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Abstract. How would the growing prevalence of real-time delay information affect a ser-
vice system?We consider a single-server queueing systemwhere customers arrive accord-
ing to a Poisson process and the service time follows an exponential distribution. There are
two streams of customers, one informed about real-time delay and the other uninformed.
The customers’ uninformed behavior may be due to information ignorance or rational
behavior in the presence of an information fee. We characterize the equilibrium behavior
of customers with information heterogeneity and investigate how the presence of a larger
fraction of informed customers affects the system performance measures, i.e., throughput
and social welfare. We show that the effects of growing information prevalence on system
performance measures are determined by the equilibrium joining behavior of uninformed
customers. Perhaps surprisingly, we find that throughput and social welfare can be uni-
modal in the fraction of informed customers. In other words, some amount of information
heterogeneity in the population can lead tomore efficient outcomes, in terms of the system
throughput or social welfare, than information homogeneity. For example, under a very
mild condition, throughput in a systemwith an offered load of 1 will always suffer if there
are more than 58% of informed customers in the population. Moreover, it is shown that for
an overloaded system with offered load sufficiently higher than 1, social welfare always
reaches its maximum when some fraction of customers is uninformed of the congestion
level in real time.
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1. Introduction
In today’s service industries, information about delays
is ubiquitous. The waiting time to cross the border
between the United States and Canada is posted online
andupdated in real time. Information about traffic jams
on major roads is distributed on radio, television, and
the Internet. Thanks to traffic-information-sharingapps
such as Waze, real-time information about traffic may
also be available even for roads that are not covered by
government-funded traffic detection andmonitoring.
Nevertheless, regardless of how widely available in-

formation about real-time delays may be, a large per-
centage of customers are still uninformed, for various
reasons that may be hard to ascertain. For exam-
ple, not everyone has a mobile device that might
make information acquisition almost effortless, or peo-
ple may simply overlook up-to-the-minute informa-
tion about delays before setting out. In an online poll
some 20,000 participants were asked, “How do you
most often check traffic information before going out?”;
47% answered, “I don’t check”; the rest checked vari-
ous sources, such as TV, radio, computer, and mobile
device.1 Some people may simply be overconfident

that they will be lucky. Others may sometimes check
for information but not always. Another reason for
information heterogeneity could be that small ser-
vice providers may be unable to afford the technol-
ogy for tracking and reporting the congestion levels. In
that case, only drop-in customers can see the queue,
whereas many potential customers cannot.

Thus, it is evident that many of today’s service en-
vironments are characterized by customer heteroge-
neous knowledge about delays: Some are informed
about the real-time delay; others are not. It is essential
to understand the interaction among customers with
information heterogeneity to answer the question:How
do system throughput and social welfare change as the
real-time delay information becomes more prevalent
due to advances in information technology?

On the one hand, Chen and Frank (2004) show, by
comparing full real-time delay information with no
such information, that delay information is a double-
edged sword for system throughput. When the sys-
tem load is low, customers might be turned away with
real-time information, but if they are uninformed they
are likely to stay. The throughput of an observable
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queueing system exceeds that of the unobservable
counterpart only when the system load is high. In a
more common situation where some, but not all, cus-
tomers are informed, would the system throughput
outperform its counterparts in the two extreme infor-
mation structures, i.e., full and no information?
On the other hand, again by comparing full and no

real-time delay information, Hassin (1986) argues that
delay information can improve social welfare. The intu-
ition is that congestion information helps better match
capacity with customer demand: Customers never join
a long queue or balk from a short one. That rationale is
consistent with the prevalence of real-time delay infor-
mation in today’s public service industries. However,
as we argue, it may be unrealistic to expect that all cus-
tomers have access to real-time delay information even
if it is readily available. More important, does the sys-
tem inevitably suffer efficiency loss from the presence
of uninformed customers?

To answer those questions, we study a single-server
queue as in Hassin (1986) but with a middle ground by
assuming a mix of two streams of customers who are
different in their information structures. Specifically,
the server posts the actual queue length in real time.
One streamof customers,whichwe call informed,makes
the decision to join or balk on the basis of the real-time
delays. The other stream, which we call uninformed, is
unawareof the real-time informationandbases the join-
or-balkdecisionon the averagedelay. In the basemodel,
we assume that the fraction of informed customers, (the
information level), is exogenous, and we study compar-
ative statics with respect to the information level, i.e.,
the influence of a larger informed fraction (i.e., growing
information prevalence) on system performance such
as throughput and social welfare.
Given the difference in the delay knowledge, the

two streams of customers have different self-interested
joining behavior. Informed customers use a threshold
policy: If the queue is observed to be shorter than a
particular threshold, they join it; otherwise, they balk.
Uninformed customers, by contrast, are aware of the
expected waiting time, and they randomize their deci-
sions between joining and balking. Although informed
customers use the same state-dependent threshold
strategy as they would in an observable queue (see,
e.g., Naor 1969), the presence of uninformed cus-
tomers undoubtedly influences the likelihood that an
informed customer will join the queue. This interaction
is not captured by observable or unobservable models
(for the latter, see, e.g., Edelson and Hilderbrand 1975).
However, our results reveal that service providers who
ignore this interaction between the two segments may
miss the opportunity to achieve better system perfor-
mance. In particular, we show that unless the customer
arrival rate is extremely low relative to the speed of
service, it is possible to improve throughput or social
welfare when only a fraction of customers are informed

of the real-time delay. Moreover, the system perfor-
mances crucially depend on the equilibrium joining
behavior of uninformed customers.
We show that the ubiquity of delay information

may have a positive or negative effect on the sys-
tem throughput. In particular, we prove that there
are two critical levels of offered loads. If the offered
load is above (or below) the higher (or lower) one, the
throughput always increases (or decreases) in the infor-
mation level. These results are consistent with the com-
parison of the full- and no-informationmodels in Chen
and Frank (2004). However, we also show that if the
offered load falls in the intermediate range between the
two critical levels, the throughput is always unimodal
in the information level. In addition, the through-
put reaches its maximum at the information level in
which all uninformed customers are about to adopt an
always-join strategy. This finding implies that treating
all customers equally as informed or as uninformed
may fail to achieve the potential value of effective infor-
mation control.

Contrary to the conventional wisdom that real-time
congestion information always improves social wel-
fare, we further demonstrate that social welfare is uni-
modal in the information level when the system expe-
riences a high enough offered load. (Only when the
offered load is relatively low does information preva-
lence always benefit social welfare.) This is because
growing information prevalence has positive and neg-
ative effects on social welfare. On the positive side,
if real-time system congestion is visible to customers,
system capacity can be more efficiently matched with
customer demand intertemporally because informed
customers seek service only when the queue is short
enough to yield a surplus. However, informed cus-
tomers’ selfish joining behavior may overload the
system, especially when the customer arrivals are over-
whelming. In this situation, the presence of unin-
formed individuals in fact mitigates the system con-
gestion: Uninformed customers are reluctant to join a
busy systemwithout real-time information. This disin-
centive helps free up the capacity to serve more of the
informed customers, who contributemore surpluses to
social welfare. Nonetheless, when a large proportion of
a high customer volume is informed, uninformed indi-
viduals eventually lose interest in the service. If they
all choose to balk, as information prevalence grows,
the system suffers from rising externality inflicted by
an increasing fraction of informed individuals. Hence
social welfare deteriorates as a result of growing infor-
mation prevalence.

Our results highlight the fact that some degree of
real-time information heterogeneity in the population
can lead to more efficient outcomes in terms of sys-
tem throughput or social welfare than can informa-
tion homogeneity. The presence of uninformed cus-
tomers does not necessarily harm the system. In fact,
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it improves system throughput when the system expe-
riences low offered loads and increases social welfare
when the system experiences high offered loads.
Our results also imply that there may be value

in intentionally introducing information heterogene-
ity and controlling the availability of real-time delay
information. For tractability, our base model studies
comparative statics by assuming an exogenous frac-
tion of uninformed customers. In Section 5, we propose
two strategies for achieving the optimal performance.
For the case where service providers are in charge of
information disclosure, we suggest offering different
granularities, real-time or expected, of delay informa-
tion. When customers are fully rational and make self-
interested joining decisions, we discuss how to achieve
a socially optimal degree of information heterogene-
ity through an information access fee. In Section 6,
we extend our results by allowing the informed and
uninformed segments to have heterogeneous service
rewards and unit delay costs. This model is well suited
to services with premium and regular customers when
the category of a customer is predetermined by other
exogenous factors. We find that system throughput
and social welfare can still be unimodal in the fraction
of informed customers.

2. Literature Review
The literature on the influence of real-time delay infor-
mation on customer behavior dates back to Naor
(1969). The author argues that in an observable ser-
vice system, customer self-interested joining deci-
sions, which ignore their negative externality on later
arrivals, overload the system and result in a deviation
from social optimality. Hassin and Haviv (2003) com-
prehensively summarize various extensions to Naor
(1969). Hassin (1986) studies a revenue-maximizing
server that has the option of completely suppressing
the real-time information about the queue length. The
author shows that when a revenue maximizer prefers
to reveal the queue length, so does a social planner.

Customers may sometimes be unable to directly
observe system states but have to rely on delay infor-
mation offered by service providers. One example
is delay announcements in call centers. Whitt (1999)
argues that informing customers about anticipated
delays can effectively reduce customer waiting times.
Guo and Zipkin (2007) study the effects of providing
information with different degrees of precision, i.e.,
no information, information on the queue length, and
on the exact waiting time. They find that exact delay
information may either improve or hurt social welfare
because customers are not all equally patient. This find-
ing is further strengthened by Guo and Zipkin (2009).
These papers on delay announcements all implicitly
assume that service providers offer truthful informa-
tion. However, customers are often unable to verify

the announced congestion information. Allon et al.
(2011) model customers’ strategic responses to the
provider’s unverifiable delay information and char-
acterize equilibrium signaling languages that emerge
between service providers and their customers. Allon
and Bassamboo (2011) further reveal that delaying
the announcements about waiting times can make the
announced information more credible.

There is an emerging stream of literature on behav-
ioral queues. Plambeck and Wang (2013) show how
customers’ lack of self-control and naiveté affect opti-
mal pricing and scheduling in a service system.
Huang et al. (2013) study canonical service models
with boundedly rational customers. They find that for
observable queueswith endogenized pricing, bounded
rationality results in a loss of revenue and welfare.
Also under the notion of bounded rationality, Kremer
and Debo (2016) predict and confirm with labora-
tory experiments that the high-quality firm’s profit
decreases in the fraction of informed customers when
uninformed customers learn about the quality of a
service from the queue length. Cui and Veeraragha-
van (2016) study a queue that serves a pool of cus-
tomers whomay have arbitrarily misinformed, yet self-
fulfilling, beliefs about the service rate. The authors
show that revealing the service information to con-
sumers can benefit revenues but may hurt individual
or social welfare. Another stream of behavioral-queue
research studies the herding effect. Veeraraghavan
and Debo (2009, 2011) and Debo and Veeraraghavan
(2014) study customer inferences about service qual-
ity through observation of the length of waiting lines,
which may lead to herding in queues.

All the papers above assume that customer percep-
tions of delay information are homogeneous; i.e., either
no one has access to the information or all receive the
same types of information. However, as we argued
before, it may be unrealistic to assume that all cus-
tomers are aware of system congestion even though
such information is available through many channels.
By contrast to previous work, we consider customers’
heterogeneous perceptions of delay information, i.e.,
only a fraction of customers can obtain the real-time
queue length information. Our work focuses on the
interaction between informed and uninformed cus-
tomers and the resulting system performance.

Most relevant to our work is Hassin and Roet-
Green (2017), which models rational customer deci-
sions among three actions: join, balk or incur a hassle
cost to inspect the queue length before making a join-
or-balk decision. The authors prove the existence of
a customer equilibrium strategy, which is effectively
a randomization of the three possible actions. The
authors show that the service provider can have a
higher throughput if customers must incur a has-
sle cost to inspect the queue and therefore only a
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fraction of customers are informed of the queue length.
They also find that social welfare is maximized when
the inspection is costless and thus all customers are
informed.
By contrast, our base model can be adapted to

account for the situation in which the service provider
charges an information fee (considered a payment trans-
fer between the provider and customers, unlike the
hassle cost) and customers make rational decisions
about whether to pay for being informed. Our results
imply that charging an information fee to induce infor-
mation heterogeneity can improve system throughput
or social welfare. Our extension to rationalizing cus-
tomers’ uninformed behavior with an information fee
may provide an alternative way of proving the equilib-
rium existence result in Hassin and Roet-Green (2017).
In addition, we identify the equilibrium behavior of
uninformed customers as the driving force of various
comparative statics results and provide explanations.
Last, the information-ignorant behavior may also

arise in other operations settings. Aflaki et al. (2015)
find that a subset of forward-looking customers may
intentionally choose to ignore the opportunity to
search for more information. As a result, this rational
ignorant behavior may increase the value of price com-
mitment to the society as a whole.

3. Modeling Customer Join-or-Balk
Decisions

A single-server facility expects a stream of customers
who arrive one at a time according to a Poisson process
with rate Λ. Customers are risk-neutral and are served
on a first-come-first-served basis. The service time is
an independent and identically distributed exponen-
tial random variable with mean 1/µ. We denote ρ ≡
Λ/µ as the offered load of the system. We assume that
the admission fee to the facility is an irrelevant fac-
tor in a customer’s join-or-balk decision and thus is
assumed to be zero; as a result, the service provider’s
profit does not contribute to the social welfare. Such
services may include border crossings, highways, and
rides at Disney World.2 Upon service completion, a
customer receives a reward R. During the sojourn time
in the system, a linear waiting cost with marginal rate
c is incurred. All the parameters, Λ, µ, R, and c, are
common knowledge. We further assume that the ser-
vice reward is enough to offset the waiting cost when
there is no line upon arrival, i.e., Rµ ≥ c. If a customer
chooses to balk, she receives zero utility. Moreover, we
assume that customers do not renege.
There are two streams of customers. The informed

stream checks the real-time information on the queue
length, Qt , and makes the join-or-balk decisions
accordingly. The other uninformed stream ignores, or
is unable to obtain, the real-time information. Thus,

the uninformed customers have to rely on the expected
queue length in deciding whether to join or balk. The
fraction of informed customers in the whole popula-
tion is denoted by an exogenous parameter γ ∈ [0, 1],
which measures the prevalence of real-time informa-
tion in the society. We also assume γ is common
knowledge and will discuss this assumption in Sub-
section 3.2. We denote by λI and λU the arrival rates
of informed and uninformed customer streams respec-
tively. Then, we have

λI ≡ γΛ and λU ≡ (1− γ)Λ.

Wenext discuss how the two customer streamsmake
their joining decisions in equilibrium.

3.1. State-Dependent Decisions of
Informed Customers

Informed customers observe the queue length in real
time and make decisions that are contingent on the
system state. After arriving and observing i customers
in the system, including the one receiving service if
any, an informed customer joins the queue if and only
if the expected net value R − c(i + 1)/µ ≥ 0, i.e., i + 1 ≤
Rµ/c. For simplicity of notation, bxc denotes the largest
integer that is less than or equal to x, and 〈x〉 ≡ x −
bxc ∈ [0, 1) denotes the fractional part of real number x.
Therefore, there is a threshold

n ≡ bνc , where ν ≡
Rµ
c
≥ 1,

such that an informed customer arriving at time t joins
the queue if and only if she observes Qt < n, and oth-
erwise balks. In other words, n − 1 is the maximum
queue length beyond which joining the queue would
lead to negative utility for an informed customer. Our
model of informed customer behavior is in the same
vein as those in observable queues (e.g., Naor 1969,
Hassin 1986).

3.2. Mixed Strategy Equilibrium of
Uninformed Customers

For simplicity, we follow the convention and restrict
our attention to symmetric equilibrium strategies used
by uninformed customers (see, e.g., Chapter 3 of
Hassin andHaviv 2003). The uninformed customers do
not know the real-time queue length. Their strategy can
be described by a fraction q ∈ [0, 1], which represents
the probability that each uninformed customer will
join the queue, or equivalently, the proportion of all
uninformed customers who will join the queue. Then,
their expected net utility equals R− cW(q), where W(q)
is the expected sojourn time for an uninformed cus-
tomer under a joining probability q.
Note that the uninformed customers’ knowledge of

W(q) requires their awareness of the fraction of in-
formed customers, γ. This is a critical assumption
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because it may sound odd that the uninformed cus-
tomers are unable to access to the real-time queue
length information, but they do know all system
parameters, including the fraction of informed cus-
tomers γ. On the one hand, this convenient but restric-
tive assumption allows us to focus on the impact
of delay information heterogeneity on system perfor-
mance.3 On the other hand, it can be valid for some tra-
ditional service settings, such as the restaurant indus-
try, where only drop-in customers can see the real-time
queue length but other potential customers may not. It
seems reasonable to assume that those customers who
have to travel a long distance to see the queue can infer
the fraction of drop-ins given the restaurant’s charac-
teristics, e.g., location and quality.4
We caution the assumption that the uninformed cus-

tomers know the information level γ is a strong one.
A less stylized model may incorporate the notion of
bounded rationality and explicitly model the unin-
formed customers’ learning of the expected delay as
an outcome of their actions (i.e., the functional form
of W(q)). For example, one may adopt the anecdo-
tal reasoning framework in Huang and Chen (2015)
to establish an asymptotic expected waiting time for
the uninformed individuals. In addition, one may also
use the idea in Cui and Veeraraghavan (2016) and
assume that uninformed customers make their join-
or-balk decisions under static but arbitrary beliefs
about the information level γ. A potential problem of
assuming static beliefs on γ is that uninformed cus-
tomers’ average experienced delays may differ from
their “believed” expectations. One might resolve this
issue by extending the idea to a dynamic setting
where customers holding different beliefs may update
theirs through repeated interactions with the system.
These extensions require uninformed customers to per-
form elaborate trial-and-error computations and could
also lead to information mis-calibration. Thus, these
extensions that directly model the learning process
of uninformed customers may or may not reach an
equilibrium as what we characterize under the full
information of γ. We leave these possible extensions
to future research. In addition, we relax the common
knowledge assumption on γ in Section 5 by allowing
the service provider to control γ or having γ endoge-
nized as the outcome of an information fee.
We next analytically characterize W(q). Assume that

the system is in the steady state, and let pi(q) denote
the probability that there are i customers waiting in the
queue when the joining probability of uninformed cus-
tomers is q. The collective behavior of the informed and
uninformed streams jointly determines the following
balance equations of the process:

(λI + qλU)pi(q)�µ · pi+1(q) if 0 ≤ i < n , (1)
qλU · pi(q)�µ · pi+1(q) if i ≥ n. (2)

Thus, the probabilitymass function of the queue length
can be written as:

pi(q)�
{
(ρC(q))i p0(q) if 0 ≤ i < n ,
(ρC(q))n(ρU(q))i−n p0(q) if i ≥ n ,

(3)

where, for notation convenience,

ρC(q) ≡
λI + qλU

µ
and ρU(q) ≡

qλU
µ
. (4)

(We may suppress the dependence of ρC(q) and
ρU(q) on q to further simplify the notation.) Using∑∞

i�0 pi(q)� 1, we can derive the idle probability

p0(q)�
( n−1∑

i�0
(ρC)i +

(ρC)n
1− ρU

)−1

�

(
1− (ρC)n

1− ρC
+
(ρC)n
1− ρU

)−1

.

(5)
Therefore, the expected sojourn time W in the steady
state is

W(q)�
∞∑

i�0

i +1
µ

pi(q)�
p0(q)
µ

[
1−(ρC)n

1−ρC
+

ρC
(1−ρC)2

+ (ρC)n
(

1− n
1−ρC

− 1
(1−ρC)2

+
1

(1−ρU)2
+

n
1−ρU

)]
. (6)

Note that the systemmust be in the steady statewhen it
reaches an equilibrium. If 0 < q∗ < (�)1, cW(q∗)� (<)R,
and thus the expected queue length is finite. On the
other hand, if q∗ � 0, only informed customers will
join the queue; as a result, the queue length never
exceeds n.
If there were only uninformed customers, it is obvi-

ous that, ceteris paribus, the expected sojourn time
W(q)would increase as q becomes larger. However, we
have two customer streams. As uninformed customers
join the line more frequently, informed customers are
less likely to join, which alleviates the congestion. The
next lemma confirms that the former effect dominates
the latter.
Lemma 1. For any given γ ∈ [0, 1), the queue length Q(q)
in the steady state is stochastically increasing in q and thus
the expected sojourn time W(q) is strictly increasing in q.

Following Hassin and Haviv (2003), we can deter-
mine the unique equilibrium joining probability of
uninformed customers by the monotonicity of W(q).
The next proposition summarizes this.
Proposition 1. Fix γ ∈ [0, 1). There exists a unique equi-
librium joining strategy q∗ for uninformed customers.
(i) (Always Balk: No Participation) q∗ � 0 if and only

if Ɛ[Q(0)] ≥ ν, i.e., cW(0) ≥ R.
(ii) (Always Join: Full Participation) q∗ � 1 if and only

if Ɛ[Q(1)] ≤ ν, i.e., cW(1) ≤ R.
(iii) (Randomize between Balking and Joining: Par-

tial Participation) q∗ ∈ (0, 1) must satisfy Ɛ[Q(q∗)] � ν,
i.e., cW(q∗) � R, if and only if Ɛ[Q(0)] < ν < Ɛ[Q(1)], i.e.,
cW(0) < R < cW(1).
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From the above proposition, we can further iden-
tify the system primitives, under which the unin-
formed customers always balk or join in equilibrium,
by exploring the condition of cW(0) ≥ R or cW(1) ≤ R,
respectively. In the rest of the primitive space, unin-
formed customers randomize their decisions between
joining and balking in equilibrium.

Corollary 1 (No Participation). All uninformed customers
always balk at the queue in equilibrium, i.e., q∗ � 0, if and
only if 1 ≥ γ ≥ γ∗0(ρ, ν) ≡ y∗(ν)/ρ, where y∗(ν) ≥ 0 is the
unique solution to n+1+1/(1− y)−(n+1)/(1− yn+1)� ν.5

Corollary 2 (Full Participation). All uninformed customers
always join the queue in equilibrium, i.e., q∗ � 1, if
and only if 1 ≥ γ ≥ γ∗1(ρ, ν) ≡ 1 − 1/ρ + (2/ρ)(〈ν〉 +√
〈ν〉2 + 4L(ρ, ν))−1, where L(ρ, ν) ≡ (〈ν〉(ρ − 1)ρn + ν −

νρ + ρn − 1)/((1 − ρ)2ρn) � (ν − 〈ν〉ρn − ∑n−1
i�0 ρ

i)/
((1− ρ)ρn) ≥ 0 and 〈v〉 ≡ v − n.6

Corollaries 1 and 2 show that uninformed customers
will always join or balk when the information level is
above a certain threshold. Nevertheless, depending on
the system offered load, only one threshold, γ∗0(ρ, ν) or
γ∗1(ρ, ν), can exist in the range of [0, 1] for a given set of
system primitives. The next proposition describes how
the offered load ρ and information level γ jointly deter-
mine the equilibrium joining behavior of uninformed
customers.

Theorem 1 (Equilibrium Strategy of Uninformed Cus-
tomers). For given ρ and ν, define

¯
ρ ≡ 1 − 1/ν and ρ̄ ≡

y∗(ν), respectively. The equilibrium joining probability q∗ of
uninformed customers depends on ρ and γ in the follow-
ing way:
(i) (Always Full Participation) If 0 ≤ ρ <

¯
ρ, q∗ � 1 for

all 0 ≤ γ ≤ 1.
(ii) (Partial to Full Participation) If

¯
ρ ≤ ρ ≤ ρ̄, q∗ , 0

for all 0≤ γ ≤ 1. In particular, 0< q∗ < 1 for 0≤ γ < γ∗1(ρ, ν)
and q∗ � 1 for γ∗1(ρ, ν) ≤ γ ≤ 1, where γ∗1(ρ, ν) ∈ [0, 1].
(iii) (Partial to No Participation) If ρ > ρ̄, q∗ , 1 for all

0 ≤ γ ≤ 1. In particular, 0 < q∗ < 1 for 0 ≤ γ < γ∗0(ρ, ν) and
q∗ � 0 for γ∗0(ρ, ν) ≤ γ ≤ 1, where γ∗0(ρ, ν) ∈ [0, 1].

Figure 1. (Color online) Illustration for Equilibrium Behavior of Uninformed Customers
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We next use Figure 1 to illustrate the results in The-
orem 1. The vertical axis represents the system offered
load ρ � Λ/µ, and the horizontal axis is ν � Rµ/c,
which ranges from n inclusive to n + 1 exclusive, for
some n ≥ 1. The lower dashed and upper solid curves
correspond to the two thresholds

¯
ρ and ρ̄ respectively.

Moreover, it can be shown that the solid curve always
stays above the dashed one and ρ̄ approaches infinity
when ν tends to n + 1. The two offered load thresholds

¯
ρ(ν) and ρ̄(ν) divide uninformed customer equilib-
rium strategies into three types in the primitive space
of (ρ, ν). We discuss each below.
In the area below

¯
ρ, the offered load is very low

and the expected sojourn time for uninformed cus-
tomers is very short. Even if no one observes the
queue length, i.e., γ � 0, all uninformed customers
choose to join the queue, i.e., q∗ � 1. As the infor-
mation level γ increases by an infinitesimal amount,
a small proportion of customers change from unin-
formed to informed. These converted customers now
join the queue only if they observe that Qt < n, rather
than join definitely as before. System congestion is
hence slightly alleviated. The reduced delay, on the
one hand, reinforces the remaining uninformed cus-
tomers’ incentives to join, with the result that they all
still join the queue as the information level γ grows.
This also intuitively justifies the validity of Corollary 2.
On the other hand, the slightly reduced congestion
also increases the probability that informed customers
will see a short queue. Therefore, the chance that an
informed customer joins the line slowly increases in γ
when q∗ � 1. Figure 2(a) depicts q∗ as a function of γ in
such a scenario when ρ �Λ/µ� 0.5, the service reward
R � 4, and marginal waiting cost c � 1. In this case,
uninformed customers always join the queue in equi-
librium regardless of the information level as shown in
Theorem 1(i), and informed customers’ probability of
joining rises slightly as γ increases.

As the offered load increases to intermediate lev-
els between the dashed and solid lines in Figure 1, a
large fraction or all of the uninformed customers join
the queue in equilibriumdepending on the information
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Figure 2. (Color online) Joining Probabilities of Informed and Uninformed Customers (µ � 1, R � 4, and c � 1)
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level γ (see Theorem 1(ii)). We first consider the case
in which almost all customers are informed, e.g., when
γ ≈ 1. Because of the relatively modest offered load,
uninformed individuals still have a strong incentive
to join. In fact, they all join, i.e., q∗ � 1. Moreover, the
likelihood that an informed customer will join the line
would decline slightly if a small number of informed
customers became uninformed, because the converted
customerswhoused to join onlywhen the queue length
was less than n will now undoubtedly join. This phe-
nomenon is depicted in Figure 2(b) for γ ≥ 0.51, when
the offered load ρ � 1.1. As the number of uninformed
individuals rises further, i.e., as γ→ 0+, the majority of
the customers who are lining up are uninformed and
must seek service less often to cope with the increas-
ing negative externalities from their uninformed peers.
Thus, q∗ decreases asγ→0+,which tends to increase the
likelihood that the queuewill be shorter than n because
of the modest offered load and hence the probability
that an informedcustomerwill join. Figure 2(b) alsodis-
plays the dynamics when 0 ≤ γ < 0.51.
As the offered load rises to high levels, i.e., above

the solid curve in Figure 1, only a fraction or none
of the uninformed customers join the queue in equi-
librium, depending on the information level γ (see
Theorem 1(iii)). In this case, the system expects enor-
mous customer volume. With no knowledge of the
real-time queue length, uninformed customers expect
a long line and have very little incentive to join. With
such a large customer volume, the advantage of real-
time congestion is clear: Any available spot with fewer
than n people ahead will be quickly taken. As the
fraction of informed customers increases, this effect
becomes more salient and the queue becomes even
longer. Informed customers observe a short queue less
often and have to balk more often as γ increases to 1.
For uninformed customers, the incentive to join the line
diminishes in γ until it vanishes. For the same reason,
a further increment in the fraction of informed cus-
tomers beyond the vanishing point where q∗ hits 0 only

causes those appealing spots to be occupied even faster
and the queue to be even longer. Hence, q∗ remains at 0
after the information level exceeds γ∗0(ρ, ν), as shown in
Corollary 1. Figure 2(c) displays such dynamics when
the offered load ρ � 2.3.

4. Effects of Heterogeneous Information
To answer the questions raised in the Introduction, we
investigate how a marginal increase in the information
level would affect system efficiency. The first central
step is to define the notion of efficiency. To an engineer,
throughput, which implies the use of the server, might
be the relevant efficiency measure. To an economist,
social welfare, which includes the overall economic
benefit, may be a more suitable measure. Therefore, we
consider the system throughput and social welfare as
our performance measures in this paper.

The system throughput, denoted by λ, consists of
the effective arrival rates of informed and uninformed
streams. That is,

λ(q)�
( n−1∑

i�0
pi(q)

)
λI + qλU. (7)

Likewise, social welfare is composed of contributions
from both segments. Let SI(q) and SU(q) be the net util-
ities accruing to informed and uninformed customers
in unit time, respectively. We have

SI(q)�
[ n−1∑

i�0
pi(q)

(
R− c

i + 1
µ

)]
γΛ and

SU(q)�
[
q
∞∑

i�0
pi(q)

(
R− c

i + 1
µ

)]
(1− γ)Λ

�q(R− cW(q))(1− γ)Λ.

Social welfare is thus the sum of all customer net utili-
ties, i.e.,

S(q)� SI(q)+ SU(q). (8)
Although informed customers use the same state-

dependent threshold strategy as they would in an
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observable queue (see Naor 1969), their contribu-
tions to the effective arrival rate and social welfare
also hinge on the uninformed customers’ strategy q
through pi(q), i � 0, . . . , n − 1. On the one hand, this
interaction, which is not captured by the observable
model or the unobservable one, implies the decisive
role of the uninformed customers’ equilibrium strat-
egy q∗ in a general circumstance. On the other hand,
it also increases the technical difficulty of the analy-
sis. One may be tempted to seek a general closed-form
expression for the equilibrium joining probability q∗
of uninformed customers as a function of γ and con-
duct comparative statics of λ(q∗(γ)) and S(q∗(γ)) on
the information level γ. However, it is a daunting, if
not impossible, task. That is because the equilibrium
joining probability q∗ ∈ (0, 1) is characterized by a high-
order polynomial equation: cW(q) � R, where W(q) is
specified in Equation (6). According to the Abel-Ruffini
Theorem, this type of equation in general has no alge-
braic solution in radicals. Although the insolvability of
q∗ hinders a direct approach to analyzing the system,
we will show monotonicity properties of equilibrium
throughput and social welfarewith respect to the infor-
mation level γ by taking an indirect approach. Some-
what surprisingly, their monotonicity properties are
uniquely determined by the type of equilibrium joining
strategy that uninformed customers adopt, i.e., always
balk (i.e., q∗ � 0), always join (i.e., q∗ � 1) or random-
ize between balking and joining (i.e., 0 < q∗ < 1), which
is an outcome of interactions between informed and
uninformed customers.

4.1. Throughput
Chen and Frank (2004) compare the throughput in the
observable (i.e., γ � 1) and unobservable (i.e., γ � 0)
queues. They demonstrate that there is a unique crit-
ical level ρ∗ such that if ρ > ρ∗, the throughput of the
observable queue is more than that of the unobserv-
able queue; the converse holds if ρ < ρ∗. Although
their result provides an answer to the comparison
of λ(q∗(γ � 0)) and λ(q∗(γ � 1)), it does not reveal
the marginal effect of information on the equilibrium
throughput λ(q∗(γ)) in general for γ ∈ [0, 1]. In this sub-
section, we characterize themonotonicity of the system
equilibrium throughput λ in the information level γ.
Note that it is difficult to directly analyze the th-

roughput formula λ(q) in (7). However, if we take
a summation of all system states in (1) and (2), we
observe that

n−1∑
i�0
(λI + qλU)pi(q)+

∞∑
i�n

qλUpi(q)� µ
∞∑

i�0
pi+1(q)

⇐⇒ λ(q)�
( n−1∑

i�0
pi(q)

)
λI + qλU � µ(1− p0(q)).

In other words, the system throughput equals the ser-
vice rate minus the vacant capacity due to idleness.

Therefore, we can explore themonotonicity of the equi-
librium throughput via the probability of idleness in
equilibrium.
Lemma 2. If q∗ ∈ [0, 1), the probability p0(q∗(γ)) that the
server is idle strictly decreases in γ.

Lemma 2 indicates that as long as uninformed cus-
tomers do not take the full-participation strategy in
equilibrium, the server is less likely to be idle as the
real-time congestion information becomes more preva-
lent. This is in sharp contrast to the case of q∗ � 1, where
p0(q∗(γ)� 1) increases in γ. Recall fromCorollary 2 that
q∗ is at 1 when γ hits γ∗1(ρ, ν). A further increase in
γ turns a fraction of uninformed customers who used
to join definitely into informed customers who line up
only if the queue is shorter than n. As a result, the
number of customers who actually join decreases as
γ increases and the server is more likely to be idle.
The next theorem summarizes the effects of changing
server idleness on system throughput due to growing
information prevalence.
Theorem 2 (Comparative Statics of Throughput). (i) If 0≤
q∗ < 1, the throughput λ(q∗) is strictly increasing in γ.
(ii) If q∗ � 1, the throughput λ(q∗) is strictly decreas-

ing in γ.
Theorem 2 says that system throughput benefits

from growing information prevalence unless all unin-
formed customers choose to join the queue in equilib-
rium. However, the negative effect of information on
throughput can occur over a large range. We illustrate
that with an example.
Example 1. Consider a system with the offered load
ρ that is close to 1. From Corollary 2, limρ→1 L(ρ, ν) �
〈ν〉n + n(n − 1)/2 by L’Hôpital’s rule and hence,
limρ→1 γ

∗
1(ρ, ν) ≤ 2/

√
2n(n − 1), which can be further

bounded by 1/
√

3≈ 57.7% when n − 1 ≥ 2.
Given that uninformed customers always choose to

join the queue when γ ≥ γ∗1(ρ, ν) (see Corollary 2),
Theorem 2 implies that if informed customers have
a joining threshold no less than 2, throughput will
always suffer if there are more than 58% of informed
customers in the population. This simple example
clearly shows that system throughput can easily suf-
fer from real-time congestion information if too many
customers are informed. This phenomenon is a result
of equilibrium responses by uninformed customers to
the heterogeneous availability of information. Hence,
it is not covered by the conventional observable and
unobservable frameworks. �

We next explain the intuition of Theorem 2 through
its connection to Lemma 2. As we have established,
maximizing the throughput is equivalent to minimiz-
ing the server’s probability of being idle, p0(q∗). In prin-
ciple, there are two reasons for idleness, i.e., inade-
quate customer arrivals (i.e., low arrival rate relative
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to the service speed) and an intertemporal mismatch
between capacity and demand, i.e., the mean and the
variability effects. To illustrate, consider an extreme
case in which the system has deterministic service and
interarrival times. For such a system, if the offered load
is small, say strictly less than one, the server inevitably
becomes idle upon completion of a job and has to wait
a while for the next customer. Obviously, this type of
idleness is caused by the low customer arrival rate rel-
ative to the service time. Thus, we refer to it as the
mean effect. For the same deterministic system, if the
offered load is large, say bigger than or equal to one, the
server is fully used and the throughput equals the ser-
vice rate. However, any variability in service or inter-
arrival times can occasionally cause the server to be
idle, referred to as the variability effect. The above dis-
cussion also suggests that the dominant effect in caus-
ing idleness depends on the offered load. We elaborate
below.
When the offered load is relatively low, the customer

arrival rate is low, and thus the server is very likely
to complete all tasks before another customer arrives.
Hence, having too few arrivals is the first-order effect
that gives rise to idleness. To improve throughput, the
provider has to increase the average probability that
an individual customer will join the line. This rationale
can also be seen mathematically. Rearranging (7), we
write the throughput as

λ(q∗(γ))�
( n−1∑

i�0
pi(q∗(γ))γ+ q∗(γ) · (1− γ)

)
Λ,

where the term in parentheses represents the aver-
age joining probability of the entire population. We

Figure 3. (Color online) Example: µ � 1, R � 4, c � 1, and Λ� 1.1

(a) Individual joining probability (b) Throughput
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next examine the role of information in motivating
customers to join the queue. Note that when the offered
load is low, the queue is expected to be short regard-
less of the information level γ. Although a slight
change in γ does affect the probability that the queue
will be shorter than n and thus the chance that an
informed individual will join the queue, such an effect
is very marginal because of the low offered load.
Therefore, an informed customer’s likelihood of join-
ing is not very sensitive to information level changes,
upward or downward. By contrast, uninformed cus-
tomers are more sensitive to the change in infor-
mation prevalence. As more uninformed individuals
become informed, the number of uninformed cus-
tomers clearly decreases. Moreover, those who used
to be uninformed but become informed also join less
often because they now anticipate positive, instead of
zero, net utility to justify their participation. These two
effects together give the remaining uninformed cus-
tomers a stronger incentive to join. Consequently, as
information becomes more prevalent, uninformed cus-
tomers are much more motivated to join the queue.
Note that their enthusiasm reduces the chance that the
informed customerswill join. Still, aswe argued before,
this effect is marginal because of the low offered load.
Combining both segments, we can see that the aver-
age customer joining probability rises as a function of
the information level γ, with the uninformed segment
being more strongly motivated and the informed seg-
ment being slightly discouraged. The dotted curve in
Figure 3(a) shows the weighted average joining proba-
bility of the entire customer pool. Aswe see, it increases
to γ � 0.51, at which point uninformed customers start
to join definitely, i.e., q∗ � 1. Additional information



Hu, Li, and Wang: Efficient Ignorance: Information Heterogeneity in a Queue
Management Science, 2018, vol. 64, no. 6, pp. 2650–2671, ©2017 INFORMS 2659

prevalence is unable to further stimulate uninformed
customers; hence, it loses its beneficial effect in moti-
vating them. As more uninformed customers become
informed after q∗ hits 1, they join less than when they
were uninformed. Consequently, the average joining
probability decreases, as shown by the dotted curve
in Figure 3(a) beyond γ � 0.51. Figure 3(b) displays
the throughput as a function of γ. The pattern in Fig-
ure 3(b) exactly matches that of the average joining
probability in Figure 3(a).
When the offered load is high enough, there are

ample customer arrivals relative to the service speed.
An intertemporal mismatch between capacity and
arrivals due to system variability becomes the primary
reason for server idleness. In this situation, increas-
ing the number of informed customers has two effects.
On the one hand, as more customers become informed,
the desirable positions with fewer than n persons wait-
ing ahead are taken more instantaneously. On the
other hand, with more informed customers, fewer cus-
tomers make uninformed decisions and abandon a
short queue. Both effects reduce the likelihood of server
idleness, thus improving the throughput.
In summary, increasing the availability of informa-

tion improves system throughput unless all the unin-
formed customers join the queue. However, the reason
for the phenomenon varies for different offered loads.
Under a low offered load, growing information preva-
lence improves the average joining probability of the
entire customer pool and also the throughput. How-
ever, the throughput declines if uninformed customers
cannot be further motivated when all of them have
already chosen to join. By contrast, if the offered load
is high, growing information prevalence helps mini-
mize the risk of idleness by more effectively matching
capacity with demand.

Our reasoning can easily explain thefindings ofChen
and Frank (2004). When ρ < ρ∗, the offered load is low.
The service provider wants to increase the probability
that each customer will join the queue. In that case, an
unobservable queue is preferable since customers will
only join under positive utility if they are informed, but
will tolerate zero utility if they are uninformed. When
ρ > ρ∗, the offered load is high. Minimizing mismatch
due to uncertainty through informationdisclosure is an
effective tactic. Thus, an observable queue is preferable.
Recall that the equilibrium strategy of uninformed

customers depends on the offered load according to
Theorem 1. Thus, the following result, as a direct corol-
lary of Theorems 1 and 2, specifies the effect of growing
information prevalence on the throughput in the prim-
itive space (ρ, ν).
Corollary 3. For given ρ and ν, define

¯
ρ ≡ 1 − 1/ν and

ρ̄ ≡ y∗(ν), respectively. Then,
(i) if 0< ρ <

¯
ρ the throughput λ(q∗) is strictly decreasing

in γ;

(ii) if
¯
ρ ≤ ρ ≤ ρ̄, the throughput λ(q∗) is strictly increas-

ing in γ ∈ [0, γ∗1(ρ, ν)) and is strictly decreasing in γ ∈
[γ∗1(ρ, ν), 1];

(iii) if ρ > ρ̄, the throughput λ(q∗) is strictly increas-
ing in γ.

Corollary 3 reveals that heterogeneity of informa-
tion about the real-time queue length can effectively
improve the system throughput, except for the case in
which the offered load is sufficiently low or high. We
refer to Figure 1 to elaborate. Case (i), where informa-
tion always hurts the throughput, corresponds to the
area below the dashed line. Case (iii), where informa-
tion always benefits the throughput, corresponds to the
area above the solid line. The more intriguing case (ii),
where the equilibrium throughput λ(q∗) is unimodal
in γ, corresponds to the intermediate area between the
two lines. In this area, there is always an intermedi-
ate information level γ∗1(ρ, ν) that maximizes system
throughput. Therefore, the system throughput with
heterogeneous congestion information outperforms its
counterparts where all customers are equally informed
or uninformed.

The comparison of unobservable and observable
queues in Chen and Frank (2004) is a special case of
Corollary 3 for comparing γ � 0 and γ � 1. Our result
shows that the unobservable and observable queues
are preferred in cases (i) and (iii), respectively. There-
fore, Corollary 3 implies that the critical level ρ∗ in
Chen and Frank (2004)must lie between

¯
ρ and ρ̄. More-

over, as illustrations for case (ii), Figure 3 shows that
the observable queue is preferable to the unobservable
counterpart when ρ � 1.1, whereas Figure 4 shows that
the opposite is true when ρ � 0.8. Hence, the critical
level ρ∗ in Chen and Frank (2004) is between 0.8 and
1.1 for the given set of parameters.

4.2. Social Welfare
In this subsection, we focus on social welfare. The exist-
ing literature argues that real-time congestion informa-
tion is efficient in improving social welfare because it
helps customers make efficient decisions: They do not
join a long queue and do not balk at a short one. Thus, it
is believed that delay information should be disclosed
for the benefit of society. Thanks to advances in infor-
mation technology, it is easier than ever to obtain all
kinds of congestion information for public facilities,
e.g., border services and highways. Is it really true that
all customers being informed always maximizes social
welfare? We answer that question in this subsection.
We first discuss the influence of the increasing avail-
ability of information on individual net utility and then
consider social welfare as a whole.

For ease of exposition, we denote the individual net
utility of informed and uninformed customers by S̄I(q)
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Figure 4. (Color online) Example: µ � 1, R � 4, c � 1, and Λ� 0.8

(a) Individual joining probability (b) Throughput
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and S̄U(q), respectively. Specifically,

S̄I(q)�
n−1∑
i�0

pi(q)
(
R− c

i + 1
µ

)
and

S̄U(q)� q
∞∑

i�0
pi(q)

(
R− c

i + 1
µ

)
� q(R− cW(q)).

By Proposition 1, an individual uninformed customer
receives a nonzero utility only if q∗ � 1 in equilibrium.
An informed customer earns not only a nonnegative
utility but also a higher utility than an uninformed cus-
tomer at any information level. It turns out that the
monotonicities of S̄I and S̄U in the information level are
also uniquely determined by the type of uninformed
customers’ equilibrium actions.

Theorem 3 (Comparative Statics of Individual Welfare).
(i) S̄I(q∗) is strictly decreasing in γ if 0 ≤ q∗ < 1 and is
strictly increasing in γ if q∗ � 1.
(ii) S̄U(q∗) � 0 if 0 ≤ q∗ < 1 and S̄U(q∗) is strictly increas-

ing in γ if q∗ � 1.

The results in the above theorem can be considered
as implications of Theorem 2. When 0 ≤ q∗ < 1, the sys-
tem throughput increases in the information level γ
by Theorem 2. Hence, the system is expected to be
more congested, a situation that erodes the net util-
ity of each informed individual. Yet when q∗ � 1, as γ
increases, the throughput decreases and system con-
gestion is relieved. Hence, informed and uninformed
individuals obtain more net utility.
We next consider the total consumer net utility, i.e.,

social welfare. By (8), we have

S(q)� SI(q)+ SU(q)� S̄I(q) · γΛ+ S̄U(q) · (1− γ)Λ.

In the case of q∗ ∈ [0, 1), since SU(q∗) � 0, social wel-
fare is simply the total utility of informed customers.
Although the individual net utility of informed cus-
tomers decreases in γ for q∗ ∈ [0, 1), the number of
informed customers increases. The next result shows
that the availability of information improves social wel-
fare unless no uninformed customers are interested in
the service, i.e., q∗ � 0.
Theorem 4 (Comparative Statics of Social Welfare). (i) If
q∗ � 0, the social welfare SI(q∗)+SU(q∗) is strictly increasing
in γ for 1≤ ν < 2 and is strictly decreasing in γ for ν ≥ 2.

(ii) If 0 < q∗ ≤ 1, the social welfare SI(q∗) + SU(q∗) is
strictly increasing in γ.

Theorem 4 first confirms the conventional wisdom
that, in general, real-time congestion information can
efficiently match the potential available capacity of a
system with customer demand. That is, with conges-
tion information, customers can join the service when
they observe a short queue, which signals forthcom-
ing availability of the server. We may therefore expect
that real-time information always improves social wel-
fare. However, a potentially negative effect due to the
(negative) queueing externalitymay also arise from the
disclosure of congestion information, as Theorem 3(i)
reveals. That is, growing information prevalence may
also result in constantly declining individual utility,
specifically when the system faces a high offered load.
As the fraction of informed customers increases, a
greater number of informed customers are compet-
ing with one another for the desirable positions with
fewer than n customers ahead of them. Because of the
high offered load and the efficiency of information in
matching waiting slots with demand, such positions
are quickly taken when they are available. Therefore,
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as γ increases, informed customers are expected to see
a longer queue upon arrival and to be more likely to
balk, both of which reduce their individual net utility.
The diminishing individual net utility of informed

customers would not cause a loss of social welfare as
long as uninformed customers were still interested in
the service, i.e., when q∗ > 0. That is because, when the
offered load and the information level are high, unin-
formed customers, given the disadvantage of being
unable to make informed decisions contingently, com-
promise by joining the queue infrequently since they
expect a long line. The low incentive for them to join
the line helps reduce the congestion. When an even
larger portion of the high-volume customers become
informed, uninformed customers have an even lower
incentive to join the line. This declining interest in
the service frees up the tight capacity for informed
customers, who earn higher utility than uninformed
customers. More important, the reduced engagement
of uninformed customers alleviates intensified com-
petition among informed customers for the appealing
positions and thus prevents informed customers’ join-
ing probability and individual net utility from quickly
declining. Nonetheless, after all uninformed customers
lose interest in the service and choose to balk, i.e., when
q∗ � 0, growing information prevalence only increases
the fraction of informed customers, whose individual
net utility therefore decreases faster when q∗ � 0, than
when q∗ > 0, without the compromise made by unin-
formed customers. As a result, if no uninformed cus-
tomers consider joining, social welfare starts to decline
as real-time delay information is more prevalent.

Figure 5 illustrates the patterns with ρ � 2.3. For
informed customers, their joining probability and indi-
vidual net utility decline with the information level γ.
However, when q∗ > 0, bothmetrics noticeably decrease
more slowly than when q∗ � 0. As we have discussed,
this difference can be explained by uninformed cus-
tomers’ disincentives to join. This declining incentive

Figure 5. (Color online) Example: µ � 1, R � 4, c � 1, and Λ� 2.3
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to join, together with the declining number of the unin-
formed customers, helps the system use its tight capac-
ity to serve more informed customers who can yield
higher welfare. These effects no longer exist when the
uninformed customers completely refrain from joining.

Combining Theorems 1 and 4, we can identify the
monotonicity properties of the social welfare under dif-
ferent offered loads.

Corollary 4. For 1 ≤ ν < 2, the social welfare is strictly in-
creasing in γ. For ν ≥ 2,
(i) if 0 ≤ ρ ≤ ρ̄ ≡ y∗(ν), the equilibrium social welfare is

strictly increasing in γ;
(ii) if ρ > ρ̄, the equilibrium social welfare is strictly

increasing in γ ∈ [0, γ∗0(ρ, ν)) and is decreasing in γ ∈
[γ∗0(ρ, ν), 1].

Theorem 4 and Corollary 4 have two implications.
First, full transparency in congestion information may
not achieve the highest efficiency. Specifically, a highly-
loaded system yields the most social welfare if some
customers are uninformed. Second, even if information
is not at the optimal level γ∗0(ρ, ν), the social welfare
under heterogeneous information structures can still
outperform a completely observable system for a large
range of information levels. For instance, social welfare
for any γ ∈ (0.38, 1) is higher than when γ � 1 in the
example shown in Figure 5.

As an exception, if customers have a very low service
reward R such that the informed customers join the
queue only when it is empty, in which case 1 ≤ ν < 2,
information always helps, even when q∗ � 0. From the
perspective of a server, the line temporarily holds wait-
ing customers and supplies the server with customers
upon completion of a job. If q∗ � 0, even uninformed
customers do not join a queue. As a result, no one
intends to queue at all. After completing a service job,
the server must remain idle and wait to resume cre-
ating surplus until the next customer arrives. There-
fore, the system has to rely on information ubiquity
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Table 1. Comparative Statics on γ

q∗ � 0 0 < q∗ < 1 q∗ � 1

Throughput ↑ ↑ ↓
Individual welfare of ↓ ↓ ↑

informed customers
Individual welfare of 0 0 ↑

uninformed customers
Social welfare ↓a ↑ ↑

a↑ for ν ∈ [1, 2).

to secure a customer as soon as its capacity is avail-
able. Behavior that is so different from the general case,
when informed customers are only willing to be in the
system alone, is also observed in Hassin (1986).

4.3. Summary
Table 1 summarizes the effects of growing information
prevalence on various performance measures when γ
is exogenous. The effects depend on the type of equilib-
rium joining strategy of uninformed customers, spec-
ified by their equilibrium joining probability q∗. One
can easily visualize the effects of information preva-
lence and the optimal information levels in the primi-
tive space (ρ, ν), illustrated in Figure 1, by combining
Theorem 1 and Table 1.
If throughput is the focal performance measure, the

service provider should reveal the queue length and
encourage information disseminationwhen the offered
load is high enough (the top area in Figure 1) and
conceal it when the offered load is low enough (the
bottom area in Figure 1). If the offered load is in an
intermediate range (the middle area in Figure 1), it is
optimal to have a segment of uninformed customers or
reveal the real-time information only to a fraction of
customers. However, if social welfare is the focal per-
formance measure, the service provider should reveal
the queue length information and encourage its dis-
semination when the offered load is relatively small
(the areas below the solid line in Figure 1). In other sit-
uations (the area above the solid line, i.e., the top area,
in Figure 1), it is optimal to have a segment of unin-
formed customers or, equivalently, to hide the real-time
congestion information from certain customers. In the
next section, we further discuss control of information
heterogeneity.

5. Achieving the Optimal Information Level
Our base model gives an optimistic view of the effects
of information heterogeneity. The fact that some cus-
tomers do not have real-time delay information indeed
helps system throughput when the offered load is rel-
atively low and improves the social welfare when the
offered load is relatively high. However, our analysis
so far assumes that the information level is exogenous.
In this section, we discuss two strategies that allow

the service provider to achieve optimal outcomes. The
first strategy is to randomize or control the granularity
of delay information (real-time or expected) offered to
customers if the service provider is in charge of the dis-
closure of such information, such as announcements of
delays at call centers or emergency rooms. The second
strategy results in the optimal fraction of informed cus-
tomers by charging a fee for obtaining real-time con-
gestion information.

5.1. Disclosing Heterogeneous Delay
Information to Customers

Given the benefit of information heterogeneity, service
providers may consider achieving higher performance
by deliberately creating such heterogeneity. For exam-
ple, call centers can determine the desired number
of informed and uninformed customers according to
system attributes, e.g., total arrival and service rates.
While offering real-time delay information to some
customers, they may also estimate and announce only
the expected delay to others. Service providers may
also randomize the information between real-time and
expected delay for all visitors. Specifically, a service
provider can simply implement the optimal solution
by revealing the real-time information with probabil-
ity γ∗ and the expected delay7 with probability 1− γ∗,
where γ∗ is the optimal fraction of informed customers.
This tactic allows the provider to influence customers’
joining behavior through congestion information of
varying accuracy. In addition, it does not require the
uninformed stream to adjust their joining behavior
through trial and error to reach the equilibrium, which
may be unrealistic in certain circumstances, e.g., emer-
gency room visits.

5.2. Endogenizing Information Levels Through
Information Fee

We now discuss the use of a fee to regulate self-inter-
ested customer decisions. Note that information igno-
rance seems irrational if access to the information is
free. Uninformed customers who do not obtain real-
time information always earn less utility than informed
customers. Therefore, if congestion information is free
and convenient, a rational, uninformed customer has
every incentive to learn how long the queue is. Con-
sequently, all customers would choose to be informed
in equilibrium under self-interested rational choices.
Next we discuss how the service provider can achieve
the optimal information level by charging an informa-
tion fee when customers are fully rational. For this pur-
pose, we temporarily assume in this subsection that all
customers exhibit self-interested, utility-maximization
behavior and that they know the system parametersΛ,
µ, R, and c.
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Figure 6. (Color online) Illustration of Information Fee (µ � 1, R � 4, and c � 1).
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5.2.1. Inducing the Optimal Throughput. The optimal
information level can be easily induced when the
offered load is very high or very low. Recall that if
ρ > ρ̄, the system throughput is maximized when all
customers are informed, i.e., γ � 1. Therefore, with con-
gestion information revealed by the provider, the self-
interested choice by all customers to be informed will
lead to an equilibrium that is sustained as the system
optimum. If ρ <

¯
ρ, no one being informed leads to the

maximum throughput. Thus, the provider can simply
conceal real-time congestion information such that no
customers can be informed.
In the case where the offered load is in an inter-

mediate range, i.e., when
¯
ρ ≤ ρ ≤ ρ̄, the system

throughput is maximized at γ � γ∗1 according to Corol-
lary 3. The optimal information level is not achiev-
able through decentralized actions by customers under
queue-length transparency or secrecy. To maximize
the throughput, a real-time information fee must be
imposed such that the exact fraction γ∗1 of customers
are informed.

Proposition 2 (Information Fee for Optimal Throughput).
Assume customers are rational. If the offered load ρ ∈ [

¯
ρ, ρ̄],

the service provider induces the optimal information level
that maximizes throughput by charging an information fee
f � S̄I(γ∗1).

We use Figure 6(a) with ρ � 1.1 to illustrate Propo-
sition 2. We first show that for the base model, if any
exogenous fraction of informed customers are forced
to pay the proposed information fee f , their individ-
ual utility shifts down by f units but is still nonneg-
ative, and the utility of an uninformed customer is

unchanged. Note that an informed customer’s net util-
ity reaches its minimum at γ � γ∗1 � 0.51, at which
point the system throughput peaks (see Figure 3). Now
assume that informed customers are forced to pay a
fee f � S̄I(γ∗1)− S̄U(γ∗1)� S̄I(γ∗1) for inspecting the queue
length. Then the utility curve of informed customers
shifts down to the position displayed by the thin dot-
ted line in Figure 6(a). As shown in the plot, informed
customers still earn a nonnegative utility after pay-
ing the information fee, regardless of their fraction of
the population. This implies that the additional infor-
mation fee f would not alter the joining behavior of
informed customers. Hence, the irrational, uninformed
customers have the same equilibrium joining prob-
ability q∗ as before, regardless of the proportion of
informed customers. In other words, if informed cus-
tomers are required to pay the fee f � S̄I(γ∗1), the system
behaves in exactly the same way as in the base model,
except that informed customers receive less utility at
any information level γ.

We next show that the system with an information
fee f � S̄I(γ∗1) reaches an equilibrium in which self-
interested choices lead to only γ∗1 fraction of customers
willing to pay the fee to be informed. Suppose that the
system is in a state where fewer than the γ∗1 fraction
of customers pay the fee and become informed, i.e.,
γ < γ∗1. From Figure 6(a), we see that not paying the fee
and staying uninformed earns zero utility and is dom-
inated by paying the information fee and becoming
informed, i.e., S̄I(γ) − f > S̄U(γ) � 0 for γ < γ∗1. There-
fore, some uninformed customers have the incentive to
become informed until γ reaches γ∗1. Next, consider the
system in a state where more than γ∗1 fraction of cus-
tomers are informed, i.e., γ > γ∗1. In this case, paying the
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information fee is not worthwhile. Saving the cost and
being uninformed yields higher utility, i.e., S̄I(γ) − f <
S̄U(γ) for γ > γ∗1. Therefore, some informed customers
have an incentive not to pay for real-time information
and become uninformed until γ reaches γ∗1. As a result,
at γ � γ∗1, both options, being informed or being unin-
formed, are equally appealing. The system reaches an
equilibrium in which the information level that max-
imizes the throughput is induced through customer-
decentralized, rational choices under the information
fee f � S̄I(γ∗1).
5.2.2. Inducing the Optimal Social Welfare. According
to Corollary 4, if the offered load is not high, i.e., ρ ≤ ρ̄,
the system attains its optimal social welfare when all
customers are informed. This can be accomplished by
customer self-interested choices under queue-length
information transparency, since being informed is a
dominant strategy. Hence, social welfare optimality
can be achieved without coercion as long as the ser-
vice provider reveals the real-time congestion informa-
tion. By contrast, if the offered load is high, i.e., ρ > ρ̄,
the optimal social welfare is achieved when γ � γ∗0, at
which point uninformed customers have an incentive
to become informed. The social welfare optimality thus
cannot be established through decentralized decisions
under information transparency. The service provider
must charge an information fee to achieve the socially
optimal solution.
Note that with an information fee, social welfare

includes the total customer welfare and the service
provider’s collected fees (see Hassin and Haviv 2003,
p. 49), i.e.,

S �

( n−1∑
i�0

pi(q)
(
R− c

i + 1
µ

)
− f

)
· γΛ

+ q · (R− cW(q)) · (1− γ)Λ+ f · γΛ.

The term f ·γΛ cancels out, reflecting the fact that from
the perspective of the entire society, the information
fee is only a transfer payment that has no effect on the
value of social welfare itself but can help regulate the
demand side and potentially achieve social optimality.

Proposition 3 (Information Fee for Optimal Social Wel-
fare). Assume customers are rational. If the offered load
ρ > ρ̄, the service provider induces the optimal information
level that maximizes the social welfare by charging an infor-
mation fee f � S̄I(γ∗0).

The idea behind Proposition 3 is similar to that be-
hind Proposition 2, but with a minor difference. We
use Figure 6(b), where ρ � 2.3 for illustration. As in
the example shown in Figure 6(a), if all informed cus-
tomers are required to pay the information fee (assum-
ing they cannot choose not to pay the fee and become
uninformed), their individual utility curve shifts from

the bold dashed line to the thin dotted one. For any
γ < γ∗0, informed customers, after paying for the infor-
mation, still earn positive utility, which is more than
the zero utility of uninformed customers. Hence, some
uninformed customers would like to inspect the queue
by paying the fee. The incentive for converting from
uninformed to informed vanishes until γ reaches γ∗0,
at which point being informed or uninformed receives
the same individual net utility. So far, the argument
for Proposition 3 is the same as that for Proposition 2.
The difference comeswhen γ > γ∗0. As illustrated by the
thin dotted line in Figure 6(b), for γ > γ∗0, the γ frac-
tion of informed customers would incur negative util-
ity after paying the information fee. This implies that
under self-interested choices, paying an information fee
f � S̄I(γ∗0) is not individually rational for the informed
customers whose fraction is more than γ∗0. As a result,
γ � γ∗0 emerges as an equilibrium through customer
decentralized decisions when the service provider
charges an information fee f � S̄I(γ∗0) for inspecting the
queue.

Although our discussion focuses on achieving the
optimal information level for maximizing throughput
or social welfare, the service provider may have other
objectives and can charge a different information fee to
achieve another desired information level.

6. Effects of Heterogeneous Customer
Characteristics

In the base model, we treated all customers as iden-
tical agents except for their possession of real-time
congestion information. It is plausible that informed
customers have other characteristics that make them
different from the uninformed customers and that
could also explain the difference in their information
possession. For instance, informed customers might
tend to own a smart phone and to be more techno-
logically savvy and younger, and hence perhaps less
patient. In this section, we explore how other het-
erogeneities in customer characteristics, in addition to
awareness of real-time congestion, may interact with
information heterogeneity to affect throughput and
social welfare. Specifically, we assume that informed
and uninformed customers receive a reward of, respec-
tively, RI and RU from the service. Moreover, their
respective unit waiting costs are cI and cU. In terms of
joining strategy, informed customers still use a thresh-
old policy: They join the queue if and only if its length
is less than nI ≡ bνIc ≡ bRIµ/cIc; otherwise, they balk.
By contrast, uninformed customers choose their join-
ing probability q according to the expected utility RU −
cUW(q). In other words, the dynamics of this extended
model evolve in the same vein as the base model. As
shown below, the additional customer heterogeneities
do not change our result for system throughput.
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Theorem 5 (ComparativeStaticsofThroughput).Consider
the model with heterogeneous customer characteristics.
(i) If 0 ≤ q∗ < 1, the throughput λ(q∗) is strictly increas-

ing in γ.
(ii) If q∗ � 1, the throughput λ(q∗) is strictly decreas-

ing in γ.

Recall that maximizing system throughput is equiv-
alent to minimizing the idleness of the server, which
results from inadequate customer arrivals and an
intertemporal mismatch between capacity and de-
mand, i.e., the mean effect and the variability effect.
As we have argued, ubiquity of congestion information
improves throughput by overcoming the mean effect
under low offered loads by motivating uninformed
customers, and by reducing the variability effect under
high offered loads by better matching capacity and
waiting slots with informed customers intertemporally.
The influence of information prevalence on the server
idleness remains robust when service rewards and unit
waiting costs become heterogeneous. So, too, does our
result for throughput.

By contrast, social welfare directlymeasures the total
service rewards less the costs of delay. Thus, the result
for social welfare is expected to be affected by customer
heterogeneities in service evaluation and patience. The
following result presents the conditions that do and do
not cause a difference.

Theorem 6 (Comparative Statics of Social Welfare). Con-
sider the model with heterogeneous customer characteristics.
Let νI ≡ RIµ/cI ≥ 2, nI ≡ bνIc and νU ≡ RUµ/cU.

(i) If q∗ � 0, the social welfare SI(q∗) + SU(q∗) is strictly
decreasing in γ.
(ii) If 0 < q∗ < 1, the social welfare SI(q∗) + SU(q∗) is

strictly increasing in γ if νI ≥ νU. Otherwise, the social wel-
fare might be unimodal in γ.

(iii) If q∗ � 1, the social welfare SI(q∗)+ SU(q∗) is strictly
increasing in γ if νI ≥ νU − ((1 + ρ − γρ)/(1 − ρ + γρ) −

Figure 7. (Color online) Example: µ � 1, RI � 4, RU � 6, c � 1 and Λ� 2.3
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〈νI〉)/((1− ρnI)(1− ρ+ γρ)2/((1− ρ)ρnI)+ 1). Otherwise,
the social welfare might be unimodal.

Theorem 6 reveals that if νI is no less than νU, our
welfare result for the homogeneous case still holds
for the heterogeneous extension. Otherwise, the social
welfare can even be unimodal in the information level
over the range such that q∗ ∈ (0, 1) or q∗ � 1.
The parameters νI and νU are the joining thresholds

for informed and uninformed customers if they both
could observe the queue length. Because customers
who can tolerate a longer queue presumably have a
higher valuation of service relative to their unit waiting
cost, we can consider νI and νU as normalized service
valuations of the two customer segments. In the homo-
geneous case, in which both segments of customers
value the service equally, the monotonicity of the social
welfare in the information level γ is primarily deter-
mined by the total utility of the informed customers.
Such an effect is expected to bemore salient if informed
customers value the servicemore than the uninformed.
Thus, the result in the heterogeneous case is similar to
the homogeneous case if νI is relatively larger than νU
as stated in Theorem 6 parts (ii) and (iii).

On the other hand, if uninformed customers value
the service more after certain normalization, they
desire the service more or are more patient. In either
case, the monotonicity property of social welfare might
be different from that in the homogeneous case. Fig-
ure 7 illustrates the differences in uninformed cus-
tomers’ equilibrium behavior and their effects on
informed customers and social welfare. For compari-
son with the homogeneous case, we choose the same
system parameters as those in Figure 5, except that
uninformed customers receive a reward RU � 6 instead
of 4, whereas the reward for the informed, RI, is still 4.
We first discuss the differences in the incentive and

behavior of uninformed customers between the hetero-
geneous and homogeneous cases and their effect on the
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informed customers whose joining threshold remains
unchanged. For the same information level γ, unin-
formed customers are more enthusiastic about joining
the queue in the heterogeneous case than they are in
the homogeneous case because of the higher service
reward.8 In Figure 7(a), this corresponds to the fact
that the solid curve representing q∗ in the heteroge-
neous case stays higher than the dotted curve repre-
senting q∗ in the homogeneous case. As a result of
the increased q∗, uninformed customers compete with
informed customers for waiting positions with fewer
than four people ahead of them, and informed cus-
tomers are less likely to join the line and earn positive
utilities in the heterogeneous case than in the homo-
geneous case for the same information level γ. This
explains why the dashed lines stay below the dash-dot
lines in Figures 7(a) and 7(b), respectively. Moreover,
because of the larger externalities exerted by unin-
formed customers (as a larger q∗ at the same γ) in the
heterogeneous case, the total welfare generated by the
informed segment is lower than it is in the homoge-
neous case, as shown by the bold dashed curve and the
thin dotted curve in Figure 7(c).
The difference in RI and RU changes the mono-

tonicities of both customer streams’ joining probability
with respect to the information level. For the hetero-
geneous case, uninformed customers’ equilibrium join-
ing probability q∗ increases in the information level γ,
whereas the joining probability of informed customers
first declines and then increases in γ. By contrast, for
the homogeneous case, q∗ decreases in the information
level γ given the relatively high offered load ρ � 2.3.
Since νU � 6 > νI � 4, 4 or 5 customers waiting ahead
of them are welcomed by uninformed customers but is
not acceptable to informed customers. As γ increases,
the number of uninformed customers declines. There-
fore, the fourth andfifthpositions in thequeue aremore
likely to be available,which contributes to an increasing
equilibrium joining probability q∗ of the uninformed
customers. As q∗ increases in γ, the probability that an
informed customerwill observe a queue shorter than nI
decreases. This decrease stopswhen q∗ reaches 1, corre-
sponding to γ � 0.72, beyond which a further increase
in γ only lowers the number of uninformed customers
with no way of further raising q∗. Therefore, conges-
tion starts to be alleviated as the throughput starts
to decrease (see Theorem 5(ii)). Therefore, the joining
probability of informed customers increases in γ after
q∗ hits 1. So do the individual net utilities of informed
and uninformed customers, as shown in Figure 7(b).9
The increasing joining probability q∗ of uninformed

customers in the information level γ can result in the
unimodal behavior of social welfare over the range
of q∗ ∈ (0, 1). As γ grows, uninformed customers join
the queue more often and thus inflict more negative

externalities on informed customers in the heteroge-
neous case. By contrast, as γ increases, uninformed
customers join the queue less often in the homoge-
neous case. Hence, in the heterogeneous case, the con-
sumer welfare of the informed segment, which also
equals the social welfare, does not necessarily increase
with the growing information prevalence as it does in
the homogeneous case; it may decline from a certain
point, as shown in Figure 7(c).

When q∗ � 1, individual net utility of an informed
customer increases in γ and thus the total consumer
welfare of the informed streammust also increase in γ.
For the uninformed stream, although the net utility of
an uninformed customer increases from zero, the size
of the segment shrinks to zero. The total uninformed
customer welfare is thus unimodal in γ. In the hetero-
geneous case, the welfare of the uninformed customers
contributes to a larger portion of social welfare. Thus,
the unimodal behavior of the uninformed customers’
welfare can lead to the unimodal behavior of social
welfare in γ over the range of q∗ � 1.
In summary, when customers of different informa-

tion segments exhibit different characteristics, the re-
sults for the system throughput remain the same as
in the homogeneous case from our base model. How-
ever, the nonmonotonic behavior of social welfare in γ
may also result from uninformed customers’ high ser-
vice valuation or low unit delay cost, in addition to the
real-time information heterogeneity.

7. Conclusion
Wehave considered information heterogeneity in a ser-
vice system and shown the effect of a larger proportion
of informed customers in the population on various
performance measures. In particular, that effect can be
determined by the type of equilibrium joining behav-
ior of uninformed customers. Perhaps surprisingly,
we have shown that a larger proportion of informed
customers may not necessarily benefit throughput or
social welfare.

Our results suggest that the presence of uninformed
customers who interact with informed customers does
not necessarily jeopardize system performance. Infor-
mation ignorance may not be as detrimental as one
might expect. In fact, information heterogeneity helps
the system in certain conditions. Our results may raise
the question whether the current practice of dissemi-
nating free delay information is the most effective way
to manage congestion, and whether it might be more
efficient to introduce an information fee to intention-
ally create heterogeneity in the possession of delay
information. Another implication of our results is that
service providers can be better off by limiting access
to real-time information about delays so as to inten-
tionally create a mix of informed and uninformed cus-
tomers. One possible way of doing that might be to tar-
get the delivery of delay announcements. For a loaded
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call center, the service provider might consider making
delay announcements only to a fraction of callers, e.g.,
loyal customers. This insight is also robust when the
two customer segments have heterogeneous character-
istics in service valuation and delay cost. Our findings
may well justify Disney World’s practice of allowing
only premium customers to obtain waiting-time infor-
mation about its popular attractions.10 In that case, the
amusement parkmay try tomaximize the total satisfac-
tion experienced by park visitors with heterogeneous
real-time delay information.
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Appendix. Proofs
Proof of Lemma 1. We first demonstrate a structural prop-
erty of pi(q): There exists q-dependent k ∈� such that pi(q) is
decreasing in q for all 0 ≤ i < k and pi(q) is strictly increasing
in q for all i ≥ k. For γ ∈ [0, 1), λU > 0. By (5), it is clear that
p0(q) is strictly decreasing in q. Moreover, since∑∞

i�0 pi(q)� 1,
there must exist some i′ ∈� such that pi′(q) is strictly increas-
ing in q. Let k � min{i ∈ � | pi(q) is strictly increasing in q}.
By the balance Equations (1) and (2), since pk(q) is strictly
increasing in q, pk+1(q) is strictly increasing in q, and recur-
sively, pi(q) is strictly increasing in q for all i ≥ k. By the
definition of pk(q), all pi(q)’s for 0 ≤ i < k decrease in q.

Now we use the property above to show the stochas-
tic monotonicity of Q. Fix l ∈ �. If l ≤ k, �(Q(q) ≥ l) � 1 −
�(Q(q) < l) � 1 − (∑l−1

i�0 pi(q)) increases in q, because pi(q),
for i ≤ l − 1 ≤ k − 1, decreases in q by part (i). If l > k,
�(Q(q) ≥ l)�∑∞

i�l pi(q) strictly increases in q, because pi(q),
for i ≥ l > k, strictly increases in q. The result follows by
definition of the usual stochastic order in Shaked and Shan-
thikumar (2007). Thus, for any 0≤ q1 < q2 ≤ 1, Q(q1) ≤st Q(q2),
which implies that Ɛ(Q(q1)) ≤ Ɛ(Q(q2)). By Theorem 1.A.8.
in Shaked and Shanthikumar (2007), the inequality must
be strict, i.e., Ɛ(Q(q1)) < Ɛ(Q(q2)) for q1 < q2. Since W(q) �
Ɛ(Q(q))/µ, W(q1) <W(q2). �

Proof of Proposition 1. The proof follows from similar argu-
ments to Hassin and Haviv (2003, p. 46). �

Proof of Corollary 1. By Proposition 1(i), no uninformed
customers join the queue if and only if cW(0) ≥ R. Plugging
in (6), we have cW(0) ≥ R⇐⇒ f (γρ) ≥ ν, where f (y) ≡ n +

1+1/(1− y)− (n +1)/(1− yn+1), y ≥ 0. The result follows if (1)
f (y) is continuous and strictly increasing and (2) f (y)� ν has
a unique solution. Since limy→1 f (y)� n/2+ 1, the continuity
is guaranteed. The monotonicity of f (y) results from the fact
that

f ′(y)� 1
(1− y)2 −

(n + 1)2 yn

(1− yn+1)2

≥ 1
(1− y)2 −

(n + 1)2
(1− yn+1)2

(
1

n + 1 ·
1− yn+1

1− y

)2

� 0,

where the last inequality is due to the inequality of arithmetic
and geometric means

yn/2
�

n+1
√

1× y × y2 × · · · × yn ≤
1+ y + y2 + · · ·+ yn

n + 1

�
1

n + 1 ·
1− yn+1

1− y
.

Note that f ′(y) � 0 only at a single point y � 1. Thus, f (y)
is strictly increasing in y. Last, since f (0) � 1, limy→∞ f (y) �
n+1 and ν ∈ [n , n+1), n ≥ 1. Therefore, f (y)� ν has a unique
solution y∗(ν) ≥ 0. �
Proof of Corollary 2. By Proposition 1(ii) and (6), unin-
formed customers all join the queue if and only if

cW(1) ≤ R

⇐⇒
(

1
1− (1− γ)ρ

)2

− 〈ν〉
(

1
1− (1− γ)ρ

)
− L(ρ, ν) ≤ 0,

where

L(ρ, ν) ≡
〈ν〉∑n−1

i�0 ρ
i +

∑n−1
i�1

∑i−1
j�0 ρ

j

ρn ≥ 0. (A.1)

Note that by (3),

0 ≤ �(Q ≥ n)�
∞∑

i�n
pi(q)�

∞∑
i�n
(ρC(q))n(ρU(q))i−n p0(q)

�(ρC(q))n(1− ρU(q))−1p0(q). (A.2)

Then (1 − ρU(q))−1 ≥ 0 for all q. In particular, if q � 1, (1 −
ρU(q � 1))−1 � 1/(1− (1− γ)ρ) ≥ 0. Therefore,

cW(1) ≤ R

⇐⇒
(

1
1− (1− γ)ρ

)2

− 〈ν〉
(

1
1− (1− γ)ρ

)
− L(ρ, ν) ≤ 0

⇐⇒ 0 ≤ 1
1− (1− γ)ρ ≤

〈ν〉 +
√
〈ν〉2 + 4L(ρ, ν)

2 .

The rest of the proof follows by solving for the condition on
γ from the above inequality. �
Proof of Theorem 1. We first demonstrate how the two crit-
ical information levels γ∗0(ρ, ν) and γ∗1(ρ, ν) change with
respect to the offered load ρ. Clearly, γ∗0(ρ, ν) � y∗(ν)/ρ
is strictly decreasing in ρ. Since limρ→∞ γ

∗
0(ρ, ν) � 0 and

limρ→y∗(ν) γ
∗
0(ρ, ν) � 1, we claim 0 ≤ γ∗0(ρ, ν) < 1 if and only if

ρ > y∗(ν); and γ∗0(ρ, ν) ≥ 1 if and only if ρ ≤ y∗(ν). On the other
hand, it is easy to show that γ∗1(ρ, ν) ≥ 0⇔ ρ ≥ 1 − 1/ν ≥ 0
because L(ρ, ν) ≥ 0 and ν ≥ 1. Due to the same fact that
L(ρ, ν) ≥ 0,

γ∗1(ρ, ν) ≤ 1 ⇐⇒ (〈ν〉(ρ−1)+2−ρ)(ρn+1−1) ≥ (n+1)(ρ−1).
(A.3)

The inequality always holds if ρ� 1. We then only discuss the
case ρ , 1. Dividing both sides by (1− ρ)(1− ρn+1) > 0, (A.3)
can be equivalently transformed as

γ∗1(ρ, ν) ≤ 1 ⇐⇒
〈ν〉(ρ− 1)+ 1+ 1− ρ

1− ρ ≤ n + 1
1− ρn+1

⇐⇒ n + 1+ 1
1− ρ −

n + 1
1− ρn+1 ≤ ν⇐⇒ ρ ≤ y∗(ν),

where the last equivalence results from the fact f (y)� n+1+
1/(1− y) − (n + 1)/(1− yn+1) is increasing in y.

(i) Consider 0 ≤ ρ < 1 − 1/ν. In this case, γ∗1(ρ, ν) < 0. By
Corollary 2, q∗ � 1 for all γ ∈ [0, 1].
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(ii) Consider 1 − 1/ν ≤ ρ ≤ y∗(ν). In this case, γ∗0(ρ, ν) �
y∗(ν)/ρ ≥ 1. Thus, q∗ , 0 for all γ ∈ [0, 1] by Corollary 1. How-
ever, γ∗1(ρ, ν) ∈ [0, 1] for 1−1/ν ≤ ρ ≤ y∗(ν), which implies that
q∗ � 1 for γ∗1(ρ, ν) ≤ γ ≤ 1. By the uniqueness of q∗, 0 < q∗ < 1
for 0 ≤ γ < γ∗0(ρ, ν).

(iii) Consider ρ > y∗(ν). In this case, 0≤ γ∗0(ρ, ν)< 1. There-
fore, q∗ � 0 for γ∗0(ρ, ν) ≤ γ ≤ 1. Then, for 0 ≤ γ < γ∗0(ρ, ν), it
is only possible that 0 < q∗ ≤ 1. However, by the uniqueness
of q∗, it can be easily shown, by contradiction, that it must be
that 0 < q∗ < 1 for 0 ≤ γ < γ∗0(ρ, ν). �
Proof of Lemma 2. Weconsider twocases separately: (i) q∗(γ)
� 0 and (ii) q∗(γ) ∈ (0, 1).

(i) q∗(γ) � 0. By (5), p0(γ) � (1 +
∑n−1

i�0 (γρ)i+1)−1, which is
strictly decreasing in γ.

(ii) q∗(γ) ∈ (0, 1). Because it is difficult to analytically solve
q∗ as a function of γ from cW(q) � R, we must verify the
result indirectly. Specifically, we focus on ρC � ρ[γ+ q∗(1−γ)]
instead of q∗ for the monotonicity of p0(γ). Because we are
only interested in the nontrivial cases where ρ > 0 and γ > 0,
ρC > 0. It is sufficient to show that dρC/dγ > 0 and dp0/dρC < 0.
Then we can obtain dp0/dγ � (dp0/dρC)(dρC/dγ) < 0 for
q∗ ∈ (0, 1).

First, we verify dρC/dγ > 0. When q∗ ∈ (0, 1), the relation-
ship between ρC and γ is determined by the equilibrium
equation cW(q∗)� (c/µ)∑∞i�0(i + 1)pi(q∗)� R. By (6),

cW(q∗)� c
µ

∞∑
i�0
(i +1)pi(q∗)�

c
µ

p0(q∗)
[

1−ρn
C

1−ρC
+

ρC
(1−ρC)2

+ρn
C

(
1− n
1−ρC

− 1
(1−ρC)2

+
1

(1−ρC+γρ)2
+

n
1−ρC+γρ

)]
�R,

(A.4)

where p0(q∗)� ((1− ρn
C )/(1− ρC)+ ρn

C/(1− ρC + γρ))−1. Define
〈ν〉 � ν − n. Then Equation (A.4) is equivalent to

〈ν〉(ρC − 1)ρn
C + ν − νρC + ρn

C − 1
(1− ρC)2ρn

C

�
1− 〈ν〉(1− ρC + γρ)
(1− ρC + γρ)2

,

(A.5)
where the left hand side is exactly L(ρC) defined in Corol-
lary 2. Recall from Equation (4) that 1− ρU(q∗)� 1− q∗λC/µ �

1 − ρC + γρ ≥ 0. Thus, Equation (A.5) gives rise to the only
positive solution to (1 − ρC + γρ), which further leads to a
unique expression of γ(ρC). In other words, we know from
Equation (A.5) that

1− ρC + γρ �
−〈ν〉 +

√
〈ν〉2 + 4L(ρC)

2L(ρC)

⇐⇒ γ(ρC)�
1
ρ
(2(〈ν〉 +

√
〈ν〉2 + 4L(ρC))−1

+ ρC − 1). (A.6)

It can be shown that L(ρC) is strictly decreasing in ρC, i.e.,
dL/dρC < 0 (see Lemma B1 in Online Appendix B). Therefore,
γ(ρc) in (A.6) is strictly increasing in ρc , i.e., dγ/dρC > 0.
Moreover, since the inverse function of a strictly increasing
function is also strictly increasing, dρC/dγ > 0.

Second, we show dp0/dρC < 0. We write p0(q∗) as a func-
tion of ρC:

p0(q∗)
(5)
�

(
1− ρn

C

1− ρC
+

ρn
C

1− ρC + γρ

)−1

(A.6)
�

[ n−1∑
i�0
ρi
C +

ρn
C

2 〈ν〉 +
√
ρ2n
C 〈ν〉2/4+ ρ2n

C L(ρC)
]−1

.

Recall that ρC > 0. Hence, if ρ2n
C L(ρC) is strictly increasing

in ρC, we can easily show that p0(q∗) is strictly decreasing
in ρC. Note

ρ2n
C L(ρC) � ρn

C

〈ν〉(1− ρC)(1− ρn
C )+ (1− ρC)

∑n−1
i�0 (1− ρi

C)
(1− ρC)2

� ρn
C

(
〈ν〉

n−1∑
i�0
ρi
C +

n−1∑
i�1

i−1∑
j�0
ρ

j
C

)
, (A.7)

which confirms that ρ2n
C L(ρC) is indeed strictly increasing in

ρC > 0 and implies that dp0/dρC < 0. �
Proof of Theorem 2. (i) Recall that λ(q)�µ(1−p0(q)). Hence,
for q∗ ∈ [0, 1), it is obvious that λ(q∗) strictly increases in γ,
since we have shown that p0(q∗) strictly decreases in γ in
Lemma 2.

(ii) If q∗ � 1, ρC(q∗ � 1)� ρ and ρU(q∗ � 1)� (1− γ)ρ. Then

λ(q∗ � 1) (7)�
( n−1∑

i�0
pi(1)

)
λI + λU

(3), (5)
�

(
1− ρn

1− ρ +
ρn

1− (1− γ)ρ

)−1

·
(

1− ρn

1− ρ

)
γΛ+ (1− γ)Λ�

−1+ ρ− γρ+ γρn

−1+ ρ− γρ+ γρn+1Λ.

Differentiating λ(q∗ � 1) w.r.t. γ, we have (d/dγ)λ(q∗ � 1) �
−(ρn(1 − ρ)2/(−1 + ρ − γρ + γρn+1)2)Λ < 0 for ρ > 0. Thus,
λ(q∗ � 1) is strictly decreasing in γ when q∗ � 1. �

Proof of Corollary 3. The result immediately follows by
combining Theorems 1 and 2. �
Proof of Theorem 3. (i) We first verify that dS̄I(q∗(γ′))/dγ
< 0 for any given γ′ such that 0 ≤ q∗(γ′) < 1. Lemma B2 in
Online Appendix B states that for any such γ′ there exists
k ≤ n − 1 such that dpi(q∗(γ′))/dγ < 0 for 0 ≤ i ≤ k and
dpi(q∗(γ′))/dγ ≥ 0 for k < i < n. Therefore,

dS̄I(q∗(γ′))
dγ

≤
k∑

i�0

dpi(q∗(γ′))
dγ

(
R− c

k + 1
µ

)
+

n−1∑
i�k+1

dpi(q∗(γ′))
dγ

(
R− c

k + 1
µ

)
�

(
R− c

k + 1
µ

) n−1∑
i�0

dpi(q∗(γ′))
dγ

< 0,

where the last inequality results from Proposition B1(i) (see
Online Appendix B).

When q∗ � 1, S̄I(q∗ � 1) �∑n−1
i�0 pi(q∗ � 1)(R − c((i + 1)/µ)) �∑n−1

i�0 ρ
i p0(q∗ � 1)(R− c((i + 1)/µ)). Since p0(q∗ � 1)� ((1− ρn)/

(1 − ρ) + ρn/(1 − (1 − γ)ρ))−1 strictly increases in γ, so does
S̄I(q∗ � 1).

(ii) By definition, S̄U(q∗) � 0 if 0 ≤ q∗ < 1. Thus, we need
only consider the case where q∗ � 1,

S̄U(q∗ � 1)�
∞∑

i�0
pi(q∗ � 1)

(
R− c

i + 1
µ

)
�p0(q∗ � 1)

( n−1∑
i�0
ρi

(
R− c

i + 1
µ

)
+

∞∑
i�n

ρn((1− γ)ρ)i−n

(
R− c

i + 1
µ

))
.

First, p0(q∗ � 1)� ((1− ρn)/(1− ρ)+ ρn/(1− ρ+ γρ))−1 strictly
increases in γ. Second, R − c((i + 1)/µ) < 0 for i ≥ n, which
implies ρn((1− γ)ρ)i−n(R− c((i +1)/µ)) increases in γ. There-
fore, S̄U(q∗ � 1) strictly increases in γ. �
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Proof of Theorem 4. We prove the results case by case for
q∗ � 0, q∗ ∈ (0, 1) and q∗ � 1, respectively. By definition, SU(q∗)�
0 for all γ if q∗ � 0. By Proposition 1(iii), q∗ ∈ (0, 1)must satisfy
that R � cW(q∗), hence, SU(q∗) � 0 for all γ if q∗ ∈ (0, 1). Then,
SU(q∗) > 0 can only happen when q∗ � 1.

(a) When q∗ � 0, we have SI(q∗ � 0) � (∑n−1
i�0 pi(0)(R − c ·

(i + 1)/µ)) · γΛ� (g(γρ)+ 〈ν〉)c, where

g(z) ≡ 1
z − 1 −

n + 1
zn+1 − 1 −

vz − v
zn+1 − 1 .

If n � 1, SI(q∗ � 0) � (−〈ν〉/(1+ γρ)+ 〈ν〉)c, which strictly in-
creases in γ. Hence so does SI + SU for 1 ≤ ν < 2.

We next prove that g(z) is a decreasing function of z for
z ≥ y∗(ν) when (i) n � 2, 3; and (ii) n ≥ 4. The proof relies
on an important property of y∗(ν) as shown by Lemma B3 in
Online Appendix B. That is, for ν ≥ 2 and ν̄ � ν + i for any
i ∈ N , it must be that y∗(ν̄) > y∗(ν) ≥ 1.

(i) When n � 2⇔ ν ∈ [2, 3), we have g(z)� (z− 〈ν〉)/(1+
z + z2), which is a decreasing function if

g′(z)� −z2 + 2〈ν〉z + 〈ν〉 + 1
(z2 + z + 1)2 < 0 ⇔ z > 〈ν〉+

√
〈ν〉2 + 〈ν〉 + 1.

Furthermore, we can analytically solve y∗(ν) defined in
Corollary 1 as y∗(ν)� (〈ν〉+

√
4− 3〈ν〉2)/(2(1− 〈ν〉)). By basic

algebra, we can prove that (〈ν〉 +
√

4− 3〈ν〉2)/(2(1 − 〈ν〉)) ≥
〈ν〉 +

√
〈ν〉2 + 〈ν〉 + 1 for 〈ν〉 ∈ [0, 1).

When n � 3⇔ ν ∈ [3, 4), we have

g(z)� z + z2

1+ z + z2 + z3 +
z − 〈ν〉

1+ z + z2 + z3

�
1

1/z + z
+

z − 〈ν〉
1+ z + z2

1
1+ 1/(z−3 + z−2 + z−1) ,

where 1/(1/z + z) and 1/(1 + 1/(z−3 + z−2 + z−1)) are clearly
positive and decreasing functions of z ≥ y∗(ν) ≥ 1; from
the result for the case of n � 2 and Lemma B3, we have
(z − 〈ν〉)/(1+ z + z2) is a positive and decreasing function for
z ≥ y∗(ν) ≥ y∗(ν − 1) ≥ 1 > 〈ν〉.

Thus, g(z) is strictly decreasing for z ≥ y∗(ν) when
n � 2 or 3.

(ii) When n ≥ 4, the first-order derivative of g(z) is

g′(z)�− 1
(z − 1)2 +

(n + 1)2zn

(zn+1 − 1)2 +
ν(z − 1)(nzn −∑n−1

i�0 z i)
(zn+1 − 1)2

ν<n+1
<

1
(zn+1 − 1)2

(
(nzn+1

+ 1)(n + 1) − (z
n+1 − 1)2
(z − 1)2

)
.

Then we just need to prove (nzn+1 + 1)(n + 1) ≤ (zn+1 − 1)2/
(z − 1)2. Clearly, when z � 1, we have (nzn+1 + 1)(n + 1) �
(zn+1 − 1)2/(z − 1)2. To prove (nzn+1 + 1)(n + 1) ≤ (zn+1 − 1)2/
(z − 1)2 for z ≥ y∗(ν) ≥ 1, we need only prove d((nzn+1 + 1) ·
(n + 1))/dz ≤ d((zn+1 − 1)2/(z − 1)2)/dz for z ≥ 1.

d((zn+1 − 1)2/(z − 1)2)
dz

� 2 (z
n+1 − 1)(nzn+1 − nzn − zn + 1)

(z − 1)3 � 2
n∑

i�0
z i

( n−1∑
i�0

n−1∑
j�i

z j

)
� 2 zn

z1/2

∑n
i�0 z i

zn/2

(∑n−1
j�0 z j

z(n−1)/2 +

∑n−1
j�1 z j

zn/2
zn/2

z(n−1)/2

+

∑n−1
j�2 z j

z(n+1)/2
z(n+1)/2

z(n−1)/2 + · · ·+
∑n−1

j�n−1 z j

zn−1
zn−1

z(n−1)/2

)

≥ 2 zn

z1/2 (n + 1)(n + (n − 1)z 1
2 + (n − 2)z + · · ·+ z(n−1)/2)

(using zk
+ z−k ≥ 2)

� 2zn(n + 1)
n∑

i�1
(z−1/2

+ 1+ z1/2
+ z · · ·+ z(i−2)/2)

� 2zn(n + 1)((2z−1/2
+ 2z1/2

+ 3+ 2z−1/2
+ z)

+

n∑
i�5
(z−1/2

+ 1+ z1/2
+ z + · · ·+ z(i−2)/2))

≥ 2zn(n + 1)
(
10+

n∑
i�5

i
)

(using 2z−1/2
+ z ≥ 3 and z1/2

+ z−1/2 ≥ 2 when z ≥ 1)
� n(n + 1)2zn

�
d((nzn+1 + 1)(n + 1))

dz
.

Note that the last inequality and the second to last equality
hold for n � 4, if we define ∑4

i�5 i ≡ 0.
(b) When q∗ ∈ (0, 1), again let ρC ≡ ρ(γ + q∗(1 − γ)). Then,

we have
SI(q∗)� S̄I(q) · γΛ

�
cΛ
µ

p0(q∗)
(
ν

1− ρn
C

1− ρC
−

1− (n + 1)ρn
C + nρn+1

C

(1− ρC)2

)
γ(ρC)

(A.5)
� cρp0(q∗)ρn

CL(ρC)γ(ρC). (A.8)
Substitute p0(q∗) and γ(ρC) with (5) and (A.6), respectively.
After some algebraic manipulations,
SI(q∗)

� c
(
1−

(
ν(〈ν〉+

√
〈ν〉2 +4L(ρC))

)
·
(
2ρn
CL(ρC)+

(
〈ν〉ρn

C +
1−ρn

C

1−ρC

)
(〈ν〉+

√
〈ν〉2 +4L(ρC))

)−1)
(A.9)

� c
(
1− ν

(1−ρn
C )/(1−ρC)+ (ρn

C/2)(〈ν〉+
√
〈ν〉2 +4L(ρC))

)
� c(1− νp0(q∗)), (A.10)

where the last equality is due to the fact that

p0(q∗)
(5)
�

(
1− ρn

C

1− ρC
+

ρn
C

1− ρC + γ(ρC)ρ

)−1

(A.6)
�

(
1− ρn

C

1− ρC
+
ρn
C

2 (〈ν〉 +
√
〈ν〉2 + 4L(ρC))

)−1

.

Recall that p0(q∗) strictly decreases in γ as shown in Lemma 2.
Then, (A.10) indicates that SI(q∗) strictly increases in γ.

(c) Lastly, when q∗ � 1, ρC � ρ. Then, we have
SI(q∗ � 1)+ SU(q∗ � 1)

�

( n−1∑
i�0

pi(1)
(
R− c

i + 1
µ

))
· γΛ

+

( ∞∑
i�0

pi(1)
(
R− c

i + 1
µ

))
· (1− γ)Λ

�
cΛ
µ

p0(1)
[(

n(1− ρ) − (1− ρn)
(1− ρ)2 + 〈ν〉

1− ρn

1− ρ

)
+ ρn

(
γ− 1

(1− ρ+ γρ)2 + 〈ν〉
1− γ

1− ρ+ γρ

)]
.
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First, p0(q∗ � 1)� ((1−ρn)/(1−ρ)+ρn/(1−(1−γ)ρ))−1 strictly
increases in γ. Second, because SI(q∗ � 1) + SU(q∗ � 1) > 0,
the term in the square bracket is positive. Moreover, it also
strictly increases in γ, since

∂
∂γ

(
γ− 1

(1− ρ+ γρ)2 + 〈ν〉
1− γ

1− ρ+ γρ

)
�

1− 〈ν〉 + (1+ 〈ν〉)(1− γ)ρ
(1− ρ+ γρ)3 ≥ 0,

where the last inequality results from the fact that 1 −
ρ + γρ > 0 implied by (A.2) and 〈ν〉 ∈ [0, 1). As a result,
SI(q∗ � 1)+ SU(q∗ � 1) is strictly increasing in γ. �

Proof of Corollary 4. The result immediately follows by
combining Theorems 1 and 4. �

Proof of Proposition 2. Customers evaluate their options,
between being informed after paying a fee f and staying
uninformed, and then pick the one that maximizes their net
utility. Note that S̄I(γ∗1) − f � S̄U(γ∗1) � 0. Therefore, no one
would have an incentive to deviate at γ � γ∗1 and thus γ � γ∗1
is an equilibrium. We will show that at any information level
γ , γ∗1, the informed customers or the uninformed customers
have an incentive to deviate.

Assume that 0 ≤ γ < γ∗1. Recall that ρ ∈ [
¯
ρ, ρ̄], 0 < q∗(γ) < 1

and then S̄U(γ∗1)� 0 for 0 < γ < γ∗1. By Theorem 3, 0 � S̄I(γ∗1) −
f < S̄I(γ) − f , with the latter decreasing in γ. Thus, S̄U(γ) <
S̄I(γ) − f for 0 < γ < γ∗1. Then, uninformed customers would
have an incentive to deviate and pay the information access
fee f to become informed.

If γ∗1 < γ ≤ 1, it is the informed customers who want to
deviate. To see this, we show that S̄I(γ) − f < S̄U(γ) for γ∗1 <
γ ≤ 1. Note that in this range of γ, q∗ � 1. We have

S̄I(γ) − f − S̄U(γ)

�

n−1∑
i�0

pi(q∗ � 1)
(
R− c

i + 1
µ

)
− f −

∞∑
i�0

pi(q∗ � 1)
(
R− c

i + 1
µ

)
�

c
µ
·

1− (v − n)(1− ρ+ γρ)
(1− ρ+ γρ)(1+ γρ((ρn − 1)/(ρ− 1)))ρ

n − f .

Since f is a constant, S̄I(γ)− f − S̄U(γ) apparently decreases
in γ. Thus, for γ∗1<γ≤1, S̄I(γ)− f − S̄U(γ)< S̄I(γ∗1)− f − S̄U(γ∗1)�
0⇐⇒ S̄I(γ)− f < S̄U(γ). �
Proof of Proposition 3. We omit the proof since it follows
the same idea as Proposition 2. �

Proof of Theorems 5 and 6. The proofs of these two theo-
rems are similar to those of Theorems 2 and 4, but are more
involved. See Online Appendix A for the details. �

Endnotes
1The poll results are available at http://www.gasbuddy.com/GB
_Past_Polls.aspx?poll_id�720 (last accessed May 12, 2017).
2Although a customer needs to buy a day pass, there is no additional
charge for any ride or attraction. Therefore, the entrance price is not
likely to be a factor when a customer chooses a ride.
3 If the uninformed customers are unaware of the information level γ,
it is difficult to disentangle the effects of delay information hetero-
geneity from those of the unawareness of γ.
4Even if we consider regular customer’s traveling cost, all of our
results still hold as shown in Theorems 5 and 6. In this case, let

RI � R, RU � R − t and cI � cU � c, where t is a fixed traveling cost.
Hence, νI ≥ νU. By Theorems 5 and 6, results in the base model still
hold for this case when νI ≥ νU.
5The cut-off point γ∗0(ρ, ν) can be shown to be always nonnegative
but can be larger or smaller than 1. If γ∗0(ρ, ν) > 1, the case q∗ � 0 is
moot, i.e., there exists no γ ∈ [0, 1] such that q∗ � 0.
6The cut-off point γ∗1(ρ, ν) can be negative. If γ∗1(ρ, ν) < 0, then the
case q∗ � 1 holds for all γ ∈ [0, 1]. Moreover, γ∗1(ρ, ν) can be larger
than 1. If γ∗1(ρ, ν) > 1, the case q∗ � 1 is moot, i.e., there exists no
γ ∈ [0, 1] such that q∗ � 1.
7 If the provider aims to induce the optimal social welfare for ρ >
y∗(ν), cW(q∗(γ∗) � 0) � R at γ∗ � γ∗0. Thus, uninformed customers
are actually indifferent between joining or balking if they are told
that the expected delay is W(q∗(γ∗)). To ensure that no uninformed
individuals join, the provider can announce a slightly longer delay
than W(q∗(γ∗)) in practice.
8 In fact, it can be rigorously proved that if νU ≥ bνIc + 1, uninformed
customers never choose to always balk in equilibrium regardless of
the offered load ρ �Λ/µ. That is not the case if νU � νI.
9Note that since RU > RI, an uninformed customer can receive higher
individual utility than an informed customer when q∗ � 1, as shown
in Figure 7(b). This situation never occurs in the homogeneous case.
10A TouringPlans.com Premium Subscription is needed for access to
the data on waiting times and crowds through a mobile app.
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