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Online Appendix to

“Efficient Inaccuracy: User-Generated Information Sharing in a Queue”

OA1. Throughput Comparison
In this section, we compare the throughput under the shared, no, and full QL information (QLI)

structures. Similar to the comparison of shared- and full-QLI structures in social welfare in Section

3.4 , we first generate insights by making the comparison in an asymptotic case Λ =∞. Then,

building on the intuition obtained from the asymptotic case, we verify the comparative statics of

the throughput under shared-, no-, and full-QLI structures in the general case Λ<∞.

Asymptotic case. Chen and Frank (2004) compare the throughput in observable and unobserv-

able queues. They show that under a high arrival rate, providing the real-time QLI to customers

improves the throughput. This is because, under no real-time QLI and a high arrival rate, cus-

tomers will join with a relatively low probability. The service provider then prefers to reveal the

real-time QLI to customers so that they will always join a short queue which they would not join

under no QLI. The following proposition confirms that similar intuition holds in our model with

two decision epochs.

Proposition 5. In the asymptotic case Λ =∞, the throughput under full QLI ΛF is greater

than that under no QLI ΛN , i.e., ΛF >ΛN .

The same intuition holds for the throughput under shared- and no-QLI structures. The somewhat

inaccurate shared snapshot information encourages customers to enter the facility when the queue

is more likely to be short, while the no-QLI structure does not provide any information regarding

the real-time QL, so customers enter the facility with a low probability. The analytical comparison

of throughput under shared- and no-QLI structures is difficult for two reasons. First, the derivation

of ρN under no QLI involves solving a polynomial equation of degree n+ 1, which by Abel Ruffini

Theorem has no algebraic solutions for n≥ 4; see, e.g., Corollary 2. Second, the derivation of the

steady state probability distribution of online QL updates under shared QLI is cumbersome. We

next investigate the difference between the throughput under shared- and no-QLI structures, i.e.,

ΛS−ΛN , numerically. Without loss of generality, we normalize the service rate and waiting cost to

one; i.e., µ= 1 and c= 1, and plot ΛS−ΛN as functions of the hassle cost h under different service

reward R ∈ {4,5, . . . ,10} in Figure 6. We observe the throughput under shared QLI is higher than

that under no QLI, i.e., ΛS > ΛN , for all values of R and h tested. (More numerical results are

available upon request.)

We next compare the throughput under shared and full QLI in the asymptotic case. Recall from

Corollary 3 that in the asymptotic case Λ =∞ under full QLI, once a customer finishes service,

another customer joins the queue immediately and brings the QL to m, so the server will be

constantly busy, and the resulting throughput is identical to the service rate µ.

Under the shared-QLI structure, the online QLI φ is lagged and not as accurate as under full

QLI. This leads to two effects on the throughput. On the one hand, even if the real-time QL drops
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Figure 6 Difference between the throughput under shared- and no-QLI structures, i.e., ΛS−ΛN as a function of

the hassle cost h under different service reward R ∈ {4,5, . . . ,10}, service rate µ= 1, marginal waiting

cost c= 1, and arrival rate Λ = 108.

to n− 1 during the arrival shutdown period, no customers will know about it, and neither do they

enter the facility. Thus, under the shared-QLI structure, not all desirably short queues are filled

by customers as soon as those under the full-QLI structure. This input reduction effect creates

additional possibility for the server to become idle, hence resulting in less throughput. On the

other hand, if the real-time QL stays long (i.e., greater than m− 1) after the arrival shutdown

period, no customers are aware of that, and they will enter the facility. Then, because of the sunk

of the hassle cost, customers may join some queues that they would have not joined under full

information. This input boost effect generates higher probability for the server to stay busy, so

leads to higher throughput. When the arrival rate is high, the server’s utilization is already close to

one and the input boost effect is limited, so the throughput under full QLI dominates that under

shared information.

When the service becomes more valuable, i.e., R increases, even though the inaccuracy in the

shared QLI discourages some customers from entering the facility when the most recently shared

QL φ reaches at least m, the probability all φ ≥ m customers finish service during the arrival

shutdown period and the server becomes idle decreases. Therefore, the throughput gap between the

shared- and full-QLI structure diminishes. In the limiting case when the service becomes extremely

valuable, i.e., R→∞, the throughput under shared QLI is almost identical to that under full QLI.

The next theorem summarizes these results.

Theorem 4. In the asymptotic case Λ =∞, compare the throughput under the shared- and full-

QLI structures:

(i) The throughput under shared QLI is less than that under full QLI for any finite service reward;
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Figure 7 Throughput under the shared, full, and no information structures as a function of hassle cost h, for

service reward R= 10, service rate µ= 1, marginal waiting cost c= 1, and arrival rate Λ∈ {0.5,1,2}.

i.e., ΛS <ΛF for R<∞.

(ii) When R → ∞, the throughput under shared and full QLI is asymptotically identical; i.e.,

limR→∞ΛS = ΛF .

Theorem 4 shows that a system with shared QLI has a lower throughput than one with full

QLI. However, the service reward R mitigates the throughput gap between these two information

structures. Moreover, when the service reward grows, systems are almost indifferent between the

shared- and full-QLI structures with regard to the throughput measure. Thus, systems with high

service reward can be confident in employing the shared-QLI structure by encouraging information

sharing. Shared QLI generates almost identical throughput as the full QLI.

General case. Next, we adopt a numerical approach to investigate the comparative statics of

throughput under three information structures in the general case. In Figure 7, we plot throughput

under the three information structures, ΛS, ΛF , and ΛN , as functions of hassle cost h, for R= 10

and µ= c= 1 in the general cases Λ∈ {0.5,1,2}.
First, we observe from Figure 7 that throughput under shared QLI remains at similar level

as under full QLI for different arrival rates Λ. The throughput under full QLI is a decreasing

staircase constant function of h, while that under shared QLI is a continuous decreasing function

of h. When the hassle cost h approaches R− c
µ
i, for integer i, from below we have ΛS < ΛF ; and

when h approaches R− c
µ
i from above we have ΛS > ΛF . There is not an interval longer than c

µ

such that either shared- or full-QLI structure dominates the other. This observation improves our

understanding from the asymptotic case. When the arrival rate declines, the input reduction and

input boost effects have similar strength for different hassle costs, so the throughput under shared

QLI is at a similar level to that under full QLI.
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Under no QLI, recall from the expressions of ΛN (Proposition 2) that throughput is a piecewise

function. When the offered load is low, i.e., ρ < ρN , all customers enter the facility; and when the

offered load is high, i.e., ρ≥ ρN , a fraction of customers enter. The value of the critical cutoff ρN

decreases with the hassle cost h.

Furthermore, we observe from Figure 7 that when the arrival rate Λ is high, e.g., Λ = 2, or

the hassle cost h is large, e.g., Λ = 1 and h≥ 6, the shared- and full-QLI structures continuously

dominate the no-QLI structure on throughput for different hassle costs h. This observation is

consistent with intuitions obtained from the asymptotic case. When Λ is small, e.g., Λ = 0.5, or the

hassle cost h is small, e.g., Λ = 1 and h< 4, customers under no QLI all enter, but customers under

shared or full QLI do not always join blindly and those who arrive when the queue is expected to

be long will balk. Hence, in this case, the throughput under shared and full QLI is lower than that

under no QLI.

OA2. Expected Queue Length Comparison

In this section, we compare the expected QL under shared-, no-, and full-QLI structures, LS, LN ,

and LF , numerically.

We first compare the expected QL under shared- and full-QLI structures. Recall from Proposi-

tions 1 and 3 that we can apply a renewal theory based approach to derive various service level

measures for the system under the shared- and full-QLI structures. The transition cycles under the

shared and full QLI have a similar structure – in each transition cycle, there is an arrival shutdown

period and an arrival open period in sequence. The expected QL at the end of the arrival shutdown

period under shared QLI is ω−1, while that under full QLI is m−1. Note that m−1 and ω−1 are

close to each other, and their difference ω−m is smaller than one. Then, after the exponentially

distributed arrival open period with parameter Λ, the QL seen by the new arrival under shared

and full information structures will be close on average. Based on the fact that the expected QLs

at the beginning of the arrival shutdown and arrival open periods under both shared and full QLI

are expected to be close, we anticipate that the expected QL under shared QLI is at a similar level

to that under full QLI. Figure 8 in which we plot LS, LN , and LF , as functions of hassle cost h,

for R= 10 and µ= c= 1 in the general cases Λ∈ {0.5,1,2,108}, confirms our intuition.

Next, we compare the expected QL under shared- and full-QLI structures with that under no-

QLI structure. Comparing Figures 7 and 8, we see that higher throughput is associated with a

greater expected QL when the offered load is sufficiently small or large. For example, when Λ = 0.5,

the throughput and expected QL under no QLI are greater than those under shared or full QLI;

and when Λ = 108, the throughput and expected QL under no QLI are less than those under shared

or full QLI. However, when the offered load is in an intermediate range, higher throughput may

not come at a cost of a higher waiting cost. For example, when Λ = 2, throughput under shared

and full QLI is higher than that under no QLI in Figure 7, while the expected QL under shared

and full QLI may not be higher than that under no QLI in Figure 8. This is because the QLI, even

a little shared by previous customers, helps to better match the supply with demand, so customers

enter the facility when the queue is expected to be relatively short and there is a relatively high

probability for the server to become idle.
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Figure 8 Expected queue length under the shared, full, and no information structures as a function of hassle

cost h, for service reward R = 10, service rate µ = 1, marginal waiting cost c = 1, and arrival rate

Λ∈
{

0.5,1,2,108
}

.

OA3. Individual Utility Comparison
We next look into the strategic behavior of connected and unconnected customers. We start with

unconnected customers only. This is equivalent to our model under no QLI. Recall from the discus-

sion of Proposition 2 that there are two critical cutoffs in the unconnected customers’ offered load:

ρL and ρN for any hassle cost h. If the unconnected customers’ offered load is high (i.e., ρU ≥ ρL),

unconnected customers relentlessly enter the facility expecting non-negative utility, which causes

excessive congestion and drives away connected customers. In this case, the expected QL is greater

than ω − 1. Then, if a long queue is updated online (i.e., of length n), the expected real-time

QL will be greater than ω − 1 thereafter; see, e.g., the curve of φ = 6 in Figure 3(c). All future

connected customers who see this QL update will choose to leave the facility, so connected cus-

tomers’ long-run average individual utility UC is zero. Meanwhile, unconnected customers’ utility

UU is zero if ρU ≥ ρN , or positive if ρL ≤ ρU < ρN . In both instances, unconnected customers have

no less utility than connected customers. If the unconnected customers’ offered load is low (i.e.,

ρU < ρL), some connected customers will enter the facility. In this case, the expected QL when

all unconnected customers enter the facility is below ω− 1. For any QL update on the platform,

connected customers who arrive sufficiently long after the update will expect the real-time QL to

below ω− 1. They will choose to enter the facility from time to time expecting positive utility. In

this case, connected customers may have greater utility than unconnected customers.

We confirm the above intuition in Figure 9(c), which illustrates the simulation result of the

difference between the connected and unconnected customers’ utility UC −UU under arrival rate

Λ = 2 and hassle cost h= 1.5, for which the two critical cutoffs in unconnected customers’ offered
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Figure 9 Difference between connected and unconnected customers’s individual utility UC −UU as a function of

social connectivity γ ∈ {0,0.1, . . . ,1} under shared QLI with service reward R= 10, service rate µ= 1,

marginal waiting cost c= 1, arrival rate Λ∈ {0.5,1,2}, and hassle cost h= 1.5.

load ρU are ρL = 1.336 and ρN = 1.404. For γ ≤ 0.2, we have ρU ≥ 1.8>ρN , so both connected and

unconnected customers obtain zero utility and UC −UU = 0. For γ = 0.3, we have ρU is in (ρL, ρN ].

Here, unconnected customers have positive utility while connected customers have zero utility,

which leads to UC −UU < 0. This is in line with our intuition above. For γ ≥ 0.4, we have ρU <ρL,

so some connected customers will enter the facility. In this case, we observe from Figure 9(c)

that connected customers obtain greater utility than unconnected customers. Then, unconnected

customers have incentive to become connected for any γ ∈ [0.4,1]. This is also observed in Figures

9(a) and 9(b), where the total offered load ρ is smaller than ρL so ρU = γρ is smaller than ρL for

any γ ∈ [0,1].

We next endogenize customers’ decision of becoming connected on this information-sharing plat-

form to share and obtain the latest congestion update. We can view the degree of social connectivity

γ as an outcome from customers’ symmetric strategic behavior of deciding on whether to be con-

nected on the platform. Imagine an information-sharing platform is established for a service facility

originally under no QLI (i.e., γ = 0). If the total offered load is not high (see, e.g., Figures 9(a) and

9(b)), unconnected customers can obtain higher utility by becoming connected on the platform.

Then, all customers would prefer to use the platform to share information. Otherwise, if the offered

load is high (see, e.g., Figures 9(c)), customers may not join the platform spontaneously. Within

the range of degrees of connectivity γ ∈ [0,1−ρL/ρ], unconnected customers may relentlessly enter

the facility expecting non-negative utility, which causes excessive congestion and drives away con-

nected customers. In this case, the social planner needs to intervene to get sufficient customers
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connected with γ > 1− ρL/ρ so that the rest of the population will voluntarily follow, benefiting

the social welfare as an outcome.

OA4. Proof of Lemma 1
During the time interval (T, t), no customers arrive but some customers may have their services

completed and leave the system. (This will not be true if not all customers share information. See

Section 4 for a relaxation of the all-sharing assumption.) Given φ customers in the queue at time

T , the number of departures in (T, t), D (δ,φ), has a probability mass function:

P {D (δ,φ) = j}=

{
e−µδ(µδ)j

j!
0≤ j < φ,∑∞

k=φ
e−µδ(µδ)k

k!
j = φ,

and the expected number of departures in the time interval (T, t) is

E [D (δ,φ)] =

φ−1∑
k=0

k
e−µδ (µδ)

k

k!
+φ

∞∑
k=φ

e−µδ (µδ)
k

k!

=

φ−1∑
k=0

k
e−µδ (µδ)

k

k!
+φ

(
1−

φ−1∑
k=0

e−µδ (µδ)
k

k!

)

= φ+

φ−1∑
k=0

e−µδ (µδ)
k

k!
(k−φ) .

Thus, the real-time QL at time t is the difference between φ and the number of departures during

(T, t). Its distribution is

P {Ψ(δ,φ) = k} = P {D (δ,φ) = φ− k}

=

{
e−µδ(µδ)φ−k

(φ−k)!
0<k≤ φ,∑∞

k=φ
e−µδ(µδ)k

k!
k= 0,

and its expected value is

E [Ψ (δ,φ)] = φ−E [D (δ,φ)] =

φ−1∑
k=0

e−µδ (µδ)
k

k!
(φ− k) .

Note that when t= T ⇔ δ= 0, we recover E [Ψ (0, φ)] = φ.

The first derivative of E [Ψ (δ,φ)] with respect to δ is

∂E [Ψ (δ,φ)]

∂δ
= −

φ−1∑
k=0

(φ− k)

k!
µe−µδ (µδ)

k
+

φ−1∑
k=1

(φ− k)

k!
µke−µδ (µδ)

k−1

= −µ

(
φ−1∑
k=0

(φ− k)
e−µδ (µδ)

k

k!
−

φ−2∑
j=0

(φ− j− 1)
e−µδ (µδ)

j

j!

)

= −µ

(
e−µδ (µδ)

φ−1

(φ− 1)!
+

φ−2∑
j=0

e−µδ (µδ)
j

j!

)

= −µ
φ−1∑
j=0

e−µδ (µδ)
j

j!

= −µP {D (δ,φ)<φ}< 0.

Thus, E [Ψ (δ,φ)] is strictly decreasing in δ. Clearly, δ = t−T is an increasing function of t, so we

have that E [Ψ (δ,φ)] is strictly decreasing in t. �
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OA5. Proof of Lemma 2

(i) Recall from Lemma 1 that E [Ψ (δ,φ)] is strictly decreasing in δ. Thus, when φ < n, we have

that Uenter (δ,φ) is strictly increasing in δ. When φ= n, by using the derivation of ∂E [Ψ (δ,φ)]/∂δ

in the proof of Lemma 1, we get the first derivative of Uenter (δ,φ) with respect to δ

∂Uenter (δ,φ)

∂δ
= ce−µδ

(
n−1∑
j=1

(µδ)
j

j!
+ ν−n

)
,

which is positive because
∑n−1

j=1 (µδ)
j
/j!≥ 0 and ν ≥ n. Hence, Uenter (δ,φ) increases with δ.

(ii) When t= T , we have δ= 0 and E [Ψ (0, φ)] = φ; substituting these into (2) yields

Uenter (0, φ) =


c
µ

(ω− 1−φ) ≥ 0 1≤ φ≤m− 1,
c
µ

(ω− 1−φ) < 0 m≤ φ<n,
−h < 0 φ= n.

.

(iii) From (2), we have

Uenter (δ,φ) =


c
µ

(
ω− 1−

∑φ−1

k=0
e−µδ(µδ)k

k!
(φ− k)

)
φ<n,

c
µ

(
ω− 1−

∑n−1

k=0
e−µδ(µδ)k

k!
(n− k)− e−µδ (ν−n− 1)

)
φ= n.

Then, we can derive

Uenter (δ,φ− 1)−Uenter (δ,φ)

=


c
µ

(
e−µδ(µδ)(φ−1)

(φ−1)!
+
∑φ−2

k=0
e−µδ(µδ)k

k!

)
0<φ<n,

c
µ

(
e−µδ(µδ)n−1

(n−1)!
+
∑n−2

k=1
e−µδ(µδ)k

k!
+ e−µδ (ν−n)

)
φ= n,

which is clearly positive. �

OA6. Proof of Lemma 3

(i) When m≤ φ < n, we have Uenter (δ,φ) = c
µ

(ω− 1−E [Ψ (δ,φ)]). From Lemma 1, we have that

E [Ψ (δ,φ)] is a decreasing function of δ. According to (3), τφ is the solution of the following equation

of δ,

E [Ψ (δ,φ)] =

φ−1∑
k=0

e−µδ (µδ)
k

k!
(φ− k) = ω− 1.

From Lemma 1, we have E [Ψ (δ,φ)] is strictly decreasing in δ. Due to the fact that the inverse of

a decreasing function is still a decreasing function, τφ = Φ−1 (ω− 1) is also a decreasing function of

ω.

When φ= n, we have Uenter (δ,φ) = c
µ

(ω− 1−E [Ψ (δ,n)]− e−µδ (ν−n− 1)), which is increasing

in δ from Lemma 2. Then, from (3), τn is the unique solution of the following equation,

E [Ψ (δ,n)] + e−µδ (ν−n− 1) = ν− hµ
c
− 1.

Note that the left hand side

E [Ψ (δ,n)] + e−µδ (ν−n− 1) = ω− 1− µ
c
Uenter (δ,φ) for φ= n
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is decreasing in δ from Lemma 2(i); its first derivative

∂

∂δ

(
E [Ψ (δ,n)] + e−µδ (ν−n− 1)

)
=−µe−µδ

(
n−1∑
j=1

(µδ)
j

j!
+ ν−n

)

is negative and decreases with ν. The right hand side ν − hµ
c
− 1 increases with ν. Hence, τn is

decreasing in ν.

(ii & iii) Using similar argument as in (i), we have τn increases in the hassle cost h, and τn

decreases in ω.

(iv) Recall from Lemma 2(iii) that Uenter (δ,φ) is strictly decreasing in φ. Thus, we have τφ, as

the unique solution of Uenter (δ,φ) = 0, increases in φ for m≤ φ≤ n. �

OA7. Proof of Proposition 1
It is essential to derive the stationary distribution of the semi-Markov process with states 1 ≤
φ ≤ n. Let Pi,j denote the probability that the next transition cycle will start with j customers

given that the current one starts with i customers, for 1≤ i, j ≤ n; and let P denote the matrix

of transition probabilities with entries Pi,j. Let ~π = [π1, π2, . . . , πn] denote a row vector of the

stationary probability that a transition cycle will start with i customers πi. Clearly, ~π should be

the unique solution of

~π · P = ~π, and ~π ·~1 = 1, (OA. 1)

where ~1 = [1,1, . . . ,1]
>

is a column vector of the same size as ~π. Once the probability matrix P is

known, we can derive ~π by solving (OA. 1).

We next discuss these two time intervals in a transition cycle separately with more details in the

next two sections. Let Bi
j denote the number of customers in the beginning of the time interval

j, given i customers in the beginning of a transition cycle, for 1≤ i≤ n and j = 1,2. Recall that

I ij denotes the length of the time interval j given i customers in the beginning of a transition

cycle, for 1≤ i≤ n and j = 1,2. Let P
(1)
i,j denote the probability that there are j customers at time

Ti + τφ given φ customers at time Ti for 1 ≤ i, j ≤ n, and P
(2)
j,k denote the probability that there

are k customers at time Ti+1 given that there are j customers at time Ti + τφ for 0≤ j ≤ n and

1≤ j ≤ n. Let P (1) and P (2) denote the matrices of one-step transition probabilities P
(1)
i,j and P

(2)
i,j ,

respectively.

Time Interval 1 (Ti, Ti + τφ): The length of this time interval is a constant τφ, i.e.,

E
[
Iφ1
]

= τφ. (OA. 2)

By the definition of the transition point Ti we have Bφ
1 = φ. The number of service completions in

this time interval determines the expected total customer waiting time. Let D1 denote the number

of service completions in this time interval. Due to exponential service times with rate µ, D1 follows

Poisson distribution with parameter µτφ:

P {D1 = k}=
e−µτφ (µτφ)

k

k!
for k= 0,1,2, . . . , φ.

From Theorem 5.2 of Ross (2006), given D1 = k, the k service completion times have the same

distribution as the order statistics corresponding to k independent random variables uniformly
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distributed on the interval (0, τφ). Further, given D1 = k, the expected j-th service completion time

is jτ
k+1

, for j = 1, . . . , k.

Note that all quantities in this time interval are independent of customer arrival rate Λ. This is

because the arrival process is effectively shut down in this time interval (Ti, Ti + τφ).

Time Interval 2 [Ti + τφ, Ti+1]: The number of customers in the beginning of this time interval,

Bφ
2 , depends on D1:

Bφ
2 = max(φ−D1,0) .

Thus, Bφ
2 follows distribution

P
{
Bφ

2 = k
}

=


∑∞

j=φ

e
−µτφ(µτφ)

j

j!
k= 0,

e
−µτφ(µτφ)

φ−k

(φ−k)!
0<k≤ φ.

The one-step transition matrix P(1) is directly determined by the distribution of Bφ
2 :

P(1)
i,j =


∑∞

l=i
e−µτi (µτi)

l

l!
if m≤ i≤ n and j = 0

e−µτi (µτi)
i−j

(i−j)! if m≤ i≤ n and 0< j ≤ i
1 if i= j ≤m− 1
0 otherwise

. (OA. 3)

Let N j
µτi

= e−µτi (µτi)
j

j!
, and we have

P(1) =



i�j j = 0 j = 1 j = 2 · · · j =m− 1 j =m · · · j = n− 1 j = n
i= 0 1 0 0 · · · 0 0 · · · 0 0
i= 1 0 1 0 · · · 0 0 · · · 0 0
i= 2 0 0 1 · · · 0 0 · · · 0 0

...
...

...
...

. . .
...

...
. . .

...
...

i=m− 1 0 0 0 · · · 1 0 · · · 0 0
i=m

∑∞
l=mN

l
µτm

Nm−1
µτm

Nm−2
µτm

· · · N 1
µτm

N 0
µτm

· · · 0 0
...

...
...

...
. . .

...
...

. . .
...

...
i= n− 1

∑∞
l=n−1N

l
µτn−1

Nn−2
µτn−1

Nn−3
µτn−1

· · · Nn−m
µτn−1

Nn−m−1
µτn−1

· · · N 0
µτn−1

0

i= n
∑∞

l=nN
l
µτn

Nn−1
µτn

Nn−2
µτn

· · · Nn−m+1
µτn

Nn−m
µτn

· · · N 1
µτn

N 0
µτn


.

The length of the second time interval is exp (Λ), so we have

E [I2] =
1

Λ
.

Let Dφ
2 denote the number of service completions in [Ti + τφ, Ti + τφ + exp(Λ)]. Due to the expo-

nential service time and there are Bφ
2 customers at time Ti + τφ, we can determine the distribution

of Dφ
2 by considering a Poisson process with rate µ in an exponential time interval with mean 1

Λ
:

P
{
Dφ

2 = k
}

=


ρ
ρ+1

(
1
ρ+1

)k
0≤ k <Bφ

2 ,(
1
ρ+1

)Bφ2
k=Bφ

2 .
(OA. 4)

Further, the number of customers seen by the arrival at time Ti + τφ + exp(Λ) is Bφ
2 −D

φ
2 .
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Further, the above discussion reveals the relation between the one-step transition matrix P(2)

and the distribution of D2:

P(2)
j,k =



P {D2 = 1 or 2} = ρ(ρ+2)

(ρ+1)2
if j = k= n∑∞

l=j P {D2 = l} =
(

1
ρ+1

)j
if k= 1

P {D2 = j− k+ 1} = ρ
ρ+1

(
1
ρ+1

)j−k+1

if k≤ j+ 1

0 0 otherwise

. (OA. 5)

Moreover, the one-step transition matrix of transition cycles P can be derives as

P =P(1) · P(2), (OA. 6)

where P(1) and P(2) are from (OA. 3) and (OA. 5), respectively. Then, solving (OA. 1) gives the

stationary probability of the semi-Markov process ~π.

Then, by Lemma 5 in Section OA20 in the Online Appendix, we obtain

Λ̄S =
1∑n

i=1 πiτi + 1
Λ

, (OA. 7)

ΛS =
1−πn ρ

ρ+1
e−µτn∑n

i=1 πiτi + 1
Λ

, (OA. 8)

SS =

∑n

i=1 πi

(
R− c i

µ

)
−πn ρ

ρ+1
e−µτn

(
R− cn

µ

)
−h∑n

i=1 πiτi + 1
Λ

, (OA. 9)

where πi can be solved from (OA. 1) with P given by (OA. 6). �

OA8. Proof of Proposition 2
In the first decision epoch, customers do not have any QLI, it is an unobservable system for them.

Assume they use a mixed strategy and enter the facility with a probability q, so the effective arrival

rate to the service system is λ= qΛ. In the second decision epoch, customers have access to the

real-time QLI, and they decide accordingly whether to join or balk. It is an observable queue for

them, and they will only join the queue if it is shorter than n. Thus, a customer’s utility of entering

the facility is

Uenter (δ,φ) =
n−1∑
i=0

(1− qρ) (qρ)
i

1− (qρ)
n+1

(
R− (i+ 1)

c

µ

)
−h=H (qρ)−h

where H (ρ)≡ c
µ

(
ν (1−ρn)

1−ρn+1 − 1
1−ρ + (n+1)ρn

1−ρn+1

)
. Then, if all going provides positive utility, all customers

will go to the facility, i.e., q= 1. We first notice some properties of H (ρ): (i) H (0) =R− c
µ
> 0; (ii)

it limρ→∞H (ρ) = 0; and (iii) H (ρ) is a decreasing function of ρ, if 1−ρi
1−ρn+1 is a decreasing function

of ρ> 0, for ∀1≤ i≤ n, which is true because its first derivative

∂
(

1−ρi
1−ρn+1

)
∂ρ

=
i (n+ 1) (1− ρ)

ρ(1−i) (ρn+1− 1)
2

(∑n

j=n+1−i ρ
j

i
−
∑n

j=0 ρ
j

n+ 1

)

is less than zero. Hence, for 0<h≤R− c
µ
, there is a unique root ρN of H (ρ) = h. Of course, when

h decreases to 0, ρN increases to ∞; and when h increases to R− c
µ
, ρN decreases to 0.
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When ρ < ρN , all Λ customers go to the facility, 1−ρn
1−ρn+1 Λ will join the queue and (1−ρ)ρn

1−ρn+1 Λ will

balk at the second decision epoch. In this case, the social welfare is µρ (H (ρ)−h). When ρ≥ ρN ,

not all but ρN customers will go to the facility, and social welfare is zero.

The expected QL for ρ < ρN under no QLI Ln can be derived as the expected QL of an M/M/1

queue with finish waiting room n:

Ln =
ρ (1− ρn−nρn +nρn+1)

(1− ρ) (1− ρn+1)
,

which is clearly an increasing function of ρ. Simplifying Ln = ω− 1 gives c
µ

(ν− 1−Ln) = h, where
c
µ

(ν− 1−Ln) = h is a decreasing function of ρ. Hence, ρL is unique.

Moreover, we have

c

µ
(ν− 1−Ln)−H (ρ) =− c

µ

(n+ 1− ν)ρn (1− ρ)

1− ρn+1
< 0.

Combining with the fact that both c
µ

(ν− 1−Ln) and H (ρ) are decreasing functions of ρ, we have

ρL <ρN . �

OA9. Proof of Proposition 3
Recall from the discussion of Lemma 3 that queues under the full-QLI structure have the joining

shutdowns that are different from the arrival shutdowns under the shared-QLI structure. However,

we can use a similar approach to Proposition 1 here to derive the entry rate, throughput, and social

welfare under full QLI, and the result is identical to Proposition 3.

We consider each arrival of customer as transition point and apply the same method as in the

proof of Proposition 1 to the two time intervals: (1) (Ti, Ti + exp(µ)), and (2) [Ti + exp(µ) , Ti+1],

where Ti+1 = Ti+exp(µ)+exp(Λ). Let Bi ≤m denote the number of customers in the beginning of

the time interval i and Di denote the number of service completions in time interval i, for i= 1,2.

For the first time interval (Ti, Ti + exp(µ)), we have

� B1 = φ.

� The length of this time interval is τφ =

{
0 φ<m,
exp (µ) φ=m.

� The number of service completion in this time interval is D1 =

{
0 φ<m,
1 φ=m.

� The one step transition matrix of this time interval is

P(1)
i,j =

 1 if i <m and i= j
1 if i=m and j =m− 1
0 otherwise

Further, for the second time interval [Ti + τφ, Ti+1], we have

� B2 =

{
φ φ<m,
m− 1 φ=m.

� The expected length of this time interval is 1/Λ.

� We can determine the distribution of the number of service completions in this time interval

D2 by considering a Poisson process with rate µ in an exponential time interval with mean 1
Λ

:

P {D2 = k}=


ρ
ρ+1

(
1
ρ+1

)k
0≤ k <B2,(

1
ρ+1

)B2

k=B2.
(OA. 10)
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� Let Pj,k denote the probability that there are k customers at time Ti+1 given that there are

j customers at time Ti + τφ for 1≤ j, k ≤m. Further, we have the relation between the one-step

transition matrix P(2) and the distribution of D2:

P(2)
j,k =


∑∞

l=j P {D2 = l} =
(

1
ρ+1

)j
if k= 1

P {D2 = j− k+ 1} = ρ
ρ+1

(
1
ρ+1

)j−k+1

if 1<k≤ j
0 = 0 otherwise

.

P = P(1) · P(2)

=



i�k k= 1 k= 2 · · · k=m
i= 1 1

ρ+1
ρ
ρ+1

· · · 0

i= 2
(

1
ρ+1

)2
ρ
ρ+1

(
1
ρ+1

)
· · · 0

...
...

...
. . .

...

i=m− 1
(

1
ρ+1

)m−1
ρ
ρ+1

(
1
ρ+1

)m−2

· · · ρ
ρ+1

i=m
(

1
ρ+1

)m−1
ρ
ρ+1

(
1
ρ+1

)m−2

· · · ρ
ρ+1


Let πi denote the stationary probability that a transition cycle will start with i customers, and

~π= [π1, π2, . . . , πm] is a row vector. Clearly, ~π should be the unique solution of

~π · P = ~π, and ~π ·~1 = 1, (OA. 11)

where ~1 = [1,1, . . . ,1]
>

is a column vector of the same size as ~π. Once the probability matrix P is

known, we can derive ~π by solving the above equation:

πi =
ρi−1 (1− ρ)

1− ρm
for 1≤ i≤m.

Then, by Lemma 5 in Section OA20 in the Online Appendix, the throughput rate is one divided

by the expected transition cycle length

ΛF =
1∑m

i=1 πi (τi + 1/Λ)
=

Λ(
1− ρm−1(1−ρ)

1−ρm

)
+ ρm−1(1−ρ)

1−ρm (ρ+ 1)
= µ

ρ (1− ρm)

1− ρm+1
.

The social welfare is

SF =

∑m

i=1 πi

(
R−h− c i

µ

)
∑m

i=1 πi (τi + 1/Λ)
= cρ

(
1− ρm

1− ρm+1
ω−

(
1

1− ρ
− (m+ 1)ρm

1− ρm+1

))
.

At last, using Naor’s formula SF = (R−h)ΛF − cLF , we have

LF =
ρ

1− ρ
− (m+ 1)ρm+1

1− ρm+1
. �
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OA10. Proof of Corollary 1
When Λ =∞, we have the one-step transition matrix P(1) as

P(1)
i,j =


∑∞

l=i
e−µτi (µτi)

l

l!
if m≤ i≤ n and j = 0

e−µτi (µτi)
i−j

(i−j)! if m≤ i≤ n and 0< j ≤ i
1 if i= j ≤m− 1
0 otherwise

The length of the second time interval is zero, and there are no service completions. Further, the

one-step transition matrix P(2) is

P(2)
j,k =

 1 if j = k= n
1 if k= j+ 1
0 otherwise

.

Moreover, the one-step transition matrix of transition cycles P can be derives as

P = P(1) · P(2)

=



i�j j = 0 j = 1 j = 2 · · · j =m− 1 j =m · · · j = n− 1 j = n
i= 0 0 1 0 · · · 0 0 · · · 0 0
i= 1 0 0 1 · · · 0 0 · · · 0 0

...
...

...
...

. . .
...

...
. . .

...
...

i=m− 1 0 0 0 · · · 0 1 · · · 0 0
i=m 0

∑∞
l=mN

l
µτm

Nm−1
µτm

· · · N 2
µτm

N 1
µτm

· · · 0 0
...

...
...

...
. . .

...
...

. . .
...

...
i= n− 2 0

∑∞
l=n−2N

l
µτn−2

Nn−3
µτn−2

· · · Nn−m
µτn−2

Nn−m−1
µτn−2

· · · N 0
µτn−2

0

i= n− 1 0
∑∞

l=n−1N
l
µτn−1

Nn−2
µτn−1

· · · Nn−m+1
µτn−1

Nn−m
µτn−1

· · · N 1
µτn−1

N 0
µτn−1

i= n 0
∑∞

l=nN
l
µτn

Nn−1
µτn

· · · Nn−m+2
µτn

Nn−m+1
µτn

· · · N 2
µτn

N 1
µτn

+N 0
µτn


,

where N j
µτi

= e−µτi (µτi)
j

j!
. Then, time both sides of (OA. 1) with

[
0 1 · · · m− 1 m · · · n− 1 n

]>
gives

~πP
[

0 1 · · · m− 1 m · · · n− 1 n
]>

= ~π
[

0 1 · · · m− 1 m · · · n− 1 n
]>

n∑
i=0

iπi + 1−
n∑

i=m

µτiπi− e−µτnπn +
n∑

φ=m

πφ

∞∑
k=φ

e−µτφ (µτφ)
k

k!
(k−φ) =

n∑
i=0

iπi

from which we obtain the expected cycle length

n∑
i=m

πiτi =
1

µ

(
1−πne−µτn +

n∑
φ=m

πφ

∞∑
k=φ

e−µτφ (µτφ)
k

k!
(k−φ)

)
.

Substituting
∑n

i=m πiτi, Λ =∞, and ρ
ρ+1

= 1 into (OA. 7), (OA. 8), and (OA. 9) gives

Λ̄S = µ
/

Ξ, (OA. 12)

ΛS = µ
(
1−πne−µτn

)/
Ξ, (OA. 13)

SS = c

(
ω−

n∑
i=1

iπi−πne−µτn (ν−n)

)/
Ξ (OA. 14)

where Ξ = 1−πne−µτn +
∑n

φ=m πφ
∑∞

k=φ

e
−µτφ(µτφ)

k

k!
(k−φ) and πi can be solved from (OA. 1) with

P given by (OA. 6).
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When R→∞, we have ω and m approach ∞, so
∑n

i=m πiτi = 1
µ

(1−πne−µτn). Furthermore,

when n−m is also large, we have
∑n

i=m πiτi = 1
µ
.

For any transition cycles starting with more than m− 1 customers, there are arrival shutdown

periods, and the customer who joins the queue at the end of the transition cycle expects to obtain

zero utility. Of course, for other transition cycles starting with no more than m− 1 customers, the

customers joining at the end of the cycle will obtain non-negative utility. By contradiction, we can

show that there are positive probabilities for any transition cycle to start with no more than m−1

customers. Thus, the social welfare SS in this situation is positive.

Moreover, when the hassle cost is h=R− 2c/µ, the customer joining a transition cycle starting

with m − 1 = 1 customer obtains zero utility. Recall that there is at least one customer in the

beginning of any transition cycle. In this case, the social welfare is zero. �

OA11. Proof of Corollary 2
When ρ= Λ/µ=∞, we should always have ρN <ρ. Using Proposition 2, we complete the proof. �

OA12. Proof of Corollary 3
The proof is immediate by letting ρ approach ∞ in Proposition 3. �

OA13. Proof of Proposition 4
When the hassle cost is zero, i.e., h= 0, we have ω= ν and m= n.

(i) Under the shared-QLI structure, when m= n, we have τi = 0 for i < n. Further, τn = 0 is the

unique solution of

Uenter (δ,φ) = 0
n−1∑
k=1

e−µδ (µδ)
k

k!
(n− k) + e−µδ (ν−n− 1) = ν− 1.

Then, there are no arrival shutdown periods, and all customers enter the facility to access the

real-time QL. This completes the proof.

(ii) Under the no-QLI structure, when h= 0, from the proof of Proposition 2 we have ρN =∞.

Then, we must have ρ< ρN in Proposition 2. This completes the proof.

(iii) For the full QLI setting, by letting ω= ν and m= n in Proposition 3, we complete the proof.

Λ = Λ
1− ρn

1− ρn+1
,

S = cρ

(
1− ρn

1− ρn+1
ν−

(
1

1− ρ
− (n+ 1)ρn

1− ρn+1

))
. �

OA14. Proof of Theorem 1
When SN = 0, we only need to prove SF > 0:

SF = cρ

(
1− ρm

1− ρm+1
ω−

(
1

1− ρ
− (m+ 1)ρm

1− ρm+1

))
= cρ

(
(1− ρ)

∑m−1

i=0 (1− ρi)
(1− ρm+1) (1− ρ)

+ 〈ω〉 1− ρm

1− ρm+1

)
> 0.
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When SN > 0, we can derive

SF −SN = cρ

((
ν
ρn (1− ρ)

1− ρn+1
− (n+ 1)ρn

1− ρn+1

)
−
(
ω
ρm (1− ρ)

1− ρm+1
− (m+ 1)ρm

1− ρm+1

))
.

Then, due to the fact that ν ≥ ω, to prove SF >SN is equivalent to prove that Φ(ν) = ν ρ
n(1−ρ)

1−ρn+1 −
(n+1)ρn

1−ρn+1 is an increasing function of ν. First, it is clear that for ν ∈ [n,n+ 1), it is an increasing

function of ν, because ρn(1−ρ)
1−ρn+1 > 0. Then, we only need to show that Φ(ν) has upward jumps at

integer values; i.e.,

Φ (n+ 1)− lim
ν↗n+1

Φ(ν)

=

(
(n+ 1)

ρn+1 (1− ρ)

1− ρn+1+1
− (n+ 1 + 1)ρn+1

1− ρn+1+1

)
−
(

(n+ 1)
ρn (1− ρ)

1− ρn+1
− (n+ 1)ρn

1− ρn+1

)
=
ρn+1 (1− ρ)

∑n

i=1 (1− ρi)
(1− ρn+2) (1− ρn+1)

> 0,

which completes the proof. �

OA15. Proof of Theorem 2

Under no information, the expected social welfare is zero if customers enter the facility with a

probability less than one. In this case, we must have the social welfare under shared QLI, which

is positive, is greater than that under no information. Next, we compare the social welfare under

shared and no information structures when all customers enter the facility under no information.

We will establish the fact that the shared-QLI structure dominates the no information structure

in social welfare using a sample path discussion. Specifically, we introduce the shared QLI to any

sample path under no information, and show that the social welfare will be improved as a result.

Note that under no information, the system operates like an M/M/1 queue with a finite waiting

room.

Note that the steady state operations of an M/M/1 queue is composed of a sequence of busy

periods. In one busy period of an M/M/1 queue, if we take away an arrival from the arrival process

while keeping everything else the same, all the following customers that arrive in this busy period

will not see a longer queue upon arrival compared to the previous sample path with this arrival.

We formally describe this result. Consider a set of customers {1,2,3, . . .} ordered by their arrival

times. Let ai denote the arrival time of customer i, and si denote the ith service completion time.

Since we consider a busy period of the M/M/1 queue, the server is busy all the time, each service

completion takes away one customer. Thus, si is also the departure time of customer i. Clearly,

a customer departs after her arrival time; i.e., si ≥ ai. We assume that the system starts with no

customers, then the first busy period of this M/M/1 queue ends at sB, s.t., B = min{i|si <ai+1}.
Let li denote the number of customers seen by customer i.

Then, we remove a random customer j from the previous process while letting all other customers

{1,2,3, . . . ,B} \ j behave the same as before. Let l
′
i denote the number of customers seen by

customer i. Clearly, for those customers who arrive before customer j, their li stay the same; i.e.,

l
′
i = li if i < j. For those customers who arrive after customer j, they will not see a longer queue;

i.e., l
′
i ≤ li if i > j, and they expect identical or higher utility by joining the queue.
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We shall obtain the same conclusion when the M/M/1 queue has a finite waiting room and

we remove several consecutive customers from the arrival process at the same time. Note that

removing customers from a busy period does not change operations of the following busy periods.

We then focus on a busy period of the system under no information. Clearly, if one can show

that the shared-QLI structure dominates the no information structure in one busy period, one can

show that the same conclusion holds for an M/M/1 queue in steady state, which is composed of

infinitely many busy periods.

There are infinite potential sample paths of the first busy period. In some of these sample paths,

the QL never reaches m. Then, even if the shared QLI is introduced to the system, it will not stop

any customers from entering the system, and the service facility operates the same as under no

information. The social welfare under these two information structures is identical in this case.

We next discuss other sample paths where the QL reaches m. We categorize these sample paths

into subsets according to the path before the QL first reaches m. For sample paths in one subset, the

system operates exactly the same under both information structures until the QL first reaches m.

Then, under the shared QLI, an arrival shutdown period is initiated and some customers may choose

not to enter the facility, while under no information, all customers enter the facility. Introducing

shared QLI to the system is equivalent to removing arrivals during the arrival shutdown period.

If there are no arrivals during the arrival shutdown period, the shared QLI does not remove any

arrivals from the system. If there are some arrivals during the arrival shutdown period, removing

them will improve the utility of all customers that arrive after the arrival shutdown period in any

sample paths in this subset. Moreover, for those arrivals during the arrival shutdown period, on

average they obtain negative utility by entering the facility, so removing these arrivals will also

improve the social welfare. Hence, at the incidence when the QL first reaches m, it would be socially

desirable to provide customers with the shared QLI. Then, we can apply the same discussion to all

the following incidences during the busy period when the QL becomes no less than m and show that

the shared-QLI structure improves the social welfare of one busy period under no information. �

OA16. Proof of Theorem 3

In the asymptotic case Λ =∞, from Corollary 3, we have SF = c
(

(R−h)µ

c
−m

)
; and from Corollary

1, we have SS > 0 when h < R − 2c/µ. Hence, there exists a range h ∈
(
R− c

µ
i− ε,R− c

µ
i
]

for

i= 3, . . . , n− 1, for an ε > 0, in which SS >SF . �

OA17. Proof of Proposition 5

In the asymptotic case Λ =∞, from Corollary 3, we have ΛF = µ; and from Corollary 2, we have

ΛN = µ
ρN(1−ρnN)

1−ρn+1
N

. Note from the fact that

ρ (1− ρn)

1− ρn+1
=

∑n

i=1 ρ
i∑n

i=0 ρ
i
< 1,

we have ΛF >ΛN . �
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OA18. Proof of Theorem 4

(i) In the asymptotic case Λ =∞, from Corollary 1, we have

µ
1−πne−µτn

1−πne−µτn +
∑n

φ=m πφ
∑∞

k=φ

e
−µτφ(µτφ)

k

k!
(k−φ)

;

and from Corollary 3, we have ΛF = µ. From the fact that
∑n

φ=m πφ
∑∞

k=φ

e
−µτφ(µτφ)

k

k!
(k−φ)> 0,

we have 1−πne−µτn

1−πne−µτn+
∑n
φ=m πφ

∑∞
k=φ

e
−µτφ(µτφ)

k

k! (k−φ)

< 1. Hence, we get ΛS <ΛF .

(ii) From Corollary 1(ii), we have limR→∞ΛS = µ= ΛF . �

OA19. Lemma 4

Lemma 4. In a finite capacity M/M/1 queue, the expected real-time QL at time t given the

initial state φ, E [Ψ (δ,φ)] can be derived as E [Ψ (δ,φ)] =
∑∞

i=0P {N = i}E [Ψ (δ,φ) |N = i], where

P {N = i}=
e−(λ+µ)δ ((λ+µ) δ)

i

i!
for i= 0,1, . . . . (OA. 15)

and E [Ψ (δ,φ) |N = i] can be derived iteratively using

E [Ψ (δ,φ) |N = i+ 1]

=


λ

λ+µ
E [Ψ (δ,1) |N = i] + µ

λ+µ
E [Ψ (δ,0) |N = i] if φ= 0,

λ
λ+µ

E [Ψ (δ,φ+ 1) |N = i] + µ
λ+µ

E [Ψ (δ,φ− 1) |N = i] if 0<φ<n,
λ

λ+µ
E [Ψ (δ,n) |N = i] + µ

λ+µ
E [Ψ (δ,n− 1) |N = i] if φ= n.

. (OA. 16)

Proof of Lemma 4 The transient behavior of an M/M/1 queue with a finite waiting room is

governed by two stochastic processes: the Poisson arrival process with rate λ and the Poisson

service process with rate µ. Thus, at any moment, the next event will be either an arrival with

probability λ
λ+µ

or a service completion with probability µ
λ+µ

. However, due to the finite waiting

room, the arrivals or service completions do not necessarily increase or decrease the QL by one.

Let e ∈ (T, t) denote the time of an event . If the QL right before e is zero, an arrival at time e

increases the QL by one, but a service completion at time e does not change the QL, which will

stay at zero. If the QL right before e is in the set {1,2, . . . , n− 1}, an arrival at time e increases the

QL by one and a service completion at time e decreases the QL by one. And if the QL right before

e is n, an arrival at time e does not change the QL and a service completion at time e decreases

the QL by one.

Let N denote the total number of events in (T, t), including all arrivals and service completions.

Clearly, N is a Poisson process and follows the distribution in (OA. 15).Let E [Ψ (δ,φ) |N ] denote

the conditional expected real-time QL given there are φ customers at time T and N events occur

in (T, t). Clearly, if no events happen during (T, t), the expected real-time QL at time t will stay

the same as the latest QL update φ; i.e., E [Ψ (δ,φ) |N = 0] = φ. Furthermore, E [Ψ (δ,φ) |N = i+ 1]

can be calculated iteratively from E [Ψ (δ,φ) |N = i] for i ≥ 0 using (OA. 16). At last, using the

total probability theorem, we can derive the expected real-time QL at time t as in Lemma 4. �



19

OA20. Renewal Theory in Semi-Markov Processes

In this section, we consider a semi-Markov process with states 1, 2, . . . , n. Each time the process

enters state i, it earns a reward ri and remains there for a random amount of time with mean

ti before the next transition. Let πi denote the steady state probability distribution of this semi-

Markov process. Then, using a similar proof as the one for (7.24) in Ross (2006) we can obtain

the average reward rate earned in this semi-Markov process. For the purpose of completeness, we

include it as a Lemma.

Lemma 5. The average reward rate earned in this semi-Markov process is
∑M
i=1 πiri∑M
i=1 πiti

.

Proof of Lemma 5 Let Ni (m) denote the number of visits to state i in the first m transitions,

Xj
i denote the reward earned during the jth visit to state i, and T ji denote the amount of time

during the jth visit to state i. Then, the total reward earned in state i during the first m transitions

is
∑Ni(m)

j=1 Xj
i , and the amount of time during the first m transitions that the process is in state i

is
∑Ni(m)

j=1 T ji .

Furthermore, we have the total reward rate earned during the first m transitions is

∑n

i=1

∑Ni(m)

j=1 Xj
i∑n

i=1

∑Ni(m)

j=1 T ji
=

∑n

i=1

∑Ni(m)

j=1

X
j
i

Ni(m)

Ni(m)

m∑n

i=1

∑Ni(m)

j=1

T
j
i

Ni(m)

Ni(m)

m

. (OA. 17)

Since the T ji are independent and identically distributed and have mean ti, from the strong law

of large numbers, we have

lim
m→∞

Ni(m)∑
j=1

T ji
Ni (m)

= ti. (OA. 18)

Similarly, we have

lim
m→∞

Ni(m)∑
j=1

Xj
i

Ni (m)
= ri. (OA. 19)

Next, to derive limm→∞
Ni(m)

m
we temporarily consider the model under the assumption that each

transition takes one unit of time. Then Ni(m)

m
is the rate at which visits to state i occur, which, as

such visits can be viewed as renewals, converges to (E [number of transitions between visits])
−1

by

Proposition 7.1 in Ross (2006). But by Markov-chain theory, this must equal πi. As limm→∞
Ni(m)

m

is clearly unaffected by the actual times between transitions, we have

lim
m→∞

Ni (m)

m
= πi. (OA. 20)

At last, by substuting (OA. 18), (OA. 19), and (OA. 20) into (OA. 17), we have

lim
m→∞

∑n

i=1

∑Ni(m)

j=1 Xj
i∑n

i=1

∑Ni(m)

j=1 T ji
= lim

m→∞

∑n

i=1

∑Ni(m)

j=1

X
j
i

Ni(m)

Ni(m)

m∑n

i=1

∑Ni(m)

j=1

T
j
i

Ni(m)

Ni(m)

m

=

∑n

i=1 πiri∑n

i=1 πiti
. �
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OA21. Useful Equations
Some relevant derivations with respect to τ :

∂
∑i−1

j=0
e−µτi (µτi)

j

j!
(i− j)

∂τi
= −µ

i−1∑
j=0

e−µτi (µτi)
j

j!
(OA. 21)

∂
∑i−1

j=0
e−µτi (µτi)

j

j!

(
(ρ+ 1)

i− (ρ+ 1)
j
)

∂τi
= −µρ

i−1∑
j=0

e−µτi (µτi)
j

j!
(ρ+ 1)

j
(OA. 22)

∂
∑i−1

j=0
e−µτi (µτi)

j

j!

∂τi
= −µe

−µτi (µτi)
i−1

(i− 1)!
(OA. 23)

Further, some relevant derivations with respect to ρ:

∂
∑n−1

j=0
e−µτ (µτ)j

j!
(ρn− ρj)

∂ρ
= nρn−1

n−1∑
j=0

e−µτ (µτ)
j

j!
−µτ

n−2∑
j=0

e−µτ (µτ)
j

j!
ρj (OA. 24)

∂
∑n−1

j=0
e−µτ (µτ)j

j!
ρj

∂ρ
= µτ

n−2∑
j=0

e−µτ (µτ)
j

j!
ρj (OA. 25)

∂
∑n−1

j=0
e−µτ (µτ)j

j!
ρn

∂ρ
= nρn−1

n−1∑
j=0

e−µτ (µτ)
j

j!
(OA. 26)
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