Online Appendix A to
 "Efficient Ignorance: Information Heterogeneity in a Queue"

Proof of Theorem 5. First, following the same approach in the proof of Lemma 1, it can be shown that the expected sojourn time $W(q)$ in the heterogenous case strictly increases in q too. As a result, it is easy to further demonstrate that there exists a unique joining equilibrium $q^{*} \in[0,1]$ for uninformed customers. In the case of $q^{*}=0$ or 1 , the demonstration of the monotonicity of $\lambda\left(q^{*}\right)$ is parallel to that of the homogeneous reward case, in which $R_{\mathrm{I}}=R_{\mathrm{U}}=R$ and $c_{\mathrm{I}}=c_{\mathrm{U}}=c$. Thus, for the rest of the proof, we only consider the cases in which $q^{*} \in(0,1)$.

Since $\lambda(q)=\mu\left(1-p_{0}(q)\right)$, the monotonicity of $\lambda\left(q^{*}\right)$ in γ is opposite to that of $p_{0}\left(q^{*}\right)$. Thus, instead of directly proving that $\lambda\left(q^{*}\right)$ is strictly increasing in γ, we will show that $p_{0}\left(q^{*}\right)$ is strictly decreasing in γ in two steps: (i) From the expression of $R_{\mathrm{u}}=c_{\mathrm{u}} W(q)$, derive γ as a function of ρ_{c} and prove $\frac{d \rho_{\mathrm{c}}}{d \gamma}>0$; (ii) From the expression of $p_{0}(q)$, prove $\frac{d p_{0}}{d \rho_{\mathrm{c}}}<0$. Then, combining these two results, we obtain $\frac{d p_{0}}{d \gamma}=\frac{d p_{0}}{d \rho_{\mathrm{c}}} \frac{d \rho_{\mathrm{C}}}{d \gamma}<0$.

Step (i). Rewrite $R_{\mathrm{v}}=c_{\mathrm{v}} W(q)$ as

$$
\begin{equation*}
H\left(\rho_{\mathrm{c}}\right)\left(1-\rho_{\mathrm{c}}+\gamma \rho\right)^{2}+\left(\nu_{\mathrm{u}}-n_{\mathrm{I}}\right)\left(1-\rho_{\mathrm{c}}+\gamma \rho\right)-1=0 \tag{OA.1}
\end{equation*}
$$

where

$$
\begin{equation*}
H\left(\rho_{\mathrm{c}}\right)=\frac{\left(\nu_{\mathrm{v}}-n_{\mathrm{I}}\right)\left(\rho_{\mathrm{c}}-1\right) \rho_{\mathrm{c}}^{n_{\mathrm{I}}}+\nu_{\mathrm{v}}-\nu_{\mathrm{v}} \rho_{\mathrm{c}}+\rho_{\mathrm{c}}^{n_{\mathrm{I}}}-1}{\left(\rho_{\mathrm{c}}-1\right)^{2} \rho_{\mathrm{c}}^{n_{\mathrm{I}}}}=\frac{\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right) \sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}}{\rho_{\mathrm{c}}^{n_{\mathrm{T}}}}+\frac{\sum_{i=1}^{n_{\mathrm{I}}-1} \sum_{j=0}^{i-1} \rho_{\mathrm{c}}^{j}}{\rho_{\mathrm{c}}^{n_{\mathrm{I}}}} . \tag{OA.2}
\end{equation*}
$$

For further discussion, we derive some properties of $H\left(\rho_{\mathrm{c}}\right)$.
Lemma 3. If there exists a $q^{*} \in(0,1)$ such that $R_{\mathrm{v}}=c_{\mathrm{u}} W\left(q^{*}\right)$, it must be that $H\left(\rho_{\mathrm{c}}\right)>0$. Moreover, $H\left(\rho_{\mathrm{c}}\right)>0$ if and only if $\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{c}}^{i} / \sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}<\nu_{\mathrm{U}}$ and $H\left(\rho_{\mathrm{c}}\right)$ strictly decreases in ρ_{c} when $H\left(\rho_{\mathrm{c}}\right)>0$.

Proof of Lemma 3. Consider (OA.1) as a quadratic equation in $\left(1-\rho_{\mathrm{c}}+\gamma \rho\right)$.

- If $\left(\nu_{\mathrm{u}}-n_{\mathrm{I}}\right)^{2}+4 H\left(\rho_{\mathrm{c}}\right)<0$, (OA.1) has no real roots.
- If $\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)^{2}+4 H\left(\rho_{\mathrm{c}}\right) \geq 0$ and $H\left(\rho_{\mathrm{c}}\right)<0$, we must have $\nu_{\mathrm{U}}-n_{\mathrm{I}}<0$ by (OA.2) and both roots of (OA.1) $\frac{-\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right) \pm \sqrt{\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)^{2}+4 H\left(\rho_{\mathrm{c}}\right)}}{2 H\left(\rho_{\mathrm{C}}\right)}$ are negative.
- If $\left(\nu_{\mathrm{v}}-n_{\mathrm{I}}\right)^{2}+4 H\left(\rho_{\mathrm{c}}\right) \geq 0$ and $H\left(\rho_{\mathrm{c}}\right)=0$, we must have $\nu_{\mathrm{v}}-n_{\mathrm{I}}<0$ by (OA.2) and (OA.1) only has one negative root $1-\rho_{\mathrm{c}}+\gamma \rho=\frac{1}{\nu_{\mathrm{U}}-n_{\mathrm{I}}}<0$, which is invalid because $1-\rho_{\mathrm{c}}+\gamma \rho>0$.
- If $H\left(\rho_{\mathrm{c}}\right)>0$, which also implies $\left(\nu_{\mathrm{v}}-n_{\mathrm{I}}\right)^{2}+4 H\left(\rho_{\mathrm{c}}\right) \geq 0$, (OA.1) has one positive root $\frac{-\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)+\sqrt{\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)^{2}+4 H\left(\rho_{\mathrm{c}}\right)}}{2 H\left(\rho_{\mathrm{c}}\right)}$.
Therefore, if there exists a $q^{*} \in(0,1)$ such that $R_{\mathrm{v}}=c_{\mathrm{v}} W\left(q^{*}\right)$, it must be the last case.
We next consider the monotonicity of $H\left(\rho_{\mathrm{c}}\right)$. Since $\sum_{i=1}^{n_{\mathrm{I}}-1} \sum_{j=0}^{i-1} \rho_{\mathrm{c}}^{j}=\sum_{i=0}^{n_{\mathrm{I}}-1}\left(n_{\mathrm{I}}-1-i\right) \rho_{\mathrm{c}}^{i}$, rewrite $H\left(\rho_{\mathrm{c}}\right)$ in an alternative form

$$
\begin{equation*}
H\left(\rho_{\mathrm{c}}\right)=\left(\nu_{\mathrm{U}}-\frac{\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{c}}^{i}}{\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}}\right) \frac{\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}}{\rho_{\mathrm{c}}^{n_{\mathrm{I}}}} . \tag{OA.3}
\end{equation*}
$$

Clearly, $\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i} / \rho_{\mathrm{c}}^{n_{\mathrm{I}}}$ is positive and strictly decreasing in ρ_{c}. By (OA.3), $H\left(\rho_{\mathrm{c}}\right)>0 \Leftrightarrow$ $\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{c}}^{i} / \sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}<\nu_{\mathrm{U}}$. Moreover,

$$
\begin{align*}
\frac{\sum_{i=1}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{c}}^{i}}{\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}} & =n_{\mathrm{I}}-\frac{\sum_{i=1}^{n_{\mathrm{I}}-1}\left(\rho_{\mathrm{c}}^{i}-1\right)+\rho_{\mathrm{c}}-1}{\rho_{\mathrm{c}}^{n}-1} \\
& =n_{\mathrm{I}}-\frac{\sum_{i=1}^{n_{\mathrm{I}}-1} \sum_{j=0}^{i-1} \rho_{\mathrm{c}}^{j}+1}{\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}} \\
& =n_{\mathrm{I}}-\sum_{i=1}^{n_{\mathrm{I}}-1}\left(1-\frac{\sum_{j=i}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{j}}{\sum_{j=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{j}}\right)-\frac{1}{\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}} \\
& =n_{\mathrm{I}}-\sum_{i=1}^{n_{\mathrm{I}}-1}\left(1-\frac{\sum_{j=0}^{n_{\mathrm{I}}-i-1} \rho_{\mathrm{c}}^{j}}{\sum_{j=0}^{i-1} \rho_{\mathrm{c}}^{j-i}+\sum_{j=0}^{n_{\mathrm{I}}-i-1} \rho_{\mathrm{c}}^{j}}\right)-\frac{1}{\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}} \\
& =n_{\mathrm{I}}-\sum_{i=1}^{n_{\mathrm{I}}-1}\left(1-\frac{1}{\frac{\sum_{j=0}^{i-1} \rho_{\mathrm{c}}^{j-i}}{\sum_{j=0}^{n_{\mathrm{I}}^{-i-1}} \rho_{\mathrm{c}}^{j}}+1}\right)-\frac{1}{\sum_{i=0}^{n_{\mathrm{C}}-1} \rho_{\mathrm{c}}^{i}}, \tag{OA.4}
\end{align*}
$$

which is strictly increasing in ρ_{c}. Consequently, we have that $H\left(\rho_{\mathrm{c}}\right)$ strictly decreases in ρ_{c} when $\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{c}}^{i} / \sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}<\nu_{\mathrm{v}}$, which is equivalent to $H\left(\rho_{\mathrm{c}}\right)>0$.

Solving (OA.1), we obtain γ as a function of ρ_{c}, i.e.,

$$
\gamma\left(\rho_{\mathrm{c}}\right)=\frac{1}{\rho}\left(2\left(\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)+\sqrt{\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)^{2}+4 H\left(\rho_{\mathrm{c}}\right)}\right)^{-1}+\rho_{\mathrm{c}}-1\right) .
$$

Since we have shown that $H\left(\rho_{\mathrm{c}}\right)$ strictly decreases in ρ_{c} when $H\left(\rho_{\mathrm{c}}\right)>0$ in Lemma $3, \gamma\left(\rho_{\mathrm{c}}\right)$ then strictly increases in ρ_{c}, i.e., $\frac{d \gamma}{d \rho \mathrm{c}}>0$, which implies $\frac{d \rho_{\mathrm{c}}}{d \gamma}>0$.

Step (ii). We now show that $\frac{d p_{0}}{d \rho_{\mathrm{c}}}<0$. Write $p_{0}\left(q^{*}\right)$ as a function of ρ_{c} :

$$
\begin{align*}
p_{0}\left(q^{*}\right) & =\left(\frac{\rho_{\mathrm{c}}^{n_{\mathrm{I}}}-1}{\rho_{\mathrm{c}}-1}+\frac{\rho_{\mathrm{c}}^{n_{\mathrm{I}}}}{1-\rho_{\mathrm{c}}+\gamma \rho}\right)^{-1} \\
& =\left(\frac{\rho_{\mathrm{c}}^{n_{\mathrm{I}}}-1}{\rho_{\mathrm{c}}-1}+\frac{\rho_{\mathrm{c}}^{n_{\mathrm{I}}}}{2}\left(\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)+\sqrt{\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)^{2}+4 H\left(\rho_{\mathrm{c}}\right)}\right)\right)^{-1} \\
& =\left(\frac{\rho_{\mathrm{c}}^{n_{\mathrm{I}}}-1}{\rho_{\mathrm{c}}-1}+\frac{1}{2} \rho_{\mathrm{c}}^{n_{\mathrm{I}}}\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)+\sqrt{\frac{1}{4} \rho_{\mathrm{c}}^{2 n_{\mathrm{I}}}\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)^{2}+\rho_{\mathrm{c}}^{2 \mathrm{I}_{\mathrm{I}}} H\left(\rho_{\mathrm{c}}\right)}\right)^{-1} \\
& =\left(\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}+\frac{1}{2} \rho_{\mathrm{c}}^{n_{\mathrm{I}}}\left(\nu_{\mathrm{v}}-n_{\mathrm{I}}\right)+\sqrt{\frac{1}{4} \rho_{\mathrm{c}}^{2 n_{\mathrm{I}}}\left(\nu_{\mathrm{v}}-n_{\mathrm{I}}\right)^{2}+\nu_{\mathrm{v}} \rho_{\mathrm{c}}^{n_{\mathrm{C}}} \sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}-\rho_{\mathrm{c}}^{n_{\mathrm{I}}} \sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{c}}^{i}}\right)^{-1} \\
& =\left(\frac{1}{2} \rho_{\mathrm{c}}^{n_{\mathrm{I}}}\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)+\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}+\sqrt{\left(\frac{1}{2} \rho_{\mathrm{c}}^{n_{\mathrm{I}}}\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)+\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}\right)^{2}-\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{c}}^{i}}\right)^{-1} \cdot(\mathrm{OA} \tag{OA.5}
\end{align*}
$$

We notice that $\frac{1}{2} \rho_{\mathrm{c}}^{n_{\mathrm{I}}}\left(\nu_{\mathrm{v}}-n_{\mathrm{I}}\right)+\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}>0$ when $H\left(\rho_{\mathrm{c}}\right)>0$. To see this, take the derivative in ρ_{c},

$$
\begin{aligned}
\left(\frac{1}{2} \rho_{\mathrm{c}}^{n_{\mathrm{I}}}\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)+\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{C}}^{i}\right)^{\prime} & =\frac{1}{2} n_{\mathrm{I}}\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right) \rho_{\mathrm{C}}^{n_{\mathrm{I}}-1}+\frac{n_{\mathrm{I}} \rho_{\mathrm{C}}^{n_{\mathrm{I}}}-\rho_{\mathrm{C}}^{n_{\mathrm{I}}}-n_{\mathrm{I}} p_{\mathrm{C}}^{n_{\mathrm{I}}-1}+1}{\left(\rho_{\mathrm{C}}-1\right)^{2}} \\
& >\frac{1}{2} n_{\mathrm{I}}\left(\frac{\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{C}}^{i}}{\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{C}}^{i}}-n_{\mathrm{I}}\right) \rho_{\mathrm{C}}^{n_{\mathrm{I}}-1}+\frac{n_{\mathrm{I}} \rho_{\mathrm{C}}^{n_{\mathrm{I}}}-\rho_{\mathrm{C}}^{n_{\mathrm{I}}}-n_{\mathrm{I}} \rho_{\mathrm{C}}^{n_{\mathrm{I}}-1}+1}{\left(\rho_{\mathrm{I}}-1\right)^{2}} \\
& =\frac{1}{2} n_{\mathrm{I}} \frac{n_{\mathrm{I}} \rho_{\mathrm{c}}-n_{\mathrm{I}}-\rho_{\mathrm{I}}^{n_{\mathrm{I}}}+1}{\left(\rho_{\mathrm{C}}-1\right)\left(\rho_{\mathrm{C}}^{n_{\mathrm{I}}}-1\right)} \rho_{\mathrm{C}}^{n_{\mathrm{I}}-1}+\frac{n_{\mathrm{I}} \rho_{\mathrm{C}}^{n_{\mathrm{I}}}-\rho_{\mathrm{C}}^{n_{\mathrm{I}}}-n_{\mathrm{I}}^{n_{\mathrm{C}}-1}+1}{\left(\rho_{\mathrm{c}}-1\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{n_{\mathrm{I}}^{2}}{2} \rho_{\mathrm{C}}^{n_{\mathrm{I}}-1}+\frac{n_{\mathrm{I}}}{2} \rho_{\mathrm{C}}^{n_{\mathrm{I}}-1} \sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{C}}^{i}-\left(\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{C}}^{i}\right)^{2}}{\rho_{\mathrm{C}}-1} \\
& =\frac{\frac{\left(n_{\mathrm{I}}-1\right) n_{\mathrm{I}}}{2} \rho_{\mathrm{C}}^{n_{\mathrm{I}}-1}-\sum_{i=0}^{n_{\mathrm{I}}-2}(i+1) \rho_{\mathrm{C}}^{i}+\frac{n_{\mathrm{I}}}{2} \rho_{\mathrm{C}}^{n_{\mathrm{I}}-1} \sum_{i=1}^{n_{\mathrm{I}}-1} \rho_{\mathrm{C}}^{i}-\rho_{\mathrm{C}}^{n_{\mathrm{I}}-1} \sum_{i=1}^{n_{\mathrm{I}}-1}\left(n_{\mathrm{I}}-i\right) \rho_{\mathrm{C}}^{i}}{\rho_{\mathrm{C}}^{n_{\mathrm{I}}}-1} \\
& =\frac{\frac{\left(n_{\mathrm{I}}-1\right) n_{\mathrm{I}}}{2} \rho_{\mathrm{C}}^{n_{\mathrm{I}}-1}-\sum_{i=0}^{n_{\mathrm{I}}-2}(i+1) \rho_{\mathrm{C}}^{i}}{\rho_{\mathrm{C}}^{n_{\mathrm{I}}}-1}+\frac{\rho_{\mathrm{C}}^{n_{\mathrm{I}}-1}}{2\left(\rho_{\mathrm{C}}^{n_{\mathrm{I}}}-1\right)} \sum_{i=1}^{n_{\mathrm{I}}-1}\left(2 i-n_{\mathrm{I}}\right) \rho_{\mathrm{C}}^{i} \\
& =\frac{\frac{\left(n_{\mathrm{I}}-1\right) n_{\mathrm{I}}}{2} \rho_{\mathrm{C}}^{n_{\mathrm{I}}-1}-\sum_{i=0}^{n_{\mathrm{I}}-2}(i+1) \rho_{\mathrm{C}}^{i}}{\rho_{\mathrm{C}}^{n_{\mathrm{I}}}-1}+\frac{\rho_{\mathrm{C}}^{n_{\mathrm{I}}-1}}{2\left(\rho_{\mathrm{C}}^{n_{\mathrm{I}}}-1\right)} \sum_{i=\left\lfloor\frac{n_{\mathrm{I}}+1}{2}\right\rfloor}^{n_{\mathrm{I}}-1}\left(2 i-n_{\mathrm{I}}\right)\left(\rho_{\mathrm{C}}^{2 i-n_{\mathrm{I}}}-1\right) \rho_{\mathrm{C}}^{n_{\mathrm{I}}-i} \\
& >0,
\end{aligned}
$$

where the first inequality results from the fact that $\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{c}}^{i} / \sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}<\nu_{\mathrm{v}}$ by Lemma 3 and the last inequality stems from $\rho_{\mathrm{c}} \geq 0$, which is implied by the monotonicity of $H\left(\rho_{\mathrm{c}}\right)$ and $H\left(\rho_{\mathrm{c}}\right)>0$. Since $\frac{1}{2} \rho_{\mathrm{c}}^{n_{\mathrm{I}}}\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)+\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}=1$ at $\rho_{\mathrm{c}}=0$. By the monotonicity, $\frac{1}{2} \rho_{\mathrm{c}}^{n_{\mathrm{I}}}\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)+\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}>0$ for $\rho_{\mathrm{c}} \geq 0$, i.e., $H\left(\rho_{\mathrm{c}}\right)>0$.

Given the positiveness of $\frac{1}{2} \rho_{\mathrm{c}}^{n_{\mathrm{I}}}\left(\nu_{\mathrm{u}}-n_{\mathrm{I}}\right)+\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}$ when $H\left(\rho_{\mathrm{c}}\right)>0$, for the ease of exposition, let

$$
\begin{equation*}
f=\left(\frac{1}{2}\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right) \rho_{\mathrm{c}}^{n_{\mathrm{I}}}+\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}\right)^{2}=\left(\frac{n_{\mathrm{I}} \rho_{\mathrm{c}}^{n_{\mathrm{I}}+1}-\nu_{\mathrm{v}} \rho_{\mathrm{c}}^{n_{\mathrm{I}}+1}-n_{\mathrm{I}} \rho_{\mathrm{c}}^{n_{\mathrm{I}}}+\nu_{\mathrm{v}} \rho_{\mathrm{c}}^{n_{\mathrm{I}}}-2 \rho_{\mathrm{c}}^{n_{\mathrm{I}}}+2}{2\left(\rho_{\mathrm{c}}-1\right)}\right)^{2} \tag{OA.6}
\end{equation*}
$$

and

$$
\begin{equation*}
g=\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{c}}^{i}=\frac{n_{\mathrm{I}} \rho_{\mathrm{c}}^{n_{\mathrm{I}}+1}-\left(n_{\mathrm{I}}+1\right) \rho_{\mathrm{c}}^{n_{\mathrm{I}}}+1}{\left(\rho_{\mathrm{c}}-1\right)^{2}} . \tag{OA.7}
\end{equation*}
$$

By (OA.5), we can write $p_{0}\left(q^{*}\right)=(\sqrt{f}+\sqrt{f-g})^{-1}$. To prove $p_{0}\left(q^{*}\right)$ is strictly decreasing in ρ_{c}, it is sufficient to show that $\sqrt{f}+\sqrt{f-g}$ is a strictly increasing function, i.e.,

$$
\frac{f^{\prime}}{\sqrt{f}}+\frac{f^{\prime}-g^{\prime}}{\sqrt{f-g}}=\frac{f^{\prime}}{\sqrt{f}}-\frac{g^{\prime}-f^{\prime}}{\sqrt{f-g}}>0
$$

Apparently, the inequality holds for $f^{\prime} \geq g^{\prime}$. We next consider the case $g^{\prime}>f^{\prime}$.
Note that f is strictly increasing in ν_{v} and g is independent of ν_{v}. One can also readily show that $\frac{f^{\prime}}{\sqrt{f}}$ and $-\frac{g^{\prime}-f^{\prime}}{\sqrt{f-g}}$ are both strictly increasing in ν_{u}. Thus, if $\frac{f^{\prime}}{\sqrt{f}}-\frac{g^{\prime}-f^{\prime}}{\sqrt{f-g}}>0$ for $\nu_{\mathrm{v}}=$ $\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{c}}^{i} / \sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}$, it must be true for all $\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{c}}^{i} / \sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}<\nu_{\mathrm{v}}$ by the monotonicity. As a result, $p_{0}\left(q^{*}\right)$ will be strictly decreasing in ρ_{c}, i.e., $\frac{d p_{0}}{d \rho_{\mathrm{c}}}<0$.

By the above argument, we only need to justify that $\frac{f^{\prime}}{\sqrt{f}}-\frac{g^{\prime}-f^{\prime}}{\sqrt{f-g}}>0$ for $\nu_{\mathrm{U}}=$ $\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{c}}^{i} / \sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}$ to complete the proof. Note that

$$
g^{\prime}=\frac{n_{\mathrm{I}}^{2} \rho_{\mathrm{c}}^{n_{\mathrm{I}}-1}+n_{\mathrm{I}} \rho_{\mathrm{c}}^{n_{\mathrm{I}}-1}-2 \sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{C}}^{i}}{\left(\rho_{\mathrm{c}}-1\right)}
$$

Moreover, at $\nu_{\mathrm{U}}=\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{c}}^{i} / \sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}$,

$$
f=\left(\frac{\rho_{\mathrm{c}}^{2 n_{\mathrm{I}}}+n_{\mathrm{I}} \rho_{\mathrm{c}}^{n_{\mathrm{I}}+1}-3 \rho_{\mathrm{c}}^{n_{\mathrm{I}}}-n_{\mathrm{I}} \rho_{\mathrm{c}}^{n_{\mathrm{I}}}+2}{2\left(\rho_{\mathrm{c}}-1\right)\left(\rho_{\mathrm{c}}^{n_{\mathrm{I}}}-1\right)}\right)^{2},
$$

and

$$
f^{\prime}=\frac{\left(n_{\mathrm{I}} \rho_{\mathrm{c}}^{n_{\mathrm{I}}+1}-3 \rho_{\mathrm{c}}^{n_{\mathrm{I}}}+\rho_{\mathrm{c}}^{2 n_{\mathrm{I}}}-n_{\mathrm{I}} \rho_{\mathrm{c}}^{n_{\mathrm{I}}}+2\right)\left(n_{\mathrm{I}} \rho_{\mathrm{c}}^{n_{\mathrm{I}}-1} \sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}-2\left(\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}\right)^{2}+n_{\mathrm{I}}^{2} \rho_{\mathrm{c}}^{n_{\mathrm{I}}-1}\right)}{2\left(\rho_{\mathrm{c}}-1\right)\left(\rho_{\mathrm{c}}^{n_{\mathrm{I}}}-1\right)^{2}} .
$$

Thus, evaluated at $\nu_{\mathrm{v}}=\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{c}}^{i} / \sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}$,

$$
\begin{aligned}
\frac{f^{\prime}}{\sqrt{f}}-\frac{g^{\prime}-f^{\prime}}{\sqrt{f-g}} & =\frac{2}{\left(\rho_{\mathrm{c}}-1\right)^{2}} \frac{\left(\rho_{\mathrm{c}}^{n_{\mathrm{I}}}-1\right)}{\left(\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}-n_{\mathrm{I}}\right)}\left(n_{\mathrm{I}} \rho_{\mathrm{c}}^{n_{\mathrm{I}}-1}-\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}+n_{\mathrm{I}}-\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}\right) \\
& =\frac{2}{\left(\rho_{\mathrm{c}}-1\right)^{2}} \frac{\left(\rho_{\mathrm{c}}^{n_{\mathrm{I}}}-1\right)}{\left(\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}-n_{\mathrm{I}}\right)}\left(\rho_{\mathrm{c}}-1\right) \sum_{i=0}^{n_{\mathrm{I}}-2}\left(2 i+2-n_{\mathrm{I}}\right) \rho_{\mathrm{c}}^{i} \\
& =\frac{2}{\left(\rho_{\mathrm{c}}-1\right)^{2}} \frac{\left(\rho_{\mathrm{c}}^{n_{\mathrm{I}}}-1\right)}{\left(\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}-n_{\mathrm{I}}\right)}\left(\rho_{\mathrm{c}}-1\right) \sum_{i=\left\lfloor\frac{n_{\mathrm{I}}+1}{2}\right\rfloor}^{n_{\mathrm{I}}-2}\left(2 i+2-n_{\mathrm{I}}\right)\left(\rho_{\mathrm{c}}^{2 i+2-n_{\mathrm{I}}}-1\right) \rho_{\mathrm{c}}^{n_{\mathrm{I}}-i-2} \\
& >0 . \quad \square
\end{aligned}
$$

Proof of Theorem 6. The social welfare for each customer segment is

$$
S_{\mathrm{I}}\left(q^{*}\right)=\left[\sum_{i=0}^{n_{\mathrm{I}}-1} p_{i}\left(q^{*}\right)\left(R_{\mathrm{I}}-c_{\mathrm{I}} \frac{i+1}{\mu}\right)\right] \cdot \gamma \Lambda \text { and } S_{\mathrm{U}}\left(q^{*}\right)=\left[q^{*} \sum_{i=0}^{\infty} p_{i}\left(q^{*}\right)\left(R_{\mathrm{U}}-c_{\mathrm{U}} \frac{i+1}{\mu}\right)\right] \cdot(1-\gamma) \Lambda
$$

Analogous to Theorem 4, we discuss the following cases in order: $q^{*}=0, q^{*} \in(0,1)$, and $q^{*}=1$.
When $q^{*}=0, \rho_{\mathrm{c}}=\gamma \rho$. Since uninformed customers do not join, $S_{\mathrm{U}}\left(q^{*}\right)=0$ and total social welfare is identical to informed individuals' contribution

$$
\begin{aligned}
S_{\mathrm{I}}\left(q^{*}=0\right) & =\left[\sum_{i=0}^{n_{\mathrm{I}}-1} p_{i}(0)\left(R_{\mathrm{I}}-c_{\mathrm{I}} \frac{i+1}{\mu}\right)\right] \cdot \gamma \Lambda \\
& =\left(\frac{1-(\gamma \rho)^{n_{\mathrm{I}}}}{1-\gamma \rho}+(\gamma \rho)^{n_{\mathrm{I}}}\right)^{-1}\left(R_{\mathrm{I}} \frac{1-(\gamma \rho)^{n_{\mathrm{I}}}}{1-\gamma \rho}-\frac{c_{\mathrm{I}}}{\mu} \frac{1-\left(n_{\mathrm{I}}+1\right)(\gamma \rho)^{n_{\mathrm{I}}}+n(\gamma \rho)^{n_{\mathrm{I}}+1}}{(1-\gamma \rho)^{2}}\right) \cdot \gamma \Lambda .
\end{aligned}
$$

Notice that $S_{\mathrm{I}}\left(q^{*}=0\right)$ is independent of R_{v}. Thus, we can apply the same discussion in the proof of Theorem $4(\mathrm{i})$ to show that $S_{\mathrm{I}}\left(q^{*}=0\right)+S_{\mathrm{v}}\left(q^{*}=0\right)$ strictly decreases in γ.

When $q^{*} \in(0,1)$, the social welfare yielded by uninformed customers equals zero as well, i.e., $S_{\mathrm{U}}\left(q^{*}\right)=0$. Thus, we only need to consider $S_{\mathrm{I}}\left(q^{*}\right)$.

$$
\begin{aligned}
S_{\mathrm{I}}\left(q^{*}\right) & =\left[\sum_{i=0}^{n_{\mathrm{I}}-1} p_{i}\left(q^{*}\right)\left(R_{\mathrm{I}}-c_{\mathrm{I}} \frac{i+1}{\mu}\right)\right] \cdot \gamma \Lambda \\
& =p_{0}\left(q^{*}\right)\left(R_{\mathrm{I}} \frac{1-\rho_{\mathrm{c}}^{n_{\mathrm{I}}}}{1-\rho_{\mathrm{c}}}-\frac{c_{\mathrm{I}}}{\mu} \frac{1-\left(n_{\mathrm{I}}+1\right) \rho_{\mathrm{c}}^{n_{\mathrm{I}}}+n \rho_{\mathrm{c}}^{n_{\mathrm{I}}+1}}{\left(1-\rho_{\mathrm{c}}\right)^{2}}\right) \cdot \gamma \Lambda \\
& =c_{\mathrm{I}} p_{0}\left(q^{*}\right)\left(\nu_{\mathrm{I}} \frac{1-\rho_{\mathrm{c}}^{n_{\mathrm{I}}}}{1-\rho_{\mathrm{c}}}-\frac{1-\left(n_{\mathrm{I}}+1\right) \rho_{\mathrm{c}}^{n_{\mathrm{C}}}+n_{\mathrm{I}} \rho_{\mathrm{C}}+1}{\left(1-\rho_{\mathrm{c}}\right)^{2}}\right) \cdot \rho \gamma\left(\rho_{\mathrm{c}}\right) \\
& =c_{\mathrm{I}} \rho_{\mathrm{c}}^{n_{\mathrm{I}}}\left(H\left(\rho_{\mathrm{c}}\right)-\frac{\left(\nu_{\mathrm{U}}-\nu_{\mathrm{I}}\right) \sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}}{\rho_{\mathrm{c}}^{n_{\mathrm{I}}}}\right) \cdot p_{0}\left(q^{*}\right) \cdot \rho \gamma\left(\rho_{\mathrm{c}}\right) \\
& =c_{\mathrm{I}} \rho_{\mathrm{c}}^{n_{\mathrm{I}}} H\left(\rho_{\mathrm{c}}\right) \cdot p_{0}\left(q^{*}\right) \cdot \rho \gamma\left(\rho_{\mathrm{c}}\right)-c_{\mathrm{I}}\left(\nu_{\mathrm{U}}-\nu_{\mathrm{I}}\right) \sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i} \cdot p_{0}\left(q^{*}\right) \cdot \rho \gamma\left(\rho_{\mathrm{c}}\right)
\end{aligned}
$$

$$
\begin{align*}
& =c_{\mathrm{I}}\left(1-\left(\nu_{\mathrm{U}}-\nu_{\mathrm{I}}\right) \frac{\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{C}}^{i}}{\rho_{\mathrm{C}}^{n_{\mathrm{I}}} H\left(\rho_{\mathrm{C}}\right)}\right) \rho_{\mathrm{C}}^{n_{\mathrm{I}}} H\left(\rho_{\mathrm{C}}\right) \cdot p_{0}\left(q^{*}\right) \cdot \rho \gamma\left(\rho_{\mathrm{C}}\right) \\
& =c_{\mathrm{I}}\left[1-\left(\nu_{\mathrm{U}}-\nu_{\mathrm{I}}\right)\left(\nu_{\mathrm{U}}-\frac{\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{C}}^{i}}{\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{C}}^{i}}\right)^{-1}\right] \rho_{\mathrm{C}}^{n_{\mathrm{I}}} H\left(\rho_{\mathrm{C}}\right) \cdot p_{0}\left(q^{*}\right) \cdot \rho \gamma\left(\rho_{\mathrm{c}}\right) \tag{OA.8}
\end{align*}
$$

We first observe that $\rho_{\mathrm{c}}^{n_{\mathrm{I}}} H\left(\rho_{\mathrm{c}}\right) \cdot p_{0}\left(q^{*}\right) \cdot \rho \gamma\left(\rho_{\mathrm{C}}\right)$ strictly increases in ρ_{C}. Substitute $p_{0}\left(q^{*}\right)$ with (OA.5),

$$
\begin{align*}
& \rho_{\mathrm{C}}^{n_{\mathrm{I}}} H\left(\rho_{\mathrm{C}}\right) p_{0}\left(q^{*}\right) \rho \gamma\left(\rho_{\mathrm{C}}\right)= \rho_{\mathrm{C}}^{n_{\mathrm{I}}} H\left(\rho_{\mathrm{C}}\right) \frac{2\left(\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)+\sqrt{\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)^{2}+4 H\left(\rho_{\mathrm{C}}\right)}\right)^{-1}+\rho_{\mathrm{C}}-1}{\frac{1-\rho_{\mathrm{C}}}{1-\rho_{\mathrm{C}}}+\frac{\rho_{\mathrm{C}} n_{\mathrm{I}}}{2}\left(\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)+\sqrt{\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)^{2}+4 H\left(\rho_{\mathrm{C}}\right)}\right)} \\
&=\left(2 \rho_{\mathrm{C}}^{n_{\mathrm{I}}} H\left(\rho_{\mathrm{C}}\right)+\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right) \rho_{\mathrm{C}}^{n_{\mathrm{I}}} H\left(\rho_{\mathrm{C}}\right)\left(\rho_{\mathrm{C}}-1\right)+\rho_{\mathrm{C}}^{n_{\mathrm{I}}} H\left(\rho_{\mathrm{C}}\right)\left(\rho_{\mathrm{C}}-1\right) \sqrt{\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)^{2}+4 H\left(\rho_{\mathrm{C}}\right)}\right) \times \\
&\left(\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right) \frac{1-\rho_{\mathrm{C}}}{1-\rho_{\mathrm{C}}}+\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)^{2} \rho_{\mathrm{C}}^{n_{\mathrm{I}}}+2 \rho_{\mathrm{C}}^{n_{\mathrm{I}}} H\left(\rho_{\mathrm{C}}\right)+\right. \\
&=\left.\left(\frac{1-\rho_{\mathrm{C}}^{n_{\mathrm{I}}}}{1-\rho_{\mathrm{C}}}+\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right) \rho_{\mathrm{C}}^{n_{\mathrm{I}}}\right) \sqrt{\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)^{2}+4 H\left(\rho_{\mathrm{C}}\right)}\right)^{-1} \\
&\left.1-\nu_{\mathrm{U}} \frac{2 \rho_{\mathrm{C}}^{n_{\mathrm{I}}} H\left(\rho_{\mathrm{C}}\right)+\left(\frac{1-\rho_{\mathrm{C}}^{n_{\mathrm{I}}}}{1-\rho_{\mathrm{C}}}+\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right) \rho_{\mathrm{C}}^{n_{\mathrm{I}}}\right)\left(\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)+\sqrt{\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)^{2}+4 H\left(\rho_{\mathrm{C}}\right)}\right)}{)}\right) \\
&=\left(1-\frac{\nu_{\mathrm{U}}}{\frac{1-\rho_{\mathrm{C}} n_{\mathrm{I}}}{1-\rho_{\mathrm{C}}}+\frac{\rho_{\mathrm{C}}^{n_{\mathrm{I}}}}{2}\left(\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)+\sqrt{\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)^{2}+4 H\left(\rho_{\mathrm{C}}\right)}\right)}\right) \\
&= 1-\nu_{\mathrm{U}_{\mathrm{U}} p_{0}\left(q^{*}\right) .} \tag{OA.9}
\end{align*}
$$

We have already demonstrated that $p_{0}\left(q^{*}\right)$ strictly decreases in ρ_{c} in the proof of Theorem 5. Therefore, $\rho_{\mathrm{c}}^{n_{\mathrm{I}}} H\left(\rho_{\mathrm{C}}\right) \cdot p_{0}\left(q^{*}\right) \cdot \rho \gamma\left(\rho_{\mathrm{c}}\right)$ also strictly increases in ρ_{C}.

Next, we consider the monotonicity of the term in the square bracket of (OA.8). Recall that $\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{c}}^{i} / \sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{c}}^{i}$ strictly increases in ρ_{C} as shown in the proof of Theorem 5 . Then,

- If $\nu_{\mathrm{U}} \leq \nu_{\mathrm{I}}, 1-\left(\nu_{\mathrm{U}}-\nu_{\mathrm{I}}\right)\left(\nu_{\mathrm{U}}-\frac{\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{C}}^{i}}{\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{C}}^{i}}\right)^{-1}$ is increasing in ρ_{C}. In this case, $S_{\mathrm{I}}\left(q^{*}\right)$ is increasing in ρ_{C}. Due to the fact that $\frac{d \rho_{\mathrm{C}}}{d \gamma}>0$, we have $S_{\mathrm{I}}\left(q^{*}\right)$ is increasing in γ.
- If $\nu_{\mathrm{U}}>\nu_{\mathrm{I}}, 1-\left(\nu_{\mathrm{U}}-\nu_{\mathrm{I}}\right)\left(\nu_{\mathrm{U}}-\frac{\sum_{i=0}^{n_{\mathrm{I}}-1}(i+1) \rho_{\mathrm{C}}^{i}}{\sum_{i=0}^{n_{\mathrm{I}}-1} \rho_{\mathrm{C}}^{i}}\right)^{-1}$ is decreasing in ρ_{C}. Then $S_{\mathrm{I}}\left(q^{*}\right)$ might be unimodal in ρ_{C}, which leads to that $S_{\mathrm{I}}\left(q^{*}\right)$ might be unimodal in γ.

When $q^{*}=1, \rho_{\mathrm{c}}=\rho$. The total social welfare is

$$
\begin{aligned}
& S_{\mathrm{I}}\left(q^{*}\right)+S_{\mathrm{U}}\left(q^{*}\right)=\left[\sum_{i=0}^{n_{\mathrm{I}}-1} p_{i}(1)\left(R_{\mathrm{I}}-c_{\mathrm{I}} \frac{i+1}{\mu}\right)\right] \cdot \gamma \Lambda+\left[\sum_{i=0}^{\infty} p_{i}(1)\left(R_{\mathrm{U}}-c_{\mathrm{U}} \frac{i+1}{\mu}\right)\right] \cdot(1-\gamma) \Lambda \\
& \stackrel{(\mathrm{A} .8)}{=} \frac{\Lambda c_{I}}{\mu} \rho^{n_{\mathrm{I}}} p_{0}(1) \gamma L(\rho)+(1-\gamma) \Lambda\left(R_{\mathrm{U}}-c_{\mathrm{U}} W(1)\right) \\
&=\frac{\Lambda c_{\mathrm{I}}}{\mu} \rho^{n_{\mathrm{I}}} p_{0}(1) \gamma L(\rho)+\Lambda \frac{c_{\mathrm{I}}}{\mu} \rho^{n_{\mathrm{I}}} p_{0}(1)(1-\gamma)\left(H(\rho)+\frac{\nu_{\mathrm{U}}-n_{\mathrm{I}}}{1-\rho+\gamma \rho}-\frac{1}{(1-\rho+\gamma \rho)^{2}}\right) \\
&(\mathrm{A.1),(OA.2)} \frac{\Lambda c_{\mathrm{I}}}{\mu} \rho^{n_{\mathrm{I}}} p_{0}(1) \underbrace{\left[L(\rho)+\frac{\left(\nu_{\mathrm{U}}-n_{\mathrm{I}}\right)(1-\gamma)}{1-\rho+\gamma \rho}-\frac{1-\gamma}{(1-\rho+\gamma \rho)^{2}}+\frac{(1-\gamma)\left(\nu_{\mathrm{U}}-\nu_{\mathrm{I}}\right)\left(1-\rho^{\left.n_{\mathrm{I}}\right)}\right.}{(1-\rho) \rho^{n_{\mathrm{I}}}}\right]}_{:=\Upsilon(\gamma)}
\end{aligned}
$$

Since $p_{0}\left(q^{*}=1\right)=\left(\frac{1-\rho^{n_{\mathrm{I}}}}{1-\rho}+\frac{\rho^{n_{\mathrm{I}}}}{1-\rho+\gamma \rho}\right)^{-1}$ strictly increases in γ, we only need to explore the monotonicity of $\Upsilon(\gamma)$. Since $S_{\mathrm{I}}\left(q^{*}\right)+S_{\mathrm{U}}\left(q^{*}\right)>0, \Upsilon(\gamma)>0$ as well. Since $L(\rho)$ is independent of γ,

$$
\frac{\partial \Upsilon}{\partial \gamma}=\frac{1}{(1-\rho+\gamma \rho)^{2}}\left(\frac{1+\rho-\gamma \rho}{1-\rho+\gamma \rho}-\left(\nu_{\mathrm{v}}-n_{\mathrm{I}}\right)-\frac{\left(\nu_{\mathrm{U}}-\nu_{\mathrm{I}}\right)\left(1-\rho^{n_{\mathrm{I}}}\right)(1-\rho+\gamma \rho)^{2}}{(1-\rho) \rho^{n_{\mathrm{I}}}}\right)
$$

Note that $(1-\gamma) \rho$ is the workload caused by uninformed customers. Due to the fact that uninformed customers join the queue with probability 1 , the server must have enough capacity to handle all of them, i.e., $(1-\gamma) \rho<1 \Leftrightarrow 1-\rho+\gamma \rho \geq 0$. Thus,

- If $\left(\nu_{\mathrm{U}}-\nu_{\mathrm{I}}\right) \frac{\left(1-\rho_{\mathrm{I}}\right)(1-\rho+\gamma \rho)^{2}}{(1-\rho) \rho^{n_{\mathrm{I}}}}+\nu_{\mathrm{U}}-n_{\mathrm{I}} \leq \frac{1+\rho-\gamma \rho}{1-\rho+\gamma \rho}$, we have $\Upsilon(\gamma)$ is increasing. Then, $S_{\mathrm{I}}\left(q^{*}=1\right)+$ $S_{\mathrm{U}}\left(q^{*}=1\right)$ is increasing in γ. Note that this also covers the homogenous case, since $\nu-n \in[0,1)$.
- If $\left(\nu_{\mathrm{U}}-\nu_{\mathrm{I}}\right) \frac{\left(1-\rho_{\mathrm{I}}\right)(1-\rho+\gamma \rho)^{2}}{(1-\rho) \rho_{\mathrm{I}}}+\nu_{\mathrm{U}}-n_{\mathrm{I}}>\frac{1+\rho-\gamma \rho}{1-\rho+\gamma \rho}$, we have $\Upsilon(\gamma)$ is decreasing. In this case, the monotonicity of $S_{\mathrm{I}}\left(q^{*}=1\right)+S_{\mathrm{v}}\left(q^{*}=1\right)$ may change and the social welfare might be unimodal.

It can be readily shown that $\left(\nu_{\mathrm{U}}-\nu_{\mathrm{I}}\right) \frac{\left(1-\rho^{n}\right)(1-\rho+\gamma \rho)^{2}}{(1-\rho) \rho^{n_{\mathrm{I}}}}+\nu_{\mathrm{U}}-n_{\mathrm{I}} \leq \frac{1+\rho-\gamma \rho}{1-\rho+\gamma \rho}$ implies $\nu_{\mathrm{I}} \geq \nu_{\mathrm{U}}-$ $\left(\frac{1+\rho-\gamma \rho}{1-\rho+\gamma \rho}-\left\langle\nu_{\mathrm{I}}\right\rangle\right) /\left(\frac{\left(1-\rho^{n_{\mathrm{I}}}\right)(1-\rho+\gamma \rho)^{2}}{(1-\rho) \rho^{n_{\mathrm{I}}}}+1\right)$. Thus, the proof completes.

Online Appendix B to "Efficient Ignorance: Information Heterogeneity in a Queue"

Lemma B1. The function $L(\rho, \nu)$ defined in Corollary 2 is strictly decreasing in ρ.
Proof of Lemma B1. For notation simplicity, we suppress $L(\rho, \nu)$'s dependence on ν and write $L(\rho)$ or simply L. By the definition of $L(\rho)$,

$$
\frac{d L}{d \rho}=\frac{\phi(\rho)}{\rho^{n+1}(\rho-1)^{3}}
$$

where

$$
\phi(\rho) \equiv \nu(n+1) \rho^{2}+(2-\nu-2 n \nu+n) \rho+n \nu-n-\langle\nu\rangle \rho^{n+2}+(\langle\nu\rangle-2) \rho^{n+1}
$$

Taking first and second derivatives of $\phi(\rho)$ with respect to ρ, we have

$$
\begin{equation*}
\phi^{\prime}(\rho)=\frac{d \phi}{d \rho}=2 \nu(n+1) \rho+(2-\nu-2 n \nu+n)-(n+2)\langle\nu\rangle \rho^{n+1}+(n+1)(\langle\nu\rangle-2) \rho^{n} \tag{OA.10}
\end{equation*}
$$

and

$$
\begin{align*}
\phi^{\prime \prime}(\rho)=\frac{d^{2} \phi}{d \rho^{2}} & =2 \nu(n+1)-(n+1)(n+2)\langle\nu\rangle \rho^{n}+n(n+1)(\langle\nu\rangle-2) \rho^{n-1} \\
& =(n+1)\left[2 \nu-2 n \rho^{n-1}-\langle\nu\rangle\left(2 \rho^{n}+n \rho^{n}-n \rho^{n-1}\right)\right] \\
\nu= & \stackrel{n+\langle\nu\rangle}{=}(n+1)\left[2 n\left(1-\rho^{n-1}\right)+\langle\nu\rangle\left(2\left(1-\rho^{n}\right)+n \rho^{n-1}(1-\rho)\right)\right] \\
& =(n+1)(1-\rho)\left[2 n \sum_{i=0}^{n-2} \rho^{i}+\langle\nu\rangle\left(2 \sum_{i=0}^{n-1} \rho^{i}+n \rho^{n-1}\right)\right] \tag{OA.11}
\end{align*}
$$

where $\sum_{i=0}^{n-2} \rho^{i}$ is understood as 0 for $n=1$. Moreover, note that $\phi(1)=\phi^{\prime}(1)=0$. Hence, by Eq.(OA.10) and (OA.11),

$$
\left\{\begin{array} { l }
{ \phi ^ { \prime \prime } (\rho) > 0 , \text { if } 0 < \rho < 1 } \\
{ \phi ^ { \prime \prime } (\rho) < 0 , \text { if } \rho > 1 }
\end{array} \Longrightarrow \left\{\begin{array} { l }
{ \phi ^ { \prime } (\rho) < \phi ^ { \prime } (1) = 0 , \text { if } 0 < \rho < 1 } \\
{ \phi ^ { \prime } (\rho) < \phi ^ { \prime } (1) = 0 , \text { if } \rho > 1 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\phi(\rho)>\phi(1)=0, \text { if } 0<\rho<1 \\
\phi(\rho)<\phi(1)=0, \text { if } \rho>1
\end{array}\right.\right.\right.
$$

Therefore, $\frac{d L}{d \rho}=\frac{\phi(\rho)}{\rho^{n+1}(\rho-1)^{3}}<0$ for $0<\rho<1$ and $\rho>1$. Finally, by L'Hôpital's rule, $\lim _{\rho \rightarrow 1} \frac{d L}{d \rho}=$ $n(n+1)(n+2-3 \nu) / 6$, which is negative for all $\nu>1$ and is zero for $\nu=1$. We thus conclude that $\frac{d L}{d \rho}<0$ for $\rho>0$ (almost surely except for the point $\rho=1$ when $\nu=1$), i.e., $L(\rho)$ is strictly decreasing in ρ (note that the derivative being equal to 0 at one point does not affect the strict monotonicity of a function).

Lemma B2. In the neighborhood where full participation is not adopted by uninformed customers in equilibrium, i.e., $q^{*} \in[0,1)$, for any information level γ^{\prime}, there exists $k<n$ such that

$$
\left.\frac{d p_{i}\left(q^{*}(\gamma)\right)}{d \gamma}\right|_{\gamma=\gamma^{\prime}}<0 \text { for } 0 \leq i \leq k \text { and }\left.\frac{d p_{i}\left(q^{*}(\gamma)\right)}{d \gamma}\right|_{\gamma=\gamma^{\prime}} \geq 0 \text { for } k<i<n
$$

Proof of Lemma B2. We have shown, in Lemma 2, that $p_{0}\left(q^{*}(\gamma)\right)$ strictly decreases in γ for $0 \leq q^{*}<1$. At $\gamma=\gamma^{\prime}$, if for any $i=1, \ldots, n-1, d p_{i}\left(q^{*}\left(\gamma^{\prime}\right)\right) / d \gamma<0$. Then, $k=n-1$.

If there exists $k<n-1$, such that $d p_{k}\left(q^{*}\left(\gamma^{\prime}\right)\right) / d \gamma \geq 0$ at γ^{\prime}, then the statement holds as long as for any $i=k, k+1, \ldots, n-1, d p_{i}\left(q^{*}\left(\gamma^{\prime}\right)\right) d \gamma \geq 0$. Let $\rho_{\mathrm{c}}(\gamma)=\gamma \rho+q^{*}(\gamma)(1-\gamma) \rho$, where $0 \leq q^{*}(\gamma)<1$. By Eq. (3), $p_{i}\left(q^{*}(\gamma)\right)=p_{k}\left(q^{*}(\gamma)\right) \rho_{\mathrm{c}}^{i-k}(\gamma)=p_{0}\left(q^{*}(\gamma)\right) \rho_{\mathrm{c}}^{k}(\gamma) \rho_{\mathrm{c}}^{i-k}(\gamma)$. Thereby, for $i=k, k+1, \ldots, n-1$,

$$
\frac{d p_{i}\left(q^{*}(\gamma)\right)}{d \gamma}=\frac{d p_{k}\left(q^{*}(\gamma)\right)}{d \gamma} \underbrace{\rho_{\mathrm{c}}^{i-k}(\gamma)}_{\geq 0}+\underbrace{p_{k}\left(q^{*}(\gamma)\right)(i-k) \rho_{\mathrm{c}}^{i-k-1}(\gamma)}_{\geq 0} \frac{d \rho_{\mathrm{c}}(\gamma)}{d \gamma} .
$$

At $\gamma^{\prime}, d p_{k}\left(q^{*}\left(\gamma^{\prime}\right)\right) / d \gamma \geq 0$ by assumption. Hence, if $d \rho_{\mathrm{c}}\left(\gamma^{\prime}\right) / d \gamma \geq 0, d p_{i}\left(q^{*}\left(\gamma^{\prime}\right)\right) / d \gamma \geq 0$. Note that

$$
\frac{d p_{k}\left(q^{*}(\gamma)\right)}{d \gamma}=\frac{d p_{0}\left(q^{*}(\gamma)\right)}{d \gamma} \rho_{\mathrm{c}}^{k}(\gamma)+p_{0}\left(q^{*}(\gamma)\right) k \rho_{\mathrm{c}}^{k-1}(\gamma) \frac{d \rho_{\mathrm{c}}(\gamma)}{d \gamma} \geq 0
$$

The first term is negative since $p_{0}\left(q^{*}(\gamma)\right)$ strictly decreases in γ. Hence, $d p_{k}\left(q^{*}\left(\gamma^{\prime}\right)\right) / d \gamma \geq 0$ implies $d \rho_{\mathrm{c}}\left(\gamma^{\prime}\right) / d \gamma \geq 0$, which further leads to $d p_{i}\left(q^{*}\left(\gamma^{\prime}\right)\right) / d \gamma \geq 0$ for $i=k, k+1, \ldots, n-1$.

Proposition B1 (Comparative Statics of Accessibility For Informed Customers).
(i) If $0 \leq q^{*}<1$, the probability $\sum_{i=0}^{n-1} p_{i}\left(q^{*}\right)$ that an informed customer joins the queue is strictly decreasing in γ.
(ii) If $q^{*}=1$, the probability $\sum_{i=0}^{n-1} p_{i}\left(q^{*}\right)$ that an informed customer joins the queue is strictly increasing in γ.
Proof of Proposition B1. (i) When $q^{*}=0, \sum_{i=0}^{n-1} p_{i}\left(q^{*}=0\right)=p_{0}\left(q^{*}=0\right) \sum_{i=0}^{n-1}(\gamma \rho)^{i}=\frac{1-(\gamma \rho)^{n}}{1-(\gamma \rho)^{n+1}}$. It is straightforward to verify that $\frac{1-(\gamma \rho)^{n}}{1-(\gamma \rho)^{n+1}}, n \geq 1$ is strictly decreasing in γ.

Consider the case where $0<q^{*}<1$. Again, let $\rho_{\mathrm{c}}=\rho\left(\gamma+q^{*}(1-\gamma)\right)$. Recall that we have shown $d \rho_{\mathrm{c}} / d \gamma>0$ in the proof of Theorem 2. If $\sum_{i=0}^{n-1} p_{i}\left(q^{*}\right)$ is strictly decreasing in ρ_{c}, by the chain rule, it must be strictly decreasing in γ. Hence, it is sufficient to prove that $\sum_{i=0}^{n-1} p_{i}\left(q^{*}\right)$ is strictly decreasing in ρ_{c}. We rewrite
$\sum_{i=0}^{n-1} p_{i}\left(q^{*}\right)=\sum_{i=0}^{n-1} p_{0}\left(q^{*}\right) \rho_{\mathrm{c}}^{i}=p_{0}\left(q^{*}\right) \frac{1-\rho_{\mathrm{c}}^{n}}{1-\rho_{\mathrm{c}}} \stackrel{(6)}{=} \frac{1-\rho_{\mathrm{c}}^{n}}{1-\rho_{\mathrm{c}}} /\left(\frac{1-\rho_{\mathrm{c}}^{n}}{1-\rho_{\mathrm{c}}}+\frac{\rho_{\mathrm{c}}^{n}}{1-\rho_{\mathrm{c}}+\gamma \rho}\right)=\left(1+\frac{\rho_{\mathrm{c}}^{n}}{1-\rho_{\mathrm{c}}+\gamma \rho} \cdot \frac{1-\rho_{\mathrm{c}}}{1-\rho_{\mathrm{c}}^{n}}\right)^{-1}$.
By Eq.(A.6),

$$
\begin{aligned}
\frac{\rho_{\mathrm{c}}^{n}}{1-\rho_{\mathrm{c}}+\gamma \rho} \cdot \frac{1-\rho_{\mathrm{c}}}{1-\rho_{\mathrm{c}}^{n}} & =\frac{\rho_{\mathrm{c}}^{n}\left(1-\rho_{\mathrm{c}}\right)}{1-\rho_{\mathrm{c}}} \cdot \frac{1}{2}\left(\langle\nu\rangle+\sqrt{\langle\nu\rangle^{2}+4 L\left(\rho_{\mathrm{c}}\right)}\right) \\
& =\frac{1}{2}\langle\nu\rangle \frac{\rho_{\mathrm{c}}^{n}\left(1-\rho_{\mathrm{c}}\right)}{1-\rho_{\mathrm{c}}^{n}}+\sqrt{\left(\frac{1}{2}\langle\nu\rangle \frac{\rho_{\mathrm{c}}^{n}\left(1-\rho_{\mathrm{c}}\right)}{1-\rho_{\mathrm{c}}}\right)^{2}+\frac{\rho_{\mathrm{c}}^{2 n}\left(1-\rho_{\mathrm{c}}\right)^{2}}{\left(1-\rho_{\mathrm{c}}^{n}\right)^{2}} L\left(\rho_{\mathrm{c}}\right)} \\
& \stackrel{(\mathrm{A} .5)}{=} \frac{1}{2}\langle\nu\rangle \frac{\rho_{\mathrm{c}}^{n}\left(1-\rho_{\mathrm{c}}\right)}{1-\rho_{\mathrm{c}}^{n}}+\sqrt{\left(\frac{1}{2}\langle\nu\rangle \frac{\rho_{\mathrm{c}}^{n}\left(1-\rho_{\mathrm{c}}\right)}{1-\rho_{\mathrm{c}}^{n}}\right)^{2}+\frac{\rho_{\mathrm{c}}^{2 n}\left(1-\rho_{\mathrm{c}}\right)^{2}}{\left(1-\rho_{\mathrm{c}}^{n}\right)^{2}} \cdot \frac{\langle\nu\rangle\left(\rho_{\mathrm{c}}-1\right) \rho_{\mathrm{c}}^{n}+\nu-\nu \rho_{\mathrm{c}}+\rho_{\mathrm{c}}^{n}-1}{\left(1-\rho_{\mathrm{c}}\right)^{2} \rho_{\mathrm{c}}^{n}}} \\
& =\frac{1}{2}\langle\nu\rangle \frac{\rho_{\mathrm{c}}^{n}\left(1-\rho_{\mathrm{c}}\right)}{1-\rho_{\mathrm{c}}^{n}}+\sqrt{\left(\frac{1}{2}\langle\nu\rangle \frac{\rho_{\mathrm{c}}^{n}\left(1-\rho_{\mathrm{c}}\right)}{1-\rho_{\mathrm{c}}^{n}}\right)^{2}+\langle\nu\rangle \frac{\rho_{\mathrm{c}}^{n}\left(1-\rho_{\mathrm{c}}\right)}{1-\rho_{\mathrm{c}}^{n}}+\rho_{\mathrm{c}}^{n} \frac{n-n \rho_{\mathrm{c}}+\rho_{\mathrm{c}}^{n}-1}{\left(1-\rho_{\mathrm{c}}^{n}\right)^{2}}} .
\end{aligned}
$$

It is apparent that $\frac{\rho_{\mathrm{c}}^{n}\left(1-\rho_{\mathrm{c}}\right)}{1-\rho_{\mathrm{c}}^{n}}=\left(\sum_{i=1}^{n} \rho_{\mathrm{c}}^{-i}\right)^{-1}$ is strictly increasing in ρ_{c}. Therefore, to show $\sum_{i=0}^{n-1} p_{i}\left(q^{*}\right)$ is strictly decreasing in ρ_{c}, it suffices to justify $\rho_{\mathrm{c}}^{n} \frac{n-n \rho_{\mathrm{c}}+\rho_{\mathrm{c}}^{n}-1}{\left(1-\rho_{\mathrm{c}}^{n}\right)^{2}}$ increases in ρ_{c}.

$$
\left(\rho_{\mathrm{c}}^{n} \frac{n-n \rho_{\mathrm{c}}+\rho_{\mathrm{c}}^{n}-1}{\left(1-\rho_{\mathrm{c}}^{n}\right)^{2}}\right)^{\prime}=\frac{n \rho_{\mathrm{c}}^{n-1}}{\left(1-\rho_{\mathrm{c}}^{n}\right)^{3}}\left((n+1) \rho_{\mathrm{c}}^{n}-(n-1) \rho_{\mathrm{c}}^{n+1}-(n+1) \rho_{\mathrm{c}}+n-1\right)
$$

Let $\chi\left(\rho_{\mathrm{c}}\right)=(n+1) \rho_{\mathrm{c}}^{n}-(n-1) \rho_{\mathrm{c}}^{n+1}-(n+1) \rho_{\mathrm{c}}+n-1$. Then, $\chi^{\prime}\left(\rho_{\mathrm{c}}\right)=(n+1)\left(n \rho_{\mathrm{c}}^{n-1}+(1-n) \rho_{\mathrm{c}}^{n}-1\right)$ and $\chi^{\prime \prime}\left(\rho_{\mathrm{c}}\right)=n\left(n^{2}-1\right)\left(1-\rho_{\mathrm{c}}\right) \rho_{\mathrm{c}}^{n-2}$. Hence,

$$
\left\{\begin{array} { l }
{ \chi ^ { \prime \prime } (\rho _ { \mathrm { c } }) > 0 , \text { if } 0 < \rho _ { \mathrm { C } } < 1 } \\
{ \chi ^ { \prime \prime } (\rho _ { \mathrm { c } }) < 0 , \text { if } \rho _ { \mathrm { c } } > 1 }
\end{array} \Longrightarrow \left\{\begin{array} { l }
{ \chi ^ { \prime } (\rho _ { \mathrm { C } }) < \chi ^ { \prime } (1) = 0 , \text { if } 0 < \rho _ { \mathrm { C } } < 1 } \\
{ \chi ^ { \prime } (\rho _ { \mathrm { c } }) < \chi ^ { \prime } (1) = 0 , \text { if } \rho _ { \mathrm { c } } > 1 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\chi\left(\rho_{\mathrm{C}}\right)>\chi(1)=0, \text { if } 0<\rho_{\mathrm{C}}<1 \\
\chi\left(\rho_{\mathrm{C}}\right)<\chi(1)=0, \text { if } \rho_{\mathrm{c}}>1
\end{array}\right.\right.\right.
$$

Thus, $\left(\rho_{\mathrm{c}}^{n} \frac{n-n \rho_{\mathrm{c}}+\rho_{\mathrm{c}}^{n}-1}{\left(1-\rho_{\mathrm{c}}^{n}\right)^{2}}\right)^{\prime}>0$ for $\rho_{\mathrm{c}}>0$ but $\rho_{\mathrm{c}} \neq 1$. Moreover, by L'Hôpital's rule, $\lim _{\rho_{\mathrm{c}} \rightarrow 1}\left(\rho_{\mathrm{c}}^{n} \frac{n-n \rho_{\mathrm{c}}+\rho_{\mathrm{c}}^{n}-1}{\left(1-\rho_{\mathrm{c}}^{n}\right)^{2}}\right)^{\prime}=\left(n^{2}-1\right) /(6 n) \geq 0$ with equality only if $n=1$ and $\rho_{\mathrm{c}}=1$. Consequently, $\rho_{\mathrm{c}}^{n} \frac{n-n \rho_{\mathrm{c}}+\rho_{\mathrm{c}}^{n}-1}{\left(1-\rho_{\mathrm{c}}^{n}\right)^{2}}$ is strictly increasing in ρ_{c}, which implies $\sum_{i=0}^{n-1} p_{i}\left(q^{*}\right)$ is strictly decreasing in γ.
(ii) When $q^{*}=1, \sum_{i=0}^{n-1} p_{i}\left(q^{*}=1\right)=p_{0}\left(q^{*}=1\right) \sum_{i=0}^{n-1} \rho^{i}=\left(\frac{1-\rho^{n}}{1-\rho}+\frac{\rho^{n}}{1-\rho+\gamma \rho}\right)^{-1} \frac{1-\rho^{n}}{1-\rho}$, which clearly is strictly increasing in γ.

Lemma B3. For $\nu \geq 2$ and $\bar{\nu}=\nu+i$ for any $i \in N$, we have $y^{*}(\bar{\nu})>y^{*}(\nu) \geq 1$.
Proof of Lemma B3. It suffices to prove that (i) $y^{*}(\nu) \geq 1$ for $\nu \in[2,3)$; (ii) $y^{*}(\nu+1)>y^{*}(\nu)$ for $\nu \geq 2$. Note from the proof of Corollary 1 that $f(y, \nu)=n+1+\frac{1}{1-y}-\frac{n+1}{1-y^{n+1}}$ strictly increases in y, and $\lim _{y \rightarrow 1^{+}} f(y, \nu)=\frac{1}{2} n+1$.

When $\nu \in[2,3)$, we have $\lim _{y \rightarrow 1^{+}} f(y, \nu)=2$, i.e., $y^{*}(\nu=2)=1$. Then, due to $f(y, \nu)$'s monotonicity, we have that $y^{*}(\nu)$ is an increasing function of ν. Thus, $y^{*}(\nu) \geq 1$, for $\nu \in[2,3)$.

When $\nu \in[n, n+1)$, we have $f\left(y^{*}(\nu), \nu\right)-\nu=0$, and

$$
\begin{aligned}
f\left(y^{*}(\nu), \nu+1\right)-(\nu+1) & =n+1-\nu+\frac{1}{1-y^{*}(\nu)}-\frac{n+2}{1-\left(y^{*}(\nu)\right)^{n+2}} \\
& <n+1-\nu+\frac{1}{1-y^{*}(\nu)}-\frac{n+1}{1-\left(y^{*}(\nu)\right)^{n+1}}=f\left(y^{*}(\nu), \nu\right)-\nu=0
\end{aligned}
$$

where the inequality is from

$$
\frac{n+2}{1-y^{n+2}}-\frac{n+1}{1-y^{n+1}}=\frac{\sum_{i=0}^{n} y^{i} \sum_{j=0}^{n-i} y^{j}}{\sum_{i=0}^{n} y^{i} \sum_{i=0}^{n+1} y^{i}}>0
$$

Then, from $f(y, \nu)$'s monotonicity, we have $y^{*}(\nu+1)>y^{*}(\nu)$.

