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“Efficient Ignorance: Information Heterogeneity in a Queue”

Proof of Theorem 5. First, following the same approach in the proof of Lemma 1, it can be

shown that the expected sojourn time W (q) in the heterogenous case strictly increases in q too. As

a result, it is easy to further demonstrate that there exists a unique joining equilibrium q∗ ∈ [0,1]

for uninformed customers. In the case of q∗ = 0 or 1, the demonstration of the monotonicity of

λ(q∗) is parallel to that of the homogeneous reward case, in which RI = RU = R and cI = cU = c.

Thus, for the rest of the proof, we only consider the cases in which q∗ ∈ (0,1).

Since λ(q) = µ(1− p0(q)), the monotonicity of λ(q∗) in γ is opposite to that of p0(q
∗). Thus,

instead of directly proving that λ(q∗) is strictly increasing in γ, we will show that p0(q
∗) is strictly

decreasing in γ in two steps: (i) From the expression of RU = cUW (q), derive γ as a function of

ρC and prove dρC
dγ
> 0; (ii) From the expression of p0(q), prove dp0

dρC
< 0. Then, combining these two

results, we obtain dp0
dγ

= dp0
dρC

dρC
dγ
< 0.

Step (i). Rewrite RU = cUW (q) as

H (ρC) (1− ρC + γρ)
2

+ (νU−nI) (1− ρC + γρ)− 1 = 0, (OA.1)

where

H (ρC) =
(νU−nI) (ρC− 1)ρnIC + νU− νUρC + ρnIC − 1

(ρC− 1)
2
ρnIC

=
(νU−nI)

∑nI−1
i=0 ρiC

ρnIC

+

∑nI−1
i=1

∑i−1
j=0 ρ

j
C

ρnIC

. (OA.2)

For further discussion, we derive some properties of H (ρC).

Lemma 3. If there exists a q∗ ∈ (0,1) such that RU = cUW (q∗), it must be that H (ρC)> 0. More-

over, H (ρC) > 0 if and only if
∑nI−1

i=0 (i+ 1)ρiC
/∑nI−1

i=0 ρiC < νU and H (ρC) strictly decreases in ρC

when H (ρC)> 0.

Proof of Lemma 3. Consider (OA.1) as a quadratic equation in (1− ρC + γρ).

• If (νU−nI)
2

+ 4H (ρC)< 0, (OA.1) has no real roots.

• If (νU−nI)
2

+ 4H (ρC)≥ 0 and H (ρC)< 0, we must have νU−nI < 0 by (OA.2) and both roots

of (OA.1)
−(νU−nI)±

√
(νU−nI)2+4H(ρC)

2H(ρC)
are negative.

• If (νU−nI)
2
+4H (ρC)≥ 0 and H (ρC) = 0, we must have νU−nI < 0 by (OA.2) and (OA.1) only

has one negative root 1− ρC + γρ= 1
νU−nI

< 0, which is invalid because 1− ρC + γρ> 0.

• If H (ρC) > 0, which also implies (νU−nI)
2

+ 4H (ρC) ≥ 0, (OA.1) has one positive root
−(νU−nI)+

√
(νU−nI)2+4H(ρC)

2H(ρC)
.

Therefore, if there exists a q∗ ∈ (0,1) such that RU = cUW (q∗), it must be the last case.

We next consider the monotonicity of H (ρC). Since
∑nI−1

i=1

∑i−1
j=0 ρ

j
C =
∑nI−1

i=0 (nI− 1− i)ρiC, rewrite

H (ρC) in an alternative form

H (ρC) =

(
νU−

∑nI−1
i=0 (i+ 1)ρiC∑nI−1

i=0 ρiC

)∑nI−1
i=0 ρiC
ρnIC

. (OA.3)
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Clearly,
∑nI−1

i=0 ρiC
/
ρnIC is positive and strictly decreasing in ρC. By (OA.3), H (ρC) > 0 ⇔∑nI−1

i=0 (i+ 1)ρiC
/∑nI−1

i=0 ρiC < νU. Moreover,∑nI−1
i=1 (i+ 1)ρiC∑nI−1

i=0 ρiC
= nI−

∑nI−1
i=1 (ρiC− 1) + ρC− 1

ρnC − 1

= nI−
∑nI−1

i=1

∑i−1
j=0 ρ

j
C + 1∑nI−1

i=0 ρiC

= nI−
nI−1∑
i=1

(
1−

∑nI−1
j=i ρjC∑nI−1
j=0 ρjC

)
− 1∑nI−1

i=0 ρiC

= nI−
nI−1∑
i=1

(
1−

∑nI−i−1
j=0 ρjC∑i−1

j=0 ρ
j−i
C +

∑nI−i−1
j=0 ρjC

)
− 1∑nI−1

i=0 ρiC

= nI−
nI−1∑
i=1

1− 1∑i−1
j=0 ρ

j−i
C∑nI−i−1

j=0 ρ
j
C

+ 1

− 1∑nI−1
i=0 ρiC

, (OA.4)

which is strictly increasing in ρC. Consequently, we have that H (ρC) strictly decreases in ρC when∑nI−1
i=0 (i+ 1)ρiC

/∑nI−1
i=0 ρiC < νU, which is equivalent to H (ρC)> 0. �

Solving (OA.1), we obtain γ as a function of ρC, i.e.,

γ (ρC) =
1

ρ

(
2

(
(νU−nI) +

√
(νU−nI)

2
+ 4H (ρC)

)−1
+ ρC− 1

)
.

Since we have shown that H (ρC) strictly decreases in ρC when H (ρC)> 0 in Lemma 3, γ (ρC) then

strictly increases in ρC, i.e., dγ
dρC

> 0, which implies dρC
dγ
> 0.

Step (ii). We now show that dp0
dρC

< 0. Write p0 (q∗) as a function of ρC:

p0 (q∗) =

(
ρnIC − 1

ρC− 1
+

ρnIC

1− ρC + γρ

)−1
=

(
ρnIC − 1

ρC− 1
+
ρnIC

2

(
(νU−nI) +

√
(νU−nI)

2
+ 4H (ρC)

))−1
=

(
ρnIC − 1

ρC− 1
+

1

2
ρnIC (νU−nI) +

√
1

4
ρ2nIC (νU−nI)

2
+ ρ2nIC H (ρC)

)−1

=

nI−1∑
i=0

ρiC +
1

2
ρnIC (νU−nI) +

√√√√1

4
ρ2nIC (νU−nI)

2
+ νUρ

nI
C

nI−1∑
i=0

ρiC− ρ
nI
C

nI−1∑
i=0

(i+ 1)ρiC

−1

=

1

2
ρnIC (νU−nI) +

nI−1∑
i=0

ρiC +

√√√√(1

2
ρnIC (νU−nI) +

nI−1∑
i=0

ρiC

)2

−
nI−1∑
i=0

(i+ 1)ρiC


−1

. (OA.5)

We notice that 1
2
ρnIC (νU−nI) +

∑nI−1
i=0 ρiC > 0 when H (ρC)> 0. To see this, take the derivative in ρC,(

1

2
ρ
nI
C (νU−nI) +

nI−1∑
i=0

ρiC

)′
=

1

2
nI (νU−nI)ρ

nI−1
C +

nIρ
nI
C − ρ

nI
C −nIρ

nI−1
C + 1

(ρC− 1)2

>
1

2
nI

(∑nI−1
i=0 (i+ 1)ρiC∑nI−1

i=0 ρiC
−nI

)
ρ
nI−1
C +

nIρ
nI
C − ρ

nI
C −nIρ

nI−1
C + 1

(ρC− 1)2

=
1

2
nI
nIρC−nI− ρnIC + 1

(ρC− 1)
(
ρ
nI
C − 1

) ρnI−1
C +

nIρ
nI
C − ρ

nI
C −nIρ

nI−1
C + 1

(ρC− 1)2
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=

n2
I

2
ρ
nI−1
C + nI

2
ρ
nI−1
C

∑nI−1
i=0 ρiC−

(∑nI−1
i=0 ρiC

)2

ρ
nI
C − 1

=
(nI−1)nI

2
ρ
nI−1
C −

∑nI−2
i=0 (i+ 1)ρiC + nI

2
ρ
nI−1
C

∑nI−1
i=1 ρiC− ρ

nI−1
C

∑nI−1
i=1 (nI− i)ρiC

ρ
nI
C − 1

=
(nI−1)nI

2
ρ
nI−1
C −

∑nI−2
i=0 (i+ 1)ρiC

ρ
nI
C − 1

+
ρ
nI−1
C

2
(
ρ
nI
C − 1

) nI−1∑
i=1

(2i−nI)ρ
i
C

=
(nI−1)nI

2
ρ
nI−1
C −

∑nI−2
i=0 (i+ 1)ρiC

ρ
nI
C − 1

+
ρ
nI−1
C

2
(
ρ
nI
C − 1

) nI−1∑
i=

⌊
nI+1

2

⌋ (2i−nI)
(
ρ

2i−nI
C − 1

)
ρ
nI−i
C

> 0,

where the first inequality results from the fact that
∑nI−1

i=0 (i+ 1)ρiC
/∑nI−1

i=0 ρiC < νU by Lemma 3 and

the last inequality stems from ρC ≥ 0, which is implied by the monotonicity of H (ρC) and H (ρC)> 0.

Since 1
2
ρnIC (νU−nI) +

∑nI−1
i=0 ρiC = 1 at ρC = 0. By the monotonicity, 1

2
ρnIC (νU−nI) +

∑nI−1
i=0 ρiC > 0 for

ρC ≥ 0, i.e., H (ρC)> 0.

Given the positiveness of 1
2
ρnIC (νU−nI) +

∑nI−1
i=0 ρiC when H (ρC)> 0, for the ease of exposition,

let

f =

(
1

2
(νU−nI)ρ

nI
C +

nI−1∑
i=0

ρiC

)2

=

(
nIρ

nI+1
C − νUρnI+1

C −nIρ
nI
C + νUρ

nI
C − 2ρnIC + 2

2(ρC− 1)

)2

(OA.6)

and

g =

nI−1∑
i=0

(i+ 1)ρiC =
nIρ

nI+1
C − (nI + 1)ρnIC + 1

(ρC− 1)
2 . (OA.7)

By (OA.5), we can write p0 (q∗) =
(√
f +
√
f − g

)−1
. To prove p0 (q∗) is strictly decreasing in ρC, it

is sufficient to show that
√
f +
√
f − g is a strictly increasing function, i.e.,

f ′√
f

+
f ′− g′√
f − g

=
f ′√
f
− g′− f ′√

f − g
> 0.

Apparently, the inequality holds for f ′ ≥ g′. We next consider the case g′ > f ′.

Note that f is strictly increasing in νU and g is independent of νU. One can also readily

show that f ′√
f

and − g′−f ′√
f−g are both strictly increasing in νU. Thus, if f ′√

f
− g′−f ′√

f−g > 0 for νU =∑nI−1
i=0 (i+ 1)ρiC�

∑nI−1
i=0 ρiC, it must be true for all

∑nI−1
i=0 (i+ 1)ρiC

/∑nI−1
i=0 ρiC < νU by the mono-

tonicity. As a result, p0 (q∗) will be strictly decreasing in ρC, i.e., dp0
dρC

< 0.

By the above argument, we only need to justify that f ′√
f
− g′−f ′√

f−g > 0 for νU =∑nI−1
i=0 (i+ 1)ρiC�

∑nI−1
i=0 ρiC to complete the proof. Note that

g′ =
n2

Iρ
nI−1
C +nIρ

nI−1
C − 2

∑nI−1
i=0 (i+ 1)ρiC

(ρC− 1)
.

Moreover, at νU =
∑nI−1

i=0 (i+ 1)ρiC
/∑nI−1

i=0 ρiC,

f =

(
ρ2nIC +nIρ

nI+1
C − 3ρnIC −nIρ

nI
C + 2

2(ρC− 1) (ρnIC − 1)

)2

,
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and

f ′ =

(
nIρ

nI+1
C − 3ρnIC + ρ2nIC −nIρ

nI
C + 2

)(
nIρ

nI−1
C

∑nI−1
i=0 ρiC− 2

(∑nI−1
i=0 ρiC

)2

+n2
Iρ
nI−1
C

)
2 (ρC− 1) (ρnIC − 1)

2 .

Thus, evaluated at νU =
∑nI−1

i=0 (i+ 1)ρiC
/∑nI−1

i=0 ρiC,

f ′√
f
− g′− f ′√

f − g
=

2

(ρC− 1)
2

(ρnIC − 1)(∑nI−1
i=0 ρiC−nI

) (nIρ
nI−1
C −

nI−1∑
i=0

ρiC +nI−
nI−1∑
i=0

ρiC

)

=
2

(ρC− 1)
2

(ρnIC − 1)(∑nI−1
i=0 ρiC−nI

) (ρC− 1)

nI−2∑
i=0

(2i+ 2−nI)ρ
i
C

=
2

(ρC− 1)
2

(ρnIC − 1)(∑nI−1
i=0 ρiC−nI

) (ρC− 1)

nI−2∑
i=bnI+1

2 c
(2i+ 2−nI)

(
ρ2i+2−nI
C − 1

)
ρnI−i−2C

> 0. �

Proof of Theorem 6. The social welfare for each customer segment is

SI (q∗) =

[
nI−1∑
i=0

pi (q
∗)

(
RI− cI

i+ 1

µ

)]
· γΛ and SU (q∗) =

[
q∗
∞∑
i=0

pi (q
∗)

(
RU− cU

i+ 1

µ

)]
· (1− γ) Λ

Analogous to Theorem 4, we discuss the following cases in order: q∗ = 0, q∗ ∈ (0,1), and q∗ = 1.

When q∗ = 0, ρC = γρ. Since uninformed customers do not join, SU (q∗) = 0 and total social welfare

is identical to informed individuals’ contribution

SI (q∗ = 0) =

[
nI−1∑
i=0

pi (0)

(
RI− cI

i+ 1

µ

)]
· γΛ

=

(
1− (γρ)

nI

1− γρ
+ (γρ)

nI

)−1(
RI

1− (γρ)
nI

1− γρ
− cI
µ

1− (nI + 1) (γρ)
nI +n (γρ)

nI+1

(1− γρ)
2

)
· γΛ.

Notice that SI(q
∗ = 0) is independent of RU. Thus, we can apply the same discussion in the proof

of Theorem 4(i) to show that SI (q∗ = 0) +SU (q∗ = 0) strictly decreases in γ.

When q∗ ∈ (0,1), the social welfare yielded by uninformed customers equals zero as well, i.e.,

SU (q∗) = 0. Thus, we only need to consider SI (q∗).

SI (q∗) =

[
nI−1∑
i=0

pi (q
∗)

(
RI− cI

i+ 1

µ

)]
· γΛ

= p0 (q∗)

(
RI

1− ρnIC

1− ρC
− cI
µ

1− (nI + 1)ρnIC +nρnI+1
C

(1− ρC)2

)
· γΛ

= cIp0 (q∗)

(
νI

1− ρnIC

1− ρC
− 1− (nI + 1)ρnIC +nIρ

nI+1
C

(1− ρC)2

)
· ργ (ρC)

= cIρ
nI
C

(
H (ρC)−

(νU− νI)
∑nI−1

i=0 ρiC
ρnIC

)
· p0 (q∗) · ργ (ρC)

= cIρ
nI
C H (ρC) · p0 (q∗) · ργ (ρC)− cI (νU− νI)

nI−1∑
i=0

ρiC · p0 (q∗) · ργ (ρC)
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= cI

(
1− (νU− νI)

∑nI−1
i=0 ρiC

ρnIC H (ρC)

)
ρnIC H (ρC) · p0 (q∗) · ργ (ρC)

= cI

1− (νU− νI)

(
νU−

∑nI−1
i=0 (i+ 1)ρiC∑nI−1

i=0 ρiC

)−1ρnIC H (ρC) · p0 (q∗) · ργ (ρC) (OA.8)

We first observe that ρnIC H (ρC) · p0 (q∗) · ργ (ρC) strictly increases in ρC. Substitute p0(q
∗) with

(OA.5),

ρ
nI
C H (ρC)p0 (q∗)ργ (ρC) = ρ

nI
C H (ρC)

2

(
(νU−nI) +

√
(νU−nI)

2 + 4H (ρC)

)−1

+ ρC− 1

1−ρnIC
1−ρC

+
ρ
nI
C
2

(
(νU−nI) +

√
(νU−nI)

2 + 4H (ρC)

)
=

(
2ρ
nI
C H (ρC) + (νU−nI)ρ

nI
C H (ρC) (ρC− 1) + ρ

nI
C H (ρC) (ρC− 1)

√
(νU−nI)

2 + 4H (ρC)

)
×(

(νU−nI)
1− ρnIC
1− ρC

+ (νU−nI)
2 ρ

nI
C + 2ρ

nI
C H (ρC) +(

1− ρnIC
1− ρC

+ (νU−nI)ρ
nI
C

)√
(νU−nI)

2 + 4H (ρC)

)−1

=

1− νU
(νU−nI) +

√
(νU−nI)

2 + 4H (ρC)

2ρ
nI
C H (ρC) +

(
1−ρnIC
1−ρC

+ (νU−nI)ρ
nI
C

)(
(νU−nI) +

√
(νU−nI)

2 + 4H (ρC)

)


=

1− νU

1−ρnIC
1−ρC

+
ρ
nI
C
2

(
(νU−nI) +

√
(νU−nI)

2 + 4H (ρC)

)


= 1− νUp0 (q∗) . (OA.9)

We have already demonstrated that p0 (q∗) strictly decreases in ρC in the proof of Theorem 5.

Therefore, ρnIC H (ρC) · p0 (q∗) · ργ (ρC) also strictly increases in ρC.

Next, we consider the monotonicity of the term in the square bracket of (OA.8). Recall that∑nI−1
i=0 (i+ 1)ρiC�

∑nI−1
i=0 ρiC strictly increases in ρC as shown in the proof of Theorem 5. Then,

• If νU ≤ νI, 1−(νU− νI)
(
νU−

∑nI−1
i=0 (i+1)ρiC∑nI−1
i=0 ρiC

)−1
is increasing in ρC. In this case, SI (q∗) is increasing

in ρC. Due to the fact that dρC
dγ
> 0, we have SI (q∗) is increasing in γ.

• If νU > νI, 1−(νU− νI)
(
νU−

∑nI−1
i=0 (i+1)ρiC∑nI−1
i=0 ρiC

)−1
is decreasing in ρC. Then SI (q∗) might be unimodal

in ρC, which leads to that SI (q∗) might be unimodal in γ.

When q∗ = 1, ρC = ρ. The total social welfare is

SI (q∗) +SU (q∗) =

[
nI−1∑
i=0

pi (1)

(
RI− cI

i+ 1

µ

)]
· γΛ +

[
∞∑
i=0

pi (1)

(
RU− cU

i+ 1

µ

)]
· (1− γ) Λ

(A.8)
=

ΛcI
µ
ρnIp0 (1)γL (ρ) + (1− γ) Λ (RU− cUW (1))

=
ΛcI
µ
ρnIp0 (1)γL (ρ) + Λ

cI
µ
ρnIp0 (1) (1− γ)

(
H (ρ) +

νU−nI

1− ρ+ γρ
− 1

(1− ρ+ γρ)
2

)
(A.1),(OA.2)

=
ΛcI
µ
ρnIp0 (1)

[
L (ρ) +

(νU−nI) (1− γ)

1− ρ+ γρ
− 1− γ

(1− ρ+ γρ)
2 +

(1− γ) (νU− νI) (1− ρnI)
(1− ρ)ρnI

]
︸ ︷︷ ︸

:=Υ(γ)
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Since p0(q
∗ = 1) =

(
1−ρnI
1−ρ + ρnI

1−ρ+γρ

)−1
strictly increases in γ, we only need to explore the mono-

tonicity of Υ(γ). Since SI (q∗) +SU (q∗)> 0, Υ(γ)> 0 as well. Since L(ρ) is independent of γ,

∂Υ

∂γ
=

1

(1− ρ+ γρ)
2

(
1 + ρ− γρ
1− ρ+ γρ

− (νU−nI)−
(νU− νI) (1− ρnI) (1− ρ+ γρ)

2

(1− ρ)ρnI

)

Note that (1− γ)ρ is the workload caused by uninformed customers. Due to the fact that unin-

formed customers join the queue with probability 1, the server must have enough capacity to handle

all of them, i.e., (1− γ)ρ< 1 ⇔ 1− ρ+ γρ≥ 0. Thus,

• If (νU− νI) (1−ρnI )(1−ρ+γρ)2
(1−ρ)ρnI + νU − nI ≤ 1+ρ−γρ

1−ρ+γρ , we have Υ(γ) is increasing. Then, SI (q∗ = 1) +

SU (q∗ = 1) is increasing in γ. Note that this also covers the homogenous case, since ν−n∈ [0,1).

• If (νU− νI) (1−ρnI )(1−ρ+γρ)2
(1−ρ)ρnI + νU − nI >

1+ρ−γρ
1−ρ+γρ , we have Υ(γ) is decreasing. In this case, the

monotonicity of SI (q∗ = 1) +SU (q∗ = 1) may change and the social welfare might be unimodal.

It can be readily shown that (νU− νI) (1−ρnI )(1−ρ+γρ)2
(1−ρ)ρnI + νU − nI ≤ 1+ρ−γρ

1−ρ+γρ implies νI ≥ νU −(
1+ρ−γρ
1−ρ+γρ −〈νI〉

)/(
(1−ρnI )(1−ρ+γρ)2

(1−ρ)ρnI + 1
)

. Thus, the proof completes. �
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Online Appendix B to

“Efficient Ignorance: Information Heterogeneity in a Queue”

Lemma B1. The function L(ρ, ν) defined in Corollary 2 is strictly decreasing in ρ.

Proof of Lemma B1. For notation simplicity, we suppress L(ρ, ν)’s dependence on ν and write

L(ρ) or simply L. By the definition of L(ρ),

dL

dρ
=

φ(ρ)

ρn+1(ρ− 1)3
,

where

φ(ρ)≡ ν(n+ 1)ρ2 + (2− ν− 2nν+n)ρ+nν−n−〈ν〉ρn+2 + (〈ν〉− 2)ρn+1.

Taking first and second derivatives of φ(ρ) with respect to ρ, we have

φ′(ρ) =
dφ

dρ
= 2ν(n+ 1)ρ+ (2− ν− 2nν+n)− (n+ 2)〈ν〉ρn+1 + (n+ 1)(〈ν〉− 2)ρn (OA.10)

and

φ′′(ρ) =
d2φ

dρ2
= 2ν(n+ 1)− (n+ 1)(n+ 2)〈ν〉ρn +n(n+ 1)(〈ν〉− 2)ρn−1

= (n+ 1)
[
2ν− 2nρn−1−〈ν〉

(
2ρn +nρn−nρn−1

)]
ν=n+〈ν〉

= (n+ 1)
[
2n(1− ρn−1) + 〈ν〉

(
2(1− ρn) +nρn−1(1− ρ)

)]
= (n+ 1)(1− ρ)

[
2n

n−2∑
i=0

ρi + 〈ν〉

(
2
n−1∑
i=0

ρi +nρn−1

)]
, (OA.11)

where
∑n−2

i=0 ρ
i is understood as 0 for n = 1. Moreover, note that φ(1) = φ′(1) = 0. Hence, by

Eq.(OA.10) and (OA.11),{
φ′′(ρ)> 0, if 0<ρ< 1
φ′′(ρ)< 0, if ρ> 1

=⇒
{
φ′(ρ)<φ′(1) = 0, if 0<ρ< 1
φ′(ρ)<φ′(1) = 0, if ρ> 1

=⇒
{
φ(ρ)>φ(1) = 0, if 0<ρ< 1
φ(ρ)<φ(1) = 0, if ρ> 1

.

Therefore,
dL

dρ
=

φ(ρ)

ρn+1(ρ− 1)3
< 0 for 0< ρ < 1 and ρ > 1. Finally, by L’Hôpital’s rule, lim

ρ→1

dL

dρ
=

n(n+ 1)(n+ 2− 3ν)/6, which is negative for all ν > 1 and is zero for ν = 1. We thus conclude

that
dL

dρ
< 0 for ρ > 0 (almost surely except for the point ρ= 1 when ν = 1), i.e., L(ρ) is strictly

decreasing in ρ (note that the derivative being equal to 0 at one point does not affect the strict

monotonicity of a function). �

Lemma B2. In the neighborhood where full participation is not adopted by uninformed customers

in equilibrium, i.e., q∗ ∈ [0,1), for any information level γ′, there exists k < n such that

dpi(q
∗(γ))

dγ

∣∣∣∣
γ=γ′

< 0 for 0≤ i≤ k and
dpi(q

∗(γ))

dγ

∣∣∣∣
γ=γ′
≥ 0 for k < i < n.
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Proof of Lemma B2. We have shown, in Lemma 2, that p0(q
∗(γ)) strictly decreases in γ for

0≤ q∗ < 1. At γ = γ′, if for any i= 1, . . . , n− 1, dpi(q
∗(γ′))/dγ < 0. Then, k= n− 1.

If there exists k < n− 1, such that dpk(q
∗(γ′))/dγ ≥ 0 at γ′, then the statement holds as long as

for any i= k, k+1, . . . , n−1, dpi(q
∗(γ′))dγ ≥ 0. Let ρC(γ) = γρ+q∗(γ)(1−γ)ρ, where 0≤ q∗(γ)< 1.

By Eq. (3), pi(q
∗(γ)) = pk(q

∗(γ))ρi−kC (γ) = p0(q
∗(γ))ρkC (γ)ρi−kC (γ). Thereby, for i= k, k+1, . . . , n−1,

dpi(q
∗(γ))

dγ
=
dpk(q

∗(γ))

dγ
ρi−kC (γ)︸ ︷︷ ︸
≥0

+pk(q
∗(γ))(i− k)ρi−k−1C (γ)︸ ︷︷ ︸

≥0

dρC(γ)

dγ
.

At γ′, dpk(q
∗(γ′))/dγ ≥ 0 by assumption. Hence, if dρC(γ

′)/dγ ≥ 0, dpi(q
∗(γ′))/dγ ≥ 0. Note that

dpk(q
∗(γ))

dγ
=
dp0(q

∗(γ))

dγ
ρkC (γ) + p0(q

∗(γ))kρk−1C (γ)
dρC(γ)

dγ
≥ 0.

The first term is negative since p0(q
∗(γ)) strictly decreases in γ. Hence, dpk(q

∗(γ′))/dγ ≥ 0 implies

dρC(γ
′)/dγ ≥ 0, which further leads to dpi(q

∗(γ′))/dγ ≥ 0 for i= k, k+ 1, . . . , n− 1. �

Proposition B1 (Comparative Statics of Accessibility For Informed Customers).

(i) If 0≤ q∗ < 1, the probability
∑n−1

i=0 pi(q
∗) that an informed customer joins the queue is strictly

decreasing in γ.

(ii) If q∗ = 1, the probability
∑n−1

i=0 pi(q
∗) that an informed customer joins the queue is strictly

increasing in γ.

Proof of Proposition B1. (i) When q∗ = 0,
n−1∑
i=0

pi(q
∗ = 0) = p0(q

∗ = 0)
n−1∑
i=0

(γρ)i = 1−(γρ)n

1−(γρ)n+1 . It is

straightforward to verify that 1−(γρ)n

1−(γρ)n+1 , n≥ 1 is strictly decreasing in γ.

Consider the case where 0< q∗ < 1. Again, let ρC = ρ(γ+ q∗(1− γ)). Recall that we have shown

dρC/dγ > 0 in the proof of Theorem 2. If
∑n−1

i=0 pi(q
∗) is strictly decreasing in ρC, by the chain

rule, it must be strictly decreasing in γ. Hence, it is sufficient to prove that
∑n−1

i=0 pi(q
∗) is strictly

decreasing in ρC. We rewrite
n−1∑
i=0

pi(q
∗) =

n−1∑
i=0

p0(q∗)ρiC = p0(q∗)
1− ρnC
1− ρC

(6)
=

1− ρnC
1− ρC

/(
1− ρnC
1− ρC

+
ρnC

1− ρC + γρ

)
=

(
1 +

ρnC
1− ρC + γρ

· 1− ρC
1− ρnC

)−1

.

By Eq.(A.6),

ρnC
1− ρC + γρ

· 1− ρC
1− ρnC

=
ρnC (1− ρC)

1− ρnC
· 1

2

(
〈ν〉+

√
〈ν〉2 + 4L(ρC)

)
=

1

2
〈ν〉ρ

n
C (1− ρC)
1− ρnC

+

√(
1

2
〈ν〉ρ

n
C (1− ρC)
1− ρnC

)2

+
ρ2n
C (1− ρC)2

(1− ρnC )2
L(ρC)

(A.5)
=

1

2
〈ν〉ρ

n
C (1− ρC)
1− ρnC

+

√(
1

2
〈ν〉ρ

n
C (1− ρC)
1− ρnC

)2

+
ρ2n
C (1− ρC)2

(1− ρnC )2
· 〈ν〉(ρC− 1)ρnC + ν− νρC + ρnC − 1

(1− ρC)2ρnC

=
1

2
〈ν〉ρ

n
C (1− ρC)
1− ρnC

+

√(
1

2
〈ν〉ρ

n
C (1− ρC)
1− ρnC

)2

+ 〈ν〉ρ
n
C (1− ρC)
1− ρnC

+ ρnC
n−nρC + ρnC − 1

(1− ρnC )2
.

It is apparent that
ρnC (1− ρC)

1− ρnC
=
(∑n

i=1
ρ−iC

)−1
is strictly increasing in ρC. Therefore, to show∑n−1

i=0 pi(q
∗) is strictly decreasing in ρC, it suffices to justify ρnC

n−nρC + ρnC − 1

(1− ρnC )2
increases in ρC.(

ρnC
n−nρC + ρnC − 1

(1− ρnC )2

)′
=

nρn−1C

(1− ρnC )3
(
(n+ 1)ρnC − (n− 1)ρn+1

C − (n+ 1)ρC +n− 1
)
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Let χ(ρC) = (n+1)ρnC −(n−1)ρn+1
C −(n+1)ρC +n−1. Then, χ′(ρC) = (n+1) (nρn−1C + (1−n)ρnC − 1)

and χ′′(ρC) = n(n2− 1)(1− ρC)ρn−2C . Hence,{
χ′′(ρC)> 0, if 0<ρC < 1
χ′′(ρC)< 0, if ρC > 1

=⇒
{
χ′(ρC)<χ

′(1) = 0, if 0<ρC < 1
χ′(ρC)<χ

′(1) = 0, if ρC > 1
=⇒

{
χ(ρC)>χ(1) = 0, if 0<ρC < 1
χ(ρC)<χ(1) = 0, if ρC > 1

.

Thus,

(
ρnC
n−nρC + ρnC − 1

(1− ρnC )2

)′
> 0 for ρC > 0 but ρC 6= 1. Moreover, by L’Hôpital’s rule,

lim
ρC→1

(
ρnC
n−nρC + ρnC − 1

(1− ρnC )2

)′
= (n2−1)/(6n)≥ 0 with equality only if n= 1 and ρC = 1. Consequently,

ρnC
n−nρC + ρnC − 1

(1− ρnC )2
is strictly increasing in ρC, which implies

∑n−1
i=0 pi(q

∗) is strictly decreasing in γ.

(ii) When q∗ = 1,
n−1∑
i=0

pi(q
∗ = 1) = p0(q

∗ = 1)
n−1∑
i=0

ρi =
(

1−ρn
1−ρ + ρn

1−ρ+γρ

)−1
1−ρn
1−ρ , which clearly is

strictly increasing in γ. �

Lemma B3. For ν ≥ 2 and ν̄ = ν+ i for any i∈N , we have y∗ (ν̄)> y∗ (ν)≥ 1.

Proof of Lemma B3. It suffices to prove that (i) y∗ (ν)≥ 1 for ν ∈ [2,3); (ii) y∗ (ν+ 1)> y∗ (ν)

for ν ≥ 2. Note from the proof of Corollary 1 that f (y, ν) = n+ 1 + 1
1−y −

n+1
1−yn+1 strictly increases

in y, and limy→1+ f (y, ν) = 1
2
n+ 1.

When ν ∈ [2,3), we have limy→1+ f (y, ν) = 2, i.e., y∗ (ν = 2) = 1. Then, due to f (y, ν)’s mono-

tonicity, we have that y∗ (ν) is an increasing function of ν. Thus, y∗ (ν)≥ 1, for ν ∈ [2,3).

When ν ∈ [n,n+ 1), we have f (y∗ (ν) , ν)− ν = 0, and

f (y∗ (ν) , ν+ 1)− (ν+ 1) = n+ 1− ν+
1

1− y∗ (ν)
− n+ 2

1− (y∗ (ν))
n+2

< n+ 1− ν+
1

1− y∗ (ν)
− n+ 1

1− (y∗ (ν))
n+1 = f (y∗ (ν) , ν)− ν = 0,

where the inequality is from

n+ 2

1− yn+2
− n+ 1

1− yn+1
=

∑n

i=0 y
i
∑n−i

j=0 y
j∑n

i=0 y
i
∑n+1

i=0 y
i
> 0.

Then, from f (y, ν)’s monotonicity, we have y∗ (ν+ 1)> y∗ (ν). �
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