
Online Appendices to “Dynamic Type Matching”

A. Sketches of Proofs

In this online appendix, we present the sketches of proofs of the theorems, propositions, lemmas and

corollaries, and leave the full-length proofs to the online supplements (available in an unabridged

memo at https://ssrn.com/abstract=2592622).

Sketch of proof of Theorems 1 and 2. For any given state (x,y) in period t, we will construct

an optimal matching decision that satisfies the desired properties for all pairs simultaneously

comparable by the modified Monge condition. To that end, Let Q(0) be a feasible matching decision

in period t under the state (x,y). We will modify the matching decision successively, such that after

each modification, (i) The matching decision remains feasible; (ii) The corresponding expected total

discounted matching reward (until the end of the horizon) improves weakly after each modification.

We now describe the modification procedure. Suppose that we obtain a feasible matching decision

Q(k) after k modifications, with the corresponding post-matching levels given by (u(k),v(k)). We

consider the following two kinds of transfers of matching quantities.

The first kind of transfers move matching quantities from a weakly preceded pair (i′, j) to the

corresponding preceding pair (i, j), if u
(k)
i > 0 and q

(k)

i′j > 0. We construct the feasible matching

decision Q(k+1) := Q(k) + δ(k)eij − δ(k)ei′j, where δ(k) := min
¶
u
(k)
i , q

(k)

i′j

©
. In Lemma E.23 of Online

Supplement E, we show that Q(k+1) weakly outperforms Q(k) with respect to the expected dis-

counted reward. Likewise, if v
(k)
j > 0 and there exists a pair (i, j′) weakly preceded by (i, j) such

that q
(k)

ij′ > 0, we construct Q(k+1) := Q(k) + δ(k)eij − δ(k)eij′ , where δ(k) := min
¶
v
(k)
j , q

(k)

ij′

©
. And

Q(k+1) weakly outperforms Q(k).

The second kind of transfers occur when there exists two pairs (i′, j) and (i, j′) weakly preceded by

(i, j), such that rtij + rti′j′ ≥ rti′j + rtij′ , q
(k)

ij′ > 0 and q
(k)

i′j > 0. We construct the new feasible matching

decision Q(k+1) := Q(k) + δ(k)em×n
ij + δ(k)em×n

i′j′ − δ(k)e
m×n
i′j − δ(k)em×n

ij′ , where δ(k) := min
¶
q
(k)

i′j , q
(k)

ij′

©
.

It is easy to see that Q(k+1) weakly outperforms Q(k), since it leads to a weakly higher matching

reward in period t (because rtij + rti′j′ ≥ rti′j + rtij′) than but the same post-matching levels as Q(k).

It is easy to see that for both kinds of transfers the new matching decision Q(k+1) is feasible. We

let the modification procedure repeatedly apply the first kind of transfers as long as possible for the

proof of Theorem 1, and let it repeatedly apply any of the two kinds of transfers as long as possible

for the proof of Theorem 2. We observe that for either kind of transfers in the procedure, only

the preceded pairs lose matching quantity. In other words, the transfer is “unidirectional”. (For a

rigorous argument, please refer to the proof of Theorems 1 and 2 in Online Supplement E.) Based
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on this observation, we can show that the procedure either stops in finite steps or yields a limit

point. In either case, we reach a matching decision (i.e., the decision after the last modification in

the former case, or the limit point in the latter case) denoted by Q(∞), which is feasible (since all

Q(k)s are feasible). Moreover, Q(∞) satisfies the properties in Theorems 1 and/or 2. This is because

in the former case (i.e., the procedure stops in finite steps), it is impossible to further transfer

quantities; in the latter case, it is almost impossible to do so (the quantity that can be transferred

is increasingly small) for sufficiently large k. (See the detailed argument in Online Supplement E.)

Thus Q(∞) is weakly better than the original decision Q(0) and has the desired properties. �

Sketch of Proof of Theorem 3. We focus on the optimal policy that satisfies the properties in

Theorems 1 and 2, and prove the theorem by induction. The conclusion clearly holds for the last

period. Suppose it is true for period t+ 1. For period t, let us suppose to the contrary that the

optimal policy does not greedily match a perfect pair (i, j). By the properties in Theorem 2, the

post-matching levels ui and vj (for i and j, respectively) are both positive. If we increase the

matching quantity in period t between i and j by the amount ε := min{ui, vj}, the matching reward

in period t will increase by rtijε and also reduce the available type i demand (resp., type j supply)

by αε (resp., βε) in the beginning of period t+ 1. Suppose without loss of generality that α≤ β.

Based on induction hypothesis (i.e., type i demand and type j supply are matched greedily in

period t+ 1), we can show that the reduction in expected reward from period t+ 1 to period T is

at most βεrt+1
ij (for a rigorous argument, please see the proof of Theorem 3 in Online Supplement

E). Therefore, by increasing the matching quantity in period t between i and j by ε, the increase

in expected total discounted reward from period t to period T is at least rtijε− γβrt+1
ij ε≥ 0. Thus,

it does not hurt the optimality if we match i and j greedily in period t (nor does it change the

properties in Theorems 1 and 2). The induction is completed. �

Sketch of Proof of Proposition 1. We focus on matching between the imperfect pair. We also

focus on the model with continuous-valued states and decisions, and leave the discrete-valued

case to the proof of Proposition 2. In Online Supplement A, we define the transformed state

z = (z1, z2) := (x1− y1, y2− x2). The matching quantity between an imperfect pair can be positive

only when z1z1 > 0. We focus on the case with z1 > 0 and z2 > 0 (the case with z1, z2 < 0 is

symmetric). We use the post-matching level ps := z2− q of type 2 supply (instead of the matching

quantity q between type 1 demand and type 2 supply) as the decision variable in period t. Then,

the expected total discounted reward from period t to T is rt12(z2− ps) + γEVt+1(α(ps + z1− z2) +

Dt+1
1 ,Dt+1

2 , St+1
1 , βps +St+1

2 ). Noting that Vt+1 is convex and that ps must be at least (z2− z1)+ =

IB−, the match-down-to threshold on type 2 supply is given by pts2(IB) ∈ arg maxps≥IB−−rt12ps +

γEVt+1(α(ps + IB) +Dt+1
1 ,Dt+1

2 , St+1
1 , βps +St+1

2 ). �
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Sketch of Proof of Proposition 2. In Online Supplement A, we write the expected discounted

reward for matching the imperfect pair by q units under the transformed state z in period t (and

using the optimal policy thereafter) as a function Jt(q,z) of q and z (see its expression in (A.3)).

When α = β, we further define J̃t(q,z) := −rt11z+1 − rt22z+2 + Jt(q,z). In Lemma A.4, we show

that J̃t(q,z) is L\-concave in (q, z), which implies that the optimal matching quantity between

the imperfect pair is increasing in z at a rate less than or equal to 1. One can also use the post-

matching level ps for the supply type (instead of q) to describe the matching problem in period

t. For example, when z1, z2 > 0 (the case with z1, z2 < 0 is symmetric), we can write J̃t(q,z) =

J̌t(ps, IB)− (rt22−rt12 +γαrt+1
11 )z2− (rt11−γαrt+1

11 )z1. Define pts2(IB) := arg maxps≥IB− J̌t(ps, IB) and

we can show that the optimal matching quantity q∗12 = [z2 − pts2(IB)]+ (this proves Proposition

1 for the discrete-valued model with α = β; see Online Supplement A.1 for more details). Since

IB = z1− z2 and q∗12 increases in z (at a rate at most 1), we can show that ps2t (IB) decreases in IB

at a rate no faster than 1 (see the proof of Proposition 2 in Online Supplement E for details).

When α = 0, for z1, z2 > 0 (the case with z1, z2 < 0 is again symmetric), the expected total

reward for matching type 1 demand and type 2 supply until the latter reduces to ps is rt12(z2 −

ps) + γEVt+1(D
t+1
1 ,Dt+1

2 , St+1
1 , βps + St+1

2 ). We can show that EVt+1(D
t+1
1 ,Dt+1

2 , St+1
1 , βps + St+1

2 )

is concave in ps, and thus it is optimal to match down to the state-independent threshold level

p̄ts2 := arg maxps≥0−rt12ps + γEVt+1(D
t+1
1 ,Dt+1

2 , St+1
1 , βps + St+1

2 ) or as much as possible (see the

details in the proof of Lemma A.5 in Online Supplement A.1). This also proves Proposition 1 for

the discrete-valued model with α= 0. �

Sketch of Proof of Lemma 1. To show that (i, j) weakly precedes procedes (i′, j) if and only if

j is closer to i than to i′, along the direction of L, we need to show that the inequality condition in

Definition 2 is satisfied by (i, j) and (i′, j) if and only if j is closer to i than to i′, along the direction

of L. To show that the strong modified Monge condition is satisfied, we need to verify the condition

in Assumption 1. Noting that distl3←l1 = distl3←l2 + distl2←l1 for any three subsequent locations

l1, l2 and l3 along the direction of L, it is relatively straightforward to verify the aforementioned

conditions. We leave the details to the proof of Lemma 1 in Online Supplement E. �

Sketch of Proof of Proposition 3. The proof follows directly from Special Case 1. �

Sketch of Proof of Corollary 1. The proof follows directly from Theorem 3. �

Sketch of Proof of Proposition 4. The proof follows directly from Special Case 2. �

Sketch of Proof of Lemma 2. A total matching quantity Q̄ in period t implies that the quan-

tity of demand fulfilled and that of supply used are both equal to Q̄. Under top-down match-

ing, demand and supply types with smaller indices are matched first. Therefore, after fulfilling
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demand types 1, . . . , i− 1, the remaining quantity to be matched is (Q̄−
∑i−1

i′=1 xi′)
+. Out of this

remaining quantity, the amount min
¶

(Q̄−
∑i−1

i′=1 xi′)
+, xi

©
of type i demand will be matched,

which yields the reward rtid min
¶

(Q̄−
∑i−1

i′=1 xi′)
+, xi

©
. Similarly, the reward from type j supply is

rtjs min
¶

(Q̄−
∑j−1

j′=1 yj′)
+, yj
©

. Noting that the post-matching level for type i demand (resp., type

j supply) is ui = [xi− (Q−
∑i−1

i′=1 xi′)
+]+ (reps. vj = [yj− (Q−

∑j−1
j′=1 yj′)

+]+), we can conclude that

the optimal expected total discounted reward is given by (3).

To show that Gt(Q̄,x,y) is concave in Q̄, we note that EVt+1(αu+Dt+1, βv+St+1) is concave

in (u,v) (it is obvious for the continuous-valued model; for the discrete-valued model, it follows

from the L\-concavity of Vt+1 proved in Lemma B.7 of Online Supplement B). Thus, Gt(Q,x,y) is

concave in Q within the interior of the ranges x̃i−1 ≤Q< x̃i and ỹj−1 ≤Q< ỹj. It remains to show

that Gt(Q,x,y) is concave near any breakpoints. For example, to show that Gt is concave in the

neighborhood of a breakpoint a= x̃i, we prove Gt(a+ ε,x,y)−Gt(a,x,y)≤Gt(a,x,y)−Gt(a−

ε,x,y) for sufficiently small ε > 0. We leave the details of this inequality to the full proof. �

Sketch of Proof of Proposition 5. In Online Supplement B, we define x̃i =
∑i

k=1 xk (i =

1, . . . ,m) and ỹj =
∑j

k=1 yk (j = 1, . . . , n) as the transformed state. In vector form, we have

xUm = x̃ and yUn = ỹ, where Uk is the k × k upper triangular matrix with all the entries on

or above the main diagonal equal to 1. We also define G̃t(Q, x̃, ỹ) :=−x̃U−1m (rtd)
T − ỹU−1n (rts)

T +

Gt(Q, x̃U
−1
m , ỹU−1n ), with Gt defined as in the lemma. To maximize Gt(Q,x,y) with respect to Q,

it is equivalent to maximize G̃t(Q, x̃, ỹ). In Lemma B.7 of Online Supplement B, we show that

G̃t(Q, x̃, ỹ) is L\-concave in (Q, x̃, ỹ) for the two cases (i.e., α= β and α= 0), which implies that

the optimal total matching quantity Q̄∗t is increasing in x̃i and ỹj (for i= 1, . . . ,m, j = 1, . . . , n),

with the rate of increase smaller than or equal to 1. Since x̃i and ỹj are increasing in xi and yj,

respectively, with rate 1, Q̄∗t satisfies the properties in part (i). To prove the properties in part

(ii), we note that increasing xi by ε > 0 will increase x̃i, . . . , x̃m by ε (but will not change the first

i− 1 entries x̃[1,i−1] := (x̃1, . . . , x̃i−1)), and increasing xi+1 by ε will increase x̃i+1, . . . , x̃m by ε (but

will not change x̃[1,i]). Since Q̄∗t increases in x̃, we see that increasing xi leads to a weakly higher

increase in Q̄∗t than increasing xi+1 by the same amount. Likewise, increasing yj leads to a weakly

higher increase in Q̄∗t than increasing yj+1 by the same amount. �

Sketch of Proof of Proposition 6. We first show that the 1-step-lookahead heuristic follows the

top-down matching procedure. To that end, we need to show that the policy does not match any

demand type i′ (resp., supply type j′) unless all type i demand such that i < i′ (resp., all type

j supply such that j′ < j) are fully matched in a period t. Suppose otherwise. Then, without

loss of generality, we assume that there exists i < i′ such that the post-matching level ui > 0
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and the total matched quantity of type i′ demand (denoted by qi′·) in period t is positive. We

will modify the matching decision in period t to comply with top-down matching structure while

weakly improving the expected discounted matching reward (assuming greedy matching from the

next period). To that end, we can redirect a total matched quantity of ε := min{ui, q
t
i′·} of type

i′ demand (with possibly multiple supply types) to type i demand. This increases the reward

in period t by rtidε− rti′dε, and changes the expected future discounted reward by γEV g
t+1(αu +

Dt+1 − αεei + αεei′ , βv + St+1) − γEV g
t+1(αu + Dt+1, βv + St+1). With the help of Lemma B.9

in Online Supplement B.1, we can show that this difference is at least −γα(rt+1
id − rt+1

i′d )ε. Thus,

the modification weakly improves expected discounted reward. By repeatedly performing similar

modifications, we will arrive at a policy that complies with the top-down structure.

Next, we show that the 1-step-lookahead heuristic performs weakly better than the greedy

matching policy. Let POSA[1,t],Greedy[t+1,T ] be the policy that applies the 1-step-lookahead pol-

icy up to period t, and uses greedy matching from period t + 1 to period T . The two policies,

POSA[1,t],Greedy[t+1,T ] and POSA[1,t−1],Greedy[t,T ], coincide with each other in periods 1, . . . , t− 1, and

therefore have the same rewards in those periods. The former achieves a higher expected dis-

counted reward from period t to T than the latter. This is because the latter always performs

greedy matching while the former improves upon greedy matching in period t (to maximize the

expected discounted reward from period t to T ). Noting that the 1-step-lookahead policy coincides

with POSA[1,T−1],Greedy[T,T ] and the greedy matching policy coincides with POSA[1,0],Greedy[1,T ], we can

obtain the desired result. �

Sketch of Proof of Proposition 7. In Online Supplement B.1, given the transformed state (x̃, ỹ)

in period t, we define Gg
t (Q, x̃, ỹ) as the expected total discounted reward from period t to period T ,

if we follow the top-down matching up to the total quantity Q in period t and enforce greedy match-

ing thereafter (see (B.17) in Online Supplement B.1). We also define G̃g
t (Q, x̃, ỹ) :=−x̃U−1m (rtd)

T−

ỹU−1n (rts)
T + Gg

t (Q, x̃, ỹ) in Online Supplement B.1. To determine the total matching quantity

in period t for the 1-step-lookahead heuristic, we solve max0≤Q≤min{x̃m,ỹn} G̃
g
t (Q, x̃, ỹ). Since the

1-step-lookahead policy follows the top-down structure, within the range max{x̃i−1, ỹj−1} ≤Q ≤

min{x̃i, ỹj} it matches type i demand with type j. In the proof of Proposition 7 in Online Supple-

ment E, we show that within this range, there exists a function G̃g,a
ij,t(Q, x̃m, ỹn) (which depends on

x̃ and ỹ only through x̃m and ỹn, respectively) such that
∂G̃

g,a
ij,t(Q,x̃m,ỹn)

∂Q
=

∂G̃
g
t (Q,x̃,ỹ)

∂Q
, and therefore

it is equivalent to maximize G̃g,a
ij,t(Q, x̃m, ỹn) within the same range. We then further substitute

p := ỹn−Q, which represent the total supply level after matching type i demand with type j sup-

ply in period t. We can then rewrite G̃g,a
ij,t(Q, x̃m, ỹn) as a function G̃g,b

ij,t(p, IB) of p and the total
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imbalance IB := x̃m− ỹn in period t. Noting that p cannot go below IB−, subject to availability of

total demand, we define ptsij (IB) := inf arg maxp≥IB− G̃
g,b
ij,t(p, IB). Then, assuming greedy matching

from period t + 1, it is optimal to match type i demand and type j to reduce total supply to

the threshold ptsij (IB) or as much as possible in the range ṽijn,L ≤ p ≤ ṽ
ij
n,U (where ṽijn,U and ṽijn,L

represent the available supply when we start to match (i, j) and when we were to match (i, j) to

the maximum possible extent, respectively). �

B. The top-down matching procedure with protection levels for the
vertical model

We now describe the top-down matching procedure with respect to the protection levels ptsij (IB)

(on the total supply, for all i, j and t), which is optimal (Proposition 7) when α= β.

Algorithm B.3 The top-down matching procedure with the protection levels ptsij (IB) (for i =

1, . . . ,m, j = 1, . . . , n , t= 1, . . . , T ) in period t, given the state (x,y)

1: i← 1, j← 1, total imbalance IB←
∑m

k=1 xk−
∑n

k=1 yk, total matched quantity Q← 0

2: for i= 1, . . . ,m, j = 1, . . . , n do

3: Remaining type i demand, ui← xi, remaining type j supply, vi← yj

4: end for

5: Current available supply (of all types), ṽn,U ←
∑n

k=1 yk

6: while i≤m and j ≤ n do

7: ṽn,L← ṽn,U −min{ui, vj}, where ṽn,L would be the remaining available supply (of all types)

if (i, j) is matched greedily

8: qij←min
{î
ṽn,U − ptsij (IB)

ó+
, ṽn,U − ṽn,L

}
, match i with j for the quantity qij

9: Q←Q+ qij, ui← ui− qij, vj← vj − qij, ṽn,U ← ṽn,U − qij
10: if type i demand runs out then

11: i← i+ 1

12: else if type j supply runs out then

13: j← j+ 1

14: else

15: Break

16: end if

17: end while
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C. List of notation

In Table C.1, we summarize the notation used in the paper.

Table C.1: List of notation

1k (or 1) := The k-dimensional row vector of ones (the superscript k may be omit-
ted if the size of the vector can be inferred from the context)

α, β := Fractions of unmatched demand and unmatched supply in a period
that will carry-over to the next period, respectively

γ := The discount factor
disti←j := The unidirectional distance from the location of supply type j to the

location of type i demand in the horizontal model
Dt

i := The random quantity of type i demand to arrive in period t
Dt := (Dt

1, . . . ,D
t
m)

ek
` (or e`) := The k-dimensional row vector with the `th entry equal to 1 and all

other entries equal to 0 (the superscript k may be omitted if the size
of the vector ca be inferred from the context)

em×n
ij (or eij) := The m × n matrix with the (i, j)th entry equal to 1 and all other

entries equal to 0 (the superscript m×n may be omitted if it can be
inferred from the context)

Gt(Q̄,x,y) := The maximum expected total discounted reward from period t to
period T , by matching up to the total quantity Q̄ following the top-
down matching procedure, given the state (x,y) in the beginning of
period t

Ht(Q,x,y) := The maximum expected total discounted reward for applying the
matching decision Q in period t, under the state (x,y) in the begin-
ning of period t

i := Demand type index
(i, j) := The demand-supply pair consist of demand type i and supply type j
IB := Total imbalance between demand and supply (i.e., total demand

quantity less total supply quantity) in a period
IBij := x̆i − y̆j, the imbalance between type i demand and type j supply

immediately before we match the two types; used in the match-down-
to heuristic for the horizontal model

j := Supply type index
L := The line segment on which demand and supply types are located, in

the horizontal model
m := Number of demand types
n := Number of supply types
ptsj (IB) := Match-down-to threshold level define on type j (j = 1,2) supply in

period t, in the 2× 2 horizontal model
pstij(IB) := Protection level used by the 1-step-lookahead heuristic for matching

i with j in period t
qij := Matching quantity between type i demand and type j supply in a

period
Q := The matrix of matching quantities (qij)i=1,...,m,j=1,...,n

qt∗ij := The optimal matching quantity between type i demand and type j
supply in period t
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Qt∗ := (qt∗ij )i=1,...,m,j=1,...,n, the matrix of optimal matching quantities in
period t

Q̄t∗(x,y) := The optimal total matching quantity in period t, given the state (x,y)
rtij := Unit matching reward for matching type i demand with type j supply

in period t, and rT+1
ij ≡ 0 for all i, j

rtid, r
t
js := The rewards for matching one unit of type i demand and one unit of

type j supply, respectively, in the vertical model
Rt := Rt, the matrix of unit matching rewards in period t
Rt

i := The baseline unit reward for type i demand in the horizontal model
St
j := The random quantity of type j supply to arrive in period t

St := (St
1, . . . , S

t
m)

T := Total number of periods
ui := Post-matching level (available quantity after matching) of type i

demand at the end of a period
Uk := the k×k upper triangular matrix with all the entries on or above the

main diagonal equal to one
u := (u1, . . . , um)
vj := Post-matching level (available quantity after matching) of type j sup-

ply at the end of a period
v := (v1, . . . , vn)
ṽijm,U := The available supply quantity of all types immediately before we

match the pair (i, j) under the top-down matching procedure
ṽijm,L := The remaining supply quantity of all types when we match the pair

(i, j) to the maximum extent the top-down matching procedure
Vt(x,y) := Optimal expected total discounted reward from period t to period T ,

under the state (x,y) in the beginning of period t
V g
t (x,y) := The expected total discounted reward from period t to period T ,

given that the state (x,y) in the beginning of period t and greedy
matching is enforced from period t to period T

xi := Available quantity of type i demand in the beginning of a period
x := (x1, . . . , xm)

x̃i :=
∑i

k=1 xk, for i= 1, . . . ,m
x̃ := (x̃1, . . . , x̃m)
x̆i := The quantity of available type i demand immediately prior to match-

ing type i demand with type j supply, under the match-down-to
heuristic for the horizontal model

yj := Available quantity of type j supply in the beginning of a period
y := (y1, . . . , yn)

ỹj :=
∑j

k=1 yk, for j = 1, . . . , n
ỹ := (ỹ1, . . . , ỹn)
y̆j := The quantity of available type j supply immediately prior to matching

type i demand with type j supply, under the match-down-to heuristic
for the horizontal model

z := (z1, z2) = (x1 − y1, y2 − x2), the transformed state in the 2× 2 hori-
zontal model
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