Online Appendix to
“Information Disclosure and Pricing Policies for Sales of
Network Goods”

A. Proofs

This online appendix provides all proofs of propositions, and lemmas in our paper. Since it is a
trivial case for our analysis that s(M) = Es(M) in probability 1, in this appendix we always assume
Var(s(M)) > 0.

Proof of Lemma 1. Let H(a) = G(p — s(am)) for any m > 0. We have

H'(a)=g(p—s(am))s’(am)m. (A1)

By Assumption 1, it is easy to see that H(«) is nondecreasing and (weakly) convex in « if p >
v? +s(m) and m < d°.
Since p > v° + s(m), it follows that H(1) = G(p — s(m)) < G(v°) < 1. Also we have H(0) > 0.

Therefore, H(«) can only have one fixed point on [0,1) in this case.

Proof of Lemma 2. We prove the properties in part (i) and (ii) only for ar(-), since the properties
of dr(-) are direct sequences of the properties of ap(-).
By Equation (1), we have

dap(m)  g(p—s(ar(m)m))s'(ar(m)m)og(m)

om 1—g(p—s(ar(m)m))s'(ar(m)m)m

(A.2)

Note that g(p— s(ar(m)m))s'(ap(m)m)m = H'(ar(m)) where H'.) is defined by Equation (A.1).
If p> v+ s(m) and m < d°, by the convexity of H(-), we have

H(Q1) - H(ap(m)) _1-ar(m)
1 —ar(m) 1 —ar(m)

H'(ap(m)) <

hence, the right-hand side of (A.2) is well defined and nonnegative. Then from (A.2) and Assump-
tion 1, we can see that ar(m) is (weakly) increasing and (weakly) convex in m as long as p >
v? +s(m) and m < d°; if we also have G(p) > 0 and s'(+) > 0, then (’FT("') > 0 and strictly increasing,
that is, “increasing” and “convex” properties here are in a strict sense.

For part (ii), we have H(1) = G(p — s(m)) =1 if p <wv + s(m). Thus the largest fixed point of

H(a) =, i.e., arp(m), is 1. Therefore, the proof is completed. O
Proof of Lemma 3. The proof is analogous to the proof of Lemma 1. O

Before we prove Proposition 1, we give the following lemma:



LEMMA A.1. Let X be a random variable and f(-) and g(-) be increasing functions. Suppose

f(X), g(X) and f(X)g(X) all have finite expectations. Then E[f(X)g(X)] > Ef(X)-Eg(X).

Proof of Lemma A.1. Define o =inf,{g(z) > E¢g(X)}. We have

E[f(X)(g9(X) — Eg(X))] =E[f(X)(9(X) — Eg(X)); X > xo] + E[f(X)(9(X) — Eg(X)); X < o]
+E[f(X)(9(X) — Eg(X)); X = z0]

> E[f(0)(9(X) — Eg(X)); X > 2] + E[f (20)(9(X) — Eg(X)); X <]
+ E[f(20) (9(X) — Eg(X)); X = o]

= f(z0) - E[g(X) —Eg(X)] = 0.

Thus the lemma is proved. O

Proof of Proposition 1. Part (ii) holds because, if p <v+Es(M), ap(m) < ay =1 for any m >0,
which yields Ry > Rr. Next we will prove part (i).

From lemma A.1, we see Edr(M) > Eap(M)EM. Consequently, to prove Edr (M) > dy, it suffices
to prove Eap(M) > ay.

Given p > v° + s(m), we have G(-) is concave on [v°,00). From the definition of ap(M), i.e.,

Equation (1), we have
Ear(M) = Ec?(p - s(aF(M)M)> > c‘;(p - Es(aF(M)M)).

Note that when p > 1" + s(m), by Lemma 3, ay is the unique solution to (2). Thus it suffices to

prove
Eap(M)> G(p - Es(MEaF(M))). (A.3)

In fact, if (A.3) holds, then oy must be between 0 and Eap(M). To show (A.3), it suffices to show
that

Es(ap(M)M) > Es(MEap(M)). (A.4)
Now we prove (A.4). For any M, because of the convexity of s(-), we have
s(Map(M)) > s(MEap(M)) + [ap(M) — Eap(M)]- M - s'(Map(M)). (A.5)

By Lemma A.1 and taking expectation of both sides of (A.5) with respect to M;, we have (A.4).
This completes the proof. ]



Proof of Lemma 4. We will only prove the properties of ar(-) in part (i) and (ii), because the
properties of dp(-) follow directly.

From Equation (5) we see that ag(p1,p2,m) = &r(p1,p2, m) if m >my. By comparing Equations
(1) and (4), we have that ar(p;,p2,m), a function of m, has the same properties as ar(m), defined

as the largest fixed point of (4). Therefore, this lemma follows from Lemma 2. O

Proof of Lemma 5. (i) We have known that

Hp(z) — Hy(z)=6[- G '(1—2) +p; — ES(maX{I,OéN(pQ)}M)]+

—0E[-G'(1—a)+p:— s(max{a:,dF(pg,M)}M)]+.

For z < an(p2), G~ (1—x) —ps+Es(max{z, an(p2) }M) > G (1 —an(p2)) —p2+Es(an(p:) M) =
0. Thus in this case we have Hp(x) — Hy(z) <0, which yields a; r(p1,p2) < oq n(p1,p2).

We now consider the case when = > ay(p2). In this case, we have

E[—G7'(1—2)+ps — s(max{w, ar(ps, M)} M)] "

=E[[= 67 (1 =) +p2 = s(mascle G (2. M)IM)] a1 |-
and
[—G7'(1—x) +po — Es(max{z, an(ps, )}M)]+ =E[- G '(1—2)+p. — s(zM)].
Since

[— G (1 =)+ po — s(max{z, &r(p2, M)}M)] - 1(ap(po.11) <}

> -G (1—2)+py—s(zM), VM,

it follows that Hp(x) — Hy(x) <0. Hence we still have a; r(p1,p2) < a1 n(p1,p2)-

(ii) If p1 > pa, we have oy n(p1,p2) < an(ps). Thus we have
0<Hy(un)=G'(1—ain)—p1 —6[G (1 —ain) —pal,
which yields G™'(1 — ay ) > p1 > p2. Here, we write oy n(p1,p2) as a; x for short. Therefore, we

conclude that HF(al,N) — HN(al,N) = O, which ylelds al,F(p17p2) = al,N(p17p2)- ]

Proof of Proposition 2. (i) As alluded to in the proof of Proposition 1, Edg(ps, M) > dy(ps) if
P2 > 1"+ s(m) and m < d°. Since dp(p1, pa, M) > dp(ps, M), we have that Edp(py,ps, M) > dy(ps).



Consider p; > po. In this case, we have dy(p1,p2) = dn(p2) < Edp(p1,p2, M). By Lemma 5, we
also have d; p(p1,p2) =di n(p1,p2). Therefore, Rp(p1,p2) > Ry (p1,p2)-

Then consider p; < p,. We also consider § = 0. In this case, we have Hp(x) = Hy(x) for all x €
[0,1], which yields di #(p1,p2) = d1 v (p1,p2). Since we have assumed Var(s(M)) > 0 at the beginning
of this appendix, either of the following two results holds: (a) Eds r(p1,pa2, M) > do n(p1,p2), (b)
do,N(p1,D2) = d2 p(p1,p2,m) = 0. Thus we must have either that Rp(p1,p2) > Ry(p1,p2) for 6 =0
or that Rp(p;,p2) = Ry (p1,p2) for all . Therefore, there must be a threshold 6. > 0 such that
Rp(p1,p2) > Ry(p1,p2) when § < 4.

(ii) If po < min{p;,v + Es(M)}, then we have di p(p1,p2) = din(p1,p2) by Lemma 5 and
Edr(p1,p2, M) < dn(p1,p2) by Lemma 4(ii). Therefore, Rr(p1,p2) < Ry (p1,p2)- O

Proof of Lemma 6. First we prove a; y > 0. Suppose a; y = 0. Thus af y = ay must be the

largest fixed point of the following equation:
a=G(p; y — 0Es(aM)),

and hence Ry (p] y,05 x) =D} v If we take py vy = p] y and take p; v such that p; v > p;  and

G(p1,n) >0, then Ry (p1,n,p2,.n) > Rn(p} v, D5 x)- That is a contradiction. Hence we have aj > 0.

Consider g n(p1,n,p2.n) > 0. Thus ay is the largest fixed point of the following equation:
o= G(pz,N — Es(aM)),

which implies that ay depends only on ps . Hence, Ry(p1 n,p2.n) = panan(P2n) + (P18 —
Pa.n)1 N (PN, o). Since Ry(pon,pon) > Rn(pin,pan) if pinv < pon, it follows that

pT,N > p;,z\r O

Proof of Proposition 3. (i) From Proposition 2(i) and Lemma 6, we see that, to prove R} >
Rr(pi n:P5.n) > Ry, it suffices to prove pj > v° + s5(m).

We first show pj y > r. Suppose pj y < r, which yields p; v < r. We have Ry(ri,71) > 71 -
G(r1)EM > rEM > Ry (p; x5 n)- That is a contradiction. Hence, p} y >r.

Now we prove p} y > %+ s(m). Suppose p5 y < v’ + s(m). Then we have that ay y(p} y,72) >
a1 N (P} nsP3n), Which yields Ry n(p] y,72) = Ri y, and that Ry n(p} n,72) > 12 - P{ra <V <
=021 > (v + s(m))EM > R; . That is a contradiction. Therefore, we must have pj > 0%+ (),

which completes the proof.



(ii) Now we show that, for any p; p and p, g, there always exist p; y and p, y such that
Ry(pinspen) = Rr(pir,p2r). We first consider the case in which psr < v + Es(M). Take
pon =Dpor and p1 y = p1p. Thus dy(per) = EM > Edr(p1,r,p2.r, M). By Lemma 5(i) we have
Ry (p1,nsp2.n) = Re(p1,psp2.r)-

Then we consider p, p = r(v + Es(M)) where r > 1. Consider also p; » > v + Es(M). Since
P{V < BEM} =1, it follows that 0 is the unique fixed point of (7). Hence, ay r(p1 r,p2.r) <
a1 N(p1.r,pa.r) =0. The F setting boils down to the NN setting, earning 0 profit. Next, we consider
pr <v+Es(M).

If s(M) < min{p; , —v°,s(d°)}, then we can see from Lemma 1 that ap(p} p, M) is the unique
fixed point of (4), and futhermore we have ap(p; r, M) =0 because P{V < EM} = 1. Thus we

have

Rr(p1.r,p2.r) =p1roa pEM +1r(v+ Es(M))E[max{0, &r (pa,r, M) — a1 ¢ } M]
<prron pEM +r(v+Es(M))(1 = a1, p)E[M - Lisan>mingps 00,5013
<(v+Es(M))os rEM + (v +Es(M))(1 —ay r)EM

=(v+Es(M))EM

= Ry(v+Es(M),v+Es(M)),

where the last inequality uses the fact that E[M - 1 >min{py pv0,s(a0)3] < % Therefore, we
conclude that Ry > Rj.. O

Before proving Corollary 1, we first introduce some symbols and some lemmas (see below).
Let vy n(p1,p2) and vy n(p1,p2) be the lowest valuations among consumers buying respectively in

periods 1 and 2 in the N setting. If they are interior points of the support of V', then we must have

p1—0p2  p1—D2
1-6 1-96

Vo, (p1,p2) = po — Es(an(p2) M)

v, n(p1,p2) = + p2,

Under state-independent pricing, the firm’s problem in the N setting is equivalent to

max Ry (p1,p2) =p1G(v1, n)EM + po <G(v1,N) - G(va)) EM. (A.6)

p1,pP2
Let v} y and v5 y be values of vy y(-) and vy y(-) at p} y, P5 v
Proof of Corollary 1. By the FOCs of (A.6), we have

~ * * * * 1
G<U1,N) = (pl,N _p2,N)g(v1,N)m'



Since g(-) is nonincreasing on (0,+00), it follows that (vj v — v3 5)g(v] 5) < G(V] N) — G(V5 x)-

* *
P1,N —P2,N

. * *
Since vi y —v3 xy = —T—5

, we have
G(UT,N) < G(UT,N) - G(”S,N)>

which yields o} y <aj v and af y <1/2.

To prove this corollary, it suffices to prove pj y > v° + s(7). Suppose p; y < v° 4 5(77). Then
we must have % <pi NG n) 4 (V0 + s(M)) - G(v] ). Take py y =r(v° + s(m)) where r > 1 and
take py ny such that p; y — pj y = 6(r(v° + s(m)) — p5 x), which imples vy n(p1n,p2n) = v] v if
va,n < vf . Next we prove Ry (p1,n,p2,n) > Ry for some 7> 1.

If vy, ;v <07 y, then we have

R 9 - R* ~ * * * ) *
N(pLNEZJ)\?N) e G(U2 N)] +p1,NG(vl,N) _pQ,NG(vl,N) _p1,NG(U1,N)

N)—
=70+ s(m))[G(v1,5) — G(van)] = 5 NG (V] §) + (Prv — P NG (V] y)
~) = G(vn)] = (V7 4 5(m))G(v7 )
(r=1)G (v} y) —7G(van)]
) 1 Gan)].

where the last inequality uses the fact that of y <1/2. Since vy y < poy =7(v° + 5()), we have

(r—=1)

Ry (p1,n,p2,n) > Ry <= G(vg, ) < min{ o ,G(vi v}

=G (r(° + s(m))) < “2;1)

r+1
2r

<P{V>r@'+s(m))} >

Therefore, if P{V >r(v° 4+ s(m))} > %L for some r > 1, then R}, > R}, O

Proof of Proposition 4. Let pj v and p; v be the optimal prices in the N setting. And let a7
and «; y be the corresponding adoption fractions. Let ajy = o y + a5 y. We have p} y > pj . By

the definition of s n(-), we have
psn =G (1 —ay)+ BayEM.

where G~ !(z) =inf,>o{y: G(y) > z}. We will prove that there exist p; r and {ps (M)} such that
Ry (p1.r,p2,r) > Ry . Note that this proposition will hold if we prove this result.

Take pyp =pi y and py p(M) =G~ (1 —ajy) + s(ajyM). Thus at least oy fraction of customers
will buy the good in the F' setting for any M > 0, since ps p(M) and oy satisfy the REE condition



(9), implying ap(pe,rp(M), M) > ol and furthermore ap(p1 r,Ppa2,r, M) > o for any M >0 by

Equation (10). Hence, dr(p1.r,P2,r, M) > d} for any M > 0.
For any M, we have

G (1= ai ) = po,r(M) + s max{ai , @(pa,p (M), M)}M )
=G (1-a} y) —par(M)+s(ayM)

> G (1—ay) —par(M) +s(ay M)
=0.

Since Epy p(M) =Dp5 N, WE can see from Equation (11) that oy r(p1,r,P2,r) = o N which yields
di (P17, P2,F) > d;N. We also have

RF(pl,F7p2,F) = (pl,F - Ep2,F(M>)d1,F(p1,F;p2,F) + E[p2,F(M)dF(p1,Fap2,Fa M)]
> (ny,N _p;,N)ds{,N +P;,Nd7v
= Ry,

which completes the proof.

Proof of Lemma 7. As in the proof of Proposition 4, we take ps #(M) =G (1 — )+ s(ay M)
where aj;, > ;. Thus we have

Rj p(on, M) = max P2z gy, pa, M)M > py p(M)(ay — 1) M.
2

It follows that ER} (v, M) > E[ps,r(M)(ay — a1)M| > p3 (o — a1)EM = Rj y (), where the
last inequality holds by Lemma A.1. O

The proof of Proposition 5 makes use of the following lemma.

LEMMA A.2. Suppose sup{f((f)) cg(z) > 0} is finite. Then Ry is continuous in § € [0,1); af y

and R} y are left-continuous in 0 € (0,1); furthermore, af y — 0 and R y —0, as § =17,

Proof of Lemma A.2. Let y2(a1 n,p2,n) = P2 n[an(p2,n) — @1,n]. We note that the second-period
problem in the N setting is equivalent to

P2, N

max { max yz(OéLN’Pz,N)» ES(M)(l - a1,N)}-



We can see that y; is continuous in a4 y. By the submodularity of y, with respect to a; and ps n,

we have pj y (a1 n) decreasing in a;. We can also have pj  right-contiguous in ay . Let

U5 (a1,n) = py n (o1, n)ay(aa,n) = y5 (a1, n) +p5 y(arn)or N

It can be seen that ¢35 is right-continuous in a; y. By the Envelope theorem, we have

095 Oys(aun) ps n(Q1,n) P n (1, n)
— > + * o + —— ’ o = (6% <0.
Oay n a1 N Pan(01.m) Oay N b Oay n b=
Hence g3 is decreasing in oy y.
Let y1 (6,01 ) = w. Since vy y —pan = % for § < 1, it follows that

y1(6,v1,8) = [p1.v — P3 v (01,8)]G(v1,8) + G5 (V1)

=(1-=0)(vi,n =5 n(v1,8))G (V1 N) + T3 (V1)

We note that max,vG(v) is bounded if sup{(g;((z)) s g(x) > O} is finite. Thus, (viy —

ps n (05 §)G(vi y) and §3(vi y) must be bounded for all § < 1. It follows that (1 —6)(v; y —

PN (v §))G(vi ) is continuous in 6 € (0,1). Since

y1(51,U) - 91(524))

max ¥ (d1,v) —max y; (52,11)‘ < max

)

we can deduce that y;(0) = y1(d, v} ) is continuous in § € [0,1), i.e., R} () is continuous in 6 € [0, 1).
Hence g5 (v} ) is continuous in 6 € [0,1). Since ¢;(vy,n) is increasing and left-continuous in vy ,
it follows that vj y is left-continuous in ¢ € (0,1), implying «f y is left-continuous in ¢ € (0,1). We
have shown y;(vy n) is continuous in vy y. It follows that y;(vf y) is left-continuous in § € (0,1),
i.e., R y(0) is left-continuous in § € (0, 1), which yields that R} y(0) is left-continuous in 6 € (0,1).

Consider 0 — 1~. By the monotonicity of ¢;(vy,x), we must have v} y — oo (or the supremum of
the support of g(-)), implying a} y — 0. We note that p} y is bounded for all § because max, vG (v)
is bounded. Hence y:(1,v] y) = 95 (v] y) = 05 n(af y + 5 ) = P5 y5 y, therefore it follows that

R; y —0. 0

Proof of Proposition 5. It can be seen from Lemma A.2 that, for any sufficiently small € > 0,
there exists . <1 such that aj y(d) <e and R} y(§) <eif 1 >0 > 4. For any § >4, (6 <1), take
p1,r(6) such that aj »(6) = af x(d) (> 0). In this case, the total profits in the ' and N setting

mainly come from the second-period profits. More precisely, we have

RF(5ap1,F(5)) — Ry (6) > —e+ ER;,F(QI,M M) — ;,N(aI,N)



As alluded to in the proof of Lemma 7, R (v, M) is strictly convex in M, which yields that
ER; p(cn, M) — Rj y(ay) >0 for all a; as long as Var(M) > 0. Since ER; (o, M) — R (1) >0,
it follows that there exists € > 0 such that ¢ < ER; (a1, M) — R y (o) for all 0 < oy < €. Therefore,
there must be a 0, < 1 such that Rp(d,p1 r(9)) — Ry(d) >0if 1 >0 >0.. O
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