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Abstract. We study a two-period model in which a firm faces the problem of deciding
whether to commit to sales volume disclosure undermarket size uncertaintywhen selling a
network good to forward-looking customers who time their purchases. If the first-period sales
volume is disclosed, the second-period customers will base their purchase decisions on this
information. If the sales volume is not disclosed, all customers will make purchase decisions
based on their estimate of market size. We identify two countervailing effects of sales dis-
closure: (1) a prodisclosure “Matthew effect” (the benefit of a realized large market size tends
to outweigh the loss of a realized small one) and (2) an antidisclosure saturation effect (for a
sufficiently large market, customers would make a purchase anyway even without knowing
the realized market size but might be discouraged if observing a realized small one). With
exogenous prices, we show that committing to sales disclosure is a dominating (dominated)
policy when the expected network benefit is relatively weak (strong). We also examine three
endogenous pricing scenarios. First, under state-independent pricing, committing to sales
disclosure is better off if the customer valuation distribution has a highprobability of reaching
very high values (i.e., a heavy tail). Second, if a firm can credibly preannounce a contingent
pricing policy, committing to sales disclosure is always better off. Third, under contingent
pricing without commitment, we show that committing to sales disclosure is better off when
delaying the purchase decision to the second period does not reduce the value much.
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1. Introduction
A network effect (also called a network externality) is
the way that the value of a unit of goods or services
(collectively referred to as goods) increases with the
number of units sold (Economides 1996). A goodwith
network effects is called a network good. In the pres-
ence of network effects, the utility of a good for a
(forward-looking) customer depends on the number
of other customers who will eventually purchase it.
At the time that customers make their own individual
purchase decisions, they may be uncertain about how
many other potential buyers are out there and what
those buyers’ purchase decisions might be; hence,
they have to cope with uncertainty about the network
benefit that they can obtain from the purchase. As a
result, the market size information influences each

individual customer’s expectation of the network
benefit and hence their purchase decisions.
In selling network goods, reporting sales infor-

mation is one of the best ways for a firm to show not
only how many users it has now but also how large
the potential market is. Firms often commit to a sales
information release policywhen selling network goods.
For example, regardless of the investors’ strong desire
and pressure for more transparency, Amazon and
Apple, which sell tablet devices, have each adopted a
different implicit information policy and have de-
veloped distinct “reputations” for releasing informa-
tion on the sales of their tablets. With Amazon, “even a
number as basic, and presumably impressive, as how
many Kindle e-readers the company sells is never re-
leased” (Streitfeld and Haughney 2013). With Apple,
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iPhone and iPad sales numbers are always released,
even if they are disappointing (Elmer-DeWitt 2012).

Sales information voluntarily disclosed by a firm
could be a boon for customers by allowing them to
make better informed purchase decisions. However,
it is not clearwhether a commitment to revealing sales
information would always benefit a firm that sells
network goods under market uncertainty. On the one
hand, it could be beneficial if the market reaction is
enthusiastic, in which case more customers may be
drawn tomake a purchase. On the other hand, it could
be detrimental if interest is scant, in which case
customers may be discouraged.

In this paper,we study the sales information release
policy for selling network goods subject to market
size uncertainty. Our model tends to be better at
capturing new emerging network goods, such as fast-
turnover gadgets and mobile games. The sales hori-
zon for these goods is relatively short, sometimes only
days, and usually no more than a year. Moreover,
demand uncertainty is a crucial element in selling these
goods because of the fast-changing market condi-
tions, and it is the key feature that differentiates this
paper from the prior art on network goods. In these
markets, because of the fast turnover, there could be
many repeated interactions between the seller and
consumers. As a result, the seller is likely to develop
and sustain a reputation about information disclo-
sure, or alternatively, it may simply commit to an
information policy.

To investigate the impact of revealing sales in-
formation on a monopolistic firm’s profitability, we
consider a two-period model in which there is a co-
hort of customers of a random size arriving at the
market in the first period. All customers are forward
looking: that is, they can decide to buy the good in the
first period or delay their purchase decisions to the
second period. A customer valuation has two addi-
tive components: a standalone valuation, and a network
benefit that depends on the total sales over the two
periods. Instead of studying the general mechanism
design problem, which covers the entire policy space,
we compare two simple and practically motivated
information release policies: sales disclosure versus
sales nondisclosure. In the sales nondisclosure set-
ting, the firm commits to not disclosing early sales
information, and all customers have to base their
purchase decisions on their prior knowledge of the
market size. In the sales disclosure setting—with early
sales information from the first period disclosed—the
customers who delayed their decisions to the second
period can learn the realized market size and then
make informed purchase decisions.

We identify two opposing effects of sales disclo-
sure. One is a prodisclosure Matthew effect. This is a
term, coined by Robert K. Merton, to describe how

eminent scientists will often get more credit than
a comparatively unknown researcher, even if their
work is similar, with the visibility of the scientists as an
implicit driver of the effect (Merton 1968). In our
context, this effect refers to the phenomenon, which is
intrinsically driven by the positive network exter-
nalities, that the benefit of a disclosed large market
size potentially outweighs the loss associated with a
small one. As a new customer enters the market,
existing customers will increase their expectation of
the ultimate network size, which determines their
expected utility of buying the good. As a result, the
new customer is more willing to buy the good. In
anticipation of that, other customers will further in-
crease their utility of buying the good. Thus, with
some assumptions (Assumption 1) on the distribution
of standalone valuations and the form of the network
benefit function (i.e., how the network benefit de-
pends on the total sales), the equilibrium adoption
rate is more than linearly increasing with the market
size. Therefore, the benefit of a realized large market
size tends to outweigh the loss of a realized small
market size. The other effect is an antidisclosure
saturation effect. That is, for a sufficiently large ex-
pected network benefit owing to a sufficiently large
expected market size, customers would buy the good
even without knowing the exact market size but might
be discouraged by seeing a small realized market size.
The trade-off between these two effects drives the

firm’s sales information disclosure policy. When the
prices of the good are exogenously given, we show
that if the expected network benefit is sufficiently
strong relative to the exogenous prices, the saturation
effect dominates the Matthew effect and that it is
better to maintain sales nondisclosure. However, if
the network benefit is sufficiently weak, the Matthew
effect dominates the saturation effect, and commit-
ting to sales disclosure is better. These results lend
some support to the practices in the competitive online
games industry. For example, Blizzard’s World of
Warcraft, after developing a strong customer base,
announced that it would not report the subscription
numbers for all of its future releases (Tassi 2015).
However, numerous niche online game developers,
with small market potential, tend to have their sub-
scription numbers continuously reported by third-
party sales watchdogs, such as addictinggames.com.
We then study the situation where the firm can

decide on the all-or-nothing information disclosure
policy togetherwith endogenized prices.We examine
three endogenous pricing policies from static to more
contingent ones, all of which are seen in the literature.
1. State-independent pricing: that is, the firm decides

on and announces a first-period price and credibly
commits to a second-period price at the beginning of
the first period (Nagle 1984).
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2. Contingent preannounced pricing: that is, the firm
determines its first-period price and credibly commits
to a second-period price scheme at the beginning of
the first period; in this case, the second-period price
scheme is a function of the observed sales volume of
the first period (Aviv and Pazgal 2008, Elmaghraby
et al. 2008, Correa et al. 2016).

3. Contingent pricing without commitment (also known
as dynamic pricing): that is, the firm determines prices
at the beginning of each period contingent on the state
that it faces in order tomaximize the remaining profits
(Bitran and Caldentey 2003).

We obtain the following set of results. First, under a
state-independent pricing policy, we show that the
optimal information release policy depends on the
distribution of customer valuations, the market size
distribution, and the network benefit structure. Spe-
cifically, committing to sales disclosure dominates
committing to sales nondisclosure if the customer
valuation distribution has a sufficiently high proba-
bility of reaching very high values (i.e., a heavy tail)
relative to the expected network benefit at its full
strength. However, committing to sales nondisclosure
becomes better off if the customer valuation is capped
by the expected network benefit (which can be inter-
preted as the valuation distribution having a relatively
light tail) and the market size distribution has a rela-
tively low probability of reaching very high values (i.e.,
a light tail).

Second, we consider a contingent preannounced
pricing scheme. With preannounced pricing flexi-
bility, if the first-period market interest is enthusi-
astic, then the firm can profit from the expected strong
network benefit by setting a high second-period price,
and if the first-period market interest is lukewarm,
then the firm can set a low second-period price to
stimulate demand. Pricing flexibility in the latter
scenario not only improves the expected network
benefit but also reduces the risk that the ultimate
network benefit will be disappointing for first-period
customers, thereby driving more customers to buy the
good in the first period.We show that under contingent
preannounced pricing, committing to sales disclosure
always dominates committing to sales nondisclosure.
Contingent pricing serves as a defense against the
double-edged sword of information disclosure because
it can unleash the benefits of information dissemina-
tion while minimizing its negative impacts.

Third, we consider contingent pricing without com-
mitment. We show that given the same market condi-
tion at the beginning of the second period, the expected
second-period profit under sales disclosure always
dominates that under sales nondisclosure. However,
the first-period demand under sales disclosure may
not be higher than that under sales nondisclosure, im-
plying that the first-period profit under sales disclosure

is not always higher than that under sales nondisclo-
sure. Nevertheless, we find that committing to sales
disclosure is better than committing to nondisclosure
when delaying the purchase decision to the second
period does not reduce the value much: that is, the
discount factor is sufficiently large. In this case, most
customers choose to delay their decisions to the sec-
ond period, for which committing to sales disclosure
results in a higher profit level than committing to
nondisclosure.
The rest of this paper is organized as follows. The

remainder of Section 1 reviews the relevant litera-
ture. In Section 2, we present the model formulation.
Section 3 focuses on a preliminary one-shot model
and reveals the basic trade-off in market size dis-
closure mechanisms. Section 4 presents a two-period
model and investigates sales information disclosure
mechanisms in relation to customers’ intertemporal
purchase behavior and a variety of pricing schemes.
Section 5 concludes the paper and points out future
research directions. All the proofs are relegated to the
online appendix.

1.1. Literature Review
As the title of this paper indicates, there are at least
two related bodies of literature: one on information
disclosure and the other on the pricingof network goods.
The former has been studied in a variety of sender–
receiver games in the economics literature, including
auctions (Milgrom and Weber 1982, Bergemann and
Pesendorfer 2007, Mezzetti et al. 2008, Board 2009),
price discrimination (Ottaviani and Prat 2001), labor
market matching (Ostrovsky and Schwarz 2010),
and other general settings (Lizzeri 1999, Rayo and
Segal 2010, Kamenica and Gentzkow 2011, Ely 2017,
Bergemann et al. 2018). These papers consider set-
tings in which a sender can commit to an information
disclosure rule that determines the distribution of
signals observed by receivers, and receivers choose
actions depending on the signals they observe, which,
in turn, affect the sender’s utility. A basic ques-
tion, therefore, is which information disclosure rule
maximizes the sender’s expected utility. Our work
builds on this stream of literature by studying the
information disclosure problem in the specific setting
of selling network goods. There are at least three
distinctions. First, a key feature of our setting is that
the state to be revealed by the sender (seller) is the
number of receivers (buyers). This number affects
receivers’ actions considerably because of the net-
work effect and hence influences the sender’s choice
of information disclosure policy. Second, in the lit-
erature, an optimal information disclosure policy
often involves information distortion. However, in
our setting, it could be illegal for the firm to manip-
ulate the sales numbers. As a result, we focus on
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two truthful information disclosure policies (i.e., full
disclosure and no disclosure; see Section 5 for more
complicated information disclosure policies). Third,
although the previous studies focus mainly on the
design of information disclosure, we also study the
interaction between information disclosure and pricing
policies in selling network goods to forward-looking
customers.

Moreover, our work is related to a large body of
existing literature dealingwith pricing in the presence
of network effects (Dhebar and Oren 1986, Xie and
Sirbu 1995, Bensaid and Lesne 1996, Cabral et al. 1999,
Arthur et al. 2009, Akhlaghpour et al. 2010, Anari et al.
2010, Cabral 2011, Radner et al. 2014). This stream of
literature considers general network benefit functions
of a global nature (i.e., the network benefit of a cus-
tomer depends on the behavior of all customers).
More recently, there is a growing body of research
on pricing over networks with local network ef-
fects (Candogan et al. 2012, Bloch and Quérou 2013,
Campbell 2013, Fainmesser and Galeotti 2015). These
models capture the network effect by modeling social
interactions among neighbors in a network. Ourwork
differs from these papers because we consider market
size uncertainty. The market size in the presence of
network effects can influence customers’ purchase
decisions. Under market size uncertainty, our work
focuses on the market size information disclosure
policy in conjunction with pricing policies.

There are papers in the operations literature that
address information disclosure issues similar to ours.
For example, in a group-buying setting where a suf-
ficient amount of signups results in a deal being
unlocked, Hu et al. (2013) study a two-period game
where cohorts of customers arrive at a deal and make
signup decisions sequentially. They show that it is al-
ways more beneficial for the firm to disclose to second-
period arrivals the number of signups accumulated in
the first period than not to do so. In contrast, our work
demonstrates that sales volume disclosure may not al-
ways be more beneficial under a general form of pos-
itive network externality. In a service system, Hu
et al. (2017) study the optimal information disclosure
policy about the queue length. In this setting, when
there are negative network externalities, it may not
be optimal to always reveal the real-time conges-
tion information; instead, a randomized information
disclosure policy may be even better. Over a social
network, Zhou and Chen (2015, 2016) consider a
contribution gamewith local positive network effects.
The authors show thatwithoutmarket size uncertainty,
it is always beneficial for players tomove sequentially
by revealing first-period players’ actions to second-
period players. Again, in contrast, we show thatwhen
there is market size uncertainty, it is not always better
to reveal first-period customers’ purchase decisions.

2. Model Formulation
We consider a monopolistic firm selling a network
good. Without loss of generality, we assume that the
good has zero marginal cost. At the beginning of the
sales horizon, there comes a cohort of potential cus-
tomers with a random size M. Each customer is in-
terested in buying at most one unit of good. We as-
sume that any single customer is negligible with
respect to the total market size. The distribution ofM
is public information, but its exact realization is not
known ex ante to the firm and neither is to customers.
For customers, this network good exhibits positive

externalities (i.e., a customer’s willingness to pay for
the good depends positively on the total sales vol-
ume). To model such network externalities, we as-
sume that a customer’s willingness to pay consists of
his or her own valuation and a social utility. Specif-
ically, we write the customer’s willingness to pay as
u � v + s(d). The first term v represents the standalone
valuation, which is the customer’s intrinsic valuation
of the good. We allow for customer heterogeneity in
the intrinsic valuation. More precisely, we assume
that v is realized from a random variable V with a
cumulative distribution function G(·) and probability
density function g(·). The second term s(d) represents
the network benefit, where d is the network size of the
good at the end of the sales horizon. (In this paper, we
consider a homogeneous network benefit function
for all customers. We leave the heterogeneity of the
network benefit s(·) among customers to future re-
search because it opens up opportunities for more
sophisticated information release policies than the
simple sales disclosure or nondisclosure ones that we
focus on in this paper.) Now we make the following
assumption about V and s(·).
Assumption 1. The density g(·) is continuous on its sup-
port. There exist v and v0 such that g(v) � 0 for v < v and
g(v0) > 0, and g(v) is nonincreasing for v ≥ v0. The network
benefit function s(·) is nondecreasing on [0,+∞) with
s(0) � 0. Furthermore, there exists d0 such that s(d) is
continuously differentiable, and s′(d) is nondecreasing for
d ≤ d0.

The assumption regarding the valuation distribu-
tion accommodates commonly used distributions,
such as uniform, exponential, gamma, log-normal,
and normal distributions truncated below at v. The
assumption that the network benefit function has a
(weakly) convex part includes the linear function as a
special case (Bensaid and Lesne 1996, Jing 2007). If the
social utility of the good is derived from connecting
with other users, then a convex s(·)might be plausible:
for example, s(d) can be proportional to d(d − 1)/2, the
number of all possible links in a social network with d
users. In addition, a logistic form of network benefit
plus a constant also satisfies our assumption.
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In this paper, we assume that the network benefit
of the good for a customer is determined by the final
network size, not just the network size at the time of
purchase. (This treatment of the network benefit is
appropriate when the purchase period is much shorter
than the consumption period.) Because the utility of
the good for a customer depends on the number of
other customers who will eventually purchase it, the
market size information influences each individual
customer’s expectation of the total sales volume of the
good and hence influences his or her purchase de-
cision. The firm learns more about the exact market
size during the sales process. Customers who stra-
tegically wait can make informed purchase decisions
if they can observe early sales. Hence, it is a critical
decision for the firm whether to report its sales in-
formation, which is the focus of this paper. In par-
ticular, we focus on ex ante policies for the firm. The
firm can commit to implementing either a sales dis-
closure policy or a sales nondisclosure policy before
the sales horizon starts. In the sales disclosure setting
or the “full information” setting (F setting in short),
the firm commits to disclosing sales information. In
this case, customers who wait until the second period
can observe past sales and make informed purchase
decisions. In the sales nondisclosure setting or the “no
information” setting (N setting for short), the firm
commits to sales nondiclosure throughout the whole
horizon. Customers in theN settingmake uninformed
decisions because they cannot observe past sales. Be-
cause booming sales will potentially attract more cus-
tomers, whereas slack sales may drive potential cus-
tomers away, it is not completely clearwhether it would
be beneficial for the firm to disclose sales information
and have customers make informed decisions.

3. Single-Period Model: Matthew vs.
Saturation Effect

To gain intuition, we first study a preliminary model,
which essentiallyboils down toa single-periodmodel.
This model is used to illustrate the main trade-off in
a firm’s decision making. We then extend this pro-
totypical model to a more realistic setting in the next
section. We assume that in the F setting, customers
can infer the exact market size M after observing the
purchase behavior of a (negligibly) small fraction of
customers purchasing at the beginning of the sales
horizon. Therefore, almost all customers (except that
initial small fraction) are informed of the exact value
of M in the F setting, but they are not informed in the
N setting. Hence, we can interpret the sales disclosure
as the market size disclosure. In this setting, the firm’s
problem is equivalent to a problem of whether to
commit to reporting the learned market size right
after observing the small initial sales. For simplicity,

we assume an exogenous price p in the single-period
model. Next, we analyze this single-periodmodel and
illustrate the main trade-off in the general model.

3.1. Sales Disclosure: The F Setting
In the F setting, (almost) all customers can learn the
realized market size m before they make their pur-
chase decisions. We consider symmetric strategies
among them. Each of those customers believes that an
α fraction of customers will buy the good.1 Each cus-
tomer will base his or her purchase decision on this
belief. Onewill buy the network good if and only if his
or her expected utility from buying the good is greater
than or equal to the price. We adopt the standard
approach of rational expectations equilibrium (REE) to
study the equilibrium outcome. In an REE, a customer’s
belief is self-fulfilling, and the resulting outcome is
consistent with his or her original belief. More pre-
cisely, given the realized and observedmarket sizem,
the equilibrium adoption fraction α can be charac-
terized as

α � Ḡ p − s αm( )( )
, (1)

where Ḡ(·) � 1 − G(·).
Equation (1) is, in fact, a fixed-point problem. In this

paper, we formulate several fixed-point problems,
like Equation (1). The existence of fixed points for
those problems follows from a special version of
Tarski’s fixed-point theorem, which states that every
monotonic function f : [0, 1] → [0, 1] has at least one
fixed point.2 Note that the right-hand side of Equa-
tion (1) is (weakly) increasing in α. Thus, there exists
at least one solution to (1) for any m ≥ 0. The following
lemma provides sufficient conditions for the uniqueness
of the equilibrium. (Recall that v0 and d0 are defined in
Assumption 1.)

Lemma 1 (Uniqueness of Equilibrium in F Setting). If p >
v0 + s(m) and m ≤ d0, then the equilibrium α∗ characterized
by (1) must be unique and α∗ < 1.

Lemma 1 shows that when the market size is rel-
atively small, implying that the network benefit at its
full strength is relatively small or the price is relatively
high, the REE characterized by (1) is unique. We note
that without the conditions in Lemma 1, Equation (1)
has a uniquefixedpoint ifV is uniformlydistributed and
s(·) is linear, which is a special case of Assumption 1.
When the market size is relatively large or the price

is relatively small, the uniqueness of equilibrium
characterized by (1) may not hold. In this paper, we
focus on the largest REE if there exist multiple ones.
This is a commonly adopted approach in the literature
(see Farrell and Saloner 1985, Katz and Shapiro 1986,
Fudenberg and Tirole 2000, Wang and Wang 2016).
On the one hand, the largest REE is stable to small
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perturbations. On the other hand, a higher REE leads
to higher social welfare (i.e., more purchases, a higher
profit level for the firm, and more surplus for the
customers at the same price). Therefore, it is rea-
sonable to focus on the largest REE.

In the following, we denote the largest solution to
Equation (1) by αF(m). The demand for the firm in the
F setting can be written as dF(m) � αF(m)m, and the
expected profit for the firm is RF � pEdF(M).

Next, we identify two countervailing effects ofmarket
size disclosure: a prodisclosure Matthew effect and a
prosecrecy saturation effect. To this end, we first illus-
trate the effects with an example where V is uniformly
distributed on [0, 1], s(d) � 0.01d, and p � 0.8. Figure 1
plots the adoption fraction function αF(m) and the
demand function dF(m) (in this example, αF(m) is the
unique solution to Equation (1)). Note that in Figure 1,
the parameter m̂ � 80 is the smallest market size such
that all customers buy the good in equilibrium.

Figure 1(a) shows that the equilibrium adoption
fraction αF(m) has two pieces: when m is smaller than
m̂, αF(m) increases convexly inm; whenm is larger than
m̂, αF(m) � 1. Thus, the demand function has two pieces
aswell (see Figure 1(b)). These two pieces correspond to
the two countervailing effects in the F setting as men-
tioned: the Matthew effect and the saturation effect.

Thefirst piecewith convexity implies that the benefit
of revealing market size, owing to customers being
encouraged to make a purchase when the market
turnout is high, outweighs the loss resulting from
customers being discouraged when the turnout is
disappointing. This phenomenon, which we call the
Matthew effect, is intrinsically driven by the positive
network externalities. As a new customer enters the
market, existing customers will increase their expecta-
tion of the ultimate network size, which determines
their expected utility from buying the good. As a result,

the new customer is more willing to buy the good. In
anticipation of this, other customers will further have
a higher utility from buying the good. Therefore, the
equilibrium adoption fraction is more than linearly in-
creasing in themarket size in this range of thefirst piece.
We will show that the firm prefers committing to sales
disclosure when the Matthew effect is strong enough
(i.e., when the probability that M falls into the region
where αF(·) is convex is high enough).
However, the Matthew effect can be saturated. The

adoption fraction αF(m) is capped by one form ≥ m̂. In
other words, if the realized market size is sufficiently
large, the market is saturated. That is, all customers in
the market are induced to make a purchase; a fortiori,
the entire market of an even larger turnout would all
make a purchase as well because of an even stronger
network benefit. Hence, the information when the
exact market size is more than m̂ is redundant.We call
this phenomenon the saturation effect.With themarket
is saturated, revealing full information can be detri-
mental: the benefit of revealing full information when
the realizedmarket size is largemaybe limited,whereas
the risk of turning away potential buyers looms in
case the realized market size is low. We will show that
a firm benefits from the sales nondisclosure policy
when the saturation effect is strong enough (i.e., when
the probability that αF(M) � 1 is high enough).
To conclude this subsection, we formalize the ob-

servations from the example in Figure 1.

Lemma 2 (Matthew Effect vs. Saturation Effect).
a. (Matthew Effect) If p > v0 + s(d0), then both αF(m)

and dF(m), m ≤ d0, are (weakly) increasing and (weakly)
convex in m; the increasing and convex properties here are
in a strict sense if Ḡ(p) > 0 and s′(d) > 0 for d < d0.
b. (Saturation Effect) If p ≤ v + s(m), then αF(m) � 1

and dF(m) � m.

Figure 1. (Color online) Matthew Effect vs. Saturation Effect

Note. V ∼ U[0, 1], s(d) � 0.01d, and p � 0.8.
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3.2. Sales Nondisclosure: The N Setting
In the N setting, each customer only knows the dis-
tribution of the market size throughout the sales
horizon. Similar to the F setting, the equilibrium
adoption fraction can be characterized as

α � Ḡ p − Es αM( )( )
. (2)

The existence of a fixed point of (2) is again a direct
consequence of Tarski’s fixed-point theorem. The
following lemma provides sufficient conditions for
the uniqueness of the equilibrium.

Lemma 3 (Uniqueness of Equilibrium in N Setting). If p >
v0 + Es(M) and P{M ≤ d0} � 1, then the equilibrium α∗
characterized by (2) must be unique, and α∗ < 1.

Lemma 3 points out that when the market size is
(stochastically) small, which implies that the expected
network benefit at its full strength is small or the price
is relatively high, the equilibrium characterized by (2)
is unique. The intuition behind this result is similar to
that behind Lemma 1.

As before, if there are multiple fixed points to (2),
we focus on the largest one, denoted by αN . Thus, the
demand for the firm in the N setting can be written as
dN � αNEM, and the expected profit for thefirm can be
written as RN � pdN .

3.3. Sales Disclosure vs. Nondisclosure
In this single-period model, we focus on the case in
which the price p(≥ 0) is exogenous.Wewill analyze a
general case with endogenous prices in a two-period
model (see Section 4).

To illustrate better the main trade-off, we assume
for the time being that s(·) is linear. Under this as-
sumption, by comparing Equations (1) and (2), αN �
αF(EM), which yields dN � dF(EM). To compare RN

with RF, the key is the second-order property of
dF(·). As shown in Lemma 2 and Figure 1(b), dF(m) is
first convex and then linear. By Jensen’s inequality,
EdF(M) ≥dF(EM) if P{p>v0+s(M)} is high enough (i.e.,
the Matthew effect is strong enough), and EdF(M) ≤
dF(EM) if P{p ≤ v + s(M)} is high enough (i.e., the
saturation effect is strong enough).

For a general s(·), we can no longer compareRN with
RF in such a simple way, but the trade-off between the
Matthew effect and the saturation effect persists and
plays a key role in the comparison between the two
settings. The following proposition provides suffi-
cient conditions for either policy to be better off.

Proposition 1 (Sales Disclosure vs. Nondisclosure).
a. (Weak Network Benefit) If p ≥ v0 + s(m) and m ≤ d0,

then RF ≥ RN , where m is the upper bound of the support
of M.

b. (Strong Network Benefit) If p ≤ v + Es(M), then
RF ≤ RN .

Proposition 1(a) presents a case where the Matthew
effect dominates the saturation effect. In particular,
when the exogenous price p is high enough or the
network benefit at its full strength is relatively weak,
the Matthew effect will be the dominant driving force
in the F setting, and hence, the firm is better off
committing to revealing its sales information. In con-
trast, Proposition 1(b) provides a sufficient condition
under which the saturation effect is relatively strong.
When the exogenous price p is low enough or the
expected network benefit is relatively strong, the firm is
better off not committing to revealing the market size
because of the dominating saturation effect.
To conclude this section, we provide some remarks

on Assumption 1. Under this assumption, the stand-
alone valuation V has a lower bound v. When the
expected network benefit is strong enough, any cus-
tomer in the market will buy the good, even with the
lowest valuation. Hence, the adoption rate function
achieves one when the market size reaches some
threshold, as shown in Figure 1(a). However, the
network effect may not always be able to make the
market saturated. For example, when the standalone
valuationV follows a normal distribution and can take
negative values (i.e., some customers need to be paid
to “buy” the good), themarket is never entirely covered,
regardless of how strong the expected network benefit
is. In this case, the shape of the equilibrium adoption
function of the market size is first convex, then concave,
as shown in Figure 2(a). The concave segment limits
the benefit of revealing full information when the re-
alized market size is beyond some level; hence, re-
vealing full information is more likely to be detrimental
than in the example in Figure 1. This phenomenon can
be referred to as the generalized saturation effect. Nev-
ertheless, the central trade-off between the F setting
and the N setting in this paper—Matthew effect ver-
sus saturation effect—continues to hold.

4. Two-Period Model
In the single-period model, we assume that in the F
setting, (almost) all customers can learn the exact
market size at the very beginning of the sales horizon,
which helps us illustrate the trade-off between the
two settings F and N. In this section, we consider a
more realistic two-period model in which the first-
period customers make uninformed decisions with-
out knowing the exact market size, whereas the
second-period customers will learn the market size
and make informed decisions if the firm commits to
reporting the first-period sales.
In the two-period model, we consider customers’

intertemporal purchase behavior. All customers ar-
rive at the beginning of the first period. They recog-
nize that they can learn the market size in the second
period if the firm commits to reporting first-period
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sales. Because the network benefit for a customer
depends on the total sales volume across the two
periods, to maximize individual expected surplus, a
customer chooses between buying immediately in the
first period or delaying his or her purchase decision to
the second period. For example, after a new gadget
is launched, given the option of adopting it now or
later, customers take into account the expected future
network benefit. With sales disclosure, a customer
who buys immediately takes the risk that the ultimate
number of adopters may be disappointing, whereas a
customer who delays his or her decision will get a
discount on the utility via a discount factor δ, 0 < δ < 1.
Moreover, in the two-period model, the firm can
also choose different pricing policies. In this section, we
examine four pricing policies: exogenous pricing, state-
independent pricing, contingent preannounced pricing,
and contingent pricing without commitment with the
last three as endogenized pricing policies.

In the next four subsections, we analyze each pricing
policy and explore which information policy (i.e., com-
mitting to sales disclosure or nondisclosure) is better
off in that specific setting.

4.1. Exogenous Pricing
In this case, we assume that the prices for both periods
p1(≥ 0) and p2(≥ 0) are exogenously given. This sce-
nario emerges, for example, when the retailer is un-
able to set the prices across the two periods. Let v be
the upper end of the support of V. We assume that
v is large enough that a positive fraction of customers
will always buy the good in the first period in either
the F or the N setting.3 Then we present the model,
analyze the REE results, and characterize the opti-
mal policy for the firm.

4.1.1. Sales Disclosure: The F Setting. With sales dis-
closure, customerswhodelay their purchase decisions to

the second period can observe the first-period sales d1.
At the beginning of the second period, given that an
α1 fraction of the cohort has adopted the good in
the first period, customers who delayed their pur-
chase decisions form an identical belief that an α2
fraction of the cohort will buy the good. The second-
period adoption fraction α2 in an REE can be char-
acterized by

α1 + α2 � max α1, Ḡ p2 − s d1 + α2m |α1, d1( )( ){ }
, (3)

where (m |α1, d1) � d1/α1. We can see from (3) that α2
in an REE is a function of α1 and the realized market
size m.
In the first period, all customers identically antic-

ipate that an α1 fraction of customers will buy the
good in the first period and that an α2 fraction of
customers will buy the good in the second period,
where α2 � {α2(α1,M)} is a function of α1 andM. Based
on these beliefs, a customer with an intrinsic valuation
v will have an expected utility u1(v) from buying the
good immediately and u2(v) from waiting, where

u1 v( ) � v − p1 + δEs α1 + α2 α1,M( )( )M( ),
u2 v( ) � δE v − p2 + s α1 + α2 α1,M( )( )M( )[ ]+.

Here we assume that the network benefit from the
first period is negligible. This assumption is reason-
able for group buying and crowdfunding, where the
group benefit only kicks in at the end of the pledging
horizon. This assumption also holds for other set-
tings, such as launching of gadgets with preorder-
ing and regular ordering, in which the selling hori-
zon is relatively short compared with the time that
the customers enjoy the product with the network
benefit. Even though the customers may enjoy some
network benefit when they buy early, that bene-
fit can be negligible compared with benefits from
the relatively long product usage period. Our main

Figure 2. (Color online) Matthew Effect vs. Saturation Effect

Note. Parameters are the same as in Figure 1 except that V ∼ N(0.5, 0.25).
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results hold qualitatively when the network effects
are imposed in the alternative way of taking into
account the first-period network benefit.

An individual customer buys the good in the first
period whenever u1(v) ≥ u2(v)(≥ 0). It can be seen
that there exists a threshold vc(α1,α2) for the intrin-
sic valuation, above which the customer will buy
the good immediately and below which the cus-
tomer will wait and see. An REE requires that the
outcomes in the two periods be consistent with
what customers expect. Then we can characterize
the REE for the two-period game by the follow-
ing equations:

α1+α2 α1,m( )�max α1, Ḡ p2 − s α1m + α2 α1,m( )m( )( ){ }
,

∀ m,

u1 vc α1,α2( )( ) � max u1 v( ),u2 vc α1,α2( )( ){ },
vc α1,α2( ) � G−1 1 − α1( ),

where G−1(x) � infy≥0{y : G(y) ≥ x}.
Let α(α1,m) � α1 + α2(α1,m) be the total adoption

fraction conditional on α1 and m, and let α̃(m) be the
fixed point of

α̃ � Ḡ p2 − s(α̃m)( )
, ∀m. (4)

Then the REE equations can be rewritten as

α α1,m( ) � max α1, α̃ m( ){ }, ∀m, (5)
G−1 1 − α1( ) − p1 + δEs α α1,M( )M( )
� δE G−1 1 − α1( ) − p2 + s α α1,M( )M( )[ ]+

, if α1< 1,

v − p1 + δEs M( ) ≥ δE v − p2 + s M( )[ ]+, if α1 � 1.

An REE, as a solution to these equations, has two com-
ponents:α1 and α̃, where α̃= {α̃(M)}. The existence of α̃
is derived from Tarski’s fixed-point theorem.

If there are multiple equilibria, we select the equi-
librium (α1, α̃) such that

α1 � sup
x∈[0,1]

x : G−1(1 − x) − p1+ δEs max x, α̃(M){ }M( ){

≥ δE G−1 1 − x( ) − p2 + s max x, α̃(M){ }M( )[ ]+}
, (6)

and α̃(m) is the largest fixed point of (4). We write
the first-period adoption fraction, the second-period
adoption fraction, and the total adoption fraction in
the REE as α1,F(p1, p2), {α2,F(p1, p2,M)}, and {αF(p1, p2,
M)}, respectively. Furthermore, we let d1,F(p1,p2) �
α1,F(p1,p2)EM, d2,F(p1, p2, M) � α2,F(p1, p2, M)M, and
dF(p1, p2,M) � αF(p1, p2,M)M denote the first-period
demand, the second-period demand, and the total
demand, respectively. We also denote by α̃F(p2,m) the
largest fixed point of (4) and d̃F(p2,M) � α̃F(p2,M)M.
Thus, we have that αF(p1, p2,M) � max{α1,F(p1, p2),
α̃F(p2,M)}. The expected total profit for the firm is
RF(p1, p2) � p1d1,F(p1, p2) + p2E[d2,F(p1, p2,M)].

4.1.2. Sales Nondisclosure: The N Setting. Without
sales disclosure, customers only know the distribu-
tion of market size, even if they delay their purchase
decisions to the second period. Similar to the F setting,
given the first-period adoption fraction α1, the second-
period adoption fraction α2 in an REE can be char-
acterized by

α1 + α2 � max α1, Ḡ p2 − Es α1 + α2( )M( )( ){ }
.

At the beginning of the first period, all customers
form an identical belief over an adoption fraction α1 in
the first period and α2 in the second period. Let α �
α1 + α2 be their belief over the total adoption fraction.
With these beliefs in mind, a customer with an in-
trinsic valuation vwill buy the good in the first period
if and only if

v − p1 + δEs αM( ) ≥ δ v − p2 + Es αM( )[ ]+.
There exists a threshold vc(α) (with slight abuse of
notation) for the intrinsic valuation above which the
customer will buy the good in the first period. In an
REE, the adoption fractions in the two periods can be
characterized as

α � max Ḡ p1 − δEs αM( )( )
, Ḡ p2 − Es αM( )( ){ }

, (7)
G−1 1 − α1( ) − p1 + δEs αM( )

� δE G−1 1 − α1( ) − p2 + s αM( )[ ]+
, if α1 < 1,

v − p1 + δEs M( ) ≥ δ v − p2 + Es M( )[ ]+, if α1 � 1.

If there are multiple solutions, similar to the F-setting
model, we focus on the one that satisfies

α1 � sup
x∈[0,α]

x : G−1 1 − x( ) − p1 + δEs αM( ){

≥ δ G−1 1 − x( ) − p2 + Es αM( )[ ]+} (8)
and that α is the largest fixed point of (7). We write
the first-period adoption fraction, the second-period
adoption fraction, and the total adoption fraction
in the REE as α1,N(p1,p2), α2,N(p1, p2), and αN(p1,p2), re-
spectively. Let d1,N(p1, p2) � α1,N(p1, p2)EM, d2,N(p1,p2) �
α2,N(p1,p2)EM, and dN(p1, p2) � αN(p1, p2)EM denote
the first-period demand, the second-period demand,
and the total demand, respectively. The total profit for
the firm in the N setting is RN(p1, p2) � p1d1,N(p1, p2) +
p2d2,N(p1, p2).

4.1.3. Sales Disclosure vs. Nondisclosure. As high-
lighted in the single-period model, there are two
countervailing effects of market size disclosure (i.e., the
Matthew effect and the saturation effect). We have
shown that in the single-period model, the strengths of
the two effects determine whether it is better off to
commit to sales disclosure or sales nondisclosure. In the
two-period model with strategic customers, these two
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effects can still exist in the second period because the
second-period customers are informed of the market
size and will base their purchase decisions on such
information if the firm commits to reporting early sales.
The following lemma summarizes the two effects in the
two-period model.

Lemma 4 (Matthew vs. Saturation Effect). Define m0 �
inf{m : Ḡ(p2 − s(α1,F(p1, p2)m)) ≥ α1,F(p1, p2)}. The total
adoption fraction αF(p1, p2,m) has the following properties:

a. (Matthew Effect) If p2 > v0 + s(d0), thenαF(p1, p2,m)
and dF(p1, p2,m), m0 ≤ m ≤ d0, are (weakly) increasing
and (weakly) convex in m; the increasing and convex
properties are in a strict sense if Ḡ(p2) > 0 and s′(d) > 0 for
d < d0.

b. (Saturation Effect) If p2 ≤ v + s(m), then αF(p1, p2,
m) � 1, and dF(p1, p2,m) � m.

By Lemma 4, we find that the comparison be-
tween EdF(p1, p2,M) and dN(p1, p2) depends on the
second-order property of dF(p1, p2,m) in m. In fact,
from definitions of d̃F(·) and dN(·), we have that if
p1 ≥ p2 and s(·) is linear, then d̃F(p2,EM) � dN(p2), which
yields

dF p1, p2,EM
( ) � max α1,F p1, p2

( )
EM, d̃F p2,EM

( ){ }

≥ dN p2
( )

,

where we write dN(p1, p2) as dN(p2) in short because
dN(·) depends solely on p2 when p1 ≥ p2. Analogous to
the discussion in the single-period model, the ex-
pected total demand in the F setting will be greater
than the expected total demand in the N setting if the
Matthew effect that exists in the second period is
strong enough and vice versa. The two effects still
play important roles in the firm’s choice between the
two settings F and N.

In addition to the Matthew and saturation effects,
committing to sales disclosure results in another ef-
fect, which we call the effect of information free-riding.
That is, customers in the F setting delay their purchase
not only for a possible lower price in the future
but also for a free ride on the information generated
by the others’ purchase decisions. In contrast, cus-
tomers in the N setting wait only for a possible
lower price. Now we are going to show that the com-
parison between Ed1,F(p1, p2,M) and d1,N(p1, p2) de-
pends significantly on the information free-riding effect.
Define

HF(x) �G−1 1−x( )−p1+δEs max x, α̃F p2,M
( ){ }

M
( )

−δE G−1 1−x( )−p2+ s max x, α̃F p2,M
( ){ }

M
( )[ ]+

,

HN(x) �G−1 1−x( )−p1+δEs max x, αN p2
( ){ }

M
( )

−δ G−1 1−x( )−p2+Es max x,αN p2
( ){ }

M
( )[ ]+

.

Then we have

HF x( ) −HN x( )
� δ −G−1 1 − x( ) + p2 − Es max x, αN p2

( ){ }
M

( )[ ]+
− δE −G−1 1 − x( ) + p2−s max x, α̃F p2,M

( ){ }
M

( )[ ]+
.

When the first-period adoption rate is x, −HN(x)
(−HF(x)) measures how much a customer with valu-
ation G−1(1 − x)wants to delay his or her purchase to
the second period in the N (F) setting. Accordingly,
HN(x) −HF(x)measures howmuch this customerwants
to free-ride on the sales information in the second
period. By Equations (6) and (8), we have

α1,F p1, p2
( ) � sup

0≤x≤1
x : HF x( ) ≥ 0{ },

α1,N p1, p2
( ) � sup

0≤x≤1
x : HN x( ) ≥ 0{ }.

We have the following lemma.

Lemma 5. For p1 ≥ 0 and p2 ≥ 0,
a. α1,F(p1, p2) ≤ α1,N(p1, p2), and
b. if p1 ≥ p2, then α1,F(p1, p2) � α1,N(p1, p2).
Whether a firm should disclose sales information

depends on the strengths of the three effects. The
following proposition provides sufficient conditions
for each policy F orN to be better off in terms of δ, the
form of s(·), and the distributions of M and V.

Proposition 2 (Exogenous Pricing).
a. (Weak Network Benefit) If p1 ≥ p2 ≥ v0 + s(m) and

m ≤ d0, then RF(p1, p2) ≥ RN(p1, p2); if p1 < p2, p2 ≥ v0 +
s(m), and m ≤ d0, then there exists δc > 0 such that when
δ < δc, RF(p1, p2) ≥ RN(p1, p2).
b. (Strong Network Benefit) If p2 ≤min{p1,v +Es(M)},

then RF(p1, p2) ≤ RN(p1, p2).
Proposition 2(a) presents a scenario in which com-

mitting to sales disclosure results in a higher expected
demand and a higher expected profit. In particular,
when the network benefit at its full strength is small
enough, the Matthew effect dominates the saturation
effect. That is, with sales disclosure, the benefit of
reporting large sales outweighs the loss of reporting
disappointing early sales in the second period (i.e.,
the second-period demand under sales disclosure
is greater than that under sales nondisclosure). In
addition, when the discounting factor δ is small
enough (customers experience larger surplus dis-
counting if they wait), the incentive for customers to
delay their decision—to reduce the risk of estimating
the network benefit—is small enough that the first-
period demand is only slightly smaller under sales
disclosure than under sales nondisclosure. Note that
the effect of information free-riding does not exist when
p1 ≥ p2 (see Lemma 5(b)). With all forces combined,
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the total profit under sales disclosure is greater than
that under sales nondisclosure; in other words, the Mat-
thew effect dominates the sum of the saturation ef-
fect and the effect of information free-riding. Therefore,
in this case, it is better off to commit to sales disclosure.

In contrast, Proposition 2(b) provides a sufficient
condition under which committing to sales non-
disclosure makes the seller better off. When the ex-
pected network benefit at its full strength is large
enough, the saturation effect in the second period
dominates: that is, the expectation of the network
benefit at the beginning of the selling season is large
enough. In anticipation of a large network benefit,
almost all customers will buy the good even without
knowing the exact market size, whereas a fraction
of them will wait and buy the good in the second
period under sales disclosure. If the firm commits to
reporting sales in this case, then customers who chose
to delay their decision to the second period might be
discouraged if thefirst-period sales turn out to be low.
Meanwhile, the first-period demand in the F setting is
always no greater than that in the N setting. Thus, it
can be unprofitable for the firm to commit to sales
disclosure.

In the online games industry, the price is often
exogenously determined: for example, the subscrip-
tion fee for a game often follows the competitive
market price. Consistent with Proposition 2(a), Bliz-
zard’s World of Warcraft, a massively multiplayer
online role-playing game, announced on its official
website that the subscription numbers for its future
releaseswould not be reported (Tassi 2015). The game
had already built a huge customer base and hence a
strong network effect thanks to the popularity of its
previous versions. However, at the same time, nu-
merous niche online game operators with small
market potentials have their subscription numbers
reported by third-party sales watchdogs, such as
addictinggames.com. These observations are con-
sistent with our results.

4.2. State-Independent Endogenous Pricing
In Section 4.1, we assume that the firm’s prices are
exogenously given, which is often the case for com-
petitive markets. However, firms can sometimes set
prices by themselves. This subsection explores the
case in which the firm decides on and commits to not
only whether to disclose the early sales information
but also how to set (state-independent) prices for the
two periods.

The firm’s optimal pricing problems in the F and N
settings can be formulated as R∗

F � maxp1,p2 RF(p1, p2)
and R∗

N � maxp1,p2 RN(p1, p2), respectively. We denote
the optimal prices by (p∗1,F, p∗2,F) and (p∗1,N , p∗2,N).4 Unless
stated otherwise, other symbols have the samemeaning
as in the previous sections.

Next, we compare R∗
F and R∗

N . Recall that under
exogenous pricing, if p1 ≥ p2, then the firm will gain
the same first-period profits in the two settings N
and F.

Lemma 6 (State-Independent Pricing). p∗1,N ≥ p∗2,N .
We can see from Lemmas 5(a) and 6 that α1,F(p∗1,N ,

p∗2,N) � α1,N(p∗1,N , p∗2,N): that is, the effect of information
free-riding does not exist as long as the firm charges
p1,F � p∗1,N and p2,F � p∗2,N . This is so because under
these prices, customers who are willing to buy
the good in the first period have sufficiently high
standalone valuations that they will also be will-
ing to buy the good even if they choose to wait
and observe a small market size in the second pe-
riod (i.e., δE[−G−1(1−α∗

1,N)+p∗2,N−s(max{α∗
1,N ,α̃F(p∗2,N ,

M)}M)]+ �0). Furthermore, the firm can also be better
off from committing to sales disclosure in the second
period just by pricing the same as in the N setting if
the Matthew effect under the optimal prices of the N
setting is strong enough, which implies that R∗

F ≥ R∗
N .

We formalize this discussion as follows.

Proposition 3 (State-Independent Pricing).
a. If there exist r, r1, r2 such that r1 > r > r2 > v0+ s(m),

m ≤ d0, P{V ≥ r1} ≥ r/r1, P{r2 ≤ V ≤ (r − δr2)/(1 − δ)} ≥
[v0 + s(m)]/r2, then R∗

F ≥ R∗
N .

b. If v+Es(M)>0, P{V ≤ v+Es(M)} � 1, and E[M ·
1{s(M)≥min{r(v+Es(M))−v0,s(d0)}}]≤EM/r for any r > 1, then
R∗
F ≤ R∗

N .

Proposition 3(a) presents a case in which commit-
ting to sales disclosure is better off under endogenous
pricing. This case holds when customers’ valuation
distribution has a heavy tail relative to the expected
network benefit at its full strength. In this situation,
the optimal prices in the N setting are relatively
high in order to extract the surplus from a relatively
large fraction of customers who have high standalone
valuations. Specifically, the conditionP{V ≥ r1} ≥ r/r1
implies that p∗1,N ≥ r, and the conditionP{r2 ≤ V ≤ (r −
δr2)/(1 − δ)} ≥ [v0 + s(m)]/r2 implies that p∗2,N ≥ v0 +
s(m) (see the proof in the online appendix for details).
Then, in the F setting, by charging p1,F � p∗1,N and
p2,F � p∗2,N , the Matthew effect dominates the sum of
the saturation effect and the effect of information
free-riding because of the high price in the second
period; see Proposition 2(a). Therefore, committing
to sale disclosure is better off in this scenario.
Proposition 3(b) presents a case in which com-

mitting to sales nondisclosure is better off. It requires
that (1) the standalone valuation be bounded from
above by the expected network benefit and that (2) the
market size distribution has a relatively light tail. In
this situation, the firm would do reasonably well
without information disclosure by pricing at the ex-
pected network benefit in the second period: that is,
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p2,N � v + Es(M). Because the network benefit would
be strong, the firm would saturate the second-period
market under nondisclosure and earn a healthy pro-
fit by pricing high in the first period. In the F set-
ting, the firm faces the following conundrum: if it
charges lower than v + Es(M) in the second period, it
cannot gainmore demand than in theN setting even if
the market size is large because the adoption fraction
is already one in the N setting, whereas it can do worse
if the realized market is small; hence the expected
network benefit is smaller than that in the N setting,
implying that its first-/second-period profit is also
smaller. Meanwhile, if the firm prices higher (e.g.,
p2,F > v + Es(M)), it cannot do better with information
disclosure either. This is so because the gain from
sales disclosure is limited owing to the light-tailed
market size, whereas the loss in profit if the realized
market is small can bemuchmore significant. Overall,
the firm does better in the N setting than in the F
setting in this case.

When the density of customers’ valuation g(·) takes
some special form (e.g., nonincreasing in its support),
Proposition 3(a) can be rewritten in a much simpler
way as follows.

Corollary 1 (State-Independent Pricing). Suppose that g(·)
is nonincreasing on [v,+∞). Then R∗

F ≥ R∗
N if m ≤ d0 and

P{V ≥ r(v0 + s(m))} ≥ (r + 1)/(2r) for some r > 1.

4.3. Contingent Preannounced Pricing
We consider a contingent preannounced pricing
setting in which the firm chooses a price in the
second period depending on the first-period sales.
In this subsection, we compare the two information
release policies (i.e., the F setting and the N setting)
under contingent preannounced pricing.

4.3.1. Sales Disclosure: The F Setting. At the begin-
ning of the first period in the F setting, the firm
charges a price p1,F for the first period and pre-
announces a pricing scheme p2,F(d1) as a function of
the first-period sales d1 for the second period. Because
(m |α1, d1) � d1/α1, p2,F(d1) can be rewritten as p2,F(m).
We write p2,F = {p2,F(M)} for simplicity.

Given α1, d1, and p2,F , the second-period customers
identically anticipate that an α2 fraction of the market
size will purchase the good in the second period. The
adoption fraction α2 in an REE, for any given α1, d1,
and corresponding p2,F, must satisfy

α1 + α2 � max α1, Ḡ p2,F(m) − s α1 + α2( )m( )( ){ }
.

We can see that α2 in an REE is a function of α1, p2,F(m),
and m. Let α(α1, p2,F(m),m) � α1 + α2(α1, p2,F(m),m) be

the total adoption fraction conditional on α1, p2,F(m),
and m, and let α̃(p2,F(m),m) be the fixed point of

α̃ � Ḡ p2,F m( ) − Es α̃m( )( )
, ∀m. (9)

Then the REE condition for the second period can be
rewritten as

α α1, p2,F(m),m( ) � max α1, α̃ p2,F m( ),m( ){ }
. (10)

In the first period, the analysis of the REE equation is
similar to the state-independent pricing scenario. If there
are multiple equilibria, by following the same steps as in
Section 4.1, we select the equilibrium (α1, α̃) such that

α1 � sup
x∈[0,1]

x : G−1 1 − x( ) − p1,F
{

+ δEs max x, α̃ p2,F M( ),M( ){ }
M

( )

≥ δE G−1 1 − x( ) − p2,F M( )[

+ Es max x, α̃ p2,F M( ),M( ){ }
M

( )]+}, (11)
and α̃(p2,F(m),m) is the largest fixed point of (9).
We use the same notation as in Section 4.1 to denote

outcomes in an equilibrium characterized as above.
Thus, the firm’s problem is

max
p1,F,p2,F

RF p1,F,p2,F
( )

� p1,Fα1,F p1,F,p2,F
( )

EM

+ E p2,F(M)α2,F p1,F,p2,F ,M
( )

M
[ ]

.

With slight abuse of notation, we denote the optimal
value of the preceding formulation by R∗

F.

4.3.2. Sales Nondisclosure: The N Setting. In the N
setting, it is assumed that because of sales non-
disclosure, customers have no knowledge of the exact
market size, even in the second period. Hence, in this
setting, the firm can only preannounce a price for the
second period that is independent of the first-period
sales volume. This case was discussed in Section 4.2.
Again, with slight abuse of notation, we denote the
optimal revenue for this setting by R∗

N .

4.3.3. Sales Disclosure vs. Nondisclosure. In the F
setting, if the firm can commit to future prices con-
tingent on the revealed first-period sales, not only can
the saturation effect be dampened, because now the
firm can commit to a higher price for boomingmarket,
but also, the downside of the Matthew effect can be
mitigated, because now the firm can commit to a
lower price to boost demand if the early sales volume
proves to be scant. The following proposition com-
pares the optimal profits in the F andN settings under
contingent preannounced pricing.
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Proposition 4 (Contingent Preannounced Pricing). R∗
F ≥ R∗

N .

Proposition 4 confirms our intuition by showing
that the firm is better off combining sales disclosure
andnimble pricing contingent on the sales. The intuition
comes from two aspects. First, with contingent pricing,
the firm has the flexibility tomoderate theMatthew and
saturation effects in the F setting by charging different
prices based on the realization of M, whereas in the
N setting, the firm just determines two prices depen-
ding on the distribution of M. Hence, committing to
sales disclosure coupled with pricing flexibility can
outperform committing to sales nondisclosure by
allowing the firm to better respond to market size
uncertainty, especially for the second period.

Second, the other aspect is about commitment and
assurance. Preannouncing a contingent pricing pol-
icy for the second period helps ensure a relatively
high utility for first-period customers who buy im-
mediately. In particular, the firm can preannounce
a low second-period price if the first-period sales
volume is low. Doing so not only improves the ex-
pected network benefit but also reduces the risk that
the ultimate network benefit will be disappointing
to first-period customers, thereby driving more cus-
tomers to buy the good in the first period.

We note that the ability to commit to a contingent
pricing policy is necessary for sales disclosure to be
better off. A firm that cannot make such a commit-
ment to customers might only focus on maximiz-
ing the second-period profit when it observes the
remaining potential customers at the beginning of
that period. As a result, the firmmay achieve a higher
second-period profit under sales disclosure, but it
may not ensure greater attraction in thefirst period. In
this case, some additional conditions are required for
sales disclosure to be better off. This case is discussed
formally in the next subsection.

4.4. Contingent Pricing Without Commitment
In this subsection, we consider a scenario in which the
firm determines the first-period (second-period) price
at the beginning of the first (second) period, where the
second-period price is contingent on two state vari-
ables: the first-period sales d1 and the first-period
adoption fraction α1. Again, we consider the F and
the N settings and compare the firm’s profits R∗

F and
R∗
N in those two settings.

4.4.1. Sales Disclosure: The F Setting. We study this
two-stage game by backward induction. In the second
period, given the first-period sales volume d1 and
the first-period adoption fraction α1, customers can
infer the realization m of the random market size M,
and when facing the second-period price p2,F, they
anticipate that an α2 fraction of customerswill buy the

good. The equilibrium adoption fraction α2 can be
characterized by

α1 + α2 � max α1, Ḡ p2,F − s α1 + α2( )m( )( ){ }
.

To optimize its second-period profit, the firm must
charge a price such that α2 > 0 for all possible first-
period sales volumes as long as α1 < 1. (Otherwise,
the firm will gain nothing from the second period.)
Consequently, the REE for the second period can be
rewritten as

α1 + α2 � Ḡ p2,F − s α1 + α2( )m( )( )
. (12)

Denote by α2,F(α1, p2,F,m) the largest fixed point in
(12). For any α1 and m, the firm’s problem at the
second period is maxp2,F R2,F(α1, p2,F,m) � p2,Fα2,F(α1,
p2,F,m)m.Clearly, the optimal solution is a function of
α1 and m denoted by p∗2,F(α1,m). Additionally, we use
α∗
2,F(α1,m) to denote the adoption fraction under this

optimal price.
In the first period, analogous to the state-independent

pricing case, the REE can be characterized by

α1 � sup
x∈[0,1]

x : G−1(1 − x) − p1,F
{

+ δEs x + α∗
2,F(x,M)( )

M
( )

≥ δ G−1 1 − x( ) − Ep∗2,F x,M( )[

+ Es x + α∗
2,F x,M( )( )

M
( )]}

� sup
x∈[0,1]

x : G−1 1 − x( ) − p1,F
{

≥ δ G−1(1 − x) − Ep∗2,F(x,M)[ ]}
. (13)

Note thatG−1(1 − x) − p∗2,F(x,m) + s((x + α∗
2,F(x,m))m) is

always nonnegative for all x and m. It can be seen
that α1 in an REE is a function of p1,F denoted by
α1,F(p1,F). Then the firm’s problem in the first period
is maxp1,F RF(p1,F) � p1,Fα1,F(p1,F)EM + E[p∗2,F(α1,F(p1,F),
M)α∗

2,F(α1,F(p1,F),M)M]. Its optimal value is denoted
by R∗

F.

4.4.2. Sales Nondisclosure: The N Setting. For this
setting, we also use backward induction to study the
two-period game. In the second period, conditional
on the first-period adoption fraction α1, the second-
period adoption fraction α2 in equilibrium can be
characterized by

α1 + α2 � Ḡ p2,N − Es α1 + α2( )M( )( )
.

Denote by α2,N(α1, p2,N) the largest fixed point. For any
α1, the firm’s problem in the second period is

max
p2,N

R2,N α1, p2,N
( ) � p2,Nα2,N α1, p2,N

( )
EM.

Let p∗2,N(α1) be the optimal solution to this problem
and α∗

2,N(α1) be the corresponding second-period
adoption fraction.
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In the first period, the REE can be characterized by

α1 � sup
x∈[0,1]

x :G−1 1 − x( ) − p1,N + δEs x + α∗
2,N(x)

( )
M

( ){

≥ δ G−1 1 − x( ) − p∗2,N x( )[

+ Es x + α∗
2,N x( )( )

M
( )]}

� sup
x∈[0,1]

x : G−1(1 − x) − p1,N
{

≥ δ G−1 1 − x( ) − p∗2,N x( )[ ]}
.

It can be seen that α1 in an REE is a function of p1,N
denoted by α1,N(p1,N). Then the firm’s problem in the
first period is

max
p1,N

RN p1,N
( ) � p1,Nα1,N p1,N

( )
EM + p∗2,N α1,N p1,N

( )( )

· α∗
2,N α1,N p1,N

( )( )
EM.

Its optimal value is denoted by R∗
N .

4.4.3. Sales Disclosure vs. Nondisclosure. The
second-period price in the F setting will be chosen to
maximize the second-period profit given the first-
period adoption fraction α1 and the realized market
size m. In contrast, the second-period price in the N
setting will be chosen to maximize the second-period
profit conditional on α1. The following proposition
compares the second-period profits in the F setting
and the N setting under contingent pricing without
commitment.

Lemma 7 (Contingent Pricing Without Commitment). For
α1 ∈ (0, 1], ER∗

2,F(α1,M) ≥ R∗
2,N(α1).

Lemma 7 shows that for any α1, the expected
second-period profit under sales disclosure always
dominates that under sales nondisclosure, unlike in
the exogenous pricing case. This result highlights
certain benefits of being flexible on pricing in the F
setting.

However, we do not always have Ep∗2,F(α1,M) ≥
p∗2,N(α1). It can be seen from Equation (13) that the
first-period demand under sales disclosure does not
necessarily dominate that under sales nondisclosure.
One special case occurs when the discount factor is
sufficiently large. In this case, most customers will
delay their purchase to the second period in the F orN
setting, and hence, the total profits under sales dis-
closure and nondisclosure come mainly from the
second period. Then it follows from Lemma 7 that
committing to sales disclosure is likely to result in a
higher profit in this case. This intuition is formalized
in the following proposition.

Proposition 5 (Contingent Pricing Without Commitment).
Suppose that sup{Ḡ(x)/g(x) : g(x)> 0} is finite. Then there

exists δc such that 0 ≤ δc < 1 and, when δ ∈ [δc, 1),
R∗
F ≥ R∗

N .

5. Concluding Remarks
In this paper, we studied two information disclosure
policies, full disclosure (transparency) and no dis-
closure (secrecy), in selling network goods under
market size uncertainty. The problem is nontrivial,
because demand is endogenized as an equilibrium
outcome depending on customers’ knowledge of the
market size. We show that the fundamental trade-off
is between two countervailing effects, the Matthew
effect and the saturation effect, and our results ap-
ply to a fairly general class of standalone valua-
tion distributions and market size distributions. The
model captures thekey trade-off in this class ofproblems,
with insights carrying over to a variety of modeling
extensions. Our work shows that the full disclosure
policy coupledwith a commitment to contingent pricing
is always better than the nondisclosure policy. This is
consistent with the observation that many crowdfund-
ing platforms reveal full information throughout the
pledging process and encourage contingent updates
and stimuli. For example, Kickstarter.com encour-
ages a project creator to offer discounts or add new
goodies to reenergize the funding process when the
funding falls below expectation (see Du et al. 2017).
Our model could in part account for customer risk

aversion. Consider the one-period model. In the N
setting, if consumers are only risk averse about the
uncertain social utility because of the uncertain net-
work effects, it is equivalent to replacing s(·) in the
base model by u(s(·)) for the risk-aversion case, where
u(·) is a concave utility function.Nevertheless, the two
identified effects remain as long as the demand, as a
function of the realized market size, is shaped as in
Figure 2. In the F setting, customers face a realized
market size without uncertainty; therefore, their be-
havior stays the same. As s(·) is replaced by u(s(·)), the
equilibrium adoption fraction in the F setting, αF(m)
is closer to a concave function in the market size,
and hence, risk-averse behavior tends to favor sales
nondisclosure by dampening the Matthew effect.
Moreover, our model assumes that sales information
reaches all customers. In reality, this may not be true,
and social interaction, such as word of mouth, will
lead to a wider spread of the information if the sales
volume is higher. Such sales-dependent valence of
word of mouth can be approximated and captured by
modifying the network benefit functions. The sales-
dependent word-of-mouth effect tends to result in a
more convex social utility function and is expected to
tilt the firm in favor of sales disclosure by boosting the
Matthew effect.
Though we study a monopoly model in this paper,

many of its insights are ready to be extended to
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a competitive setting. First, disclosing early sales
information is beneficial to customers. Hence, in a
competitive setting, we expect that committing to
sales disclosure is more likely to be a firm’s in-
formation policy in equilibrium as a competitive ad-
vantage. Second, in a competitive environment, the
market size possessed by each firm can be small. Ac-
cording to Proposition 3(a), when the expected net-
work benefit is relatively weak and the customer val-
uation distribution has a heavy tail, committing to
sales disclosure is likely to be in equilibrium for a firm.
Third, Lemma 7 and Proposition 4 have shown that
committing to sales disclosure coupled with pricing
flexibility may lead to higher profit. Hence, those
firms that have more pricing flexibility in reacting
to varying market conditions are more likely to im-
plement the full sales disclosure policy.

Finally, although this paper focuses mainly on the
comparison between two simple policies (i.e., full and
no sales disclosure), there might be other more so-
phisticated mechanisms by which the seller can dis-
close sales information in the presence of network
externalities. Below we discuss these policies briefly;
we leave a thorough study of them to future research.

5.1. Partial Disclosure
It is possible for a firm to consider a partial disclosure
policy: for example, to disclose sales informationwhen
the sales reach (or fall below) a certain threshold. Such
a policy may have the potential to generate more
profit for the firm. However, there could be additional
challenges in implementation because the firm may
have an incentive to deviate from such a policy after
learning the sales information. Moreover, there are
other forms of partial disclosure that can be more so-
phisticated than the threshold-type policy.

5.2. Dynamic Disclosure
Although we studied dynamic pricing schemes along
with customers’ intertemporal purchase behavior, we
did not consider dynamic sales information disclo-
sure and the corresponding learning by customers,
which can be critical, especially when the market size
is evolving over time. One can apply the Bayesian
persuasion framework to study such a problem (Ely
2017, Bimpikis et al. 2019). Nevertheless, again, such
a study could be quite complicated given the market
size as a continuous quantity in our model.

5.3. Randomized Disclosure
This paper considered whether to commit to sales
disclosure at a fixed time. One interesting direction
for future research would be to consider randomizing
the timing of sales disclosure. Price randomization
has been shown to be beneficial in the context of
markdowns with customers strategically monitoring

the price changes (Moon et al. 2017, Chen et al. 2018).
When customers monitor the sales online with het-
erogeneous monitoring costs, randomizing the timing
of sales disclosure might benefit the firm. However,
expanding the policy space from a deterministic map-
ping (from a realized state to an action) to a stochastic
one may significantly complicate the problem.
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Endnotes
1 In the literature, a belief can be about either the market outcomes
or the behavior of other players. However, in a market with many
infinitesimal players, a focal customer’s belief is usually aboutmarket
outcomes: for example, the number of adopters in network games
(Jackson and Yariv 2007). In other words, when the market is large
enough, each customer’s private information about his or her own
valuation is negligible, and his or her belief about themarket outcome
is close to his or her belief about other customers in the market.
2We refer the readers to Tarski (1955) for a general setting of Tarski’s
fixed-point theorem.
3This assumption is made to simplify the discussion. It does not affect
the results in this subsection. In fact, when this assumption is violated
(i.e., when no customer buys the good in the first period), the second-
period customers are uninformed of the market size even in the F
setting. In this case, the two settings, F and N, become effectively
identical.
4 In general, an optimal solution to a profit-maximization problem
may not exist. In this case, we focus on the supremum of the objective
function, and an optimal price is thought of as a limit of a sequence of
prices at which the sequence of objective function values converges to
its supremum.
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