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Online Appendix to the Paper
“Newsvendor Selling to Loss Averse Consumers

with Stochastic Reference Points”

Appendix. A. Extensions

In this section, we relax some assumptions of the base model and show that our main findings

are robust for these extensions.

A.1. Inventory Rationing During Sales

We consider the extension where the newsvendor firm rations inventory during sales. When the

product is priced at the sale price, both the loss-averse consumers and bargain hunters are present.

Let δ ∈ [0,1] denote the chance of consumers being served during sales. Let p∗(δ), τ ∗(δ) and Π∗(δ) be

the firm’s optimal full price, optimal sales threshold and optimal expected profit given a rationing

parameter δ. We have the following proposition:

Proposition 10 Given a fixed order quantity q, p∗(δ) is increasing, τ ∗(δ) is decreasing, and Π∗(δ)

is increasing in the rationing parameter δ.

Proposition 10 suggests that when consumers have greater chances of being served, the fill rate

will increase, which drives up the full price and demands less frequent sales, so the firm is better

off, with a higher profit margin and less sales. On the other hand, if the bargain hunters have

greater chances of being served, then the firm needs to run more frequent sales and lower the full

price to compensate for the loss-averse consumers, because those consumers see relatively lower fill

rates compared to when they are prioritized over bargain hunters. Proposition 10 implies that if

viable, the firm would prefer to prioritize consumers during sales, as assumed in the base model.

A.2. Consumer Heterogeneity

A.2.1. Heterogeneity in Loss Aversion

We consider a market with heterogeneity in loss aversion. Consumers have the same consumption

valuation v, but differ in the degree of loss aversion. One segment is loss neutral, i.e., λ= 1, and

the other is loss averse, i.e., λ> 1. The fraction of loss neutral (averse) consumers is αl (αh), with

αl +αh = 1. The loss-neutral consumers buy at a price p if and only if p≤ v. Conditional on the

relations between p and v, there are three cases of personal equilibria for the loss-averse consumers.

For each case, we analyze the firm’s optimal decisions on the order quantity and contingent pricing,

and show that most managerial insights obtained from Propositions 3 – 4 sustain under mild

conditions.
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Equilibrium 1. In the first (possible) equilibrium, the loss neutral consumers buy at both the

sales price s and the regular price pl, while the loss averse consumers only buy at the sales price

s. For this equilibrium to sustain, the following three constraints must be satisfied simultaneously:

φl =

∫ τl

0

min{x, q}
x

dF (x), pl ≥ v+
φl(s+ v)− v

1 + ηλ
(λ− 1)η, pl ≤ v. (A-1)

In this case, the reference points for the loss averse consumers are (v,−s) with probability φl

and (0,0) with probability 1− φl. The second constraint of (A-1) is derived from U((v,−pl)|Γ)≤
U((0,0)|Γ) where Γ = {(v,−s), (0,0)}, ensuring that the full price is sufficiently high such that the

loss averse consumers would not deviate from their purchase plans. The third constraint of (A-1)

ensures that the loss neutral consumers buy at the full price pl. Equilibrium 1 corresponds to the

Case (iv) of Proposition 16 in the Supplemental Note, where consumers with loss aversion λ less

than a threshold choose to buy at both prices. In this equilibrium, the firm’s expected profit is

Πl(pl, τl) = sqF (τl) + pl
∫ +∞
τl

min{αlx, q}dF (x)− cq, The optimal solution to Πl(pl, τl) subject to

constraints in (A-1) is p∗l = v, τ ∗l = min
{

sq
αlv
, F−1

(
v
v+s

)}
. Note that the optimal solution only

depends on order quantity q and is independent of loss aversion parameter λ, so the firm’s expected

profit is a function of q. Based on these properties, we have comparative statics results as (i) of

Proposition 11.

Equilibrium 2. In the second (possible) equilibrium, the loss averse consumers buy at both the

sales price s and the regular price ph, while the loss neutral consumers only buy at the sales price

s. For this equilibrium to sustain, the following constraints must be satisfied simultaneously:

φh =

∫ τh

0

min{x, q}
x

dF (x) +

∫ +∞

τh

min{αhx, q}
αhx

dF (x),

ph = v+
φhsF (τh)− [1−φh(2−F (τh))]v

1 + η[λ−φh(λ− 1)(1−F (τh))]
(λ− 1)η, ph > v. (A-2)

The third constraint in (A-2) ensures that the loss neutral consumers will not buy at the full

price. Equilibrium 2 corresponds to Case (iii) of Proposition 16 in the Supplemental Note, where

consumers with loss aversion λ greater than a threshold choose to buy at both prices. In this

equilibrium, the firm’s expected profit is Πh(ph, τh) = sqF (τh) + ph
∫ +∞
τh

min{αhx, q}dF (x) − cq,
Note that the fill rate in the homogenous consumer case, i.e., φ defined as (10), is independent of

the sales threshold τ ; while the fill rate φh, defined as the first constraint in (A-2), is dependent of

τh and is non-increasing in τh. Therefore, the sales threshold τh affects the regular price, both as a

direct factor in the functional form of the regular price, and as an indirect factor through the fill

rate φh. This dependence can be explicitly shown in the first order condition as follows.

Given a fixed order quantity q, the optimal sales threshold τ ∗h must satisfy the following first

order condition:

∂Πh

∂τh
= f(τh)

[
sq− phαhτh +

(
∂ph
∂F

+
∂ph
∂φh

∂φh
∂τh

)∫ ∞
τh

min{αhx, q}dF (x)

]
= 0. (A-3)



3

where ∂φh/∂τh = κ(τh) =

{
0, if τh ≤ q;
q/τh− 1, if τh > q.

Comparing (11) with the terms in the bracket at

the right hand side of (A-3), we note that the existence of κ(τh) captures the dependence of the

fill rate φh on the sales threshold τh. The comparative statics of Equilibrium 2 are summarized as

Proposition 12.

Equilibrium 3. In the third (possible) equilibrium, both the loss neutral consumers and the loss

averse consumes buy at the full price p. For this equilibrium to sustain, the following constraints

must be satisfied simultaneously:

φo =

∫ +∞

0

min{x, q}
x

dF (x), po ≤ v+
φosF (τ)− [1−φo(2−F (τ))]v

1 + η[λ−φo(λ− 1)(1−F (τ))]
(λ− 1)η, po ≤ v. (A-4)

The third constraint in (A-4) ensures that the loss neutral consumers also buy at the regular price

po. In this equilibrium, the firm’s expected profit is Πo(po, τo) = sqF (τo)+po
∫ +∞
τo

min{x, q}dF (x)−

cq. The firm’s objective is to maximize Πo(po, τo) subject to constraints in (A-4). In optimum,

either the second constraint or the third constraint in (A-4) must be binding. Conditional on the

binding constraint, we have the firm’s pricing strategy and the comparative statics results as points

(ii) and (iii) of Proposition 11.

Proposition 11 In the case of two consumer types, we have

• If Equilibrium 1 prevails, then

(i) both the optimal order quantity and the optimal sales threshold (when order quantity is opti-

mized) are decreasing in the procurement cost c;

• If Equilibrium 3 prevails, then

(ii) in the regime where the second constraint in (A-4) is binding in optimum, the results of Propo-

sition 3 to Proposition 4 hold;

(iii) in the regime where the third constraint in (A-4) is binding in optimum, the regular price is v

and the optimal sales threshold is τ ∗o = sq/v, and both the optimal order quantity and the optimal

sales threshold (when order quantity is optimized) are decreasing in the procurement cost c.

Proposition 12 If Equilibrium 2 prevails, then

(i) In the neighborhood where the optimal sales threshold τ ∗h is decreasing in the order quantity q,

(a) the optimal full price p∗h and the expected price p̂∗h = sF (τ ∗h) + p∗h(1−F (τ ∗h)) is increasing in

the order quantity q;

(b) the results of Propositions 7 and 4 continue to hold.

(ii) If F (τ ∗h(λ))< F̂ , then the optimal sales frequency F (τ ∗h) is decreasing, the optimal full price p∗h

is increasing, and the firm’s expected profit Π∗h is strictly increasing in the loss aversion parameter

λ.
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A.2.2. Heterogeneity in Consumption Valuation

We consider a market with consumers who are heterogenous in their consumption valuation. Con-

sumers have the same degree of loss aversion λ> 1, but differ in their consumption valuation: One

segment of consumers has a consumption valuation of vh and the other segment has a consumption

valuation of vl, with 0< vl < vh. It can be shown that two cases of personal equilibria would prevail:

One is that only the high-type consumers would buy at the full price, and the other is that both

types of consumers would buy at the full price. As we have done for the extension of consumer

heterogeneity in loss aversion, we show that the results of Propositions 3 – 4 continue to hold with

mild conditions.

Proposition 13 When consumers differ in consumption valuation,

(i) for the personal equilibrium in which only the high-type consumers buy at both the full and sale

price, while the low-type consumers buy only at the sale price, the results of Proposition 12 hold;

(ii) for the personal equilibrium in which both types of consumers buy at both the full and sale

price, the results of Propositions 3 – 4 continue to hold.

A.3. Competition

Lastly, we consider a duopoly of competing newsvendors with an identical procurement cost. Both

firms simultaneously choose their initial inventory levels and commit to pricing strategies that are

contingent on demand realizations (see, e.g., Wang and Hu 2014). By observing the price distribu-

tions and product availabilities, consumers decide which firm to frequent by forming expectations

about their consumption outcomes. Consumers are allowed to shop around: if the full prices of

both firms are acceptable, consumers will first go to the firm with a lower full price; if that firm

has insufficient inventory, those unsatisfied consumers will then go to the other firm. Heidhues

and Koszegi (2014) show that under perfect ex ante competition, firms would not implement a

randomized price strategy in equilibrium. In other words, in equilibrium, both firms would set a

deterministic price equal to the marginal cost c and thus both firms would earn zero profits. This

finding no longer holds when firms face demand uncertainty.

Proposition 14 When newsvendors in a duopoly compete, setting a deterministic price would not

be an equilibrium strategy.

The reason for the difference is as follows. In Heidhues and Koszegi (2014), demand is determinis-

tic, so a firm can only benefit from price randomization by manipulating consumers’ reference price

points. When two firms compete in the market, a firm that randomizes its prices would lower con-

sumers’ expected total utility and lead consumers to prefer the other firm when forming purchase

plans. In contrast, when there is demand uncertainty, contingent pricing not only benefits a firm



5

by manipulating consumers’ reference distribution, but also benefits the firm by better matching

demand with supply. When demand is low, both firms are willing to set the price to be s to clear

their inventories. Therefore, setting a deterministic price would never be an equilibrium strategy.

Note that our assumption about the consumer choice is different from that of Heidhues and

Koszegi (2014). They consider perfect ex ante competition for consumers, i.e., the consumers

observe the price distributions of the two competing retailers, form the expected utilities of buying

from each of the retailers ex ante, and then commit to buying from one of them. While in Propo-

sition 14, we allow consumers to switch from one retailer to another ex post. However, even under

the setting of perfect ex ante competition, the retailers might still adopt the randomized pricing

strategy when there is demand uncertainty. The rationale is as follows. Suppose that retailer i sets

a deterministic price. For retailer −i, the best response problem is to adopt a pricing strategy so as

to maximize her profit, subject to the constraint that the expected utility of buying from retailer

−i is no less than that of buying from retailer i. Mathematically, the best response problem is

equivalent to adding more constraints to the monopoly firm’s problem formulated in Section 3.2.

As a result, the optimal pricing strategy might still be a randomized one (as long as the optimal

contingent pricing policy does not degenerate to a deterministic price). In summary, the driving

force behind contingent pricing is that the retailers face demand uncertainty even if consumers

commit to purchase plans ex ante. While in Heidhues and Koszegi (2014), if the consumers commit

to buying from one of the retailers, there is no demand uncertainty. It is the demand uncertainty

that incentivizes retailers to set prices contingently.

A.4. Price-Dependent Fill Rate

We consider the extension where regular consumers are strategic to an extent that they can distin-

guish the product availabilities by observing which price is charged. That is, the perceived product

availability conditional on seeing the sale price is φ(s) = 1 because consumers are assumed to be

prioritized over bargain hunters during sales, and the perceived product availability conditional on

seeing the full price is φ(p) =
∫∞
τ

min(x,q)

x
dF (x)/

∫∞
τ
dF (x). The following proposition shows results

similar to Propositions 1 and 2, when perceived fill rates are price dependent.

Proposition 15 When fill rates are price dependent, the pricing scheme is of the threshold form

and the optimal full price is

p∗ = v+
(s+ v)F (τ) + v(2φ(p∗)(1−F (τ))− 1)

(1 + ηλ) + η(λ− 1)φ(p∗)(1−F (τ))
(λ− 1)η.

Let τ ∗ still denote the optimal sales threshold when fill rates are price dependent, then the optimal

full price p∗ is higher than loss-averse consumers’ valuation v, if and only if one of the following

two cases holds: (i) φ(p∗)≥ 1/2; (ii) φ(p∗)< 1/2 and F (τ ∗)> v(1−2φ(p∗))

s+v(1−2φ(p∗))
.
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Proposition 15 shows that a higher fill rate for regular consumers (case (i)) or higher sales

frequency when the fill rate for regular consumers is low (case (ii)) can help strengthen the positive

attachment effect.

Unlike the base model where the optimal fill rate can be shown to depend only on the initial order

quantity (see Equation (10)), the product availability conditional on seeing the full price, when fill

rates are price dependent, depends on the optimal full price as well. As a result, the optimal full

price, p∗, the optimal sales frequency, τ ∗, and the product availability conditional on seeing the full

price, φ(p∗), are characterized by a set of three complicated nonlinear equations. This complication

makes the comparative statics problems much less tractable, if not impossible. However, we expect

similar insights to Propositions 3 and 9 to continue to hold. This is because that the driving force

behind these comparative statics results in the base model is that the positive attachment effect

is reinforced by higher product availability. The same driving force is still expected to hold for

price-dependent fill rates.

Appendix. B. Proofs.

Proof of Lemma 1

According to the outcome distribution (6), the consumer’s total utility from outcome (v,−p) is

U((v,−p)|Γ(g,φ, p)) = (v − p)− ηλ(p− s) · φg(s) + (ηv − ηλp) · (1− φ), where (v − p) is the con-

sumption utility, −ηλ(p− s) ·φg(s) is the gain-loss utility comparing outcome (v,−p) to outcome

(v,−s), and (ηv−ηλp) · (1−φ) is the gain-loss utility comparing outcome (v,−p) to outcome (0,0).

The consumer’s total utility from outcome (0,0) is U((0,0)|Γ(g,φ, p)) =
∑

p=p,s(ηp−ηλv) ·φg(p).

where (ηp−ηλv) ·φg(p) is the gain-loss utility comparing outcome (0,0) to outcome (v,−p), p= p, s.

According to (3), by equating U((v,−p)|Γ(g,φ, p)) and U((0,0)|Γ(g,φ, p)), and after some alge-

bra, we have the desired result.

Proof of Proposition 1

First, we characterize the full price and optimal fill rate when q is given. If the firm can successfully

induce consumers to buy at both prices, then according to (6) in Lemma 1, the full price p∗ must

satisfy

p∗ = v+
[φψs− (1−φ(2−ψ))v]

1 + η[λ−φ(λ− 1)(1−ψ)]
(λ− 1)η, (A-5)

where ψ is the probability of s being charged. Since p∗ is increasing in s, which justifies the modeling

assumption that the sale price should not be lower than s. By Assumption (V), it follows that

p∗ > s. In this case, the pricing scheme is p=

{
s if x∈Ω,
p∗ if x∈Ωc,

where Ω satisfies
∫

Ω
dF (x) =ψ. Note

that the fill rate φ and sales frequency ψ are two independent decision variables for now.
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Note that p∗ defined in (A-5) is strictly increasing in fill rate φ, i.e.,

∂p∗

∂φ
=

[ψs+ (2−ψ)v] + ηλψs+ ηv(λ+ 1−ψ)

{1 + η[λ−φ(λ− 1)(1−ψ)]}2
(λ− 1)η > 0. (A-6)

Therefore, regardless how ψ and Ω are chosen, the strategy to maximize fill rate is to set the

product availability for each demand realization to be ξ(p∗, q, x) = min{x,q}
x

. This strategy increases

both the full price and the sales to consumers. As a result, the optimal fill rate should be φ∗ =∫∞
0
ξ(p∗, q, x)dF (x) =

∫∞
0

min{x,q}
x

dF (x).

Next, the remaining task is to determine the sales frequency and the set of demand realizations

chosen for sales. For a fixed ψ, we show that it is optimal for the firm to set Ω = [0, τ ] such that ψ=∫ τ
0
dF (x). First, note that given any Ω that satisfies

∫
Ω
dF (x) =ψ, the firm’s expected profit is Π =

sq
∫

Ω
dF (x)+p∗

∫
Ωc
ξ(p∗, q, x) ·x ·dF (x)−cq= sqψ+p∗

∫
Ωc

min{x, q}dF (x)−cq. Hence, to maximize

profit is equal to maximize
∫

Ωc
min{x, q}dF (x). Subject to

∫
Ω
dF (x) = ψ, the best choice of Ω to

maximize
∫

Ωc
min{x, q}dF (x) is Ω = [0, τ ] then ψ =

∫ τ
0
dF (x) = F (τ), and

∫
Ωc

min{x, q}dF (x) =∫∞
τ

min{x, q}dF (x). Consequently, the sales frequency ψ and the threshold for running sales τ are

interchangeable decision variables to the firm. We will focus on determining τ .

Because Ω = [0, τ ], the firm’s expected profit function can be rewritten as Π = sq
∫ τ

0
dF (x) +

p∗
∫∞
τ

min{x, q}dF (x)− cq. Invoking the chain rule to compute the derivative of p∗ with respect to

τ yields
∂p∗

∂τ
=
∂p∗

∂F

∂F (τ)

∂τ
= f(τ)

∂p∗

∂F
. (A-7)

Taking derivative of Π with respect to τ and using (A-7), we have

∂Π

∂τ
= f(τ)

[
sq− p∗ ·min{τ, q}+

∂p∗

∂F

∫ ∞
τ

min{x, q}dF (x)

]
, (A-8)

Note that

∂p∗

∂F
=
ηφ(λ− 1)[s(1 + ηλ)− v(1 + η)− ηφ(λ− 1)(v+ s)]

[1 + ηλ− ηφ(λ− 1) + ηφF (τ)(λ− 1)]
2 < 0, (A-9)

Equation (A-9) follows because according to Assumption (V), we must have s(1+ηλ)−v(1+η)≤ 0.

For τ > q, we have sq−p∗ ·min{τ, q}< 0, so according to (A-8), we have ∂Π/∂τ < 0, i.e., it is not

optimal to set the sales threshold τ above q. Consequently, it is either ∂Π/∂τ < 0 for all τ ∈ [0, q],

or there exists τ ∗ ∈ [0, q] such that the first order condition is satisfied, i.e., ∂Π/∂τ |τ∗ = 0. Because

we assume f(τ)> 0,∀τ > 0, (A-8) is equivalent to (11).

Proof of Corollary 1

By (A-9), we have ∂p∗

∂F
< 0. By (11), we have sq− p∗τ ∗ ≥ 0, which is τ ∗ ≤ sq/p∗. Under Conditions

(12) and (13), we must have p∗ ≥ v by Proposition 2 and thus τ ∗ ≤ sq/v. The result follows by

realizing that sq/v is the “optimal” contingent discount threshold in the absence of consumers’ loss

aversion, i.e., the optimal contingent pricing strategy is to set p= s when demand is lower than

sq/v and to set p= v otherwise.
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Proof of Proposition 3

By (10), there is a one-to-one increasing correspondence between q and φ∗. Hence comparative

statics with respect to q are equivalent to those with respect to φ∗. Note that φ∗ affects p∗ through

two channels: the first is the direct effect of φ∗ on p∗ and the second is the indirect effect through

the optimal threshold for sales τ ∗. Under the assumption that τ ∗ is determined by (11), we can

write τ ∗ as a function of φ∗, i.e., τ ∗(φ∗), and the full price is a function of φ∗ as p∗(φ∗, τ ∗).

To show this result, by the chain rule, we can write

dp∗

dφ∗
=
∂p∗

∂φ∗
+
∂p∗

∂τ ∗
∂τ ∗

∂φ∗
, (A-10)

where we have ∂p∗/∂φ∗ > 0 and ∂p∗/∂τ ∗ < 0 by (A-7) and (A-9).

Applying the Implicit Function Theorem 1 to the first order condition in (11) yields

∂τ ∗

∂φ∗
= −∂

2Π(τ ∗, φ∗)

∂τ ∗∂φ∗

/
∂2Π(τ ∗, φ∗)

∂τ ∗2
, (A-11)

in which ∂2Π(τ ∗, φ∗)/∂τ ∗2 < 0 as long as τ ∗ is a local interior maximizer. For ∂2Π(τ ∗, φ∗)/∂τ ∗∂φ∗,

we have

∂2Π(τ ∗, φ∗)

∂τ ∗∂φ∗
= f(τ ∗)

{
−τ ∗ ∂p

∗

∂φ∗
+

∂2p∗

∂F∂φ∗

∫ ∞
τ∗

min{x, q}dF (x)

}
. (A-12)

Note that the denominator of (A-9) is positive and decreasing in φ, and the numerator of (A-9) is

negative and decreasing in φ, so ∂p∗/∂F is decreasing in φ∗, and thus ∂2p∗/∂F∂φ∗ < 0. Applying

this result to (A-12), we must have ∂2Π(τ ∗, φ∗)/∂τ ∗∂φ∗ < 0, and by (A-11), we have ∂τ ∗/∂φ∗ < 0.

Based on the above results, and by (A-10), we have dp∗/dφ∗ > 0. The average price is p̂∗ =

F (τ ∗)s+ (1−F (τ ∗))p∗, then we have ∂p̂∗

∂φ∗ = (s− p∗)︸ ︷︷ ︸
<0

f(τ ∗)
∂τ ∗

∂φ∗︸︷︷︸
<0

+(1−F (τ ∗))
dp∗

dφ∗︸︷︷︸
>0

> 0.

Proof of Proposition 4

Using the chain rule, we can write out the net effect dp∗/d =
∂p∗

∂φ∗︸︷︷︸
>0

∂φ∗

∂q∗︸︷︷︸
>0

∂q∗

∂c
+
∂p∗

∂F︸︷︷︸
<0

∂F (τ ∗)

∂τ ∗︸ ︷︷ ︸
>0

∂τ ∗

∂q∗︸︷︷︸
<0

∂q∗

∂c
.

These signs are based on the results of Proposition 3. To determine the sign of dq∗/dc, we note

that ∂Π∗/∂q∗ = 0, and by the Implicit Function Theorem, we have dq∗
dc

=− ∂2Π∗

∂q∗∂c

/
∂2Π∗

∂q∗2 . It can be

verified that ∂2Π∗/∂q∗∂c=−1, and we know ∂2Π∗/∂q∗2 ≤ 0 because q∗ is a maximizer of the profit

function. Therefore, we have dq∗/dc≤ 0. Furthermore, we have dF (τ ∗)/dc= ∂F (τ∗)

∂τ∗
∂τ∗

∂q∗
dq∗
dc

> 0.

1 Here and below we note that the conditions required for the implicit function theorem to hold are all satisfied
whenever the optimal sales threshold is determined by (11).
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Proof of Proposition 5

By the Implicit Function Theorem, we have

∂τ ∗

∂λ
= −∂

2Π∗(τ ∗, λ)

∂τ ∗∂λ

/
∂2Π∗(τ ∗, λ)

∂τ ∗2
. (A-13)

Note that ∂2Π∗(τ ∗, λ)/∂τ ∗2 ≤ 0 because τ ∗ is the local maximization. Taking derivative of (A-8)

with respect to λ gives rise to

∂2Π∗(τ ∗, λ)

∂τ ∗∂λ
= f(τ ∗)

(
∂2p∗

∂F∂λ

∫ ∞
τ∗

min{x, q}dF (x)− ∂p
∗

∂λ
τ ∗
)
. (A-14)

Define B ≡ 1 + η[λ − φ∗(λ − 1)(1 − F (τ ∗))], C ≡ sφ∗F (τ ∗) − (1 − φ∗(2 − F (τ ∗)))v and τ̂ =

F−1
(

min
{

1, F̂
})

, then we have

∂2p∗

∂F∂λ
=
η(1 + η)

B2
φ∗(s− v) +

1

B3

[
2η(λ− 1)

∂B

∂F

∂B

∂λ
− η(λ− 1)B

∂2B

∂F∂λ
−B∂B

∂F

]
C. (A-15)

In the derivation of (A-15), we used the results ∂2C/∂F∂λ= 0, ∂C/∂λ= 0. When τ ∗(λ)< τ̂ , one

can verify that (s − v) < 0, η(λ − 1)
[
2∂B
∂F

∂B
∂λ
−B ∂2B

∂F∂λ

]
− B ∂B

∂F
< 0, and C > 0 so we must have

∂2p∗

∂F∂λ
< 0.

Taking derivative from (9) with respect to λ gives

∂p∗

∂λ
=

sφ∗F (τ ∗)− [1−φ∗(2−F (τ ∗))]v

[1 + η[λ−φ∗(λ− 1)(1−F (τ ∗))]]
2 (1 + η). (A-16)

Therefore, the sign of ∂p∗/∂λ is determined by the sign of sφ∗F (τ ∗)− [1−φ∗(2−F (τ ∗))]v. When

τ ∗(λ)< τ̂ , we have sφ∗F (τ ∗)− [1−φ∗(2−F (τ ∗))]v > 0, so ∂p∗/∂λ> 0 holds. In this case, by (A-14),

we know ∂2Π∗(τ ∗, λ)/∂τ ∗∂λ< 0, and by (A-13), we know that ∂τ ∗/∂λ< 0.

The net effect of consumers’ loss aversion on the firm’s regular price is

dp∗

dλ
=
∂p∗

∂λ
+
∂p∗

∂F︸︷︷︸
<0

∂F (τ ∗)

∂τ ∗︸ ︷︷ ︸
>0

∂τ ∗

∂λ
. (A-17)

According to the above results, when τ ∗(λ) < τ̂ , τ ∗(λ) is decreasing in λ (i.e., ∂τ ∗/∂λ < 0), and

so is F (τ ∗). By Proposition 2, we must have sφ∗F (τ ∗)− [1− φ∗(2−F (τ ∗))]v > 0, so ∂p∗/∂λ > 0.

Plugging these results into (A-17), we must have dp∗/dλ> 0.

Proof of Proposition 6

First, we show that for any local extreme point λ∗ of the profit function Π∗(τ ∗, λ), if such λ∗ exists,

the optimal sales threshold τ ∗, as a function of λ, has the property ∂τ ∗/∂λ|λ∗ < 0. Invoking the

Envelope Theorem at τ ∗, we have dΠ∗(τ∗,λ)

dλ
= ∂Π∗(τ∗,λ)

∂λ
. Taking derivative from (15) with respect to

λ, we have
dΠ∗(τ ∗, λ)

dλ
=
∂Π∗(τ ∗, λ)

∂λ
=
∂p∗

∂λ

∫ ∞
τ∗

min{x, q}dF (x), (A-18)
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where ∂p∗/∂λ is given by (A-16). Since λ∗ is a local extreme point, we must have ∂Π∗(τ ∗, λ)/∂λ|λ∗ =

0, and because τ ∗ < q, according to (A-18), that is equivalent to ∂p∗/∂λ|λ∗ = 0. By (A-16), this

holds, if and only if, λ∗ satisfies F (τ ∗(λ∗)) = 2φ∗−1
φ∗

v
v−s = F̂ , or equivalently, τ ∗(λ∗) = τ̂ . By (A-18)

and (A-16), for any other value λ 6= λ∗, Π∗(τ ∗, λ) is increasing in λ if τ ∗(λ)< τ̂ and decreasing if

τ ∗(λ)> τ̂ .

According to the proof of Proposition 5, ∂τ ∗/∂λ is expressed as (A-13), and its sign is determined

by the sign of ∂2Π∗(τ ∗, λ)/∂τ ∗∂λ, as given in (A-14). Then at λ∗, we have C(F (τ ∗), λ∗) = 0, and

according to (A-15), we further have ∂2p∗

∂F∂λ

∣∣∣
λ∗

= η(1+η)

B2 φ∗(s−v)< 0. Since ∂p∗/∂λ|λ∗ = 0, the second

term in (A-14) is zero at λ= λ∗, and ∂2Π∗(τ ∗, λ)/∂τ ∗∂λ|λ∗ < 0, which implies that dτ∗
dλ

∣∣∣
λ∗
< 0.

The result dτ∗
dλ

∣∣∣
λ∗
< 0 indicates that the sales threshold τ ∗, as a function of λ, can only cross the

horizontal line τ̂ at most once from above. Therefore, three possibilities can emerge:

Case 1: τ ∗(λ)> τ̂ for all λ> 1, in which case Π∗(τ ∗, λ) is monotonically decreasing in λ;

Case 2: τ ∗(λ)< τ̂ for all λ> 1, in which case Π∗(τ ∗, λ) is monotonically increasing in λ;

Case 3: τ ∗(1)> τ̂ and τ ∗(∞)< τ̂ , and τ ∗(λ) crosses τ̂ at a single point λ∗, so that Π∗(τ ∗, λ) is

monotonically decreasing in λ∈ [1, λ∗] and monotonically increasing in λ∈ [λ∗,∞].

Proof of Proposition 7

By the Implicit Function Theorem, we have

dq∗

dλ
=− ∂2Π∗

∂q∗∂λ

/
∂2Π∗

∂q∗2
. (A-19)

Since q∗ is a maximizer of profit function, we must have ∂2Π∗/∂q∗2 < 0. By (14), we can explicitly

write out ∂2Π∗/∂q∗∂λ as

∂2Π∗

∂q∗∂λ
=
∂p∗

∂λ
(1−F (q∗)) +

∂2p∗

∂φ∗∂λ

∂φ∗

∂q∗

∫ ∞
τ

min{x, q∗}dF (x). (A-20)

where the expression of ∂p∗/∂λ is given in (A-16). Taking derivative from (A-16) with respect to

φ∗ gives

∂2p∗

∂φ∗∂λ
=
sF (τ ∗) + (2−F (τ ∗))v+ ηλsF (τ ∗) + ηλv(2−F (τ ∗))− ηv(λ− 1)(1−F (τ ∗))

{1 + η[λ−φ∗(λ− 1)(1−F (τ ∗))]}3
η(1 + η)> 0.

(A-21)

By (A-16), when sφ∗F (τ ∗)− [1− φ∗(2− F (τ ∗))]v > 0, i.e., the condition under which p∗ > v, we

have ∂p∗/∂λ > 0, so dq∗/dλ > 0, i.e., the optimal order quantity is increasing in consumers’ loss-

averseness. As the order quantity increases, according to Proposition 3, the full price p∗ increases

in the order quantity and is greater than v, so the inequality sφ∗F (τ ∗)− [1− φ∗(2−F (τ ∗))]v > 0

still holds, by which we must have ∂p∗/∂λ> 0. Hence, both terms in the right hand side of (A-20)

are positive. Together with (A-19), we can further conclude dq∗/dλ> 0.

In summary, once λ is such that dq∗/dλ > 0, the sign of dq∗/dλ will not become negative as λ

increases. A possible cut-off point λ̂ immediately follows.
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Proof of Proposition 8

(i) Since the firm optimizes the sales threshold and the order quantity simultaneously, we treat

(τ, q) as a vector of decision variables. Using the Implicit Function Theorem for vector variable, we

have: [
∂τ∗

∂λ
∂q∗

∂λ

]
=
−1

|H|

[
∂2Π∗

∂q2
∂2Π∗

∂τ∂λ
− ∂2Π∗

∂q∂τ
∂2Π∗

∂q∂λ
∂2Π∗

∂τ2
∂2Π∗

∂q∂λ
− ∂2Π∗

∂q∂τ
∂2Π∗

∂τ∂λ

]
,

where H =

(
∂2Π∗

∂q2
∂2Π∗

∂q∂τ
∂2Π∗

∂q∂τ
∂2Π∗

∂τ2

)
is the profit function’s Hessian matrix. Note that |H|> 0, i.e., negative

semidefinite, because the optimal decision vector z∗ = (τ ∗, q∗) is a maximizer.

First, we note that since τ ∗ and q∗ are maximizers, we must have ∂2Π∗/∂τ ∗2 ≤ 0 and ∂2Π∗/∂q∗2 ≤

0. Second, we show that when F (τ ∗)≤ F̂ (q∗), then ∂2Π∗

∂τ∗∂λ∗ < 0 holds. To show this result, we have

∂2Π∗

∂τ ∗∂λ
=

∂2p∗

∂τ ∗∂λ

∫ ∞
τ∗

min(x, q)dF (x)− ∂p
∗

∂λ
τ ∗f(τ ∗). (A-22)

By (A-16), we observe ∂2p∗/∂τ ∗∂λ= ∂2p∗

∂F∂λ
f(τ ∗)< 0 when F (τ ∗)≤ F̂ (q∗). In addition, as shown in

the proof of Proposition 5, when F (τ ∗) ≤ F̂ (q∗), we have ∂p∗/∂λ ≥ 0. With all these results, we

conclude that when F (τ ∗) ≤ F̂ (q∗), ∂2Π∗/∂τ ∗∂λ < 0 holds. Third, by the analysis of (A-20), we

note that when F (τ ∗)≤ F̂ (q∗), ∂2Π∗/∂q∗∂λ > 0 holds. Lastly, by (A-12), we have ∂2Π∗/∂τ ∗∂q∗ =
∂2Π∗

∂τ ∗∂φ∗︸ ︷︷ ︸
<0

∂φ∗

∂q∗︸︷︷︸
>0

< 0.

Consequently, based on the above results, we can conclude that when F (τ ∗)≤ F̂ (q∗), ∂τ ∗/∂λ=
−1

|H|︸︷︷︸
<0

[
∂2Π∗

∂q2︸ ︷︷ ︸
<0

∂2Π∗

∂τ∂λ︸ ︷︷ ︸
<0

− ∂2Π∗

∂q∂τ︸ ︷︷ ︸
<0

∂2Π∗

∂q∂λ︸ ︷︷ ︸
>0

] < 0 holds, and as a result ∂F (τ ∗)/∂λ = f(τ ∗)∂τ
∗

∂λ
< 0 also holds.

Similarly, we have ∂q∗/∂λ=
−1

|H|︸︷︷︸
<0

[
∂2Π∗

∂τ 2︸ ︷︷ ︸
<0

∂2Π∗

∂q∂λ︸ ︷︷ ︸
>0

− ∂2Π∗

∂q∂τ︸ ︷︷ ︸
<0

∂2Π∗

∂τ∂λ︸ ︷︷ ︸
<0

]> 0.

(ii) Since the firm optimizes both the sales threshold τ and the order quantity q simultaneously

under loss aversion parameter λ, we can write τ ∗ and q∗ as functions of λ, i.e., τ ∗(λ) and q∗(λ).

Using the chain rule, we have

dΠ(τ ∗(λ))

dλ
=
∂Π∗

∂λ
+
∂Π∗

∂τ ∗
τ ∗(λ)

∂λ
+
∂Π∗

∂q∗
q∗(λ)

∂λ
=
∂Π∗

∂λ
=
∂p∗

∂λ

∫ ∞
τ∗

min(x, q)dF (x)

=
sφ∗F (τ ∗)− [1−φ∗(2−F (τ ∗))]v

[1 + ηλ−φ∗(λ− 1)(1−F (τ ∗))]]2
(1 + η)

∫ ∞
τ∗

min(x, q)dF (x).

because ∂Π∗/∂τ ∗ = 0 and ∂Π∗/∂q∗ = 0 as τ ∗ and q∗ are maximizes. Therefore, the sign of

dΠ(τ ∗(λ))/dλ are determined by the sign of sφ∗F (τ ∗) − [1 − φ∗(2 − F (τ ∗))]v. Reshuffling the

inequality sφ∗F (τ ∗)− [1−φ∗(2−F (τ ∗))]v≥ 0 yields F (τ ∗)≤ F̂ (q∗).
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Proof of Proposition 9

Suppose q < d. The fill rate is a function of the distance d: φ̃(σ) = θmin{q,dl}
dl

+(1−θ) q
dh

. Conditional

on σ ∈ [0, d− q] and σ ∈ (d− q, d], we can explicitly write the fill rate and the marginal fill rate as:

φ̃(σ) =


θq

d−d + (1−θ)q
d+ θ

1−θ d
, if σ≤ d− q;

θ+ (1−θ)q
d+ θ

1−θ d
, if σ > d− q.

∂φ̃(σ)

∂σ
=


θq

[
1

(d−σ)2
− 1

(d+ θ
1−θ σ)

2

]
> 0, if σ≤ d− q;

− θq

(d+ θ
1−θ σ)

2 < 0, if σ > d− q.

Let p̃0 and p̃1 denote the full prices when the sales threshold is set at 0 and dl, respectively. The

expression of p̃0 (p̃1) is (9) with φ∗ being replaced by φ̃ and F (τ ∗) being replaced by 0 (θ). By the

proof of Proposition 3, both p̃0 and p̃1 are increasing in the fill rate. The firm’s expected profit and

marginal profit when the sales threshold is τ = 0 is written as

Π̃0 =

{
p̃0q− cq, if σ≤ d− q;
p̃0[θdl + (1− θ)q]− cq, if σ > d− q.

∂Π̃0
∂σ

=

{
∂p̃0

∂φ̃

∂φ̃
∂σ
q > 0, if σ≤ d− q;

∂p̃0

∂φ̃

∂φ̃
∂σ

[θdl + (1− θ)q]− θp̃0 < 0, if σ > d− q.

Similarly, we can write the firm’s expected profit and marginal profit when sales threshold is τ = dl

as

Π̃1 = θsq+ (1− θ)p̃1q− cq, ∂Π̃1
∂σ

=

{
∂p̃1

∂φ̃

∂φ̃
∂σ

(1− θ)q > 0, if σ≤ d− q;
∂p̃1
∂φ

∂φ̃
∂σ

(1− θ)q < 0, if σ > d− q.

The firm’s optimal profit is Π̃∗(σ) = max
{

Π̃0(σ), Π̃1(σ)
}

. From the above analysis, Π̃∗ is strictly

increasing in σ ∈
[
0, d− q

]
and strictly decreasing in d ∈

(
d− q, d

]
, i.e., the optimal profit is uni-

modular in d. The proof for the case q≥ d is analogous and details are omitted for conciseness.

Proof of Proposition 10

When x> τ , the firm sells the product at the full price and only loss averse consumers are present,

so the product availability is min{x, q}/x. When x ≤ τ , the firm sells the product at the sales

price and both the loss averse consumers and the bargain hunters are present. Since the number

of bargain hunters is abundant by assumption, how to allocate the limited inventory q to this mix

of customers becomes the firm’s inventory rationing problem.

Let δ be defined as in Proposition 10. Specifically, δ = 1 indicates that the consumers are fully

prioritized over bargain hunters (which is assumed in the rest of this paper), δ = 0 indicates that

bargain hunters are fully prioritized over the consumers. Under inventory rationing, the fill rate

for loss averse consumers is

φ(δ) = δ

∫ τ

0

min(x, q)

q
dF (x) +

∫ +∞

τ

min(x, q)

q
dF (x).

It is clear that the fill rate under rationing is increasing in δ.

Utilizing the results of Proposition 1, given a rationing parameter δ, the optimal full price can

be written as

p∗(δ) = v+
φ(δ)sF (τ ∗(δ))− [1−φ(δ)(2−F (τ ∗(δ)))]v

1 + ηλ−φ(δ)(λ− 1)(1−F (τ ∗(δ)))]
(λ− 1)η,
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and the optimal sales threshold τ ∗(δ) must satisfy the following first-order condition:

sq− p∗(δ)τ ∗(δ) +
∂p∗(δ)

∂F

∫ ∞
τ∗(δ)

min(x, q)dF (x) = 0,

By the proof of Proposition 3, the optimal full price is increasing in, and the optimal sales threshold

is decreasing in the fill rate. Since the fill rate φ(δ) is increasing in δ, the optimal full price p∗(δ)

is increasing in, and the optimal sales threshold τ ∗(δ) is decreasing in δ.

For the last part, suppose 0≤ δ1 < δ2 ≤ 1. Under δ2, the firm can always mimic any sales threshold

strategy under δ1 but have a higher full price, so the firm’s expected profit under δ2 is always higher

than that under δ1.

Proof of Proposition 11

• If Equilibrium 1 prevails:

(i) The firm’s expected profit becomes Πl(v, τ
∗
l ). Since τ ∗l is a function of order quantity q, profit

Πl(v, τ
∗
l ) is a function of order quantity q, and the optimal order quantity q∗l must satisfy the

firm order condition ∂Πl(v, τ
∗
l )/∂q= 0. Analogous to the proof of Proposition 4, we have dq∗l /dc=

− ∂2Π∗
l

∂q∗
l
∂c

/
∂2Π∗

l

∂q∗
l

2 . Since ∂2Π∗l /∂q
∗
l ∂c=−1< 0 and ∂2Π∗l /∂q

∗
l

2 ≤ 0, we must have dq∗l /dc≤ 0. Further-

more, we have dτ ∗l /dc= s
αlv

dq∗l
dc
≤ 0 or dτ ∗l /dc= 0.

• If Equilibrium 3 prevails:

(ii) In the regime where the second constraint in (A-4) is binding in optimum, the firm’s optimiza-

tion problem degenerates to the homogenous loss averse consumer case as in Section 4, and the

analysis of the comparative statics is analogous to the proofs of Proposition 3 to Proposition 4, so

the results of these propositions still hold.

(iii) In the regime where the third constraint in (A-4) is binding, the regular price is p∗o = v. Solving

for the first order condition ∂Πo(v, τo)/∂τo = 0 yields τ ∗o = sq/v, so the optimal sales threshold is

only dependent on the order quantity and is increasing in the order quantity. The optimal order

quantity q∗o satisfies the first order condition ∂Πo

(
v, sq

v

)
/∂q= 0. Analogous to the proof above, we

can show dq∗o/dc≤ 0, dτ ∗o /dc= s
v

dq∗o
dc
≤ 0.

Proof of Proposition 12

If the loss averse consumers buy at both the full price ph and the sales price s, while the loss neutral

consumers only buy at the sales price s, then the fill rate φh, sales threshold τh and full price ph

must satisfy the three constraints in (A-2) simultaneously.

(i) Since the order quantity q affects the regular price both through the fill rate φ∗h and the

optimal sales threshold τ ∗h , the net effect of q on p∗h can be written as:

dp∗h
dq

=
∂p∗h
∂φ∗h︸︷︷︸
≥0

(
∂φ∗h
∂q︸︷︷︸
>0

+
∂φ∗h
∂τ ∗h︸︷︷︸
≤0

dτ ∗h
dq

) +
∂p∗h
∂τ ∗h︸︷︷︸
≤0

dτ ∗h
dq

.
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Therefore, if we have dτ ∗h/dq≤ 0, then dp∗h/dq > 0 must follow.

(ii) The proof follows exactly those of Proposition 7 and Proposition 4.

(iii) By the Implicit Function Theorem, we have
∂τ∗h
∂λ

= −∂2Π∗
h(τ∗h ,λ)

∂τ∗
h
∂λ

/
∂2Π∗

h(τ∗h ,λ)

∂τ∗
h

2 . Note that

∂2Π∗h(τ ∗h , λ)/∂τ ∗h
2 ≤ 0 because τ ∗h is the local maximization. Hence, the sign of ∂τ ∗h/∂λ is the same

as ∂2Π∗h(τ ∗h , λ)/∂τ ∗h∂λ. Taking derivative of (A-3) with respect to λ gives

∂2Π∗h(τ ∗h , λ)

∂τ ∗h∂λ
= f(τ ∗h)

[(
∂2p∗h
∂F∂λ

+
∂2p∗h
∂φ∗h∂λ

κ(τ ∗h)

)∫ ∞
τ∗
h

min{αhx, q}dF (x)− ∂p
∗
h

∂λ
αhτ

∗
h

]
.

Analog to the proof of Proposition 5, we can show ∂2p∗h/∂F∂λ≤ 0, and ∂p∗h/∂λ> 0. Furthermore,

given that F (τ ∗h)≤ F̂ (φ∗h(τ ∗h)), we take derivative of (A-16) with respect to φh, then it is straight-

forward to check that ∂2p∗h/∂φ
∗
h∂λ > 0. Based on the above results and note that κ(τ ∗h) ≤ 0, we

have ∂2Π∗h(τ ∗h , λ)/∂τ ∗h∂λ< 0. Therefore, we have ∂τ ∗h/∂λ< 0.

The net effect of consumers’ loss aversion on the firm’s regular price is

dp∗h
dλ

=
∂p∗h
∂λ

+
∂p∗h
∂F︸︷︷︸
<0

∂F (τ ∗)

∂τ ∗︸ ︷︷ ︸
>0

∂τ ∗

∂λ︸︷︷︸
<0

+
∂p∗h
∂φ∗h︸︷︷︸
>0

∂φ∗h
∂τ ∗︸︷︷︸
≤0

∂τ ∗

∂λ︸︷︷︸
<0

,

where ∂p∗h/∂λ is given by (A-16) with τ ∗h replacing τ ∗ and φ∗h replacing φ∗. Since F (τ ∗h)≤ F̂ (φ∗h(τ ∗h)),

the numerator of (A-16) must be greater than zero and thus ∂p∗h/∂λ > 0. Therefore, we have

dp∗h/dλ> 0.

Invoking the Envelope Theorem at τ ∗h , we have
dΠ∗

h(τ∗h ,λ)

dλ
=

∂Π∗
h(τ∗h ,λ)

∂λ
. Taking derivative of

Π∗h(τ ∗h , λ) with respect to λ, we have
dΠ∗

h(τ∗h ,λ)

dλ
=

∂Π∗
h(τ∗h ,λ)

∂λ
=

∂p∗h
∂λ

∫∞
τ∗
h

min{αhx, q}dF (x), since

∂p∗h/∂λ> 0 when F (τ ∗h)≤ F̂ (φ∗h(τ ∗h)), we must have dΠ∗h(τ ∗h , λ)/dλ> 0.

Proof of Proposition 13

For conciseness, we call consumers with consumption valuation vl (vh) the low (high) type con-

sumers. Analogous to the case of consumer heterogeneity in loss aversion, we assume that the

fraction of low type consumers is αl and the fraction of high type consumers is αh, with αl+αh = 1.

Consider a personal equilibrium in which low type consumers buy at the full price. According to

Lemma 1, the sufficient and necessary conditions for this purchase plan to be a personal equilibrium

is

(vl− p) + (ηvl− ηλp) + η(λ− 1)
∑
p=p,s

(vl + p) ·φg(p)

= vl[1 + η+ η(λ− 1)
∑
p=p,s

φg(p)]− p[1 + ηλ− η(λ− 1)φg(p)] + η(λ− 1)sφg(s)≥ 0. (A-23)

Note that since vl < vh, the inequality (A-23) must still hold with vl being replaced by vh. Hence,

buying at the full price is also a personal equilibrium for any individual high type consumer. As

a result, whenever low type consumers find that buying at the full price is a personal equilibrium,
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the high type consumers also find that buying at the full price is a personal equilibrium. However,

the reverse is not true. In conclusion, there are two cases of personal equilibria when consumers

differ in consumption valuation: (a) only the high type consumers buy at the full price, (b) both

types of consumers buy at the full price.

For personal equilibrium (a) to sustain, the following constraints must be satisfied simultane-

ously: φa =
∫ τa

0

min{x,q}
x

dF (x) +
∫ +∞
τa

min{αhx,q}
αhx

dF (x) and pa = vh + φasF (τa)−[1−φa(2−F (τa))]vh
1+η[λ−φa(λ−1)(1−F (τa))]

(λ−1)η.

These constraints are identical to those constraints in (A-2) in the analysis of consumer heterogene-

ity in loss aversion. Therefore, the analysis of Equilibrium 2 in the case of consumer heterogeneity

in loss aversion applies and we have the same comparative statics results as Proposition 12.

For personal equilibrium (b) to sustain, the following constraints must be satisfied simultane-

ously: φb =
∫ +∞

0

min{x,q}
x

dF (x) and pb = vl +
φbsF (τb)−[1−φb(2−F (τb))]vl
1+η[λ−φb(λ−1)(1−F (τb))]

(λ− 1)η. These constraints are

identical to (9) and (10) of Proposition 1 in the homogenous consumer case. Therefore, the compar-

ative statics analysis in the homogenous consumer case applies and Proposition 3 to Proposition 4

continue to hold.

Proof of Proposition 14

We prove by contradiction. Suppose both firms set a deterministic price in equilibrium. Without

loss of generality, we assume firm 1(2)’s price as p1 (p2) with s < p1 < p2, and firm 1(2)’s order

quantity as q1 (q2). In equilibrium, buying at both prices must be consumers’ PE; Otherwise, it

will degenerate to a monopoly setting.

First, we show that firm 1 will deviate. According to our assumptions on consumer behavior,

after demand realizes, consumers will first go to firm 1 to purchase the product. If a consumer

cannot obtain the product from firm 1 due to stockout, she will then go to firm 2. Thus, the

consumer’s reference distribution resulting from consumer’s strategy of buying at both prices is

Γ(r;p1, p2) =

 g1 if r = (v,−p1),
g2 if r = (v,−p2),
1− g1− g2 if r = (0,0).

(A-24)

where g1 =
∫ q1

0
dF (x) +

∫ +∞
q1

q1
x
dF (x) and g2 =

∫ q1+q2

q1

x−q1
x
dF (x) +

∫ +∞
q1+q2

q2
x
dF (x).

According to (4), if buying at both price p1 and p2 is consumers’ PE, we must have

U((v,−p2)|Γ)≥U((0,0)|Γ).

We discuss two cases as follows:

Case 1: U((v,−p2)|Γ)>U((0,0)|Γ).

In this case, we show that firm 1 can randomize pricing among s and p1 contingent on demand

realization and obtains a higher profit. Let τ = min
{
sq1
p1
,F−1

(
U((v,−p2)|Γ)−U((0,0)|Γ)

η(p1−s)(λ−1)

)}
and ξ =
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0
dF (x), suppose firm 1 sets its price at s when x∈ [0, τ ] and at p1 when x∈ (τ,+∞). Under this

new price, the reference distribution becomes

Γ′(r;s, p1, p2) =


ξ if r = (v,−s),
g1− ξ if r = (v,−p1),
g2 if r = (v,−p2),
1− g1− g2 if r = (0,0).

It is straightforward to show that U((v,−p2)|Γ′) =U((v,−p2)|Γ)+ξηλ(s−p1) and U((0,0)|Γ′) =

U((0,0)|Γ) + ξη(s− p1). Therefore, we must have

U((v,−p2)|Γ′)−U((0,0)|Γ′) =U((v,−p2)|Γ)−U((0,0)|Γ)− ξηλ(p1− s)(λ− 1)≥ 0,

which follows by the definition of ξ. Hence, buying at s, p1 and p2 is still consumers’ PE. Let Π1

be firm 1’s profit when it sets a deterministic price p1 and Π′1 be firm 1’s profit when it randomizes

among s and p1 according to sales threshold τ , then we have

Π′1 = s

∫ τ

0

q1dF (x) + p1

∫ +∞

τ

min{x, q1}dF (x)− c · q1

> p1

∫ τ

0

xdF (x) + p1

∫ +∞

τ

min{x, q1}dF (x)− c · q1 = Π1.

Therefore, setting a deterministic price p1 is not firm 1’s optimal strategy.

Case 2: U((v,−p2)|Γ) =U((0,0)|Γ).

Suppose now firm 1 increase its price from p1 to p1 + ε, where ε is positive and sufficiently small,

then the reference distribution becomes

Γ′′(r;p1, p2) =

 g1 if r = (v,−p1− ε),
g2 if r = (v,−p2),
1− g1− g2 if r = (0,0).

It is straightforward to show that

U((v,−p2)|Γ′′)−U((0,0)|Γ′′) =U((v,−p2)|Γ)−U((0,0)|Γ) + g1η(λ− 1)ε > 0.

Hence, buying at both p1 + ε and p2 is still consumers’ PE, but firm 1 is strictly better off, and

the discussion goes back to Case 1.

Next, given price randomization by firm 1, we argue that firm 2 will also be better off by

randomize its price. At the very least, firm 2 can follow firm 1’s sales strategy by setting its price at

s when demand realization is lower than or equal to τ . By doing so, firm 2 can earn an additional

amount of sq2F (τ) in expected profit without changing consumers’ PE.

Proof of Proposition 15

Suppose the firm implements a contingent pricing policy p(x) and results in a price distribution

g(p) as follows

p(x) =

{
s, if x∈ [0, τ ];
p, if x∈ (τ,+∞),

g(p) =

{
F (τ), if p= s;
1−F (τ), if p= p.
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By Proposition 1, given a fixed order quantity q, the sales threshold τ is smaller than the order

quantity in optimum. When the firm charges the sale price, i.e., p= s, the loss averse consumers

know that the realized demand is lower than the sales threshold, i.e., x≤ τ , so the product avail-

ability conditional on p= s is

φ(s) =

∫ τ
0

min(x,q)

x
dF (x)∫ τ

0
dF (x)

=

∫ τ
0
dF (x)∫ τ

0
dF (x)

= 1.

When the firm charges the full price, i.e., p= p, the loss averse consumers know that the realized

demand is higher than the sales threshold, i.e., x > τ , so the product availability conditional on

p= p is

φ(p) =

∫∞
τ

min(x,q)

x
dF (x)∫∞

τ
dF (x)

=

∫ q
τ
dF (x) +

∫∞
q

q
x
dF (x)∫∞

τ
dF (x)

=
F (q)−F (τ) +

∫∞
q

q
x
dF (x)

1−F (τ)
.

Therefore, φ(p), p= s, p, is the price-dependent fill-rate. Consumers’ reference distribution is:

Γ(r;g,φ, p) =


φ(s)g(s), if r = (v,−s);
φ(p)g(p), if r = (v,−p);
1−

∑
p=s,p

φ(p)g(p), if r = (0,0).

The utilities of consumption outcomes (v,−p) and (0,0) when a consumer decides to buy at the

full price p are:

U(k|Γ) =

{
(v− p)− ηλφ(s)g(s)(p− s) + (1−φ(s)g(s)−φ(p)g(p))η(v−λp),
ηφ(s)g(s)(−λv+ s) +φ(p)g(p)(−λv+ p)η,

if
if

k = (v,−p);
k = (0,0).

According to Lemma 1, the credible full price p∗ satisfies

U((v,−p)|Γ) =U((0,0)|Γ).

Note that φ(s) = 1 and let φ∗ denote φ(p∗), then the credible full price can be expressed as

p∗ = v+
(s+ v)F (τ) + v(2φ∗(1−F (τ))− 1)

(1 + ηλ) + η(λ− 1)φ∗(1−F (τ))
(λ− 1)η,

p∗ ≥ v holds, if and only if, the inequality (s+ v)F (τ ∗) + v(2φ∗(1−F (τ ∗))− 1)≥ 0 holds, i.e.,

F (τ ∗)(s+ v(1− 2φ∗))≥ v(1− 2φ∗). (A-25)

If 1− 2φ∗ ≤ 0, then we have either (i) v(1− 2φ∗)< s+ v(1− 2φ∗)≤ 0, or (ii) v(1− 2φ∗)< 0<

s+ v(1− 2φ∗). Since 0<F (τ ∗)< 1, v(1− 2φ∗)<F (τ ∗)[s+ v(1− 2φ∗)]≤ 0 must hold for Case (i).

If 1− 2φ∗ > 0, dividing both sides of (A-25) by s+ v(1− 2φ∗) gives rise to F (τ ∗)> v(1−2φ∗)

s+v(1−2φ∗)
.
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Supplemental Note to the Paper
“Newsvendor Selling to Loss Averse Consumers

with Stochastic Reference Points”

Analysis of Personal Equilibrium of Continuous Heterogenous Loss Averse
Consumers

We consider a market with a continuum of heterogeneous consumers in loss aversion. Consumers

have the same consumption valuation v but differ in the degree of loss aversion, parameterized by

a cumulative distribution function H(·) of λ. Let < be the support of H(·). For tractability, we

assume that functions H(·) and F (·) are independent. Hence, for a demand realization x, xH(y)

is the number of consumers with a loss aversion parameter λ no more than y.

We discuss how the heterogeneity of consumer loss aversion would affect the existence and

uniqueness of the equilibrium when the firm uses the contingent two-price strategy as in Proposition

1. Since consumers do not reveal their private loss aversion levels to the firm, the firm cannot

discriminate consumers and ration inventory among them. As a result, consumers with different

degrees of loss aversion should have the same product availability if they follow the same purchase

plan.

Consumers with λ ∈∆ (where ∆⊆ <) choose to purchase at both prices, and consumers with

λ ∈∆c (where ∆c =<\∆) choose to purchase only at the sales price. Let ξ∆ =
∫
λ∈∆ξ

dH(λ), then

the product availability (fill rate) for every type of consumer in set ∆ is

φ∆ =

∫ τ

0

min{x, q}
x

dF (x) +

∫ +∞

τ

min{ξ∆x, q}
ξ∆x

dF (x), (A-1)

and the product availability for every type of consumer in set ∆c is

φc =

∫ τ

0

min{x, q}
x

dF (x). (A-2)

We further define the following notations:

• A∆ = φ∆(v+ sg(s) + g(p∆)p∆)− p∆;

• A∆c = φcg(s)(s+ v)− p∆;

• λ∆ is the solution to equation (v− p∆) + η[v− (v+ s)φ∆g(s)− (v+ p∆)φ∆g(p∆))] + ηλA∆ = 0;

• λ∆c is the solution to equation (v− p∆) + η[v−φcg(s)(v+ s)] + ηλA∆c = 0;

• p∆ is defined as (9) with λ replaced by λ∆ and φ∗ replaced by φ∆.

then the following proposition characterizes the existence of equilibrium and the cut-off point

between buying and not-buying consumers.1

1 Buying consumers refer to those who buy the product at both prices and not-buying consumers refer to those who
buy the product only at the sales price.
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Proposition 16 (Existence of Personal Equilibrium) For consumers with a continuous

distribution H(·) of loss aversion parameter λ, there exists an equilibrium, if and only if, the fol-

lowing two conditions are satisfied simultaneously:

(i) λ∆ = λ∆c;

(ii) A∆ =A∆c.

Furthermore, if an equilibrium exists, then the partition of consumers must have a cut-off structure

as follows:

(iii) if φcg(s)(s+ v)− p > 0, then ∆ = {λ|λ≥ λ∆}, i.e., consumers with λ< λ∆ choose to buy only

at the sales price, while consumers with λ≥ λ∆ choose to buy at both prices;

(iv) if φcg(s)(s+ v)− p≤ 0, then ∆ = {λ|λ≤ λ∆}, i.e., consumers with λ≤ λ∆ choose to buy at

both price, while consumers with λ> λ∆ choose to buy only at the sales price.

Proposition 16 also suggests that there could exist multiple equilibria. When there are multiple

equilibria, the firm would choose the equilibrium that yields the highest profit and adopt the pricing

strategy accordingly. A equilibrium prevails if it is chosen by the firm.

Proof of Proposition 16

Now suppose there is an equilibrium, in which consumers with loss aversion λ ∈∆ choose to buy

at both prices and their reference points are

Γ(r;g(·), φ∆, p) =

φ∆g(s) , if r = (v,−s);
φ∆g(p) , if r = (v,−p);
1−φ∆ , if r = (0,0).

where φ∆ is defined in (A-1). Consumers with loss aversion λ∈∆c choose to buy only at the sales

price s, so their references points are

Γ(r;g(·), φc, p) =

φcg(s) , if r = (v,−s);
0 , if r = (v,−p);
1−φcg(s) , if r = (0,0).

In equilibrium, the consumers with λ∈∆ will be worse off by deviating from buying at p, i.e.,

U((v,−p)|Γ(r;g(·), φ∆, p))≥U((0,0)|Γ(r;g(·), φ∆, p))

⇒ (v− p) + (ηv− ηλp) + η(λ− 1)
∑
p=p,s

(v+ p) ·φ∆g(p)≥ 0, (see the first equation in Lemma 1)

⇒ (v− p) + η[v− (v+ s)φ∆g(s)− (v+ p)φ∆g(p))] + ηλ [φ∆(v+ sg(s) + g(p)p)− p]︸ ︷︷ ︸
A∆

≥ 0, (A-3)

Clearly, the partition of consumers into buying and not buying groups depends on the value of

A∆. Suppose λ∆ is the solution to equality (A-3). If A∆ > 0, then consumers with λ < λ∆ will
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choose not to buy at p, and consumers with λ≥ λ∆ will choose to buy at p. Otherwise, if A∆ ≤ 0,

then consumers with λ < λ∆ will choose to buy at p, and consumers with λ≥ λ∆ will choose not

to buy at p.

Analogously, for consumers with λ∈∆c, they will be worse off by deviating from not buying at

p. Note that since every type of consumer is atomic, should λ type of consumers choose to deviate

from not buying at p to buying at p, the product availability is still φ∆. For these consumers, we

have

φ∆U((v,−p)|Γ(r;g(·), φc, p)) + (1−φ∆)U((0,0)|Γ(r;g(·), φc, p))≤U((0,0)|Γ(r;g(·), φc, p))

⇒ U((v,−p)|Γ(r;g(·), φc, p))≤U((0,0)|Γ(r;g(·), φc, p))

⇒ (v− p) + η[v−φcg(s)(v+ s)] + ηλ [φcg(s)(s+ v)− p]︸ ︷︷ ︸
A∆c

≤ 0, (A-4)

Let λ∆c be the solution to equality (A-4). If A∆c > 0, then consumers with λ < λ∆c will choose

not to buy at p, and consumers with λ≥ λ∆c will choose to buy at p. Otherwise, if A∆c ≤ 0, then

consumers with λ < λ∆c will choose to buy at p, and consumers with λ≥ λ∆c will choose not to

buy at p.

For the partition of consumers to be consistent, we should have λ∆ = λ∆c and both A∆ and A∆c

should have the same sign, and thus A∆ =A∆c follows.

Lastly, the characterization of the regular price p∆ follows by taking equality in (A-3) and solves

for p.
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