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Online Appendix to

“Information Disclosure and Pricing Policies for Sales of

Network Goods”

A. Proofs

This online appendix provides all proofs of propositions, and lemmas in our paper. Since it is a

trivial case for our analysis that s(M) = Es(M) in probability 1, in this appendix we always assume

Var(s(M))> 0.

Proof of Lemma 1. Let H(↵) = Ḡ(p� s(↵m)) for any m� 0. We have

H
0(↵) = g(p� s(↵m))s0(↵m)m. (A.1)

By Assumption 1, it is easy to see that H(↵) is nondecreasing and (weakly) convex in ↵ if p >

v
0 + s(m) and m d

0.

Since p > v
0 + s(m), it follows that H(1) = Ḡ(p� s(m)) < Ḡ(v0)  1. Also we have H(0) � 0.

Therefore, H(↵) can only have one fixed point on [0,1) in this case. ⇤

Proof of Lemma 2. We prove the properties in part (i) and (ii) only for ↵F (·), since the properties

of dF (·) are direct sequences of the properties of ↵F (·).

By Equation (1), we have

@↵F (m)

@m
=

g
�
p� s(↵F (m)m)

�
s
0(↵F (m)m)↵F (m)

1� g
�
p� s(↵F (m)m)

�
s0(↵F (m)m)m

. (A.2)

Note that g
�
p� s(↵F (m)m)

�
s
0(↵F (m)m)m=H

0(↵F (m)) where H(·) is defined by Equation (A.1).

If p > v
0 + s(m) and m d

0, by the convexity of H(·), we have

H
0(↵F (m)) H(1)�H(↵F (m))

1�↵F (m)
<

1�↵F (m)

1�↵F (m)
= 1;

hence, the right-hand side of (A.2) is well defined and nonnegative. Then from (A.2) and Assump-

tion 1, we can see that ↵F (m) is (weakly) increasing and (weakly) convex in m as long as p >

v
0+s(m) and m d

0; if we also have Ḡ(p)> 0 and s
0(·)> 0, then ↵F (m)

m
> 0 and strictly increasing,

that is, “increasing” and “convex” properties here are in a strict sense.

For part (ii), we have H(1) = Ḡ(p� s(m)) = 1 if p v + s(m). Thus the largest fixed point of

H(↵) = ↵, i.e., ↵F (m), is 1. Therefore, the proof is completed. ⇤

Proof of Lemma 3. The proof is analogous to the proof of Lemma 1. ⇤

Before we prove Proposition 1, we give the following lemma:
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Lemma A.1. Let X be a random variable and f(·) and g(·) be increasing functions. Suppose

f(X), g(X) and f(X)g(X) all have finite expectations. Then E[f(X)g(X)]� Ef(X) ·Eg(X).

Proof of Lemma A.1. Define x0 = infx{g(x)� Eg(X)}. We have

E[f(X)(g(X)�Eg(X))] = E[f(X)(g(X)�Eg(X));X >x0] +E[f(X)(g(X)�Eg(X));X <x0]

+E[f(X)(g(X)�Eg(X));X = x0]

� E[f(x0)(g(X)�Eg(X));X >x0] +E[f(x0)(g(X)�Eg(X));X <x0]

+E[f(x0)(g(X)�Eg(X));X = x0]

= f(x0) ·E[g(X)�Eg(X)] = 0.

Thus the lemma is proved. ⇤

Proof of Proposition 1. Part (ii) holds because, if p v+Es(M), ↵F (m) ↵N = 1 for any m� 0,

which yields RN �RF . Next we will prove part (i).

From lemma A.1, we see EdF (M)� E↵F (M)EM . Consequently, to prove EdF (M)� dN , it su�ces

to prove E↵F (M)� ↵N .

Given p � v
0 + s(m), we have G(·) is concave on [v0,1). From the definition of ↵F (M), i.e.,

Equation (1), we have

E↵F (M) = EḠ
⇣
p� s

�
↵F (M)M

�⌘
� Ḡ

⇣
p�Es

�
↵F (M)M

�⌘
.

Note that when p > v
0 + s(m), by Lemma 3, ↵N is the unique solution to (2). Thus it su�ces to

prove

E↵F (M)� Ḡ

⇣
p�Es

�
ME↵F (M)

�⌘
. (A.3)

In fact, if (A.3) holds, then ↵N must be between 0 and E↵F (M). To show (A.3), it su�ces to show

that

Es
�
↵F (M)M

�
� Es

�
ME↵F (M)

�
. (A.4)

Now we prove (A.4). For any M , because of the convexity of s(·), we have

s
�
M↵F (M)

�
� s

�
ME↵F (M)

�
+ [↵F (M)�E↵F (M)] ·M · s0

�
M↵F (M)

�
. (A.5)

By Lemma A.1 and taking expectation of both sides of (A.5) with respect to M1, we have (A.4).

This completes the proof. ⇤
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Proof of Lemma 4. We will only prove the properties of ↵F (·) in part (i) and (ii), because the

properties of dF (·) follow directly.

From Equation (5) we see that ↵F (p1, p2,m) = ↵̃F (p1, p2,m) if m�m0. By comparing Equations

(1) and (4), we have that ↵̃F (p1, p2,m), a function of m, has the same properties as ↵F (m), defined

as the largest fixed point of (4). Therefore, this lemma follows from Lemma 2. ⇤

Proof of Lemma 5. (i) We have known that

HF (x)�HN(x) =�
⇥
�G

�1(1�x)+ p2 �Es
�
max{x,↵N(p2)}M

�⇤+

� �E
⇥
�G

�1(1�x)+ p2 � s
�
max{x, ↵̃F (p2,M)}M

�⇤+
.

For x ↵N(p2), G�1(1�x)�p2+Es
�
max{x,↵N(p2)}M

�
�G

�1(1�↵N(p2))�p2+Es
�
↵N(p2)M

�
=

0. Thus in this case we have HF (x)�HN(x) 0, which yields ↵1,F (p1, p2) ↵1,N(p1, p2).

We now consider the case when x> ↵N(p2). In this case, we have

E
⇥
�G

�1(1�x)+ p2 � s
�
max{x, ↵̃F (p2,M)}M

�⇤+

= E
h⇥

�G
�1(1�x)+ p2 � s

�
max{x, ↵̃F (p2,M)}M

�⇤
· 1{↵̃F (p2,M)x}

i
,

and

⇥
�G

�1(1�x)+ p2 �Es
�
max{x,↵N(p2, )}M

�⇤+
= E

⇥
�G

�1(1�x)+ p2 � s(xM)
⇤
.

Since

⇥
�G

�1(1�x)+ p2 � s
�
max{x, ↵̃F (p2,M)}M

�⇤
· 1{↵̃F (p2,M)x}

��G
�1(1�x)+ p2 � s(xM), 8M,

it follows that HF (x)�HN(x) 0. Hence we still have ↵1,F (p1, p2) ↵1,N(p1, p2).

(ii) If p1 � p2, we have ↵1,N(p1, p2) ↵N(p2). Thus we have

0HN(↵1,N) =G
�1(1�↵1,N)� p1 � �[G�1(1�↵1,N)� p2],

which yields G
�1(1�↵1,N)� p1 � p2. Here, we write ↵1,N(p1, p2) as ↵1,N for short. Therefore, we

conclude that HF (↵1,N)�HN(↵1,N) = 0, which yields ↵1,F (p1, p2) = ↵1,N(p1, p2). ⇤

Proof of Proposition 2. (i) As alluded to in the proof of Proposition 1, Ed̃F (p2,M)� dN(p2) if

p2 � v
0+ s(m) and m d

0. Since dF (p1, p2,M)� d̃F (p2,M), we have that EdF (p1, p2,M)� dN(p2).



4

Consider p1 � p2. In this case, we have dN(p1, p2) = dN(p2)  EdF (p1, p2,M). By Lemma 5, we

also have d1,F (p1, p2) = d1,N(p1, p2). Therefore, RF (p1, p2)�RN(p1, p2).

Then consider p1 < p2. We also consider � = 0. In this case, we have HF (x) =HN(x) for all x 2

[0,1], which yields d1,F (p1, p2) = d1,N(p1, p2). Since we have assumed Var(s(M))> 0 at the beginning

of this appendix, either of the following two results holds: (a) Ed2,F (p1, p2,M) > d2,N(p1, p2), (b)

d2,N(p1, p2) = d2,F (p1, p2,m) = 0. Thus we must have either that RF (p1, p2)>RN(p1, p2) for � = 0

or that RF (p1, p2) = RN(p1, p2) for all �. Therefore, there must be a threshold �c > 0 such that

RF (p1, p2)�RN(p1, p2) when � �c.

(ii) If p2  min{p1, v + Es(M)}, then we have d1,F (p1, p2) = d1,N(p1, p2) by Lemma 5 and

EdF (p1, p2,M) dN(p1, p2) by Lemma 4(ii). Therefore, RF (p1, p2)RN(p1, p2). ⇤

Proof of Lemma 6. First we prove ↵
⇤
2,N > 0. Suppose ↵

⇤
2,N = 0. Thus ↵

⇤
1,N = ↵

⇤
N must be the

largest fixed point of the following equation:

↵= Ḡ
�
p
⇤
1,N � �Es(↵M)

�
,

and hence RN(p⇤1,N , p
⇤
2,N) = p

⇤
1,N↵

⇤
N . If we take p2,N = p

⇤
1,N and take p1,N such that p1,N > p

⇤
2,N and

Ḡ(p1,N)> 0, then RN(p1,N , p2,N)>RN(p⇤1,N , p
⇤
2,N). That is a contradiction. Hence we have ↵⇤

2,N > 0.

Consider ↵2,N(p1,N , p2,N)> 0. Thus ↵N is the largest fixed point of the following equation:

↵= Ḡ
�
p2,N �Es(↵M)

�
,

which implies that ↵N depends only on p2,N . Hence, RN(p1,N , p2,N) = p2,N↵N(p2,N) + (p1,N �

p2,N)↵1,N(p1,N , p2,N). Since RN(p2,N , p2,N) > RN(p1,N , p2,N) if p1,N < p2,N , it follows that

p
⇤
1,N � p

⇤
2,N . ⇤

Proof of Proposition 3. (i) From Proposition 2(i) and Lemma 6, we see that, to prove R
⇤
F �

RF (p⇤1,N , p
⇤
2,N)�R

⇤
N , it su�ces to prove p

⇤
2,N � v

0 + s(m).

We first show p
⇤
1,N � r. Suppose p

⇤
1,N < r, which yields p

⇤
2,N < r. We have RN(r1, r1) � r1 ·

Ḡ(r1)EM � rEM >RN(p⇤1,N , p
⇤
2,N). That is a contradiction. Hence, p⇤1,N � r.

Now we prove p
⇤
2,N � v

0 + s(m). Suppose p
⇤
2,N < v

0 + s(m). Then we have that ↵1,N(p⇤1,N , r2)�

↵1,N(p⇤1,N , p
⇤
2,N), which yields R1,N(p⇤1,N , r2) � R

⇤
1,N , and that R2,N(p⇤1,N , r2) � r2 · P{r2  V 

r��r2
1��

}� (v0+s(m))EM >R
⇤
2,N . That is a contradiction. Therefore, we must have p⇤2,N � v

0+s(m),

which completes the proof.
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(ii) Now we show that, for any p1,F and p2,F , there always exist p1,N and p2,N such that

RN(p1,N , p2,N) � RF (p1,F , p2,F ). We first consider the case in which p2,F  v + Es(M). Take

p2,N = p2,F and p1,N = p1,F . Thus dN(p2,F ) = EM � EdF (p1,F , p2,F ,M). By Lemma 5(i) we have

RN(p1,N , p2,N)�RF (p1,F , p2,F ).

Then we consider p2,F = r(v + Es(M)) where r > 1. Consider also p1,F > v + Es(M). Since

P{V  �EM} = 1, it follows that 0 is the unique fixed point of (7). Hence, ↵1,F (p1,F , p2,F ) 

↵1,N(p1,F , p2,F ) = 0. The F setting boils down to the N setting, earning 0 profit. Next, we consider

p1,F  v+Es(M).

If s(M)<min{p⇤2,F � v
0
, s(d0)}, then we can see from Lemma 1 that ↵̃F (p⇤2,F ,M) is the unique

fixed point of (4), and futhermore we have ↵F (p⇤2,F ,M) = 0 because P{V  �EM} = 1. Thus we

have

RF (p1,F , p2,F ) = p1,F↵1,FEM + r(v+Es(M))E[max{0, ↵̃F (p2,F ,M)�↵1,F}M ]

 p1,F↵1,FEM + r(v+Es(M))(1�↵1,F )E[M · 1{s(M)�min{p2,F�v0,s(d0)}}]

 (v+Es(M))↵1,FEM +(v+Es(M))(1�↵1,F )EM

= (v+Es(M))EM

=RN(v+Es(M), v+Es(M)),

where the last inequality uses the fact that E[M · 1{s(M)�min{p2,F�v0,s(d0)}}]  EM
r
. Therefore, we

conclude that R⇤
N �R

⇤
F . ⇤

Before proving Corollary 1, we first introduce some symbols and some lemmas (see below).

Let v1,N(p1, p2) and v2,N(p1, p2) be the lowest valuations among consumers buying respectively in

periods 1 and 2 in the N setting. If they are interior points of the support of V , then we must have

v1,N(p1, p2) =
p1 � �p2

1� �
=

p1 � p2

1� �
+ p2,

v2,N(p1, p2) = p2 �Es
�
↵N(p2)M

�

Under state-independent pricing, the firm’s problem in the N setting is equivalent to

max
p1,p2

RN(p1, p2) = p1Ḡ(v1,N)EM + p2

⇣
G(v1,N)�G(v2,N)

⌘
EM. (A.6)

Let v⇤1,N and v
⇤
2,N be values of v1,N(·) and v2,N(·) at p⇤1,N , p⇤2,N .

Proof of Corollary 1. By the FOCs of (A.6), we have

Ḡ(v⇤1,N) = (p⇤1,N � p
⇤
2,N)g(v

⇤
1,N)

1

1� �
.
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Since g(·) is nonincreasing on (0,+1), it follows that (v⇤1,N � v
⇤
2,N)g(v

⇤
1,N)  G(v⇤1,N) � G(v⇤2,N).

Since v
⇤
1,N � v

⇤
2,N � p⇤1,N�p⇤2,N

1��
, we have

Ḡ(v⇤1,N)G(v⇤1,N)�G(v⇤2,N),

which yields ↵⇤
1,N  ↵

⇤
2,N and ↵

⇤
1,N  1/2.

To prove this corollary, it su�ces to prove p
⇤
2,N � v

0 + s(m). Suppose p
⇤
2,N < v

0 + s(m). Then

we must have R⇤
N

EM
< p

⇤
1,NḠ(v⇤1,N)+ (v0 + s(m)) ·G(v⇤1,N). Take p2,N = r(v0 + s(m)) where r > 1 and

take p1,N such that p1,N � p
⇤
1,N = �(r(v0 + s(m)) � p

⇤
2,N), which imples v1,N(p1,N , p2,N) = v

⇤
1,N if

v2,N  v
⇤
1,N . Next we prove RN(p1,N , p2,N)>R

⇤
N for some r > 1.

If v2,N  v
⇤
1,N , then we have

RN(p1,N , p2,N)�R
⇤
N

EM
>r(v0 + s(m))[G(v1,N)�G(v2,N)] + p1,NḠ(v1,N)� p

⇤
2,NG(v⇤1,N)� p

⇤
1,NḠ(v⇤1,N)

= r(v0 + s(m))[G(v1,N)�G(v2,N)]� p
⇤
2,NG(v⇤1,N)+ (p1,N � p

⇤
1,N)Ḡ(v⇤1,N)

� r(v0 + s(m))[G(v1,N)�G(v2,N)]� (v0 + s(m))G(v⇤1,N)

= (v0 + s(m))
⇥
(r� 1)G(v⇤1,N)� rG(v2,N)

⇤

� (v0 + s(m))
⇥(r� 1)

2
� rG(v2,N)

⇤
.

where the last inequality uses the fact that ↵⇤
1,N  1/2. Since v2,N  p2,N = r(v0 + s(m)), we have

RN(p1,N , p2,N)>R
⇤
N (G(v2,N)min{(r� 1)

2r
,G(v⇤1,N)}

(G
�
r(v0 + s(m))

�
 (r� 1)

2r

( P{V � r(v0 + s(m))}� r+1

2r
.

Therefore, if P{V � r(v0 + s(m))}� r+1
2r

for some r > 1, then R
⇤
F �R

⇤
N . ⇤

Proof of Proposition 4. Let p⇤1,N and p
⇤
2,N be the optimal prices in the N setting. And let ↵⇤

1,N

and ↵
⇤
2,N be the corresponding adoption fractions. Let ↵⇤

N = ↵
⇤
1,N +↵

⇤
2,N . We have p

⇤
1,N � p

⇤
2,N . By

the definition of ↵2,N(·), we have

p
⇤
2,N =G

�1(1�↵
⇤
N)+�↵

⇤
NEM.

where G
�1(x) = infy�0{y :G(y)� x}. We will prove that there exist p1,F and {p2,F (M)} such that

RF (p1,F ,p2,F )�R
⇤
N . Note that this proposition will hold if we prove this result.

Take p1,F = p
⇤
1,N and p2,F (M) =G

�1(1�↵
⇤
N)+ s(↵⇤

NM). Thus at least ↵⇤
N fraction of customers

will buy the good in the F setting for any M > 0, since p2,F (M) and ↵
⇤
N satisfy the REE condition
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(9), implying ↵̃F (p2,F (M),M) � ↵
⇤
N and furthermore ↵F (p1,F ,p2,F ,M) � ↵

⇤
N for any M > 0 by

Equation (10). Hence, dF (p1,F ,p2,F ,M)� d
⇤
N for any M > 0.

For any M , we have

G
�1(1�↵

⇤
1,N)� p2,F (M)+ s

⇣
max{↵⇤

1,N , ↵̃(p2,F (M),M)}M
⌘

=G
�1(1�↵

⇤
1,N)� p2,F (M)+ s(↵⇤

NM)

�G
�1(1�↵

⇤
N)� p2,F (M)+ s(↵⇤

NM)

= 0.

Since Ep2,F (M) = p
⇤
2,N , we can see from Equation (11) that ↵1,F (p1,F ,p2,F ) = ↵

⇤
1,N , which yields

d1,F (p1,F ,p2,F )� d
⇤
1,N . We also have

RF (p1,F ,p2,F ) = (p1,F �Ep2,F (M))d1,F (p1,F ,p2,F )+E[p2,F (M)dF (p1,F ,p2,F ,M)]

� (p⇤1,N � p
⇤
2,N)d

⇤
1,N + p

⇤
2,Nd

⇤
N

=R
⇤
N ,

which completes the proof. ⇤

Proof of Lemma 7. As in the proof of Proposition 4, we take p2,F (M) =G
�1(1�↵

⇤
N)+ s(↵⇤

NM)

where ↵
⇤
N � ↵1. Thus we have

R
⇤
2,F (↵1,M) =max

p2
p2↵2,F (↵1, p2,M)M � p2,F (M)(↵⇤

N �↵1)M.

It follows that ER⇤
2,F (↵1,M)� E

⇥
p2,F (M)(↵⇤

N �↵1)M
⇤
� p

⇤
2,N(↵

⇤
N �↵1)EM =R

⇤
2,N(↵1), where the

last inequality holds by Lemma A.1. ⇤

The proof of Proposition 5 makes use of the following lemma.

Lemma A.2. Suppose sup
n

Ḡ(x)
g(x)

: g(x)> 0
o

is finite. Then R
⇤
N is continuous in � 2 [0,1); ↵⇤

1,N

and R
⇤
1,N are left-continuous in � 2 (0,1); furthermore, ↵

⇤
1,N ! 0 and R

⇤
1,N ! 0, as �! 1�.

Proof of Lemma A.2. Let y2(↵1,N , p2,N) = p2,N [↵N(p2,N)�↵1,N ]. We note that the second-period

problem in the N setting is equivalent to

max
n
max
p2,N

y2(↵1,N , p2,N),Es(M)(1�↵1,N)
o
.
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We can see that y⇤
2 is continuous in ↵1,N . By the submodularity of y2 with respect to ↵1 and p2,N ,

we have p
⇤
2,N(↵1,N) decreasing in ↵1. We can also have p

⇤
2,N right-contiguous in ↵1,N . Let

ŷ
⇤
2(↵1,N) = p

⇤
2,N(↵1,N)↵

⇤
N(↵1,N) = y

⇤
2(↵1,N)+ p

⇤
2,N(↵1,N)↵1,N .

It can be seen that ŷ⇤
2 is right-continuous in ↵1,N . By the Envelope theorem, we have

@ŷ
⇤
2

@↵1,N
=

@y
⇤
2(↵1,N)

↵1,N
+ p

⇤
2,N(↵1,N)+

@p
⇤
2,N(↵1,N)

@↵1,N
↵1,N =

@p
⇤
2,N(↵1,N)

@↵1,N
↵1,N  0.

Hence ŷ
⇤
2 is decreasing in ↵1,N .

Let y1(�, v1,N) =
RN (�,v1,N )

EM
. Since v1,N � p2,N =

p1,N�p2,N
1��

for �< 1, it follows that

y1(�, v1,N) = [p1,N � p
⇤
2,N(v1,N)]Ḡ(v1,N)+ ŷ

⇤
2(v1,N)

= (1� �)(v1,N � p
⇤
2,N(v1,N))Ḡ(v1,N)+ ŷ

⇤
2(v1,N).

We note that maxv vḠ(v) is bounded if sup
n

Ḡ(x)
g(x)

: g(x) > 0
o

is finite. Thus, (v⇤1,N �

p
⇤
2,N(v

⇤
1,N))Ḡ(v⇤1,N) and ŷ

⇤
2(v

⇤
1,N) must be bounded for all � < 1. It follows that (1 � �)(v⇤1,N �

p
⇤
2,N(v

⇤
1,N))Ḡ(v⇤1,N) is continuous in � 2 (0,1). Since

���max
v

y1(�1, v)�max
v

y1(�2, v)
���max

v

���y1(�1, v)� y1(�2, v)
���,

we can deduce that y⇤
1(�) = y1(�, v⇤1,N) is continuous in � 2 [0,1), i.e., R⇤

N(�) is continuous in � 2 [0,1).

Hence ŷ
⇤
2(v

⇤
1,N) is continuous in � 2 [0,1). Since ŷ

⇤
2(v1,N) is increasing and left-continuous in v1,N ,

it follows that v⇤1,N is left-continuous in � 2 (0,1), implying ↵
⇤
1,N is left-continuous in � 2 (0,1). We

have shown y
⇤
2(v1,N) is continuous in v1,N . It follows that y

⇤
2(v

⇤
1,N) is left-continuous in � 2 (0,1),

i.e., R⇤
2,N(�) is left-continuous in � 2 (0,1), which yields that R⇤

1,N(�) is left-continuous in � 2 (0,1).

Consider �! 1�. By the monotonicity of ŷ⇤
2(v1,N), we must have v

⇤
1,N !1 (or the supremum of

the support of g(·)), implying ↵
⇤
1,N ! 0. We note that p⇤2,N is bounded for all � because maxv vḠ(v)

is bounded. Hence y1(1, v⇤1,N) = ŷ
⇤
2(v

⇤
1,N) = p

⇤
2,N(↵

⇤
1,N + ↵

⇤
2,N)! p

⇤
2,N↵

⇤
2,N , therefore it follows that

R
⇤
1,N ! 0. ⇤

Proof of Proposition 5. It can be seen from Lemma A.2 that, for any su�ciently small ✏> 0,

there exists �c < 1 such that ↵⇤
1,N(�)< ✏ and R

⇤
1,N(�)< ✏ if 1> � > �c. For any � > �c (� < 1), take

p1,F (�) such that ↵
⇤
1,F (�) = ↵

⇤
1,N(�) (> 0). In this case, the total profits in the F and N setting

mainly come from the second-period profits. More precisely, we have

RF (�, p1,F (�))�R
⇤
N(�)��✏+ER⇤

2,F (↵
⇤
1,N ,M)�R

⇤
2,N(↵

⇤
1,N)
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As alluded to in the proof of Lemma 7, R⇤
2,F (↵1,M) is strictly convex in M , which yields that

ER⇤
2,F (↵1,M)�R

⇤
2,N(↵1)> 0 for all ↵1 as long as Var(M)> 0. Since ER⇤

2,F (↵1,M)�R
⇤
2,N(↵1)> 0,

it follows that there exists ✏> 0 such that ✏< ER⇤
2,F (↵1,M)�R

⇤
2,N(↵1) for all 0< ↵1 < ✏. Therefore,

there must be a �c < 1 such that RF (�, p1,F (�))�R
⇤
N(�)� 0 if 1> �> �c. ⇤
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