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Abstract. Problem definition: We consider an intermediary’s problem of dynamically
matching demand and supply of heterogeneous types in a periodic-review fashion.
Specifically, there are two disjoint sets of demand and supply types, and a reward for each
possiblematching of a demand type and a supply type. In each period, demand and supply
of various types arrive in random quantities. The platform decides on the optimalmatching
policy to maximize the expected total discounted rewards, given that unmatched demand
and supply may incur waiting or holding costs, and will be fully or partially carried over
to the next period. Academic/practical relevance: The problem is crucial to many
intermediaries who manage matchings centrally in a sharing economy. Methodology: We
formulate the problem as a dynamic program. We explore the structural properties of the
optimal policy and propose heuristic policies. Results:We provide sufficient conditions on
matching rewards such that the optimal matching policy follows a priority hierarchy
among possible matching pairs. We show that those conditions are satisfied by vertically
and unidirectionally horizontally differentiated types, for which quality and distance
determine priority, respectively.Managerial implications: The priority property simplifies
the matching decision within a period, and the trade-off reduces to a choice between
matching in the current period and that in the future. Then the optimal matching policy
has a match-down-to structure when considering a specific pair of demand and supply
types in the priority hierarchy.
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1. Introduction
We consider a firm that manages the matching of
demand and supply in a centralized manner. In each
period, demand and supply of various types arrive
in random quantities. Each type represents a distinct
set of characteristics of demand or supply, and the
matching between demand and supply generates
type- and time-dependent rewards. The firm deter-
mines which types of demand and supply to match,
and to what extent, so as to maximize the total ex-
pected rewards.

This problem is important to many firms and or-
ganizations that make dynamic resource-allocation
decisions with randomly arriving supply. For ex-
ample, it relates to a class of problems where a firm
allocates substitutable types of supply (e.g., goods or
services) to fulfill customer demand. For a more
specific example, let us consider a firm that sells used

goods (e.g., used books, cars, or toys). Items of the
same product could be heterogeneous with respect to
their conditions (which can be considered as het-
erogeneous supply types). Customers differ in the
condition of the item that they prefer or require. In
addition, to satisfy customers with an item in their
requested condition, the firm may also offer an up-
grade (to a superior condition, free, or at a cost) or a
downgrade (with a monetary incentive). A similar
example is the service upgrading problem for a ride-
hailing platform (e.g., Uber, which offers the eco-
nomical service UberX and premium services such
as UberBlack and UberSelect), which uses crowd-
sourced, independent drivers (and thus has random
supply). In this example, a better vehicle can be used
to serve a customer who requested a no-frills service.
Another class of related problems concerns homoge-

neous goods or services supplied by different providers.
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For example, let us consider the transportation of do-
nated food by charities such as food banks. Trucks for
Change, a nonprofit logistics broker, connects Food
Banks Canada to shippers with spare capacity at a dis-
counted price or for free. In this example, the shippers
may differ in their price. Orders to be shipped, on the
other hand,maydiffer in their urgency.Another example
is the assignment of workers to customer requests in
online labormarketplaces,wherebothworkers andhirers
are differentiated on the basis of their ratings. Workers
with higher ratings generate higher rewards for them-
selves (e.g., the online labor market platform Handy
offers the cleaning workers four salary rates based
on their rating) and for the hirer on average (assum-
ing that a higher rating leads to greater hirer satisfaction
on average). Similarly, a hirer with a higher rating may
generate better experiences for the worker on average.

In those examples, the firms or organizations need
to make the matching and allocation decisions dy-
namically, with any unused supply and unmet de-
mand either lost or carried over partially or fully to
the future. Moreover, the examples share the fol-
lowing features.

First, as mentioned, there are heterogeneous types
of demand and supply. Matching each pair of de-
mand type and supply type yields a distinct unit
matching reward, which can be social surplus or
profit. Second, the matching is centrally controlled
by the firm. Lastly, both demand and supply ar-
rive randomly over time and independently of the
matching decisions. For example, in the case of used
goods, supply is uncertain since it is often procured
through donations. Supply for ride-hailing platforms
and online labor marketplaces is random because of
their reliance on crowdsourced drivers or workers. In
the transportation problem for donated food, the
availability of participating shippers’ spare capacity
is random over time.

Tomodel the dynamicmatching problemwith these
features, we will consider a multiperiod stochastic
dynamic programming framework. With heteroge-
neous types of demand and supply arriving randomly
in every period, one needs to track the available
quantity of demand and supply of each type as a
multidimensional state. The optimal decision in each
period is in general state-dependent and extremely
complex. The problem is therefore challenging. The
following provides an overview of the main results
and contributions of the paper.

Our paper establishes the modified and strong
modified Monge conditions. Those conditions define
a partial order over the set of demand-supply pairs
and shed light on the order in which the firm should
match different pairs in each period. For two spe-
cial classes of the problem, we show that the condi-
tions lead to simplified optimal matching policies. In

particular, in the first class of problemswementioned
earlier (e.g., the upgrading and substitution problems
in used-goods inventory management and ride hail-
ing), types are horizontally differentiated, in the sense
that the unit reward is higher if one matches demand
types with supply types that are closer to the cus-
tomers’ preferences or requests, because upgrading
or substitution may incur a cost. In the dynamic ca-
pacity management problem studied by Shumsky
and Zhang (2009) and Yu et al. (2015), products are
horizontally differentiated in a similar way, and our
paper further considers random demand and supply
arrivals. In the second class of problems mentioned
earlier (e.g., the donated-food transportation prob-
lem), the unit reward is higher if we use a lower-cost
supplier, regardless of the demand types served.
A similar example is the vertically differentiated
product line in Keskin and Birge (2019) (the authors
study a dynamic selling mechanism to decide the line
of products to offer in each period). For both classes of
problems, we show that the optimal matching policy
has a match-down-to structure.
Motivated by the insights and properties of the

optimal policy obtained from themodified and strong
modified Monge conditions, we propose heuristic
policies to compute the optimal matching decisions
for the aforementioned two classes of problems. The
heuristics follow the match-down-to structure. When
matching each pair of demand type and supply type,
they determine how much demand and supply to
reserve (for potentially more rewarding matching in
later periods) based on a threshold level dependent on
the imbalance between demand and supply. The
simple structure of the heuristic policies connects
back to the threshold-type policies in inventory
management (e.g., base-stock policies) and quantity-
based revenue management (e.g., admission policies
based on protection levels).

2. Literature Review
The proposed dynamic matching framework can be
viewed as a generalization of two foundations of
operations management, that is, inventory manage-
ment where the firm orders the supply centrally
(Zipkin 2000), and revenue management where the
firm regulates the demand side with a fixed supply
side (Talluri and van Ryzin 2006); and of a combi-
nation of the two, that is, joint pricing and inventory
control (Chen and Simchi-Levi 2012). Our work is
partially motivated by the sharing economy. See, for
example, Benjaafar and Hu (2020) and Bernstein
et al. (2020) for the literature and latest develop-
ment on the sharing economy. Unlike the existing
work in inventory and revenue management, the
supply in the sharing economy is crowdsourced and
hence may have uncertainty.
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Driven by real-life applications, economists, com-
puter scientists, and operations researchers have
studied a variety of two-sided matching problems
(see, e.g., Roth and Sotomayor 1990, Abdulkadiroğlu
and Sönmez 2013 for a survey), which include the
college admissions problem (with the marriage problem
as a special case), kidney exchange, and the online bi-
partite matching problem.

The college admissions problem and the marriage
problem are preference-based, and they focus on
finding stable matchings in a static and deterministic
setting. In those problems, parties on both demand
and supply sides submit preferences over options to
the matching agency (see, e.g., Ashlagi and Shi 2016).
Soliciting preferences may not, however, be practi-
cal for day-to-day real-time operations. To handle
such situations, we assign a monetary contribution to
the matching between a pair of demand and supply
types instead of adopting preferences by demand
and supply.

In a typical kidney exchange situation, patients
and donors arrive in pairs of incompatible patients
and donors. Subject to compatibility constraints, re-
searchers have designed efficient matching mecha-
nisms based on cycles or chains of patient-donor pairs
to maximize the number of matchings (see, e.g., Roth
et al. 2004, 2007 for static problems and Ünver 2010
for a dynamic problem).Ourmodel differs by allowing
arbitrary unbalanced arrivals of demand and supply,
with the objective of maximizing total reward (e.g.,
social surplus or profit).

Baccara et al. (2020) consider two demand types and
two supply types of vertical differentiation. With a
supermodular reward structure, one arrival on both
sides of themarket in each period and fully backlogged
types ifunmatched, they show that theoptimalmatching
between the congruent pair of demand and supply
is greedy and that the matching between the incon-
gruent pair has a threshold-type structure. In con-
trast, we consider a more general setting with (i) any
number of demand and supply types, (ii) any number
of arrivals of any type in each period, (iii) a general
reward structure including horizontally and vertically
differentiated types as special cases, and (iv) arbitrary
carry-over rates for unmatched types. In particular,
Proposition 1 in this paper shows an analogous re-
sult for two demand types and two supply types of
horizontal differentiation.

Online bipartite matching problems have many
applications, such as allocation of display adver-
tisements. Initiated by Karp et al. (1990), the classical
version considers a bipartite graph G � (U,V,E) and
assumes that the vertices in U arrive in an online
fashion; that is, only when a vertex u ∈ U (e.g., a
web viewer) arrives are its adjacent edges (e.g., the
viewer’s interests) revealed. The problem has many

variants, all with the focus onmaximizing the number
of matchings and analyzing the competitive ratios of
the algorithms (see Manshadi et al. 2012 for a more
recent literature review). Themaindifference fromour
model is the online feature. Besides that, there is no
explicit notation of inventory, with one side (e.g.,
advertisers) always there and the other (e.g., impres-
sions) getting lost if notmatched. Instead ofworst-case
analysis, we maximize the expected reward.
Operations researchers have studied two-sided match-

ing by analyzing a stochastic system (e.g., a queueing
system) and its mean-field/fluid counterpart. Through
a mean-field approach, Arnosti et al. (2021) study a
decentralized two-sided matching market and show
that limiting the visibility of applicants can signifi-
cantly improve the social surplus. With a fluid ap-
proach, Zenios et al. (2000) and Su and Zenios (2006)
study the efficiency-equity trade-off in kidney allo-
cations and Akan et al. (2012) the efficiency-urgency
trade-off in liver allocations. Using double-sided
queues, Zenios (1999) studies the transplant wait-
ing list and Afèche et al. (2014) investigate trading
systems of crossing networks. Su and Zenios (2004)
analyze a queueingmodel with service discipline first
come first served (FCFS) or last come first served
(LCFS) to examine the role of patient choices in the
kidney transplant waiting system. Adan and Weiss
(2012) show that the stationary distribution of FCFS
matching rates for two infinite multitype sequences
is of product form.Gurvich andWard (2014) study the
dynamic control of matching queues with the ob-
jective of minimizing holding costs. Focusing on the
fluid approximation and its asymptotic optimality,
the authors observe that, in principle, the controller
may choose to wait until some inventory of items
builds up to facilitate more rewardable matches in the
future. Kanoria and Saban (2017) study a dynamic
fluid matching model in which agents on one side
receive proposals from those on the other side and
decide whether to pay screening costs to discover the
value of the proposing agent. In contrast to these
papers, we focus on a stochastic model (versus the
fluid counterpart) and optimal decision making (versus
performance evaluation).
Our dynamic matching framework generalizes the

classical transportation problem. Monge (1781) ob-
serves the key idea underlying the Monge proper-
ties that ensure the optimality of a greedy solution.
Hoffman (1963) formalizes the idea and provides a
rigorous proof. Monge’s work has led to extensive
studies on the optimal transport problem by mathe-
maticians, economists, and computer scientists, and is
also generalized to multi-index transportation prob-
lems (see, e.g., Queyranne et al. 1998). Burkard (2007)
provides a detailed review on the development and
applications of the Monge condition to optimization
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problems. Recently, Estes and Ball (2020) consider a
dynamic transportation problem in which new quan-
tities join the supply and demand nodes over time.
The paper provides conditions for the greedy solu-
tion to be oracle (i.e., distribution-free) optimal and
conditions under which an existing policy can be
improved. Unlike Estes and Ball (2020), our paper
aims to maximize the expected discounted reward,
and the modified Monge condition we define leads to
the optimality of the match-down-to-threshold-type
policies under certain reward structures (e.g., the
horizontal model and the vertical model), for which
we further propose methods to compute the threshold
levels approximately. Ourmodel is alsomore general in
allowing unmatched demand or supply to be lost or
partially carried over to the future.

With a multidimensional stochastic dynamic pro-
gramming formulation, our work is also related to
the literature on approximate dynamic programming
(ADP). It is well-known that high-dimensional sto-
chastic dynamic programs are difficult to solve, and
researchers have developed various ADP techniques
to compute the optimal policy. These include rollout
algorithms (see, e.g., Bertsekas 2013), and limited
lookahead policies and value function approxima-
tions (see, e.g., Powell 2016). For recent applications
of ADP in operations management, we refer readers
to Ke et al. (2019) and the references therein. In
contrast, we focus on exploring structural properties
of the specific problems to develop matching policies
with an intuitive and easy-to-implement structure.
We also propose computationalmethods based on the
structural properties of the optimal policy. In the
horizontal model, we match demand and supply
pairs in the order indicated by the structure of the
optimal policy, and match each pair down to a
threshold based on the greedy approximation of the
expected future reward. In the vertical model, we
resort to the one-step-lookahead policy for compu-
tation, which is essentially a rollout strategy that
improves upon greedy matching, and we show that it
retains the top-down structure of the optimal policy.

3. The Model with General
Matching Rewards

Consider a planning horizon of T periods. At the be-
ginning of each period, m types of demand (indexed
by demand type i � 1, . . . ,m) and n types of supply
(indexed by supply type j � 1, . . . ,n) arrive in random
quantities. The pairs of demand and supply are il-
lustrated in Figure 1 as a bipartite graph. For a de-
mand type i and a supply type j, we denote by (i, j)
a matchable pair of demand and supply types, which
corresponds to an arc in the graph. Without loss
of generality, suppose that any demand type is

matchablewith any supply type,with possiblydifferent
rewards. (We may set the unit reward to be an arbi-
trarily large negative value if a pair is unmatchable.)
In the beginning of each period t, a randomquantity

Dt
i of type idemand and a random quantity Stj of type j

supply arrive. We write the new arrivals of demand
and supply in vector form, as Dt � (Dt

1, . . . ,D
t
m) and

St � (St1, . . . ,Stm), respectively. The distributions of sup-
ply and demand in a period can be exogenously
correlated with those in another period, but are in-
dependent of anymatching decisions. Indeed, for the
used-goods inventory management problem with
product upgrading and the transportation problem
of donated goods that we mentioned earlier, the
matching decision does not seem to directly affect
future demand or supply. For the ride-hailing problem
with service upgrade, the matching decision may af-
fect future supply at the place where the driver drops
off the customer. Nevertheless, such endogeneity may
be minimal if we focus on a reasonably small region
and a short time horizon. Given the high matching
volumes in a ride-hailing system, the review period
should be very short (e.g., a few seconds). Thus, the
matcheddrivermaynot be able to complete the current
trip until many periods later, and the new supply
arrivals correspond to those drivers who just log in or
roam into the region. For other problems such as the
assignment of workers by online labor market plat-
forms, supply availability could be more affected by
long-term factors (e.g., payment mechanisms) than
short-term matching decisions. We allow the current
matching and future supply to be correlated in an
extension in online supplement C.3. (See Hu and Zhou
2020 for an unabridged memo which includes all the
online supplements to this paper.)
The state for a given period t comprises the demand

and supply levels of various types before matching
but after the arrival of demand and supply. We de-
note, as the system state, the demand vector by x �
(x1, . . . , xm) and the supply vector by y � (y1, . . . , yn),
where xi and yj are the quantities of type i demand
and type j supply available to be matched. We sup-
pose either that all state variables and realizations
of demand and supply are continuous-valued or that
all of them are discrete-valued. On observing the
state (x,y), the firm decides on the quantity qij of type i
demand to be matched with type j supply, for any

Figure 1. Pairs of Demand and Supply
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i � 1, . . . ,m and j � 1, . . . , n. For conciseness, we write
the decision variables of matching quantities in a
matrix form as Q � (qij) ∈ Rm×n+ . There is a reward rtij
for matching a unit of type i demand and a unit of
type j supply for all i, j. We write the rewards in a
matrix form as Rt � (rtij) ∈ Rm×n. The total matching
reward is linear in the matching quantities; that
is, Rt ◦Q ≡ ∑m

i�1
∑n

j�1 rtijqij, where ◦ is the sum of ele-
ments of the entrywise product of two matrices. We
allow the unit reward rtij to be nonhomogeneous
in time.

At the end of period t, the level of type i demand is
reduced by the quantity

∑n
j�1 qij (i.e., the total quantity

by which type i demand is matched with all sup-
ply types), which leads to its postmatching level
ui :� xi −∑n

j�1 qij. Similarly, type j supply will be re-
duced to vj � yj −∑m

i�1 qij. A fraction α of the un-
matched demand and a fraction β of the unmatched
supply carry over to the next period, where 0 ≤ α, β ≤ 1
are exogenously given. In other words, 1 − α fraction
of demand and 1 − β fraction of supply leave the
system with a zero reward. We allow α and β to take
any value between 0 and 1 if the state variables (and
demand and supply realizations) are continuous-
valued, and we require them to be binary (i.e., 0 or 1)
if the state variables are discrete. Therefore, the state
for the next period t + 1 comprises the type i demand
level xt+1i � α(xi −∑n

j�1 qij) +Dt+1
i (which includes the

random demand Dt+1
i of type i that joins in the be-

ginning of period t + 1) and the type j supply level
yt+1j � β(yj −∑m

i�1 qij) + St+1j (which includes the random
supply St+1j ). For ease of notation, we define 1k as the
k-dimension row vector with all its entries equal
to one, and may omit the superscript k and infer the
length of the vector from the context. We write
u :� (u1, . . . ,um) :� x − 1QT, v :� (v1, . . . , vm) :� y − 1Q,
xt+1 :� αu +Dt+1, and yt+1 :� βv + St+1.

The firm’s goal is to determine the matching quan-
tities Q∗ � (q∗ij) in each period t to maximize the ex-
pected total reward from the current and remaining
periods. Let Vt(x,y) be the optimal expected total
reward given that it is in period t and the current state
is (x,y). We formulate the problem as the following
stochastic dynamic program. For t � 1, . . . ,T,

Vt x,y
( ) � max

Q
Ht Q, x,y

( )
:� Rt ◦Q

+ γEVt+1 αu +Dt+1, βv + St+1( )
,

s.t. u � x − 1QT, v � y − 1Q,

u ≥ 0, v ≥ 0, (1)

where γ∈ [0,1] is a discount factor.We assumeVT+1(x,
y) ≡ 0 and rT+1ij ≡ 0 for all i and j; that is, at the end of
the horizon, all unmatched demand and supply leave
the system with a zero reward.

A matching policy {Qt(x, y)}t�1,...,T specifies the
matching quantity matrix Qt in each period t for any
given state (x,y). An optimal matching policy for the
problem (1) always exists, and it determines the match-
ing quantities between the m × n pairs of demand and
supply types in each period. We remark that there can
be multiple (sometimes, even infinitely many) optimal
matching decisions in a given period. We will focus on
exploring optimal policies that have a match-down-to
structure according to a priority hierarchy if such a
policy exists.
We refer readers to online Appendix C for the no-

tation used in the paper. We now present a simple nu-
merical example that motivates subsequent analysis.

Example 1. Consider a two-period problem with two
demand types and two supply types. In period 1, the
available demand is x � (x1, x2) � (3, 4), and the avail-
able supply is y � (y1, y2) � (4, 3). Demand and sup-
ply of all types to arrive in period 2 are independent of
each other, with the following probability distributions:
Both type 1 demand and type 2 supply in period 2
follow the two-point distribution that is equal to ei-
ther 0 or 2 with equal probabilities; both type 2 demand
and type 1 supply in period 2 follow the two-point
distribution that takes either the value of 0 or 3 with
equal probabilities. Both carry-over rates α and β are
equal to 1, and the discount factor is γ � 0.9. The unit
matching rewards are given in Table 1, where r111 takes
one of the five given values. As r111 varies, we obtain the
optimal matching quantities Q1∗ � (q1∗11 , q1∗12 , q1∗21 , q1∗22) in
period 1.
For any of the values of r111 we use, rt11 > rt12 > rt21 >

rt22 for t � 1, 2.Without loss of generality,we can always
consider the optimal policy to follow the descending
order of unit rewards to match the demand-supply
pairs, that is, along the sequence of pairs (1, 1) →
(1, 2) → (2, 1) → (2, 2). (But one does not need tomatch
a pair to the maximum extent before proceeding to the
next pair.)

Table 1. The Unit Matching Rewards and Optimal
Matching Quantities for Example 1

Panel A: The unit matching rewards

Period rt11 rt12 rt21 rt22

t � 1 85, 90, 95, 100, or 105 60 50 5
t � 2 85 60 50 5

Panel B: The optimal quantities in period 1 for different values of r111

r111 q1∗11 q1∗12 q1∗21 q1∗22
85 0 3 4 0
90 1 2 3 0
95 2 1 2 0
100 3 0 1 0
105 3 0 1 0
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When r111 is small enough, that is, r111 � 85, 90, 95, in
period 1, along the sequence the optimal policy may
proceed to the next pair without matching the pre-
vious pair to the maximum extent. For example,
if r111 � 90, it does not match the pair (1, 1) greedily,
but just for one unit, after which it will match the
pair (1, 2) for two units and the pair (2, 1) for three
units, even though the unit reward r111 is higher than
the unit reward from any other pair. This is because
the combination of the two pairs (1, 2) and (2, 1)
yields a considerably higher total reward (i.e., r112+
r121 � 110) than r111, which may lead the optimal policy
to match (1, 2) and (2, 1) simultaneously before fully
matching (1, 1). On the other hand, although the com-
bination yields a higher total reward, it also con-
sumes more resources, which may reduce the ex-
pected reward in period 2. Compared with matching
(1, 1) for a unit alone, the simultaneous matching of
(1, 2) and (2, 1) (for one unit each) consumes an extra
unit of both type 2 demand and type 2 supply. (This
reduces the reward in period 2, for example, when
there is type 1 demand to be fulfilled in period 2 but
insufficient supply to match with them, partly due to
the consumption of type 2 supply by the combination
in the previous period. In that case, the reward in
period 2 could be increased by r212 � 60, if we had
saved a unit of type 2 supply in period 1.) Thus, the
optimal policy needs to balance between matching
(1, 1) and matching the combination of (1, 2) and (2, 1).
In keeping with this intuition, as r111 increases, we
observe that the matching quantity for (1, 1) in-
creases (weakly), while the quantities for (1, 2) and
(2, 1) both decrease.

When r111 is sufficiently large, that is, r111 � 100, 105,
along the sequence in the descending order of unit
rewards, in period 1 the optimal matching decision
has the following match-down-to structure: it ei-
ther proceeds to the next pair after greedily matching
the current pair or stops after partially matching the
current pair. It first matches (1, 1) greedily for three
units (i.e., until type 1 demand runs out), and then
(1, 2) for zero units (since type 1 demand is no longer
available), and finally stops the matching procedure
after matching (2, 1) for one unit without matching
(2, 2). We note that although the combination of (1, 2)
and (2, 1) still yields a higher total unit reward than
(1, 1), the optimal policy chooses to prioritize (1, 1)
over the combination for r111 � 100, 105.

Example 1 demonstrates the complexity of trading
off among various pairs of demand and supply types.
We observe from the example that, to determine the
extent towhichwe shouldmatch eachpair, oneneeds to
compare not just individual pairs of demand and supply
by their unit rewards, but also an individual pair with a
combination of two other pairs intertemporally. For a

problemwithmore types of demand and supply than in
Example 1, it becomes even more challenging to
characterize the optimal policy, as one may need to
compare combinations of multiple pairs. In Example 1,
the optimal policy has a match-down-to structure
when r111 is sufficiently large. To generalize this ob-
servation, wewill explore conditions under which the
optimal policy has a similar structure (i.e., following a
certain order of pairs to match demand with supply).

3.1. The Monge Sequence and the Single-
Period Problem

Consider the single-period problem with available de-
mand x � (x1, . . . , xm) and supply y � (y1, . . . , yn). If
demand and supply are balanced (i.e.,

∑m
i�1 xi � ∑n

j�1 yj),
Hoffman (1963) shows that it is optimal to greedily
match demand with supply along the Monge se-
quence if such a sequence exists. The original defi-
nition of the Monge sequence is based on the unit
transportation costs from supply locations to demand
locations. We restate its definition by using the unit
reward rij for matching type i demand with type j
supply in the single period (i � 1, . . . ,m, j � 1, . . . ,n).

Definition 1 (Hoffman 1963). A Monge sequence is a
sequence of all demand-supply pairs in the set {(i, j) |
i � 1, . . . ,m, j � 1, . . . ,n} such that, if a pair (i, j) is
ordered before both (i′, j) and (i, j′) in the sequence,
then the unit matching rewards satisfy the condition
rij + ri′j′ ≥ ri′j + rij′ .

3.2. The Modified Monge Condition
For the dynamic problem, we define the modified
Monge condition to rank demand-supply pairs.

Definition 2 (Modified Monge Condition). For two neigh-
boring pairs (i, j) and (i′, j) of demand and supply
types, we say that (i, j) weakly precedes a neighboring
pair (i′, j) if rtij − rti′j ≥ αγmaxj′′�1,...,n(rt+1ij′′ − rt+1i′j′′ )+ for any
period t � 1, . . . ,T. Likewise, we say that (i, j) weakly
precedes (i, j′) if for any period t, rtij − rtij′ ≥ βγ
maxi′′�1,...,m(rt+1i′′j − rt+1i′′j′ )+.

For a pair (i, j) to weakly precede its neighboring
pair (i′, j), the previous condition requires the former
to generate a sufficiently higher unit reward than the
latter in every period t. More specifically, the unit
reward rtij should exceed rti′j by a minimum margin,
which depends on the difference in the unit rewards
involving demand types i and i′ in the next period.
The Monge sequence (Definition 1) specifies a com-

plete order of all pairs of demandand supply. In contrast,
the modified Monge condition defines a partial order
over the demand-supply pairs (see online supplement
C.2 for a formal proof) and compares two pairs at a time.
However, the condition does not require that any two
pairs of demand and supply types be comparable. In the

130
Hu and Zhou: Dynamic Type Matching

Manufacturing & Service Operations Management, 2022, vol. 24, no. 1, pp. 125–142, © 2021 INFORMS



following theorem, we show that there exists an optimal
policy that respects this partial order.

Theorem 1. There exists an optimal policy π∗ � {Qt∗}t�1,...,T
such that if any pair (i, j) weakly precedes a neighboring
pair (i′, j) (respectively, (i, j′)), in each period t either the
matching quantity qt∗i′j � 0 (respectively, qt∗ij′ � 0) or the
postmatching level ut∗i � 0 (respectively, vt∗j � 0).

Theorem 1 shows that if (i, j)weakly precedes (i′, j),
matching of (i′, j) is possible only if there is no remaining
type i demand to compete for type j supply. To see
the underlying intuition, we compare two options.
Option 1 is to match (i, j) for one unit in period t, and
option 2 is to match (i′, j) for a unit instead. In period t,
we receive a higher reward under option 1 by an
amount of rtij − rti′j. However, option 2 leads to αmore
units of type i demand and α fewer units of type i′
demand in period t + 1. If those α units of type i de-
mand are matchedwith some supply type j′′ in period
t + 1, under option 1 we may instead match α units of
type i′ demand with type j′′ supply in period t + 1. In
this way, the difference in the rewards received in
period 2 between options 1 and 2 is −αrt+1ij′′ + αrt+1i′j′′ , and
the difference in the total discounted rewards over
both periods is rtij− rti′j−γα(rt+1ij′′ − rt+1i′j′′ ) ≥ 0. This implies
that (i, j) should be assigned a higher matching pri-
ority than (i, j′), in the sense that we will not regret
having used option 1 instead of option 2.

Remark 1. In online supplement C.1, we extend
Definition 2 to allow a pair to weakly precede a
nonneighboring pair, and we show that an optimal
policy does not match any pair (i′, j′) weakly pre-
ceded by another pair (i, j) if both type i demand and
type j supply are still available.

Interestingly, although the weak modified Monge
condition implies higher matching priority for one
pair over another pair it weakly precedes, the com-
bination of two weakly preceded pairs can possibly
preempt the matching of a preceding pair, as we
demonstrate in the following example.

Example 2. Consider a two-period problem with two
demand types and two supply types, and the follow-
ing unit rewards: in period 1, r111 � 8, r112 � 4, r121 � 5,
and r122 � 1; in period 2, r211 � 8, r212 � 5, r221 � 6, and
r222 � 2.5. The carry-over rates and the discount factors
are α � β � γ � 1. We can verify that the pair (1, 1)
weakly precedes both (1, 2) and (2, 1). However, in
period 2, the optimal policy may try to match (1, 2) and
(2, 1) simultaneously before matching the preceding
pair (1, 1). For example, if in period 2 the available
demand and supply are x21 � x22 � y21 � y22 � 1, the
optimal policy matches both pairs (1, 2) and (2, 1)
for one unit but does not match (1, 1) or (2, 2),
since r212 + r221 � 11 > r211 + r222.

Next, suppose that in period 1 the available demand
and supply are x11 � 1, x12 � 0, y11 � 1, and y11 � 0, and
the firm anticipates demand and supply arrival in
period 2 as D2

1 � 0, D2
2 � 1, S21 � 0, and S22 � 1 with

probability 1. The optimal policy does not match any
pair in period 1 in order to save all type 1 demand and
type 1 supply for matching the pairs (1, 2) and (2, 1)
both for one unit in period 2. This results in a total
reward r212 + r221 � 11 over the two periods. Alterna-
tively, if we match the pair (1, 1) for a unit in period 1,
in period 2 we can only match the pair (2, 2) for one
unit, resulting in a lower total reward r111 + r222 � 10.5.

Example 2 shows that the optimal policy may let two
weakly preceded pairs preempt a preceding pair in a
period, and it may also reserve a pair of demand and
supply types to match two pairs it weakly precedes in a
later period. Assumption 1 rules out the former possi-
bility andwill ensure the optimality of the match-down-
to policy for two special reward structures.

Assumption 1 (Strong Modified Monge Condition). In
period t, for any pair (i, j), if it weakly precedes two
neighboring pairs (i′, j) and (i, j′), then rtij + rti′j′ ≥ rtij′ + rti′j.

The strong modified Monge condition resembles
the Monge sequence. The inequality condition in
Definition 1 is based on the given complete order
(i.e., the given sequence), whereas the inequality
condition in Assumption 1 is based on the partial
order defined by the modified Monge condition. In
that sense, the strong modified Monge condition is a
weaker version of the Monge sequence.

Theorem 2. Suppose Assumption 1 holds in a subset of
periods τ ∈ T ⊆ {1, . . . ,T}. There is an optimal policy π∗ �
{Qt∗}t�1,...,T such that, in addition to the properties in
Theorem 1, it also satisfies the following property: If a pair
(i, j) weakly precedes both (i′, j) and (i, j′), either qτ∗ij′ � 0 or
qτ∗i′j � 0 in any period τ ∈ T .

Theorem 2 is intuitive. If a pair (i, j)weakly precedes
any two neighboring pairs (i′, j) and (i, j′), and both qτ∗ij′
and qτ∗i′j are positive, then according to Assumption 1,
we can simply reduce qτ∗ij′ and qτ∗i′j by a small amount
and increase thematching quantities for (i, j) and (i′, j′)
by the same amount, to increase the reward in period
τ without affecting the postmatching levels.
Without loss of generality, we can consider any

policy to follow the partial order defined by the
modified Monge condition (without needing to match
a pair to the maximum extent before moving on to
subsequent pairs), and simultaneously match a pair
and those not comparable with it (referred to as its
parallel pairs). Theorems 1 and 2 further imply that a
pair (i, j) must be matched to the maximum extent
before the optimal policy can match any (neighbor-
ing) pairs it weakly precedes. In fact, if the optimal
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policy does not match (i, j) to the maximum extent but
proceeds to match subsequent pairs it weakly pre-
cedes, then either there is remaining type i demand or
type j supply at the end of the period, or both i and j are
further consumed by pairs weakly preceded by (i, j).
However, those possibilities are at odds with the
properties in Theorem 1 or Theorem 2.

As long as Assumption 1 holds in a certain period τ,
the optimal policy has the priority structure men-
tioned previously in that period. Following the pri-
ority structure, it may not match demand and supply
greedily. Instead, it may match a pair (i, j) only par-
tially in period τ (in which case any pair weakly
preceded by (i, j) is not matched in period τ) due to at
least one of the following reasons:

a. Reserve some type idemand (respectively, type j
supply) to match a pair (i, j′) (respectively, (i′, j)) that
weakly precedes (i, j) in a later period.

b. Reserve both type i demand and type j supply to
match two pairs (i, j′) and (i′, j) that are weakly preceded
by (i, j) but jointly yield a higher reward in a later period.

c. Strategically delay the matching between i and j
and match the same pair in a later period, if the unit
reward between i and j is higher in that later period.

In Example 2, Assumption 1 holds in period 1 only,
and we see that the optimal policy may withhold the
matching of the pair (1, 1) in period 1 due to (b).
However, if Assumption 1 holds in all periods, the
firmwill not have the incentive (b) towithholddemand
or supply. Indeed, by Theorem 2, if Assumption 1 also
holds in period t + 1, any type i demand and type j
supply reserved in period t should still be matched in
period t + 1 first before the optimal policy simulta-
neously matches any two pairs (i, j′) and (i′, j) that
are weakly preceded by (i, j). In Theorem 3, greedy
matching of a pair becomes optimal when we further
eliminate incentives (a) and (c).

Theorem 3. Suppose that Assumption 1 holds in all pe-
riods. There exists an optimal policy π∗ � {Qt∗} such that it
satisfies the properties in Theorems 1 and 2 and also the
following property: For any pair (i, j), if it weakly precedes all
its neighboring pairs and the unit reward rtij satisfies the
condition that rtij ≥ γmax{α, β}rt+1ij (for t � 1, . . . ,T − 1),
then the optimal policy matches type i demand with type j
supply as much as possible; that is, qt∗ij � min{xi, yj} for
all t � 1, . . . ,T.

The condition of (i, j) weakly preceding all neigh-
boring pairs eliminates the incentive in (a), Assumption 1
holding in all periods eliminates (b), and the condition rtij ≥
γmax{α, β}rt+1ij eliminates (c).We say that (i, j) is a perfect
pair if it satisfies all the conditions in Theorem 3.

Moreover, if Assumption 1 is satisfied in a period t,
then, for two special cases of the problem, Theorems 1
and 2 imply the optimality of the match-down-to
structure in period t.

Special Case 1. Any two neighboring pairs are com-
parable by the modified Monge condition, that is, one
weakly precedes the other (without loss of general-
ity, assume no mutual precedence; see online supple-
ment C.2).We then organize the pairs into levels. Level 1
pairs are not weakly preceded by any other pair, and
inductively, level � pairs are those preceded only by
pairs of levels 1, . . . , � − 1. Then, the optimal policy
follows the descending order of priority (i.e., the as-
cending order of level indices) and matches the parallel
pairs of the same level simultaneously. In any period,
unless it fully matches a pair (i, j) of level �, no lower-
priority pair weakly preceded by (i, j) is matched.

Special Case 2. Suppose that there is only one level 1
pair in special case 1, and we assume the following
properties: (i) If we remove either the demand type or
the supply type of the level 1 pair as a node from the
bipartite graph, in the remaining graph there is just
one pair of the highest (priority) level; and (ii) suc-
cessively, each time we remove either the demand
or supply type of the highest-level pair from the
remaining graph, there is just one pair of the highest
level left, regardless of the types previously re-
moved. Then, the optimal policy has amatch-down-to
structure (see the proof in online supplement E).When
the optimal policy matches the highest-level pair, it
either matches it greedily, or matches it halfway to
some level and stops the matching procedure. In the
former case, either demand or supply of that pair is
exhausted; we remove the exhausted type, andmove
on to the new highest-level pair in the remain-
ing graph.
More general problems than the two special cases

need not satisfy the (strong) modified condition, and
the match-down-to policy may not be optimal. Nev-
ertheless, one can enforce such a policy along a cer-
tain priority sequence or structure as a heuristic, as in
Example 3.

Example 3. We revisit Example 1 and focus on the
matching in period 1. We can readily verify that both
pairs (1, 2) and (2, 1)weakly precede (2, 2) for all values
of r111 we adopt (i.e., r111 � 85, 90, 95, 100, 105). The pair
(1, 1) weakly precedes (1, 2) only for r111 � 105, and
it weakly precedes (2, 1) only for r111 � 100, 105.
Moreover, the strong modified Monge condition (i.e.,
Assumption 1) is satisfied in period 1 when r111 � 105.
Theorems 1 and 2 ensure that the match-down-to
structure along the sequence (1, 1) → (1, 2) → (2, 1) →
(2, 2) is optimal when r111 � 105. The computational
results in Example 1 show that this structure is also
optimal for r111 � 100, but not for r111 � 85, 90, 95. Nev-
ertheless, we enforce that structure along the se-
quence (1, 1) → (1, 2) → (2, 1) → (2, 2) for all r111 �
85, 90, 95, 100, 105, and compare the corresponding
expected discounted reward over the two periods
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with the optimal expected total discounted reward,
as in Table 2.

As r111 increases, the modified Monge condition is
violated to a lesser extent (e.g., for (1, 1) to weakly
precede (1, 2), we need r111 − r112 ≥ γmaxi�1,2(r2i1 − r2i2)+;
since the right side remains constant, the condition is
violated to a lesser extent as r111 increases), and so too
is a condition similar to the strong modified Monge
condition, r111 + r122 ≥ r112 + r121. (Note that we enforce
the match-down-to structure along the sequence
(1, 1) → (1, 2) → (2, 1) → (2, 2); the latter condition en-
sures that the combination of (1, 2) and (2, 1) does not
preempt the matching of the pair (1, 1), which we
assign the highest priority.) We observe that the
gap between the optimal reward and the reward
achieved by the match-down-to structure shrinks as
r111 increases.

In Example 3, the performance of the match-down-
to policy (relative to the optimal policy) improves as the
modified Monge condition (and a condition similar to
the strong modified Monge condition) is violated to a
lesser extent along the sequence. This seems to suggest
that the match-down-to structure along a priority se-
quence or hierarchy may work well if the conditions
hold approximately and that the performance lossmay
be quantified by the degree towhich the conditions are
violated. We leave further development of those ob-
servations for future research and conclude this section
with a remark on incorporating waiting and hold-
ing costs.

Remark 2. Suppose any unmatched demand incurs a
unit waiting cost w, and any unmatched supply incurs
a unit holding cost h. If a demand (respectively, supply)
unit is never matched from period t to period T, the
total discounted waiting (respectively, holding) cost
is w

∑T
τ�t(γα)τ−t (respectively, h∑T

τ�t(γβ)τ−t). We define
the adjusted unit reward rt,adjij as the sum of the unit
matching reward rtij and thewaiting costs saved for i and
holding costs saved for j bymatching them in the current
period t, that is, rt,adjij � rtij + w

∑T
τ�t(γα)τ−t+ h

∑T
τ�t(γβ)τ−t.

One can verify that if any demand-supply pairs sat-
isfy the (strong) modified condition and/or the in-
equality condition in Theorem 3 for the unit rewards
{rtij}∀ i,j,t, they also satisfy the same conditions for the
adjusted unit rewards rt,adjij . Thus, all the results in this
section remain true.

4. Horizontally Differentiated Types
We consider horizontally differentiated demand and
supply types that have idiosyncratic preferences over
the types on the other side. From the firm’s perspective,
matching a demand (supply) type with a supply
(demand) type closer to its preference yields a higher
unit reward in all periods.

4.1. Two Demand Types and Two Supply Types
We first study the model with two demand types and
two supply types underAssumption 2. Type 1 (type 2)
supply is closer to the preference of type 1 (type 2)
demand, and vice versa.

Assumption 2. Suppose the following conditions hold.
i. For any period t, rt12 ≤ min{rt11, rt22} and rt21 ≤

min{rt11, rt22}.
ii. The differences in the unit rewards satisfy the con-

ditions rt11 − rt12 ≥ βγ(rt+111 − rt+112 ), rt11 − rt21 ≥ αγ(rt+111 −
rt+121 ), rt22 − rt21 ≥ βγ(rt+122 − rt+121 ), and rt22− rt12 ≥αγ(rt+122 −
rt+112 ), for 1 ≤ t ≤ T − 1.
iii. For i, j � 1, 2, 1 ≤ t ≤ T − 1, rtij ≥ maxγ{α, β}rt+1ij .

Condition (i) of the assumption implies that the
demand type and the supply type of the same in-
dex are closer to each other’s preference and their
matching yields a higher unit reward than the matching
between a pair of types of different indices. Condition (ii)
requires that the reward difference (adjusted by the
discount factor and the carry-over rates) between the
matchingwith the closer type andwith the farther type
decreases in time. It is satisfied, for example, if the unit
rewards are stationary over time. Condition (iii) en-
sures that the firm has no incentive to strategically
delay the matching between a pair (in order to match
the same pair in a future period). Next, we present an
example that satisfies Assumption 2.

Example 4 (Used-Goods Inventory Management with
Substitution). Consider the used-goods inventory
management problem with items in one of two con-
ditions, say, conditions 1 and 2, with condition 1 being
superior to condition 2 (e.g., condition 1 could be the
latest edition of a book, and condition 2 an older
edition). Let the price and cost for an item in con-
dition i be fi and ci, respectively (i � 1, 2). The two
demand types, type 1 and type 2, seek to buy items
in condition 1 and condition 2, respectively. Other
than assigning an item to its intended demand type,

Table 2. The Reward Under the Best Match-Down-To Policy vs. the Optimal Expected
Discounted Reward in Example 3

r111 85 90 95 100 105

Reward under the best match-down-to policy 438.75 450.5 465.5 480.5 495.5
Optimal reward 457.63 459.56 468.69 480.5 495.5
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the firm can also offer type 2 demand an upgrade to
an item in condition 1 with a price discount cd, and
type 1 demand a downward substitution to an item
in condition 2 with compensation cb. (Customers may
differ in the amount of compensation they would
demand to accept the downward substitution; in that
case, cb represents the average compensation that a
customer would demand.) Let us define the sta-
tionary unit matching reward rij as the profit margin
by fulfilling one unit of type i demand with an item in
condition j. Thus, rii � fi − ci for i � 1, 2, r12 � f2 − c2 −
cb and r21 � f1 − c1 − cd. We can verify that Assumption 2
is satisfied if f2 − c2 − cb ≤ f1 − c1 ≤ f2 − c2 + cd, which
requires (i) the profit margin of an item in the superior
condition to be sufficiently high compared with the
margin of an item in the inferior condition (provided that
both are assigned to the intended demand type), and
(ii) the price discount is steep enough for type 2 demand
(which seeks inferior but cheaper items) to be willing to
buy an item in the superior condition. In particular, the
two inequalities are satisfied if the superior condition
item is more profitable than the inferior condition item
(if assigned to intended customers) and all upgrades are
free. Whereas we do not explicitly consider the waiting
or holding costs of unmatched demand and supply, they
can be easily incorporated into the unit rewards. (See
Remark 2.)

We can now characterize the optimal matching
policy under Assumption 2. It can be readily verified
that the pairs (1, 1) and (2, 2)bothweakly precede (1, 2)
and (2, 1) and that the strong modified Monge con-
dition is satisfied in all periods. Moreover, (1, 1) and
(2, 2) are perfect pairs as defined by the conditions in
Theorem 3. We refer to (1, 2) and (2, 1) as imperfect
pairs. The optimal policy will have two rounds of
matching, as in the following proposition. First, it
greedilymatches the perfect pairs. Then, itmatches an
imperfect pair to a threshold level, saving some de-
mand and supply for the matching of perfect pairs in
later periods.

Proposition 1. Given the state (x,y) � (x1, x2, y1, y2) in
period t, the optimal policy first matches the perfect pairs
greedily, that is, q∗11 � min{x1, y1} and q∗22 � min{x2, y2}.
Then, it may or may not match an imperfect pair, contin-
gent on the remaining available demand and supply after
the greedy matching of the perfect pairs. In particular, there
exist univariate functions pts1(IB) and pts2(IB) of the total
imbalance IB :� x1 + x2 − y1 − y2 between demand and
supply, such that

i. If there is no remaining demand (when x1 ≤ y1 and
x2 ≤ y2) or no remaining supply (when x1 > y1 and x2 > y2),
the optimal policy can match neither imperfect pair.

ii. If there is remaining type 1 demand and type 2 supply
(when x1 > y1 and x2 < y2), the optimal policy matches

type 1 demand with type 2 supply for the quantity
qt∗12 � [y2 − x2 − pts2(IB)]+.
iii. If there is remaining type 2 demand and type 1

supply (when x2 > y2 and x1 < y1), the optimal policy
matches type 2 demand with type 1 supply for the quan-
tity qt∗21 � [y1 − x1 − pts1(IB)]+.
According to Proposition 1, if x1 > y1 and x2 < y2,

after the first-round matching the quantity of avail-
able type 1 demand is z1 :� x1 − y1 and that of type 2
supply is z2 :� y2 − x2 (and there is no remaining type 2
demand nor type 1 supply). In the second round, the
optimal policy chooses a matching quantity q12 to
reduce type 2 supply to the threshold pts2(IB) if the
available type 2 supply y2 − x2 after round 1 is above
that threshold, and otherwise does not match the
pair. Similarly, if x1 < y1 and x2 > y2, then there is a
remaining quantity −z1 :� −(x1 − y1) of type 1 supply
and −z2 :� −(y2 − x2) of type 2 demand after the first-
round matching. In the second round, the optimal
policy matches the pair (2, 1) to reduce type 1 supply
to the threshold pts1(IB) if the available type 1 supply is
above that threshold after round 1, and otherwise
does nothing. We have defined thresholds on the
supply side to characterize the optimal matching of
imperfect pairs. Equivalently, one can also define
thresholds on the demand side.
We further explore properties of the thresholds

pts1(IB) and pts2(IB) for the case with equal demand and
supply carry-over rates and for the case with per-
ishable demand or supply.

Proposition 2. The thresholds have the following properties.
i. If demand and supply have the same carry-over rate,

that is, α � β, the thresholds pts1(IB) and pts2(IB) decrease in
IB, with the rate of decrease no greater than 1.
ii. If demand is perishable (i.e., α � 0 such that it does not

carry to the future), then in each period t there exists state-
independent values p̄ts1 and p̄ts2 such that the thresholds
pts1(IB) and pts2(IB) are given by pts1(IB) � max{IB−, p̄ts1}
and pts2(IB) � max{IB−, p̄ts2}, respectively.
Intuitively, a greater IB implies a greater imbalance

of demand relative to supply. Under the conditions in
part (i) (i.e., equal carry-over rates), this implies that
the chance that unmatched demand will be fulfilled
by its perfect-match supply type in future periods
becomes smaller. Therefore, it becomes more im-
perative to allow more consumption of demand by
lowering the threshold on the supply side in the
current period. Part (i) also shows that the decrease in
thresholds cannot exceed 1 for per unit of increment in
IB. This result helps reduce the complexity of com-
puting the thresholds, especially for the model with
discrete-valued states and decisions. For example,
suppose that we have obtained the value of pts1(IB) and
need to compute pts1(IB + 1). Then the latter is equal to
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pts1(IB) or pts1(IB) − 1, whichever yields a higher ex-
pected total reward.

If demand is perishable, part (ii) of Proposition 2
shows that the second-round matching in period t is
characterized by the state-independent values p̄ts1 and
p̄ts2 . We note that the second-round matching cannot
reduce the available supply below IB− � (x1 + x2− y1 −
y2)− (in fact, the available supply reduces to IB− exactly
in the second-round matching if greedy matching is
used). In the second round, the optimal policy aims at
reducing available supply to the state-independent
value (i.e., p̄ts1 or p̄

t
s2 ), or as close to it as possible (i.e., if

the state-independent value is below IB−, the optimal
policy will just reduce the available supply to the
lowest possible level that is IB−). Intuitively, this is
because demand in the current period does not carry
over and thus a fixed amount of supply should be
reserved for the perfect-match demand type to arrive
in the future.

4.2. Multiple Demand and Supply Types
We now consider multiple demand and supply types.
To model horizontal differentiation, we consider a
line segment L endowed with a direction (without
loss of generality, from right to left), on which the
types are distributed. The location of a (demand or
supply) type on L represents its characteristics or
preferences. We consider unidirectional matching, that
is, a demand type i and a supply type j are matchable if
and only if the supply type can reach the demand type
by traveling along the designated direction (repre-
sented by the notion i ← j). Suppose that the unit
reward formatching type idemandwith type j supply
is a linearly decreasing function of their distance, that
is, rtij � Rt

i − disti←j, whereRt
i is the baseline unit reward

received from matching type i demand and a supply
typewith the same locationasdemand type i, and disti←j
is the Euclidean distance from supply type j to de-
mand type i onL. Without loss of generality,we assume
that thedemand-type index i and the supply-type index
j are both increasing along the direction of L.

The given setting applies to problems where each
supply type represents a specific grade of supply and
each demand type requires a certain minimum grade.
Along the designated direction, the grade of supply
and the minimum grade required by the demand
types decrease, implying that only upward substi-
tution is allowed and the unit reward is higher when
the firm assigns a demand type to a supply grade
closer to its original requirement.

We consider an assumption on the baseline unit
reward Rt

i .

Assumption 3. i. The baseline reward Rt
i decreases along

the direction of L, that is, Rt
i ≥ Rt

i+1 for i � 1, . . . ,m − 1.

ii. Rt
i − Rt

i+1 ≥ γα(Rt+1
i − Rt+1

i+1) for i� 1, . . . ,m−1, and t �
1, . . . ,T − 1.

Part (i) of Assumption 3 assumes that a demand
type of a smaller index (which represents, e.g., a
higher requirement on supply grade) yields a higher
baseline reward. Part (ii) assumes that the difference
in the baseline rewards (adjusted by the discounted
factor and demand carry-over rate) decreases over
time. We can verify that the following example sat-
isfies Assumption 3.

Example 5. Consider the service upgrading problem
with crowdsourced suppliers (e.g., a ride-hailing
platform’s economic versus premium services). There
are n supply types that represent a line of n different
services, with type 1 being the most premium service
and type n the most economic one. There are also m � n
demand types, and type i demand seeks type i supply,
for i � 1, . . . ,n. Let ci be the marginal cost of type i
supply, and fi the price for type i demand of purchasing
type i supply, for i � 1, 2, . . . ,n. Naturally, both ci and fi
are decreasing in i. The firm has the option to offer type i
demand a free upgrade to a supply type j < i (which is
more premium) but does not offer a downward sub-
stitution.We define the stationary unitmatching reward
rtij � rij as the profit margin for fulfilling type i demand
with type j supply, that is, rij :� fi − cj � fi − ci − (cj − ci).
We can think of demand type i and supply type j

sharing the same location on the line segment L, and
the indices of the types increase (i.e., the service be-
comes less superior) along the direction of L. We
define Ri :� fi − ci as the marginal profit for fulfilling
type idemandwithout upgrading, and disti←j :� cj− ci
as the distance from supply type j to demand type i,
for j ≤ i. Then, rij � Ri − disti←j. As in Remark 2, we can
incorporate thewaitingorholdingcosts into the rewards.

With the unit reward given by rtij � Rt
i − disti←j, we

have the following lemma.

Lemma 1. Suppose Assumption 3 holds. For two matchable
pairs (i, j) and (i′, j) of demand and supply, (i, j) weakly
precedes (i′, j) if and only if j is closer to i than to i′ along the
direction of L. Likewise, a matchable pair (i, j) weakly
precedes (i, j′) if and only if j is closer to i along the direc-
tion of L. Also, the strong modified Monge condition
(Assumption 1) is satisfied in all periods.

Lemma 1 implies that any two matchable neigh-
boring pairs are comparable by the modified Monge
condition, and the pair with a shorter distance (be-
tween its demand and supply types) should be
assigned a higher priority. As in special case 1, we
can classify the pairs into priority levels. Suppose
there are L levels in total, and Proposition 3 follows
from special case 1.
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Proposition 3. There exists an optimal policy such that it
matches the demand-supply pairs in the descending order of
the priority levels. If a level � (1 ≤ � ≤ L − 1) pair (i, j) is not
matched to the maximum extent (i.e., remaining type i
demand and type j supply are available after the matching),
the optimal matching quantity of its neighboring pairs of any
level �′ > � will be 0.

Proposition 3 specifies the order in which we should
match demand with supply. A level 1 pair may be
matched greedily, such as in the following corollary.

Corollary 1. If (i, j) is a level 1 pair and Rt
i − disti←j ≥

γmax{α, β}(Rt+1
i − disti←j) for t � 1, . . . ,T − 1, the opti-

mal policy matches type i demand with type j supply greedily
in all periods.

The condition Rt
i−disti←j≥γmax{α,β}(Rt+1

i −disti←j)
in Corollary 1 holds, for example, if the baseline unit
reward Rt

i is decreasing in time, which is satisfied in
Example 5. In that example, intuitively the firm
should greedily match customers with their intended
products or service since it leads to higher profit than
any upgrades in any future periods. In general, when
we match a pair (i, j) of level � ≥ 2, we may want to
withhold some type i demand and/or some type j
supply, for them to meet better matches in a future
period. Next, we consider a heuristic method for
determining the extent to which each pair should be
matched along the priority structure.

4.2.1. The Match-Down-to Heuristic. In each period t,
we will match demand types with supply types in the
order specified in Proposition 3. Suppose that im-
mediately before we match demand type i with
supply type j in period t, their available quantities are
x̆i and y̆j, respectively. If we were to match i with j
greedily, at the end of the period the remaining
quantities would be (x̆i − y̆j)+ and (x̆i − y̆j)−, respec-
tively. If we withhold a quantity p from matching i
and j greedily, the reward in the current period t
will decrease by rtijp, while the withheld quantities of
type i demand and type j supply may generate (po-
tentially greater) rewards in the future periods. To
find the quantity to withhold, we estimate the mar-
ginal future benefits of reserving type i demand and
type j supply.

Let Vg
t+1(x,y) be the expected discounted reward

from period t + 1 onward under greedy matching in
the order specified by Proposition 3, given the state
(x,y) at the beginning of period t + 1. To approximate
the future benefit of reserving p units of type i de-
mand (from greedily matching with type j supply)
in period t, we ignore the carry over of any demand
and supply type other than i and j in period t into
period t + 1. Then, the future benefit of reserving p units
of type i demand is approximated by FBd

i (p,IBij) :�

γEVg
t+1(α(IB+

ij+p)emi +Dt+1,St+1)−γEVg
t+1(αIB+

ij e
m
i +Dt+1,

St+1), where IBij :� x̆i − y̆j, and ek� is the k-dimension
vector with the �th entry equal to 1 and all other
entries being 0 (we may omit the superscript k if
the vector size can be inferred from the context).
Likewise,we approximate the future benefit of reserving
p units of type j supply by FBs

j ( p, IBij) :� γEVg
t+1(Dt+1,

β(IB−
ij + p)enj + St+1) − γEVg

t+1(Dt+1, βIB−
ij e

n
j + St+1). We

then solve the problemmaxp≥0 −rtijp + FBd
i (p, x̆i − y̆j) +

FBs
j (p, x̆i − y̆j) to obtain the protection level p for the

matching between i and j, which is equivalent to

max
p≥0 −rtijp + γEVg

t+1 α IB+
ij + p

( )
emi +Dt+1,St+1

( )
+ γEVg

t+1 Dt+1, β IB−
ij + p

[ ]
enj + St+1

( )
. (2)

To solve (2), we can evaluate the expected values
EVg

t+1(α[IB+
ij +p]emi +Dt+1,St+1) and EVg

t+1(Dt+1, β[IB−
ij +

p]eni +St+1) by Monte Carlo simulation (see online
supplement D for details). Clearly, the solution to (2),
denoted by p̂tij(IBij), depends on the demand and sup-
ply levels only through the difference IBij � x̆i − y̆j.
We match i with j until type i demand reduces to
IB+

ij + p̂tij(IBij), if the demand level x̆i is higher than
IB+

ij + p̂tij(IBij). Otherwise, we do not match i with j.
(Equivalently, this means that we will match i with j
until type j supply reduces to IB−

ij + p̂tij(IBij), if it is
possible to do so.) We summarize the heuristic in
Algorithm 1.

Algorithm 1 (Match-Down-to Heuristic for the Horizontal
Model in Any Period t, Given the Demand and Supply
Levels (x, y) in the Beginning of the Period)

1: x̆ ← x and y̆ ← y
2: for each pair of demand and supply (i, j) along

the priority structure do
3: IBij ← x̆i − y̆j, and compute the protection

level p̂tij(IBij) by solving (2)
4: Match iwith j until type i demand reduces to

IB+
ij + p̂tij(IBij) (and simultaneously, type j

supply reduces to IB−
ij + p̂tij(IBij)) or as close

to it as possible
5: x̆i ←min{x̆i, IB+

ij + p̂tij(IBij)} and y̆j ← min{y̆j,
IB−

ij + p̂tij(IBij)}
6: end for

AlthoughAlgorithm 1 ismotivated by Proposition 3,
this heuristic matching policy may not satisfy the
structure in the proposition (i.e., not tomatch a lower-
level pair unless the matching between all the weakly
preceding pairs is no longer possible). In particu-
lar, even if the matching between a pair (i, j) has not
been exhausted, under Algorithm 1, the heuristic
may proceed to match a neighboring pair (i, j′) or (i′, j)
that is weakly preceded by (i, j). This is because we
approximate the expected future rewards by the
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expected values under greedy matching from period
t + 1 onward, which may not possess some properties
of the optimal value function that are needed to en-
sure the structure in Proposition 3. Nonetheless, one
can modify the matching policy so that it satisfies the
structure in Proposition 3 (if this improves the expected
total discounted matching reward) by redirecting a
matching quantity from a lower-level pair to a neigh-
boring higher-level pair. Next, we present a numerical
example to illustrate the heuristic.

Example 6. We revisit Example 5 with m � n � 3 and
T � 5 periods. Suppose that the marginal costs for the
three supply types are c1 � 45, c2 � 38, and c3 � 14, and
the prices paid by the three types of customers are
f1 � 100, f2 � 60, and f3 � 46. The unit rewards are
stationary over time and are given by rij � fi − cj for
j ≤ i � 1, 2, 3. We use the discount factor γ � 0.9 and
assume that all unmatched demand and supply carry
to the next period, that is, α � β � 1. Following the
matching order specified in Proposition 3, we will first
match the level 1 pairs, (1, 1), (2, 2), and (3, 3), followed
by the level 2 pairs (2, 1) and (3, 2), and finally the
level 3 pair (3, 1). We require that arrivals of demand
and supply of all types be independent and identically
distributed and follow the discrete uniform distribu-
tion over the set {0, 1, 2, 3, 4} throughout the horizon,
and that the matching quantities take integer values.

Suppose that in the beginning of period 1, the initial
demand levels are given by x1 � (x11, x12, x13) � (2, 8, 9),
and the initial supply levels are given by y1 � (y11,
y12, y

1
3) � (8, 3, 2). We apply theprocedure inAlgorithm 1

to compute the protection levels. When we solve (2)
to compute the protection levels, we generate N �
1, 000 sample paths to evaluate the two expected
values in (2) approximately.

In period 1, the pairs (1, 1), (2, 2), and (3, 3) are
matched greedily (by Corollary 1). Thus, the matching
quantities between those pairs are q111 � 2, q122 � 3, and
q133 � 2. The remaining demand levels become x̆ � (0,
5, 7), and the remainingsupply levelsbecome y̆ � (6, 0, 0).

Then, we proceed to match type 2 demand with
type 1 supply. The difference between type 2 demand
and type 1 supply is x̆2 − y̆1 � −1, and our computation
yields the protection level as p̂121(−1) � 3. Therefore, the
matching quantity between type 2 demand and type 1
supply is q121 � 2. We update the remaining demand
and supply levels as x̆ � (0, 3, 7) and y̆ � (4, 0, 0).

The pair (3, 2) cannot be matched because type 2
supply is not available. It remains to match (3, 1). The
difference between type 3 demand and type 1 supply
is 3, and we obtain the protection level p̂131(3) � 15.
Thus, the matching quantity between type 3 demand
and type 1 supply is q131 � 0.

To compute the expected total discounted reward
under the heuristic, we randomly generateM � 1, 000

sample paths of demand and supply realizations
(denoted by ϕ1, . . . ,ϕM). Starting from a given initial
state (x1,y1) in period 1, we apply Algorithm 1 along
each sample path and calculate the corresponding
total discounted reward. We then calculate the av-
erage total discounted reward over the 1,000 sample
paths as the expected total reward under the heuristic.
For (x1,y1) � (2, 8, 9, 8, 3, 2), our heuristic leads to an
expected total discounted reward equal to 1,088.77.
We further derive an upper bound on the optimal

expected total discounted reward by assuming that in
period 1 the firm has perfect information about de-
mand and supply realizations in all periods. In other
words, for each sample path ϕk (k � 1, . . . ,M), the firm
can perfectly predict all demand and supply realizations
along the sample path, and therefore solve a linear
program to obtain the optimal matching quantities in all
periods and the correspondingexpected total discounted
reward (for the given initial state (x1,y1)), which we
denote by TRperfect info(x1,y1,ϕk). By averaging over all
the M sample paths, we obtain an approximate up-
per bound U(x1,y1) :� ∑M

k�1 TR
perfect info(x1,y1,ϕk)/M

on the optimal expected total discounted reward.
For (x1, y1) � (2, 8, 9, 8, 3, 2), we obtain an approximate
upper bound equal to U(x1,y1) � 1, 111.76. Thus, our
heuristic achieves at least 1,088.77

1,111.76 × 100% ≈ 97.93% of
the optimal expected total discounted reward.
Finally, for 200 randomly selected initial states (x1,y1)

such that max{x11, x12, x13, y11, y12, y13} ≤ 20, our heuristic
achieves over 96.62% of the upper bound from the
perfect information case.

5. Vertically Differentiated Types
We now consider vertically differentiated demand
and supply types. Each demand or supply type is
associated with a quality level, and it generates a
higher reward if matched with a supply or demand
type of higher quality. In other words, the unit
matching reward between type i demand and type j
supply is an increasing function rtij � f t(ai, bj) of ai and
bj, which represent the quality of demand type i and
supply type j, respectively. For simplicity, we con-
sider an additive reward function rtij � f td(ai) + f ts (bj),
where f td and f ts are increasing in ai and bj, respectively.
We write rtid :� f td(ai) and rtjs :� f ts (bj). Without loss of
generality, suppose that a demand or supply type
with a smaller index has a higher quality and there-
fore leads to a higher unit reward, that is, rt1d > rt2d >· · · > rtmd and rt1s > rt2s > · · · > rtns. In addition, we as-
sume that the unit rewards (after adjustment by the
discount factor and the carry-over rates) are de-
creasing in time as in the following assumption.

Assumption 4. For any t � 1, . . . ,T − 1, i � 1, . . . ,m, and
j � 1, . . . , n, we assume rtid − rti+1,d ≥ γα(rt+1id − rt+1i+1,d) and
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rtjs − rtj+1,s ≥ γβ(rt+1js − rt+1j+1,s) (where rtm+1,d � rtn+1,s :� 0 for
any period t).

We present two examples that satisfy Assumption 4.

Example 7. We consider the following dynamic trans-
portation problem of donated goods, and focus on the
transportation from a given origin and destination.
There are n logistics providers offering to ship the
goods at regular or at discounted or free rates, using
their spare capacity. Let cj be the rate offered by
provider j, for j � 1, . . . ,n. Suppose without loss of
generality that c1 ≤ · · · ≤ cn. In each period, the spare
capacity of each provider is uncertain (since it de-
pends on how much capacity is consumed by its
regular business volume). Any unused spare ca-
pacity in a period is lost (i.e., β � 0). Donated goods to
be shipped also arrive in random quantities. Suppose
that the donated goods can be classified into m types
according to their urgency. Unshipped goods in a period
partially carry over to the next period with rate α ≥ 0.
Let b be the social benefit for each unit of good
shipped, and wi be the per-unit waiting cost for any
unshipped type i goods in a period. We assume that
w1 ≥ · · · ≥ wm. If we assign a unit of type i goods to any
provider j in period t, a total amount of discounted
waiting costwi

∑T
τ�t(γα)τ−t is saved. Thus, the reward for

assigning a unit of type i goods to provider j in period t
is rtij � b − cj+ wi

∑T
τ�t(γα)τ−t. Let rtid :� wi

∑T
τ�t(γα)τ−t

and rtjs :� b − cj, and we can readily verify that As-
sumption 4 is satisfied.

Example 8. Consider an online labor market platform
that dynamically assigns workers to customers’ re-
quests. Customers and workers are divided into m
and n types, respectively, according to their ratings.
Without loss of generality, suppose that type i cus-
tomers have higher ratings than type i + 1 customers
for i � 1, . . . ,m − 1 and that type j workers have higher
ratings than type j + 1 workers for j � 1, . . . ,n − 1.
Workers with higher ratings may receive a higher
wage (e.g., Handy offers its cleaning workers four
wage rates according to their rating), and on average
they also generate higher surplus for their customers
(e.g., through better service quality). Customers with
higher ratings generate higher surplus for the worker
(e.g., through a better experience or more generous
tipping, etc.). Let sj be the compensation for type j
workers, fj the surplus generated by a type jworker for
any customer the worker serves, and gi the surplus
generated by a type i customer for the customer’s
worker (in addition to the payment to the worker).
Suppose that sj and fj are decreasing in j, and gi is
decreasing in i, and the platform aims to maximize
the total welfare of customers and workers. The unit
reward for matching a type i customer and a type j

worker is rtij � gi + fj + sj. With rtid :� gi and rtjs :� fj + sj,
Assumption 4 is satisfied.

5.1. The Optimal Policy
Under Assumption 4, we can verify that any two
neighboring pairs are comparable by the modified
Monge condition (the pair with a higher-quality de-
mand or supply type weakly precedes the other), and
the strong modified Monge condition holds in all
periods (see the proof of Proposition 4 inHu andZhou
2020). The model reduces to special case 2 (if some
demand or supply types are removed, the highest-
quality demand type and supply type among the
remaining types form the only pair of the highest
level). Thus, the optimal policy has a match-down-to
structure, which we call the top-down matching struc-
ture, as described in Algorithm 2 (since it matches
higher-quality types first).

Algorithm 2 (Top-Down Matching Procedure Up to a Total
Matching Quantity Q̄ in a Period)

1: i ← 1, j ← 1, total matching quantity Q ← 0
2: while Q < Q̄ do
3: Match type i demandwith type j supply for a

quantity qij such that either one of them
runs out or the total matching quantity Q
reaches Q̄

4: Q ← Q + qij
5: i ← i + 1 if type i demand runs out, and j ←

j + 1 if type j supply runs out
6: end while

Proposition 4. Suppose that Assumption 4 holds. There
exists an optimal matching policy that follows the top-down
matching procedure up to some total matching quantity Q̄t

in each period t.

Algorithm 2 shows that in each period the top-
down matching policy is fully determined by the
totalmatching quantity. In the next lemma,we reduce
the optimal matching problem in any period to a one-
dimensional convex optimization problem with re-
spect to the total matching quantity.

Lemma 2. The optimal expected discounted reward Vt(x, y)
from period t to T is equal to

max
Q̄

Gt Q̄, x,y
( )

:� ∑m
i�1

rtid min Q̄ −∑i−1
i′�1

xi′

( )+
, xi

{ }

+∑n
j�1

rtjs min Q̄ −∑j−1
j′�1

yj′

( )+
, yj

{ }

+ γEVt+1 αu +Dt+1, βv + St+1( )
, (3)
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subject to 0 ≤ Q̄ ≤ min{∑m
i�1 xi,

∑n
j�1 yj}, ui � [xi − (Q̄ −∑i−1

i′�1 xi′ )+]+ for i � 1, . . . ,m and vj � [yj − (Q̄ −∑j−1
j′�1

yj′ )+]+ for j � 1, . . . ,n. Moreover, Gt(Q̄, x,y) is concave in
Q̄ for t � 1, . . . ,T.

Given the state (x,y) in period t, we denote by
Q̄t∗(x,y) the optimal total matching quantity. If rt1d ≥
γmax{α, β}rt+11d and rt1s ≥ γ max{α, β}rt+11s for t � 1, . . . ,
T − 1 (those conditions are satisfied, e.g., in Examples 7
and 8), it follows from Theorem 3 that the pair (1, 1)
should be matched greedily, and thus Q̄t∗(x, y) ≥
min{x1, y1}. In general, the optimal policy may not
match all demand and supply greedily but would
reserve some lower-quality supply (respectively,
demand) as “safety stock” for high-quality demand
(respectively, supply) in later periods.

When the demand carry-over rate α equals the
supply carry-over rate β or when demand is perish-
able, we obtain the following properties of the opti-
mal total matching quantity in a period.

Proposition 5. Suppose that either α � β > 0 or α � 0 < β.
In any period t:

i. The optimal total matching quantity Q̄t∗(x,y) is in-
creasing in xi and yj (for i � 1, . . . ,mand j � 1, . . . ,n), with
the corresponding rates of increase smaller than or equal
to one.

ii. The optimal total matching quantity Q̄t∗(x,y) is more
sensitive to changes in the available demand and supply of
higher quality, that is, it increases faster in xi than xi+1, and
in yj than yj+1, for i � 1, . . . , m − 1, j � 1, . . . ,n − 1.

Like the horizontal model withm � n � 2 and equal
carry-over rates (see Proposition 2(i)), Proposition 5
helps simplify the computation of the optimal total
matching quantity in a given period t. For example,
suppose that we have obtained Q̄t∗(x,y). Then, by
Proposition 5(i), we only need to search for the value
of Q̄t∗(x + ei, y) within the interval [Q̄t∗(x,y), Q̄t∗(x,
y) + 1]. In particular, for the discrete-value system
where both the states and matching quantities take
integer values, Q̄t∗(x + ei,y)must equal either Q̄t∗(x,y)
and Q̄t∗(x, y) + 1, whichever yields a higher expected
total discounted reward. Further, if the latter yields
a higher expected total discounted reward, then for
any k � 1, . . . , iwe have Q̄t∗(x + ek,y) � Q̄t∗(x,y) + 1 by
Proposition 5(ii).

We remark that, when demand is perishable (i.e.,
α � 0), in any period t the vector of demand levels x
is always equal to the new demand Dt joining in that
period. For the case with perishable supply (i.e., β � 0),
we can obtain analogous properties to Proposition 5
by symmetry.

Lemma 2 and Proposition 5 help us compute the
optimal total matching quantity in a given period
more efficiently, provided that we can efficiently

compute the expected value function EVt+1 in (3).
However, computation of EVt+1 is nontrivial if there
are many demand or supply types. Next, we study
a heuristic that approximates EVt+1 by the reward
achieved by the greedy policy.

5.2. The One-Step-Lookahead Heuristic
We consider a heuristic method that approximates
the value function Vt+1(xt+1, yt+1) by the expected total
matching reward from period t + 1 to the end of
the time horizon under the greedy matching policy
(following the top-down order), which we denote by
Vg

t+1(xt+1, yt+1). Then, for every period t, we solve (3)
for the approximate optimal total matching quantity
after replacing the value function Vt+1 by Vg

t+1. To
evaluate the function Vg

t+1(xt+1,yt+1) for any given
state (xt+1,yt+1), we resort to Monte Carlo simulation
by averaging the total discounted matching reward
over randomly generated sample paths of demand
and supply realizations. We refer to this heuristic as
the one-step-lookahead heuristic because it improves
the greedy matching policy by looking one period
ahead. We have the following characterization of the
one-step-lookahead heuristic.

Proposition 6. The one-step-lookahead heuristic follows the
top-down matching procedure in each period if Assumption 4
holds. Moreover, it performs weakly better than the greedy
matching policy (with respect to the expected total discounted
reward), and it is optimal for any two-period problem.

When the demand and supply carry-over rates are
equal (i.e., α � β), we will show that the one-step-
lookahead heuristic leads to a matching policy with a
simple structure characterized by a set of protection
levels {ptsij(IB)}i�1,...,m, j�1,...,n, t�1,...,T, which depend on
the total imbalance between demand and supply IB :
� ∑m

i�1 xi −∑n
j�1 yj in a period t (rather than on the

full state (x,y)). Specifically, under the top-down
matching procedure, immediately before we match
i with j, the available supply (of all types) is ṽijn,U :�∑n

l�j yl−min{(∑i−1
k�1 xk −∑j−1

l�1 yl)+,yj} (i.e., supply of types
j, . . . , n less the amount of type j supply consumed
by type i − 1 or higher-quality demand). If we were to
match i with j to the maximum extent, the available
supply would reduce to ṽijn,L :� ∑n

l�j yl −min{(∑i
k�1 xk−∑j−1

l�1 yl)+, yj}. If α � β, Proposition 7 shows that the
one-step-lookahead heuristic will match iwith j such
that the available supply (of all types) reduces to the
protection level ptsij(IB) or as close to ptsij(IB) as possible
within the range [ṽijn,L, ṽijn,U].
Proposition 7. Suppose α � β. For each pair (i, j) there
exists a protection level ptsij(IB) dependent only on the total
imbalance IB :� ∑m

i′�1 xi′ −∑n
j′�1 yj′ , such that when the one-

step-lookahead heuristic matches (i, j), it matches the pair
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for a quantity of min{[ṽijn,U − ptsij(IB)]+, ṽijn,U − ṽijn,L} to re-
duce the total supply to ptsij (IB), or as close to it as possible

within the range [ṽijn,L, ṽijn,U].
We describe the matching procedure in Proposition 7

with respect to the protection levels {ptsij (IB)}∀i,j,t in
Algorithm B.3 of online Appendix B. In particular, the
one-step-lookahead policy will try to reduce the total
supply to the protection level ptsij (IB) by matching i
with j, and then stop the matching procedure in pe-
riod t. If type i demand (respectively, type j supply)
runs out before the total supply reaches the protection
level ptsij(IB), it will continue to match type i + 1 de-
mand with type j supply (respectively, type i demand
with type j + 1 supply). If the total available supply
(i.e., ṽijn,U) is already below the protection level ptsij(IB)
immediately before we match i and j, the one-step-
lookahead policy will stop the matching procedure
without matching i and j.

Next, we discuss how to find the protection level
ptsij (IB) in Proposition 7. Because the protection level
ptsij (IB) remains the same as long as the total imbalance
IB is held constant, we can assume without loss of
generality that all the available demand is of type i
and all the available supply is of type jwhen we start
to match iwith j in period t. If the firmmatches iwith j
until the total supply reduces to p, it receives a reward
rtij(ṽijn,U − p) in period t (recall that ṽijn,U is the available
supply immediately before matching (i, j)). In the
meantime, by the definition of the total imbalance IB,
the total demandwill reduce to p + IB, which results in
the postmatching levels ((p + IB)emi , penj ). Assuming
greedy matching from period t + 1 to T and noting
that the total supply cannot be reduced below IB−, we
choose the protection level ptsij (IB) as follows:

ptsij IB( ) :� argmax
p≥IB−

−rtijp
{

+ γEVg
t+1 α IB+p

( )
ei

( +Dt+1, βpej+St+1)}, (4)
to maximize the expected discounted reward from
period t to T. With α � β, the right side of (4) is a
convex optimization problem (see Lemma B.11 in
online supplement B for a proof). If α �� β, Proposi-
tion 7 may not hold. Nevertheless, as a heuristic
method, we can still use (4) to obtain ptsij(IB) and apply
Algorithm B.3 to match demand with supply in any
period t.

Previously, Proposition 5 shows that the optimal
total matching quantity Q̄t∗(x, y) is increasing in xi,
with a rate of increase smaller than or equal to 1,
for any i � 1, . . . ,m. Suppose that the same property
also holds for the total matching quantity resulting
from the matching procedure in Algorithm B.3 (even
though it is not guaranteed, we can nonetheless make
this assumption as part of the heuristic method).

Then, the protection level ptsij(IB) should be decreasing
in IBwith a rate of decrease smaller than or equal to 1
(i.e., ptsij (IB − 1) − 1 ≤ ptsij (IB) ≤ ptsij(IB − 1) for all IB ≥ 1;
this is because the total matching quantity is de-
creasing in the protection level, and IB is increasing in
xi). This is helpful for reducing the computational
burden for the model with discrete-valued states and
decisions. Suppose thatwehavealreadyobtainedptsij(IB−1)
andwant to compute ptsij(IB). Instead of solving (4), we
can simply compare the objective value of (4) for p �
ptsij (IB − 1) and p � ptsij(IB − 1) − 1, and choose the one
that yields the greater objective value.
We now present a numerical example to illustrate

the one-step-lookahead policy.

Example 9. Consider m � 3 demand types and n � 3
supply types to be matched over T � 5 periods. The
unit matching rewards are given by rtij � rtid + rtjs
(i � 1, 2, 3, j � 1, 2, 3), where rt1d � 100, rt2d � 30, rt3d � 5,
rt1s � 102, rt2s � 22, and rt3s � 4 for all t � 1, . . . , 5. Sup-
pose that α � β � 1 (i.e., all unmatched demand and
supply carry over to the future) and the discount factor
is γ � 0.9. In each period t, the new arrivals of type i
demand follow the discrete uniform distribution over
the values {0, 1, 2, 3, 4} for all i � 1, 2, 3, and the new
arrivals of type j supply follow the discrete uniform
distribution over the values {0, 2, 10, 12}. The initial
state in period 1 is (x1, y1), where x1 � (18, 3, 10) and
y1 � (5, 8, 18). For simplicity, we assume that both
states andmatching quantities take only integer values.
We see that the total imbalance in period 1 is IB �∑3

i�1 x1i −∑3
j�1 y1j � 0.

We now apply the one-step-lookahead heuristic
to find the matching quantities in period 1. To that
end, we compute the matching thresholds by (4)
(to solve the right side of (4), we evaluate the func-
tion EVg

t+1(α(IB + p)ei +Dt+1, βpej + St+1) with Monte
Carlo simulation, by averaging over N � 1, 000 ran-
domly generated sample paths). We obtain the follow-
ing thresholds: p̂s11(0) � p̂s12(0) � p̂s13(0) � 0, p̂s21(0) � 4,
p̂s22(0) � 7, p̂s23(0) � 8, p̂s31(0) � 7, p̂s32(0) � 13, and
p̂s33(0) � 18.
In period 1, the heuristic first matches the pair (1, 1)

greedily (since the threshold p̂s11(0) � 0), which leads
to a remaining quantity 13 of type 1 demand and
no remaining type 1 supply. Then, it proceeds to
match the pairs (1, 2) and (1, 3) greedily in sequence.
(Note that p̂s12(0) � p̂s13(0) � 0, and that there is some
remaining type 1 demand but no type 2 supply after
the greedy matching of (1, 2).) At this moment, the
remaining quantities of types 1, 2, and 3 demand
are 0, 3, and 10, respectively, and the remaining
quantities of types 1, 2, and 3 supply are 0, 0, and
13, respectively.
We then match the pair (2, 3). Since p̂s23(0) � 8, the

heuristic aims to reduce the total remaining supply to
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eight or as close to it as possible. However, since there
are only three units of type 2 demand available,
we will match a quantity of three between the pair
(2, 3), thereby reducing the total remaining supply to
10 (only type 3 demand and type 3 supply have
remaining quantities).

Finally, only 10 units of type 3 demand and 10 units
of type 3 supply remain. Given the threshold p̂s33(0) �
18, we do not match the pair (3, 3) since the total
remaining supply is 10 < 18 � p̂s33(0).

To evaluate the performance of the one-step-lookahead
heuristic approximately, we randomly generate 1,000
sample paths of demand and supply realizations.With
the initial demand and supply levels x1 � (18, 3, 10)
and y1 � (5, 8, 18), we apply the heuristic on each
sample path, and compute the average total matching
reward, which turns out to be 5,463.58, across all the
1,000 sample paths. We also compute the expected
reward under perfect information as 5,544.89, which
is an upper bound on the optimal expected reward.
We see that the heuristic achieves 98.53%of this upper
bound, and thus it achieves at least 98.53% of the
optimal expected discounted reward.

We further randomly choose 200 initial states such
that each entry of the state is between 0 and 20, andwe
find the heuristic to achieve 96.03% or more of the
optimal expected reward.

6. Concluding Remarks
We consider a stochastic and dynamic matching
framework with heterogeneous demand and supply
types in discrete time. We propose the modified and
strongmodifiedMonge conditions toprioritize demand-
supply pairs optimally and study two reward structures
that satisfy those conditions for all neighboring pairs. In
the unidirectionally horizontal reward structure, dis-
tance determines priority, and in the vertical reward
structure, quality determines priority. For both re-
ward structures, the optimal policy proceeds along
the priority structure, and when it comes to the
matching between a specific pair, the optimal policy
matches the pair down to a threshold. This structural
property of priority and thresholds is a generaliza-
tion of priority structures seen in the balanced and
deterministic transportation problems and of the
threshold-type policies seen in the inventory man-
agement (e.g., base-stock levels) and quantity-based
revenue management (e.g., protection levels).

The proposed framework, which generalizes many
classical problems, may lead to interesting future
research. For example, we generalize inventory ra-
tioning problems in the following sense. For an in-
ventory rationing problem, there is typically one type
of good andmultiple classes of demand differentiated
by their waiting or shortage costs, and the manager
decides dynamically the replenishment quantity and

allocation of available inventory to each demand
class. Our framework allowsmultiple supply streams
with exogenously random arrivals for each stream
and interstream substitution. If an inventory ration-
ing problem has exogenously given supply in each
period, it becomes a special case of our framework.
For example, a firm may have a long-term agreement
with its supplier for frequency and quantity of re-
curring deliveries, but the actual delivery may have
random quantities due to supply disruption or ran-
dom yield. Our framework does not explicitly con-
sider replenishment decisions, and it would be inter-
esting to consider the joint replenishment-matching
problem. If the manager can replenish each type of
supply and at the same time, decline some of the new
supply arrivals and dispose of some current inventory,
we conjecture that the optimal replenishment or dis-
posal policy will aim for an optimal target level for
each supply type, and the matching decision will have
the same structure as in our results.
Our frameworkalsogeneralizes revenuemanagement

problems with multiple types of resources by consid-
ering random supply arrivals, which are relevant for
many sharing-economy platforms due to their use of
independent or crowdsourced suppliers. Our paper fo-
cuses on quantity-matching decisions. It would be in-
teresting to study joint pricing andmatching decisions
(e.g., ride-hailing platforms make both pricing and
matching decisions dynamically). One may also con-
sider the possibility of matching multiple demand
units with one supply unit (e.g., real-time carpooling)
or a demand unit requesting multiple supply units (e.g.,
in on-demand delivery problems, where the items in an
order may be delivered by multiple couriers in parallel),
as opposed to our assumption of one-to-one matching.
Moreover, it would also be interesting to study our
problem from a data-driven perspective. For example,
while making matching decisions, a firm may dy-
namically learn the distribution of demand and supply
arrivals or the matching rewards if they are unknown.
Finally, further computational or algorithmic studies

can be another direction for future research. We compute
the threshold levels heuristically for our horizontal and
vertical models by greedy approximation of the future
matching rewards. It would be interesting to use the
ADP techniques to approximate the value functions and
compute the threshold levels from those approximations.

Acknowledgment
The authors gratefully acknowledge Hau Lee (Department
Editor), the associate editor, and four anonymous referees for
their valuable comments, which significantly improved the
paper. We thank Dan Zhang for his careful review and
valuable comments on this work as part of the second au-
thor’s dissertation. We thank Mehmet Begen, Fangruo Chen,
Xin Chen, Stan Dimitrov, Dinesh Gauri, Ming-Hui Huang,

141
Hu and Zhou: Dynamic Type Matching
Manufacturing & Service Operations Management, 2022, vol. 24, no. 1, pp. 125–142, © 2021 INFORMS



Benny Martin, Hamid Nazerzadeh, Ozge Sahin, Xuanming
Su, Chung-Piaw Teo, and Tunay Tunca for their valuable
discussions and comments at various conferences, work-
shops, and paper competitions.

References
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