earlier, we have

Vt(x,y + ej) =Ht(Q̂,x,y + ej) =Rt ◦ Q̂ + γEVt+1(αu + Dt+1,v + S̃t+1 +Xj
q̂·j

ej).

It follows that

Vt(x,y + ej′)−Vt(x,y + ej)

≥γEVt+1(αu + Dt+1,v− ej + ej′ + S̃t+1 +Xj
q̂·j

ej)− γEVt+1(αu + Dt+1,v + S̃t+1 +Xj
q̂·j

ej)

=γEVt+1(αu + Dt+1,v− ej + ej′ + S̃t+1 +Xj
q̂·j

ej)− γEVt+1(αu + Dt+1,v− ej + ej + S̃t+1 +Xj
q̂·j

ej)
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≥− γ∆t+1
j,j′

T∑
τ=t+1

(γp1)τ−t−1 ≥−∆t
j,j′

T∑
τ=t+1

(γp1)τ−t−1 =−∆t
j,j′

T−1∑
τ=t

(γp1)τ−t ≥−∆t
j,j′

T∑
τ=t

(γp1)τ−t,

where the second inequality follows from the induction hypothesis. The induction is completed. �

We can now proceed to prove Lemma C.20.

Proof of Lemma C.20. We first consider the decision Q̃ := Q− em×nij′ . With this decision and

the state (x,y), the post-matching levels in period t are given by ũ = x − 1QT + ei and ṽ =

y−1Q + ej′ . The new state in period t+ 1 (after arrival of demand and supply) is (x̃t+1, ỹt+1) :=

(αũ + Dt+1, βṽ + S̃t+1), where S̃t+1 := (S̃t+1
1 , . . . , S̃t+1

n ), S̃t+1
` = St+1,0

` +
∑q·`

k=1X
`
k for ` 6= j′ and

S̃t+1
j′ = St+1,0

j′ +
∑q·j′−1

k=1 Xj′

k .

If we use the matching decision Q in period t for the state (x,y), the arrival of type j′ supply

in period t+ 1 is St+1,0
j′ +

∑q·j′
k=1X

j′

k = S̃t+1
j′ +Xj′

q·j′
, and the arrival of any other type ` is equal to

S̃t+1
` . The post-matching levels in period t are given by ũ− ei and ṽ− ej′ .

Similarly, if we use the matching decision Q− em×nij′ + em×nij in period t for the state (x,y), the

arrival of type j supply in period t+ 1 is St+1,0
j +

∑q·j+1

k=1 Xj
k = S̃t+1

j +Xj
q·j+1, and the new arrival

of any other type ` is equal to S̃t+1
` . The post-matching levels in period t are given by ũ− ei and

ṽ− ej.

The expected total discounted reward achievable by the matching decision Q in period t is:

Ht(Q,x,y)

=Rt ◦Q + γEVt+1(αũ−αei + Dt+1, ṽ− ej′ + S̃t+1 +Xj′

q·j′
ej′)

=Rt ◦Q + γEVt+1(αũ−αei + Dt+1, ṽ− ej′ + S̃t+1)p0 + γEVt+1(αũ−αei + Dt+1, ṽ + S̃t+1)p1

and the expected total discounted reward achievable by Q + em×nij − em×nij′ in period t is:

Ht(Q + em×nij − em×nij′ ,x,y)

=rtij − rtij′ + Rt ◦Q + γEVt+1(αũ−αei + Dt+1, ṽ + S̃t+1− ej +Xj
q·j+1ej)

=rtij − rtij′ + Rt ◦Q + γEVt+1(αũ−αei + Dt+1, ṽ + S̃t+1− ej)p0 + γEVt+1(αũ−αei + Dt+1, ṽ + S̃t+1)p1.

Then,

Ht(Q + em×nij − em×nij′ ,x,y)−Ht(Q,x,y)

=rtij − rtij′
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+ γ
î
EVt+1(αũ−αei + Dt+1, ṽ + S̃t+1− ej)−EVt+1(αũ−αei + Dt+1, ṽ− ej′ + S̃t+1)

ó
p0

=rtij − rtij′

+ γp0

î
EVt+1(αũ−αei + Dt+1, ṽ + S̃t+1− ej′ − ej + ej′)−EVt+1(αũ−αei + Dt+1, ṽ− ej − ej′ + S̃t+1 + ej)

ó
≥rtij − rtij′ − max

τ=t+1,...,T,i′=1,...,m
(rτi′j − rτi′j′)+γp0

T∑
τ=t+1

(γp1)τ−t−1

≥rtij − rtij′ − max
τ=t+1,...,T,i′=1,...,m

(rτi′j − rτi′j′)+ γp0

1− γp1

≥rtij − rtij′ − max
τ=t+1,...,T,i′=1,...,m

(rτi′j − rτi′j′)+,

where the first inequality follows from Lemma C.21, and the last inequality holds because 1−γp1 ≥

γp0. By the definition of the modified Monge condition, we have Ht(Q + em×nij − em×nij′ ,x,y) ≥

Ht(Q,x,y). �

With Lemma C.20, many of our results in the paper remain true in the current model setting.

Specifically, Theorems 1 and 2 remain true (the proofs are identical to those for the baseline model,

except that we need to use Lemma C.20 in place of Lemma E.23). Theorem 3 also holds (the proof

is similar to the original proof). Consequently, we still have the same structure for the optimal

policies in the horizontal model (Proposition 3) and the vertical model (Proposition 4).

C.4. Non-additive reward structure for the vertical model

We consider an extension to the vertical model allow for non-additive reward structure for the

vertical model. With the following assumption, all propositions in Section 5 remain true, and the

1-step-lookahead heuristic can be implemented similarly.

Assumption 5. For t= 1, . . . , T ,

(i) The unit matching reward rtij is decreasing in i and j;

(ii) For i = 1, . . . ,m − 1 and j = 1, . . . , n − 1, rtij − rti+1,j ≥ γαmaxj′′=1,...,m(rt+1
ij′′ − r

t+1
i+1,j′′) and

rtij − rti,j+1 ≥ γβmaxi′′=1,...,m(rt+1
i′′j − r

t+1
i′′,j+1);

(iii) rtij is supermodular with respect to i and j, i.e., rtij−rti,j+1 ≥ rti+1,j−rti+1,j+1 for i= 1, . . . ,m−1

and j = 1, . . . , n− 1.

Part (i) of Assumption 5 innocuously assumes that a demand/supply type with a smaller index

has a higher quality level. (ii) requires that the difference in rewards between a high quality demand

(supply) type and a low quality demand (supply) type is decreasing over time, regardless of the

supply (demand) type they match with. (iii) requires the complementary effect between demand

quality and supply quality.
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We illustrate the assumption by considering the additive/multiplicative hybrid reward structure

rtij = η(rtid + rtis) + rtidr
t
js, where η≥ 0, rtid decreases in i, and rtjs decreases in j. One can verify that

Assumption 5 is satisfied if and only if:

min
1≤i,i′≤m

η+ rtid
η+ rti′d

≥
γβ(rt+1

js − rt+1
j+1,s)

rtjs− rtj+1,s

and min
1≤j,j′≤n

η+ rtjs
η+ rtj′s

≥
γα(rt+1

id − rt+1
i+1,d)

rtid− rti+1,d

,

which holds if Assumption 3 (for the additive-reward model) is satisfied and η is sufficiently large

(i.e., the additive component of the reward is sufficiently significant, compared with the multiplica-

tive component).

D. Approximation of the expected total discounted reward under the

greedy matching policy by Monte Carlo Simulation

For both the match-down-to heuristic for the horizontal model (see Section 4.2) and the 1-step-

lookahead heuristic for the vertical model (see Section 5.2), we need to evaluate the expected

discounted reward EV g
t+1(αu + Dt+1, βv + St+1) from period t onward by Monte Carlo simulation.

In this online supplement, we briefly explain the implementation.

Let us draw N sample paths of demand realizations from period t to the end of the hori-

zon, according to their probability distributions. Let us denote the kth sample path by ωk =

(dt+1
k , st+1

k ;dt+2
k , st+2

k ; . . . ;dTk , s
T
k ), for k = 1, . . . ,N . For each sample path ωk, we have the start-

ing state (xt+1
k ,yt+1

k ) := (αu + dt+1
k , βv + st+1

k ) in period t+ 1, and apply greedy matching along

the sample path ωk in all subsequent periods to obtain the total discounted matching reward,

which we denote by TRt+1(xk,yk, ωk). Then, we approximate EV g
t+1(αu + Dt+1, βv + St+1) by

EV g
t+1(αu + Dt+1, βv + St+1)≈

∑N

k=1 TR(xk,yk, ωk)/N .

For the match-down-to heuristic for the horizontal model, to determine the protection level

for matching the pair (i, j) we need to evaluate the expected values EV g
t+1(α[(x̆i − y̆j)+ + p]emi +

Dt+1,St+1) and EV g
t+1(Dt+1, β[(x̆i− y̆j)−+p]enj +St+1) in (2), for given x̆i and y̆ (i.e., the available

demand and supply immediately before we match the pair (i, j)) and protection level p. We can

apply Monte Carlo simulation with (u,v) = ([(x̆i− y̆j)+ + p]emi ,0
n) and (u,v) = (0m, [(x̆i− y̆j)−+

p]enj ) to evaluate the two expected values.

For the 1-step-lookahead heuristic for the vertical model, we need to evaluate the expectation

EV g
t+1(α(IB+p)emi +Dt+1, βpenj +St+1) in (4) for the given total demand and supply imbalance IB

and the protection level p. To that end, we can apply Monte Carlo simulation with u = (IB+p)emi

and v = penj .
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E. Proofs

Proof of Theorems 1 and 2. We prove Theorems 1 and 2 simultaneously. To that end, we first

present and prove two lemmas (Lemmas E.22 and E.23 as follows).

Lemma E.22. The following statements hold for all periods.

(i) For any xi > 0 and any ε ∈ [0, xi], there exists (λτ1 , . . . , λ
τ
m) ≥ 0 for τ = t, . . . , T , such that∑T

τ=tα
−(τ−t)∑m

j′=1 λ
τ
j′ ≤ ε and Vt(x− εemi + εemi′ ,y)− Vt(x,y)≥−

∑T

τ=t γ
τ−t∑m

j′=1 λ
τ
j′(r

τ
ij′ −

rτi′j′).

(ii) For any yj > 0 and any ε ∈ [0, yj], there exists (ξτ1 , . . . , ξ
τ
n) ≥ 0 for τ = t, . . . , T , such that∑T

τ=t β
−(τ−t)∑n

i′=1 ξ
τ
i′ ≤ ε and Vt(x,y − εenj + εenj′) − Vt(x,y) ≥ −

∑T

τ=t γ
τ−t∑n

i′=1 ξ
τ
i′(r

τ
i′j −

rτi′j′).

Proof of Lemma E.22. We only need to prove part (i), and the proof of part (ii) follows by

symmetry. We prove part (i) by induction. The result holds for t= T + 1. Because VT+1(x,y)≡ 0,

we can simply set λTj to zero. Suppose that it holds for period t+ 1.

Now consider period t. Let Q̂ ∈ arg maxQHt(Q,x,y) be an optimal decision in period t under

the state (x,y) in period t. We will construct a decision Q̄ that is feasible under the state (x−

εemi + εemi′ ,y).

Under the latter state (x− εemi + εemi′ ,y), the capacity of i is reduced by ε compared with the

original state (x,y). We need to adjust the matching decision Q̂ accordingly to make it feasible

for that state. In particular, we reduce the matching quantity q̂ij by µj for j = 1, . . . , n, where the

nonnegative numbers µ1, . . . , µn are defined as follows.

µj =min{q̂ij, (ε−
j−1∑
j′=1

q̂ij′)
+}, for j = 1, . . . , n.

If
∑k−1

j′=1 q̂ij′ < ε≤
∑k

j′=1 q̂ij′ for some 1≤ k≤ n, then one can verify that µj = q̂ij for j = 1, . . . , k−1,

µk = ε−
∑k

j′=1 q̂ij′ and µj = 0 for j = k+ 1, . . . , n. In this case,
∑n

j=1 µj = ε, and thus
∑n

j=1(q̂ij −

µj) =
∑n

j=1 q̂ij −
∑n

j=1 µj =
∑n

j=1 q̂ij − ε≤ xi− ε.

If ε >
∑n

j′=1 q̂ij′ , then µj = q̂ij for all j = 1, . . . , n. Therefore, in this case we reduce all the

matching quantities q̂ij, j = 1, . . . , n to zero. We then have
∑n

j=1(q̂ij −µj) = 0≤ xi− ε.

On the other hand, under the state (x − εemi + εemi′ ,y), the capacity of i′ is increased by ε

compared with the state (x,y). This allows us to increase the matching quantity q̂i′j by µj for all

j = 1, . . . , n.

We define
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Q̄ = Q̂−
n∑
j=1

µje
m×n
ij +

n∑
j=1

µje
m×n
i′j ,

which is feasible for the state (x− εemi + εemi′ ,y). To see this, we have

1mQ̄ =1mQ̂−
n∑
j=1

µj1
mem×nij +

n∑
j=1

µj1
mem×ni′j = 1mQ̂−

n∑
j=1

µje
n
j +

n∑
j=1

µje
n
j = 1mQ̂≤ y,

and Q̄(1n)T =Q̂(1n)T−
n∑
j=1

µje
m×n
ij (1n)T +

n∑
j=1

µje
m×n
i′j (1n)T = Q̂(1n)T−

n∑
j=1

µj(e
m
i )T +

n∑
j=1

µj(e
m
i′ )

T.

It follows that
(
Q̄(1n)T

)
i

=
∑n

j=1 q̂ij −
∑n

j=1 µj ≤ xi − ε,
(
Q̄(1n)T

)
i′

=
∑n

j=1 q̂i′j +
∑n

j=1 µj ≤∑n

j=1 q̂i′j + ε≤ xi′ + ε and
(
Q̄(1n)T

)
i′′

=
∑n

j=1 q̂i′′j ≤ xi′′ for all i′′ 6= i, i′. Thus, Q̄(1n)T ≤ (x− εemi +

εemi′ )
T.

Therefore, Q̄ is a feasible decision for the state (x− εemi + εemi′ ,y). Under the decision x̄, the

total reward received in period t is

Rt ◦ Q̄ = Rt ◦ (Q̂−
n∑
j=1

µje
m×n
ij +

n∑
j=1

µje
m×n
i′j ) = Rt ◦ Q̂−

n∑
j=1

µjr
t
ij +

n∑
j=1

µjr
t
i′j.

The post-matching levels in period t are

ū =x− εemi + εemi′ −1nQ̄T = x− εemi + εemi′ −1nQ̂T +
n∑
j=1

µje
m
i −

n∑
j=1

µje
m
i′

= û− (ε−
n∑
j=1

µj)e
m
i + (ε−

n∑
j=1

µj)e
m
i′ ,

v̄ =y−1mQ̄ = y−1mQ̂ = v̂.

Consequently,

Vt(x− εemi + εemi′ ,y)−Vt(x,y)

≥Ht(Q̄,x− εemi + εemi′ ,y)−Ht(Q̂,x,y)

=−
n∑
j=1

µj(r
t
ij − rti′j)

+ γEVt+1(αû−α(ε−
n∑
j=1

µj)e
m
i +α(ε−

n∑
j=1

µj)e
m
i′ + Dt+1, βv̂ + St+1)− γEVt+1(αû + Dt+1, βv̂ + St+1).

By the induction hypothesis, for each realization of Dt+1 and St+1, there exists (Λτ
1 , . . . ,Λ

τ
n) for

τ = t+ 1, . . . , T such that
∑T

τ=t+1α
−(τ−t−1)

∑n

j=1 Λτ
j ≤ α(ε−

∑n

j=1 µj) and
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Vt+1(αû−α(ε−
n∑
j=1

µj)e
m
i +α(ε−

n∑
j=1

µj)e
m
i′ + Dt+1, βv̂ + St+1)−Vt+1(αû + Dt+1, βv̂ + St+1)

≥−
T∑

τ=t+1

γτ−(t+1)

n∑
j=1

Λτ
j (r

τ
ij − rτi′j).

Note that Λτ
j is a random variable due to its possible dependency on the random vectors Dt+1

and St+1. It then follows that

Vt(x− εemi + εemi′ ,y)−Vt(x,y)≥−
n∑
j=1

µj(r
t
ij − rti′j)− γ

T∑
τ=t+1

γτ−(t+1)

n∑
j=1

EΛτ
j · (rτij − rτi′j).

Since
∑T

τ=t+1α
−(τ−t−1)

∑n

j=1 Λτ
j ≤ α(ε−

∑n

j=1 µj), we have
∑n

j=1 µj +
∑T

τ=t+1α
−(τ−t)∑n

j=1 Λτ
j ≤

ε. Let λtj = µj for all j = 1, . . . , n, and λτj =EΛτ
j for all j = 1, . . . , n and τ = t+ 1, . . . , T . The proof

is completed. �

Lemma E.23. (i) Suppose that (i, j) weakly precedes (i′, j) by Definition 2. Then, transferring

matching quantity from (i′, j) to (i, j) weakly improves the total expected reward, i.e., Ht(Q +

εem×nij − εem×ni′j ,x,y) ≥ Ht(Q,x,y), if Q + εem×nij − εem×ni′j is a feasible decision under the state

(x,y).

(ii) Similarly, if (i, j) precedes (i, j′), then Ht(Q + εem×nij − εem×nij′ ,x,y)≥Ht(Q,x,y).

Proof of Lemma E.23. We prove part (i) only since part (ii) can be proved analogously. The

post-matching levels for using Q + εem×nij − εem×nij′ are

ū =x−1n(Q + εem×nij − εem×ni′j )T = x−1nQ− εemi + εemi′ = u− εemi + εemi′ ,

v̄ =y−1m(Q + εem×nij − εem×ni′j ) = y−1mQ = v,

where (u,v) are the post-matching levels by using the decision Q in period t. Then,

Ht(Q + εem×nij − εem×nij′ ,x,y)−Ht(Q,x,y)

=ε(rtij − rtij′) + γEVt+1(αū + Dt+1, βv̄ + St+1)− γEVt+1(αu + Dt+1, βv + St+1). (E.1)

By Lemma E.22, there exists (Λτ
1 , . . . ,Λ

τ
n) such that

∑T

τ=t+1α
−(τ−t−1)

∑n

j′=1 Λτ
j′ ≤ αε and

Vt+1(αū + Dt+1, βv̄ + St+1)−Vt+1(αu + Dt+1, βv + St+1)≥−
T∑

τ=t+1

γτ−(t+1)

n∑
j′=1

Λτ
j′(r

τ
ij′ − rτi′j′).

Note that Λτ
j is a random variable since it may depend on Dt+1 and St+1.
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Since (i, j) weakly precedes (i′, j), it is easy to see from Definition 2 that rτij′ − rτi′j′ ≤

γ−(τ−t)α−(τ−t)(rtij − rti′j) for all j′ ∈ S and τ = t+ 1, . . . , T . Thus,

Vt+1(αū + Dt+1, βv̄ + St+1)−Vt+1(αu + Dt+1, βv + St+1)

≥−
T∑

τ=t+1

γτ−(t+1)

n∑
j′=1

Λτ
j′(r

τ
ij′ − rτi′j′)

≥− (rtij′ − rti′j′)
T∑

τ=t+1

γτ−(t+1)γ−(τ−t)α−(τ−t)
n∑

j′=1

Λτ
j′

=− (γα)−1(rtij′ − rti′j′)
T∑

τ=t+1

α−(τ−t−1)

n∑
j′=1

Λτ
j′

≥(γα)−1(rtij − rti′j)×αε

=− γ−1(rtij − rti′j)ε. (E.2)

Combining (E.1) and (E.2), we have Ht(Q + εem×nij − εem×nij′ ,x,y)≥Ht(Q,x,y). �

Proof of Theorems 1 and 2. We now prove Theorems 1 and 2.

Let Q(k) be a feasible decision in period t under the state (x,y), and (u(k),v(k)) be the corre-

sponding post-matching levels.

For a pair (i, j), we consider two kinds of transfers of matching quantities from other pairs to

(i, j), described as follows.

The first kind of transfers transfer matching quantities from a weakly preceded pair to the

corresponding preceding pair. Suppose that u
(k)
i > 0. For another pair (i′, j) such that it is weakly

preceded by (i, j) and q
(k)

i′j > 0, we construct the feasible matching decision Q(k+1) := Q(k) +δ(k)eij−

δ(k)ei′j, where δ(k) := min
¶
u

(k)
i , q

(k)

i′j

©
. By Lemma E.23, Q(k+1) weakly outperforms Q(k). Likewise, if

v
(k)
j > 0 and there exists another pair (i, j′) weakly preceded by (i, j) such that q

(k)

ij′ > 0, we construct

the feasible matching decision Q(k+1) := Q(k) +δ(k)eij−δ(k)eij′ , where δ(k) := min
¶
v

(k)
j , q

(k)

ij′

©
. Again

by Lemma E.23, Q(k+1) weakly outperforms Q(k).

The second kind of transfers work as follows. Suppose that there exists two pairs (i′, j) and (i, j′)

such that rtij + rti′j′ ≥ rti′j + rtij′ , q
(k)

ij′ > 0 and q
(k)

i′j > 0. Then, we construct the new feasible matching

decision Q(k+1) := Q(k) + δ(k)em×nij − δ(k)em×ni′j − δ(k)em×nij′ , where δ(k) := min
¶
q

(k)

i′j , q
(k)

ij′

©
. It is easy

to see that Q(k+1) weakly outperforms Q(k), since it leads to a weakly higher matching reward in

period t (because rtij + rti′j′ ≥ rti′j + rtij′) than but the same post-matching levels as Q(k).

We consider the procedure that repeatedly performs the first kind of transfers as long as possible

for the proof of Theorem 1, and consider the procedure repeatedly apply any of the two kinds of

transfers that is still possible for the proof of Theorem 2.
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We define a pair (i, j) as a level 1 pair if it is not weakly preceded by any other pair; inductively,

we define level ` pairs as those pairs weakly preceded only by level `−1 pairs, for `≥ 2. Since there

are finitely many pairs, the total number of levels is a finite number, which we denote by L.

We can observe that for either kind of transfers, the weakly preceded pair(s) loses matching

quantity. Thus, level 1 pairs never loses matching quantity. Since the matching quantity between

any pair (i, j) cannot exceed min{xi, yj}, either the procedure stops transferring matching quantity

to level 1 pairs at some time point, or it never stops transfer quantities to level 1 pairs but the

quantities transferred converges to zero. In either case, the quantities received by level 1 pairs

converge to zero. A level 2 pair may lose matching quantity only when we transfer a quantity

to level 1 pairs, and the quantity it loses is equal to the quantity received by the level 1 pair.

This implies that the quantities that level 2 pairs lose converge to zero. As a result, the quantities

received by level 2 pairs should also be equal to zero, since otherwise the matching quantities for

some level 2 pair will grow to infinity.

As the induction hypothesis, let us assume that the matching quantities received by level ` pairs

converges to zero for ` = 1, . . . , κ. A level κ+ 1 pair may lose matching quantity only when the

procedure transfers a matching quantity to some level ` pair (`≤ κ), and the quantity it loses is

equal to that received by the level ` pair. Thus, by the induction hypothesis, the quantities lost by

level κ+1 pairs converges to zero. It follows that the quantities received by level κ+1 pairs should

also converge to zero, since otherwise the matching quantity for some level κ+ 1 pair will grow to

infinity. Therefore, by induction we have shown that the matching quantity transferred converges

to zero, i.e., limk→∞ δ
(k) = 0.

Let Q(∞) be a limiting point of the series
{
Q(k)

}
k=1,2,...

. Since all Q(k)’s are feasible matching

decisions, Q(∞) is also feasible. Clearly, Q(∞) weakly outperforms any Q(k). We let (u(∞),v∞) be

the post-matching levels corresponding to Q(∞). it is easy to see that (u(∞),v∞) is a limiting point

of the series (u(k),v(k)).

For the first kind of transfers, we have δ(k) = min
¶
u

(k)
i , q

(k)

i′j

©
for the type i′ such that (i, j)

weakly precedes (i′, j), or δ(k) = min
¶
v

(k)
j , q

(k)

ij′

©
for the type j′ such that (i, j) weakly precedes

(i, j′). The fact limk→∞ δ
(k) = 0 implies that min

¶
u

(∞)
i , q

(∞)

i′j

©
= 0 and min

¶
v

(∞)
j , q

(∞)

ij′

©
= 0 for the

corresponding pairs (i′, j) and (i, j′).

For the second kind of transfers, we have δ(k) = min
¶
q

(k)

i′j , q
(k)

ij′

©
for the types i′ and j′ such that

(i, j) weakly precedes both (i′, j) and (i, j′) and rtij + rti′j′ ≥ rti′j + rtij′ . The fact limk→∞ δ
(k) = 0

implies that min
¶
q

(∞)

i′j , q
(∞)

ij′

©
= 0.
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From the above arguments, we see that Q(∞) satisfies the properties in Theorems 1 and/or

2. Therefore, we have shown that given any feasible matching decision Q(1) in period t, we can

construct another feasible decision that weakly outperforms Q(∞). The above analysis can be

applied to any state in any period. This implies that there exists an optimal matching decision

that satisfies the desired properties in the two theorems. �

Proof of Special Case 2 We show that the highest-(priority)-level pair always weakly precedes

all remaining pairs throughout the procedure of removing demand/supply types. If that is true,

we either match the highest-level pair to the maximum (and move on to the new highest-level pair

after removing the demand/supply type that is exhausted), or stop the matching after partially

matching the highest-level pair.

Suppose that (i, j) is highest-level pair among the remaining pairs, and is of level `. By assump-

tion, (i, j) is the only level ` pair among the remaining pairs. Let (i′, j′) of level `′ > ` be of the

next-highest level among remaining pairs. (If there are multiple remaining pairs of level `′, we can

arbitrarily choose a pair).

Suppose to the contrary that (i′, j′) is not weakly preceded by (i, j). Then, (i′, j′) has a neigh-

boring pair of level `′− 1, say (i′, j′′), whose supply type has been previously removed.

If `′ − 1 > `, then we have removed a lower level pair (i.e., level `′ − 1) before a higher level

pair (i.e., level `). This is impossible since we always remove the demand or supply type of the

highest-level pair.

If `′ − 1 = `, then we had two level ` pairs when we removed j′′ (and thus the pair (i′, j′′)).

This contradicts the assumption that there is always just one pair of the highest level among the

remaining pairs. �

Proof of Theorem 3. We show that greedy matching between i and j is optimal by induction.

It is easy to verify that greedy matching between i and j is optimal in the final period T . Suppose

that it is also optimal in period t+ 1.

Let Q be an optimal decision in period t under the state (x,y), such that it satisfies the properties

in Theorems 1 and 2. Suppose to the contrary that qtij < min{xi, yj}. We first show that under

this assumption, both the post-matching levels uti and vtj corresponding to Q are positive, if (i, j)

weakly precedes all its neighboring pairs. To prove that, let us suppose to the contrary that uti = 0.

Since qij <xi, there is a pair (i, j′) such that qtij′ > 0. Following Theorem 2, we have qti′j = 0 for all

demand type i′ 6= i. As a result, vtj = ytj −
∑m

i′=1 qi′j = ytj − qtij > 0. However, both qtij′ and vtj being

positive contradicts Theorem 1, given that (i, j) weakly precedes (i, j′). Thus, both uti and vtj are

positive.
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Again by Theorem 1, both uti and vtj being positive implies that qtij′ = 0 and qti′j = 0 for all

demand type i′ 6= i and all supply type j′ 6= j. This means that we can increase the matching

quantity between i and j until it equals min{xi, yj} without the need to change the matching

quantity between any other pair. Next, we will show that increasing the matching quantity between

i and j by ε := min{xi, yj} does not hurt the optimality of Q.

Increasing the matching quantity between i and j by ε will increase the matching reward in

period t by rtijε, but decrease both the post-matching levels of i and j by ε. In other words:

Ht(Q + εem×nij ,x,y)−Ht(Q + εem×nij ,x,y)

=rtijε+ γEVt+1(αut−αεemi + Dt+1, βvt−βεenj + St+1)− γEVt+1(αut + Dt+1, βvt + St+1).

Let us consider the case β ≥ α without loss of generality. We have

Vt+1(αut + Dt+1−αεemi , βvt + St+1−βεenj ) =Vt+1(αut + Dt+1 + (β−α)εemi , βvt + St+1)−βεrt+1
ij

≥Vt+1(αut + Dt+1, βvt + St+1)−βεrt+1
ij

where the equality is because of the greedy matching of pair (i, j) for the subsequent periods,

and the inequality holds because Vt+1 is increasing in the state vector (note more demand/supply

always leads to weakly higher reward since the firm has the option of never using the extra

demand/supply). Therefore,

Ht(Q + εem×nij ,x,y)−Ht(Q + εem×nij ,x,y)≥(rtij − γβrt+1
ij )ε≥ 0.

Therefore, we can always weakly improve Qt by increasing the matching quantity qtij until it is

equal to min{xi, yj}. It is easy to see that by doing so, properties in Theorems 1 and 2 remain

satisfied. Thus, we can do the same for all pairs (i, j) that are not greedily matched until we obtain

an optimal solution that satisfies the theorem. �

Proof of Proposition 1. The proof is based on an alternative formulation of the 2×2 horizontal

model in Online Supplement A, and the proof itself is also included in Online Supplement A. �

Proof of Proposition 2. (i) We focus on the case with z1 ≥ 0 and z2 ≥ 0 (or equivalently, x1 ≥ y1

and x2 ≤ y2) to show that pts2(IB) decreases in IB with the rate of decrease less than or equal to 1.

According to Lemma A.4, the function J̃t(q,z) (defined by (A.6) in Lemma A.2) is L\-concave,

the optimal matching quantity qt∗12 is increasing in both z1 and z2, with the rates of increase less

than or equal to 1. By Proposition 1, qt∗12 = [z2− pts2(IB)]+. For a given IB, let us choose z1 and z2
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both sufficiently large such that z1−z2 = IB and z2 > p
t
s2

(IB). Therefore we have qt∗12 = z2−pts2(IB),

or equivalently, pts2(IB) = z2 − qt∗12 = z1 − IB − qt∗12. If we keep z1 fixed and increase IB, z2 will

increase at the same rate as IB decreases. Since qt∗12 increases in z2 at a rate no greater than 1,

−qt∗12 increases in IB at a rate that is no greater than 1. Consequently, pts2(IB) decreases in IB at

a rate no greater than 1.

(ii) Part (ii) of the proposition is proved in Lemma A.5 in Online Appendix A. �

Proof of Lemma 1. Let o and d be the two endpoints of the line segment L, and suppose that

the direction of L from o to d. We first show that (i, j) weakly precedes (i′, j), if j reaches i before

it reaches i′, along the direction.

It is clear that disti←j ≤ disti′←j. By Assumption 3 i), we have rtij =Rt
i−disti←j ≥Rt

i′−disti′←j =

rti′j for all t. To show that (i, j) weakly precedes (i′, j), it remains to verify that rtij−rti′j ≥ γα(rt+1
ij′′ −

rt+1
i′j′′). To that end, we have

rtij − rti′j = (Rt
i −disti←j)− (Rt

i′ −disti′←j) =Rt
i −Rt

i′ + disti′←j −disti←j =Rt
i −Rt

i′ + disti′←i.

Now consider another supply type j′′. We consider the following two possibilities.

If j′′ is located between i and endpoint d, we have rt+1
i←j′′ = 0 since i is not accessible from j′′.

Then, γα(rt+1
ij′′ − r

t+1
i′j′′) =−γαrt+1

i′j′′ ≤ 0≤ rtij − rti′j.

If j′′ is located between endpoint o and i, then

γα(rt+1
ij′′ − r

t+1
i′j′′) =γα[(Rt+1

i −disti←j′′)− (Rt+1
i′ −disti′←j′′)]

=γα(Rt+1
i −Rt+1

i′ ) + γα(disti′←j′′ −disti←j′′).

Since j reaches i before i′ along the direction, it follows for Assumption 3 ii) that Rt
i −Rt

i′ ≥

γα(Rt+1
i −Rt+1

i′ ). We have

γα(rt+1
ij′′ − r

t+1
i′j′′) =γα(Rt+1

i −Rt+1
i′ ) + γα(disti′←j′′ −disti←j′′)

≤Rt
i −Rt

i′ + γα(disti′←j′′ −disti←j′′)

≤Rt
i −Rt

i′ + disti′←j′′ −disti←j′′

=(Rt
i −disti←j′′)− (Rt

i′ −disti′←j′′) = rtij′′ − rti′j.

Therefore (i, j) weakly precedes (i′, j).
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Conversely, if j reaches i′ before i, it is easy to see that rtij < rti′j. In that case, (i, j) does not

weakly precede (i′, j). Thus, (i, j) weakly precedes (i′, j) if and only if j reaches i before i′ along

the direction, provided that both pairs are matchable.

Analogously, we can show that (i, j) weakly precedes (i, j′) if and only if j is closer to i than j′

along the direction.

To show that the strong modified Monge condition is satisfied, let us consider a matchable pair

(i, j) that weakly precedes two other pairs, (i′, j) and (i, j′). We need to show that rtij + rti′j′ ≥

rti′j + rtij′ . It is easy to see that the inequality holds if either (i′, j) or (i, j′) is unmatchable. (For

instance, if (i′, j) is unmatchable, the inequality holds because rtij ≥ rtij′ and rti′j = 0.) Suppose that

both (i′, j) and (i, j′) are matchable. We have disti←j′ + disti′←j = (disti←j + distj←j′) + (disti←j +

disti′←i) = disti←j + (distj←j′ + disti←j + disti′←i) = disti←j + disti′←j′ . It follows that rtij + rti′j′ =

Rt
i −disti←j +Ri′ −disti′←j′ =Rt

i −disti←j′ +Ri′ −disti′←j = rti′j + rtij′ . �

Proof of Proposition 3. The proof follows directly from Lemma 1 and Special Case 1. �

Proof of Corollary 1. The proof follows directly from Theorem 3. �

Proof of Proposition 4. For any demand types i, i′ and any supply types j, j′, we have rtij+r
t
i′j′ =

rtid + rti′d + rtjs + rtj′s = rtij′ + rti′j. Thus, the strong modified Monge condition (i.e., Assumption 1) is

satisfied. Moreover, if we remove any demand and/or supply types from the bipartite graph, in the

remaining graph, the demand type and the supply type of the lowest indices form the only pair of

the highest priority level. Thus, the proposition follows from Special Case 2. �

Proof of Lemma 2. A total matching quantity Q̄ in period t implies that the quantity of

demand fulfilled and that of supply used are both equal to Q̄. Under top-down matching,

demand and supply types with smaller indices are matched first. Therefore, the firm will ful-

fill type 1 demand in period t for the quantity min
{
Q̄, x1

}
. Then, the remaining quantity of

demand to fulfill is Q̄ − min
{
Q̄, x1

}
= (Q̄ − x1)+. The firm will fulfill type 2 demand for the

quantity min
{

(Q̄−x1)+, x2

}
(since demand type 2 is prioritized over all other demand types

except demand type 1). Recursively, the quantity of type i demand to fulfill in period t is

equal to min
¶

(Q̄−
∑i−1

i′=1 xi′)
+, xi
©

. Likewise, the quantity of type j supply to fulfill in period

t is min
¶

(Q̄−
∑j−1

j′=1 yj′)
+, yj
©

. Since the reward for fulfilling a unit of type i demand is rti and

that for fulfilling a unit of type j supply is rtj, the matching reward received in period t is∑m

i=1 r
t
i min

¶
(Q̄−

∑i−1

i′=1 xi′)
+, xi
©

+
∑n

j=1 r
t
j min

¶
(Q̄−

∑j−1

j′=1 yj′)
+, yj
©

. It is easy to see that the
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post matching levels in period t are given by u = (x− Q̄1m) :=
(
(x1− Q̄)+, . . . , (xm− Q̄)+

)
and

v = (y− Q̄1n)+ :=
(
(y1− Q̄)+, . . . , (ym− Q̄)+

)
. Therefore, the maximum expected total discounted

reward attainable by the total matching quantity Q̄ is given by the expression of Gt(Q̄,x,y) given

in (3). And the optimal reward Vt(x,y) can be obtained by maximizing Gt(Q̄,x,y) with respect

to 0≤ Q̄≤min
¶∑m

i=1 xi,
∑n

j=1 yj
©

(note that the total matching quantity cannot exceed the total

available demand or supply).

Next, we show the concavity of Gt(Q̄,x,y) with respect to Q̄.

The expected value function EVt+1(αu + Dt+1, βv + St+1) is concave in (u,v) for both the

continuous-valued (state and decision) model and the discrete-valued model with either α= β = 1

or α = 0, β = 1 (In Lemma B.7 in Online Supplement B, we show that in the latter case it is

L\-concave, which implies concavity.) It follows that Gt(Q,x,y) is concave in Q within the interior

of the ranges x̃i−1 ≤Q< x̃i and ỹj−1 ≤Q< ỹj.

Let x̃i :=
∑i

k=1 xk and ỹj :=
∑j

k=1 yk. Without loss of generality, we assume that x̃i ∈ (ỹj−1, ỹj).

We show that Gt is concave in the neighborhood of a breakpoint a = x̃i. To this end, it suffices

to show that Gt(a + ε,x,y) − Gt(a,x,y) ≤ Gt(a,x,y) − Gt(a − ε,x,y), where 0 < ε < min{x̃i −

ỹj−1, ỹj − x̃i}. On the one hand, we have

Gt(a,x,y)−Gt(a− ε,x,y)

=(rtid + rtjs)ε+ γEVt+1(D[1,i], αx[i+1,n] + D[i+1,n],S[1,j−1], β(ỹj − x̃i) +Sj, βy[j+1,m] + S[j+1,m])

− γEVt+1(D[1,i−1], αε+Di, αx[i+1,n] + D[i+1,n],S[1,j−1], β(ỹj − x̃i) +βε+Sj, βy[j+1,m] + S[j+1,m]).
(E.3)

By Lemma E.22, there exists λτj′ for j′ = 1, . . . ,m and τ = t + 1, . . . , T such that∑T

τ=t+1α
τ−t−1

∑m

j′=1 λ
τ
j′ ≤ αε, and

−EVt+1(D[1,i−1], αε+Di, αx[i+1,n] + D[i+1,n],S[1,j−1], β(ỹj − x̃i) +Sj, βy[j+1,m] + S[j+1,m])

+EVt+1(D[1,i], αxi+1 +Di+1 +αε,αx[i+2,n] + D[i+2,n],S[1,j−1], β(ỹj − x̃i) +βε+Sj, βy[j+1,m] + S[j+1,m])

≥−
T∑

τ=t+1

γτ−t−1

m∑
j′=1

λτj′(r
τ
ij′ − rτi+1,j′). (E.4)

Combining (E.3) and (E.4), we have

Gt(a,x,y)−Gt(a− ε,x,y)

≥(rtid + rtjs)ε− γ
T∑

τ=t+1

γτ−t−1

m∑
j′=1

λτj′(r
τ
ij′ − rτi+1,j′)
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+ γEVt+1(D[1,i], αx[i+1,n] + D[i+1,n],S[1,j−1], β(ỹj − x̃i) +Sj, βy[j+1,m] + S[j+1,m])

− γEVt+1(D[1,i], αxi+1 +Di+1 +αε,αx[i+2,n] + D[i+2,n],S[1,j−1], β(ỹj − x̃i) +βε+Sj, βy[j+1,m] + S[j+1,m])

≥(rtid + rtjs)ε− γ
T∑

τ=t+1

γτ−t−1(γα)−(τ−t)
m∑
j′=1

λτj′(r
t
ij′ − rti+1,j′)

+ γEVt+1(D[1,i], αx[i+1,n] + D[i+1,n],S[1,j−1], β(ỹj − x̃i) +Sj, βy[j+1,m] + S[j+1,m])

− γEVt+1(D[1,i], αxi+1 +Di+1 +αε,αx[i+2,n] + D[i+2,n],S[1,j−1], β(ỹj − x̃i) +βε+Sj, βy[j+1,m] + S[j+1,m])

=(rtid + rtjs)ε−α−1

T∑
τ=t+1

α−(τ−t−1)

m∑
j′=1

λτj′(r
t
id− rti+1,d)

+ γEVt+1(D[1,i], αx[i+1,n] + D[i+1,n],S[1,j−1], β(ỹj − x̃i) +Sj, βy[j+1,m] + S[j+1,m])

− γEVt+1(D[1,i], αxi+1 +Di+1 +αε,αx[i+2,n] + D[i+2,n],S[1,j−1], β(ỹj − x̃i) +βε+Sj, βy[j+1,m] + S[j+1,m])

≥(rtid + rtjs)ε− (rtid− rti+1,d)ε

+ γEVt+1(D[1,i], αx[i+1,n] + D[i+1,n],S[1,j−1], β(ỹj − x̃i) +Sj, βy[j+1,m] + S[j+1,m])

− γEVt+1(D[1,i], αxi+1 +Di+1 +αε,αx[i+2,n] + D[i+2,n],S[1,j−1], β(ỹj − x̃i) +βε+Sj, βy[j+1,m] + S[j+1,m])

=(rti+1,d + rtjs)ε+ γEVt+1(D[1,i], αx[i+1,n] + D[i+1,n],S[1,j−1], β(ỹj − x̃i) +Sj, βy[j+1,m] + S[j+1,m])

− γEVt+1(D[1,i], αxi+1 +Di+1 +αε,αx[i+2,n] + D[i+2,n],S[1,j−1], β(ỹj − x̃i) +βε+Sj, βy[j+1,m] + S[j+1,m]),

where the second inequality holds because rtij′ − rti+1,j′ = rτid − rti+1,d ≥ (γα)τ−t(rτid − rτi+1,d) =

(γα)τ−t(rτij′ − rτi+1,j′) for τ ≥ t+ 1 according to Assumption 4. On the other hand, we have

Gt(a+ ε,x,y)−Gt(a,x,y)

=(rti+1,d + rtjs)ε

+ γEVt+1(D[1,i], αxi+1−αε+Di+1, αx[i+2,n] + D[i+2,n],S[1,j−1], β(ỹj − x̃i)−βε+Sj, βy[j+1,m] + S[j+1,m])

− γEVt+1(D[1,i], αxi+1 +Di+1, αx[i+2,n] + D[i+2,n],S[1,j−1], β(ỹj − x̃i) +Sj, βy[j+1,m] + S[j+1,m]).

By the concavity of Vt+1, we have Gt(a+ ε,x,y)−Gt(a,x,y)≤Gt(a,x,y)−Gt(a− ε,x,y). �

Proof of Proposition 5. We use the alternative formulation (B.14)–(B.15) of the model in

Online Supplement B. We first focus on the case with α= β > 0, and prove the functional properties

in parts i) and ii) for that case.

(i) By Lemma B.7 i) in Online Appendix B, the function G̃t(Q, x̃, ỹ) is L\-concave, a fortiori,

supermodular in (Q, x̃, ỹ). (Note that L\-concavity implies supermodularity.)

By Simchi-Levi et al. (2014, Theorem 2.2.8), the optimal solution to (B.14), denoted by Q̂t(x̃, ỹ),

is increasing in xi and yj, for i = 1, . . . ,m and j = 1, . . . , n. Given the relation x̃i =
∑i

k=1 xi and
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ỹj =
∑j

k=1 yj between the transformed state (x̃, ỹ) and the original state (x,y), we see that both

x̃ and ỹ increase, as xi or yj. Thus, the optimal total matching quantity Q̄t∗(x,y) is increasing in

xi and yj, for i= 1, . . . ,m and j = 1, . . . , n.

Next, we show that the rates of increase do not exceed 1. Let ε be a positive number. By the

definition of L\-concavity, G̃t(Q− ξ, x̃− ξ1m, ỹ − ξ1n) is supermodular in (Q, x̃, ỹ, ξ). Then, for

Q> Q̂t(x̃, ỹ) + ε, we have

G̃t(Q, x̃ + ε1m, ỹ + ε1n)− G̃t(Q̂t(x̃, ỹ) + ε, x̃ + ε1m, ỹ + ε1n)≤ G̃t(Q− ε, x̃, ỹ)− G̃t(Q̂t(x̃, ỹ), x̃, ỹ)≤ 0,

where the first inequality is derived by definition of supermodularity and the second inequality is

due to the optimality of Q̂t. This implies that any matching quantity Q> Q̂t(x̃, ỹ)+ ε is not better

than Q̂t(x̃, ỹ)+ ε for the state (x̃+ ε1m, ỹ+ ε1n). Therefore, Q̂t(x̃+ ε1m, ỹ+ ε1n)≤ Q̂t(x̃, ỹ)+ ε. By

the monotonicity of Q̂t(x̃, ỹ), Q̂t(x̃+ε1m, ỹ)≤ Q̂t(x̃+ε1m, ỹ+ε1n)≤ Q̂t(x̃, ỹ)+ε. For 1≤ i≤m, let

1[i,m] be the m-dimension vector with its first i−1 entries equal to 0, and the remaining entries equal

to 1. We have Q̄t∗(x + εei,y) = Q̂t(x̃ + ε1[i,m],y) ≤ Q̂t(x̃ + ε1m, ỹ) ≤ Q̂t(x̃, ỹ) + ε = Q̄t∗(x,y) + ε.

Therefore, the rate of increase of Q̄t∗(x,y) with respect to xi is less than or equal to 1. Analogously,

we can show that the rate of increase of Q̄t∗(x,y) with respect to yj is less than or equal to 1.

(ii) To show that Q̄t∗(x,y) increases faster with respect to xi than xi+1 (for i = 1, . . . ,m− 1),

we consider two original states (x + εeni ,y) and (x + εeni+1,y). Their transformed states can be

ordered as (x̃ + ε1[i,m], ỹ)≥ (x̃ + ε1[i+1,m], ỹ) (recall that 1[k,m] is the m-dimension vector with the

i-th up to m-th entry being 1 and the rest of the entries being 0). By the monotonicity of Q̂t(x̃, ỹ),

Q̂t(x̃ + ε1[k,m], ỹ)≥ Q̂t(x̃ + ε1[k+1,m], ỹ). This implies that Q̄t∗(x + εei,y)≥ Q̄t∗(x + εemi+1,y). Thus

we have Q̄t∗(x + εei,y) − Q̄t∗(x,y) ≥ Q̄t∗(x + εemi+1,y) − Q̄t∗(x,y), which implies that Q̄t∗(x,y)

increases faster with respect to xi than xi+1. Analogously we can show that Q̄t∗(x,y) increases

faster with respect to yj than yj+1, for j = 1, . . . , n− 1.

It remains to prove i) and ii) for the case with α= 0>β. However, the proof is identical, except

that we use part (ii) of Lemma B.7 in the proof rather than part (i) of that lemma. �

Proof of Proposition 6. To prove that the 1-step-lookahead heuristic follows the top-down

matching structure, It suffices to show that for i < i′ and j < j′, in any period t it does not match

any type i′ demand unless type i demand is fully matched, nor any type j′ supply unless all type

j supply is matched.

For the original state (x,y) and a matching decision Qt =
{
qtij
}
i=1,...,m; j=1,...,n

in period t, let

u = (u1, . . . , um) and v = (v1, . . . , vn) be the corresponding post-matching levels of demand and
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supply, respectively, qti· =
∑m

j′′=1 q
t
ij′′ be the quantity of type i demand fulfilled in period t, and

qt·j =
∑m

i′′=1 q
t
i′′j be the quantity of type j supply fulfilled in period t, for i= 1, . . . ,m and j = 1, . . . , n.

Assume that Qt depletes type i demand but fulfills a positive quantity of type i′ in period t, i.e.,

ui > 0 and qti′· :=
∑m

j′′=1 q
t
i′j′′ > 0. We will modify Qt such that it will follow the top-down matching

structure after the modification, and the expected discounted reward is (weakly) improved.

More specifically, let ε := min{ui, qti′·}. We modify Qt to construct another decision Q̂t ={
q̂tij
}
i=1,...,m; j=1,...,n

by reducing the fulfilled quantity of type i′ demand by ε and the fulfilled quan-

tity of type i demand by the same amount, i.e., q̂ti· = qti· + ε,q̂ti′· = qti′· − ε, and q̂ti′′j′′ = qti′′j′′ for all

i′′ 6= i and all j′′. By doing so, the reward in period t increases by (rtid − rti′d)ε. In the meantime,

the post-matching levels under the decision Q̂t become u− εei + εei′ and v. Thus, the expected

total discounted reward under greedy matching from period t+ 1 to period T changes by

γEV g
t+1(αu + Dt+1−αεei +αεei′ , βv + St+1)− γEV g

t+1(αu + Dt+1, βv + St+1).

In Online Supplement B, we define the transformed state (x̃, ỹ) in a period as x̃ := (x1, x1 +

x2, . . . ,
∑i

k=1 xi, . . . ,
∑m

k=1 xk) and ỹ := (y1, y1 + y2, . . . ,
∑j

k=1 yk, . . . ,
∑n

k=1 yk). We also define

Ṽ g
t (x̃, ỹ) := V g

t (x,y)−x(rtd)
T−y(rts)

T in Online Supplement B. It follows that

γEV g
t+1(αû + Dt+1, βv̂ + St+1)− γEV g

t+1(αu + Dt+1, βv + St+1)

=γEV g
t+1(αu + Dt+1−αεei +αεei′ , βv + St+1)− γEV g

t+1(αu + Dt+1, βv + St+1)

=− γα(rt+1
id − rt+1

i′d )ε+EṼ g
t+1(αũ + D̃t+1−αε1m,[i,i

′−1], βṽ + S̃t+1)− γEṼ g
t+1(αũ + D̃t+1, βṽ + S̃t+1)

≥− γα(rt+1
id − rt+1

i′d )ε,

where ũ := (u1, u1 + u2, . . . ,
∑i

k=1 uk, . . . ,
∑m

k=1 uk) and ṽ := (v1, v1 + v2, . . . ,
∑j

k=1 vk, . . . ,
∑n

k=1 vk)

are the transformed post-matching levels, and the inequality follows from the monotonicity of Ṽ g
t+1

(Lemma B.9).

Thus, by modifying Qt, the change in the expected total discounted reward from period t to

period T is at least [(rtid− rti′d)−γα(rt+1
id − rt+1

i′d )]ε≥ 0. Thus, the modification weakly improves the

expected total discounted reward (assuming greedy matching from period t+ 1 onwards).

On the other hand, the modification either reduces the post-matching level of demand type i to

zero, or reduces the total fulfilled quantity of type i′ demand to zero. (This reduces the violation

of the top-down matching structure.)

If the matching decision in period t depletes type j supply but fulfills a positive quantity of
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type j′ supply for some j < j′, we can implement a similar modification that weakly improves the

expected total discounted reward and reduces violation of the top-down structure.

If the resulting matching decision does not follow the top-down structure yet, we will keep

implementing similar modifications, and will eventually reach a decision that follows the top-down

structure in period t. To show that the 1-step-lookahead heuristic performs weakly better than the

greedy matching policy, we let POSA[1,t],Greedy[t+1,T ] be the policy that applies the 1-step-lookahead

policy up to period t, and uses greedy matching from period t+ 1 to period T .

The two policies, POSA[1,t],Greedy[t+1,T ] and POSA[1,t−1],Greedy[t,T ] coincide with each other in periods

1, . . . , t− 1, and therefore have the same expected rewards in those periods.

For any state in the beginning of period t, the policy POSA[1,t],Greedy[t+1,T ] uses the 1-step-

lookahead policy in that period, which is optimal (for maximizing the total expected reward from

period t to period T ) given that POSA[1,t],Greedy[t+1,T ] will use greedy matching from the next

period on. In contrast, the policy POSA[1,t−1],Greedy[t,T ] uses greedy matching in period t, which is

suboptimal in response to the greedy matching it enforces from period t+ 1 to period T . Con-

sequently, POSA[1,t],Greedy[t+1,T ] leads to a higher total expected reward from period t to period T

than POSA[1,t−1],Greedy[t,T ]. The overall total expected matching reward from period 1 to period T

is higher under POSA[1,t],Greedy[t+1,T ] than under POSA[1,t−1],Greedy[t,T ].

The 1-step-lookahead policy coincides with POSA[1,T−1],Greedy[T,T ], and the greedy matching policy

coincides with POSA[1,0],Greedy[1,T ]. Thus, the former leads to a higher total expected reward.

For a 2-period problem, it is easy to see that greedy matching (in the descending order of unit

rewards) is optimal for period 2. Thus, in period 1, the 1-step-lookahead policy is optimal. �

Proof of Proposition 7. Since the 1-step-lookahead heuristic follows the top-down matching

structure, the corresponding matching decision in period t can be determined by the total matching

quantity Q. In Online Supplement B.1, given the transformed state (x̃, ỹ) in period t, we define

Gg
t (Q, x̃, ỹ) as the expected total discounted reward from period t to period T , if we follow the

top-down matching up to the total quantity Q in period t, and enforce greedy matching there-

after (see (B.17)). We also define G̃g
t (Q, x̃, ỹ) :=−x̃U−1

m (rtd)
T − ỹU−1

n (rts)
T +Gg

t (Q, x̃, ỹ) in Online

Supplement B.1. To determine the total matching quantity in period t for the 1-step-lookahead

heuristic, we solve max0≤Q≤min{x̃m,ỹn} G̃
g
t (Q, x̃, ỹ).

Following the top-down matching structure, type i demand will be matched with type j supply

only after all demand of types 1, . . . , i−1 and all supply of types 1, . . . , j−1 are completely fulfilled

in period t. Thus, matching between type i demand and type j supply is possible only if x̃i−1 < ỹj
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and x̃i > ỹj−1. (If x̃i−1 ≥ ỹj, type j supply is already depleted before we start to fulfill type i

demand; if x̃i ≤ ỹj−1, type i demand is already depleted before we start to fulfill type j supply.)

Suppose that the 1-step-lookahead heuristic does match (i, j) in period t. Then, the matching

of (i, j) starts when the total matching quantity Q reaches max{x̃i−1, ỹj−1} (this is when all types

1, . . . , i−1 demand and all types 1, . . . , j−1 supply are both completely fulfilled), and stops when it

reaches min{x̃i, ỹj} (this is when either types i demand or type j supply is completely exhausted).

To determine the matching quantity between i and j for the 1-step-lookahead heuristic in period

t, we solve the following problem:

max
Q

G̃g
t (Q, x̃, ỹ),

s.t. max{x̃i−1, ỹj−1} ≤Q≤min{x̃i, ỹj} . (E.5)

If Q̂(i,j) is an optimal solution to (E.5), the 1-step-lookahead heuristic should match (i, j) for the

quantity Q̂(i,j)−max{x̃i−1, ỹj−1}. Within the feasible range max{x̃i−1, ỹj−1} ≤Q≤min{x̃i, ỹj}, we

can rewrite the function G̃g
t (Q, x̃, ỹ) given in (B.18) as:

G̃g
t (Q, x̃, ỹ) = γEDt+1(rt+1

d )T + γESt+1(rt+1
s )T

− (x̃[i,m]−Q1m−i+1)(U−1
m )[i,m]×[1,m](rtd− γαrt+1

d )T

− (ỹ[j,n]−Q1n−j+1)(V−1
n )[j,n]×[1,n](rts− γβrt+1

s )T

+ γEṼ g
t+1(D̃t+1

[1,i−1], α(x̃[i,m]−Q1m−i+1) + D̃t+1
[i,m], S̃

t+1
[1,j−1], β(ỹ[j,n]−Q1n−j+1) + S̃t+1

[j,n]). (E.6)

To maximize G̃g
t (Q, x̃, ỹ) within the feasible range, we examine its derivative

∂G̃
g
t (Q,x̃,ỹ)

∂Q
with

respect to Q. (In the case where G̃g
t (Q, x̃, ỹ) is not differentiable with respect to Q, we can con-

sider its maximum subgradient with respect to Q instead; in the case where states, decisions and

demand/supply realizations take integer values only, we can consider the difference instead.)

For ease of notation, we write x̃t+1(Q) :=
Ä
D̃t+1

[1,i−1], α(x̃[i,m]−Q1m−i+1) + D̃t+1
[i,m]

ä
and ỹt+1(Q) :=Ä

S̃t+1
[1,j−1], β(ỹ[j,n]−Q1n−j+1) + S̃t+1

[j,n]

ä
. From (E.6), we have

∂G̃g
t (Q, x̃, ỹ)

∂Q

=rtid− γαrt+1
id + rtjs− γαrt+1

js + γ lim
ε→0

E

ñ
Ṽ g
t+1(x̃t+1(Q+ ε), ỹt+1(Q+ ε))− Ṽ g

t+1(x̃t+1(Q), ỹt+1(Q))

ε

ô
=rtid− γαrt+1

id + rtjs− γαrt+1
js

+ γ lim
ε→0

E

ñ
Ṽ g
t+1(x̃t+1(Q)−αε1[i,m], ỹ

t+1(Q)−βε1[j,n])− Ṽ g
t+1(x̃t+1(Q), ỹt+1(Q))

ε

ô
.
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Under the condition α = β, it follows from Lemma B.13 that the difference

1
ε

î
Ṽ g
t+1(x̃t+1(Q)−αε1[i,m], ỹ

t+1(Q)−βε1[j,n])− Ṽ g
t+1(x̃t+1(Q), ỹt+1(Q))

ó
depends only on the

first i − 1 entries of x̃t+1(Q) (which is equal to D̃t+1
[1,i−1]), the first j − 1 entries of ỹt+1(Q)

(which is equal to S̃t+1
[1,j−1]), the last entry of x̃t+1(Q) (which is equal to α(x̃m − Q) + D̃t+1

m ),

and the last entry of ỹt+1(Q) (which is equal to β(ỹn − Q) + S̃t+1
n ). Let us define x̃t+1,a(Q) :=Ä

D̃t+1
[1,i−1], α(x̃m−Q)1m−i+1 + D̃t+1

[i,m]

ä
and ỹt+1,a(Q) :=

Ä
S̃t+1

[1,j−1], α(ỹn−Q)1[j,n] + S̃t+1
[j,n]

ä
. Since the

first j − 1 entries (resp., first i− 1 entries) and the last entry are equal for x̃t+1(Q) and x̃t+1,a(Q)

(resp., ỹt+1(Q) and ỹt+1,a(Q)), we have

Ṽ g
t+1(x̃t+1(Q)−αε1[i,m], ỹ

t+1(Q)−βε1[j,n])− Ṽ g
t+1(x̃t+1(Q), ỹt+1(Q))

ε

=
Ṽ g
t+1(x̃t+1,a(Q)−αε1[i,m], ỹ

t+1,a(Q)−βε1[j,n])− Ṽ g
t+1(x̃t+1,a(Q), ỹt+1,a(Q))

ε
.

Let us define

G̃g,a
ij,t(Q, x̃m, ỹn) =γEDt+1(rt+1

d )T + γESt+1(rt+1
s )T

− (x̃m−Q)(rtid− γαrt+1
id )− (ỹn−Q)(rtjs− γαrt+1

js ) + γEṼ g
t+1(x̃t+1,a(Q), ỹt+1,a(Q))

=γEDt+1(rt+1
d )T + γESt+1(rt+1

s )T− (x̃m−Q)(rtid− γαrt+1
id )− (ỹn−Q)(rtjs− γαrt+1

js )

+ γEṼ g
t+1(D̃t+1

[1,i−1], α(x̃m−Q)1m−i+1 + D̃t+1
[i,m], S̃

t+1
[1,j−1], β(ỹn−Q)1n−j+1 + S̃t+1

[j,n]).

We can readily verify that G̃g,a
ij,t(Q, x̃m, ỹn) = G̃g

t (Q, x̃
′, ỹ′), where x̃′ = (0i−1, x̃m1m−i+1) and ỹ′ =

(0j−1, ỹn1
n−j+1). Lemma B.11 in Online Supplement B shows that G̃g

t (Q, x̃, ỹ) is concave in Q for

any given (x̃, ỹ), under the condition α= β. It follows that G̃g,a
ij,t(Q, x̃m, ỹn) is concave in Q.

Based on the above analysis, we see that for max{x̃i−1, ỹj−1} ≤Q≤min{x̃i, ỹj},
∂G̃

g,a
ij,t(Q,x̃m,ỹn)

∂Q
=

∂G̃
g
t (Q,x̃,ỹ)

∂Q
. This implies that to maximize G̃g

t (Q, x̃, ỹ) for Q ∈max{x̃i−1, ỹj−1} ≤Q≤min{x̃i, ỹj},

it is equivalent to maximize G̃g,a
ij,t(Q, x̃m, ỹn) with respect to Q within the same range.

Let us denote p := ỹn−Q. Then, x̃m−Q= x̃m− ỹn + p= IB+ p, where IB := x̃m− ỹn. We can

rewrite G̃g,a
ij,t(Q, x̃m, ỹn) as a function of p and IB, which we denote by G̃g,b

ij,t(p, IB), as follows.

G̃g,a
ij,t(Q, x̃m, ỹn)

=G̃g,b
ij,t(p, IB) := γEDt+1(rt+1

d )T + γESt+1(rt+1
s )T− (IB+ p)(rtid− γαrt+1

id )− p(rtjs− γαrt+1
js )

+ γEṼ g
t+1(D̃t+1

[1,i−1], α(IB+ p)1m−i+1 + D̃t+1
[i,m], S̃

t+1
[1,j−1], βp1

n−j+1 + S̃t+1
[j,n]). (E.7)

The variable p represents the post-matching available quantity of supply (of all types) in period
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t. The feasible range max{x̃i−1, ỹj−1} ≤Q≤min{x̃i, ỹj} of Q translates to the feasible range ỹn−

min{x̃i, ỹj} ≤ p≤ ỹn−max{x̃i−1, ỹj−1} of p. To simplify the notation, we denote

ṽn,L := ỹn−min{x̃i, ỹj} , ṽn,U := ỹn−max{x̃i−1, ỹj−1} .

The feasible range of p becomes ṽn,L ≤ p≤ ṽn,U . We note that ṽn,U represents the available supply

quantity (of all types) when the 1-step-lookahead heuristic starts to match (i, j), and ṽn,L represents

the available supply quantity (of all types) when i and j are matched to the maximum extent

(which may or may not happen under the 1-step-lookahead heuristic). We can readily verify that

ṽn,U and ṽn,L are the same as the quantities ṽijn,U and ṽijn,L defined in the paper, respectively, if

x̃i−1 < ỹj and x̃i > ỹj−1 (See the discussions following Proposition 6, and recall that matching

between type i demand and type j supply is possible only if x̃i−1 < ỹj and x̃i > ỹj−1).

Thus, to solve maxmax{x̃i−1,ỹj−1}≤Q≤min{x̃i,ỹj} G̃
g,a
ij,t(Q, x̃m, ỹn), it is equivalent to solve:

max
ṽn,L≤p≤ṽn,U

G̃g,b
ij,t(p, IB). (E.8)

Given the concavity of G̃g,a
ij,t(Q, x̃m, ỹn) with respect to Q, G̃g,b

ij,t(p, IB) is concave in p for p≥ IB− :=

max{0,−IB}. For a given value of IB, we define

ptsij (IB) := inf arg max
p≥IB−

G̃g,b
ij,t(p, IB). (E.9)

By the definition of Ṽ g
t+1 (i.e., Ṽ g

t+1(x̃, ỹ) := V g
t+1(x,y) − x̃U−1

m (rt+1
d )T − ỹU−1

n (rt+1
s )T; see Online

Supplement B.1), we can readily verify that the above equation (E.9) is equivalent to the equa-

tion (4) in the paper. By the concavity of G̃g,b
ij,t(p, IB), the optimal solution to (E.8) is given by

min
¶
ṽn,U , p

t
sij

(IB)∨ ṽn,L
©

(where the bivariate operator ∨ means to take the maximum of the

two inputs). When we start to match (i, j) the available supply quantity (of all types) ṽn,U is

already below ptsij (IB), the optimal solution to (E.8) is equal to ṽn,U . In that case, we will not

match (i, j) (nor any pair (i′, j′) such that i′ ≤ i and j′ ≤ j, according to the top-down structure),

so that the available supply is not further reduced. If the available supply quantity (of all types)

ṽn,U is above ptsij (IB), the 1-step-lookahead heuristic matches (i, j) until the available quantity of

supply is reduced to either ptsij (IB) or ṽn,L, whichever happens first. In the latter situation (i.e., the

total supply reduces to ṽn,L first), we would have matched (i, j) to the maximum extent, whereas

the total available supply is still above ptsij (IB). Therefore, we either matches i with j to reduce
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the total supply to the target level ptsij (IB) or as close to it as possible. This is equivalent to the

matching quantity between i and j given in the proposition. �
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