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Proof of Proposition 1. To satisfy the demand dě 0, the order size is q ě d and the diversion
size is q ´ dě 0. If dě η, then q ě dě η; the order cost cpq, dq “ wηq ´ s pq ´ dq that is linear in
q with a slope wη ´ s ą 0, thus it is minimized at q˚pdq “ d. If d ă η, the order cost is cpq, dq “
woq´ s pq´ dq when dď q ă η and cpq, dq “wηq´ s pq´ dq when q ě η. On the above two regions
the cost-minimizing solutions are respectively q “ d and q “ η. To find the optimum c˚pdq when
dă η, it suffices to compare the cost at the two solutions, i.e., c˚pdq “mintwod, pwη ´ sqη` sdu: if
0ď dď q̂, c˚pdq “wod and if q̂ă dă η, c˚pdq “ pwη ´ sqη` sd. ˝

Proof of the claim that the all-unit discount generates a unique incentive for diversion. First,
consider an incremental discount: Cpqq “ woq if 0 ď q ă η and Cpqq “ wηpq ´ ηq ` woη if q ě η.
To satisfy the demand d ě 0, the order size is q ě d and the diversion size is q ´ d ě 0. If d ě η,
then q ě dě η; the order cost cpq, dq “ wηpq´ ηq `woη´ s pq´ dq that is linear in q with a slope
wη ´ są 0, thus it is minimized at q˚pdq “ d. If dă η, the order cost is cpq, dq “woq´ s pq´ dq if
dď q ă η and wηpq ´ ηq `woη ´ s pq ´ dq if q ě η. On the above two regions the cost-minimizing
solutions are respectively q “ d and q “ η. To find the optimum c˚pdq when d ă η, it suffices to
compare the cost at the two solutions, i.e., c˚pdq “mintwod,woη´ s pη´dqu “wod. For both cases
of dě η and dă η, the optimal order size is q˚pdq “ d.

Second, consider a two-part tariff: Cpqq “ F `woq, qą 0. To satisfy the demand dě 0, the order
size is q ě d and the diversion size is q´ dě 0. The order cost is cpq, dq “ F `woq´ s pq´ dq for
qě d and is linear in q with a slope wo´ są 0. Thus it is minimized at q˚pdq “ d. ˝

Proof of Lemma 1. At any time t the reseller can change his inventory position from the current
position Iptq to a new position Iptq `∆Iptq by a combination of order qptq from the supplier and
gray market diversion gptq. Fix any time t. We first argue that since replenishment is instantaneous,
it is suboptimal for ∆Iptq “ ią 0 if Iptq ą 0. The action of changing the current inventory position
Iptq to Iptq` i could be profitably delayed to the time t0 ” inftxą t : Ipxq “ 0u. Letting ∆Iptq “ 0
and ∆Ipt0q “ ∆Ipt0q ` i has an improvement hpt0 ´ tqi ą 0 in the holding costs up to time t0.
Recursively applying this process results in an improved set of orders where ∆Iptq ą 0 only when
Iptq “ 0. We now argue that it is suboptimal for disposal of goods ∆Iptq “ j ă 0 if Iptq ą 0 since
this action could have been profitably performed at an earlier time t´1 ” suptx ă t : Ipxq “ 0u,
which has a holding cost improvement hpt´ t´1q | j |ą 0. Therefore, in an efficient inventory policy
any ordering or gray market diversion occurs only at times when Iptq “ 0. The set of times when
Iptq “ 0 represents a set of renewal points. Since the demand rate is stationary, the optimal action
is identical at each of these times. To complete the proof let I be equal to the optimal inventory
adjustment when Iptq “ 0 and then q˚pIq and g˚pIq correspond to the optimal order and gray
market diversion quantities respectively. ˝

Proof of Proposition 2. To solve for the optimal inventory policy, the reseller selects the cycle
inventory level I that minimizes the total costs. Given the optimal zero-inventory policy charac-
terized by Lemma 1, the total costs for each order cycle of length I{λ consist of order cost c˚pIq
given by Proposition 1 and holding cost hI2{p2λq. We can then calculate the long-run average
cost per unit time, denoted by gpp, I, sq with dependence on p and s suppressed in this proof, as
c˚pIqλ{I`hI{2. By substituting the reseller’s optimal cost function given by Proposition 1 (where
d“ I), we obtain the expression for gpIq as follows: gpIq “wom{pp´γpsq

α`hI{2 if 0ď I ă q̂, gpIq “
pwη ´ sqηm{rIpp´ γpsq

αs ` sm{pp´ γpsq
α ` hI{2 if q̂ ď I ă η and gpIq “ wηm{pp´ γpsq

α ` hI{2
otherwise.

Recall that in the first and third cases, the reseller orders up to the desired cycle inventory
level I and sells the entire order through the authorized channel over time; no goods are diverted
to the gray market in these two cases. However, in the second case, the reseller orders up to the
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quantity of η to enjoy the quantity discount and sells the excess amount η´ I to the gray market.
Within this range (q̂ď I ă η), the reseller will choose a locally optimal cycle inventory level Io that
minimizes the cost gpIq, where Io ”

a

r2pwη ´ sqηms{rhpp´ γpsqαs “ η
a

rwη ´ ss{rHpp´ γpsqαs.
The reseller selects the optimal cycle inventory and gray market diversion by comparing the

minimum cost gpIq in each of the three regions.
Since the demand and resale price is fixed for the reseller, the reseller’s revenue is fixed. The

reseller is aiming at minimizing cost gpIq. To find the minimum of gpIq we compare the optimal
solutions for each region of I P r0, q̂s, I P pq̂, ηq and I P rη,8q. Over the first and third regions,
gpIq is a linearly increasing function and is minimized at I “ 0 and I “ η respectively. Over the
second region I P pq̂, ηq, gpIq is convex and minimized at an interior point Io if it is indeed in pq̂, ηq.
Otherwise, gpIq is minimized at one of the boundary points q̂ or η.

The necessary and sufficient condition for I˚ “ Io is Io P pq̂, ηq, gpIoq ă gp0q and gpIoq ă gpηq.
The feasibility condition Io ą q̂ holds if and only if Hpp´ γpsq

α ă pwo ´ sq
2{pwη ´ sq; The other

feasibility condition Io ă η holds if and only if Hpp´ γpsq
α ą pwη ´ sq. The optimality condition

gpIoq ď gpηq always holds since gpIq is continuous at I “ η. Finally, the other optimality condition
gpIoq ă gp0q holds if and only if Hpp ´ γpsq

α ă pwo ´ sq2{r4pwη ´ sqs. Taking the intersection
of regions defined by the feasibility and optimality conditions yields that I˚ “ Io if and only if
pwη´ sq ăHpp´γpsq

α ă pwo´ sq
2{r4pwη´ sqs. Such holding costs exist only if wη P ps, pwo` sq{2s.

I˚ “ η if and only if I˚ ‰ Io and gpηq ď gp0q. gpηq ď gp0q holds if and only if Hpp´γpsq
α ďwo´wη

with equality holding atH “wo´wη. IntersectingHpp´γpsq
α ďwo´wη with the region where I˚ ‰

Io, i.e., Hpp´γpsq
α R pwη´s, pwo´sq

2{r4pwη´sqsq, results in Hpp´γpsq
α ďmintwη´s,wo´wηu.

Note that wη ´ săwo´wη if and only if wη ă pwo` sq{2. The necessary and sufficient condition
for I˚ “ η follows immediately.

The remaining possible holding cost regions are Hpp ´ γpsq
α ą pwo ´ sq2{r4pwη ´ sqs if wη ă

pwo` sq{2, Hpp´ γpsq
α ąwo´wη otherwise, which correspond to I˚ “ 0. ˝

Lemma 2. (Supplier’s Profit Function under Exogenous Resale Price). Given
that the reseller employs the optimal inventory policy in response to a discount wholesale
price wη, the supplier receives the following profit per unit of time: if H ă pwo ´ sq{r2pp ´
γpsq

αs, then Πpwηq “ mpwη ´ cηq
a

H{rpwη ´ sqpp´ γpsqαs when s ă wη ď s ` Hpp´ γpsq
α,

Πpwηq “ rmpwη ´ cηqs{rpp´ γpsq
αs when s ` Hpp´ γpsq

α ă wη ď wo ´ Hpp´ γpsq
α, Πpwηq “

rmpwo´ coqs{rpp´ γpsq
αs when wo ´ Hpp´ γpsq

α ă wη ď wo; if H ě pwo ´ sq{r2pp ´ γpsq
αs,

then Πpwηq “mpwη ´ cηq
a

H{rpwη ´ sqpp´ γpsqαs when s ă wη ď s` rpwo´ sq
2s{r4Hpp´ γpsq

αs,
Πpwηq “mpwo´ coq{pp´ γpsq

α when s`pwo´ sq
2{r4Hpp´ γpsq

αs ăwη ďwo.
Proof of Lemma 2. The supplier’s profit depends on the inventory strategy the reseller opti-

mally selects according to conditions shown in Proposition 2. The supplier’s profit per unit of
time is equal to the rate the supplier supplies the reseller multiplied by the profit margin per
unit. The margin is wo ´ co per unit if I˚ “ 0 and wη ´ cη per unit otherwise. If no goods
are sold to the gray market (i.e. I “ 0 or I “ η), the supplier’s demand rate is equivalent to
the reseller’s demand rate λ. However, if I “ Io then the supplier’s demand rate is ηλ{Io “
λ
a

Hpp´ γpsqα{pwη ´ sq. The supplier’s profit function is therefore Πpwηq “ λpwo ´ coq if I˚ “ 0,
Πpwηq “ λpwη ´ cηq

a

rHpp´ γpsqαs{rpwη ´ sqs if I˚ “ Io and λpwη ´ cηq if I˚ “ η. It remains to
show that the conditions denoted in the proposition are sufficient to entail the appropriate reseller’s
best response.

We begin by considering the conditions on the discount which imply I˚ “ η. The
conditions where I˚ “ η denoted in Proposition 2 are equivalent to wη P ps ` Hpp ´
γpsq

α, pwo` sq{2s
Ť

rpwo` sq{2,wo ´ Hpp ´ γpsq
αq. Hence I˚ “ η if and only if wη P ps `

Hpp´ γpsq
α,wo´Hpp´ γpsq

αq and such a wη exists if and only if wo´ są 2Hpp´ γpsq
α. There-

fore, as stated in the proposition, Πpwηq “ λpwη ´ cηq if and only if wη P ps`Hpp´ γpsq
α,wo ´
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Hpp´ γpsq
αq which is non-empty only if wo´ są 2Hpp´ γpsq

α.
Similarly the conditions from Proposition 2 which imply I˚ “ Io can be summarized as wη P

ps, s ` Hpp ´ γpsq
αq
Ş

ps, s ` pwo´ sq
2{p4Hpp´ γpsq

αqq
Ş

ps, pwo` sq{2q, which can be simplified
by considering whether wo ´ s ď hη{λ. If wo ´ s ď 2Hpp ´ γpsq

α then I˚ “ Io ô wη P ps, s `
pwo´ sq

2{p4Hpp´ γpsq
αqq, and if wo´ są hη{λ then I˚ “ Ioôwη P ps, s`Hpp´ γpsq

αq.
The remaining scenarios of wη are attributed to when the reseller selects I˚ “ 0. Instantiating

the regions corresponding to each of the reseller’s inventory policy into Πpwηq is sufficient to verify
that Lemma 2 holds. ˝

Proof of Proposition 3. Given the profit function in Lemma 2, we solve the problem of opti-
mizing Πpwηq over wη P ps,wos. For those discount prices wη which are close enough to wo and
elicit I˚ “ 0, the profit function Πpwηq “ λpwo ´ coq remains a constant. It is sufficient to set
wη “ wo to generate this profit. Consider H ě pwo ´ sq{r2pp ´ γpsq

αs. By Lemma 2, if wη ă
s` pwo´ sq

2{p4Hpp´ γpsq
αq, then I˚ ą 0. Under the assumption that să cη, Πpwηq is increasing

over wη P ps, s`pwo´ sq
2{p4Hpp´ γpsq

αqs, and is maximized at wη “ s`pwo´ sq
2{p4Hpp´ γpsq

αq

generating profit λrpwo ´ sq{2 ´ 2Hpp ´ γpsq
αpcη ´ sq{pwo ´ sqs for the supplier. Consider H ă

pwo´ sq{r2pp´ γpsq
αs. If wη ďwo´Hpp´ γpsq

α, then I˚ ą 0. Again since să cη, it is easy to see
that Πpwηq is continuous at wη “ s`Hpp´ γpsq

α and increasing over wη P ps,wo ´Hpp´ γpsq
αs,

and is therefore maximized at wη “ wo ´Hpp´ γpsq
α generating profit λpwo ´Hpp´ γpsq

α ´ cηq
for the supplier. We can now compare supplier’s profits given the reseller’s best response of I˚ ą 0
or I˚ “ 0 depending on whether pwo ´ sq{2 ąHpp´ γpsq

α. When Hpp´ γpsq
α ě pwo ´ sq{2, set-

ting wη “ wo generates greater profit for the supplier than wη “ s` pwo´ sq
2{p4Hpp´ γpsq

αq if
and only if Hpp´ γpsq

α ą p2co´wo´ sqpwo´ sq{r4pcη ´ sqs. When Hpp´ γpsq
α ă pwo ´ sq{2, set-

ting wη “ wo generates greater profit for the supplier than wη “ wo ´Hpp´ γpsq
α if and only if

Hpp´ γpsq
α ą co´ cη. ˝

Proof of Corollary 1. By Proposition 3, if Hpp´ γpsq
α ămintpwo ´ sq{2, co ´ cηu, then w˚η “

wo ´ Hpp ´ γpsq
α and the reseller’s best response is I˚ “ η. The quantity discount Hpp ´

γpsq
α per unit off wo is just to offset the increased holding cost in induced strategy I˚ “ η

compared to the inventory strategy I˚ “ 0 when no quantity discount is offered. Again by
Proposition 3, if pwo´ sq{2 ď Hpp ´ γpsq

α ď p2co´wo´ sqpwo´ sq{r4pcη ´ sqs, then w˚η “ s `

pwo´ sq
2{p4Hpp´ γpsq

αq and the best response is I˚ “ Io “
b

pw˚η ´ sq{Hpp´ γpsq
αη “ pwo ´

sqη{p2Hpp ´ γpsq
αq. For the reseller, the increased holding cost per cycle with length Io{λ is

pIo{2qpIo{λqh “ pwo ´ sq2η{p4Hpp ´ γpsq
αq as compared to the inventory strategy I˚ “ 0; the

loss in gray market diversion within the same cycle is pw˚η ´ sqpη ´ Ioq “ pwo ´ sq2ηr1 ´ pwo ´
sq{p2Hpp´ γpsq

αqs{p4Hpp´ γpsq
αq. The reseller’s gain from the quantity discount for the same

cycle is pwo´w
˚
η qI

o “ rwo´s´pwo´ sq
2{p4Hpp´ γpsq

αqspwo´sqη{p2Hpp´γpsq
αq, which is exactly

equal to the sum of the increased holding cost and loss in gray market diversion for the same cycle.
Therefore, we can conclude that the supplier’s optimal all-unit quantity discount leaves the reseller
with zero profits. ˝

Proof of Proposition 4. The reseller selects his resale price p and inventory policy I to maximize
the expected profit per unit of time. We write the reseller’s profit in terms of the endogenously
determined demand rate λ: πpI,λq “

?
mλ`γpsλ´gpI,λq, where

?
mλ`γpsλ is the reseller’s rev-

enue per unit of time and gpI,λq is the total costs per unit of time among all zero-inventory policies
characterized by the initial cycle inventory level I. By Proposition 2, for any given resale price p and
its corresponding demand rate λ, the reseller will choose the unique inventory policy that minimizes
gpI,λq. Using the reseller’s optimal inventory response to an arrival rate, we derive the minimum
inventory cost function g˚pλq “ gpI˚pλqq as follows: if săwη ă pwo` sq{2, g˚pλq “woλ when 0ă
λă r4pwη ´ sqmHs{rpwo´ sq

2s, g˚pλq “
a

4pwη ´ sqmHλ` sλ when r4pwη ´ sqmHs{rpwo´ sq
2s ď
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λ ă rmHs{rpwη ´ sqs, g
˚pλq “ wηλ `mH otherwise; if pwo ` sq{2 ď wη ď wo, g

˚pλq “ woλ when
0ă λă limsupcÑwη´mH{rpwo´ cqs, and g˚pλq “wηλ`mH otherwise.

The above cost function includes the cost of ordering, diversion and holding inventory. When the
order size is η and there is no gray market diversion, the reseller enjoys the low unit cost wη but suf-
fers an average holding cost ofmH per unit. In the case where the reseller diverts to the gray market,
the reseller optimizes the diversion quantity η´I by comparing the holding cost hI{2 with the diver-
sion cost wη ´ s. The reseller profit function with demand function λppq “m{pp´ γpsq

2 is πpλq “
π0pλq ”

?
mλ` pγps ´ woqλ if 0 ă λ ď r4pwη ´ sqmHs{rpwo´ sq

2s, πpλq “ πopλq ”
?
mλ` pγps ´

sqλ ´
a

4pwη ´ sqmHλ if r4pwη ´ sqmHs{rpwo´ sq
2s ă λ ă mH{rpwη ´ sqs and πpλq “ πηpλq ”?

mλ` pγps´wηqλ´mH otherwise, where π0, π
o and πη correspond to when the reseller adopts

the inventory policy I˚ “ 0, I˚ “ Io and I˚ “ η respectively. Note that π0pλq and πηpλq are concave
since mą 0 and πopλq is concave if

?
m´

a

4pwη ´ sqmH ą 0. We take the derivative of π0pλq, π
opλq

and πηpλq with respect to λ as Bπ0pλq{Bλ“
?
m{p2

?
λq`γps´wo, Bπ

opλq{Bλ“
?
m{p2

?
λq`pγps´

sq ´
a

pwη ´ sqmH{p2λq and Bπηpλq{Bλ“
?
m{p2

?
λq ` γps ´wη. The local optima satisfying the

first-order conditions are λ˚1 “m{p4pwo ´ γpsq
2q, λ˚2 “ p

?
m´

a

4pwη ´ sqmHq
2{p4ps´ γpsq

2q and
λ˚3 “m{p4pwη ´ γpsq

2q respectively, and the corresponding profits are π0pλ
˚
1 q “m{p4pwo´ γpsqq,

πopλ˚2 q “ p
?
m ´

a

4pwη ´ sqmHq
2{p4ps´ γpsq, πηpλ

˚
3 q “ m{p4pwη ´ γpsqq ´mH. The continuity

of πpλq is easily verified by checking at the two breakpoints λA “ 4pwη ´ sqmH{rpwo´ sq
2s and

λB “mH{rpwη ´ sqs. Since limλÑλA´ Bπ0pλq{Bλă limλÑλA` Bπ
opλq{Bλ, we eliminate the breakpoint

λA as a global optimum. Since limλÑλB´ Bπ
opλq{Bλ “ limλÑλB` Bπηpλq{Bλ, the global optimum

λ˚ “ λB only if λ˚2 “ λ
˚
3 “ λB. Hence, we conclude that the global optimum λ˚ must be one of the

local optima λ˚1 , λ˚2 and λ˚3 .
It remains to check under what conditions each local optimum dominates. First, note that

limλÑλB´ Bπ
opλq{Bλ“ limλÑλB` Bπηpλq{Bλď 0 if and only if H ě pwη ´ sq{r4pwη ´ γpsq

2s. Hence,
a necessary condition for λ˚2 to be a global optimum is H ě pwη ´ sq{r4pwη ´ γpsq

2s and a nec-
essary condition for λ˚3 to be a global optimum is H ď pwη ´ sq{r4pwη ´ γpsq

2s. Second, we
compare the profit of each of the batch order policies I˚ “ Io or I˚ “ η to the profit of the
order-as-you-go policy I˚ “ 0: π0pλ

˚
1 q ą πopλ˚2 q ô H ą p1´

a

ps´ γpsq{pwo´ γpsqq
2{r4pwη ´ sqs

and π0pλ
˚
1 q ą πηpλ

˚
3 q ô H ą 1{r4pwη ´ γpsqs ´ 1{r4pwo ´ γpsqs. Lastly, conditioned on whether

wη ´ γps ă
a

pwo´ γpsqps´ γpsq, the break points on H can be ordered as follows: if wη ´ γps ă
a

pwo´ γpsqps´ γpsq, p1´
a

ps´ γpsq{pwo´ γpsqq
2{r4pwη ´ sqs ą pwη ´ sq{r4pwη ´ γpsq

2s and if
wη ´ γps ě

a

pwo´ γpsqps´ γpsq, 1{r4pwη ´ γpsqs ´ 1{r4pwo ´ γpsqs ě pwη ´ sq{r4pwη ´ γpsq
2s.

Therefore, it is not hard to conclude that when wη ´ γps ě
a

pwo´ γpsqps´ γpsq, the optimal
demand rate is λ˚ “ λ˚1 if H ą p1´

a

ps´ γpsq{pwo´ γpsqq
2{r4pwη ´ sqs, λ

˚ “ λ˚2 if pwη´sq{r4pwη´
γpsq

2s ăH ď p1´
a

ps´ γpsq{pwo´ γpsqq
2{r4pwη ´ sqs and λ˚ “ λ˚3 otherwise; when wη ě

?
wos the

optimal demand rate is λ˚ “ λ˚1 if H ą 1{r4pwη ´ γpsqs ´ 1{r4pwo ´ γpsqs and λ˚ “ λ˚3 otherwise.
By the relationship between price and demand rate ppλq “m{

?
λ` γps and Proposition 2, the

corresponding reseller’s optimal pricing and inventory policy follows immediately. ˝

Proof of Proposition 5. It is readily apparent that when the reseller’s best response is to order
in batches without any gray market diversion, the supplier enjoys economies of scale from batch
processing at the same rate as the demand rate λpp˚ “ 2wη ´ γpsq “ m{r4pwη ´ γpsq

2s in the
authorized channel. As a result, the supplier’s profit per unit of time is Πηpwηq ” pwη´cηqm{r4pwη´
γpsq

2s. When the reseller’s best response is to order on demand and not to hold inventory at
all, the supplier delivers the product at the list price and the same rate as the demand rate
λpp˚ “ 2wo ´ γpsq “m{r4pwo ´ γpsq

2s in the authorized channel, and hence the supplier’s profit
per unit of time is Π0 ” pwo ´ coqm{r4pwo ´ γpsq

2s which is independent of the size of the all-
unit discount. Finally, when the reseller’s best response is to order in batches with part of the
order diverted to the gray market, the supplier enjoys economies of scale from orders of size η
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every I˚{λpp˚q time units, and hence the supplier’s profit per unit of time can be shown to be
Πopwηq ”mpwη ´ cηqp

a

H{rwη ´ ss´ 2Hq{r2ps´ γpsqs.
As a precursor to establishing this proposition we derive the supplier’s profit function. By

Proposition 4, the supplier’s profit function given that the reseller employs the optimal pric-
ing and inventory decisions can be described as Πpwηq “ Πηpwηq if wη P R

L
η

Ť

RH
η , Πpwηq “

Π0pwηq if wη P R
o and Πpwηq “ Π0 if wη P R

L
0

Ť

RH
0 . We let w̃ ” 1{p4H ` 1{pwo´ γpsqq `

γps, ŵ ” s ` p1´
a

ps´ γpsq{pwo´ γpsqq
2{4H, w ” p1´

a

1´ 16ps´ γpsqHq{p8Hq ` γps, w ”
p1`

a

1´ 16ps´ γpsqHq{p8Hq ` γps, where w and w are the two real roots, if they exist, of the
quadratic equation fpwq ” 4Hpw´ γpsq

2´w` s“ 0. Then, the regions of quantity discount that
induces different reseller pricing and inventory decisions are RH

0 ” t
a

pwo´ γpsqps´ γpsq ` γps ď
wη ď wo | wη ą w̃u, RH

η ” t
a

pwo´ γpsqps´ γpsq ` γps ď wo | wη ď w̃u, RL
η ” ts ă wη ă

?
wos |

4Hpwη´γpsq
2´wη` sď 0u, Ro ” tsăwη ă

a

pwo´ γpsqps´ γpsq`γps |wη ď ŵ,4Hpwη´γpsq
2´

wη ` s ą 0u and RL
0 ” ts ă wη ă

a

pwo´ γpsqps´ γpsq ` γps | wη ą ŵu. Regions RH
0 and RH

η are
mutually exclusive, with one of them possibly being an empty set. Regions RL

0 , Ro and RH
0 are

mutually exclusive, with no more than two of them possibly being an empty set.
To simplify the profit function, we condition on the magnitude of H according to the following

three cases.
case (i). Consider 4H ă 1{

a

pwo´ γpsqps´ γpsq ´ 1{pwo ´ γpsq, which is equivalent to
a

pwo´ γpsqps´ γpsq ` γps ă w̃, hence RH
η “ r

a

pwo´ γpsqps´ γpsq ` γps, w̃s and RH
0 “ pw̃,wos.

It can be easily verified that 4H ă 1{
a

pwo´ γpsqps´ γpsq ´ 1{pwo ´ γpsq is also equivalent to
a

pwo´ γpsqps´ γpsq ` γps ă ŵ, hence RL
0 “ Ø. Note that fpw “ sq “ 4Hpw ´ γpsq

2 ě 0 and
fpw “

a

pwo´ γpsqps´ γpsq ` γpsq ă 0 when 4H ă 1{
a

pwo´ γpsqps´ γpsq ´ 1{pwo ´ γpsq, hence
the smaller root w must be real-valued and exist between s and

a

pwo´ γpsqps´ γpsq ` γps, i.e.,
w P rs,

a

pwo´ γpsqps´ γpsq ` γpsq. Hence RL
η “ rw,

a

pwo´ γpsqps´ γpsq ` γpsq and Ro “ ps,wq
(Ro degenerates to Ø if w “ s which is equivalent to s4H “ 0). In summary, RL

0

Ť

RH
0 “ pw̃,wos,

RL
η

Ť

RH
η “ rw, w̃s and Ro “ ps,wq.

case (ii). Consider 1{
a

pwo´ γpsqps´ γpsq ´ 1{pwo´ γpsq ď 4H ď 1{r4ps´ γpsqs. Such an inter-
val of H indeed exists since 1{r4ps´ γpsqs ` 1{pwo ´ γpsq ě 1{

a

pwo´ γpsqps´ γpsq with equality
holding if and only if wo´γps “ 4ps´γpsq. Note that 4H ě 1{

a

pwo´ γpsqps´ γpsq´1{pwo´γpsq
is equivalent to w̃ď

a

pwo´ γpsqps´ γpsq`γps, hence RH
η “Ø and RH

0 “ r
a

pwo´ γpsqps´ γpsq`

γps,wos. Also note that 4H ě 1{
a

pwo´ γpsqps´ γpsq ´ 1{pwo ´ γpsq is equivalent to ŵ ď
a

pwo´ γpsqps´ γpsq`γps, hence RL
0 “ pŵ,

a

pwo´ γpsqps´ γpsq`γpsq. Furthermore, when 4H ď
1{r4ps ´ γpsqs, the discriminant of the quadratic equation fpwq “ 0 is non-negative, hence the
roots w and w of equation fpwq “ 0 must be real-valued. It is easy to check that 4H ě

1{
a

pwo´ γpsqps´ γpsq ´ 1{pwo ´ γpsq is equivalent to w ď ŵ. Since fpw “ sq ě 0, fpw “ ŵq ě
0 and fpw “

a

pwo´ γpsqps´ γpsq ` γpsq ě 0 with the last two inequalities ensured by 4H ě

1{
a

pwo´ γpsqps´ γpsq ´ 1{pwo ´ γpsq, the roots w and w must exist between s and ŵ, i.e.,
rw,ws Ď rs, ŵs. Hence RL

η “ rw,ws and Ro “ ps,wq
Ť

pw, ŵs. In summary, RH
0

Ť

RL
0 “ pŵ,wos, R

o “

ps,wq
Ť

pw, ŵs and RL
η

Ť

RH
η “ rw,ws.

case (iii). Consider 4H ď 1{r4ps´ γpsqs. According to the case (ii), we know that 4H ď 1{r4ps´
γpsqs ě 1{

a

pwo´ γpsqps´ γpsq ´ 1{pwo´ γpsq; 4H ą 1{
a

pwo´ γpsqps´ γpsq ´ 1{pwo´ γpsq leads
to that RH

η “Ø, RH
0 “ r

a

pwo´ γpsqps´ γpsq`γps,wos and RL
0 “ pŵ,

a

pwo´ γpsqps´ γpsq`γpsq.
Moreover, 4H ą 1{r4ps´ γpsqs guarantees that fpwq ą 0 for any w, hence RL

η “Ø and Ro “ ps, ŵs.
In summary, RH

0

Ť

RL
0 “ pŵ,wos, R

o “ ps, ŵs and RL
η

Ť

RH
η “Ø.

Thus, the profit function can be expressed as follows completing the derivation: case (i). if
4H ă 1{

a

pwo´ γpsqps´ γpsq´1{pwo´γpsq, Πpwηq “Πopwηq when săwη ăw (I˚ “ Io), Πpwηq “
Πηpwηq when w ď wη ď w̃, pI˚ “ ηq, Πpwηq “ Π0 when w̃ ă wη ď wo pI

˚ “ 0q; case (ii). if
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1{
a

pwo´ γpsqps´ γpsq ´ 1{pwo ´ γpsq ď 4H ď 1{r4ps ´ γpsqs, Πpwηq “ Πηpwηq when w ď wη ď
w, pI˚ “ ηq, Πpwηq “ Πopwηq when s ă wη ă w and w ă wη ď ŵ, pI˚ “ Ioq, Πpwηq “ Π0 when
ŵăwη ďwo pI

˚ “ 0q; case (iii). if 4H ď 1{r4ps´γpsqs, Πpwηq “Πopwηq when săwη ď ŵ pI
˚ “ Ioq,

Πpwηq “Π0 if ŵăwη ďwo pI
˚ “ 0q.

Given that the reseller employs the optimal pricing and inventory policy in response to a discount
wholesale price w˚η , the supplier earns the following profit per unit of time:

Taking the first-order derivative of Πηpwηq with respect to wη, we have BΠηpwηq{Bwη “mr1´
2pwη ´ cηq{pwη ´ γpsqs{r4pwη ´ γpsq

2s, hence the function Πηpwηq is increasing on p0,2cη ´ γpss
and decreasing on r2cη ´ γps,8q. Note that under the assumption that pwo´ γpsq{4ă ps´ γpsq ă
pcη ´ γpsq, we have

a

pwo´ γpsqps´ γpsq ă 2cη ´ γps. Taking the first-order derivative of Πopwηq
with respect to wη, we have

BΠopwηq

Bwη
“

m
?
H

4ps´ γpsqpwη ´ sq
3
2

”

´4
?
Hpwη ´ sq

3
2 `wη ` cη ´ 2s

ı

.

Taking the second-order derivative of Πopwηq with respect to wη, we have

B2Πopwηq

Bwη2
“
m
?
Hp4s´ 3cη ´wηq

8ps´ γpsqpwη ´ sq
5
2

ă 0.

Under the assumption that să cη, then B2Πopwηq{pBwη
2q ă 0 for wη ą s, namely, Πopwηq is strictly

concave on ps,8q. Furthermore, since să cη, limwηÑs` BΠopwηq{Bwη “8. Under the assumption
that wo´ γpsq{4ă ps´ γpsq ă pcη ´ γpsq,

BΠopwηq

Bwη

ˇ

ˇ

ˇ

ˇ

wη“ŵ

“
m
?
H

4ps´ γpsqpŵ´ sq
3
2

«

p1´
a

ps´ γpsq{wo´ γpsqq
2

4H
p2

c

s´ γps
wo´ γps

´ 1q` cη ´ s

ff

ą 0.

Therefore, Πopwηq is strictly increasing on ps, ŵs.
cases (i) and (ii). In both cases, 4H ă 1{

a

pwo´ γpsqps´ γpsq ´ 1{pwo ´ γpsq with the form of
the supplier’s profit function corresponding to case (i) of the supplier profit function. If 4H ă

1{
a

pwo´ γpsqps´ γpsq ´ 1{pwo ´ γpsq, by the derivation of the supplier profit function, w ă ŵ.
Hence, Πopwηq is increasing on ps,ws. Note that Πηpwηq and Πopwηq are continuous at w. Fur-
thermore, by the derivation of the supplier profit function, wă

a

pwo´ γpsqps´ γpsq and we know
under the assumption pwo´γpsq{4ă ps´γpsq ă pcη´γpsq,

a

pwo´ γpsqps´ γpsq ă 2cη´γps, hence
wă 2cη ´ γps. Recall that Πηpwηq is increasing on p0,2cη ´ γpss and decreasing on r2cη ´ γps,8q.
Therefore, if 2cη´γps ă w̃, Πηpwηq is increasing on rw,2cη´γpss and decreasing on r2cη´γps, w̃s;
otherwise, Πηpwηq is increasing on rw, w̃s. Finally, it remains to compare the supplier’s profit at the
list price wo and the one at the discount price mint2cη´γps, w̃u that maximizes the profit when a
discount is offered.

case (iii). We consider 4H ă 1{
a

pwo´ γpsqps´ γpsq ´ 1{pwo ´ γpsq. First, we consider
1{
a

pwo´ γpsqps´ γpsq´ 1{pwo´ γpsq ď 4H ď 1{p4ps´ γpsqq with the form of the supplier’s profit
function corresponding to case (ii) of the supplier profit function. Note that if 4H ď 1{p4ps´γpsqq,
wďwď

a

pwo´ γpsqps´ γpsq ă 2cη ´ γps, where the second inequality is shown in the derivation
of the supplier profit function and the last is due to the assumption pwo ´ γpsq{4 ă ps´ γpsq ă
pcη´γpsq. Hence Πηpwηq is increasing on rw,ws and maximized at w. We also know that Πopwηq is
increasing on ps,ws and rw, ŵs, and obtains its maximum at ŵ. Note that Πηpwηq and Πopwηq are
continuous at w and w. Therefore, if 1{

a

pwo´ γpsqps´ γpsq´1{pwo´γpsqq ď 4H ď 1{p4ps´γpsqq,
the discount price ŵ maximizes the supplier’s profit when a discount is offered. Second, we con-
sider 4H ą 1{p4ps ´ γpsqq with the form of the supplier’s profit function corresponding to case
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(iii) of the supplier profit function. Recall that Πopwηq is strictly increasing on ps, ŵs. Therefore,
if 4H ą 1{p4ps´ γpsqq, the discount price ŵ maximizes the supplier’s profit when a discount is
offered. Finally, combining the two subcases, it remains to compare the supplier’s profit at the list
price wo and the one at the optimal discount price ŵ. ˝

Proof of Corollary 2. First we check case by case how in Proposition 5 the bene-
fits from economies of scale are allocated between the supplier and reseller. When it
is optimal for the supplier to offer a discount price w˚η ă wo, the supplier enjoys
economies of scale. By Proposition 4, the reseller’s best response pp˚pw˚η q, I

˚pw˚η qq of pric-
ing and inventory is either to take the I˚ “ Io strategy, namely, pp˚pw˚η q, I

˚pw˚η qq “
`

2ps´ γpsq{r1´ 2
a

pwη ´ sqHs` γps, r
a

rwη ´ ss{p4Hq´ pwη ´ sqsη{ps´ γpsq
˘

or the I˚ “ η strat-
egy, namely, pp˚pw˚η q, I

˚pw˚η qq “ p2w
˚
η ´ γps, ηq.

If the best response of the reseller pp˚pw˚η q, I
˚pw˚η qq “ p2w

˚
η ´ γps, ηq, then the reseller’s profit

per unit of time is πpλpp˚pw˚η qqq “m{p4pwη ´ γpsqq ´mH. When the supplier sets wη “ wo and
does not enjoy economies of scale, the reseller’s profit per unit of time in the best response is
πpλpp˚pwoqqq “m{p4pwo ´ γpsq

2q. It is easy to see that if w˚η ď presp. ăqw̃, the reseller is (resp.
strictly) better off when the supplier offers a discount price wη “ w˚η as compared to when the
supplier does not, i.e., πpλpp˚pw˚η qqq ě presp. ąqπpλpp˚pwoqqq. By the proof of Proposition 5, we
can verify that to elicit I˚ “ η, in cases (i) and (ii) of Proposition 5, it is optimal for the supplier
to set w˚η “mint2cη ´ γps, w̃u ď w̃. Hence, in case (i), w˚η “ 2cη ´ γps ă w̃ and the reseller shares
part of the benefits from economies of scale; in case (ii), w˚η “ w̃ and the reseller shares no benefits.

By Proposition 5, the other scenario is that the supplier sets w˚η “ ŵ to induce the
reseller to take the I˚ “ Io strategy. By Proposition 4, the corresponding best response
of the reseller is pp˚pŵq, I˚pŵqq “

`

2
a

pwo´ γpsqps´ γpsq ´ γps, r
a

ps´ γpsq{pwo´ γpsq ´
ps´ γpsq{pwo´ γpsqsη{ps ´ γpsq4Hq

˘

and the reseller’s profit per unit of time is πpλpp˚pŵqqq “

p
?
m ´

a

4pŵ´ sqmHq2{p4ps´ γpsq,“ m{p4pwo ´ γpsqq “ πpλpp˚pwoqqq. Hence in this scenario,
the reseller earns the same profit as without the quantity discount and shares no benefits from
economies of scale.

From the analysis of all three cases, we can see that the resale price in equilibrium when the
supplier enjoys economies of scale is always strictly smaller than the resale price 2wo ´ γps that
the reseller will charge if the supplier does not enjoy economies of scale and offers the wholesale
price at wo. Hence, consumers will always enjoy a lower resale price with the supplier’s economies
of scale than without. ˝

Proof of Proposition 6. Fix an arbitrary wη ďwo. Since πdpp, Iq is a continuous function defined
over a compact set, there exists a unique largest optimizer I˚phq “maxtI 1 P r0, ηs | πdpp

1, I 1;hq “
maxpp,IqPRˆr0,ηs πdpp, I;hqu. It is easy to see that πdpp, I;hq has decreasing differences in ppp, Iq;hq,
hence the cycle inventory level I˚phq in the optimal diversion strategy is a decreasing function of h.
Furthermore, in one extreme case when h“ 0, intuitively, I˚ph“ 0q “ η. In the other extreme case
when h“8, intuitively, I˚ph“8q“ 0. Therefore, there must exist an interval ĤĎ p0,8q of holding
cost parameters such that the optimal diversion strategy resorts to the gray market (i.e., I˚phq ă η)
if and only if h P Ĥ. This is the condition on the holding cost parameter h to ensure the optimal
diversion strategy is not degenerate into a batch strategy. Now let us investigate when the optimal
diversion strategy is more profitable than the non-diversion strategies: pay-as-you-go strategy and
batch strategy. First, if the reseller adopts the pay-as-you-go strategy, then the associated long-
run average profit rate is πp ”maxppp´woqλpp, psp0qq, which is independent of the holding cost
parameter h. Since πdpp, I;hq is strictly decreasing in h, π˚d phq ”maxpp,IqPRˆr0,ηs πdpp, I;hq is strictly
decreasing in h. Moreover, note that π˚d p0q “ maxpPRpp ´ wηqλpp, psp0qq ě πp. Hence there must
exist a finite upper bound h̃ on the holding cost parameters such that the profit rate under the



8

optimal diversion strategy is weakly higher than that of the pay-as-you-go strategy if and only if
h P H̃” r0, h̃s, where h̃ is the solution to the equation π˚d ph̃q “ πp. Second, the associated long-run
average profit rate of the batch strategy is a special case of πdpp, Iq with I “ η. Hence the profit
rate under the optimal diversion strategy is higher than that of the batch strategy if and only
if I˚phq ă η, which is guaranteed as long as h P Ĥ. Combining Ĥ and H̃, we have the desired
result. A necessary and sufficient condition to guarantee that H “ Ĥ

Ş

H̃ is non-empty is that
BpmaxpPR πdpp, I;h“ h̃qq{BI |I“ηă 0. ˝

Proof of Proposition 7. Fix any h such that h P Hpw1ηq ‰ Ø for some w1η P rspηq,wos. By
implicit function theorem, gpp, Iq is decreasing in I P r0, ηs, because by taking derivative with
respect to p at both sides of g “ pη´ Iq{pI{λpp, pspgqqq and re-arranging terms, we have Bg{Bp“
r
η´I
I

Bλpp,psq

Bp
s{r1´ η´I

I

Bλpp,psq

Bps

Bpspgq

Bg
s ă 0. Under Assumption (CL), πdpp, I;wηq has increasing differ-

ences in pI;wηq. Moreover, by Bg{Bpă 0, we have I{λpp, pspgpp, Iqqq “ pη´Iq{gpp, Iq is increasing in
p. Hence, πdpp, I;wηq has increasing differences in pp;wηq. Therefore, the optimal diversion strategy
I˚pwηq “ maxtI 1 P r0, ηs | πdpp

1, I 1;wηq “ maxpp,IqPRˆr0,ηs πdpp, I;wηqu and p˚pwηq are increasing in
wη. In one extreme when wη “ spηq, the reseller enjoys the discount price by ordering in batches
but diverting the most fraction of the order without any diversion loss, i.e., I˚pwη “ spηqq “ 0.
In the other extreme when wη “ 8, intuitively, the unit diversion loss is tremendous and the
reseller does not have any incentive for diversion, i.e., I˚pwη “8q“ η. Then there exists an inter-
val Wphq Ď rspηq,wos of discount wholesale prices such that the optimal diversion strategy indeed
resorts to the gray market (i.e., I˚pwηq ă η) if and only if wη PWphq. The set Wphq is non-empty
since w1η must be an element in it.

When the reseller strategy is a diversion strategy, the supplier’s profit rate is
Πdpwη; cη;p, Iq ” pwη ´ cηqη{rI{λpp, pspgpp, Iqqqs. Since I{λpp, pspgpp, Iqqq is increasing in p by
deviation and increasing in I by Assumption (CL), and pp˚pwηq, I

˚pwηqq is increasing
in wη, then I{λpp, pspgpp, Iqqq |pp,Iq“pp˚pwηq,I˚pwηqq is increasing in wη. Hence, Π˚dpwη; cηq ”
Πd

`

wη; cη; pp, Iq “ pp
˚pwηq, I

˚pwηqq
˘

has increasing differences in pwη; cηq, and therefore w˚η pcηq “

arg maxwηPrspηq,wosΠ
˚
dpwη; cηq is increasing in cη. Then there exists an interval Ĉ of batch supply costs

such that w˚η pcηq PWphq if and only if cη P Ĉ. Moreover, the supplier’s profit rate under the reseller’s
pay-as-you-go strategy is Πp ” pwo´coqλpp

˚pI “ η;woq, psp0qq, where p˚pI “ η;woq “ arg maxpPRpp´
woqλpp, psp0qq. Since Π˚dpwη; cηq is strictly decreasing in cη, then Π˚dpw

˚
η pcηq; cηq is strictly

decreasing in cη. Moreover, under the additional Assumption (P), p˚pIq “ arg maxpPR πdpp, Iq
is increasing in I. Hence Π˚dpw

˚
η p0q; 0q ě Π˚dpwo; 0q “ woη{rI{λpp, pspgpp, Iqqqs |pp,Iq“pp˚pwoq,I˚pwoqqě

woη{rI{λpp, pspgpp, Iqqqs |pp,Iq“pp˚pI“η;woq,ηqěΠp, where the second-to-last inequality is due to that
I{λpp, pspgpp, Iqqq is increasing in pI, pq and that pp˚pwoq, I

˚pwoqq “ pp
˚pI “ I˚pwoq;woq, I

˚pwoqq ď
pp˚pI “ η;woq, ηq ensured by that p˚pIq is increasing in I. Therefore there exists a finite upper
bound c̃ on the batch supply cost such that the supplier’s profit rate under the induced optimal
diversion strategy with a discount wholesale price is strictly higher than under the induced pay-
as-you-go strategy without offering a discount wholesale price if and only if cη P C̃ ” p0, c̃q, where
c̃ is the solution to Π˚dpw

˚
η pc̃q; c̃q “Πp. Finally, the supplier’s profit rate under the reseller’s batch

strategy is pwη ´ cηqλpp
˚pI “ η;wηq, psp0qq. If I˚pwηq ă η, then p˚pI “ I˚pwηq;wηq ď p

˚pI “ η;wηq
and Πdpwη; cη;p

˚pwηq, I
˚pwηqq ě Πdpwη; cη;p

˚pI “ η;wηq, ηq, since Πdpwη; cη;p, Iq is decreasing in
pp, Iq. In other words, the supplier’s profit rate under the reseller’s optimal diversion strategy is
higher than under the reseller’s batch strategy if and only if I˚pw˚η pcηqq ă η if and only if cη P Ĉ.

Let C ” Ĉ
Ş

C̃ and we have the desired result. A necessary and sufficient condition to guarantee
that C is non-empty is that BpmaxpPR πdpp, I;w˚η pc̃q, c̃qq{BI |I“ηă 0. ˝


