Online Appendix to “When Gray Markets Have Silver Linings: All-Unit Discounts,
Gray Markets and Channel Management”. PROOFS.

Proof of Proposition 1. 'To satisfy the demand d > 0, the order size is ¢ = d and the diversion
size is ¢ —d > 0. If d > 7, then ¢ > d > n; the order cost ¢(q,d) = w,q — s (¢ — d) that is linear in
q with a slope w,, — s> 0, thus it is minimized at ¢*(d) = d. If d <7, the order cost is ¢(q,d) =
woq — 5(q —d) when d < ¢ <n and ¢(q,d) = w,q — s (¢ —d) when g >n. On the above two regions
the cost-minimizing solutions are respectively ¢ = d and ¢ = 7. To find the optimum c¢*(d) when
d <, it suffices to compare the cost at the two solutions, i.e., ¢*(d) = min{w,d, (w,, — s)n + sd}: if
0<d<q, ¢*(d) =w,d and if § <d <n, ¢*(d) = (w, —s)n+sd. o

Proof of the claim that the all-unit discount generates a unique incentive for diversion. First,
consider an incremental discount: C(q) = w,q if 0 < g <n and C(q) = w,(¢ —n) + wen if ¢ =n.
To satisfy the demand d > 0, the order size is ¢ = d and the diversion size is g —d = 0. If d =7,
then g > d > n; the order cost ¢(gq,d) = w,(q¢ —n) +w,n — s(q —d) that is linear in ¢ with a slope
w, — s >0, thus it is minimized at ¢*(d) = d. If d <7, the order cost is ¢(q,d) = w,q — s (¢ — d) if
d<q<nand w,(¢—n)+w,n—s(g—d) if g=n. On the above two regions the cost-minimizing
solutions are respectively ¢ = d and ¢ = 7. To find the optimum c¢*(d) when d <7, it suffices to
compare the cost at the two solutions, i.e., ¢*(d) = min{w,d,w,n — s (n—d)} = w,d. For both cases
of d = n and d <, the optimal order size is ¢*(d) = d.

Second, consider a two-part tariff: C(q) = F + w,q, ¢ > 0. To satisfy the demand d > 0, the order
size is ¢ = d and the diversion size is ¢ —d = 0. The order cost is ¢(q,d) = F + w,q — s (¢ — d) for
q > d and is linear in ¢ with a slope w, — s > 0. Thus it is minimized at ¢*(d) =d. o

Proof of Lemma 1. At any time t the reseller can change his inventory position from the current
position I(¢) to a new position I(t) + AI(¢) by a combination of order ¢(t) from the supplier and
gray market diversion ¢(¢). Fix any time ¢. We first argue that since replenishment is instantaneous,
it is suboptimal for AI(t) =i >0 if I(¢) > 0. The action of changing the current inventory position
I(t) to I(t) +1i could be profitably delayed to the time ¢ty =inf{x > t¢:I(x) = 0}. Letting AI(t) =0
and Al(ty) = Al(ty) + ¢ has an improvement h(ty — ¢)i > 0 in the holding costs up to time t,.
Recursively applying this process results in an improved set of orders where AI(t) >0 only when
I(t) = 0. We now argue that it is suboptimal for disposal of goods AI(t) =3 <0 if I(¢) > 0 since
this action could have been profitably performed at an earlier time ¢t_; = sup{x <t: I(z) = 0},
which has a holding cost improvement h(t —¢_;) | j |> 0. Therefore, in an efficient inventory policy
any ordering or gray market diversion occurs only at times when I(t) = 0. The set of times when
I(t) = 0 represents a set of renewal points. Since the demand rate is stationary, the optimal action
is identical at each of these times. To complete the proof let I be equal to the optimal inventory
adjustment when I(t) =0 and then ¢*(I) and g*(I) correspond to the optimal order and gray
market diversion quantities respectively. o

Proof of Proposition 2. To solve for the optimal inventory policy, the reseller selects the cycle
inventory level I that minimizes the total costs. Given the optimal zero-inventory policy charac-
terized by Lemma 1, the total costs for each order cycle of length I/A consist of order cost ¢*(I)
given by Proposition 1 and holding cost hI?/(2)\). We can then calculate the long-run average
cost per unit time, denoted by g(p,I,s) with dependence on p and s suppressed in this proof, as
c*(I)\/I + h1/2. By substituting the reseller’s optimal cost function given by Proposition 1 (where
d = I), we obtain the expression for g(I) as follows: g(I) = w,m/(p—~ps)*+hI/21f0< T < g, g(I) =
(wy — s)ym/[1(p — vps)*] + sm/(p — yps)* + hI/2 if ¢ < I <n and g(I) = wym/(p — yps)* + hl/2
otherwise.

Recall that in the first and third cases, the reseller orders up to the desired cycle inventory
level I and sells the entire order through the authorized channel over time; no goods are diverted
to the gray market in these two cases. However, in the second case, the reseller orders up to the
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quantity of 17 to enjoy the quantity discount and sells the excess amount 7 — I to the gray market.
Within this range (¢ < I <n), the reseller will choose a locally optimal cycle inventory level I° that
minimizes the cost g(I), where I° = \/[2(w, — s)ym]/[h(p — vps)*] = n/[w, — s]/[H (p — vps)*].

The reseller selects the optimal cycle inventory and gray market diversion by comparing the
minimum cost g(I) in each of the three regions.

Since the demand and resale price is fixed for the reseller, the reseller’s revenue is fixed. The
reseller is aiming at minimizing cost ¢g([). To find the minimum of g(I) we compare the optimal
solutions for each region of I € [0,4], I € (¢4,n) and I € [n,00). Over the first and third regions,
g(I) is a linearly increasing function and is minimized at I =0 and I = 7 respectively. Over the
second region I € (4,n), g(I) is convex and minimized at an interior point [° if it is indeed in (g, n).
Otherwise, ¢g(I) is minimized at one of the boundary points ¢ or 7.

The necessary and sufficient condition for I* = I° is I° € (¢,7n), g(I°) < g(0) and g(I°) < g(n).
The feasibility condition I° > ¢ holds if and only if H(p — yp,)® < (w, — $)?/(w, — s); The other
feasibility condition I° <n holds if and only if H(p — yp,)® > (w, — s). The optimality condition
g(I°) < g(n) always holds since g(I) is continuous at I = 7. Finally, the other optimality condition
g(I°) < g(0) holds if and only if H(p — vps)* < (w, — s)*/[4(w, — s)]. Taking the intersection
of regions defined by the feasibility and optimality conditions yields that I* = I° if and only if
(w, —8) < H(p—ps)* < (w, — $)?/[4(w, — s)]. Such holding costs exist only if w, € (s, (w, + 5)/2].

I* = if and only if I* # I° and g(n) < ¢(0). g(n) < ¢(0) holds if and only if H(p—~p,)* < w, —w,
with equality holding at H = w, —w,,. Intersecting H (p—~p;)* < w, —w,, with the region where I* #
I°,ie., H(p—ps)™ ¢ (w, — s, (w, — s)*/[4(w, — s)]), results in H(p—yps)* < min{w, — s, w, — w,}.
Note that w, —s <w, — w, if and only if w, < (w, + s)/2. The necessary and sufficient condition
for I'* = n follows immediately.

The remaining possible holding cost regions are H(p — vps)® > (w, — $)*/[4(w, — s)] if w, <
(wo +5)/2, H(p—yps)* > w, — w, otherwise, which correspond to I* =0. o

LEMMA 2. (SUPPLIER'S PROFIT FUNCTION UNDER EXOGENOUS RESALE PRICE). Given
that the reseller employs the optimal inventory policy in response to a discount wholesale
price w,, the supplier receives the following profit per unit of time: if H < (w, — s)/[2(p —
)], then T(w,) = m(wy, — ¢y)r/H/[(w, —5)(p—ps)°] when s < w, < s+ H(p—p,)",
M(w,) = [m(w, —cy)]/[(p—ps)*] when s + H(p—7ps)* < wy < w, — H(p—yps)*, M(w,) =
[m(wo — ¢o)]/[(p —vps)*] when w, — H(p—yps)* < wy < wo; if H = (w, — s)/[2(p — vps)*],
then T1{w,) = m(w, — ¢q)y/H/[(wy — 5)(p— 1p,)°] when s < 1w, < s + [(1, — 5)2]/[4H(p — p,)°],
M(w,) =m(w, —¢,)/(p —vps)™ when s+ (w, — 8)*/[4H (p — vps)*] < w, < w,.

Proof of Lemma 2. The supplier’s profit depends on the inventory strategy the reseller opti-
mally selects according to conditions shown in Proposition 2. The supplier’s profit per unit of
time is equal to the rate the supplier supplies the reseller multiplied by the profit margin per
unit. The margin is w, — ¢, per unit if /* =0 and w, — ¢, per unit otherwise. If no goods
are sold to the gray market (i.e. I =0 or I =1n), the supplier’s demand rate is equivalent to
the reseller’s demand rate A. However, if [ = I° then the supplier’s demand rate is nA\/I° =
M/H (p—7ps)*/(w, — ). The supplier’s profit function is therefore II(w,) = A(w, — ¢,) if I* =0,
(w,) = Aw, — c;)v/[H®—7ps)*1/[(w, —s)] if I* = I° and A(w, — ¢,) if I* =n. It remains to
show that the conditions denoted in the proposition are sufficient to entail the appropriate reseller’s
best response.

We begin by considering the conditions on the discount which imply I* = 5. The
conditions where I* = 1 denoted in Proposition 2 are equivalent to w, € (s + H(p —
vps)*, (wo + 5) /2] U[(wo + 8)/2,w, — H(p — vps)®). Hence I* = n if and only if w, € (s +
H(p—ps)*,w, — H(p—"ps)*) and such a w, exists if and only if w, — s> 2H (p — yps)®. There-
fore, as stated in the proposition, II(w,) = A(w, — ¢,) if and only if w, € (s + H(p —yps)*, w, —




H(p—~p,)®) which is non-empty only if w, — s> 2H (p — yps)“.

Similarly the conditions from Proposition 2 which imply I* = I° can be summarized as w, €
(s,s + H(p —vps)*) (8,8 + (w, — 8)*/(4H (p —vps)*)) (8, (w, + 8)/2), which can be simplified
by considering whether w, — s < hn/A. If w, — s < 2H(p — yps)® then I* = [ < w, € (s,s +
(wo —8)?/(4H (p — vps)®)), and if w, — s> hn/A then I* = I° < w, € (s,s+ H(p—yps)“).

The remaining scenarios of w, are attributed to when the reseller selects I* = 0. Instantiating
the regions corresponding to each of the reseller’s inventory policy into II(w,) is sufficient to verify
that Lemma 2 holds. o

Proof of Proposition 8. Given the profit function in Lemma 2, we solve the problem of opti-
mizing II(w,) over w, € (s,w,]. For those discount prices w, which are close enough to w, and
elicit I* = 0, the profit function II(w,) = A(w, — ¢,) remains a constant. It is sufficient to set
w, = w, to generate this profit. Consider H > (w, — s)/[2(p — vps)*]. By Lemma 2, if w, <
s+ (w, —s)?/(4H (p — yps)®), then I* > 0. Under the assumption that s < ¢,, II(w,) is increasing
over wy, € (s,s+ (w, — )*/(4H (p — vps)*)], and is maximized at w, = s+ (w, — $)?/(4H (p — vps)*)
generating profit A\[(w, —s)/2 — 2H (p — yp;s)* (¢, — s)/(w, — s)] for the supplier. Consider H <
(wo — 9)/[2(p — vps)?]. If w, <w, — H(p—yps)®, then I* > 0. Again since s < ¢,, it is easy to see
that II(w,) is continuous at w, = s+ H(p —yp,)* and increasing over w, € (s,w, — H(p —vps)°],
and is therefore maximized at w, = w, — H(p —yps)* generating profit A\(w, — H(p — vps)* — ¢;)
for the supplier. We can now compare supplier’s profits given the reseller’s best response of I* >0
or I* =0 depending on whether (w, —s)/2 > H(p —vps)®. When H(p — yps)* = (w, — s)/2, set-
ting w, = w, generates greater profit for the supplier than w, = s + (w, — $)?/(4H (p — yps)®) if
and only if H(p —yps)* > (2¢, —w, — 5)(w, — 5)/[4(c, — s)]. When H (p — yp,)* < (w, — 5)/2, set-
ting w,, = w, generates greater profit for the supplier than w, = w, — H(p —yps)®* if and only if
H(p—9ps)*>co—c¢y. ©

Proof of Corollary 1. By Proposition 3, if H(p — yps)* < min{(w, — 8)/2,¢, — ¢,}, then w} =
w, — H(p — vps)® and the reseller’s best response is I* = 7. The quantity discount H(p —
vps)® per unit off w, is just to offset the increased holding cost in induced strategy I* =g
compared to the inventory strategy I* = 0 when no quantity discount is offered. Again by
Proposition 3, if (w,—5)/2 < H(p — vps)* < (2¢, —w, — 5)(w, — 5)/[4(c, — 5)], then w} = s +
(w, — 8)?/(4H (p —vps)*) and the best response is I* = [° = \/(wj; —s)/H(p—ps)*n = (v, —
s)n/(2H (p — vps)®). For the reseller, the increased holding cost per cycle with length I°/\ is
(I°/2)(I°/X\)h = (w, — s)?n/(4H (p — vps)*) as compared to the inventory strategy I* = 0; the
loss in gray market diversion within the same cycle is (w} — s)(n — I°) = (w, — 5)*n[1 — (w, —
s)/(2H (p — vps)®)]/(4H (p — vps)®). The reseller’s gain from the quantity discount for the same
cycle is (w, —wi)I° = [wo—s— (w, — 5)*/(4H (p —vps)*)|(wo — s)n/(2H (p —yps)®), which is exactly
equal to the sum of the increased holding cost and loss in gray market diversion for the same cycle.
Therefore, we can conclude that the supplier’s optimal all-unit quantity discount leaves the reseller
with zero profits. o

Proof of Proposition 4. 'The reseller selects his resale price p and inventory policy I to maximize
the expected profit per unit of time. We write the reseller’s profit in terms of the endogenously
determined demand rate A: (I, ) = VmA +yp, A —g(I, \), where v/mA +yp,\ is the reseller’s rev-
enue per unit of time and g(I, \) is the total costs per unit of time among all zero-inventory policies
characterized by the initial cycle inventory level I. By Proposition 2, for any given resale price p and
its corresponding demand rate A, the reseller will choose the unique inventory policy that minimizes
g(I,\). Using the reseller’s optimal inventory response to an arrival rate, we derive the minimum
inventory cost function g*(\) = g(I*(X)) as follows: if s <w, < (w, +5)/2, ¢*(\) = w,A when 0 <

A < [4(w, —s)mH]/[(w, — 5)?], g*(N) = A/4(w, — s)mHX + sA when [4(w, —s)mH]/[(w, — s)?] <




A < [mH]/[(w, —9)], g*(N) = w,A + mH otherwise; if (w, + s)/2 < w, < w,, g*(\) = w,A when
0 <A <limsup,._,,, - mH/[(w, — )], and g*(A) = w,A +mH otherwise.

The above cost function includes the cost of ordering, diversion and holding inventory. When the
order size is 7 and there is no gray market diversion, the reseller enjoys the low unit cost w,, but suf-
fers an average holding cost of mH per unit. In the case where the reseller diverts to the gray market,
the reseller optimizes the diversion quantity n— I by comparing the holding cost hl/2 with the diver-
sion cost w, — s. The reseller profit function with demand function A(p) =m/(p — vps)? is w(\) =
To(A) = VmA + (yps — wo) X if 0 < X < [d(w, — 8)mH]/[(w, — 5)?], m(\) = 7°(\) = VmA + (yps —

4(w, — s)ymHN if [4(w, —s)mH]/[(w, —s)?] < A < mH/[(w, —s)] and 7(\) = 7,(\) =
vVm + (vps — w, )N\ —mH otherwise, where 7y, 7° and 7, correspond to when the reseller adopts
the inventory policy I* =0, I* = I° and I* =1 respectively. Note that m(\) and ,()\) are concave
since m > 0 and 7°(\) is concave if \/m —+/4(w, — s)mH > 0. We take the derivative of m (), ()
and 7, (\) with respect to A as dm(\)/0OX = v/m/(2V/A) +9Ds —Wo, 07°(N) /0N = /) (2V/N) + (7ps —
s) —+/(w, — s)mH/(2)\) and o, (\)/0A = \/m/(2V/A) + vp, — w,. The local optima satisfying the
first-order conditions are \f =m/(4(w, — vps)?), Ai = (vVm —/4(w, — s)mH)?/(4(s — vps)?) and
¥ =m/(4(w, — vps)?) respectively, and the corresponding profits are mo(AF) = m/(4(w, —ps)),
m(A\F) = (vVm — \/4(w, — s)mH)?/(4(s — yps), m,(A%) = m/(4(w, —yps)) — mH. The continuity
of () is easily verified by checking at the two breakpoints A4 = 4(w, — s)mH /[(w, — s)?] and
Ap =mH /[(w, —s)]. Since lim,_,, , - 0mo(N)/OX < limy_, ) ,+ 07°(X)/0N, we eliminate the breakpoint
Aa as a global optimum. Since limy_,,_ 07°(A)/0X = lim,_, 5,4+ 0m,(A)/0A, the global optimum
A* = Ap only if AJ = A} = Ap. Hence, we conclude that the global optimum A\* must be one of the
local optima Af, AY and Aj.

It remains to check under what conditions each local optimum dominates. First, note that
limy 5, 07°(N)/OX = limy_, 5,4 O, (N)/X <0 if and only if H > (w, — s)/[4(w, —vps)?]. Hence,
a necessary condition for A} to be a global optimum is H > (w, — s)/[4(w, —vp,)?] and a nec-
essary condition for A¥ to be a global optimum is H < (w, — s)/[4(w, —vps)?]. Second, we
compare the profit of each of the batch order policies I* = I° or I* =7 to the profit of the
order-as-you-go policy I* = 0: mo(A}) > m°(A5) & H > (1 —+/(s —yps)/(w, — vps))?/[4(w,, — )]
and mo(AY) > m,(\Y) < H > 1/[4(w, — vps)] — 1/[4(w, — vps)]. Lastly, conditioned on whether
w, —Yps < A/ (w, —ps)(s — ¥ps), the break points on H can be ordered as follows: if w, —yp, <
\/(wo - 7p5)(5 — 7p8)7 (1 — \/(3 — 7p5)/(wo - VPS))Z/[ZL(MW - 5)] > (wn - S)/[4(w77 - 7p5)2] and if
wy = Yps =\ (Wo =) (5 —1ps), 1/[4(wy — vps)] — 1/[4(w, — 1ps)] = (wy — 5)/[4(w, — yps)?].
Therefore, it is not hard to conclude that when w, — vp, = +/(w, —ps)(s — ¥ps), the optimal
demand rate is \* = AF if H > (1 — /(s —vps)/(wo — vps))?/[4(w, — 8)], A* = A% if (w,, — s) /[4(w, —
ps)?] < H < (1 — /(s — yps)/(wo — vps))?/[4(w,, — s)] and A* = A} otherwise; when w,, > \/w,s the
optimal demand rate is A* = A\ if H > 1/[4(w,, — vps)] — 1/[4(w, — vps)] and A* = A} otherwise.
By the relationship between price and demand rate p(\) = m/vA + yp, and Proposition 2, the
corresponding reseller’s optimal pricing and inventory policy follows immediately. o

Proof of Proposition 5. It is readily apparent that when the reseller’s best response is to order
in batches without any gray market diversion, the supplier enjoys economies of scale from batch
processing at the same rate as the demand rate \(p* = 2w, — yps) = m/[4(w, — 7ps)?] in the
authorized channel. As a result, the supplier’s profit per unit of time is IL,, (w,,) = (w,, — ¢,)m/[4(w,, —
vps)?]. When the reseller’s best response is to order on demand and not to hold inventory at
all, the supplier delivers the product at the list price and the same rate as the demand rate
Ap* = 2w, — yps) = m/[4(w, — vp,)?] in the authorized channel, and hence the supplier’s profit
per unit of time is Iy = (w, — ¢,)m/[4(w, — vp,)?] which is independent of the size of the all-
unit discount. Finally, when the reseller’s best response is to order in batches with part of the
order diverted to the gray market, the supplier enjoys economies of scale from orders of size n




every I*/\(p*) time units, and hence the supplier’s profit per unit of time can be shown to be
12(10,) = m{uw, — ) (/HTw, — 5] — 2H)/[2(5 — 7p.)]

As a precursor to establishing this proposition we derive the supplier’s profit function. By
Proposition 4, the supplier’s profit function given that the reseller employs the optimal pric-
ing and inventory decisions can be described as II(w,) = II,(w,) if w, € RYJR), T(w,) =
°(w,) if w, € R° and I(w,) = I, if w, € RYYRE. We let w = 1/(4H +1/(w, —vps)) +
Wy W =5+ (L=+/(s —vps)/(wo —1ps))*/AH, w = (1 —+/1—=16(s —yp,)H)/(8H) + vp,, W =
(1++/1—16(s —ps)H)/(8H) + vps, where w and W are the two real roots, if they exist, of the
quadratic equation f(w)=4H (w —yps)?> —w + s = 0. Then, the regions of quantity discount that
induces different reseller pricing and inventory decisions are R} {\/ (w, — (s —yps) +ps <
wy < w, | wy > W}, R = {\/(w,—vps)(s —ps) + 1ps < W, | wy < 0}, Rﬁ = {s < wy < /W5 |
4H (w,; —yps)? —w, + 5 <0}, RO ={s <w, </(w, —1ps)(s —YDs) +VPs | 0, < 0, 4H (w,) —yps)? —
w, + 5> 0} and Rf = {s <w, < +/(w, —7ps)(s — 1ps) + 7ps | w, > w}. Regions RY and R are
mutually exclusive, with one of them possibly being an empty set. Regions R}, R° and R’ are
mutually exclusive, with no more than two of them possibly being an empty set.

To simplify the profit function, we condition on the magnitude of H according to the following
three cases.

case (i). Comsider 4H < 1/+/(w,—ps)(s—7ps) — 1/(w, — vps), which is equivalent to
V(Wo =ps) (s = ps) + yps < @, hence RY = [\/(w, —ps)(s — vps) + 7ps, @] and RE' = (0, w,).
It can be easily verified that 4H < 1/7/(w, —vps)(s —vps) — 1/(w, — ps) is also equivalent to
v/ (W, —vps) (s —yps) + ps < W, hence RY = @. Note that f(w = s) = 4H(w — vp,)? > 0 and
f(w = ~/(w, —vps)(s —vps) + ¥ps) <0 when 4H < 1/4/(w, —vps)(s —ps) — 1/(w, — ¥ps), hence
the smaller root w must be real-valued and exist between s and \/ (wo —YPs) (8 — YDs) + VDs, 1-€.,
we [Sa \/(wo - 7}95)(5 - ’YPS) + 7p5)' Hence RrLI = [wv \/(wo - ’VPS)(S - ’VPS) + ’YPS) and R° (S U))
(R° degenerates to O if w = s which is equivalent to s4H = 0). In summary, R} |J R = (w0, w,],
REURY = [w, @] and R° = (s,w).

case (ii). Consider 1/+/(w, —vps)(s — vps) — 1/(w, — vps) < 4H < 1/[4(s — yp,)]. Such an inter-
val of H indeed exists since 1/[4(s — vps)] + 1/(w, — vps) = 1/4/(w, —vp,) (s — vps) with equality
holding if and only if w, —yp, = 4(s —vp,). Note that 4H > 1/+/(w, —vps)(s — vps) — 1/(w, —vps)
is equivalent to @ < \/(w, — ¥ps)(s —Vps) + P, hence RY = @ and R = [\/(w, — vps) (s —vps) +
vps,w,]. Also note that 4H > 1/4/(w, —yps)(s —yps) — 1/(w, — yps) is equivalent to W <
v/ (W, —vDs) (8 — ¥ps) +7ps, hence RE = (0, 4/ (w, —ps) (s — ¥ps) +7ps). Furthermore, when 4H <
1/[4(s — vps)], the discriminant of the quadratic equation f(w) = 0 is non-negative, hence the
roots w and W of equation f(w) = 0 must be real-valued. It is easy to check that 4H >
1/7/(wo —vps) (s —ps) — 1/(w, — yps) is equivalent to w < . Since f(w=s) >0, f(w=1w) >
0 and f(w = \/ (wo —Yps)(8s —ps) + Yps) = 0 with the last two inequalities ensured by 4H >
1/\/ (wy —YPs) s—'yps) — 1/(w, — vps), the roots w and w must exist between s and 1w, i.e.,
[w, @] < [s,w]. Hence R} = [w,w] and R° = (s,w) | J(@, w]. In summary, R |J R = (b, w,], R° =
(s,w)J(w,w] and RLURH [w,w].

Case (iii). Consider 4H < 1/[4(s —~ps)]. According to the case (ii), we know that 4H < 1/[4(s —

> 1/7/(wo —vps) (5 = 1ps) = 1/(wo = yps); 4H > 1/7/(wo —vps) (5 — yps) — 1/(w, — ps) leads
tO that R =0, R’ = [\/(wo —vps) (s — YD) +7Ds, wo] and R = (0, +/(w, — ps) (s — YD) +7Ds)-
Moreover, 4H > 1/[4(3 —ps)] guarantees that f(w) >0 for any w, hence R} =@ and R° = (s,w0].
In summary, R |JR§ = (0, w,], R® = (s,%] and RL|J R} =

Thus, the profit function can be expressed as follows completing the derivation: case (i). if
4H < 1/\/(11)0 - 'VPS)(S - '7p5) - 1/(wo - '7p5)7 H(wn) = Ho(wn) when s < Wy <W (I* = IO)> H(wn) =
II,(w,) when w < w, <w, (I* =n), (w,) = Il when @ < w, < w, (I* =0); case (ii). if
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1A/ (wo = ps) (s = ps) = 1/(w, = ps) < 4H < 1/[4(s = 3p,)], T(w,) = I, (w,) when w < w, <

w, (I* =n), I(w,) = II°(w,) When s<w,<w and W < w, <w, (I*=1°), II(w,) = I, when
W <w, <w, (I*=0); case (iii). if 4H < 1/[4(s —yps)], [L(w,) =1I° (wn) when s <w, <w (I*=1°),
I(w,) =1, if & <w, <w, (I*=0).

Given that the reseller employs the optimal pricing and inventory policy in response to a discount
wholesale price wy, the supplier earns the following profit per unit of time:

Taking the first-order derivative of II,(w,) with respect to w,, we have JIL,(w,)/0w, = m[1 —
2(w, — ¢,)/(w, — vps)]/[4(w, — vps)?], hence the function II,(w,) is increasing on (0,2c, — ps]
and decreasing on [2¢, —yps, ). Note that under the assumption that (w, —vps)/4 < (s —vps) <
(¢, —vps), we have \/ (wo —¥ps)(s —Vps) < 2¢,, — yps. Taking the first-order derivative of I1°(w,)
with respect to w,,, we have

61‘["(11),7)_ mvH B ot w te — 9
2w —4(8_7]95)(1%_8)%[ 4@(1077 $)2 +w, + ¢, 2].

Taking the second-order derivative of II°(w,,) with respect to w,, we have

o*MI°(w,)  mvH(4s — 3¢, —w,)

<0.
owy” 8(s —yps)(w, — 5)*

Under the assumption that s < ¢, then 0°I1°(w,)/(0w,?) <0 for w, > s, namely, II°(w,) is strictly
concave on (s,00). Furthermore, since s < ¢,, lim,,, o+ o1I°(w,)/0w, = . Under the assumption

that w, —yp,)/4 < (s —vps) < (¢y —7ps),

o1 (w,) mvH (1 =~/ (s = vps)/wo — 1ps))?

— (2 S —YPs
awn Wy =10 4(8 — VDs )( S)% 4H Wo = TPs

—1)—1—0,7—5] > 0.

Therefore, II°(w,,) is strictly increasing on (s, w].

cases (i) and (ii). In both cases, 4H < 1/+/(w, —vp,)(s —ps) — 1/(w, — vp,) with the form of
the supplier’s profit function corresponding to case (i) of the supplier profit function. If 4H <
1/+/(w, —vps) (s —ps) — 1/(w, — vps), by the derivation of the supplier profit function, w < 1.
Hence, I1°(w,) is increasing on (s,w]. Note that II,(w,) and II°(w,) are continuous at w. Fur-
thermore, by the derivation of the supplier profit function, w < y/(w, — yps)(s — vps) and we know
under the assumption (w, —yp;)/4 < (s —vps) < (¢ —7Ps)s A/ (Wo —¥Ps) (8 — Ds) < 2¢, —Ps, hence
w < 2¢, — yps. Recall that II,(w,) is increasing on (0, 2¢, — vps] and decreasing on [2¢, — vp,, 0).
Therefore, if 2¢, —yps <, IL,(w,) is increasing on [w, 2¢,, — yps] and decreasing on [2¢, —yps, W];
otherwise, II,,(w,) is increasing on [w, w]. Finally, it remains to compare the supplier’s profit at the
list price w, and the one at the discount price min{2¢, —yp;,w} that maximizes the profit when a
discount is offered.

case (iii). We consider 4H < 1/4/(w, —7ps)(s —ps) — 1/(w, — vps). First, we consider
1//(wo —ps) (s — vps) — 1/(wo — yps) < 4H < 1/(4(s —yp,)) with the form of the supplier’s profit
function corresponding to case (ii) of the supplier profit function. Note that if 4H < 1/(4(s —7ps)),
w< W< \/ (wo —vps)(s —vps) < 2¢, — yps, where the second inequality is shown in the derivation
of the supplier profit function and the last is due to the assumption (w, —vps)/4 < (s — vps) <
(¢, —yps). Hence II, (w,) is increasing on [w,w] and maximized at w. We also know that I1°(w,,) is
increasing on (s, w] and [w,w], and obtains its maximum at w. Note that II,(w,) and II°(w,) are
continuous at w and w. Therefore, if 1/+/(w, —vps)(s — ¥ps) — 1/(w, —yps)) < 4H < 1/(4(s —ps)),
the discount price w maximizes the supplier’s profit when a discount is offered. Second, we con-
sider 4H > 1/(4(s — vps)) with the form of the supplier’s profit function corresponding to case




(iii) of the supplier profit function. Recall that I1°(w,) is strictly increasing on (s, w]. Therefore,
if 4H > 1/(4(s — yps)), the discount price @ maximizes the supplier’s profit when a discount is
offered. Finally, combining the two subcases, it remains to compare the supplier’s profit at the list
price w, and the one at the optimal discount price w. o

Proof of Corollary 2. First we check case by case how in Proposition 5 the bene-
fits from economies of scale are allocated between the supplier and reseller. When it
is optimal for the supplier to offer a discount price w) < w,, the supplier enjoys
economies of scale. By Proposition 4, the reseller’s best response (p*(wy),*(w})) of pric-
ing and inventory is either to take the [* = I° strategy, namely, (p*(w}),I*(w})) =
(205 = p.)/[1 — 2/ (w, — ) H] + ypas [/[t0, — 51/ (4H) — (w, — 5)In/(s —1p.)) or the I* = 7 strat-
egy, namely, (p*(w}), I*(wy)) = 2wy — yps,n)-

If the best response of the reseller (p*(w}),I*(w})) = (2w} — yps,n), then the reseller’s profit
per unit of time is w(A(p*(w;))) = m/(4(w, —yps)) — mH. When the supplier sets w, = w, and
does not enjoy economies of scale, the reseller’s profit per unit of time in the best response is
T(A(p*(w,))) = m/(4(w, — ¥ps)?). Tt is easy to see that if w} < (resp. <)w, the reseller is (resp.
strictly) better off when the supplier offers a discount price w, = wy as compared to when the
supplier does not, i.e., m(A(p*(w}))) = (resp. >)w(A(p*(w,))). By the proof of Proposition 5, we
can verify that to elicit I* =, in cases (i) and (ii) of Proposition 5, it is optimal for the supplier
to set w) = min{2c, —yp,, W} < w. Hence, in case (i), w} = 2¢, —yp, < w and the reseller shares
part of the benefits from economies of scale; in case (ii), w;; = @ and the reseller shares no benefits.

By Proposition 5, the other scenario is that the supplier sets w) = w to induce the
reseller to take the I* = [° strategy. By Proposition 4, the corresponding best response
of the reseller is (p*(@), I*(@)) = (2¢/(wo —VPs)(s =Ps) — VP, [V (5 —ps) /(w0 — ps) —
(s—vps)/( vps)]n/(s - 7p5)4H)) and the reseller’s profit per unit of time is w(A(p*(w))) =

— AW — s)mH)?/(4(s —yps), = m/(4(w, — vps)) = T(A(p*(w,))). Hence in this scenario,
the reseller earns the same profit as without the quantity discount and shares no benefits from
economies of scale.

From the analysis of all three cases, we can see that the resale price in equilibrium when the
supplier enjoys economies of scale is always strictly smaller than the resale price 2w, — yps that
the reseller will charge if the supplier does not enjoy economies of scale and offers the wholesale
price at w,. Hence, consumers will always enjoy a lower resale price with the supplier’s economies
of scale than without. o

Proof of Proposition 6. Fix an arbitrary w, < w,. Since m4(p, I) is a continuous function defined
over a compact set, there exists a unique largest optimizer I*(h) = max{I' € [0,n] | 74(p',I';h) =
Max(, nerxfo,y Ta(P, I3 h)}. It is easy to see that my(p, I;h) has decreasing differences in ((p,I);h),
hence the cycle inventory level I*(h) in the optimal diversion strategy is a decreasing function of h.
Furthermore, in one extreme case when h = 0, intuitively, I*(h = 0) = 7. In the other extreme case
when h = o0, intuitively, I*(h = o0) = 0. Therefore, there must exist an interval 7 < (0, 0) of holding
cost parameters such that the optimal diversion strategy resorts to the gray market (i.e., I*(h) <n)
if and only if h e #. This is the condition on the holding cost parameter h to ensure the optimal
diversion strategy is not degenerate into a batch strategy. Now let us investigate when the optimal
diversion strategy is more profitable than the non-diversion strategies: pay-as-you-go strategy and
batch strategy. First, if the reseller adopts the pay-as-you-go strategy, then the associated long-
run average profit rate is m, = max,(p — w,)A(p,ps(0)), which is independent of the holding cost
parameter h. Since my(p, I; h) is strictly decreasing in h, 75 (h) = max,, r)erx [0, Ta(P, I; h) is strictly
decreasing in h. Moreover, note that 7}(0) = max,er(p — w,)A(p,ps(0)) = m,. Hence there must
exist a finite upper bound & on the holding cost parameters such that the profit rate under the




optimal diversion strategy is weakly higher than that of the pay-as-you-go strategy if and only if
heH =0, 71], where h is the solution to the equation W;(}NZ) = m,. Second, the associated long-run
average profit rate of the batch strategy is a special case of m4(p,I) with I =17. Hence the profit
rate under the optimal diversion strategy is higher than that of the batch strategy if and only
if I*(h) <n, which is guaranteed as long as h € A. Combining #H and #H, we have the desired
result. A necessary and sufficient condition to guarantee that H = 7:[ﬂ7-[ is non-empty is that
d(maxper m4(p, [;h = h))/0I |;1—p< 0. ©

Proof of Proposition 7. Fix any h such that h e H(w;) # @ for some w; € [s(n),w,]. By
implicit function theorem, g(p,I) is decreasing in I € [0,7n], because by taking derivative with
respect to p at both sides of g = (n—1)/(I/\(p,ps(g))) and re-arranging terms, we have dg/dp =
[ %]/[1 - Lfa’\é’;’f” ap{;—;")] < 0. Under Assumption (CL), 74(p,I;w,) has increasing differ-
ences in (I;w,). Moreover, by dg/dp <0, we have I/X(p,ps(9(p,1))) = (n—1)/g(p,I) is increasing in
p. Hence, 74(p, I; w,) has increasing differences in (p; w,). Therefore, the optimal diversion strategy
I*(wy,) = max{I' € [0,n] | m7q(p’, I';w,) = max, nerxfon Ta(p, I;w,)} and p*(w,) are increasing in
w,. In one extreme when w, = s(n), the reseller enjoys the discount price by ordering in batches
but diverting the most fraction of the order without any diversion loss, i.e., I*(w, = s(n)) = 0.
In the other extreme when w, = 00, intuitively, the unit diversion loss is tremendous and the
reseller does not have any incentive for diversion, i.e., I*(w, = ) =n. Then there exists an inter-
val W(h) < [s(n),w,] of discount wholesale prices such that the optimal diversion strategy indeed
resorts to the gray market (i.e., I*(w,) <n) if and only if w, € W(h). The set W (h) is non-empty
since w;, must be an element in it.

When the reseller strategy is a diversion strategy, the supplier’s profit rate is
ILi(wy; 3 p, 1) = (wy, — c)n/[L/X(p,ps(9(p,1)))]. Since I/A(p,ps(g(p,I))) is increasing in p by
deviation and increasing in I by Assumption (CL), and (p*(w,),I*(w,)) is increasing
in wy,, then I/A(p,ps(9(0;1))) |p.)=(p* (wy).1*(wy)) 18 increasing in w,. Hence, II}(w,;c,) =
Iy (wy; ¢y; (p, 1) = (p*(wy), I*(w,))) has increasing differences in (wy;c,), and therefore wi(c,) =

arg MaXey, efs(n),wo] 1 (Wy; ¢;) is increasing in ¢,. Then there exists an interval C of batch supply costs
such that w; (c,) € W(h) if and only if ¢, € C. Moreover, the supplier’s profit rate under the reseller’s
pay-as-you-go strategy is I, = (w, —¢,)A(p* (I = n;w,),ps(0)), where p* (I = n;w,) = arg max,egr (p—
w,)A(p,ps(0)). Since IT%(wy;c,) is strictly decreasing in c,, then IIj(w}(c,);c,) is strictly
decreasing in ¢,. Moreover, under the additional Assumption (P), p*(I) = argmax,cg mq(p, I)
is increasing in I. Hence I (w;(0);0) = II§(wo; 0) = won/[I/A(p, ps(9(Ps 1)) |(p.1)= (% (o). 1% (we)) =
W/ L /AP, ps(9(D, 1)) | (0.1 = (p* (1=ns100).m = 1L, Where the second-to-last inequality is due to that
I/X(p,ps(g(p,1))) is increasing in (I, p) and that (p*(w,), I*(w,)) = (p*(I = I*(w,); wo), I* (w,)) <
(p*(I = n;w,),n) ensured by that p*(I) is increasing in I. Therefore there exists a finite upper
bound ¢ on the batch supply cost such that the supplier’s profit rate under the induced optimal
diversion strategy with a discount wholesale price is strictly higher than under the induced pay-
as-you-go strategy without offering a discount wholesale price if and only if ¢, € C= (0,¢), where
¢ is the solution to 1I (w;’; (¢);¢) =1I,. Finally, the supplier’s profit rate under the reseller’s batch
strategy is (w, — ¢,)A(p*(L = n;w,),ps(0)). If I*(w,) <n, then p*(I = I*(w,);w,) <p*(I =n;w,)
and I, (w,; c,; p*(wy,), I*(w,)) = Hg(w,; ¢,;p* (I = n;w,),n), since Il (w,;c,;p,I) is decreasing in
(p,I). In other words, the supplier’s profit rate under the reseller’s optimal diversion strategy is
higher than under the reseller’s batch strategy if and only if I*(w}(c,)) <7 if and only if ¢, € C.
Let C=C ﬂé and we have the desired result. A necessary and sufficient condition to guarantee
that C is non-empty is that d(max,cr 74(p, I;w} (¢),¢))/0I |1=,<0. o



