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Abstract. We study a service system that does not have the capability of monitoring and
disclosing its real-time congestion level. However, the customers can observe and post
their observations online, and future arrivals can take into account such user-generated
information when deciding whether to go to the service facility. We perform pairwise
comparisons of the shared, full, and no queue-length information structures in terms of
social welfare. Perhaps surprisingly, we show that the shared queue-length information
may provide greater social welfare than full queue-length information when the hassle cost
of the customers entering the service facility falls into some ranges, and the shared and full
queue-length information structures always generate greater social welfare than no queue-
length information. Therefore, the discrete disclosure of congestion through user-
generated sharing can lead to as much, or even greater, social welfare as the continuous
stream of real-time queue-length information disclosure and always generates greater social
welfare than no queue-length information disclosure at all. These results imply that a little
shared queue-length information—inaccurate and lagged—can go a long way and that it
may be more socially beneficial to encourage the sharing of user-generated information

among customers than to provide them with full real-time queue-length information.
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1. Introduction

With the advances in information technology, people
are more connected than ever. Social media like Face-
book and Twitter facilitate the creation and sharing
of information via virtual communities and networks.
Traffic-information-sharing apps such as Waze en-
courage drivers to share traffic-congestion information
with one another, especially for roads that are not
monitored by government-funded agencies. Such user-
generated information sharing is different from the
full queue-length information disclosure that has been
intensively studied in the literature.

The literature on service operations (see, e.g., Hassin
2016, p. 59) points out that disclosing congestion in-
formation in real time helps to better match a ser-
vice provider’s capacity with customers” demand and
thus improves social welfare. The rationale is that,
with the real-time delay information, customers will
be able to make informed decisions upon arrival, so
they never join a long queue or balk from a short one,
thus leading to greater social welfare than when a
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queue cannot be seen. With a different focus, Chen
and Frank (2004) suggest that real-time delay infor-
mation improves the system throughput when the
arrival rate is high. Their explanation is that, with a
high arrival rate and no delay information, customers
are relatively unlikely to join the queue. The firm would
then prefer to reveal the delay information to customers
so that they will always join a short queue that they
would not have joined if they had no delay informa-
tion. These studies lend support to the proliferation
of almost real-time information disclosure in the public
service systems. For example, a growing number of
hospitals post their emergency-department waiting
times online for patients to see. Border crossings be-
tween the United States and Canada update the con-
gestion information online in real time.

Despite those benefits, a large fraction of service
providers do not release congestion information. That
is probably due to thelack of applicable technology for
gathering and distributing such information. How-
ever, thanks to the thriving mobile social-network apps,
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the congestion experienced by one customer can be
reported to others through these social platforms, as a
result of customers’ spontaneous sharing of infor-
mation. For example, people waiting in front of a pub
may post the queue length on a social platform. Dur-
ing the lunch break at a major academic conference,
a participant may post a photo of a long queue in
front of a nearby food stand to fellow participants.
The Transportation Security Administration (TSA) in the
United States has attempted to take advantage of the
latest development in technology to establish an in-
expensive information crowdsourcing and dissemi-
nation mechanism by releasing a mobile app called
MyTSA, which allows air travelers to share with one
another how congested different security checkpoints
are at an airport.

The above user-generated shared congestion in-
formation takes the form of a snapshot of the service
system with a time stamp. Future customers can see
the information provided by previous customers. At
the moment the congestion information is posted, it
is accurate. As time goes by, it becomes less precise.
Nevertheless, by checking the previously shared infor-
mation, future customers may still obtain some idea of
the current queue length (QL) of the system. Werefer to
this information structure as shared queue-length in-
formation (QLI), which is different from the full QLI
studied in the service operations literature (see, e.g.,
observable queue in Naor 1969). Unlike the full QLI
that discloses the QL to customers in continuous time,
the shared QLI consists of a countable number of
discrete-time snapshots of the service system sampled
when the customers arrived. The volume of information
under the shared-QLI structure is negligible compared
with that under full QLI.

There are various user-generated information-sharing
mechanisms, with different timing of sharing (e.g., at
arrival or departure) and information content (e.g.,
real-time QL or experienced waiting time). For in-
stance, in the pub and food-stand examples men-
tioned above, the QLI is shared when customers first
arrive at the queue. In the TSA example, customers
can share the waiting time experienced at different
checkpoints when they complete the security check.
In this paper, as the first attempt to investigate user-
generated information sharing, we focus on the QLI
shared at arrivals, which may not exactly fit some
of the settings mentioned above. (In Section 5.1, we
discuss an extension to investigate the model with
the QLI shared at departures.) Specifically, we study
the equilibrium behavior of customers with user-
generated and shared QLI to address the following
research question: How does this shared QLI affect
the social welfare compared with the full and no QLI?

We model a service facility with a single-server
queue. Upon arrival, a customer, without observing

the real-time QL in the service facility, makes the
enter-or-leave decision based on the QLI available to
her (i.e., shared, full, or no QLI). If the customer
decides to enter the facility and incur a hassle cost,
she discovers the real-time QL, on the basis of which
she then makes the join-or-balk decision as in an ob-
servable queue (Naor 1969).

Under the full-QLI structure, customers can access
the real-time QLI broadcast by the service provider.
It is an observable queue with one decision epoch.
Customers will use a threshold policy to decide
whether to join or balk, except that the threshold here
is lower than that in Naor (1969) because the service
reward is reduced by the hassle cost. Under the no-
QLI structure, customers have no QLI in the first
decision epoch. In this case, following Edelson and
Hilderbrand (1975), we assume customers use a sym-
metric mixed strategy to make the enter-or-leave de-
cision, and we can derive related service-level mea-
sures accordingly.

Under the shared-QLI structure, customers are all
connected through an online information-sharing
platform where the QL can be shared as public in-
formation. Regardless of whether a customer joins or
balks after accessing the real-time QL, she posts the
QL she observed alongside her arrival time on the
online platform. In the base model, we assume that
every customer who enters the facility will share QLI
online. This assumption is relaxed in Section 4. Under
shared QLI, because of the time lag from the previous
customer, who shared the QLI to the next customer
observing it, the latter perceives the real-time QL as a
random variable. In other words, the shared QLI pro-
vides customers with inaccurate QLI, which is differ-
ent from the real-time QLI in its exact value under
full QLI

Upon observing the shared QLI online, customers
may not enter the facility. If the shared QLI implies
that the queue is long, and therefore the expected
utility of entering the facility is lower than that of
leaving for an outside alternative, customers will
choose not to enter. Then, every time an undesirable
QL is reported, arrivals to the system are effectively
shut down. After a while, if no new QLI is shared,
the real-time QL is expected to approach a low level,
which guarantees a positive utility for those who
enter the facility. Customers will become interested
in entering the facility again. This arrival-shutdown
phenomenon is unique to the shared information
structure, unlike those observable and unobservable
queueing models (see, e.g., Naor 1969 and Edelson
and Hilderbrand 1975, respectively). We use an ap-
proach based on the renewal theory (see, e.g., Ross
2006) to derive the social welfare analytically under
the shared-QLI structure and then compare it with
that under full/no QLI
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Here, we summarize our main finding. The con-
gestion information is a mixed blessing for social
welfare. On the one hand, a little inaccurate shared
QLI is significantly more advantageous than no QLI
at all. With shared QLI, customers are discouraged
from entering the facility when the queue is expected
tobe too long to generate positive utility, and they are
attracted to the facility when the queue is more likely
to be short enough to provide positive utility. However,
withno QLI at all, customers can join the queue blindly.
Therefore, customers under shared QLI make more
informed decisions than those under no QLI. On the
other hand, much more abundant information (i.e.,
full QLI) does not necessarily lead to greater social
welfare and sometimes even hurts social welfare.
In comparison with full QLI, shared QLI has its ad-
vantages. Under shared QLI, during the time when
everyone expects the queue to be long, even if the
real-time QL drops to a low level, arrivals do not
know that this has happened and are still not willing
to enter the facility. Then, the queues that are not
short enough to provide significant utility for joining
customers are filled by customers more slowly than
under full QLI This allows long queues to diminish
because the inaccurate shared QLI turns away cus-
tomers only when the queues are expected to be long;
hence, on average, customers under shared QLI will
face a less congested system than those under full
QLI. That can cause social welfare to be greater under
shared QLI than under full QLI.

2. Literature Review

The literature on queueing systems with rational,
utility-maximizing customers dates back to Naor
(1969). The author argues that, under full QLI, self-
interested customers will overload the system, and the
resulting joining rate deviates from the social optimal
level. Hassin and Haviv (2003) and Hassin (2016)
provide comprehensive surveys for various exten-
sions to Naor (1969).

There is a large body of literature on delay an-
nouncement to customers. Whitt (1999) shows that
customers are less likely to be blocked when the de-
lay information is provided. Guo and Zipkin (2007)
consider an M/M/1 queue with three information
structures: no information; partial queue-length in-
formation; and full, exact waiting-time information.
They find that more information may not always
improve social welfare because of customers’ het-
erogeneous sensitivity to waiting time. This finding is
further strengthened by Guo and Zipkin (2009). These
papers on delay announcement all implicitly assume
that service providers offer truthful information.
However, customers are often unable to verify the
announced congestion information. Allon etal. (2011)
study customers’ strategic behavior under the service

provider’s unverifiable delay information, and they
show that cheap talk may improve the service pro-
vider’s profit and customers’ expected utility. More
recently, Hu et al. (2018) study an M/M/1 queue
where only a fraction of customers are informed of
the real-time QL. The authors find that the system’s
throughput and social welfare may be unimodal in the
fraction of informed customers. Cui et al. (2017) show
that when customers are unaware of the information-
disclosure policy, it is socially optimal to disclose the
QL to customers when the queue is sufficiently short
or sufficiently long, but not disclose when the QL
is moderate. Hassin and Koshman (2017) discover
that a threshold-signaling mechanism combined with
a careful price selection achieves the optimal revenue
in the case of a linear waiting cost. An earlier version
of this study appears in Hassin and Koshman (2014).
Using a Bayesian persuasion framework, Lingenbrink
and Iyer (2019) show a similar result for a broader
class of customer waiting costs. Ibrahim (2018) pro-
vides a comprehensive survey on this subject.

The congestion information in the papers mentioned
above, regardless of its form, is communicated to cus-
tomers by the service provider in real time or, equiva-
lently, provided to everyone upon their arrival. In our
paper, we study a lagged and user-generated informa-
tion structure that emerges as a result of customers’
spontaneous information-sharing behavior, which
may serve as an inexpensive information-generating
and -sharing mechanism for service providers.

Other forms of information and their disclosure
have been studied in the service operations literature.
Hassin (2007) considers scenarios in which the service
rate, service quality, or waiting conditions are ran-
dom variables that are known to the server but not to
the customers, and he investigates whether the ser-
vice provider is motivated to reveal these parameters
to customers. Veeraraghavan and Debo (2009) study
customers’ inferences about the service quality through
observation of the queue length, which may lead to
herding in queues. Cui and Veeraraghavan (2016)
study a single-server queue with customers who may
have arbitrarily different beliefs about the service ca-
pacity, and they show that revealing the service-rate
information can benefit revenue, but may hurt indi-
vidual or social welfare.

Our work is related to several recent papers about
the influence of social networks and media on service
systems. Allon and Zhang (2017) study the optimal
service-level differentiation in a two-period model
where early adopters’ experiences in the first period
will be reported on social networks and internalized
by all customers in the second period. Yang and Debo
(2019) study thereferral priority program that enables
existing customers on a waiting list to gain prior-
ity access if they successfully refer new customers
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through their social ties. Yang et al. (2019) study the
effect of search-cost reduction, enabled by service-
review websites, on service providers. The authors
find that reducing the search cost would increase the
average waiting time for high-quality service pro-
viders and might not improve customer welfare. In
contrast, we study a dynamic service system with the
transient QLI possibly shared with later arrivals, and
we compare the steady-state system performance
with that under alternative information structures.

User-generated content (UGC) has been extensively
studied in the marketing and information system
literature; see, for example, Fader and Winer (2012)
for a special issue of Marketing Science on why people
make UGC contributions and the impact of such
contributions. A large collection of papers study the
impact of UGC on firms’ decisions, assuming users’
content-generating and -sharing behavior as being
exogenously given; see, for example, Kwark and
Raghunathan (2018) for the impact of UGC on prod-
uct design. In this paper, the user-generated queue
length information is dynamically endogenized by
those who enter the facility. Moreover, our paper is
related to a large body of literature on incentives for
information sharing in supply chains. For example, more
recently, Ha et al. (2017) consider the demand in-
formation sharing in two competing supply chains,
where each supply chain is composed of one retailer
and one manufacturer. The authors discover that in-
formation sharing may benefit the supply chain when
the manufacturer is efficient in cost reduction. In our
setting, we find that QLI sharing among fellow cus-
tomers benefits the social welfare.

The work most closely related to ours is Hassin and
Roet-Green (2018). In their model, customers’ travel
time to the service queue follows an exponential dis-
tribution. They investigate whether the service pro-
vider should provide customers with the QLI on the
service queue prior to traveling. They show that to
maximize throughput, it is better to disclose (respec-
tively [resp.], conceal) the QLI if the congestion is high
(resp., low) and that, to maximize social welfare, it is
better to release the QLI. The information structure in
our model is different. The information available to a
customer at the first decision epoch was posted by the
previous customer some time ago, and the customer
obtains accurate real-time congestion information only
if she arrives at the service facility. Moreover, our focus
is on comparing the system performance measures un-
der the shared QLI with those under full and no QLI

3. Model

Consider a service facility that is modeled as a single-
server queue. Service times are distributed expo-
nentially with mean 1/u. The demand for obtaining
the service follows a homogeneous Poisson process

with arrival rate A. Both the service rate y and arrival
rate A are public information. We denote by p = A/u
the offered load of the system. The system uses a first-
come-first-served service discipline. Customers have
anidentical service reward R and marginal waiting cost
¢ per unit of time, which are public information as well.

The service provider does not possess a mechanism
for generating and sharing real-time queue-length
information, but all customers have free access to
an online information-sharing platform where the QL
posted by someone is shared as public information. In
Section 4, we relax this assumption and allow only a
fraction of customers to have access to such a platform.

Hassle Cost. We assume that if customers enter the
service facility, they incur an exogenous hassle cost /1
and observe the real-time QLI. The hassle cost rep-
resents the effort customers exert to access the queue
and then obtain the real-time QLI (if it is not publicly
disclosed). It is not a payment transfer from cus-
tomers to the service provider. Customers cannot join
the queue without incurring this cost. This is con-
sistent with the literature. In retail operations liter-
ature, the hassle cost has been used to capture cus-
tomers’ effort for traveling to the store and searching
for the product; see, for example, Gao and Su (2017).
Indeed, entering the service facility may take not only
effortbutalso time. As the first attempt to model user-
generated information sharing, we focus on a parsi-
monious model and assume that the travel time to the
facility is negligible. We refer the readers to Hassin
and Roet-Green (2018) for a model that captures the
travel time to a service system.

As a potential demand arises at time ¢, the customer
makes an enter-or-leave decision on the basis of the
hassle cost 1 and the latest QLI ¢ that was shared on
the platform 6 time units ago at time T =t — 0.

Second Decision: Join-or-Balk. If an “entry” decision
is made, the customer enters the facility and discovers
the real-time QL, ¢, at time ¢ (due to the assumption
of negligible travel time), on the basis of which she then
makes the join-or-balk decision. At this decision epoch,
the customer’s utility from joining the queue is

U =R -1 (1)
u
If the customer chooses to balk, she obtains zero
utility. Let | x| denote the largest integer not exceeding
x. Then, there is a threshold n = |v| where v = Ru/c,
such that the customer joins the queue if and only if
Ujoin > O—that is, p <n-1.

Information Sharing. Regardless of the join-or-balk
decision, upon entering the facility, a customer posts her
observation of the QLI along with the time stamp ¢ on
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the online information-sharing platform. For conve-
nience, we let the information posted be the total
number of customers in the system after the customer
makes her join-or-balk decision. For example, sup-
pose the customer sees a number of i customers
ahead of her.If ) < nand the customer decides tojoin,
then she posts the QLI ¢ = ¢ +1 on the platform; if
Y > n and the customer balks, then she posts the QLI
as ¢ = 1. Clearly, no customers are interested in
joining a queue of length n and then post the QLI
¢ =n+1, s0 ¢ is at most n; on the other hand, any
rational customer will be interested in joining an
empty queue, so ¢ is at least one.

In the base model, we assume that every customer
who arrives at the facility will share information
online. At a service completion, the customer leaves
the system without posting anything. (Note that if
every customer posts the QLI on the platform upon
both arrival and departure, future arrivals can infer
the real-time QL accurately simply by counting, and
the information structure is essentially equivalent to
an observable queue, which is not our interest here.)
Furthermore, in Section 5.1, we discuss how to handle
the situation where customers post the QLI only at
departures.

As a feature of our model, the information available
to customers in the first decision epoch is not a con-
tinuous stream of real-time QL. Instead, it takes the
form of a countable number of snapshots of the ser-
vice system, each with a time stamp. Although future
arrivals can see the information posted by earlier cus-
tomers, the information is no longer accurate when
they arrive. As mentioned, we refer to this user-
generated information structure as the shared-QLI
structure.

In our model, the service quality is public knowledge
among customers—for example, obtained through
review websites. The shared QLI does not change
customers’ inference of the service quality. Of course,
QL can signal service quality (see, e.g., Veeraraghavan
and Debo 2009), which we do not capture in our model.

First Decision: Enter-or-Leave. Let W(0, ¢) denote the
random variable representing the real-time QL (in-
cluding the one in service, if there is one) that can be
observed by a customer arriving at time t—that is, 6
time units after the most recent QLI ¢ was posted at
time T. Under the assumption that all customers post
information online, the realization of W(0, ¢) ranges
from zero to ¢b. Recall that at the second decision epoch,
customers join if and only if the observed QL is less
than n. If a customer enters the facility with W(6,¢) =
k <n customers, her utility is the expected utility of
joining a queue of length k less the hassle cost h. If
a customer enters the facility with W(o,¢) = n cus-
tomers, she will balk, and her utility is —h. Thus, using

the total probability theorem, we have the customer’s
expected utility of entering the facility:

uenter (67 (P)

3 P{wio, ) = kbR - K21

R-c —-h <n,
SR

n_lp{\P(é,n):k}(R—clil)—h b=n,

k=0 H
R—h—cw ¢<mn,

= R_h_cg[\y(é,n)]+1_e_yb(R_Cn_+1) _n
(- 1-E[(5,9)) o<n

|
Tloaxm|o

(cu —1-E[W(®,n)|-e"(v-—n- 1)) ¢=n,

)
where w = (R - h)u/c. Clearly, we have w <v. From
the second equation of (2), we see that the utility of
entering the facility U is the service reward R less
the combined hassle cost h and expected waiting cost
when a customer actually joins the queue. This should
be adjusted for the case that a customer balks after
entering a facility with n customers. If the customer
chooses to leave at the first decision epoch, she re-
ceives zero utility. A rational customer enters the
facility if and only if Ugyer > 0.

We write m = |w]| as the threshold such that if
customers know the real-time QLI at all times (the
full-QLIstructure), upon arrival, a customer will enter
the facility and incur the hassle cost if and only if the
real-time QL is no more than m — 1. To ensure that
customers who know the queue is empty are willing
to enter the facility for the hassle cost, we should have
w > 1; otherwise, no customers will enter the facility.
Further, note that when w =1 in (2), the expected
utility of entering the facility may be negative at any
time after the latest QL update. For example, if a
customer reports online that she is the only one in the
queue (i.e., ¢ =1 <n) at time T, no customers will
enter the facility after that. This is because no matter
how much time has passed, there is always a small
possibility that this customer is still there; that is,
E[W(5,¢)] > 0. Then, from (2), the expected utility of
entering is negative. Hence, no customers will be
interested in entering the facility after the latest QL
update. Thus, for the ease of exposition, we exclude
the whole interval [1,2) containing the case of w =1
in the following analysis and focus on w > 2.

In our base model, we consider homogeneous cus-
tomers with identical service reward R, marginal
waiting cost ¢, and hassle cost k. In Section 5.2, we
discuss the model with heterogeneous customers.
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Under the shared-QLI structure, there are two sepa-
rate decision epochs, and, at the second one, the hassle
cost has been sunk. Thus, upon arrival, customers
consider the utility function (2), where the hassle
cost h is a disutility. After she enters the facility, a ra-
tional customer adopts the utility function (1) on the
spot to make the join-or-balk decision, where the
hassle cost is forgone as a sunk cost.

We will compare the shared-QLI structure with
(i) the full-QLI structure, under which customers make
the enter-or-leave decision based on a continuous
stream of real-time QLI; and (ii) the no-QLI structure,
under which customers do not have the real-time QLI,
and they rely on the long-run average QL distribution
to make the enter-or-leave decision. The shared-, full-,
and no-QLI structures offer different forms of QLI to
customers at the first decision epoch. Under full QLI,
customers have the real-time QL in its exact value,
which is similar to the observable queue in Naor
(1969). Under shared QLI, customers view the real-
time QL as a random variable derived from the user-
generated shared information posted by other cus-
tomers some time ago. The real-time QL is overlaid
with noise over the lagged, shared QLI. Under no QLI,
customers do not have the real-time QLI. Once a cus-
tomer enters the facility after incurring the hassle cost &,
she obtains the real-time QLI and makes the join-or-
balk decision under all three information structures.

3.1. Real-Time Queue Length

We now characterize the monotonicity of the real-
time QL, W(0, ¢), with respect to the elapsed time 6
since the latest QL update. Because there are no ar-
rivals but only departures during (T, t), the expected
real-time QL, E[W(5, ¢)], should decrease over time.
This is confirmed by the following lemma.

Lemma 1. Given the last customer’s QL update ¢, the
expected real-time QL, E[\W(6, ¢)], is strictly decreasing in
O (ort=T+)).

Customers are connected through the information-
sharing platform. Upon arrival, if a customer enters the
facility and sees the queue, she shares the QLI ¢ with
other customers. The utility of entering the facility Ueyer
is an increasing function of 6, because the expected real-
time QL, E[W(5, ¢)], is decreasing in 6 after the latest
QLI update at time T. This is confirmed by the fol-
lowing lemma.

Lemma 2. Given the last customer’s QL update ¢, the
utility of entering the facility:

i. Uenter(8, @) is strictly increasing in & (or t = T +9).

ii. At time t =T, Ueer(0,) 20 if 1 < <m; and
uenter(or (73) <0 lfﬂ’l < (P <n.

iii. Uenter(6, @) is strictly decreasing in ¢.

From Lemma 2, we see that if the latest QL update is
less than m—thatis, ¢ < m—the customer who arrives
at any time after the latest QL update will enter the
facility—that is, Uepser > 0—and use the real-time QLI
to make the join-or-balk decision. When the latest
online QL update is m < ¢ < n, immediately after the
latest QL update, customers have no incentive to
enter the facility, because an entry leads to negative
utility; that is, Uener < 0. As time goes by, customers’
utility of entering the facility U, increases [see
Lemma 2(i)], and when it reaches 0, customers will
want to enter the facility again. Let 7, denote the
length of the time it takes for the utility of entering the
facility Uepgr to increase to zero. Then, 74 is the unique
solution of the following equation with variable 9,

Uenter(ér (P) =0. (3)

After the utility of entering the facility U,p.r increases
to zero at time T + Ty, Customers become interested in
entering the facility again. Later, at time t > T + 74, a
customer will enter the facility and see, say, iy number
of customers in the queue. If { < 1, then this customer
joins the queue and updates the online QLI as ¢ =
Y +1 [this is true even when ¢ is in the range of
[m, n)—a range of QLs for which the customer would
not like to enter the facility in the first place before
incurring the hassle cost &, because she forgoes the
hassle cost in the second decision epoch as a sunk cost
that she has paid earlier in the first decision epoch];
otherwise, she balks and updates the online QLI as ¢ = n.

The QL update ¢ may take a value greater than m.
For example, when the latest update is ¢ = m and
before the next customer enters the facility at time ¢,
there is no service completion; the next customer will
join the queue and update ¢ = m + 1. Similar situa-
tions can happen for m < ¢ < n. Therefore, the shared
QLI ¢ for all t can range from 1 to n.

Once some customer reports a QL m < ¢ < n, the
arrival process to the facility is effectively shut down
for a constant time period To, after that, customers
again become interested in making the entry decision.
If the latest QL update ¢ is no more than m — 1—that
is, 1 < ¢ < m —1—arriving customers will not stop
entering the service facility. Equivalently, the facility
is shut down for a time period of length zero. Con-
sistent with the cases of m<¢ <n, we adopt
the convention of defining the length of the arrival-
shutdown period for 1 < ¢ <m —1 as zero—that is,
Ty = 0.

Lemma 3. Consider w > 2. The arrival-shutdown period
length 1y has the following properties for m < ¢ < n:
i. Ty is a decreasing function of v.
ii. T4 is an increasing function of h and limy\ o 7 = 0.
iii. 7y is a decreasing function of w.
iv. 14 is an increasing function of ¢.
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To the best of our knowledge, queueing systems
witharrival shutdowns mentioned above have notbeen
studied before. The observable queue model (see, e.g.,
Naor 1969) contains a feature similar to the arrival
shutdown. There, once the QL rises to the joining
threshold, customers stop joining the queue until the
next service completion occurs. We call it endogenous
joining shutdown in the observable queue model to
differentiate it from the arrival shutdown in our
model under the shared QLI and exogenous joining
shutdown in a queueing model with a finite waiting
room. Queueing systems with arrival shutdowns are
different from those with joining shutdowns. The
joining shutdown contingently depends on the real-
time QL. The length of a joining shutdown period is
exponentially distributed with mean 1/u. The arrival
shutdown counts on the expected real-time QL. Once
a long queue is reported online, an arrival-shutdown
period starts, and it is of a constant length for a given
posted queue length.

Moreover, queueing systems with arrival shutdowns
are different from those with service vacations that have
been widely studied (see, e.g., Takagi 1991 and ref-
erences therein). The literature applies the generating
function approach on the embedded Markov chain at
service completions to derive the mean queue length
and customers’ waiting time. In a queueing system
with service vacations, the number of Poisson ar-
rivals in a vacation can be arbitrarily large, whereas
in a system with arrival shutdowns, the number of
service completions in an arrival-shutdown period is
capped by the number of customers at the beginning
of that period, which makes it difficult to directly
apply and extend the generating function approach.

Remark 1. In reality, customers may not always share
the QLI, but only share the QLI under some circum-
stances. For example, when the queue is relatively long,
customers have a higher tendency and longer unoc-
cupied time to share QLI in the form of complaints
about long queues. The discussion of Lemma 2 shows
that only the QLI of m < ¢ < n (the queue is relatively
long) concerns future customers, whereas the QLI of
¢ < m (the queue is short) does not affect the arrival
process at the facility. Therefore, it is equivalent to
consider the information-sharing norm in which only
the extreme QLI m < ¢ <n is posted. Under such a
norm, suppose the latest QLI is m < ¢ < n. Customers
who arrive in the arrival-shutdown period will leave
the system due to the anticipated negative utility of
making an entry. Customers who arrive after the
arrival-shutdown period will enter the facility; their
rationale is: (i) If no other customers arrive after the
arrival-shutdown period, then the current expected
QL is less than w — 1, and the entry decision offers a
positive expected utility; and (ii) if some other

customers arrive after the arrival-shutdown period,
given the fact that there are no QL updates greater
or equal to m after the arrival-shutdown period, it
is certain that these customers see less than m —1
customers after they enter the facility, and the
current QL must be less than m. Thus, the entry
option is also desirable. This explains the equiva-
lency of the two information structures, one with
every arrival at the facility sharing QLI and the other
with only the extreme QLI shared. o

3.2. Service-Level Measures

In this section, we first derive, for the shared-QLI
structure, the entry rate to the facility A%, the through-
put A5, and social welfare S° of the system. Recall that
under the shared QLI, some customers who enter the
facility may find a queue of length n, so they will not
join. Thus, we have AS > AS.

To derive these quantities, we consider a semi-Markov
process (see, e.g., section 7.6 of Ross 2006) that enters
states ¢ at time points when customers update QLI
on the platform. Let 7, denote its stationary proba-
bility for ¢ € {1,2,...,n}. The time period between
any two consecutive transitions is a transition cycle,
which is composed of two time intervals: the arrival-
shutdown period, from the previous QL update (at
time T) to T + 7, and the arrival-open period, from T +
to the next QL update. Note that the first time in-
terval in the cycle is empty for 1 < ¢ < m. No arrivals
in the arrival-shutdown period are interested in en-
tering the facility. At the end of the arrival-shutdown
period, customers become interested in entering the
facility again. The next customer will enter the fa-
cility at time T + 74 + exp(A), where exp(A) denotes a
random variable following the exponential distribu-
tion with parameter A, and discover the real-time
QL ¢. Then, if the real-time QL ¢ is less than n, she
joins the queue and updates ¢ = ¢ +1; otherwise,
when the real-time QL is n, which can happen if the
latest QL update is ¢ =n and there is no service
completion between these two QL updates, with
probability e *™p/(p + 1), this customer balks and
updates ¢ =n. Then, another transition cycle starts
with the next QL update. Clearly, the length of the
arrival-shutdown period is 74, which depends on the
updated QLI ¢. The expected length of the arrival-
open period is 1/A.

At each transition, one customer enters the facility
and updates the QLI as ¢. The customer’s expected
utility from joining the queueis R — ¢c/u less the hassle
cost h; otherwise, with probability e *™p/(p +1),
this customer will balk after entering the service facility
and obtain zero utility after incurring the hassle cost /.

Then, by applying renewal theory (see, e.g., Ross
2006) to the semi-Markov process, customers’ entry
rate to the facility AS can be computed as one divided
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by the expected length of a transition cycle. The
throughput A® is the entry rate to the facility minus
the rate of balking after an entry. Lastly, social wel-
fare S° can be derived by the renewal theory as the
expected utility of the customer who enters the facil-
ity at the end of a transition cycle divided by the
expected length of a transition cycle. Note that be-
cause our model does not involve price as a transfer
payment between customers and the service pro-
vider, the social welfare only includes the customer
surplus.

Proposition 1 (Shared QLI). Under the shared-QLI struc-
ture and with a hassle cost h, the entry rate to the facility
AS, the throughput AS, and the social welfare S° are given
by (OA.7), (OA.8), and (OA.9) in the online appendix.

If no customers share any QLI online, arrivals
have no QLI whatsoever in their first decision epoch.
In this case, following Edelson and Hilderbrand (1975),
we assume customers use a symmetric mixed strategy
to make the enter-or-leave decision. In their second
decision epoch, once customers have access to the real-
time QLI, they make the join-or-balk decision as in an
observable queue (see, e.g., Naor 1969). At this decision
epoch, customers forgo the hassle cost as a sunk cost,
and they will join the queue if and only if the real-time
QL is less than n. We can derive related performance
measures under no QLI.

Proposition 2 (No QLI). Under the no-QLI structure, the
entry rate to the facility AN, the throughput AN, and social
welfare SN are

Case AN AN SN

1
0<p<pn A p]( ppﬂ) pp(i(p) - h)
p=pn ppN u‘l(lpi‘) 0

where py is the unique solution of h = H(p) = (v ,,H

T+ 5 ("Hn)fl) We have that

i. pn decreases in the hassle cost h;

ii. limy_0pn = 0

iii. hmh—)R—c/y pn =0;

iv. py > pr, where pr is the unique solution of
Lq.(p) = w—1 and L,(p) is the expected QL under entry

rate up.

Proposition 2 shows that there are two critical
cutoffs, pr and py, in the offered load p that are de-
pendent on the hassle cost 1, and further, pr < pn. If
p > pn, customers will join with probability pn/p
so that the effective arrival rate at the facility is upy
and customers expect zero utility. If p < py, all cus-
tomers enter the facility expecting nonnegative util-
ity. Moreover, if p < pr, the resulting expected QL is

no more than w —1; otherwise, if p; < p < pn, all
customers enter the facility while the resulting ex-
pected QL is greater than w —1, a level at which, if
a customer knew it in the first decision epoch, she
would not enter the facility. Such behavior does not
exist in the unobservable queue, where p; and py
coincide. This is because in our model under no QLI,
customers can choose to balk in the second decision
epoch so that the cost of entering the facility with a
long queue is limited by the hassle cost, which drives
up the expected QL to be greater than w — 1.

On the other hand, under the full-QLI structure,
customers essentially have only one decision epoch.
If their decision is to enter the facility, they incur the
hassle cost 1. This lowers customers’ service reward to
R —h. Therefore, to analyze customers’ equilibrium
behavior under the full QLI in the presence of a positive
hassle cost i, we only need to assume the service
reward to be R —, and the same result from Naor
(1969) will follow.

Proposition 3 (Full QLI). Under the full-QLI structure, the
entry rate to the facility AF, the throughput AF, and social

welfare S are AF = AT = ’i(lp,,m
(L _ (m+1)p"’))
1_P 1_pm+1 .

F _
and S = cp(1 pmw

3.3. Asymptotic Case

In this section, we gain understanding of the service
system under the shared-, full-, and no-QLI structures
by first focusing on the asymptotic case A = 0. Recall
from Section 3.2 that each transition cycle under the
shared QLI is composed of two time intervals: the
arrival-shutdown period of length 7, and the arrival-
open period of expected length 1/A. In the asymp-
totic case, each transition cycle has only the arrival-
shutdown period, and the arrival-open period in any
transition cycle is of length zero due to the infinitely
high arrival rate.

Recall from Section 3.1 that the shared QLI ranges
from 1 to n. This conclusion holds a fortiori for the
asymptotic case, and the QL updates under the shared
QLI form a semi-Markov process with the state space
{1,2,...,n}. For the QL update 1<¢p <m—1, the
arrival-shutdown period is of length zero; then, im-
mediately after the QL update, another customer
enters the facility, joins the queue, and obtains non-
negative utility R — h — (¢ + 1)c/u. For the QL update
m < ¢ < n, right after the arrival-shutdown period, a
customer entering the facility expects to see w — 1 cus-
tomers and obtains zero utility. Note from Lemma 3(iii)
that the length of the arrival-shutdown period 7,
increases in the online QL update ¢, for m < ¢ < n.
This means that the more customers a transition cycle
starts with, the longer the arrival-shutdown period
is, and the more service completions are expected
to occur during the arrival-shutdown period. As a
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result, the next customer entering the facility sees on
average w — 1 customers in the queue.

A transition cycle starts with m+1<¢ <n cus-
tomers only when the previous transition cycle starts
with ¢ —1 customers and there is no service com-
pletion during the arrival-shutdown period of that
cycle. Recall from Lemma 3(iv) that the length of an
arrival-shutdown period 74 increases in the online
QL update ¢, for m < ¢ < n. Then, the larger number
of customers a transition cycle starts with, the less
likely the next transition cycle is to start with a lot of
customers. Hence, the steady-state probability of a tran-
sition cycle starting with ¢ + 1 customers should be less
than that of a transition cycle starting with ¢ cus-
tomers, form < ¢ < n. Whenn — mis sufficiently large
(e.g.,n —m > 5), the probability of the transition cycle
starting with n customers, n,,, becomes negligible.

Similarly, a transition cycle starts with one cus-
tomer only when the previous transition cycle starts
with m < ¢ <n customers, and all these ¢ customers
complete services during the arrival-shutdown pe-
riod of length 74, which happens with probability
XiZse " (ute)'/il. When m increases to infinity, the
probability of all customers completing services dur-
ing an arrival-shutdown period approaches zero, as
does the probability of a transition cycle starting with
one customer.

When both m and n —m become large, the steady-
state probability mass of the online QL update concen-
trates around state m, and both 7; and 7, approach
zero. Note that because m, approaches zero, almost
all customers who enter the facility will join the queue.
Thus, we have the expected length of any transition
cycle as ¥ m;t; ® 1/u. This intuition is sensible be-
cause in this limiting case one customer is expected to
enter the facility and join the queue at the end of every
transition cycle, and one service completion is ex-
pected to occur in every transition cycle.

Corollary 1 (Shared QLI—Asymptotic Case). In the as-
ymptotic case A\ = oo, under the shared-QLI structure, the
entry rate to the facility AS, the throughput AS, and the social
welfare S° are given by (OA.12), (OA.13), and (OA.14) in
the online appendix. Moreover, we have:

i. The social welfare under the shared-QLI S° is
nonnegative—that is, S° > O—where the equality holds
when the hassle cost is h = R —2c/u > 0.

ii. Thethroughput under the shared-QLI AS approaches
the service rate u when the service reward R approaches
infinity—that is, limg_,c AS = .

Under no QLI, when the arrival rate approaches
infinity, the offered load must be greater than py
given in Proposition 2. In this case, only a fraction of
the customers will enter the facility so that the ef-
fective entry rate at the service facility is p1pn. Because
customers have no QLI at their first decision epoch,

they expect zero utility when entering the facility. The
following corollary formalizes the above intuitions.

Corollary 2 (No QLI—Asymptotic Case). In the asymp-
totic case A = oo, under the no-QLI structure, the entry rate
to the facility AN, the throughput AN, and social welfare

SN are AN = upy, AN = ypN(l_p?V) and SN = 0.

1_pln+l 7

Under full QLI, when the errival rate approaches
infinity, once a service completion reduces the QL to
m — 1, a customer immediately arrives and enters the
service facility. The customer obtains utility (w — m)c/ .
This event increases the QL to m. Then, after an ex-
ponential time period with mean 1/u, another ser-
vice completion occurs, and the same cycle repeats.
The QL essentially stays at m all the time, and the server
is constantly busy with customers, so the throughput
under full QLI is identical to the service rate; that is,
AF = . The following corollary provides the asymp-
totic throughput and social welfare under full QLI.

Corollary 3 (Full QLI—Asymptotic Case). In the asymp-
totic case A = oo, under the full-QLI structure, the throughput
AF and social welfare S are AF =y, and St = c(w — m).

We see from Corollary 3 that the social welfare
under full QLI S in the asymptotic case depends only
on the fraction part of w—that is, @ —m. When the
hassle cost 1 increases, w = (R — h)u/c decreases line-
arly. When } increases in the range of (R — (i + 1)c/p,
R —ic/u], w decreases in the range of [i,i+ 1), and SF
decreases in the range of [0,c) for any integer i > 2.
When the hassle costh \( R — (i + 1)c/u, we have w
i+1and S* 7 c. Hence, the social welfare under full
QLI SF is a cyclic function of the hassle cost & with a
cycle length ¢/ p.

3.4. Comparisons

We first establish a connection between the shared-,
full-, and no-QLI structures. When the hassle cost is
forgone as a sunk cost at the second decision epoch,
customers’ expected future utility is positive: If the
queue is desirably short, they join it and obtain
positive utility; otherwise, in the worst case, they can
balk and obtain zero utility. However, customers may
choose not to enter at the first decision epoch when
their expected utility of entering is less than the hassle
cost. Recall that the hassle cost represents the effort
customers pay to obtain the real-time QLI. When the
hassle cost becomes zero, the QLI is essentially free for
customers under the shared- and no-QLI structures.
Then, all customers under shared or no QLI will
choose to enter the facility and obtain the real-time
QLI as if the system operates under the full-QLI
structure, which is equivalent to Naor’s model. This
insight is confirmed as follows.
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Proposition 4. When the hassle cost is zero—that is,
h = 0—the throughput and social welfare under the shared- and
no-QLI structures are identical to those under the full-QLI
structure—that is, AF = A2 and SF = cp(ll__p—’izlv—

]_pn+1
1—[) 1—pl 1 :

Next, we focus on the comparison of social wel-
fare under the shared-, full-, and no-QLI structures.
Hassin (2016) suggests that the real-time QLI improves
social welfare: The congestion information helps match
capacity better with customer demand, so that customers
never join a long queue or balk from a short one. The
following theorem demonstrates that this intuition still
holds in our queueing model with two decision epochs.

Theorem 1. The social welfare under full QLI SF is greater
than that under no QLI SN—that is, SF > SN.

We next compare the social welfare under shared
and no QLI. Under shared QLI, customers have some
idea of the QL from the shared QLI posted by fellow
customers. Customers are discouraged from entering
the facility in the arrival-shutdown period, when the
queue is expected to be too long to offer positive utility,
and they are attracted to the facility in the arrival-open
period, when the queue is more likely to be short enough
to generate positive utility. However, customers under
no QLI blindly join the queue with some probability,
without any adaptation to the current state of the queue.
Therefore, in this case, the social welfare under shared
QLI is greater than that under no QLI. The following
theorem confirms the above intuition.

Theorem 2. The social welfare under shared QLI S° is no
less than that under no QLI SN—that is, S5 > SN. The
equality holds only when the hassle cost is h = 0.

Theorems 1 and 2 suggest that systems with the ob-
jective of increasing social welfare would strictly prefer the
shared- and full-QLI structure over the no-QLI structure.

We then compare the social welfare under the
shared- and full-QLI structures. We first make the
comparison in an asymptotic case A = co. Recall from
Section 3.3 that, in this case, each transition cycle only
has the arrival-shutdown period. By focusing on the
asymptotic case, we zoom in on the effect of the arrival-
shutdown period on social welfare. Despite the fact that
the derivation of the steady-state probability distribution
7;; under shared QLI in closed form is extremely difficult,
we manage to compare the social welfare under shared
and full QLIwithout the expression of ;. Then, building
on the result obtained from the asymptotic case, we
explore the comparison of the shared QLI and the full
QLI for the general case A < oo.

Asymptotic Case A = oo (S° vs. SF). Under full QLI,
customers receive a continuous and accurate flow of
QLI. Once a service completion occurs and reduces
the QL to m —1, the arrival-shutdown period ends.

A customer immediately arrives and enters the ser-
vice facility. This event increases the QL to m. That is,
all customers who enter the facility join a queue of
lengthm — 1 and obtain utility (w — m)c/p, whose value
is small when w is close to m.

Under the shared-QLI structure, because the latest
QL updateislagged and conveys some idea about the
expected QL to customers, it is not as accurate as full
QLI As a result, even if the real-time QL drops to m — 1
before the end of the arrival-shutdown period, no cus-
tomers will discover it and enter the facility. That creates
opportunity for the queue to diminish during the arrival-
shutdown period before the next arrival, so that the
following several customers expect positive utility.

In other words, customers overjoin the queue under
the full-QLI structure, which generates negative ex-
ternality for future customers. This hurts the social
welfare, particularly when each joining customer
obtains little utility under full QLI—that is, when w —
m is small. Thus, the social welfare under shared QLI
may be greater than that under full QLI

Theorem 3. In the asymptotic case A = oo, there exists an
€ € (0, ¢/ ) such that the social welfare under shared QLI S°
is greater than that under full QLI SF; that is, S° > SF, when
the hassle cost h is in the range of (R —ic/u —€,R —ic/ ],
fori=3,...,n-1

Naor (1969) proposes using tolls to improve so-
cial welfare under the full-QLI structure. A toll im-
posed on customers who join the queue will reduce
their expected net gain and make the joining shut-
down period more frequent, which further alleviates
congestion in the observable queue model. Theorem 3
shows that reducing the amount of congestion in-
formation available to customers may achieve the
same goal by creating arrival-shutdown periods with
inaccurate shared QLI. More importantly, our scheme
does notinvolve monetary payments from customers.

To illustrate the comparison of the social welfare
under shared and full QLI, in Figure 1, we plot S5 and
SF as functions of hassle cost /1, in the asymptotic case
A =108 We see that, as Corollary 3 describes, the
social welfare under full QLI is a cyclic function that
decreases from ¢ to zero on each band of h € (ic/p,
(i +1)c/u]. Moreover, as Corollary 1 implies, the so-
cial welfare under shared QLI is positive, unless the
hassle cost is very large—thatis, 1 = R — 2c/u,orh =0
for this specific example. Most importantly, on each
band h € (ic/y, (i + 1)c/p], fori =0,1,...,6, there is an
interval of significant length (~ 0.15c/u) in which the
social welfare under shared QLI is greater than that
under full QLI.

Theorem 3 implies that, for systems with the ob-
jective of increasing social welfare, the full-QLI struc-
ture may not be more effective than the shared-QLI
structure. Both the service reward R and the hassle
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Figure 1. (Color online) Social Welfare as a Function of Hassle Cost 1 Under Full and Shared QLI with Service Reward R = 10,
Service Rate 1 = 1, Marginal Waiting Cost ¢ = 1, and Arrival Rate A = 108
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cost h play a vital role. When the hassle costh ' R —ic/u,
for any integer i > 3, the social welfare under the
shared-QLI structure is greater than that under the
full-QLI structure. When the hassle costh ~\, R —ic/u,
the social welfare under shared QLI may be lower
than that under full QLI.

General Case (S° vs. S). A finite arrival rate A affects
the social welfare under shared- and full-QLI struc-
tures in a similar fashion to the asymptotic case. Recall
from Proposition 1 that the social welfare under shared
QLI can be calculated as the difference between each
customer’s expected service reward and waiting cost
divided by the average transition-cycle length. Be-
cause the arrival rate A is a finite value, the arrival-
open period within any transition cycle is of an ex-
pected length 1/A. On the one hand, immediately
after an arrival-shutdown period (the first interval in
a transition cycle), even if customers become in-
terested in entering the facility again, they do not
arrive immediately due to a positive interarrival time.
During the arrival-open period, some service com-
pletions may occur and reduce the QL seen by the next
customer, whose arrival marks the end of a transi-
tion cycle. This reduces each customer’s expected
waiting cost and consequently increases the social
welfare. We refer to this as the wait-reduction effect. On
the other hand, when the arrival-open period within the
transition cycles grows, the average cycle length in-

creases. This effect reduces the service reward collec-
tion rate and hurts the social welfare. We refer to this
as the cycle-lengthening effect. When the value of A is
small, the cycle-lengthening effect is strong. For ex-
ample, the expected length of the arrival-open period,

1/A, increases from 0 to 1 if A decreases from oo to 1,
whereas it increases from 1 to co if A decreases from 1
to 0. The wait-reduction and cycle-lengthening effects
also exist under the full-QLI structure.

In Figure 2, we display the social welfare under full
and shared QLI, S° and SF, as a function of hassle cost
h, for R = 10 in the general cases of A = 0.5, 1, and 2.
The figure confirms that our result from the asymp-
totic case in Theorem 3 holds in the general case.

The wait-reduction and cycle-lengthening effects
impact the social welfare under shared and full QLI
similarly. For example, in Figure 2(c), when A = 2, for
the hassle cost /i in the range on the left of R —ic/u
fori=4,...,9, we have §° > Sf. Moreover, a low ar-
rival rate A leads to long interarrival times. Then, the
proportion that arrival-shutdown periods take out of
the transition cycles diminishes, and the majority of
customers arrive during the arrival-open period and enter
the facility, as they would do under full QLI. For example,
in Figure 2(a), when A = 0.5, the social welfare under
shared QLI is almost identical to that under full QLI.

Recall that, when the arrival rate A decreases, the
wait-reduction effect tends to boost the social welfare,
whereas the cycle-lengthening effect tends to reduce
it; and the interplay of the wait-reduction and cycle-
lengthening effects determines the social welfare.
When the arrival rate A is high, the cycle-lengthening
effect is weak and dominated by the wait-reduction
effect, so the social welfare under shared and full QLI
is expected to increase when A decreases. This in-
tuition is confirmed by Figure 2: The social welfare
under shared and full QLI increases significantly

if the arrival rate A decreases from 2 to 1. When
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Figure 2. (Color online) Social Welfare as a Function of Hassle Cost 1 Under Shared and Full QLI with Service Reward R = 10,
Service Rate 1 = 1, Marginal Waiting Cost c = 1, and Arrival Rate A € {0.5,1,2}
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the arrival rate A is low, the cycle-lengthening effect
becomes strong and dominates the wait-reduction
effect, so the social welfare under shared and full QLI
may decrease as A decreases. For example, we see from
Figure 2 that the social welfare under shared and full
QLI decreases slightly if A decreases from 1 to 0.5.

Combined with Theorems 1, 2, and 3, Figure 2 offers
the following managerial insight: To boost social
welfare, it is more beneficial to have little, even in-
accurate, information (i.e., shared QLI) than no QLI
at all; however, full information does not necessarily
lead to greater social welfare and may sometimes
even result in less social welfare.

We also compare the throughput under these three
QLI structures in Online Appendix OA1. We discover
that the throughput under shared QLI is at a level
similar to that under full QLI when the offered load is
small and that the throughput under full QLI domi-
nates that under shared QLI when the offered load
is large. The shared-QLI structure conveys lagged
and inaccurate congestion information to customers
compared with the full-QLI structure. This leads to
two effects on the throughput. On the one hand, the
arrival-shutdown period under shared QLI allows a
long queue to diminish, instead of filling up quickly
after a service completion, as it would under the full-
QLIstructure. This input-reduction effect resultsin an
additional possibility for the server to become idle;
hence, the throughput under shared QLI may be
less than that under full QLI. On the other hand, if a

Hassle Cost h

6 8 0 2 4 6 8
Hassle Cost h

long queue does not diminish quickly enough in the
arrival-shutdown period, customers under shared
QLI may not be aware of the situation, and they may
enter the facility. Then, because of the sunk hassle
cost, customers may join some queues that they
would have not joined under full QLI. This input
boost effect leads to a higher probability of the server
staying busy, so the throughput under shared QLI may
be greater than that under full QLL. When the offered
load is low, these two effects have similar strengths for
different hassle costs, so neither the shared- nor full-QLI
structure dominates the other in the throughput. How-
ever, when the offered load becomes high, the server’s
utilization is already close to the upper bound, and the
input boost effect is curbed, so the throughput under
full QLI dominates that under shared information. Last,
when the offered load is high enough, the throughput
under shared- and full-QLI structures strictly dominates
that under no QLI

We further compare the expected QL under shared-,
full-, and no-QLI structures in Online Appendix
OA2. We note that the expected number of customers
at the beginning of the arrival-shutdown and arrival-
open periods under shared- and full-QLI structures
are expected to be close. Thus, the expected QL under
shared QLI is at a level similar to that under full QLI.
Furthermore, we also compare the expected QL un-
der shared and full QLI to that under no QLI. We
note that, when the offered load is in an intermediate
range, higher throughput may not come at a cost of a
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longer waiting line: The shared- and full-QLI struc-
tures may lead to higher throughput and a lower ex-
pected QL than the no-QLI structure. A little shared
information from previous customers can help to better
match supply with demand, so customers enter the fa-
cility when the queue is expected to be short. When
the offered load is sufficiently small or large, higher
throughput is associated with a greater expected QL.

4. General Model with Shared Information
In Section 3, we assume that all customers are con-
nected through the information-sharing platform. In
this section, we extend this model by introducing a
stream of unconnected customers, who do not have
access to the shared queue-length information. The
fraction of connected customers in the whole pop-
ulation is denoted by an exogenous parameter y €
[0,1], which measures the degree of social connec-
tivity in the population. We assume that y is common
knowledge among all customers. The arrival rates
(resp., offered loads) of connected and unconnected
customers are Ac = YA and Ay = (1 — y)A (resp., pc =
Ac/p and py = Ay/u), respectively.

The connected customers behave in the same way
as those under shared QLI in our model in Section 3,
and they make two decisions sequentially. Upon arrival,
they make the enter-or-leave decision according to
the expected utility of entering the facility, which is
based on the shared QLI; if they enter the facility, they
make the join-or-balk decision on the basis of the real-
time QLI and then post that information online.

The unconnected customers behave the same as
customers under no QLI in Section 3. They have no
real-time QLI before entering the service facility. In
the first decision epoch, they use a symmetric mixed
strategy and enter the facility with a probability g €
(0,1) (resp., g = 1), so that the expected utility of en-
tering the facility is zero (resp., nonnegative). Then,
the unconnected customers’ effective arrival rate at
the facility is gAy. If unconnected customers choose to
enter the facility at the first decision epoch, they will
join the queue if the real-time QL is less than n, and
otherwise balk in the second decision epoch. They do
not share their observed real-time QLI.

If the degree of social connectivity is y = 1 (resp., 0),
all customers are connected (resp., unconnected), and
it boils down to our base model under the shared-QLI
(resp., no-QLI) structure.

4.1. Real-Time Queue Length

We now characterize the expected real-time QL given
the latest QLI shared on the platform as ¢. Between
the last QL update time T and the current time ¢ > T,
only unconnected customers enter the facility with
rate gAy (otherwise, ¢ is not the latest QL update).
We know that the unconnected customers are not

interested in joining a queue longer than n — 1. Hence,
the QL over (T,t) should not exceed n, and the ex-
pected real-time QL at time f is determined by the
transient behavior of an M/M/1 queue with arrival
rate gAy, service rate i, and a waiting room of size n.

The transient behavior of anM/M/1 queue with an
infinite waiting room has been discussed by Abate
and Whitt (1987). To the best of our knowledge, the
transient behavior of an M/M/1 queue with a finite
waiting room has not been investigated in the liter-
ature. Lemma 4 in the online appendix gives a com-
putational approach to deriving E[W(0, ¢)]—the ex-
pected real-time QL at time ¢ given the initial number of
customers at time T, ¢, inan M/M/1 queue with arrival
rate A, service rate y, and a waiting room of size n.

Unlike in our base model, here, the expected real-
time QL, E[W(5,¢)], may not be a strictly decreas-
ing function of t. For example, Figure 3 illustrates
E[W(5,¢)] as a function of t for p € {1,...,6}, v = 6.1,
u=1,and A € {1,2,3}. We first make some observa-
tion from Figure 3(b). Considering the case of ¢p =5,
we see that when tis close to T, the expected real-time
QL is below w —1, so the connected customers are
willing to enter the facility; when t increases and the
expected real-time QL increases from ¢ = 5 to beyond
w — 1, the connected customers arriving at f are not
interested in entering the facility; as t further increases
and once the expected real-time QL drops below
@ — 1, the connected customers will enter the facility
again.For ¢ =1,...,4, the expected real-time QL is an
increasing function of ¢, and for ¢ = 6, the expected
real-time QL is a decreasing function of ¢.

In all cases in Figure 3, when t approaches infinity,
the expected real-time QL converges to the expected
QL of an M/M/1 queue with a finite waiting room;
thatis, 26, i(A/u)' /2% ,(A/u)". In Figure 3(a), because
of the low arrival rate A = 1, the expected QL is lower
thanw —1.For¢ =1,...,5, the expected real-time QL
is lower than w — 1; and for ¢ = 6, the expected real-
time QL eventually drops to below w — 1. Thus, cus-
tomers who arrive long enough after the last QL
update will always be interested in entering the
facility. In Figure 3(c), because of the high arrival rate
A =3, the expected QL is greater than @ — 1. (Recall
from Proposition 2 that customers with no QLI in the
first decision epoch—that is, unconnected customers—
may enter the facility at a high rate such that the
resulting expected QL is greater than w —1.) Then,
for ¢ = 6, the expected real-time QL decreases with ¢
to the expected QL, which is always above w — 1; and
it never drops below @ — 1. This is to say that if any
connected customer updates ¢ =6, no connected
customers will enter the facility after that update.

Because of the complex transient behavior of an M/
M/1 queue with a finite waiting room, we next resort
tosimulation to derive the social welfare for0 < y < 1.
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Figure 3. (Color online) Expected Real-Time QL at Time ¢ Given that Online QLI Is ¢(T) = 1,...,6 Under the Setting with

Parameters w = 6.1, u =1, and A € {1,2,3}
(a)
E[¥(5,0)]: A=1

Lo(m=6 ®fomy=

551

o(T)

E[¥(5,4)]: A=2

(c)
) E[¥(5,4)]: A=3
Fo(T)=6

Expected QL

IExpected Q

4.2. Comparison

For each customer arrival rate A € {0.5,1, 2}, we generate
107 customers for an M/M/1 system. Their service
time follows an exponential distribution with param-
eter u =1. Customers have an identical service re-
ward R =10 and marginal waiting cost ¢ =1. The
simulation ends when all 107 customers have their ser-
vice requests satisfied or leave the system without being
served because they expect the waiting time to be long.

For each hassle cost 1in {0.5,1, ..., 3}, we randomly
categorize the same group of 107 customers into con-
nected and unconnected streams, according to the
degree of social connectivity y € {0,0.1,...,1}. Then,
we simulate the system’s social welfare with the two
streams of customers. Connected customers first
consider the expected real-time QL on the basis of the
shared QLI in Lemma 4 upon arrival and make the
enter-or-leave decision. Unconnected customers use a
symmetric mixed strategy to determine the proba-
bility of entering so that the expected utility of en-
tering the facility is nonnegative. We use a bisection
search to identify unconnected customers’ equilib-
rium entering probability. If any customer enters the
facility, she will then use the real-time QL to make the
join-or-balk decision.

Recall that the case y =1 (resp., 0) is equivalent to
our base model under the shared-QLI (resp., no-QLI)
structure. Thus, we can compare the social welfare of
the cases y =1 and y =0 from the simulation to the
theoretical ones from Propositions 1 and 2 to ensure
that our simulation reaches the steady state.

Following the result of Theorem 2, we expect that
when more customers share the QLI and use it to
make the enter-or-leave decision, more customers
will be able to avoid entering the facility with a very
long queue. This improves the social welfare. Figure 4
displays the simulation result of the social welfare as a
function of the degree of social connectivity along
with the social welfare under shared, full, and no QLI
from Propositions 1, 2, and 3. It confirms our ex-
pectation. We observe from Figure 4 that the social
welfare is increasing in the degree of social connec-
tivity y for all cases we test. Even a small degree of
social connectivity leads to an improvement beyond
no QLI, and a higher degree of social connectivity
results in greater social welfare.

Recall from Section 3.2 that each transition cycle
contains an arrival-shutdown period and an arrival-
open period in sequence. As the degree of social
connectivity ) increases, the expected length of the
arrival-open period 1/Ac decreases. Moreover, con-
nected customers will become interested in entering
the service facility sooner, because there are fewer
undocumented arrivals of unconnected customers.
Then, the expected length of the arrival-shutdown
period shortens. Hence, the expected length of transition
cycles decreases with y. Contrary to the wait-reduction
and cycle-lengthening effects discussed in Sec-
tion 3.4, as y increases, we have the wait-increment
effect, which reduces the social welfare, and the cycle-
shortening effect, which increases the social welfare. Fig-
ure 4 shows that, as y increases, the cycle-shortening
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Figure 4. (Color online) Social Welfare as a Function of Social Connectivity y € {0,0.1,...,1} Under Shared, No, and Full
QLI with Service Reward R = 10, Service Rate p = 1, Marginal Waiting Cost ¢ =1, Arrival Rate A € {0.5,1,2}, and Hassle

Cost he€{05,1,...,3}
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effect dominates the wait-increment effect, so the
social welfare under shared QLI increases.

Furthermore, we observe from Figure 4 that for
some hassle costs (see, e.g., h = 1,2,3 in Figures 4(b)
and 4(c)), there exists an €’, such that the social welfare
under shared QLI is greater than that under full QLI for
y € (1 = ¢€’,1]. This observation is anticipated from the
base model results illustrated in Figures 2(b) and 2(c),
where the social welfare under shared QLI (i.e., y = 1) is
greater than that under full QLI when i = 1,2,3.

In our model, the degree of social connectivity y
is an exogenous parameter, and customers do not
decide whether to become connected through the
information-sharing platform. If we endogenize cus-
tomers’ decision of becoming connected to share and
obtain the latest congestion update, the degree of social
connectivity ) can be viewed as an outcome of custo-
mers’ symmetric strategic behavior of deciding whether
to be connected on the platform. In Online Appen-
dix OA3, we investigate how customers’ strategic be-
havior evolves when an information-sharing platform
is introduced to a service facility that originally had
no QLI disclosure (i.e., y = 0). We discover that if the
total offered load is not high, the platform will gain
popularity over time, and all customers will prefer to
join it. Moreover, the more customers are connected,
the greater the social welfare. This insight provides
support for the prevalence of some information-
sharing apps. For example, the app Waze has become

increasingly popular among Uber drivers. Otherwise,
if the offered load is high, customers may not join
the platform spontaneously. Within a certain range of
degrees of connectivity, unconnected customers may
relentlessly enter the facility expecting nonnegative
utility, which causes excessive congestion and drives
away connected customers. In this case, the social
planner needs to intervene to get sufficient cus-
tomers connected on the platform so that the rest of
the population will voluntarily follow, increasing
the social welfare as an outcome.

We caution that the underlying assumption behind
connected customers is that they come to an agree-
ment whereby they are obligated to share QLI in
exchange for QLI shared by others. Nevertheless, it
is challenging at a practical level to enforce sponta-
neous sharing of information among customers. Some
customers may act as information free-riders, who
use information shared by others but do not volun-
tarily share information to the rest. An interesting
future research direction will be exploring endoge-
nous information sharing without contractual sharing
obligations.

5. Discussions

5.1. Shared Information at Departure

As the first attempt to investigate the case of user-
generated information online, we assume customers
the queue-length information observed when entering
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the service facility. One can also investigate other
forms of shared information available to customers.
For example, instead of customers sharing the QLI
when they enter the facility, they may share the QLI
at departure (QLID). Another similar information
structure is that customers share the sojourn time they
experienced in the system at departure. The re-
semblance comes from the fact that at a customer’s
departure, all customers in the system arrived during
the departing customer’s sojourn time, so her expe-
rienced sojourn time and the QL at departure are
stochastically linked.

We assume that all customers share the QLID.
Upon arrival, a customer knows there are no service
completions since the latest QL update ¢, so the real-
time QL does not decrease. If the shared QL is suf-
ficiently long—that is, ¢ > m—due to the negative
expected utility of entering the facility, no customers
will enter the facility after T until the next QL up-
date. If the QL update shared online is low—that is,
¢ < m—the customer who arrives immediately after
the update will enter the facility, because the expected
utility of entering the facility is positive—that is,
Uenter > 0. If every customer who arrives after the last
QL update enters the facility, the expected real-time
QL increases, and the expected utility of entering the
facility will decrease to zero over time. If U, decreases
to zero before the next QL update, no customers will
enter the facility before the next QL update, due to the
negative expected utility of entering. Hence, only
during a time interval after a low QL update—that is,
¢ < m—will customers enter the facility. These arrival-
turned-on periods contrast with the arrival-shutdown
periods in our model with the QLI shared when cus-
tomers enter the facility. However, the same technique
from Section 3 canbe applied to obtain the throughput
and social welfare of such service systems.

From the results obtained from Sections 3.4 and 4.2,
we expect the shared QLID to dominate the no-QLI
structure in social welfare. This is because customers
under shared QLID only enter the facility when the
queue is expected to be short and avoid entering the
facility when the queue is reported and perceived to
be long. This behavior not only provides customers
with a higher probability of obtaining positive utility,
but also reduces the negative externality they may
impose on future customers.

Similar to the result from Section 3.4, the social
welfare under shared QLID is expected to be at a level
similar to that under full QLI. In the asymptotic case
A = oo, the shared-QLID structure is identical to the
full-QLI structure. To see this, consider a facility
under the shared-QLID structure when the latest
shared QLID is m. No customers will enter the facility
before the next QLID update. Once a service com-
pletion occurs, the QLID m — 1 is shared online. One

customer immediately enters the facility, and this
increases the real-time QL to m. Then, the same cycle
repeats. Under the full-QLI structure, in a facility with
the latest QL update m, the same events occur. Thus,
these two information structures are identical in the
asymptotic case A = oo.

5.2. Heterogeneous Customers

In our base model, we consider homogeneous cus-
tomers with identical service reward R, waiting costc,
and hassle cost h. In this section, we discuss how
heterogeneity may affect those insights derived in our
base model. Here, we examine the model with het-
erogeneous hassle costs as an example. (Heteroge-
neity in service rewards or marginal waiting costs
can be examined similarly.) We assume that there are
high- and low-type customers in the service system,
and the hassle cost of high-type customers, hy, is
higher than that of the low-type customers, h;.. Clearly,
because of low-type customers’ low hassle cost, their
entries to the service facility lead to higher social
surplus than high-type customers’ entries with ev-
erything else being equal.

Different customers react differently to the shared
QLI Recall from Lemma 3(ii) that the length of the
arrival-shutdown period increases with the hassle
cost. There are two implications of this monotonicity
property. First, given the identical QLI shared by
previous customers, because hy > Iy, high-type cus-
tomers” arrival-shutdown period is longer than that of
low-type customers. Then, high-type customers enter
the service facility less often than the low-type cus-
tomers. Second, when hy increases and h; decreases,
high-type customers whose entries to the service fa-
cility lead to lower social surplus enter less often.
Then, if low-type customers whose entries to the
service facility lead to higher social surplus enter the
facility more often, the social welfare will increase,
unless the low-type customers’ entry rate to the
service facility is curbed—that is, when the low-type
customers’ total arrival rate Ay is relatively low and
they already enter the facility often.

We use a simulation to verify our intuition men-
tioned above. Let ) € [0, 1] denote the fraction of high-
type customers in the whole population, so the arrival
rates of high- and low-type customers are Ay =nA
and Ap = (1 —n)A, respectively. We define high- and
low-type customers’ hassle costs as hy = h + &y and
h, =h—¢&;, respectively, where &1, &g € [0, min(h, R —2¢/
t—h)] are the deviations of high- and low-type cus-
tomers’ hassle cost from h. We assume E =&1(1-1)/7,
so that the average hassle cost across all customers
stays at (Aghy + Aphr)/A = h. Note that when &, =0,
we have hy = h; = h, which boils down to our base
model with homogeneous customers.
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Figure 5. (Color online) Social Welfare as a Function of £; Under Shared QLI with Service Reward R = 10, Service Rate i1 = 1,
Marginal Waiting Cost ¢ = 1, Average Hassle Cost 1 = 4, and Arrival Rate A € {0.5,1,2}
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Figure 5 displays the social welfare under shared
QLI asafunction of &, with the servicereward R = 10,
service rate u = 1, marginal waiting costc = 1, average
hassle cost h = 4, fraction of high-type customers y €
{0.3,0.5,0.7}, and arrival rate A € {0.5,1,2}. It confirms
our intuition. We observe from Figure 5 that in most
cases the heterogeneity in the hassle cost improves
social welfare—that is, the social welfare increases
with £;—except when 1 = 0.7 in Figures 5(a) and 5(b).
In these two cases, the total arrival rate A is not
high—that is, A =0.5 and 1—so there is not much
room left for the low-type customers to increase their
entry rate. This confirms the robustness of the arrival-
shutdown phenomenon analytically demonstrated
for homogeneous customers.

Combined with comparative statics in Section 3.4,
our observation here suggests that the shared QLI
may still dominate full QLI in the case of heteroge-
neous hassle costs, at least when the heterogeneity is
low enough—that is, &; is sufficiently small.

5.3. Strategic Wait

Customers in our base model have two options at the
first decision epoch: enter or leave. In reality, cus-
tomers may have other options. For example, cus-
tomers may recheck the shared information after
some time, hoping to see a lower expected number of
customers in the service facility. Cui et al. (2019) in-
vestigate a model of rational retrials in queues. Fur-
thermore, customers may strategically wait outside
the service facility until the expected real-time QL in

the service facility is low enough, and then enter
(assuming that customers form a line and follow
first-come-first-served queueing discipline outside
the facility). Lariviere and Van Mieghem (2004)
consider a game in which customers who are delay-
sensitive and try to avoid congestion choose arrival
times strategically, and they show that the resulting
endogenous arrival pattern approaches a discrete-
time Poisson process as the number of customers
and arrival points gets large. Similarly, in our model,
customers’ strategic waiting behavior can result
from their rational decisions under the shared-QLI
structure.

If the cost of strategic waiting outside the service
facility is negligible, all customers under shared
(resp., full) QLI will wait until the queue inside the
facility is expected (resp., known) to be short. How-
ever, customers’ behavior under no QLI is not af-
fected by this waiting option introduced in the first
decision epoch, because waiting does not improve
customers’ expected utility when there is no infor-
mation. Moreover, when the arrival rate is no lower
than the service rate—that is, A > p—the model be-
haves as our model in the asymptotic case A = co in
Section 3.3. This is because customers are willing to
wait outside the service facility for an infinitely long
time due to the zero waiting cost. When the arrival rate
is less than the service rate—that is, A < y—customers’
strategic waiting smooths the entry rate to the service
facility. In this case, customers under the shared or
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full QLI have strategic waiting as a better option than
leaving the service facility with zero utility, so the
social welfare in this case should be greater than that
in our model. From the fact that the social welfare under
shared QLI is close to that under full QLI when the
arrival rate is small, we anticipate a small difference
between the social welfare under shared and full QLI
in the model with strategic waiting at the first decision
epoch.

If the cost of strategic waiting outside the service
facility is positive, customers under shared or full QLI
may follow a threshold policy to decide whether to
wait at each time they recheck the information. To
analytically track the impact of strategic waiting on
our model with shared QLI, one may need to introduce
another dimension in the Markov chain to record the
number of customers who are waiting outside the service
facility for the right moment to enter.

6. Conclusion

The proliferation of information sharing enabled by
technological innovation creates an opportunity for
service providers to generate and disseminate con-
gestion information in a cost-efficient way by taking
advantage of user-generated information and its shar-
ing. In this paper, we study a single-server facility
where customers share the congestion information
with one another in the form of a snapshot of the
system. Hence, future customers, before entering the
facility and observing the real-time QL with a hassle
cost, can make the enter-or-leave decision by re-
ferring to shared information.

We find that, although the shared queue-length
information is most likely lagged and inaccurate, it
gives customers some idea of the congestion level so
they can avoid entering the facility with potentially
long queues. Hence, for any arrival rate, the shared-
QLI structure dominates the no-QLI structure in so-
cial welfare. We verify this analytically. Moreover,
the information about long queues shared online dis-
courages arrivals, thereby allowing long queues to
diminish rather than to start filling up soon after the
next service completion, as likely happens under the
full-QLI structure. Therefore, the shared-QLI struc-
ture may even result in less congestion and greater
social welfare than the full-QLI structure.

Our results imply that for service providers that do
not have the capacity to generate and disseminate the
real-time QLI, investing in such capability may not be
necessary. Instead, an information-sharing platform
can be a cost-efficient solution, and user-generated
information sharing may lead to greater social wel-
fare than full or no QLI Moreover, for public service
providers who do have the capacity to disclose the full
congestion information to all customers, it may not be
optimal to do so continuously. Our results suggest

that public service providers that practice proactive
information control may also benefit from periodic
information release.

Acknowledgments

The authors thank the department editor, Terry Taylor, the
anonymous associate editor, and three reviewers for their
constructive and insightful suggestions, which significantly
improved the paper. The authors also thank Mor Armony,
Shiliang Cui, Laurens Debo, Pengfei Guo, Refael Hassin,
Moshe Haviv, Rouba Ibrahim, Krishnamurthy Iyer, Ricky Roet-
Green, Senthil Veeraraghavan, and Luyi Yang for their sug-
gestions to improve the paper.

References

Abate ], Whitt W (1987) Transient behavior of the M/M/1 queue:
Starting at the origin. Queueing Systems 2(1):41-65.

Allon G, Zhang D] (2017) Managing service systems in the presence of
social networks. Working paper, University of Pennsylvania,
Philadelphia.

Allon G, Bassamboo A, Gurvich I (2011) “We will be right with you”:
Managing customer expectations with vague promises and
cheap talk. Oper. Res. 59(6):1382-1394.

Chen H, Frank M (2004) Monopoly pricing when customers queue.
IIE Trans. 36(6):569-581.

Cui S, Veeraraghavan S (2016) Blind queues: The impact of consumer
beliefs on revenues and congestion. Management Sci. 62(12):
3656-3672.

Cui S, Li K, Wang ] (2017) On the optimal disclosure of queue length
information. Working paper, Georgetown University, Wash-
ington, DC.

Cui S, Su X, Veeraraghavan S (2019) A model of rational retrials in
queues. Oper. Res. 67(6):1699-1718.

Edelson N, Hilderbrand D (1975) Congestion tolls for Poisson
queuing processes. Econometrica 43(1):81-92.

Fader PS, Winer RS (2012) Introduction to the special issue on the
emergence and impact of user-generated content. Marketing Sci.
31(3):369-371.

Gao F, Su X (2017) Omnichannel retail operations with buy-online-
and-pick-up-in-store. Management Sci. 63(8):2478-2492.

Guo P, Zipkin P (2007) Analysis and comparison of queues with
different levels of delay information. Management Sci. 53(6):962-970.

Guo P, Zipkin P (2009) The effects of the availability of waiting-time
information on a balking queue. Eur. ]. Oper. Res. 198(1):199-209.

Ha AY, Tian Q, Tong S (2017) Information sharing in competing
supply chains with production cost reduction. Manufacturing
Service Oper. Management 19(2):246-262.

Hassin R (2007) Information and uncertainty in a queueing system.
Probab. Engrg. Inform. Sci. 21(03):361-380.

Hassin R (2016) Rational Queueing (CRC Press, Boca Raton, FL).

Hassin R, Haviv M (2003) To Queue or Not to Queue: Equilibrium
Behavior in Queueing Systems, International Series in Operations
Research and Management Science, vol. 59 (Springer, Berlin).

Hassin R, Koshman A (2014) Optimal control of a queue with high-low
delay announcements: The significance of the queue. Proc.
8th Internat. Conf. Performance Evaluation Methodologies Tools
VALUETOOLS ’14 (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering, Brussels), 233-240.

Hassin R, Koshman A (2017) Profit maximization in the M/M/1
queue. Oper. Res. Lett. 45:436—441.

Hassin R, Roet-Green R (2018) The armchair decision: On queue-
length information when customers travel to a queue. Working
paper, Tel Aviv University, Tel Aviv.



4666

Wang and Hu: Information Sharing in a Queue
Management Science, 2020, vol. 66, no. 10, pp. 4648-4666, © 2020 INFORMS

Hu M, Li Y, Wang ] (2018) Efficient ignorance: Information hetero-
geneity in a queue. Management Sci. 64(6):2650-2671.

Ibrahim R (2018) Sharing delay information in service systems:
A literature survey. Queueing Systems 89(1-2):49-79.

Kwark Y, Raghunathan S (2018) User-generated content and
competing firms’ product design. Management Sci. 64(10):
4608-4628.

Lariviere MA, Van Mieghem JA (2004) Strategically seeking service:
How competition can generate Poisson arrivals. Manufacturing
Service Oper. Managment 6(1):23-40.

Lingenbrink D, Iyer K (2019) Optimal signaling mechanisms in un-
observable queues. Oper. Res. 67(5):1397-1416.

Naor P (1969) The regulation of queue size by levying tolls. Econo-
metrica 37(1):15-24.

Ross SM (2006) Introduction to Probability Models, 9th ed. (Academic
Press, Inc., Orlando, FL).

Takagi H (1991) Queueing Analysis: A Foundation of Performance
Evaluation (North-Holland, Amsterdam).

Veeraraghavan S, Debo LG (2009) Joining longer queues: Information
externalities in queue choice. Manufacturing Service Oper. Man-
agement 11(4):543-562.

Whitt W (1999) Improving service by informing customers about
anticipated delays. Management Sci. 45(2):192-207.

Yang L, Debo LG (2019) Referral priority program: Leveraging
social ties via operational incentives. Management Sci. 65(5):
2231-2248.

Yang L, Debo LG, GuptaV (2019) Search among queues under quality
differentiation. Management Sci. 65(8):3605-3623.



	Efficient Inaccuracy: User-Generated Information Sharing in a Queue
	Introduction
	Literature Review
	Model
	General Model with Shared Information
	Discussions
	Conclusion




