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A. Tech-Savvy Customers Only

In this section, we temporarily lift the assumption of abundant traditional customers and investi-
gate the case with no traditional customers, i.e., Ay =0. This scenario applies to new restaurants
without established customer bases or when it becomes too risky to dine in restaurants during a
pandemic. Everything else remains the same as our base model. Let p} and II% denote the restau-
rant’s revenue maximizing food price and maximum revenue, respectively, under demand rate A;

and no food delivery service.

ProrosITION A.1 (Equilibrium—Tech-Savvy Only). Under the condition of no traditional
customers, i.e., Ag =0, if the food delivery service is sufficiently inconvenient and the amount
of tech-savvy customers is relatively high, the restaurant operates in a delivery-irrelevant regime.
Otherwise, if the food delivery service is sufficiently convenient or if the food delivery service is not
so convenient and the amount of tech-savvy customers is low, the restaurant operates in a delivery-
only regime—it charges a higher food price compared to that under no food delivery service and all
joining tech-savvy customers use food delivery service. Formally, there exist ¢y, ¢2, and Az, such
that: If (i) ¢ < ¢1; or (i) ¢ < P < Py and Ay < A3; or (iii) ¢ > ¢o and Ay < (c— @) u/c, we have
p* > py and I1* > IT5. Otherwise, if (1) $1 < ¢ < po and Ay > A; or (ii) ¢ > ¢ and Ay > (¢ — ) /e,
we have p* = p% and II* =1I%. Moreover, in all cases, the restaurant’s profit II*, platform’s profit

7, social welfare S*, and the restaurant’s demand Ny, + Ay, are weakly increasing in Ay for V.

To illustrate the results of Proposition A.1l, similar to Figures 1, 2, and 3, we plot the related
performance measures as a function of tech-savvy customers’ arrival rate Ay, for ¢ =0.5, 0.36 and
0.3 in Figures A.1, A.2, and A.3, respectively. Same as Figures 1, 2, and 3, we have ¢; =0.3554 in
Figures A.1, A.2, and A.3.

When the arrival rate of tech-savvy customers is low (see, e.g., A; <0.4965 in Figures A.1, A.2,
and A.3), the restaurant chooses to set a high food price to grab more residual surplus from food
delivery customers, because a low food price cannot attract more customers, due to the absence
of traditional customers. In other words, the restaurant choose the delivery-only regime over the
delivery-irrelevant regime. On the other hand, when the arrival rate of tech-savvy customers is high,
the restaurant will stay in the delivery-only regime only if the food-delivery service is sufficiently
convenient (see, e.g., ¢ < ¢; and A; > 0.6583 in Figure A.3); and it will switch to the delivery-

irrelevant regime if the food-delivery service is not so convenient (see, e.g., ¢ > ¢; and A; > 0.6583
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Figure A.1 Equilibrium system behavior as a function of A; for A =0, R=10, u=c=1, and ¢ =0.5.
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Figure A.2 Equilibrium system behavior as a function of A; for A =0, R=10, pu=c=1, and ¢ =0.36.

in Figure A.2). The same intuition applies. When the food-delivery service is sufficiently convenient,
the restaurant can extract more surplus from customers by charging a high food price, which
discourages some customers from joining and results in lower throughput; but when the food-
delivery service is not convenient enough, the restaurant can gain more profit from a low food price
which leads to a higher throughput.

In all cases, the throughput is increasing in the amount of tech-savvy customers; see, e.g., Figures
A.1(c), A.2(c), and A.3(c). Naturally, the food delivery platform that connects the restaurant to
the growing pool of tech-savvy customers will bring in more demand for the restaurant.

We also consider the profit maximization problem of a centralized owner of the food service chain
with control of the food price and delivery fee. Under the condition of no traditional customers, i.e.,
Ay =0, we obtain similar results as those under the condition of abundant traditional customers,

ie., Ay > p.

LEMMA A.1 (Optimal Monopoly Prices—Tech-Savvy Only). Suppose there are no tra-
ditional customers, i.e., Ag = 0. If the restaurant sets the optimal monopoly food price p°, the

platform’s best response will be to charge the optimal monopoly delivery fee 0°. (The expressions
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Figure A.3 Equilibrium system behavior as a function of A; for A =0, R=10, pu=c=1, and ¢ =0.3.

of p° and 0° are given by (D.13) and (D.1}).) Moreover, the optimal monopoly food price p°, the
total price p°® + 0°, and the corresponding restaurant profit 11° are weakly decreasing in Ay. The
optimal monopoly delivery fee 0°, the corresponding throughput, delivery platform’s profit 7°, and

social welfare S° are weakly increasing in A;.

PROPOSITION A.2 (Revenue-Sharing Contract—Tech-Savvy Only). Suppose there are
no traditional customers, i.e., Ag =0. The following RS contracts can coordinate the system and
achieve the maximum aggregated profit.

1. One-way RS contract with a price ceiling—The platform allocates a fraction v, of its revenue
to the restaurant while the restaurant cannot set a food price higher than p°.

2. Two-way RS contract—Both the restaurant and the platform agree that a fraction v, of their
aggregated revenue be allocated to the restaurant.

There always exist a range of sharing fractions that make both parties weakly better off than they

would be without any contract. In particular, the sharing fractions in (D.15) (resp., in (D.16)) of

the Online Appendiz B achieve a win-win for both parties under the one-way RS contract with a

price ceiling (resp., two-way RS contract).

B. Numerical Results - Finite Delivery-Worker Pool

Similar to what we did in our base model, we can apply backward induction to derive the plat-
form’s and the restaurant’s equilibrium behavior in this Stackelberg game. First, the food delivery
platform’s optimal delivery fee 6* and delivery wage w* can be derived as the best response to the
restaurant’s food price p. Second, the restaurant’s optimal food price p* can be found by numer-
ical methods. Then, we can derive the desired performance measures including the joining rates
of food-delivery and walk-in customers, the profit levels of the restaurant and the platform, the

delivery workers’ total utility, and social welfare.
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B.1. Uniformly Distributed Opportunity Cost

Next, we study the impact of the delivery-worker pool size N on social welfare when there is
sufficient demand from tech-savvy customers. One might expect that when the delivery-worker
pool gets larger, it becomes socially cheaper to offer the food delivery service, so social welfare
would increase with N. However, Figure B.4, where we display social welfare of the decentralized
system as a function of N under an uniformly distributed opportunity cost, tells a different story.
For ¢; > ¢ = 0.2 or 0.3, social welfare of the decentralized system may decrease sharply when
N increases to a threshold value N. When the platform’s pool of delivery workers is not large,
i.e., N <N, as confirmed by Proposition 3, the restaurant overlooks the introduction of the food
delivery service and uses the same food price as in an unobservable queue with only traditional
customers. Indeed, in this case, social welfare increases if the pool of delivery workers gets larger.
However, when the pool is sufficiently large, i.e., N > N, the restaurant will become a delivery-only
kitchen and cater entirely to food-delivery customers out of its own desire for more profit. As a
result, social welfare drops dramatically.

Furthermore, combining observations from Proposition 3 and Figure B.4, we note that it may
be socially beneficial to limit the delivery-worker pool size. The social planner can prevent the
dramatic decline of social welfare by capping the number of delivery workers at N. Depending
on the value of N, the social planner may set a temporary or a permanent cap on the pool size.
For example, in Figure B.4(b), the value of N = 32.41 is relatively large; social welfare increases
to above that of the decentralized system with an infinite number of delivery workers, and then
declines. After the decline at N, social welfare of the decentralized system stays below that of
the decentralized system with an infinite number of delivery workers when the pool size grows.
In this case, the social planner prefers a permanent cap on the delivery-worker pool size at N so
that social welfare stays at the maximum. In Figure B.4(a), the value of N =11.11 is relatively
small; social welfare declines before increasing to almost that of the decentralized system with
an infinite number of delivery workers. After the drop at N, social welfare of the decentralized
system may return to the same level when the delivery-worker pool size grows. In this case, the
social planner can use a temporary cap, which can be lifted when the potential number of delivery

workers becomes sufficiently large, i.e., when N increases to 27.60.

B.2. Beta Distributed Opportunity Cost

In this subsection, we relax the assumption of the delivery workers’ uniformly distributed oppor-
tunity cost (per unit of time) made in Subsection 6 and show that our insights hold for other
opportunity cost distributions. Specifically, we consider the situation where the delivery workers’
opportunity cost per unit of time o follows a beta distribution with cumulative distribution func-

tion F'P¢ (.) and probability density function fZ¢ (-). The beta distribution Beta (a,b) is a family
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Figure B.4  Social welfare of the decentralized system with N < oo, as function of N for the parameter setting
R=10, Ai=Ao=p=c=1, and ¢ €{0.2,0.3}, where ¢; =0.3554.

of continuous probability distributions defined on the interval [0, 1], and can approximate vari-
ous kinds of opportunity cost distributions. For example, its probability density function fZ¢ ()
appears as a decreasing function for (a,b) = (1,3), a bell-shaped function for (a,b) =(2,2), and an
increasing function for (a,b) = (5,1). We only need to scale the delivery wage w to the interval

[0, 1] to obtain the supply of delivery workers under wage w € [0, 5]:

v(w) =N . FEBeta <2’) :

Then the platform’s profit is

7 (p,0,w) = 0 -min(A\p,v (w)) —w-v(w)

= 0 -min ()\D7NFBeta (g)) _,wNFBeta <’L/g> :

where Ap is the tech-savvy customers’ unconstrained demand for the food delivery service given

by Lemma C.2, and the delivery workers’ total utility is

up (0,w) = w-v(w)—N ?xfBe“‘ ) da
0 8

— wN FBeta (Z’) - N/B g fBeta <Z> da.
0

As in Figures 2 and 1, we display these measures as a function of the arrival rate of tech-savvy
customers Ay, for Beta(1,3) in Figures B.5 and B.6, for Beta(2,2) in Figures B.7 and B.8, and
for Beta(5,1) in Figures B.9 and B.10.

By pairwise comparisons of these figures, we confirm our insight that a limited number of delivery
workers can curb the restaurant’s self-interested desire to raise the food price in order to extract
more surplus from the food delivery service, which hurts the platform and social welfare. Capping
the delivery-worker pool size can be an effective means of bringing the platform a higher profit and

sustaining higher social welfare for the society.
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Figure B.5 Equilibrium system behavior as a function of A; under Beta(1,3) opportunity cost distribution, for

the parameter setting R=5=10, A=pu=c=1, $=0.3, and N =3.
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Figure B.6

Equilibrium system behavior as a function of A; under Beta (1,3) opportunity cost distribution, for

the parameter setting R=5=10, A=pu=c=1, ¢$=0.3, and N =10.
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Figure B.7 Equilibrium system behavior as a function of A; under Beta(2,2) opportunity cost distribution, for

the parameter setting R=5=10, A=pu=c=1, $=0.3, and N =10.

C. Proofs of the Main Results

We first label, under the food price p and the delivery fee 6, the expected utility of (tech-savvy or

traditional) walk-in customers,
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Figure B.8 Equilibrium system behavior as a function of A; under Beta(2,2) opportunity cost distribution, for
the parameter setting R=5=10, A=pu=c=1, $=0.3, and N = 300.
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Figure B.9  Equilibrium system behavior as a function of A; under Beta (5,1) opportunity cost distribution, for
the parameter setting R=£=10, A=p=c=1, ¢=0.3, and N =10%.

Social Welfare and Profit 1 Prices ; Joining Rates
—>Social Welfare: S* —==Restaurant Food Price: p* ——Throughput: A, + Ay
—==Restaurant Profit: IT* 10~ -Platform Delivery Fee: 6* — =Food-Delivery: A},

8 = -Platform Profit: Delivery Wage: w* 0.8 Walk-in: Ay,
Delivery Worker Utility: u}
8 ",
e J TTTTTTTT 0.6
’
6 4
0.4 , ’
4 '
2 o == === 1 0.2 7 ’
.t - - ’
- - 7
0 = 0 0%, S ——
0 0.5 1 0 0.5 1 0 0.5 1
(a) Ay (b) Ay ©) Ay
Figure B.10  Equilibrium system behavior as a function of A; under Beta (5,1) opportunity cost distribution, for

the parameter setting R=3=10, A=p=c=1, ¢=0.3, and N =10°.

Uv(A)=R-—p—cWQA)=R—p—c/(p=2A), (C.1)

and the expected utility of food-delivery customers,

Up(M)=R=p—0—9WQA)=R-—p—0-0¢/(n—2A), (C.2)
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for easy reference in the Online Appendix.
We make the following observations regarding the range of the service reward R, the food price p,
the delivery fee 8, and the arrival rate of tech-savvy customers A;.

e If R— ﬁ >0, the service reward can cover the waiting cost of walk-in customers when there is
no line on arrival and the food is free.

e If the food price p is upper bounded by R — %, ie., pe [0, R— ﬂ , customers are willing to use
a food delivery service if the queue is empty and the food delivery service is free.

o If the delivery fee 6 is upper bounded by R —p — %, ie., e [0, R—p— %} , the service reward
is sufficient to offset the sum of the restaurant price p, the delivery fee 8, and the waiting cost for a
customer’s own food preparation %; otherwise, no customers will consider using the food delivery
service.

e Because the restaurant cannot serve more customers than its capacity p, the equilibrium

behavior in the A; > i case is identical to that in the A; 7 i case. Thus, we focus on the condition

of A; < p in our analysis.

C.1. Proof of Proposition 1

To prove Proposition 1, we prove the following Lemmas and Corollaries.
C.1.1. Customer Strategy

LEMMA C.2 (Customer Strategy). Under the food price p and delivery fee 6, the joining rates

of food-delivery and walk-in customers, Ap and Ay, are

AD(pve) AW’@LG)

When p< R— —¢

p—Ay
if 0< < =) A p— = — M
if D cg<R—p—2 0 IRy
- — %
When R M7A1<p§R "
if0<9§maX<R—p—M_¢A1,0> Ay 0

if max (R —p— —H_“’Al ,O) < 6 <min <7(C_¢)C(,R_p) ,R—p— %) w— R_‘Z_e 0
if 0> min (=02 g p ) 0

C

AL_'R_p

To prove Lemma C.2, we first summarize some properties of the two utility functions Uy, (\) and

Up (V).

LEmmA C.3. Regarding utility functions Uy (A) = R—p— %5 and Up (AM)=R—p—0-— /wa we

have

1. Uw (\) is a concave decreasing function of X\ intersecting the A-azis at A\, = p — Rc_p, which
decreases in p.

1.1 Whenp:R—ﬁ

1

, Uw (N) intersects the A-axis at A=Ay, i.e., A\jy, = Ay.
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2. Up (N) is a concave decreasing function of \ intersecting the -azis at A (0) = p— R%H,
decreases in 6.
2.1 When 0 =0, Up ()\) intersects the A-axis at A3 (0) = p — Riip. When 6 =R —p — %, Up (M)
intersects the \-axis at A} (R p— 7) =0.
2.2 When=R—p— ﬁ’ Up (N\) intersects the A\-axis at A=Ay, i.e., Ay <R p—i A1> =A;.

We have Ay < \J (0) zf0<9<R—p—%l, and Ay > M5 (0) if 0 >R —p—

= A1
“57 and 0 =0, we have Up (\) intersecting the A-azis at A5 (0) =

2.8 Furthermore, when p = R—
A
3. Uw (N\) and Up (M) only intersect once at \* (0) = 7
have Uy, (X) > Up (A) if A< A (0), and Uy (A\) <Up (A) if A > X (6).
3.1 When 0 = <=2 Uy (\) and Up (\) intersect at A = A, i.e., AX < i) = A. Moreover, we
have Up (A)EUW( K (A) <Uw (A) 4
3.2 When 0 = w, we have Ay, = A3 (0) = \* (0). Moreover, we have w <R-p-—

24

we

3.8 Furthermore, we have

Uw (A) and Up (N\) have no intersection point, and Ay, < Ay (8) if 6 =0

(9)<AX<A;§(9) if 0< < (c=0lip)

A (6) = Xy =5 () if 0 = =D

(9)<>\X<)\X(0) zf%wgze—p
Proof of Lemma C.3. 1. From aU(‘;"A(A) = —(Mf/\)2 <0and 2 g‘;’g(’\) =G /\)5 < 0, we have that

Uw (N) is a concave decreasing function of A. By solving Uy (A\) = 0, we have that Uy ()

intersects the A\-axis at A{}, = pu — , which decreases in p.
_ (A—Aq) . B
1.1 When p= R — ., we have UW ()\) (Acu)(ﬁ, which intersects the A-axis at A = A;.
2. From aUé?/\(A) == ‘z’A)Q <0 and & gfz(’\ = 2(“ 5 < 0, we have that Up(\) is a concave

decreasing function of . By solving Up (A) =0, we have that Up (\) intersects the A\-axis at

AN (0)=p— ﬁ, which decreases in 6.

2.1 When ¢ =0, we have Up (A\) = R—p— %5, which intersects the A-axis at A (0)=p— ¢p
When§ =R—p— %, we have Up (A\) = m, which intersects the A-axis at A} (R p— %
0.

2.2 When §=R—p— ﬁ, we have Up (A) = %, which intersects the A-axis at A= A;.
Simple algebra gives A} <AF () < 0<0<R—p-— u ¢A1

2.3 When p=R — ﬁ and 6 =0, we have Up (\) = %, which intersects the \-axis at
AS(0) =A,.
3. By solving Uy (X\) =Up (N), we have \* (0) =
that U (A) > Up () & A < AX (6).

=&
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3.1 When 0= ;_A, we have Up (\) =R—p— = s
gives A% ( —= ) = A. We can also verify that Up (A) > Uy (A)
3.2 When G—M we have UD()\):@—;%A and A\ (%) =p—
Up(\)=Uw (\) = gives \X (0) = we have i}, = AP (0) = \* (0).

Furthermore, we have M <R-p— <:) p< R — £, which is clearly true.

(A)=Uw (N) =

t

c
-

3.3 When 6 =0, we can also verify that Uy, ()\) and Up ()\) have no intersection point and
ANy = p— D(O):u—%ip.When0<9<w,wehave)\x(9)<)\§v
M—ﬁ_p@ﬁ<%and)\ﬁ<)\g(9)@,u— R¢;0<:>9<w.Thus,we

have A\* (0) < A}, < AP (). Similarly, we can show that when (ZOEP) cg< R p— %, we

have A§ () < A\, <A*(0). O

The relationship between R — ——, R — %, R—-=
p—A1 p—A1 m

c=¢
2 <

, and R — % plays an important role in

characterizing the customers’ equilibrium behavior.

LEmMmA C.4. IfA1<C , we have (R—ﬁg) —%.
c=¢ _ < < _¢
If Ay > =2y, (R <) H<R .
Proof of Lemma C.4. First, because ¢ < ¢, we have R — —1 and
2
R—-2 < R— <. Moreover, from p— Ay <y, — % Thus,
we only need to determine the relationship between (i ) ( i)
R-<
- <.
Next we can derive
(8 ()
=7 pd)  dplp—=~A)\ ¢ )
and
() (C‘d’ )
=Ny n) pp—Ay\ e T
Clearly, if A; < ﬂu, we have R — < < R — f ™ and R — we have
R — - A1 <R - ;72 and R — - - < R . When we combme the above results, the proof is

complete. [
Next, we prove Lemma C.2. The relative position of the total arrival rate A compared to i},
AY (0), and A* (6) decides customers’ equilibrium behavior.
Case 1: When A; < Cf‘f’ < R—
1. pr<R—%, we have A1<)\W—u

_¢
e A1 <R m by Lemma C.4.

.3(1), when all customers join
with rate A > p > ¥, = (A) <O.

1.1 If 9 < =P from Lemma C.3(3.3), we have A, < A¥ (6). Since A; <A, <X (6), from

Lemma C.3(1), we have Uy (A1) >0 and Uy (A3},) = 0; and from Lemma C.3(2), we have

C
R—p
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Up (A1) >0 and Up (Ajy,) > 0. This means that if all tech-savvy customers join (with rate

A;), walk-in customers have an incentive to join and obtain positive utility, until the total

C

arrival rate to the system reaches XY, = yu — B unless the tech-savvy customers’ arrival

C

7 already. In this case (i) all tech-savvy customers will join

rate reaches A; = A}, = pu —

and use the food delivery service, i.e., Ap = A;; (ii) walk-in customers will join with rate
Aw =1 — ﬁ — A5

1.2 If 9 > =22 from Lemma C.3(3.3), we have A (0) < A, < A¥ (0). Since A; < A <
A¥ (0), from Lemma C.3(1) and (3), we have Up (A1) < Uw (A1) and Uy, (A1) > 0. This means
that if only tech-savvy customers join, the food delivery service cannot attract customers;
all A; tech-savvy customers will queue themselves and their utility of walk-in is Uy, (A1) > 0.
Then walk-in customers may have an incentive to join and obtain positive utility until the

total arrival rate to the system reaches A\, = u — ﬁv unless the tech-savvy customers’

C
R—p

arrival rate is Ay = \{}, = p— already. In this case, customers’ equilibrium behavior is to

c_.

(¢
R—p’ Rp"

2. If R— - <p<R-<<R--—2- wehave 0<S R—p— 2 < LD < R_p— 2 ¥ —

P <M< AS(0)=p— Riip, and p— 7% > 0. From Lemma C.3(1), we have Uw (A;) <O0.

2.1 f0<f<R—p— 4 < AEP) from Lemma C.3(2) and (2.2), we have Up (A;) > 0. This

n—Aq

all queue themselves with rate y — ie, Ap=0and A\yy =\ + dow =t —

means that if all tech-savvy customers join, their utility of using the food delivery service
is non-negative, while the utility of walk-in is negative. Thus, tech-savvy customers will all
join and use the food delivery service and all walk-in customers will balk; i.e., Ap = A; and
Aw = 0.

2.2 If R—p— 4 <0< 20D from Lemma C.3(2), (2.2), and (3.3), we have A¥ () < Aff, <
AP (0) <Ay and Up (A;) < 0. This means that if all tech-savvy customers join, both options
are unattractive. Then, some tech-savvy customers may balk to avoid negative utility, until
the total arrival rate to the system drops to Ay (), where Uy (A (0)) < Up (A5 (6)) =0
(using Lemma C.3(1) and (2)). They will not reduce the arrival rate further, because Up (A) >
0if Ae (A5 (0) — e, A5 (0)) (using Lemma C.3(2)). Thus, the tech-savvy customers join and

¢ ; and other customers balk: i.e.,

use the food delivery service with rate A% (6) = pu — g

Ap =3 (0)=p— R—i—e and Ay = 0. In this case, all customers have zero utility.

2.3 If %ER*”) <O<R—p-— %, similar to Case 1.2 above, we have A\p =0 and Ay = —

C
R—p*

¢ ¢ ¢ - (c=8)(R—p) X _
3. IfR—MfA1 <R—ﬁ<p§R—m, we haveOSR—p—WA1 <R—p—;< SRy =

p= 55 <M <A5(0)=p- Riip, and p— 7% < 0. From Lemma C.3(1), we have Uy (A;) <O0.

31 f0<O<R—p— 4 < AP from Lemma C.3(2) and (2.2), we have Up (A;) > 0. This

p—A1

means that if all tech-savvy customers join, their utility of using the food delivery service

is non-negative, while the utility of walk-in is negative. Thus, tech-savvy customers will all
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join and use the food delivery service and all walk-in customers will balk: i.e., A\p = A; and

Aw =0,

32 fR—p——2 <9§R—p—%<w,similartoCa862.2above,wehave/\D: ¢

—Ay Ly

and Ay =0.

@ ¢ ¢ ¢ (c—=¢)(R—p)
4. IfR—ﬁSR—m<p§R—;, we have R—p—m<O<R—p—;<fp and

1
4.1

_ C
R—p

<0.

ftR—p— u—¢A1 <0<O0<R—-p-— % < w, similar to Case 2.2 above, we have A\p =
(2]

= =% and Ay =0.

CaseQ:WhenA1>%,u,,wehaveR— c_ <R- -2 <R—ﬁ<R—%byLemmaC.4.

n—Aq n—Aq

1. f p< R— —%—, we have A; < \j}, = 4 — =% From Lemma C.3(1), when all customers join

u—Ay’ R—p"

with rate A > p> A\ =p— 7o, the utility of walk-in is negative, i.e., Uy (A) <0.

1.1

1.2

If 0 < %C(Rﬂ'), from Lemma C.3(3.3), we have A\, <A (6). Since A; <A} < AP (), from
Lemma C.3(1), we have Uy (A1) >0 and Uy (A3),) = 0; and from Lemma C.3(2), we have
Up (A1) > 0and Up (A;,) > 0. This means that if all tech-savvy customers join (with rate A;),
walk-in customers have an incentive to join and obtain positive utility, until the total arrival

c

rate to the system reaches A\, = p — fr

o unless the tech-savvy customers’ arrival rate is

c
—-Pp

Al:)‘l)/(V:y‘_R

already. In this case (i) all tech-savvy customers will join and use the food
delivery service; i.e., Ap = Ay; (ii) walk-in customers will join with rate Ay = p — Ty — AL
If =28 < g < R—p—2, from Lemma C.3(3.3), we have A (0) < A, < A¥ (6). Since A; <
Ay < AX (0), from Lemma C.3(1) and (3), we have Up (A;) < Uy (A;) and Uy, (A;) > 0. This
means that if only tech-savvy customers join, (i) the food delivery service cannot attract any

customers; (ii) all A; tech-savvy customers will queue themselves and their utility of walk-in

is Uy (A1) > 0. Then walk-in customers may have an incentive to join and obtain positive

C
_p?

utility until the total arrival rate to the system reaches Ay, = u — 7, unless the tech-savvy

) : : _ X _ c
customers’ arrival rate is Ay = Ay = p — 75

already. In this case, customers’ equilibrium

C
R—p

c
R—p"

behavior is to all queue themselves with rate pu —

sie, Ap=0and A\yy =pu —

2.IfR——<— <p<R——— wehave 0<R—p— 2 <(07¢)C(R7p) and)\ifvzu—Rc <A <

n—Aq n—Aq n—Aq -p

A% (0) = — +2-. From Lemma C.3(1), we have Uy (A;) < 0. Note that x4 — = >0, because

R—p-~ R—p

P<R— - <R-=:.

2.1

r—A1

fO0<O0<R—p-— #jﬁAl < (Cf‘b)C(R*p), from Lemma C.3(2) and (2.2), we have Up (A;) > 0. This

means that if all tech-savvy customers join, their utility of using the food delivery service
is non-negative, while the utility of walk-in is negative. Thus, all tech-savvy customers will
join and use the food delivery service and all walk-in customers will balk: i.e., A\p = A; and

Aw = 0.
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22 If R—p— - <0< 2D from Lemma C.3(2), (2.2), and (3.3), we have ¥ () < Aff, <

A3 (0) <Ay and Up (A;) < 0. This means that if all tech-savvy customers join, neither option
is attractive. Then, some tech-savvy customers may balk to avoid negative utility, until the
total arrival rate to the system drops to A¥ (6), where Uy (A (0)) < Up (A (0)) =0 (using
Lemma C.3(1) and (2)). They will not reduce the arrival rate further, because Up (\) > 0

if Ae (AS(0)—¢,AY(0)) (using Lemma C.3(2)). Thus, the tech-savvy customers join and

use the food delivery service with rate A3 () = u — R%H and other customers balk; i.e.,
Ap =AY (0)=p— Rfife and Ay = 0. In this case, all customers have zero utility.
2.3 If %(ER*”) <O0<R-p- %, similar to Case 2.2 above, we have A\p =0 and Ay = p — Rip.
_ ¢ _c —p— 9 (c=¢)(R—p) _p_ ¢ _ ¢
3. If R M7A1<p§R M,WehaveR D qu1<O< . <R-p #andu 7 20
31 IfR—p— ﬁ <0<h< %(ER*”), similar to Case 2.2 above, we have Ap = — R:f;fe and

3.2 If %C(pr) <O0<R-p-— %, similar to Case 1.2 above, we have A\p =0 and Ay = — Rip.

4. IfR—ﬁ<R—i<p§R—%, we have R—p—ﬁ<o§3_p_%<(cf¢)c(1%—p) and

u—R‘jp<0.

2 ® Qi — (2
41 fR—p— i <0< 0<R—p-— . similar to Case 2.2 above, we have \p = u — jore— and
Aw =0.
To summarize, in equilibrium, the joining rates of food-delivery and walk-in customers, Ap and

Aw, under the food price p and delivery fee 0, are

1. For A1 < C;(z’,u,

>\D (p70) >\W (pve)

1.1 When p< R— —¢

p—Ay

if 0 < g < =AEp) A p— 7= — A
if D cg<R—p-2 0 =
1.2 When R— —<-<p<R-°

p—Aq 1
if0<f<R—p— A 0
; ¢ (c=9)(R—p) )
1fR—p—#7A1<9§ — p— g 0
if OFE cg<pR-—p-2 0 =

1.3 When R— £ <p<R—_*

p=>=~y
if0<f<R—p— A 0
; [ [ [
14 When R— - <p<R-2
. 12 l¢ 12 7

2. For Ay > <2,
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>\D (pae) >\W (pve)

2.1 When p< R— —%

if 0< @ < (D0 A p— = — M
if 20D cg<R—p—2 0 p— 7=
Hj&Al

if0<O<R-— p—#ﬁl Ay 0

if R— p—%<0<w p— oy O

if =20 cg<R—p—2 0 =

uj)1 <p§R—;'

ﬁ0<9<&ﬁﬁtﬂ p— g 0
fE—JL&<9<R p—2 0 =
z4wmme;<pgR—§

if0<§<R-p-2 p— g 0

This result directly leads to Lemma C.2. O

We have several observations from Lemma C.2. First, the tech-savvy customers are willing to pay

w for the food delivery service. Otherwise, if the food delivery platform sets the

(c=¢)(R—p)

at most
delivery fee greater than , no tech-savvy customers would use the food delivery service and
they would rather walk in. This implies that the food delivery platform should set the delivery fee

no more than w

. If that is the case, we see from Lemma C.2 that no traditional customers
choose to walk in unless all tech-savvy customers use the food delivery service.

Second, since we assume traditional customers’ demand is abundant (i.e., Ay > p), the restaurant
cannot serve all traditional customers and some of them have to balk. Then our setting is equivalent
to an alternative one where the arrival rate of all potential customers is fixed and sufficiently large.
Among the population, a fraction of customers are tech-savvy customers and the rest are traditional
customers. The monotonicity results in this paper with a growing A; and fixed Aq is equivalent to
those with a growing fraction of tech-savvy customers and fixed total customer arrival rate.
Third, when the food delivery platform sets a delivery fee of no more than R — p — ﬁ, all
tech-savvy customers will use the food delivery service. Of course, when p is sufficiently low, i.e.,

¢ (c=¢)(R—p)
r—Aq =z c

, so that even when the delivery fee is at the upper

bound w, all tech-savvy customers will use the food delivery service; moreover, when the

food price p is sufficiently high, i.e., p > R — ﬁ?

the delivery fee is, not all tech-savvy customers will use the food dehvery service.
C.1.2. Food Delivery Platform Strategy
The food delivery platform’s profit per time unit 7 is the product of the delivery fee # and the

joining rate of food-delivery customers Ap. From Lemma C.2, we obtain the food delivery platform’s

profit.
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CoOROLLARY C.1. Under the food price p and delivery fee 8, the food delivery platform’s profit

7 (p,0) is
7 (p.0)
When p< R — _CAI
if 0 < (c=¢)(R-p) OA,
if O cg<R—p—2 0
c [
When R—WA1 <p§R—M
if@gmaX<R—p—ﬁ,0> A,
if max (R —-p— 7;;—(15/\1 ) 0> < # <min (7(0_‘1’)0(13_1’) ,R—p— %) 0 <,u — 71%—9;—9)
if 0> min (=002 g p— 2) 0

From Corollary C.1, we see that the platform has no incentive to set the delivery fee 6 too high
because the platform would earn no profit otherwise. The platform will set the delivery fee such
that either all tech-savvy customers will use the food delivery service, in which case the platform’s
profit is 7 (p,0) = OA,, or a fraction of them will use the food delivery service, in which case
the platform’s profit is 7 (p,6) =6 <u — R%H). In the first case, the platform’s profit 7 (p,0) =
OA; increases in the delivery fee 6, so the platform will charge the highest delivery fee in the

corresponding interval of 6 to obtain the maximum profit. In the second case, the platform’s

profit 7 (p,6) =46 (u — R—(;Z;—O) is a unimodal function of 6 € [—oo,R —p— %] with a maximum at

0=R—p— w € <O,R —p— d’). Thus, the platform’s optimal delivery fee depends on the

w
pud(R—p)

comparison of R —p— and the corresponding interval of §. Therefore, the platform will

charge the optimal delivery fee

0* — min <maX <R_p_M¢(MR_p)’R_p_M_¢A1> ’ (C—¢)C(R—p)).

The following proposition characterizes the optimal delivery fee and resulting customers’ behavior

in equilibrium.

ProprosITION C.3 (Food Delivery Platform Strategy). Under the restaurant’s food price
p, the food delivery platform’s best-response delivery fee 0*(p), the joining rates of food-delivery
and walk-in customers Ap (p,0*(p)) and Aw (p,0*(p)) under 6*(p), are

1. For Ay < <2y,

C

f* (g% ) Ap (p,0" (p)) Aw (p, 0" (p))
c c—¢)(R— c
Ifp< R— = ; %¢ Ay p— 55— M
c w
IfR—lhAl<p§R—(“_A1)2 R—p—l:/A1 A 0
@ u¢(R—p)
IfR-#05<p<R-§  R-p-Y"—5 p—\/#% 0
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0* (p) Ap (p, 0% (p)) Aw (p,0" (p))
pr <R-— — A1 2 (cf¢)C(R7P) A, ow— Rip — A,
IfR— —~-<p<R-—< =l < 0

"w—
2 ¢(R—p)
IfR— % <p<R-*¢ R*p*\/#% p—y/2 0

Moreover, the food delivery platform’s profit under the platform’s best-response delivery fee m* (p)

18 a decreasing function of the food price p.

To prove Proposition C.3, we first derive some properties of the food delivery platform’s profit

7 (p,0) = OAp given various Ap.

LEMMA C.5. The food delivery platform’s profit = (p,0) depends on the demand rate for the food
delivery service Ap:
1. If \p = A1, we have 7 (p,0) = 0N, which strictly increases in 6.
2. If \p=pu— R%H, we have 7 (p,0) =0 <u — R%H), which is a unimodal function of 6 with a

mazimum at

R—
0= —p— VIR
I
which decreases in p.
2.1 0, intersects with R —p— ,U—d)Al once at p=R — e A1)
e We have 0, §R—p—ﬁ<:>p_R— (#_/‘\‘1)2, and 0, > R—p— ujb/h Sp>R-— (#_‘7)[‘\‘1)2.
e We have
R—— % S p_ aM<2
(1 —Ay) p= ¢
R— LQ < R—- SA>—p
(1 —As) p—
e , : : (c—) (R—p) &
where R A S the intersection point of . and R—p AL
__ op _ g
e We have R Goa)? < R
2.2 0, intersects with m once at p=R — u¢
e We have 6, <m<:>p>R 2,(md9 >m<:>p<R ufb'
e Moreover, we have
c c—
R—— < &M< Ju
M;ﬁ Ay c
c c—¢
R—— > R- S A > 7
wo = Ay c
e : : : (c—¢)(R—p) L
where R A S the intersection point of . and R—1p AL

e We have R—i<R—?.
He M
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2.8 0y intersects with R—p—% once at p=R— %
o We haveOSGQSR—p—%@)pgR—%.

Proof of Lemma C.5. 1. If A\p = A4, we have
7 (p,0) =0 p =0\,

which clearly increases in 6.

2. f Ap=p forOSHSR—p—%,wehave

Simple algebra shows that 7 (p,6) is a unimodal function of § with a maximum at 6, = R—p—

\/ #é(R—p)
i

2.1 We derive

__ ¢
R—p—0

, which decreases in p.

R—
6, <R_p_ ¢ > _ ¢ Vel p)’
=M p—=2NA M
which increases in p and has a unique root p=R — P ¢[;\4 2 Hence, we have: (i) 6, intersects
)2, and (ii) o < R—p— = A1 Sp<R- o Al)g,
2 _ _ _
and 6 > R—p— A P> R A . At last, simple algebra gives R A1)2 >R
e <:>A1<C ¢ and R — ‘bj‘\‘l)z <R—%.
2.2 We derlve
c—¢)(R—p) ¢ po(R—p
p = (R=p) 0 i)
c c 1
which has two roots p = R — —2 and R. Moreover, we have 6, ¢)C(R_”) = 4’7;/& <0
when p=R -+ € [R - ,TWR} . Hence, we have: (i) 0, intersects with w only once at
p= R_TZ; and (ii) %S%@pZR Cd) and 6, >m®p<R—— At last,

simple algebra gives R — ;—Z <R-
2.3 We derive

Al@Al_T,u and R_E<R_E'

—

which increases in p and has a unique root p =R — % Moreover, we have 6, =0 at p =
R— % Hence, we have: (i) 6, intersects with R —p — % only once at p=R — %; and (ii)
b<R-p-2&p<R-% O

Next, we prove Proposition C.3.

When A < <224, we have R — & < R— <R- < R— % by Lemma C.5(2.1) and (2.2).

NA]._ ,LLA)Q_

Figure C.11 illustrates the intersection points of w, R—p— 0y, and R —p— £, when

MA’
Alﬁ%ﬂ-



Figure C.11  The intersection points of w, R—p—

1.

.IfR—

0 \ \ \ \ \ \ \ \ \ |
0 1 2 3 4 5 6 7 8 9 10

Restaurant Food Price p
/ R—
m 02=R—p— y, and R—p— %, when

A< e =10, Ao=p=c=1, and ¢ =0.5.

If p<R-——-—, we have ng—p—

, <R-p-— 9 From Lemma C.2, we see
p—Ay

p—Ay

that tech-savvy customers are willing to pay a delivery fee of at most % for the food

delivery service, and the demand for the food delivery service is A\p = A; when 0 < w. By

Lemma C.5(1), the food delivery platform will charge the highest delivery fee 6* = m to

maximize its profit, and we have A\p = A;, and Ay = u— . The food delivery platform’s

profit 7* ( )= mAl is clearly a decreasing function of food price p.

A 7, We have R —p — /L_‘i’Al < (C_¢)£R_p). Furthermore, we have 0, <

R—p— , by Lemma C.5(2.1). From Lemma C.2, the demand for the food delivery service
w— A

is A\p = .5(1), the food delivery platform’s profit

increases in #. Thus, the platform will charge at least R — p — ﬁ for the food delivery

service. From Lemma C.2, the demand for the food delivery service is Ap = u — R_L;_G for
R— w. In this case, the food delivery platform’s profit 7 (p, ) decreases

in 6 for 9 > R —p— ﬁ > 0y by Lemma C.5(2). Thus, the food delivery platform will charge
0*=R—p-— ﬁ as the delivery fee, and we have A\p = Ay, and Ay = 0. The food delivery

platform’s profit 7* (p) = (

1) A is clearly a decreasing function of food price p.
p<R— o we have max (R p—L O) < 6y < min (W,R—p—;),

A )2 =
by Lemma C.5(2). From Lemma C.2, the demand for the food delivery service is Ap =

A if 6 < max (R p——,O). Then, from Lemma C.5(1), the food delivery plat-

form’s profit increases in 6. Thus, the platform will charge at least max (R—p— HfA1,0>
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for the food delivery service. From Lemma C.2, the demand for the food delivery

for max(R—p—Mj’Al,()) <9< min(w,R—p—%).

service is Ap = pu — Rf;fe

In this case, the food delivery platform’s profit = (p,0) has its maximum at 6, on
[max <R —p— M:LAl’ 0) ,min (W, R—p— %)] by Lemma C.5(2). Thus, the food delivery

ViiB-p) as the delivery fee, and we have A\p = u— Rpr’

and Ay = 0. The food delivery platform’s profit is 7* (p) = 0*Ap = (R — p) u+d—2+/ o (R — p).
The first derivative of 6* \p is

platform will charge * =6, = R—p—

Or* (p) _ Vo —p/R—p
Op R—p ’

which is negative, because it increases in p and reaches zero when p= R — ¢/u. Thus, 7* (p) =
0*\p is a decreasing function of food price p.

s <R-—“- <R-< <R—2 by Lemma C.5(2.1) and (2.2),

n—Aq

c=¢ ___¢n
When A; > <, we have R s

)

Figure C.12 illustrates the intersection points of w, R—p— ﬁ, 6,, and R —p— 2, when

I
Al > %/.,L

0 \ \ \ \ \ \ \ \ |
0 1 2 3 4 5 6 7 8 9 10

Restaurant Food Price p

Figure C.12  The intersection points of %, R—p— qul. 0o=R—p— 7%1%717), and R—p— %, when

A1 > <=2y, for the parameter setting R =10, Ao =pu=c=1, and ¢ =0.5.

c

1.Ifp<R———, we have =2EP < p_p_ ¢ o R_p—2 From Lemma C.2, we see
u—Aq c p—A1 M

that tech-savvy customers are willing to pay a delivery fee of at most w for the food

delivery service, and the demand for the food delivery service is A\p = A; when 0 < w. By

Lemma C.5(1), the food delivery platform will charge the highest delivery fee 8* = w to
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C
R—p

maximize its profit, and we have Ap = Ay, and Ay = p— — A;. The food delivery platform’s

profit 7* (p) = wjh is clearly a decreasing function of food price p.
2 It R— - <p<R-— ;—Z, we have R —p — Nj)Al < (chs)c(pr)‘ Furthermore, we have 6, >

%(ER_”), by Lemma C.5(2). From Lemma C.2, the demand for the food delivery service is

Ap=A, if0<R—p-— ﬁ Then, from Lemma C.5(1), the food delivery platform’s profit

increases in 6. Thus, the platform will charge at least R — p — u—¢1\1 for the food delivery
service. From Lemma C.2, the demand for the food delivery service is A\p = p — -—2— for

R—p—6

R—p— H_(ﬁAl <f< w. In this case, the food delivery platform’s profit 7 (p,6) increases

in 8 for 6 < w < 0y by Lemma C.5(2). Thus, the food delivery platform will charge

0* = w as the delivery fee, and we have A\p = pu — g and Ay = 0. The food delivery

platform’s profit 7* (p) = w (,u — ﬁ) is clearly a decreasing function of food price p.
c? ) ) i [ (=) (R—p) ¢
3.If R— 5 <p< R - o, we have max (R—p—m,0> < 6y < min <%,R—p—;>,

by Lemma C.5(2). From Lemma C.2, the demand for the food delivery service is A\p =
Ay if 0 < max (R—p—ﬁ,O). Then, from Lemma C.5(1), the food delivery plat-
form’s profit increases in 6. Thus, the platform will charge at least max (R—p— ﬁ,O)
for the food delivery service. From Lemma C.2, the demand for the food delivery

for max(R—p—ﬁ‘sAl,O) <6< min(w,}?—p—%)

service is Ap = pu — R:Zfe

In this case, the food delivery platform’s profit = (p,0) has its maximum at 6, on
[max (R —p— uj)/h ) 0) ,min (%, R—p-— %)] by Lemma C.5(2). Thus, the food delivery
_ \V/ré(E-p)

Lo
R—p’

platform will charge 8* =60, = R—p as the delivery fee, and we have A\p = u—

and Ay = 0. The food delivery platform’s profit 7* (p) = (R—p)pu + ¢ — 2/ pu¢p (R—p) is a
decreasing function of food price p, following a discussion similar to the one in the A; < % W

case. U

C.1.3. Restaurant Strategy
The restaurant’s profit II per time unit is the product of the food price p and the throughput rate,
which is the sum of the joining rates of food-delivery and walk-in customers, i.e., Ap + Aw. From

Lemma C.2, we obtain the restaurant’s profit.

COROLLARY C.2. Under the food price p, the restaurant’s profit I1(p) is

1. For A; < C;d’u,

I (p)
[p<R- % p(n-75)
IfR——<—<p<R— %2 pA

p=~71 (u=~1)2

¢ @
Ifp>R— s p(u—\/R“f_p)
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2. For Ay > C;‘f)u,
I (p)

préR—;% p(M—RiP>
Ifp>R-< p(u—\/R’%)

The following proposition characterizes the restaurant’s optimal strategy as a Stackelberg leader.

PropoOSITION C.4 (Restaurant Strategy). There exist threshold values ¢y, A1, and Ay, such

that, in equilibrium, the restaurant’s optimal price p*, profit II*, and throughput A}, + \},, are

p* (A1) II* (Ay) Ab +Aw
When ¢ < ¢
. c 2 c
ifO<A <A R— /R (VRu— o) — Xz
; ___ue __ ue
Zf )\1 < A]_ S )\2 R (H*AI)Q A1 (R i (H*A1)2> A]_
U R =l = nox

When ¢ > ¢ R— /R (m_ﬁ)2 p— /=

where X is the unique real root of —RX® — uox +2u?¢ =0 in [0, u]. Moreover, we have
(i) p*(A1)|A1§)\1 < p*(A1)|A1>)\1 when ¢ < ¢;.
(ii) II* (Ay) is a weakly increasing function of A;.
o m . .
(ii1) p—+/F <A 2f¢<72\/m—1 <.
From Corollary C.2, the restaurant’s profit II (p) depends critically on the interplay of three func-
tions pAq, p (,u — Rﬁp), and p <u — 4 /%). We first summarize some properties of the intersection

points of these three curves in Lemma C.6, C.7, and C.8. These results will help us prove Propo-

sition C.4.

LEMMA C.6. Some properties of p (u— Rip):
1. It intersects with the z-axis at p= R —

<
e

2. It is a unimodal function of p € (O,R— ﬂ and

max o (i) = (VAR ve)|

pE(O,R—%]

argmaxp(,u— RC— > = R—,/ER.
pE(O,Rfﬁ] p H

c c? c3
R— /-R<R——&¢>]—
7 pp Ry
R [Rsr-C ap< ]
W f16b —\ Ry

Proof of Lemma C.6. 1. This conclusion can be reached immediately by solving p (u — Rc_p) =
0.

3. We have




22

2. The first derivative of p (,u - == ) is

Wolew5) o

ap M R=p)

which is % (¢ — p¢*R) at p=R — ;‘—z and p — %(M—Al) atp=p=R—
Solving 8( (
D (,u — —) leads to the maximum (\/7 Ve ) Moreover, 0 (p (u )) /Op decreases in
P, 8(19( R_p)) /Op>0ifp< R— ©R and 0 (p <u— R_p)) /Op<0ifp>R-— \/§>R This
means that p (4 —

3. We have

HAl

o >>/8p =0 gives p* = R — 1/ER. Then, replacing p with p* in

C

is a unimodal function of p € (O,R — %} .

? c c?
R— —R<R— — - —
V u o o \/
3 M C 02 C3
Similarly, we have R — TR>R—-Ze¢<q/#. U

LEmMA C.7. Some properties of p (u —/ R“—i)) :
1. It intersects with the x-axis at p= R — %.

2. It is a unimodal function of p € (O,R— ﬂ and

max p [ |22 _2R(u—x)’

pe(0.r—2] R—p 2u—x
pd \ _ 2R(p—x)

argmaxp | pu— 7 = ,
pe(0.R-2] —-p H=X

where x is the unique real root of —RX> — pudx +2u2¢ in [0, u], and x increases in ¢. Moreover,

2R(p—x)* :
s decreases with ¢.
3. We have
_ 2 3 _ 2
R(p=X) S p L gcg VOeH8RY) —c
20— X 1o : 2kp
R(p=x) o p @ VE(H8Ry -
2p—x ) 2Rp
where —VCS(CL;M)_C > ,;i
4. argmaxp(ﬂ_\/RIi):%> argmaxp(p ) ﬁfOT¢<W
pe(0,R—2] pe(0.R— ]

Proof of Lemma C.7. 1. This conclusion is immediate when we use p= R — % inp <u — 4/ R“—i)).

2. Simple algebra gives

8<p(u—\/RIi,)) B QM(R—P)_\/M_R\/;:&F\/_RIL’QL

ap - 2(R—p) o 2u¢

(—R:U3 + (2,u2 — u:r) qﬁ)
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C2
pr:*W % (_RN¢2 —62¢+263)
p:Rf(_#—(le)? 1
o 2ud
We can obtain the discriminant of the cubic function —Rx?® — pdx + 2u*¢ by using a = — R,

b=0, c=—p¢p, and d=2u*¢p in A = 18abed — 4b*d + b*c* — 4ac® — 27a*d*:

(“R (= M) = o (= M) + 200

A= —4Rp*¢* (¢ +27TRp) < 0.

This means that —Rz® — u¢x + 2u%¢ has only one real root. Let y denote this real
root. Furthermore, because —Rx® — gz +2u*¢|,_, =2p*¢ > 0 and —Ra® — pdr +2p°¢|,_, =
—u? (R— %) < 0, this real root x is in [0, u]; and (9(]9 (,u— \/%)) /Op >0 if z <y and
0 (p (,u — \/R“:i))) /Op <0 if x > x. This means that p <u — \/sz;) is a unimodal function of
pe (0, R— ﬂ .
From —Rz3 + (2u* — pux) ¢ = 0, we have the correspondence between ¢ and x:
. Ry _ Ry? 7
nu=x) <Lﬂ _1>

X

which increases in y. This means that x increases with ¢.

Solving@(p(,u—,/é‘—i)))/8p:0gives ,/R‘f;* zxip*:R—‘;—?ﬁp*:%wherexis

the unique real root of —Rx® — ugx +2u*¢ in [0, u]. Then, substituting p* for p in p (u - ”—¢)

R—p
leads to the maximum value <R — ‘;—‘5) (L—x) = %

2
Clearly, p (,u— %) decreases with ¢, so maxp <u — 4 /é‘—i}) = % decreases with ¢

too.

. We have
2R (p— ? /e (c+8Rp) — ¢
21— x X P c v=re 2Rp

03 (& —C2
Similarly, we have R — 22 > R — 2 e0< ¢ < VSR~ We next prove
! X ) 2Ru

< < VA (c+8Ru) —c?
Ry = 2R

v
2v/v+1 < V1+8uv (let v:@)
C
~4vo (Vo -1) <0,

which is clearly true since v = % > 1.

\/03(c+8R,u,)7c2 2R(p—x) c 2u : 3
oTm s T R — ;R &S x < e Since —Rz® —
pox + 2p*¢ has only one real root x € [0,u], —Rz®—pox+2p2¢|,_, = 2u°¢ > 0, and

—Ra® — pox + 2u2¢‘m:# = —p? (R — %) <0, we have

. We next prove, if ¢ <

2
x < a <:>—R933—,u¢)x+2;12¢)‘$: w <0

1/%—!—1 V4

<¢p<ec.
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4B
& o< < ,
R R R
<27”+(1+7”) V ?”)
Vv e3(e —c? v/ Ry B
which is clearly true since ¢ < (ct8Rp) SRPAVAS & Y de’ ; the last

2 25 (2824 (14 22) v/ TE)

inequality can be verified by replacing = B with v; and note that % >1. O

LEMMA C.8. We have the following properties regarding the intersection points of the three
curves pAq, p(,u— Rip), cmdp(,u— é‘f )

p

1. p(,u— ip) and p(,u—,/R“—i)) intersect at point (R ui’“ (R w)

)) Moreover, we

R
h(wep(,u— é‘¢p)<p(,u, C) ifp<R-— 2,(mdp( ,/;¢)> ( ), if p>
R-<
- <.
2. pA, andp(,u— Rc_p) intersect at point <R = A , ( )) which 23( - ﬁR, (u—

when Ay =p—/F.

e W (o (1 ) = (VT VB > micnc (R ) = 2RI
A (R— fik) M has two roots A3 and Xy in [0, u] such that Ny < As.

2p—x

e Moreover, CC p<A3<p—+/F%.

3. pAi and p (,u — \/Fl;:iv) intersect at point (R— " )2,A1 (R— = A1)2)>

o A(R— is a unimodal function with maX0<,\<M)\(R— (u‘i'f\) ) R(gu Xx and

ne
(p=2)*

argmaXo< i<, A (R — (#ﬁ";)Q) =X =p—X-
2
o When maXpe(on-g]P (”— 75) = (VR = V)" < maxionud (R 5257) = 2R4E
A <R = A)2) (\/ \f) has two roots Ny and N in [0, u] such that Ay < \|.

e Moreover, Ay < Aq.

4. When Ay = the three curves pAy, p (u — RL_p), and p (,u — R“—i)) intersect at the same
point (R - ;—Z,u (R — ;—1) (°;¢)> Moreover,
C*¢> __pe . c= _ __ po
e M= pue o SRt and M2 Pne R— e > R— i,

. If¢<\/Tm 2 e have Ao < 5 p; andif¢>@

2Ru
Proof of Lemma C.8. 1. Solving p (,u— ip) =p (M— \/%) gives p= R — % Using p= R —
C2 i 02 c—¢
Lz inp (/L - R—) gives the value (R ﬁ) (T)

2. Similarly, we have p = R — e by solving pA, = p(u— Rip). Using p = R —

, we have \y > %u.

I—LAI
C

in p(,u—R_p> gives the value A1< H_CA1>. Clearly, when A, = u — /%, we have

"
(W )~ (1R e (1)

Further, when maxpe(o,R_%]p<M_ﬁ) _ (m_ﬁ)Q > max0<)\<#)\<R—(uﬁ¢/’\)2> =
QR WL=x)" x)?

2p—x "’

e We know that )\(R—ﬁ) is a unimodal function maximized at A = p — /%,

(R ) :

2
= 0, and limAﬂL/\<R—#i/\) = —o0, , and % is a constant
A=0
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has two roots if 2R(u=x) <

regarding A;. Hence, the equation )\(R— i i

: 2
MaX, ¢ (o 2P (M— - ) = (VRp—+e)".
o We should have A3 > == ,u7 otherwise, if A3 < < u, we will be able to reach the conclusion

that 232(,;7:;) > \g ), which controdicts the definition of As. If Ay =y — /%, we have

max ]p(,u R_p>> max p(,u 1/%):2132(57_—;)27whichimplies A3 < pi—+/% - There-

ve(o.n- pe(0.n-3]
. . 2 2
fore, given max (0 R ¢]p (M_ R—_p) = (,/RM_ \/E) > maxXg< <, A (R— (uli(i)2) =92R gﬂ ><>)< ,
we have < u<)\3<u \/ﬁ
3. Similarly, we have p= R — (#fjfl)g by solving pA; =p (M— \/ & ) Using p=R — (- f )2 in
pA; gives the value A; (R — bt

(h—A1)?
_ ko — _ . [pe i i -
e Note that A (R ) /\:#7\/% —p(u \/R7p>, so we can obtain the unimodal

(h—=A)*
) and its maximum by applying results from Lemma C.7. We see

L) _ 2R(u—x)*
pn—A

ity of A(R— /\)2

= u — Mo _ [ ue \ .
that A =p \/> decreases in p and A (R G2 >’/\:u— = —p(,u \/T_p) is a uni
modal function by Lemma C.7(2), so A (R— “/\)2

ar(gmaf]p (,u— \/ é‘—i) = 2R2*:;X and ¢ = u(2u ) in A\=p— R”—i) gives Ay = u — x. Clearly,
pe(0,R——

2
A is the root of A (R— /\)2> = 21?‘2(5_;) . Moreover, we have maxgcy<, A (R— (Mﬁd/’\)2> =

) is also a unimodal function. Using p =

maxpe(o R-<f>] (M— \/:> —QR(/;MX; .

e Because A R—( ‘1;)2 e X)Q)‘AZO = 0, and
limy_,, A (R— T )\)2) = —o00, we have that A (R— A)Q) = (m—ﬁ) has two roots if
mMaXg<y<p A (R HA)2) = 2R > (VRp— \f)

e Because \; is the smallest A satisfying )\(R— e A)2> = (m—ﬁ)Q and Ay =
(u—/\)2> we have A\ < \,.

4. When substituting p = R — ud) for p in pA1|A1:¥M, p(,u—ﬁ_p), and p(u— %)’ we

is a unimodal function of A, A(R—

arg maXoci<, A <R —

obtain the same value p (R— i) (C;‘z’). Hence, the three curves intersect at the same point

e
(R— C—Z,,u (R— ;—1) (“f)) when A; = ﬂ,u. Simple algebra gives A; < %u < R-— MjAl <
R— A)2 and A, > & M<:>R_#A1—R_(# A2

When ¢ = —Vc(ngMc, we have \, = <=2

2Ru

p(u—R%p), p(u—\/R‘%)
intersect at A= R — i and this intersection point is the maximum point of p (,u —/ R”—f’p) by

Cif ¢> \/03(C+8RH)—C2

2R

Lemma C.8(2) and (4). If ¢ < ¥——F7F—— C+8R“ i , we have \; < \p < <2

, we
have Ay > %u. O

Next, we prove Proposition C.4.

Recall from Lemma C.8(4) that (i) When A; < <24, the restaurant’s profit II(p)

29
(n—Aqp)?

3 C C
increases on (R u—A1’R ], so we only need to compare maxpe(&RiWcA ]p (,u R_p)
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and max [R_ b p ﬂp(u,/ﬁ)) to determine the restaurant’s maximum profit

(=22’

. [ c—¢ c
. (i) When A; > =%2u, we only need to compare maXPG(O,R_ﬁ%]p<u—R—_p> and

max [R C¢ . ¢,] P (,u — \/Rzi)) to determine the restaurant’s maximum profit IT*.
We next discuss the relationship between p (u — £ ) and p (u — 4 /é‘—i). By Lemma C.7(2), we

R—p

have that maxp <u — 4 /é‘—‘i}) = 2122(54)2 decreasing in ¢.
When ¢ < /£, we have arg max p (u - ) =R- \/ﬁ>R >R— % by Lemma C.6(3), which leads

-p
to maxp (,u— ,/R—_p) > maxp (,u— Rip).

2 (¢ —02 —
When ¢ > —”63(+8R”, we have arg maxp (u— A /RL—CZ)) = 2B < p_ ;—Z) by Lemma C.7(3),

2Rp 2p—x  —

which leads to maxp (,u — \’%) < maxp (,u - Rip)-

Ry3 3 4/c3(c+8R, —c?
X1 |: ) (—'u Where

p(2n—x1) Ry’ 2Rp

When ¢ increases to ¢, =

38Ru — (c—2y/Rept) — \/ (3Ru— (c—2y/Rem))’ + 16Ry (c — 2y/Rep)

X1 = IR
is the unique solution of L (\/ \f) in [0, i, we have MaX,¢ (o p_ o] P <u — %) =
c v/ c3(c+8Ru —c?
MaX, (o p 2] P (u — R—p) Here, we can prove ¢, € [ 1%’ (;;’].
1. If $ < ¢ & max p(,u ;%):2]%(&") >  max p(u—Ri):(m—ﬁ)Q. The
veomg TV S (o) :

maximum point of p (u -/ R“—i)) is on the right-hand side of R — i the intersection point of
p(u— fp) andp(u—,/é“’b) ie., 2R“ >R—— Otherwise, 1f2R“ <R——¢,Wehave

R

9RW—? < (VRp— \/E) by Lemma C.8(1 ), which contradicts ¢ < ¢,.

2p—x

Figure C.13 illustrates the restaurant’s profit as a function of p under different A;.

— 5 ) must be in (0, R— LA] ; otherwise there
p p—A7

exists a A’ < A; such that \ < > (\/ -/ ) which violates the definition of A;.

Then, as Figure C.13(1) shows, we have I (Ay) = max, (o p_2] P <M — Rip) = (VRu— \/5)2 >
’ I3
2 * _ c _ c
max [R_ o R_%] D (,u— \/ Pf‘_p) and p* (Ay) = ar(%rsfz;c]p (,u— R_p) =R— /. R. Note that

(w—2ap?’

e If0 <Ay <\, the maximum point of p (

IT* (A;) here is a constant regarding A;.

o\ _
e If A <A, <)y, we have maxpe(O’Rfqul] P (,u— R—) < maxp6 [R_( o R_%} D (”— #ﬂ)) =
)

n—~A1)2’
_ e
p (/’I’ R_p) p=R— po
<qu1>2

" (A,) = A, (R—
A(R—
(s Aol

o If My <Ay <=2

=A, (R— ﬁ), as illustrated in Figure C.13(2). In this case,

and p*(A;) = R — —*® . Recall from Lemma C.8(3) that

(n— A 2 (u—Aq1)2

) is a unimodal function with the maximum at A, so IT* (A;) increases in A; on

>\)2

. . . 7@ . . .
the maximum point of p (u \/ Pf_p) is in (R o A )2,R }, by the

c 9 _
(50 ) <y (- 75 -

definition of A,. Then, we have max

__c
pe (O’R n—~Aq
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8 . . 81 . L
p(M*R_p) S P(M*T_p)
6= =pn—\/#5) i S‘; 6= =p(u—/#%) B
- -pA s = - =-ph =
P 62 = ‘\“\ i 47—H(p) =T >
’,¢’ "— ! ,”/”’,f
Z - ! -
2 z ".—” : 2 ,,/:’/’
PR i ’/’
o .- : z -
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( Restaurant Food Price p ( Restaurant Food Price p
8 ] L 8 .
Pl= =) i = P(M*R_p) £ 5
; el 7 ) -
6= -pb—/#5) wrle o7 6= ~plp—/#5) e o7
- =pAy ] : P - -p\y :
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Restaurant Food Price p Restaurant Food Price p

Figure C.13 The restaurant’s profit II as a function of p, when A; =0.4, 0.57, 0.65, and 0.7, for the parameter

setting R=10, Ap=p=c=1, and ¢ =0.32.

2R(u—x)?

QR%, as illustrated in Figure C.13(3). In this case, II" (A;) = ===~ and p*(A) =

2R ¢ (R — s _ R— ﬂ . Note that IT* (A;) here is a constant regarding A;.

2p—X (u—11)%’
c _ 122 — —
peligenz] (V) =gy (0

c=¢

o If Ay > <*yp, maxpe(O,Riﬁ%] D (,u — ﬂ) < max
2 2

2R7(’2*,:‘>)< , as illustrated in Figure C.13(4). In this case, II* (A;) = 2}2(57:;‘) and p*(A;) =

(R - %,R - ﬂ Note that II* (A;) here is a constant regarding A;.

2R(p—x) e
2p—x

To summarize, the restaurant’s maximum profit II* and the profit-maximizing price p* are

IT* (Ay) p* (A1)
if0<A <X\ | (VRi—Ve) |R- /<R
; ¢ ¢
if A <Ay <o | Ay (R: i) | B
if Ay > o e e
By Lemma C.7(2), we have p*(A1)], <\, = % > p* (A1)l <, = B — /%R when ¢ <
¢1. Then, because p* (A1)|y, op,<x, = R — (Mfl‘fl)Q decreases in Ay, we have p* (A1)|,, o, <\, =

(#fla)Q > P (Al)‘/\1§/\1 =R-

An observation here is that the intersection point of pA; and p (,u — 4/ R“—i)) is on the right-
hand side of the maximum point of p (,u — L); ie, R—, /ﬁR < R—— . Otherwise, if R—

“R. Thus, p*(A1)|A1§/\1 < p*(Al)]A1>A1 when ¢ < ¢,.

R-p (n=A1)%"

(nfflﬁ s k-
no

(n=1)?

on the

ﬁR, from the definition of A\; we have p (u — 4/ é‘—i) < (\/RM — \/E)z forp> R—

(k=X

. This suggests that there is another intersection point of p (u —

- ) and p (u -
interval [R— “ o R— iR]. Recall that point (R— e (R—

ko
R—p>
ne

(M*/\1)2>>’
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Figure C.14 The restaurant’s profit II as a function of p, when A; = 0.4 and 0.7, for the parameter setting

R=10, Ao=p=c=1, and ¢ =0.39.

which is the intersection point of pA; and p (,u— R"—i), is on the right-hand side of the
maximum point of p (M — R%p)' This contradicts our result above that the maximum point
of p(u—,/R“—i)) is on the right-hand side of the intersection point of p(u— Rip) and

D (,u— \/szp)' Thus, we have p* (A1)|y, <, =R— /2R <p" (M1)|y,\, =R — (#ffl)Q.
Moreover, we note that if A; < Ay, the restaurant’s throughput is p— \/% , which is indepen-

dent of ¢; if Ay < A; < Ay, the restaurant’s throughput is A;; and if A; > \,, the restaurant’s

throughput is Ay =y — x, which decreases in ¢ by Lemma C.7(2). Solving p — \/% = )\, gives

C C3 1 C
¢:27< R—#§¢1.Thus,1fgb<@

, we have p — /% < Ay, which implies that

BR_| =
for Ay >C,u — \/% , the delivery service increases the restaurant’s throughput from pu— /% to
min (A, Aa).
9> ¢ & max p(,u—\/;:i)) :2R% < max p<u—Rc_p) = (m—ﬁ)z The
re(0.R-] pe(0.7-2]
maximum point of p <u — Rip) is on the left-hand side of the intersection point of p (,u — Rip)
and p(u— R"—i}); ie., R — ﬁR <R - % Otherwise, if R — \/ﬁ>R >R - ;—i, we have

(@— \/5)2 < QR% by Lemma C.8(1), which contradicts ¢ > ¢,. Figure C.14 illustrates
the restaurant’s profit as a function of p under different A;.

Following the same discussion as that for the ¢ < ¢; case, the restaurant’s maximum profit
II* and the profit-maximizing price p* are II* = (\/Riu— \/5)2 at p* =R — iR. Note that

IT* (A1) here is a constant regarding A;.
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At last, the restaurant’s throughput A}, + A}, can be readily derived using IT* (A;) /p*(Ay). O
Given the restaurant’s optimal food price p*(A;) in Proposition C.4, we can use Proposition C.3
to obtain the platform’s optimal delivery fee 6*(p*) and corresponding profit 7*(p*) in equilibrium

of the Stackelberg game.

COROLLARY C.3 (Food Delivery Platform’s Profit). There exist threshold values ¢1, A1,
and Ay, such that the food delivery platform’s equilibrium profit 7, delivery fee 6*, the joining rates

of food-delivery and walk-in customers Xj, and Ay, under the restaurant’s equilibrium price p* are

0 (p* (A1) 7 (p* (A1) PN Ay
When ¢ < 1
FO<A <X\ (c=) /2 M(c—¢) /2 A, n—/E— A
2
if A <Ay <Ay o . A 0
. _ _ 2
A= e pox 0
When ¢ > ¢1

FO<Mi<p—yF =0/ Mle—9)\/2 N - yE-A
FA>u—VE  (e=0) JE c—o) (2= -1) n=F 0
where x 1is the unique real root of —Rx> — ugx +2u?¢ =0 in [0, u]. Moreover, we have

(i) W*(p*)‘AlgAl > W*(p*)‘/\l\,\l when ¢ < ¢1.

(ii) ™ (p*) is a weakly increasing function of Ay when ¢ > ¢;.

Proof of Corollary C.3. (1) When ¢ < ¢, similar to the ¢ < ¢; case in Proposition C.4, we have

A <A< %M-

e If 0 < A; <\, the restaurant’s profit-maximizing price is p* (A;) =R — ,/ SR<R- by

r— A1
Proposition C.4. From Proposition C.3(1), the food delivery platform’s profit = and profit maxi-

:R_ﬁ:Al (=) \/ngl (c_ M(ZT—SXJ o

m

A, =@ )

c

arlcw*<p*>=<c—<z>>\/,LE (e ) V2

e If M <A < <& ,u, the restaurant’s profit-maximizing price is p* (A;) = R —

mizing delivery fee 6* are 7 (p*) =

(h— A) by
Proposition C.4. From Proposition C.3(1), the food delivery platform’s profit = and profit max-

* _ — o()® _ _ (A)%Rx®
imizing delivery fee 6* are 7 (p*) = Ay <R D 1)‘ A = A = ey and
n—Aq
* *\ __ PA — AlRX3
0 (0") = o = oA
o If \y < Ay < =2y, the restaurant’s profit-maximizing price is p* (A;) = % >R — 7 i‘fl)Q

by Proposition C.4. From Proposition C.3(1), the food delivery platform’s profit = and profit

maximizing delivery fee 6* are m(p*) = (,u— ,/R“—_‘i)) <R—p— MM)‘ = (25(”7_;()2 =
p= 2RLM:X)

1 X

Rx(p—x)* w (px) — Pe=x) _ Rx(u—x)
pw(2p—x) and 6° (p*) = x2 T opp—x)°
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o If Ay > c;‘f),u, the restaurant’s profit-maximizing price is p* (A1) = % >R— ;‘—Z) by Propo-

sition C.4. From Proposition C.3(2), the food delivery platform’s profit = and profit maximizing
. * N _ | uo o NV HE(E-D) _ o=—x)° _ Rx(p-x)°
delivery fee 6* are 7 (p*) = (,u 1/371)) <R P m )’ hey 2T aax) and
P=Tox

* (%) _ o(p—x) _ Rx(p—x)
0 (p )= X2 T pu—x) "

c=9¢

c

From Proposition C.3, it is easy to verify that when A; < u the food delivery platform’s profit

m = 0*Ap decreases in the restaurant’s price p for p € [0, R— (N_‘ﬁf\‘lﬁ} . When A; increases to A;, the

restaurant’s profit-maximizing price increases from R — ﬁR to R— = f/‘\pl)2 by Proposition C.4, so
R #(A1)?
cH A1=X\; (M—Al)2

the food delivery platform’s profit decreases. Thus, we have A; (¢ — ¢)
When ¢ = ¢;, we have 2R(—xa)” (VR — \ﬁ)2, SO A1 =Xy =f1 — X1.

2p—x1
(ii) When ¢ > ¢;, the restaurant’s profit-maximizing price is p* (A;) = R — | /iR by Proposition
C.4.

Recall from Lemma C.8(2) that pA; intersects with p (,u— Rc_p) at p=R— /<R when A; =

A=\

i

R Vay-X
o If 0 < Ay < <2y, the restaurant’s profit-maximizing price is p*(A;) = R — Vi< R-—

&

C
A

=
Ay (c—9¢)(R—p)

c

by Proposition C.4. From Proposition C.3(1), the food delivery platform’s profit is

— M (o) JBe
= e O

o If %u <Ay <p— /%, the restaurant’s profit-maximizing price is p*(A;) = R — [ZR <

R — —— by Proposition C.4. From Proposition C.3(2), the food delivery platform’s profit is

n—Aq
_ M Ru
== (c— Vsl
p=R—\/€rR M (c=9¢) ¢

A, (c=¢)(R—p)
o If Ay > p— /%, the restaurant’s profit-maximizing price is R — <P (A1) =R—, /R <

A
R — :—1 by Proposition C.4. From Proposition C.3(2), the food delivery platform’s profit is
__c ) (=¢$)(R-p) —(_ < @_1).
<,u pr) ¢ p=R_ ,—ﬁR (C ¢) ¢
Clearly, 7*(p*) is a weakly increasing function of A; when ¢ > ¢;.

Next, we investigate the food delivery platform’s profit under the restaurant’s profit-maximizing

price p*, w(p*), when the tech-savvy customers’ arrival rate is sufficiently large; i.e., Ay 7 p. If

2
¢ < ¢1, we have 7 (p*) = %. From the above discussion, we have arg max,¢jo . 7 (p*) = %u.
; _ _R® _ 13v5-29 Rx(u—x)* _ 5V5-11
Correspondingly, ¢ = Rn 0 | a5, = === Ru and W | _amgs, T2 Ru. If ¢ > ¢4,

we have 7 (p*) = (¢ — @) (w [ B8 — 1) which clearly decreases in ¢.
At last, the joining rate of food-delivery customers A}, can be readily derived using 7*(p*)/0*(p*).
The joining rate of walk-in customers A}, is the difference between A}, 4+ A}, in Proposition C.4

and \5. [

C.1.4. Social Welfare

We next investigate social welfare, which is defined as the sum of the restaurant’s equilibrium profit
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in Proposition C.4 and the platform’s equilibrium profit in Corollary C.3 under the restaurant’s
optimal food price p*(A;) in Proposition C.4 and the food delivery platform’s best-response delivery
fee 6*(p*) in Corollary C.3. Note that customers have zero utility in equilibrium; otherwise, either
the restaurant or the food delivery platform could raise the price without changing the throughput,

which would lead to a higher profit.

COROLLARY C.4 (Social Welfare). Social welfare under the restaurant’s optimal food price p*

in Proposition C.4 and the food delivery platform’s best-response delivery fee 0*(p*) in Corollary
C.3is

5™ (A1)
When ¢ < ¢
ifO<A <\ (VR — /) + A (c— ) /2
Th<h<h  RA - 2
>, o
When ¢ > ¢,

C 2
T A L G e
FA>u— T o4 Bu—(ct )™
where x 1is the unique real root of —Rx> — ugx +2u*¢ =0 in [0, u]. Moreover, we have

(i) S (A1)|A1§,\1 > 5 (Al)’/\l\)\l when ¢ < ¢1.
(i) S* (A1) is a weakly increasing function of Ay when ¢ > ¢;.

Proof of Corollary C.4. From Proposition C.4 and Corollary C.3, we have
(1) When ¢ < ¢17
o If 0< Ay <Ay, we have S (Ay) =II" (A)) + 7*(p*) = (VRp — \/5)2 +A (c—9) /2.

cp

o If \j <Ay <X < =2y, we have S(Ay) =1I" (Ay) + 7 (p*) = Ay <R— — ) + SU)?

(—A1)? (A%
_ oM
RA, DA
2
o If A; > Ao, we have S (A;) =II* (A,) + 7*(p*) = 2R(p—x)> + Rx(p=x)% _ RCp+x)(1—x) ]

2p—x w(2p—x) H(2p—x)

We have II* (A;) is a weakly increasing function of A; from Proposition C.4 and 7*(p*)[, <, >

7 (p*)5,n, from Corollary C.3. When A; increases to A;, the restaurant’s profit-maximizing

price increases from R — ﬁR to R — 7 ffl)Q by Proposition C.4, the restaurant’s profit stays
constant while the platform’s profit decreases, i.e., (\/ —\/c ) = A1< o “/‘fl)2> and
- A=\

_ /R B(A1)?
Al (C d)) cp A=) (/J,—All)Q
(ii) When ¢ > ¢,
o If 0<A <p—+/%, we have S(A) = (Al)—i—ﬁ*(p*):(\/ ) +Ai(c—9 %.
o If Ay > pi— /%, we have S(A;) =1 (Ay) + 7 (p*) = (VR — \f)Q +(c— )(,/?—1) -

o+ Ru—(c+¢) \/@.

. Therefore, we have S (A1)|, <y, > S (A1)[y, <\, When ¢ < ¢y
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From Proposition C.4 and Corollary C.3, we have IT* (A;) and 7*(p*) are weakly increasing functions
of A;. Therefore, S (A;) is a weakly increasing function of A; when ¢ > ¢,.

We have Proposition 1 from Proposition C.4, Corollary C.3 and Corollary C.4. [

C.2. Proof of Lemma 1

Due to our unobservable queue assumption and customers’ homogeneity in their service reward
and marginal waiting cost, the centralized owner can extract all customer surplus as profit by
setting the food price and delivery fee (see Chap. 3 of Hassin and Haviv 2003 for a single-segment
problem). Thus, the optimal monopoly food price p°® and delivery fee #° maximize not only the
aggregated profit but also social welfare. Here, the centralized owner’s goal of maximizing the
aggregated profit aligns with a social planner’s goal of maximizing social welfare.

We first derive (i) the socially optimal joining rates of food-delivery and walk-in customers, and
(ii) the expected utility of food-delivery and that of walk-in customers under the socially optimal

joining rates and zero food price and delivery fee.

ProprosITION C.5 (Social Optimization). The mazimum social welfare and socially optimal

joining rates of food-delivery and walk-in customers X}, and X\, are

5° \%, A%,
If0< A, < 2emerom et Rp+c—2y/R(cp—Ai(c—9)) Ay Y e e R Y
If 2Rufc+¢f\2/;4%Ru¢+(cf¢)2 <A < u— % Ay <R — /L—¢A1> A, 0

I A > =% (VRi—3)’ /%0

Moreover, we have:
(i) The optimal social welfare S° is a weakly increasing function of A;.
(ii) The socially optimal throughput X%, + A\, is a weakly increasing function of A;.

Proof of Proposition C.5. 1. When Ay > — %‘, from Hassin and Haviv (2003), it is socially

o
R )

optimal for tech-savvy customers to join with rate pu — and optimal social welfare is
(\/m — \/5)2 If we can increase social welfare further by letting some walk-in customers join,
then it would be more socially beneficial to switch these walk-in customers to tech-savvy cus-
tomers, which contradicts the result from Hassin and Haviv (2003). In this case, the optimal
social welfare (\/m — \/5)2 and the socially optimal throughput p — %“ are both constant
regarding A;.

2. When A; <pu— %‘, all tech-savvy customers join using the food delivery service. Let A denote
the total arrival rate, then A — A, is the arrival rate of walk-in customers. Social welfare is

1525 - 125
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ATl (R~ for Az A,
= A b= A

whose first derivative is

0S(\) _ RO —p) +Mi(c—o)—cp

oA (A= n)’

Clearly, we have % SOHAS AN =p—/ %R(c_d)), and % > 0 if A > A\°. Hence, social welfare
is a unimodal function with a unique maximum at \°.

—C — c— 2 o . . . .
2.1 When A; < 2Rp—cte VQ;RWH JNPEN > Ay, it is socially optimal to have A\p = A; and

/\W:/\O—Al:u—\/&ﬁw-Al. Here, the throughput is )\D—l—)\W:u—\/&M,

which clearly increases in A;. The optimal social welfare is

S(A") = Ru+c—2y/R(cp—Ar (c— ),

which is clearly an increasing function of A;.

2.2 When 22A=cto- VZ;R/L¢+(C_¢)2 <A <p-— %“ & R(A) 4 (c—¢—2Rpu) Ay + pu(Rp—c) <

0 < \° < Ay, which is true because R(A;)” + (¢—¢—2Ru) Ay + pn(Rp —¢) is a quadratic
equation and R(A,)°+ (¢—¢—2Ru) Ay + pu (Rp — C)‘Alzuf s =—(c—¢)\/% <0, it is
socially optimal to have A\p = A; and Ay = 0. In this case, the throughput is A;, which
clearly increases in A;. The optimal social welfare is A; (R— ﬁ), which is a unimodal
function with maximum point A} = p — ‘%‘; hence, it is an increasing function of A; when
A <p-— \/%. O

Next we study how to achieve the socially optimal joining rates of food-delivery and walk-in

customers, A}, and Aj;,, characterized in Proposition C.5. Let p° and 6° denote the optimal monopoly

food price and delivery fee that induce the socially optimal joining rates A, and Ay, .

We first discuss the A, < Z2=cto” 2;;1%” p+(c—¢)? case, where both tech-savvy customers and tradi-
tional customers join. Our intuition suggests that all customers should expect zero utility when
p° and 0° are offered; otherwise, if any customers expect a positive utility, these customers have
the incentive to join the system more often, or the food price or delivery fee should be increased
when all customers have already joined the system. Following this rationale, we set p =0 =0 and
A=A+ Ay, where A% and Ay, are from Proposition C.5, in (C.1) and (C.2) to obtain the utility of

food-delivery customers Up (A%, Ay,) and that of walk-in customers Uy (A%, Ay,) under the socially

optimal joining rates.

COROLLARY C.5. The expected utility of food-delivery and that of walk-in customers under the

socially optimal joining rates and p=60=0 are
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UD (AODa)‘IO/V) UW( ODv)‘lI)/V)

2Rp—ct+¢—/ARup+(c—9)> ¢ c
If 0 < Al S 2R R - c,u,fAIl%(chb) R - /cp.fAlla(cfdﬁ
2Ru—ctd—\/4Rup+(c—0)° ou s e
If 2R < Al S ’LL - f R - ,L,L—Al R - ,U,—Al

/@ R / R
We expect that the centralized owner can set the food price and delivery fee as p°® = Uy (A9, \y,) =

R - and 6° = Up (M), Ay) — Uw (A9, Ay) = __ b where Up (X%, %) and

cu—Aq(c—¢)

(6]
cu—Aq(c—9)

Uw (X%, Ay,) are given in Corollary C.5, to induce the socially optimal joining rates A% and
Ajy in Proposition C.5 and extract all the surpluses from customers. Here, we have p° = R —

C C 2 . . .
NE=mE) <SR- S Rp—»MN) —(c=¢)(p—A) — dp = 0, which is clearly true since
Al < 2Ru—c+op—/4Rup+(c—¢

= 2R

2
iy By Proposition C.3, the platform’s best response is 6°

_ (=) (R—p%) _

c

\/#%. Also, by Lemma C.2, we have, under food price p° and delivery fee 6°, customers’
=y (e=9)

joining rates are Ap = A; and Ay = pu — pro —AN=pu— \/wpfc_‘z’) — Ay, which are identical to
A% and A, in Proposition C.5.

A > 2Ru—ct¢— 2;1%u¢+(c—¢>2

We next discuss the case. From Proposition C.5, all traditional cus-
tomers balk, the centralized owner operates a system that only serves the tech-savvy customers.
We expect that the solution of p+ 6* (p) = p,,,, where 6* (p) is the platform’s best response delivery

fee from Proposition D.7 and

R— 2 if A, <p—y %

P = e =
R- \/; i Ay > - /2

is the social optimal price in an unobservable M/M/1 with waiting cost ¢ (see, e.g., Hassin and
Haviv (2003)), is the socially optimal food price p°, and the platform’s best response to p° is 6°;
i.e., 6% (p°) = 0°. We next verify this conjecture.
From Proposition C.3, we have the sum of food price p and platform’s best response delivery fee
0 (p):
1. For A, < C;‘b,u,

p+0*(p)
c [9) c—¢ 9]
Ifp<R— < R-%(R-p) €|=°RR- 2
4 L¢ 45 _ ¢ _ ¢
IfR- - <p<R— L0 R—_t_ e (R SRt

p+0"(p)
If p< R— — R—%(R-p) €|*RR—
f R— - <p<R-< R-2(R-p) G(R_M—ij\l’R—i
fR-2<p<R-2 R Yl 6(3—573—%
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2 _ @ ;¢ _ JeR _c _
WhengﬁgR—u,wehaveu < uw, R HZR M,andR WSO.

o If MmcHO—VARNOH(—0) A <p-— ,/¢— the solution of p + 6* (p) =p,, & R— 2 (R—p) =

2R
* o) _ (c=¢)(R— O) _ c=¢

R_ lsp_ e(p)_ c £ _,U,—Al'By

Lemma C 2, we have )\D =A; and Ay =p — — Ay =0, which are identical to A%, and A{, in

Proposition C.5.

° IfA1>,u—\/¢—1§,wehaveR—\/%>R—M7¢A1,R— i‘f

of p+6*(p)=pn< R— 7”“0552_1)) =R-— ¢R is p° = 0. By Proposmon C.3, the food delivery

platform’s best response is 8° = R — p° — 7M(fp =R-— ¢R > R — ——. By Lemma C.2, we
have A\p = — ﬁ =pu— % and Ay =0, which are identlcal to AD and Afy in Proposition
C.5.

When¢>— we have C_¢M<M—\/%, andR—,/%<R—ﬁ
o If 2fu=ctos ”4R”¢+(° <A < p— /%, the solution of p + 6* (p):pm@)R—%(R—p):
R— By

0* (po) — (C—ﬁf’)(CR—P )

Proposition C.3, we have §° =

1sp— MAI

Lemma C 2, we have /\D =A; and A\w = p — %5 — Ay =0, which are identical to A}, and Ay, in

Proposition C.5.
o If Ay >pu— \/%7 we have R — ‘;BI—LR >R — }_‘151. The solution of p + 6* (p) = p & R —

2(R-p)=R- w/% is p":R—c,/d) <R—m R—%). By Proposition C.3(2), the food

: ) : o _ (c=¢)(R—p°) __ R o [ R [
delivery platform’s best response is 0% = *“—""- = (c — ¢) [5i > R=—1"— T =c\/0:— a

By Lemma C.2, we have Ap = 4 — ﬁ = — \/MT? and Ay =0, which are identical to A%, and

o

v in Proposition C.5.

We expect that the centralized owner of the food service chain can set the food price and delivery

fee as
c . e *\/ﬁ
R— \/ﬁ fo<A < 2Rp—ctd 24Ru¢+( $)
—=x
—n if 2Ru—cté—VARuoH(e—9)® _ ) o
po — R u—A1 1 R < 2 - (CS)
0 if Ay >p— %andgi)gé—ﬂ
R—c q% ifA1>,u—\/%and¢>>%
and
— i 2Ru—cté—/4Rug+(c—9)°
\/ﬁ% if0< A, < 2Bncte /L po+(c—¢)
=R
o= { i if 2o AR 0 g <y fo , (C.4)
R ﬂandd,g%
2

to induce the socially optimal joining rates A%, and Ay, in Proposition C.5 and extract all the

surpluses from customers.
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It is easy to verify that p° and p°+ 0° are weakly decreasing functions of A, and that 0° is a weakly
increasing function of A;.

The restaurant’s corresponding profit is

11° (A1) = p° (Ap + AYy)

2Ru—ct+¢—1/4Rup+(c—¢)? c cu—A1(c—9)
Ifo<A < oy R_\/W> <M— /ulT
R

—ct+¢— c—¢)?
If 2Ru—cto—y/4Rué+(c—9) <A <p— /%

2R

\
S
;|> N
z
N
=
=

If Ay > p— /% and ¢ < & 0
IfA1>,u—\/%and¢)>§—i (

e We consider

R
— Ru+c—cu (R cpp— A (c—9)
L R cu—A1(c=¢)
R
R 1 cu—Ai (c—¢) cp
— —_ JE— —_— = < e
= Ru+c c,u( Mx—l—gg) (by R < R)

whose first derivative is

8<Ru+c—cu(£x+%>> cpt — Ra?
ox - x?

> 0.

cu—Aq(c

Thus, (R \/W) (,u = > is an increasing function of x and a decreasing func
tion of A;.

e Next we consider ( ) A1, whose first derivative is

O((A=5) M) _ R(u=4)*—pe
oMy (M—A1)2 7

. . . . L— \/ T .
which is negative if A; > u— /2. We can prove 2Mpmcton 4R“¢+(C > pu—+/ "% by showing that
—C — c— 2 C —C c—
2Ru—c+¢ \2/;1%Ru¢+( 2 =p— \/% and that 2Ru—c+¢— \/ 4Ru¢+(

p=c
proved by simple algebra. Thus, (R — ﬁ) A is a decreasing function of A;.

decreases in ¢, which can be

e Finally, 0 and (R— c (;TIZ) <u — %) are constants regarding A;.

Thus, p° (A) + Ajy) is a weakly decreasing function of A;.

The platform’s corresponding profit is
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T (p° (A1) =6°Ap
I£ 0 < A, < 2umcres V/ARup+(c—¢)> o

2R Jen— A1<c %) A

If 2Ru—c+é—/ARud+(c—¢)* <M <p- / Xa Ay

2R

n—
IfA >p— ‘W and ¢><I°z—# ( ‘i’f) <M <i;?u>
(c—

2

A >p— %and¢>§—“

which is clearly a weakly increasing function of A;. [J

C.3. Proof of Proposition 2
We discuss the one-way and two-way RS contracts separately.
1. We first discuss the one-way RS contract with a price ceiling. In a decentralized system under
the platform’s best-response delivery fee 6* (p), social welfare can be derived as
1.1 For A < %u,
I (p) +7 (p)
Ru+c+((1 2Y Ay u)(R—p)—RR—;

po

(u—A1)? ( K Al)

L T R R

1.2 For A; > %,u,

I (p) +7* (p)
Ru+c+((1—2)A —p) (R
RM+¢_<R0 +¢M(R P))

MR- <p<R-2 Ru+o—Vug(VE—p+

We first derive

d(Rute+((1-2)A R—p)— R
° (et (( ) 1) (R-p) p) = (1—7) Ay — Rﬁ, which is zero when p =
] / e (=) +V (c—¢)2+4Rue |
¢ cpu— (c ¢)A1 ('/: (c P)A1 pn—A1 At Al < H 2R ’ and
(R’”C* £)Ai—n) —2Re
o = e <0
(R,qu(i) (Rc +¢;L(R p))) Nqs Re = =
B W,Whlchmzerowhenp R—c,/—q&,R—c %SR_
62(Ru+¢ (Rc +¢u(R p))) o
e <:>A1<,u R7R c,/ <R——<:>d>>—ad a5? :(R_p)cg<0.
O Ru+é—vud (VR—p+—F—
° Ru—i—(b—\//T(\/ —-p+ \/T—p) decreases in the food price p, because (= " (ap ? VR—P>) =
- pm; <0
2(R—p)2

_ )2 .
It is clear that pu — ()t (;Raﬁ) LT \/%‘
_ )2
e When A, < pu— (e=é)+ ( ¢) +aRud <p-— \/pr’ we have

CRpter (1) A ) (B )

R .
cn—A1(c—9)’

55| with

the maximum at p=R —c¢
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2

- [ _Rc | ¢u(R—p) ; __c _ <.
Ru+¢ (pr + =5 ) decreases with p for p € (R iR ud:}’
R .
—Ru+¢—+/ug <\/R —p+ ﬁ) decreases with p.
Thus, 11 (p) 7 (p) is a unimodal function of p with the maximum at p° = R—c¢, / WR@—@
e When p — ¢)+V ¢)2+4R’L <Ay <p—y /52, we have

—Rp + ¢ + ((1—2) A — )(R p) — fp is an increasing function of p for p €
(0.R— =
— . c C2
—Ru+¢— (%—FM) decreases with p for p € (R— m,R— w};
—Ru+od— g <\/R—p+ \/I%p) decreases with p.

Thus, II (p) + 7* (p) is a unimodal function of p with the maximum at p°=R —

p—=Ay"
c— YV (e— o—
o When y — =9t ( P +aRpg <p— /2 <A, and ¢ < £ u, we have p— (/% < <=2y
Clearly, II (p) + 7* (p) is a constant for p € [() p°] where p° = O
— )+ (o—9)2
e When p— (c=¢)+ (2R¢) RN [ “ <A, and ¢ > £, we have < ,u <p— 4’“

—Rp + ¢ + ((1—%) Ay —u) (R—p) — pr is an 1ncreasing functlon of p for p €

(0.R— =

—Ru+ gZ)— (RR—fp + w) is a unimodal function of p with the maximum at p=R—c¢ u%

for pe (R— e R ﬁ]
—Ru+¢—+/puo <m+ %) decreases with p.

Thus, II(p) +7* (p) is a unimodal function of p with the maximum at p°=R —¢ u%'

In all cases, p° here matches the result in Lemma 1, and if the RS contract sets a price ceiling
at p°, the restaurant will increase the food price to p° to maximize its profit.

When the platform shares 7, fraction of its profit with the restaurant, the restaurant’s profit
is I (p) + 7™ (p) = (I (p) +7* (p)) — (1 —71) 7 (p). We have shown above that II(p) + 7* (p)
increases in p for p € [0, p°], and 7* (p) decreases in p by Proposition C.3. Thus, the restaurant’s
profit II (p) +~17* (p) increases for p € [0, p°], which means that the restaurant will set the food
price p = p° to maximize its profit. By Lemma 1(i), given the food price p°, the platform’s best-
response delivery fee is 6°. Hence, the price-ceiling one-way revenue-sharing contract proposed
in Proposition 2 successfully induces the restaurant and the platform to behave in the socially
optimal manner for Vv, € [0, 1].

For the decentralized system, we have the restaurant’s profit IT* (A;) from Proposition C.4,
the platform’s profit 7* (p* (A;)) from Corollary C.3, and social welfare S* (A;) from Corollary
C.4 in equilibrium. Note that II* (A;) and 7* (p* (A;)) are the minimum profits the restaurant
and the delivery platform target. In the centralized system, under the optimal monopoly food

price p° and delivery fee 6°, we have the restaurant’s profit I1° (A;), the platform’s profit 7° (A,),

and social welfare S°(A;) from Lemma 1. The range of sharing fraction
(M) —I°(Ay) 7 (7 (A4))

nME TR my) T e ()

(C.5)
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makes sure that the restaurant and the platform can reach a win-win.

Specifically, in the decentralized system, when the demand rate of tech-savvy customers is

2R(p—x)* if ¢ <oy
sufficiently large, i.e., Ay > pu, the restaurant’s profit is I[T* = 2h=X -

(VRu—ve)" it o> ¢

and the

— 2 .
Bl o<

(c=0) (/2 -1) if o> 01

restaurant and the delivery platform aim at. In the centralized system, as Lemma 1 suggests,

platform’s profit is n* = , which are the minimum profits the

the maximum aggregated total profit the service system can obtain is S° = (\/ Ry — \/45)2, and

the food sales and delivery profit under the socially optimal food price p° and delivery fee 6° are

p° (u — W%) and (\/Ru — \/5)2 —p° (,u — M‘%‘), respectively. Hence, the range of sharing

fraction

e (o) e ]
[(\/RTL\/%)QP" <u* %“) 1= (x/RTt*\/@)(Q*pO )<u ‘%‘)] o<

MEN T (vmrve) e (n-v/%) . o) (V1) o s
(\/Riu*x/@{p“ <u*\/@> ’ (\/Riu*\/@{po(u*\/%) !

where x is given in Proposition C.4, makes sure that the restaurant and the platform can reach

Y

a win-win.

2. The two-way revenue-sharing contract turns the restaurant’s profit function into an affine trans-
formation of the aggregated profit of the whole service system. Thus, the restaurant will set the
food price as the socially optimal one p°. Then, from Lemma 1, the food delivery platform’s
best response is to set the delivery fee as #°. This contract coordinates the whole system in the
socially optimal fashion. From a discussion similar to the one of the price-ceiling one-way RS

contract, the range of sharing fraction

Y2 (A1) € [1;: éﬁi; 1= W*éijzj(\?)l))] (C.6)

makes sure that the restaurant and the platform can reach a win-win. In the extreme case

Ai > p, we have

2R2(M7X)2 R)é(;*x)f
H=X 1 — —#Cr—x if &<
(vVEa-—v8)*"" (VR-v3)? o<

)

Y2 €
(vri-ve? | o (V)]
2 11— 2 if ¢ > ¢1
(VRi—4) (VRu—3)
where x is given in Proposition C.4, makes sure that the restaurant and the platform can reach
a win-win. [
C.4. Proof of Proposition 3

Under the uniformly distributed opportunity cost assumption, when the food delivery platform

sets the delivery wage at w € [0, 8] per unit of time, the expected supply of delivery workers is

v(w)=N-F(w)= %N. (C.7)
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REMARK 1. For analytical convenience, we use an hourly rate for the delivery wage; see also Cui
et al. (2020). One could also use a piece rate instead of an hourly rate for the delivery wage. Say the
platform sets the delivery wage as [ per order. When the demand for the food delivery service is less
than the supply of delivery workers, each delivery worker has equal probability of being assigned

a food delivery order. Then, the supply of delivery workers v () satisfies v (1) = %w, with
2 if 1 <20

Rixp if 1> e
is more complicated than that using an hourly rate. We focus on a parsimonious setting with

solution v (1) = . This expression of delivery-worker supply using a piece rate

delivery workers getting an hourly rate to generate the supply of delivery workers.

The total opportunity cost of v (w) delivery workers is 1w - v (w). Thus, under delivery fee 6 and

delivery wage w, the platform’s profit is

2
7 (p,0,w) =0 -min (Ap,v (w)) —w-v(w) =60 -min ()\D, ;}N> — %N, (C.8)
and the delivery workers’ total utility is

When the supply of delivery workers is less than the tech-savvy customers’ unconstrained demand
for the food delivery service, i.e., v (w) < Ap, the number of tech-savvy customers who walk in by
themselves depends on the comparison of the delivery-worker supply v (w) and the join-up-to level

C

Ul et in the classical unobservable queue with only traditional customers. If v (w) < p —

the tech-savvy customers will walk in with rate min ()\D,,u— Rip) — v (w); otherwise, if v (w) >

c

M_R,

walk-in tech-savvy customers is Ay (6) = max (0, min ()\D, w— Rip) —v (w))

5> 10 tech-savvy customers will walk in. With both cases combined, the joining rate of

The food delivery platform should not hire more delivery workers than required by the tech-savvy
customers’ unconstrained demand for the food delivery service, Ap, i.e., v(w) < Ap & w < B’\TD.
Otherwise, the food delivery platform can reduce the delivery wage while it still manages to fulfill

all demand, which increases its profit.

LEMMA C.9. Given the delivery fee 0, the equilibrium delivery wage is
0 282
* 9 f 0 < =P
w®)={ sy oSl
Moreover, under the equilibrium wage w* (9), the food delivery platform’s profit is
N g2 if 0 < 25>\D
0, w* (0
ﬂ—(pv W ()) {0)\[)_)\2 ,lf0>25/\D ’

and the joining rates of food-delivery and walk-in tech-savvy customers, X5, (6) and Ajy, (0), are

2N ifg< o - __c\_2o 0 < 282D
AE(@—{” T X and Ny (0) = maX(07mln<AD,u H) 25N) ifo<=5>

Ap i 0> 232 0 if 0> 220
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Proof of Lemma C.9. First, given any delivery fee 6, 7 (p,0,w) as a function of w in (C.8) can
be written as
N (ow—w?) if N <Ap&w< 2L

ﬂ(p,@,w):{ )

OAp — Jw? if YN >Ap s w>HL
and its first derivative regarding w is
N(h—2w) if EN<A\pew< 2o
771'(]9,6,’[1)): § (N ) : 5) - _ﬁ])y :
When the number of participating drivers is more than sufficient to serve all tech-savvy customers’

no-supply-constrained demand, i.e., 2N > Ap, the food delivery platform’s profit decreases in w,

BAp

2, we have 7 (p,0,w) =

so the platform should set wage w at no more than &\TD. For w <
% (Aw — w?), whose maximum is at w = g. If g < ﬁ’\TD, the food delivery platform should set the
wage at w* (0) = g to induce drivers to join with rate %N ; otherwise, if g > B’\TD, the food delivery
platform should set the wage at w* () = ’BATD to induce drivers to join with rate Ap:

[ : 2BAp 9 ~ BAD
U N Wi
N ! N 27 N

Correspondingly, the joining rate of food-delivery customers is

X ()= { 38 O Re
PRI A ife> 280

the joining rate of walk-in tech-savvy customers is

" (9)_ maX(O?min<)‘Duu_Rip>—%N> if0§251$D
1w if0>2613D ’

and the food delivery platform’s profit is

2 .
&N if 0 < 220

7 (p,0,w (0)) = { i

OAp — N2 if 9> 220

As in the base model, the platform’s profit is characterized by two functions: (C.10) and (C.11) in
Lemma C.10 of the Online Appendix. In the first case, (C.10) is an increasing function of delivery
fee 0, so the food delivery platform will charge the highest delivery fee in the corresponding interval
to obtain the maximum profit. In the second case, (C.11) is a unimodal function of # with a

maximum at 6, € (O,R— p— %) which is given in Lemma C.10. Then, the platform will charge

an optimal delivery fee 6* = min <max (92, R—p— #:b/n) , (Cf‘ﬁ)ﬁ[‘)’*p)). The following proposition

gives the platform’s equilibrium strategy and the corresponding joining rates of food-delivery and

walk-in customers.

PropPOSITION C.6 (Food Delivery Platform Strategy). If u?3 <cN, there exists a thresh-
old value Ay as given in (C.12) and 0y as given in Lemma C.10 of the Online Appendiz, such that
for the food price p, we have the optimal delivery fee 0%, delivery wage w*, and the joining rates of

food-delivery and walk-in customers, A}, and X}, as:



42

1. For A1 § ]Xl;
o w* (67) Ap (67) A (67)
Ifp<R-— A1
c— R— A R— c— R— N(c— R— c N(c— R—
if ( ( p) < 25 1 (c— )C( P) ( ¢)2(C P) % w— = %
if (c—=¢ (R p) > 2/5/\1 (c— ¢)£R P) % A, - i — A,
_ 28A o BAy
b A N Ror— i N As 0
28A ¢ Je] ¢ [
ffR—(MA>2 T1<P§R—; 02 N(N—R_p_92> =
2. For A1 > /_\1,
0 w* (6%) Ap (67) A (67)
Ifp< —"
if (c=9)(R=p) 281 (c=¢)(R=p) (c=¢)(R=p) N(c=¢)(R—p) p— = — N(c=9¢)(R—p)
: - CR— 5 — 2J\[fX (c—¢)C(R— % 2c 28c R—p 28¢c
AT T AT 5, A A
IfR— - <p<p
-p (c=¢)(R—p) (c=¢)(R=p) (c=¢)(R—p) N(c=¢)(R—p) c N(c=¢)(R—p)
iff =<0, R e 2ic S =T
)(R— c— R— c
Zf C( p) >0, ( ¢>)C( p) % (M_Tw> ©w— R p 0
= B ¢ ¢
HP<P§R*; 02 ﬁ(#iRwﬁﬁ b=%pa U

To prove Proposition C.6, we first prove a Lemma.

LEMMA C.10. Under the equilibrium driver wage w* (0), the food delivery platform’s profit
7 (p,0,w* (0)), arrival rates of food-delivery customers X3, (6), and those who join the queue them-

selves Ajy, (0*), depend on the no-supply-constrained demand rate for the food delivery service Ap:

1. When A\p = A+, we have

. 8 ife<n
%02 Y o< m
0, w*(0)) =4 ¢ Y 1
" (p.0.0" 6) {eAl—m A rosdh (.10
200,
)\D (9) {Al Zf9> 2%\1 )
_ b if 9 < 280
and Xy (07) {gl 251 z.fH_ o
In this case, m(p,0,w* (0)) is an increasing function of 6.
2. When A\p = — R—L;—H’ we have
¢ if 0 <6,
“(0) =4’ o
w () {;3 M—Rj;%) if 0> 0,
262 if 0 <0,
(p,0,w™ (0)) = 2 : (C.11)
0 (M_ R:270> - % ('“_ R:;byfa) if 0> 0,
LN if 0 <6,
N (0) =4 T
»(0) {M_R—fa—e if0>6,"’
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__9¢ _ 0 o<
and Ay (0%) = {g mpo 2l z;z;& )

where 6, = ;(R—p—I—QIB\,“—\/(R—p—%BV“)Q—i—Sﬂ]f) denotes the wunique root of %N -

2 (u—%ﬂ) =0 on (0 R— p—7> In this case, m(p,0,w*(0)) is a unimodal function of

0 with a maximum at 6y, where 0 > 01 is the unique solution of G(0) = p — R%;H, —
(0—2% (u—Ri‘ng)) o ;f 57 =0 on [Gl,R p—f]

We have some properties of 61 and 05:

2.1 01 decreases in N and p.

2.80<R—p— 9. The equality only holds whenp: R— %, where 01 = R— p— £=0 atp R— £
2.4 0, intersects with R — pP—z A1 atp R— e A1 QﬂAl We have 6; <
¢ 2BA 28A
R— % —~§ and 6, e vl o
2.5 We have 0, < {c=2)FE=p) ¢)C(R P) &9 (,u v p) < 1[\377(“ P (f-p , and 6, > 7(C_¢)C(R_p) =2 <u— ﬁ) >
N (c=¢)(R—p)
B c ’

2.6 0y decreases in N, ¢, and p.

270, <R—p— % The equality only holds when p= R — %, where 0 = R— p— £=0atp= R— £
2.8 0, intersects with R —p— —1 atp=R— e A1)2 2%1, which decreases in Al.
28A
e We have 0, < R — p——(:)p R—m— ~ s and 0,
_ o 2BAq
R (n—~A1)? N

B 2
2.9 When % € (0,1), 0 intersects with % atp=p=R—c (E— W+C> €

c2 c - _ 3 8 2 c 2¢3 B 1 1 c B 3
(R‘W’R—u)’wh‘”@“—\/ e he i (f‘m—w) +2m4¢ﬁ+ﬁ<$_@>ﬁ+m'

e We have%ﬁ%@pZﬁ, and92>%@@p<ﬁ.

Proof of Lemma C.10. 1. If A\p = A4, using it in Lemma C.9 gives w* (0), A}, (6), A7y (%), and

0> . 28A1
N ifo<
w(p,0,w* () =< 48 =N
whose first derivative is
8 9 N if g < 28M
0, w* (0 = N

Clearly, we have 5 (p,0,w* (0)) >0, so 7(p,0,w* (0)) is an increasing function of 6.

2. If Ap=p— pr% for0O<O<R—p— %, using it in Lemma C.9 gives w* (0), A}, (6), ATy, (67),

and

62 . 28 &
=N if<(pu— -2
7 (p,6,w ()= ¥ (o)

(ki) =5 (o) 1025 ()
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whose first derivative is

350 >0 ifO<2(p— 2
S5 (p, 00" (0)) = o, , , o i
GO)=p— iy - (9 —28 (u - prw)) e 10> 2 (p—
Let 6, = ;(R—p—FQ]ﬁV“—\/(R—p—Qf,“)Q—i-sff) denote the unique root of 6 —
% <u— R_‘;;_(;) =0 on <0,R—p—%)
o 0 — % 7 R:Zfﬁ increases in 6, N and p.
e 0, decreases in N and p, because § — % (u — R7i79> increases in N and p.
o limy_,..0; =0.
e <6, =0 — % (,u— R_‘;’)_9> <0 and 0 >0, 60— % (,u— R—q;—f)) > 0, because 0 —
% <u — R—(f»—9> increases in 6.
e 0, intersects with R—p—% at p:R—%, and we have 91:R—p—;:0 at p=R—
We have 6; < R — p — Q for p < R — 2, because 0 — == (,u— Rj;fe) increases in p and

2
w’
__¢ —R_p_2¢
o N('u R_p_e)‘ezprff_R P “>O'
m

e 0, intersects with R — p — u—¢A1 at p=R — u—¢A1 — 2%‘1. We have 6 < R —p —

& 28 ¢ ¢ 28M4 ¢
M—A1<:>0_W('U’_R—p—9>‘ P ZO@Z)SR—H— N ,and91>R—p—H_Al<:>
0=R—p— =5y

23 ® 28A
00— (M— prfa) o m b <0&sp>R- v Tt
= P I—A
(c=)(R—p) _2(,_ ¢ e ) < N(=d)(Rp)
° = c e 0-% <“ R—p—e)‘e (c=o)i=p) = 20« 2( R—p) <% ¢ oand
(c=¢)(R—p) _ 28 __ ¢ _ _c N (c=¢)(R—p)
== e 0-% (“ prfe) ‘9: (c—op-p <02 (“ pr) 25 .

Clearly, G (0) decreases in N, 0, ¢, and p. Let 6, denote the solution of the equation G (6) =

o n\2
O@R—P—L(Rf . :2% <H_Rf1 9)'

e 0, is unique on [91, R—p— f} because G (6) decreases in 6,

G(0) = 2 (£ (R—p) (R—p—;) 124 (1= 52)) > 0, GO) = p— iy = 15N >0,
and G(R—p—;) :—? (R—p—%) <0.

e 0, is decreasing in p, because G (#) decreases in p.

o 0, is decreasing in N, because G (6) decreases in N.

e 0, is decreasing in ¢, because G (#) decreases in ¢ and 6.

e 0, intersects with R—p—% at p=R— %, and we have 6§, = R — p— £=0atp=R—2.1If

p<R—%, we have 02<R—p—%, because G(R—p—%) :—— (R p—f) <0.

e To find the intersection point of 6, and R — p — ﬁ, we solve 8 = R — p — M_‘ZbAl &

G (R p— A ) =0 p=R-— (u A1) — 2%\1, which clearly decreases in A;. From simple
algebra, we have 6, < R — e Vg G(R p—7> <0esp<R- (H:ﬁkl)2 - 2%\17 and
o op_ 2BA
( >>0@p>R G-ADZ T N
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(c—¢)(R—p) (c=@)(F=p) oy

To find the intersection point of 6, and , we solve 6, =

[ ]
((c 0) (R p)) —0&22 (M_

RC_p) :R-p—%{pﬁ<:>q§;m:3—cx2+2u%x—2%:0 where

3 2 p B 1
puxr’ — cx +2,LLN:L‘—2N . __E(C_¢)<O
w
. 2
qﬁ,u:vd—ch—i-Zu%x—Q% . = ay(c—gb) >0
m

and the discriminant of ¢pua® — ca® +2uLa —2£ is A= —% (Bay? + (27a* —10a — 1)y +2),

where o= £ € (0,1) and y =2 '3" . If we can show that f(y) =8ay®+ (27a* —10a—1)y+2>0
for y € (0,1), then we have A < 0 & ¢ux® —cx +2,uﬁsc — 2% has a unique real root for y € (0, 1).
Before we prove this result, let a, denote the unique root of the discriminant of f(y): Ay =
(2702 —10a —1)* — 64a in <0, %) One can numerically verify that Ay >0 if « € [0, ao],
and Ay <0ifae [Ozo, 2‘ﬁ+5}.

—Ifa> %;’5 & 270 —10a— 1 > 0, then we clearly have f (y) >0

—Ifay<op< %ﬁ“’, we have A; <0, which means that f (y) >0 for Vy € (0,1).

—If ¢ <ay, we have Ay >0, which means that f(y) =0 has two real roots:

— (2702 —10a — 1) — \/(27a2 —10a—1)* — 64c

Y1 =
16
— (2702 =100 — 1) + \/(27a2 —10a—1)* — 64a
Y2 = 160 )

where y; < y2. We have

y1 > 1 —(270° — 100 — 1) — 16a > \/(27a2 —10a — 1)* — 64a
& 32a (270 —2a+1) >0,

which is clearly true. Thus, we have f (y) >0 for Vy € (0,1).
(a) Thus, 0, = =00 94 (-

=R-—p— d’“(R du(R-p) m<:> o’ —cx? +2ulr —28 =0

has a unique root in <L ) = LN € (0,1). This is equivalent to 6 = w having a

unique root in (R—@,R ) if y = 25 By €(0,1):

14

S 3ud
_ 8 pB3 1 c? 52 2¢3 B 1/1 c \ B 3
here E = | 4| —— 2 - _c 2 LA L .
where WHE NG 2 <¢2 2741 3¢3> N e N T u\% 38 ) N T 2rie

Since G (6) decreases in 0, we have 05 < %C(Rﬂ’) =G (%) <022 (u - ﬁ) <

R—p— M @ QS/M: cx2+2u%m—2%§0@p2ﬁ.Thus,wehavengng_p)@

p>p, and 92>W®p<ﬁ.
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Figure C.15  The intersection points of %(ER_I’), R—p— ﬁ 02, and R — p — %, when A; < A7, for the

parameter setting R=10, A=pu=c=1, ¢=0.5, A; =0.15, and N =20.

In this case, 7 (p,6,w* (0)) is a unimodal function with a maximum at 6,. O

Next, we prove Proposition C.6.

Recall that w intersects R — p — u—¢A1 at p=R — H_CAI, and 6, intersects R — p —

24 _ _ du _28M _ b _28MA _ _c =
a At p=R oA ~—- Then, we have R L =R e g(Ay) =

28A3 — 4BuA? + (26p* + Ne) Ay — Np(c— ¢) = 0. Note that the discriminant of g (A;) is A, =

—4AN3Bc (2Tya® + (8y* — 18y) a+ 2 —y), where y = % and a = 2. When y < 1 < 3/2, we have

27ya”® + (8y* — 18y)a+2—y >0« A, <0. Thus, g (A;) has a unique real root

1,2_1pn7c

9 GH =
A = §M+F+% (C.12)
where T — 2| (9(c—3¢) N —45u?) N N (2¢3N?+ p? (27¢* — 18¢p — ) BN + 82 ut¢)
1083 43243 '
Thus, when A; < A;, we have p < R — M_CAI <R- (fol)Q — Qﬂ]\/f\l; and when A; > A;, we have
) 2BA c —
N (M*IA\Z)Q N Nl <R- n—=~Aq <P
If A, <Ay, we have p< R — quA1 <R- (;j#)? — % <R- % Figure C.15 illustrates the inter-

section points of =2ED R _p ﬁ, 6, and R —p — %, when A; <A;.

1. prgR—ﬁ@Al < p— 75, we have % <R-—p- uij1 <R—p—%. From Lemma
C.2, we see that tech-savvy customers are willing to pay a delivery fee of at most w
for the food delivery service, and the no-supply-constrained demand for the food delivery

service is Ap = A; when 0 < %cmfp). By Lemma C.10(1), the food delivery platform will
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charge the highest delivery fee 60* = w to maximize its profit, and we have \}, (6) =

N(C*;bﬁ)iR*p) if (cf¢)c(R*p) < 26\1[\1 s .
(c—0)(R-p) _ 2pn, » a0 Ay (07) = p— 35 — A (). From Lemma C.10(1), we
A1 if P > N
(c=¢)(R—p) 2BA1
* lf 9 <
havew (0):{['3/\12 lf9>2[%1.
N
oL 28A ¢ (c—¢)(R—p)
2. If o [’\1) Nl,We have 92§R—p—N7A1 < . by Lemma C.10(2.8)
and A1 > —

service is Ap = (1), the food delivery platform’s
profit increases in 6. Thus, the platform will charge at least R—p— ﬁ for the food delivery

service. From Lemma C.2, the no—supply—constrained demand for the food delivery service is

AD =l — 5= M. In this case, the food delivery platform’s
profit ﬂ(p,&,w (9)) by Lemma C.10(2). Thus, the
food delivery platform will charge 6* = S A1 (Whlch is greater than % because p <
R— o A1)2 — 2801 as the delivery fee, and we have A}, (6*) = A, and \jy, (6*) = 0. From Lemma

C.10(1), we have w* () = ﬁ—]ﬁl

3. IfR—(#fxl)Q—fo,\l <p§R—%,Wehavemax(R—p—ﬁ‘;l,O) <6y <min (%,R—p—%)

by Lemma C.10(2.7) and (2.8). We also have A; > p — 7% here. From Lemma C.2,

the no-supply-constrained demand for the food delivery service is Ap = A; if 8 <
max (R—p— L 0). Then, from Lemma C.10(1), the food delivery platform’s profit increases
in 6. Thus, the platform will charge at least max (R p—H—A,O) for the food deliv-
ery service. From Lemma C.2, the no-supply-constrained demand for the food delivery

for maX(R—p— ¢ ,O)<9<m1n(mR p— ) In

service is Ap = u — =

¢
R—p—6
this case, the food delivery platform’s profit w(p,0,w*(f)) has its maximum at 6, on

{max (R p— M—A,O) min (m R—p— )] by Lemma C.5(2). Thus, the food deliv-

ery platform will charge 0* = 0, as the delivery fee, and we have A}, (6*) = i #LQQ, which is

< w, and A}y, (0*) =0. From Lemma C.10(2), we have

greater than p —

w*(0) =2 (,u— fo ;’5 92>.
If Al >]\1, we have R —

2[31\1 <R
0,, and R p— ;, when A1 > AL
(c=9¢)(R—p) < R —p—

(h— /\1)2
section points of M#, R—p—

1. Ifp<

uA’

< R—p—2. From Lemma
t (c—=¢)(R—p)
C

<p-

C.2, we see that tech-savvy customers are willing to pay a delivery fee of at mos

p—= A1

for the food delivery service, and the no-supply-constrained demand for the food delivery

service is Ap = Ay when 6 < w. By Lemma C.10(1), the food delivery platform will

_ (c=9)(R—p)

charge the highest delivery fee 6* to maximize its profit, and we have \}, (6) =

Mg st ga
o (—d)(R-p) _ 2pn, o AN Afy (07) = p— 5= — AL (6). From Lemma C.10(1), we
A1 lf . > N
(c=9)(R=p) ; 2B
« : ifo<
have (0):{%1 BRI INE
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Figure C.16  The intersection points of %(ER_I’), R—p——2_, 0, and R—p— %, when A; > Ar, for the

2.

p—A1?
parameter setting R=10, A=pu=c=1, $=0.5, A; =0.45, and N = 20.

If R— - <p<p, we have R —p — ,u—d)Al < (C_¢)C(R_p) < 6y, by Lemma C.5(2.9) and A, >

w— Rip. From Lemma C.2, the no-supply-constrained demand for the food delivery service

s Ap=A, f < R-—p-— uj)/\f Then, from Lemma C.10(1), the food delivery platform’s

profit increases in . Thus, the platform will charge at least R —p — u—¢A1 for the food deliv-

ery service. From Lemma C.2, the no-supply-constrained demand for the food delivery service
is Ap=pu — R%;fe for R—p— #%Al <f< w. In this case, the food delivery plat-
form’s profit 7 (p,8,w* (0)) increases in 6 for § < w <65 by Lemma C.10(2). Thus, the

food delivery platform will charge 6* = w as the delivery fee, and we have A}, (0) =
N(c—¢)(R—p) if (c=¢)(R=p) ~ 0 _ _c _ N(c=¢)(R—p) if (c=9)(R=p) ~ 9

Mmoo and Ay (07) = (T R
//J*Ri_p 1ff>61 0 1ff>91

(Note that we have p — & > N(Cffginp) if (Cfdj)c(R*p) <0, by Lemma C.10(2.5).) Then, the

number of customers who join the queue themselves is A}y, (0*). From Lemma C.10(1), we have
(=0)B-p) i (=O)BD) <
w* (0) = { , _

2c

S (n-s) if i s g,

JIf p<p<R—2 we have max(R—p— ¢ 7O) <6, < min(w,R—p—“ﬁ) by

I n—Ay m

Lemma C.10(2.7) and (2.9). We also have Ay > p — 3% here. From Lemma C.2,

the no-supply-constrained demand for the food delivery service is Ap = A; if 8 <
max (R —-p— N%Al, O). Then, from Lemma C.10(1), the food delivery platform’s profit increases
in 6. Thus, the platform will charge at least max (R— p—u_%"Al,O) for the food deliv-

ery service. From Lemma C.2, the no-supply-constrained demand for the food delivery
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service is Ap = j1 — & e

ﬁ for maX(R— ¢ ,O)<9§min(%R p—f) In
this case, the food delivery platform’s profit w(p,0,w*(f)) has its maximum at 6, on
[max (R —p— ﬁ,O) min <m R—p— 7>] by Lemma C.10(2). Thus, the food deliv-

ery platform will charge 0* = 60 as the delivery fee, and we have A}, (0*) = u — ﬁ, which is

< w, and A}y, (0*) =0. From Lemma C.10(1), we have

greater than p —
w* (0) = % (,u— R_f_92>. O
From Proposition C.6, we have the restaurant’s profit II as a function of the food price p when

A1>A1:

Restaurant’s Profit II
fp<p p(u—Ri,,)
Ifﬁ<p§R—% (/“L_#L%>

The restaurant’s strategy is decided by the interplay of p(,u— R";p) and p(,u— R7§792).

(9

R—

Clearly, if max, p(u ) > max, p(u— ﬁ), then the restaurant’s equilibrium price is

1/ﬁR and its equilibrium profit is II* = max,p <,u— Rip) =

p* = argmaxp<
(VR Vo)

Note from Lemma C.10(2.6) that 6, decreases in N, so p<u— %92) increases in N. This

R—

means that there exists an N such that max, p (,u — Rip) =max,p (u m) for N= N, and

maxj, p <u — Rip) > max, p (,u — ﬁ) for N < N. In this case, the restaurant’s equilibrium price
stays at p* =R — ﬁR.

@
R—p—0

We next prove that p (,u — 2) decreases in ¢. Recall that 6, satisfies G(0;) =0< R —p —

2
(b% =25 (u Rﬂfff)z ) If Rﬂ‘i% decreases in ¢, we will have R —p — (b"(R;%%) decreas-

_ ¢
R—p—0y

ing in ¢ while 2% (u increases in ¢, which contradicts the definition of 6,. Hence, we

must have

ﬁ increasing in ¢, which leads to p (,u — ﬁ) decreasing in ¢. Thus, we have

that N increasing in ¢. [

D. Proofs of the Results in Online Appendix A
D.1. Proof of Proposition A.1

To prove Proposition A.1, we give the following Lemma and Corollary.
D.1.1. Customer Strategy

LEMMA D.11 (Customer Strategy—Tech-Savvy Only). When there are no traditional
customers, i.e., Ao =0, under the food price p and delivery fee 6, the joining rates of food-delivery

and walk-in customers, Ap and Ay, are
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>\D (pa‘g) )‘W (pae)

When p< R— —¢

p—~Aq

z'f0<9§;_;;fl Ay 0
if;%fl<0§R—p—% i 0 Ay
When R_qul <p§R—;

if0<9§maX<R—p—H%¢Al,0> Ay 0

C

z’fmax(R—p—u%Al,O)<9§min<%,}?—p—%> JT— 0
0 U

R—p—0
if 0> min (A oy )

Proof of Lemma D.11. When A; < %,u, we have R — quA1 <R- ﬁ <R- M%‘SAl <R- % by

Lemma C.4.

1. fp<R- 5o, we have Ay <\, = p — ot From Lemma C.3(1), we have Uy (A;) > 0.

1.1 If< _¢1, we have A; > A* (0) and Up (A;) > Uy (A;) >0 by Lemma C.3(3.1). This means

c
n—A

that, if all tech-savvy customers join, they obtain greater utility from using the delivery

service. In this case, all tech-savvy customers will join using food delivery service; i.e., Ap =

Ay and Ay =0.
1.2 If 6> ,f_jf’l, we have A; < A¥ () by Lemma C.3(3.3). Further, since A; < \{,, from Lemma

C.3(1) and (3), we have Uy (A1) > Up (A1) and Uy (A1) > 0. In this case, all tech-savvy
customers will join and walk in themselves, i.e., A\p =0 and Ay = A;.

c c —¢)(R—
2. If R— -~ <p§R—;§R——H_¢A1, we have OSR—p—Nf&A1 <l ¢)c( 2) SR—p—%, and

Ay > Ay = p— 3% > 0. From Lemma C.3(1), we have Uy (A1) <0.

< (Hs)c(pr), from Lemma C.3(2) and (2.2), we have Up (A;) >0 >

21 fO<O<R—p—
Uw (A1). This says that if all tech-savvy customers join, their utility of using the food delivery
service is non-negative while the walk-in utility is negative. Thus, all tech-savvy customers
will join and use the delivery service, i.e., Ap = A; and Ay =0.

22 IfR—p— N:LAI < < =OED) from Lemma C.3(2), (2.2), and (3.3), we have AX () < A, <
AS () < Ay and Up (A1) < 0. This says that when all tech-savvy customers join, both walk-in
and food delivery are unattractive. Some tech-savvy customers may balk to avoid negative
utility, until the total arrival rate to the system returns to A3 (0), where Uy (A (0)) <
Up (A¥ (8)) =0 (using Lemma C.3(1) and (2)). Thus, the tech-savvy customers join and

use the food delivery service with rate A3 (0) = u — and other customers balk: i.e.,

Ap =X (0)=p— R—L;—G and Ay = 0. In this case, all customers have zero utility.
2.3 If L=2ED cg<Rp— %, we have AF (6) < A}, < A¥ (0) by Lemma C.3(3.3), and A\ (0) <
Ay < A;. Then, all tech-savvy customers joining (either walk in or order food delivery) does

not lead to positive utility — some customers will balk, until the total arrival rate to the

system drops to A}, where Up (A},) < Uw (Ajy/) =0 by Lemma C.3(1) and (3). This means
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that tech-savvy customers will walk in themselves until the joining rate reaches p— 7, and

nobody will use food delivery; i.e., Ap=0and \yy =p—

c—¢)(R— _

3. 1f M1<R po < el
,u——<A1<)\X(O):,u—R—_p,and,u— 3(1), we have Uy (A1) <O0.
31 If0<f0<R—p-— —, similar to Case 2.1 above, we have Up (A1) > 0> Uy (A;) — if all

tech-savvy customers join, their utility of using the food delivery service is non-negative
while the walk-in utility is negative. Then, all tech-savvy customers will join and use the

delivery service; i.e., Ap = A; and Ay =0.

¢  (c=9)(R—p) )
—u < R similar to Case 2.2 above, we have A\p = 1 — Yo
and Ay =0.
_c _ ¢ _¢ o (c=¢)(R—p)
4. If R HgR H7A1<p§R H,WehaveR P HA1<O<R D — < . and
w— .3(1), we have Uy (A;) <0.
4.1 If R— — % < w, similar to Case 2.2 above, we have A\p =

w— R—L;—O and Ay =0.
When A, > <2y,

L. Ifp<R- # , we have A, S )\ffy =u— ﬂ. This case is the same as Case 1 when A; < c_f,u.

< R— % by Lemma C.4.

—, we have OSR—p—MfAl < (C_¢)C(R_p) and \jy, = pu — <A<
A (0) =u— R—_p. From Lemma C.3(1), we have Uy, (A;) <0.
21 f0<6<R—-p— ,L—¢A1 < (C_¢)£R_p), from Lemma C.3(2) and (2.2), we have Up (A1) > 0>

Uw (Ay). Similar to the Case 2.1 when A; < % u, we have that all tech-savvy customers will
join and use the delivery service, i.e., A\p = A; and Ay =0.

22 If R—p— 4 <0< A0 D from Lemma C.3(2), (2.2), and (3.3), we have A* (0) <
Ay <AF () <Ay and Up (A;) < 0. Similar to the Case 2.2 when A; < =24, we have that
tech-savvy customers join and use the delivery service with rate A3 (6) and other customers
balk; i.e., A\p = jt — R%H’

2.3 If m <0<R-p-2 2 we have A% (0) < Ay, < A¥ (0) by Lemma C.3(3.3), and A () <

and Ay = 0. Here, all customers have zero utility.

Ay < A1 Similar to Case 2.2 above, we have A\p =0 and Ay = p —

R p’
(c=¢)(R—p) @ _ _c
m<0<f§R p Hand,u _pZO
3.1 M , similar to Case 2.2, we have )\D:,u—% and Ay =0.
3.2 If % < 9< R— p— £ similar to Case 2.3, we have A\p =0 and )\W = &5
4. fR— 24— <R-¢ , Mand
p—A1 u c
(Ay) <O.
41 IfR— = p— o= and Ay =0.

To summarize, in equilibrium, the joining rates of food-delivery and walk-in customers, Ap and

Aw, under the food price p and delivery fee 0, are
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1. For A; < C;(bu,
)\D (p7 6) )\W (p7 0)

1.1 When p< R — ﬂfAl
ifo<g<-== Ay 0
p==A7y
if =2 <§<R-p-2 0 Ay
1.2 When "
d’ Ay 0

if R— )]?_7‘3 <g< (C ¢)(R P) :U_R,(f,,g 0

) (R c
1f7p<9<R p—f 0 b= 75
1.3WhenR—;<p§R—H_ A
ﬁO<9§R—p—Wﬁl A,

B @ @ [
ﬁR—p—;:qjﬁgR—p—g = 0
p—=7y <pSR_17
ﬁO<9§prf% p——2— 0

>\D (pae) >‘W (pvg)

2.1 When p< R-— ll«fAl
if0<f <=L A, 0
f £ d’ <0<R p—f 0 Ay
22When ¢A
p—Aq
ﬁO<9<R p——ﬂf Ay 0
¢ =2 (R) ¢
f(C ¢)(R P)<9<R p—* 0 M_Rc—p
23WhenR—7<p<R—;
(c=¢)(R—p) )
1f0<9§fp /‘LiR—p—G 0
if 2D cg<R—p—2 0 =
24 When R—£<p<R-2
; [
1f0<6’§R—p—; b=z O

This result directly leads to Lemma D.11. [

D.1.2. Food Delivery Platform Strategy

From Lemma D.11, we obtain the platform’s profit.

COROLLARY D.6. When there are no traditional customers, i.e., Ao =0, under the food price p

and delivery fee 0, the platform’s profit (p,8) is

™ (p,0)
Whenp<R—M ™
U0<9<C¢ A,
z'f <9<R p—f 0
; ey 9
#0<:0§nwx(R p H_Mjo) oA,

if max (R —p— —H_‘z’AI , 0) < 0 <min (7(6_@512_1’) ,R—p— %) 0 (M — 712—?)—9)
if 0> min (=002 g p— 2) 0
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From Corollary D.6, we see that, similar to the case when there is abundant traditional customers
(i.e., Ag > p in Corollary C.3), the platform will set the delivery fee such that either all tech-savvy
customers will use the food delivery service, or a fraction of them will use the food delivery service.

Different from Corollary C.3, in the first case when platform serves all tech-savvy customers, if the

(c=8)(R=p) ¢

food price is relatively low, i.e., p< R — ﬁ, the highest delivery fee decreases from 0

c—¢
p—=Ar"

ProprosITION D.7 (Food Delivery Platform Strategy—Tech-Savvy Only). When there
are no traditional customers, i.e., Ay =0, under the restaurant’s food price p, the platform’s best-
response delivery fee 0* (p), the joining rates of food-delivery and walk-in customers Ap (p,0* (p))

and Aw (p,0* (p)), are
1. For Ay < <2y,

0 (p) Ap (p,0" (p)) Aw (p,0" (p))
TR = ¥ o
IfR— - <p<R-_ 0 R-p-—“o Ay 0
R—
IfR—(M_A1)2<p§R—/7 Rop— Y20 e
2. For A4
0" (p) Ap (p,0" (p)) Aw (p,0" (p))
pr<R_/1. Aq Lcj(\z) Al 0
2
IfR— - <p<R-< DD . = 0
IfR-< <p<R-¢ R—p—w p—JAe 0

Moreover, the food delivery platform’s profit under the platform’s best response delivery fee m* (p)

is a weakly decreasing function of the food price p.

Proof of Proposition D.7. When A; < C_d)u,

1. prSR—%A, we have :_‘b < (= ¢)(

. From Lemma D.11, tech-savvy

Cc—

customers are willing to pay a delivery fee at most for the delivery service, and the demand

CcC—

for the delivery service is A\p = A; when 6 < =

Therefore the platform will charge the
highest food delivery fee §* = = ¢ to maximize its proﬁt we have A\p = A; and A\ =0. The
food delivery platform’s proﬁt * (p) = ¢’ A1 is a constant regarding the food price p.

n—

2. Ifp>R— FC/\17 the discussion follows Cases 2 and 3 when A; < % 1 in the proof of Proposition
C.3, and we have the food delivery platform’s profit under the platform’s best response delivery

fee 7* (p) is a a decreasing function of food price p.

1. pr<R—L, we have Mc fl < L= )(R_p) <R—p—

similar to Case 1 when A; <

platform’s profit 7* (p) = :ffl Al is a constant regardlng the food price p.

- Al<R p—f From Lemma D.11,

, Ap = Ay, and A\ = 0. The food delivery

c—¢

—“u, we have 0 =
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2. If p> R— ——, the discussion follows Cases 2 and 3 when A; > € ,u in the proof of Proposition
C.3, and we have the food delivery platform’s profit under the platform’s best response delivery

fee 7 (p) is a a decreasing function of food price p. O

D.1.3. Restaurant Strategy

From Corollary D.6, we obtain the restaurant’s profit.

COROLLARY D.7. When there are no traditional customers, i.e., Ag =0, under the food price p,
the restaurant’s profit 11 (p) is
c—¢
1. For A1 < =u,

I (p)
p<R-ginp Phs
- i v o)
2. For Ay > %u,
I (p)

#A1

IfR—;—Z<p§R—§ p(n—/22)

The following proposition characterizes the restaurant’s optimal strategy as a Stackelberg leader.

ProprosITION D.8 (Restaurant Strategy—Tech-Savvy Only). When there are no tradi-
tional customers, i.e., Ag =0, there exist threshold values ¢y, Pa, Az, and A3, such that, in equilib-

rium, the restaurant’s optimal price p*, profit II*, and throughput X}, + A}, are

p* (A1) IT* (A,) Ab + Ay

When ¢ < ¢,

; _ _ po

’Lf A1 S AQ R (- A1)2 (R (%—A1)2> 1 Al

. 2R 2R(u—

if Ay >N 7221_;() 72(5_;) n—X
When ¢ < ¢ < ¢

; [

if Ay <o R— = A1)2 (R_ (#;#IM)Q) A Ay

if Ao <Ay < A3 721231;) 721%2%::) =X

’lf )\3 < A1 < o= \/w R— H—CAl (R - “_CAl) A1 A1
if Ay >p—\/F R— V<R (\/R,u—ﬁ)Q p—/%

When ¢ > ¢
A<= R- iy (R_ (uff1>2> A Ay
Z.fc ¢ILL<A1<IU, 1/Cu R—#_CAI <R_,U.—CA1 Al Al
2

if M>p—/% R— /<R (VRu—+e) =%

Moreover, we have

(i) 1I* (A1) is a weakly increasing function of Ay for V¢.
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(ii) p* > p4 and I1* > 1145, if (i) ¢ < @15 or (i) ¢1 < ¢ < ¢o and Ay < Az; or (iii) ¢ > ¢o and
A <(c—@)u/c; and p* =ps and II* =114, if (i) ¢1 < & < o and Ay > A3; or (i) ¢ > ¢ and

Ay > (c—p)u/e.

Proof of Proposition D.8 Recall from Corollary D.7 that (i) For A; < <2

the restaurant’s

profit II (p) linearly increases with p on (0 R— |, so the restaurant’s maximum profit IT*

(n— A )
is max o 51D (p— \ /é‘%). (ii) For A, the restaurant’s profit Il (p) linearly
ve Rt ] !

, so we only need to compare ma ( — L)
} Wi y p X;DG[R - A1 R_W]p 2 R—p

_ e 3 ) *
and max (R_%ﬂ_%] D (u \/ R_p) to determine the restaurant’s maximum profit IT*.

increases with p on (0, R — -

1. If ¢ < ¢, following the same discussion in the proof of Proposition C.4, we

2 2
have max p (,u \ /“—¢) = 2B=x0" > max p (,u < > = (v/Ru—+/c)", and
pE(O R—f] R—p 2p—x e (O R ¢] R—p ( \/)

argmaxp(u—\/ézj:) :%ZR— 2

prt
e If Ay < ),, the maximum point of p( /7 ) (0 } by the definition

1
Ko
of X\y. We have maxpe (R_ o R—f ( /B> ) ( — 4/ pr) ’pR( e In this case,
=

—AD2’ A7)
I (A) = (R— )A1 and p* (A )=R— Note that (R— “‘fj\) ) A is a unimodal
function with the maximum at Ay, so II* (Al) increases in Ay on (0, Ao].
o If My< A < the maximum point of p (u — \/%) is in (R— e A 52 ,R— 9} by the
definition of A\y. In this case, IT* (A1) = LTSV p*(A) = M Note that IT* (A;) here

2p—x

A)2 A)2

is a constant regarding A;.

c—¢ c [ —
o If Ay > = maxpe(R_ﬁr R_w]p(,u—R_p) < max e(r- C¢R ¢]p<,u— R“—_p) =

ma’XpG(O,R—%]p (M— \/é:i)) = 7222“7; . In this case, IT* (A;) = % and p* (Ay) = %.
Note that II* (A;) here is a constant regarding A;.

To summarize, the restaurant’s maximum profit IT* and the profit-maximizing price p* are

IT* (A,) p* (A1)

. _ o pne ___ud
1fO<A1 S)\Q Al (R , (#7/\1)2) R (#7/\1)2
. 2R(u—x) 2E(p—x)
A >N, | 2R o=

We next compare p* (A;) and IT* (A;) to the restaurant’s revenue maximizing food price and
maximum revenue without food delivery service, pi (A1) and I} (A;). In a classical unobservable
queue without food delivery service (see, e.g., Edelson and Hilderbrand 1975), we have

o c cr
i () = o i A < \/7 nd I (Ag) = A ( ““2 A <p—/F
\/cR/,u if Ay >p— \F (m_\/a) i A > p— \/m

Note that given ¢ < ¢, we have Ay < M and M > ( )
For Ay <p—/F, if 0 <Ay < Ay, we have A} < —,u, which 1mphes p*(A) =R - (ufffl)Q >

p*T (A ) we have IT* (Al) :p (Al)Al > H;« (Al) :pT (Al)Al If Al > /\2,
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Figure D.17 The restaurant’s profit II as a function of p, when A; = 0.5, 0.63, 0.65, 0.8, for the parameter setting

R=10, p=c=1, Ap=0, and ¢ =0.38.

we have p* (A;) is a constant regarding A; while pj (A;) decreases with Ay on (Ao, — /%]

2R(u—2)° -

and then stays constant, which implies p* (A;) > pk (A;1). From ¢ < ¢;, we have o 2

(VR /e) &I (M) > 1T (Ay).

Otherwise, for Ay >y — /%, if 0 <Ay < p— /%, we have A, < © P
p*(Al):R— (— A)2 >pT(A) (A1):p*(A1)A1>Hi}(A1):
Py (M) Ay IEAy > p—/E, we have pj. (Ay) = R—
V%, 2] and then equals to %. We have R —

which implies

\/ - R is a constant regarding Ay, while p* (Ay)

cR<2Ru X)by

decreases with A; on (M — 2u—x

Lemma C.7(4), which implies p* (A1) > p4 (A1). Moreover, we have II* (A;) is a nondecreasing

function of A; while IT}. (A;) is a constant regarding A;, which implies IT* (A;) > IT5 (Ay).

C3 C —02 —
2. If¢1<¢§¢25—”(;§f’0,wehave max p(,u ,/%>:%< max p(p—ﬁ):
pe(0,R—2] pe(OR 2]

_ /) e\ — 2R(—) _
(VRp—+/c)", argmaxp (u \/R_p) =N >R
trates the restaurant’s profit as a function of p under different Aj;.

7)) =R— \J:R<R-
N

p— /22 ) to determine the restaurant’s
i R

2
ﬁ, and \, < <2

Note that when

<p— /%, we have argmaxp (,u— g which implies

carles) =)

)A1 and maxpe(R 2o

m aX

S >A1 So we need to

compare (
maximum proﬁt II*.

o If A; <)\, similar to the A; < Ay case discussed in Case 1, as Figure D.17(1) shows, we
have IT* (A;) = (R— ) A; and p* (A;) =R -

We have IT* (A;) increases in A; on

/LA)2 uA)2
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(0, Ag].
o If Ay <A <& ,u, similar to the Ay < A} <= ‘b,u discussed in ¢ < ¢, case, we have IT* (A;) =
21"32(57_") and p* (A )= M. Note that II* (A;) here is a constant regarding A;.

o If = ¢M<A1 < X3 <p—+/%, we have argmaxp(,u C_p) :R—,/iRSR— M_CA
R— A < M , as illustrated in Figure D.17(2). In this case, II* (A;) = 2Ru=x)" 414
= A1 2pu—

- and

2p—x
p*(Ay) = m Note that IT* (A;) here is a constant regarding A;.

o If X3 < A1 < p — /%, we have argmaxp(,u—pr> =R — 1/ﬁR < R - AT
and ( )A > %, as illustrated in Figure D.17(3). In this case, II*(A;) =
< > A; and p* (Ay) = ( EA) A is a unimodal function with the
maximum at p — /%, so II* (A;) increases in Ay on (g, — /%]

oIf Ay >pu— /%, we have R — qu1 < R - “R < R — C—¢ which implies

2
max_ — =% )= max >  max ( ,/ﬂ):L(”—X) ,
( W]P(M R_p) pe(0.R— ¢]p<u R_p> pe(OR d’]p roVE X

as illustrated in Figure D.17(4). In this case, II* = (v/Rp — \f) and p* = R—, /£R. Note that
IT* (A) here is a constant regarding A;.

To summarize, the restaurant’s maximum profit I1* and the profit-maximizing price p* are

1" (A1) p* (A1)
I T __uo
HfO<A <Ay Ay (R Z (HiAl)Q) R AR
ashi<y [T EES

it X< Ay <pr—\/E A1<R—MA1) R—
if Ay >p—\/F (\/R,u—\f) R—/+R

We next compare p* (A;) and IT* (A;) to the restaurant’s revenue maximizing food price and

maximum revenue without food delivery service, p% (A;) and II% (A;), respectively. Note that
2

T and 2220 < (VR /2)" I Ay < A,

similar to the Ay <y — \/% case in Case 1, we have A; < T,u, which implies p* (A;) = R —

uo (A ) R - MfAl and IT* (Al):p* (Al)Al ZH; (Al):p; (Al)Al If )\2<A1 S)\g,

Gman? = P1

given ¢ < ¢, we have A, < <=2

we have p* (A;) is a constant regarding A;, while pi (A;) decreases with A;, which implies
p* (A1) > p4 (A1). Moreover, by the definition of Az, we have (R— = A1> A < 212(;‘7__;‘)2, which
implies IT* (A1) > IT3 (Aq). If Ay > A3, clearly we have p* (A;) = p5 (A1) and IT* (A;) = 1T (Aq).
. If ¢ > ¢y, we have max p (u 1/%) = % < max p <u C_p) = (VRu— \ﬁ)Q,

pe(0,R—2] pe(0,R—2]

arg maxp (M — 4 /Ié‘—i)) 2};2‘ XX) <R- —2, and < ,u < Ag. Figure D.18 illustrates the restau-

rant’s profit as a function of p under different A;.

o If A < C"z’
have IT* (A,) = (R -
on (0, c;‘bu].

similar to the A; <\, case discussed in Case 1, as Figure D.18(1) shows, we

)A1 and p* (Ay) = R—o

Gm A 2 A nER Note that IT* (A;) increases with A,
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(1)Restaurant Food Price p (2)Restaurant Food Price p (3)Restaurant Food Price p

Figure D.18 The restaurant’s profit II as a function of p, when A; =0.4, 0.6, 0.8, for the parameter setting
R=10, Ao=0, p=c=1, and ¢ =0.5.

o If %M<A§,u— <, we have argmaxp(u— . ):R_\/ﬁiR<R_uf and

R’ R—p Aq
arg max p <u—,/R“—i)> = QI;”L“ XX) <R - ‘:—1, as illustrated in Figure D.18(2). In this case,

H*(Al): (R_/_L Aq
(S2m = /F ]
o If Ay >pu— /%, we have R — —= SR—1/CR<R < which implies

>A1 and p* (A;) = <5 Note that II"(A;) increases with A; on

p—A pne?

max — e R-< p(M— < ): max p(ﬂ - ) > max p(u—\/zf), as illus-
pe(R i w] R=p pe(O,R—ﬁ] R=p pE(O7R—i] R=p

trated in Figure D.18(3). In this case, II* = (v/Ru — ﬁ)z and p* = R— /< R. Note that II" (A;)
here is a constant regarding A;.
To summarize, the restaurant’s maximum profit IT* and the profit-maximizing price p* are
1" (Ay) p* (A1)
it 0< Ay <2y M (R- ) | R- (#ffl)g
1f°¢,u<A1<,u \/WAl R— HAI R—

it A > - /E (VR — e R—\F

We next compare p* (A;) and IT* (A;) to the restaurant’s revenue maximizing food price and

maximum revenue without food delivery service, pi (A1) and IT (Ay). If Ay < =24, we have

p* (A1) 2 p7 (A1) and 11" (Ay) = Agp* (Ay) = T3 (Ar) = Aaph (Ad).
P (M) =pi (A)) and I (A)) =115 (A)). O

clearly we have

Given the restaurant’s optimal food price p* (A;) in Proposition D.8, we can use Proposition D.7 to
obtain the platform’s optimal delivery fee and corresponding profit in equilibrium of the Stackelberg

game.
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COROLLARY D.8 (Food Delivery Platform’s Profit—Tech-Savvy Only). When there are
no traditional customers, i.e., Ag =0, there exist threshold values ¢1, ¢2, A2, and A3, such that, in
equilibrium, the food delivery platform’s delivery fee 0%, equilibrium profit ™, the joining rates of

food-delivery and walk-in customers X}, and Ay, under the restaurant’s equilibrium price p* are

0" (p* (A1) 7 (p~ (M) A5 iy
When ¢ < ¢,
2
Fhi<he AT ehp A0
R _ Y
When ¢1 < ¢ < ¢
- 2
A=A AT Gemp A0
. _ 2
Z'f/\3<A1§M—\/% HC ;\ﬁl <::X’1>A1 Ay 0
ifM>p—5% (=) JE (c=0) (/2 -1) n—/F 0
When ¢ > ¢
; c— 2
Al vy ey A0
T TG i = S = L

if Ay > p— \/E (c=9) /2 (c—¢) (V2 -1) u=yF 0

Moreover, we have * (p*) is a weakly increasing function of Ay for V.

Proof of Corollary D.8 (i) When ¢ < ¢y, similar to the ¢ < ¢, case in Proposition D.8, we have

[ IfAlg)\QSC_¢

>R—

the restaurant’s profit-maximizing price is p* (A;) =

M/\l

by Proposition D.8. From Proposition D.7(1), the platform’s profit = and proﬁt—max1m1z1ng delivery
AT and 6* (p*) = ¢A1 . Note that 7 (p*)

fee 0* are w(p*) = A1<R p— A) = .
L — o b —A
D = A 0
increases with A; on (O, ‘;‘bu].
e If Ay > )y, the restaurant’s profit-maximizing price is p*(A;) = 21;‘/2” XX) > R — o A 2 by

Proposition D.8. From Proposition D.7(1), the platform’s profit 7 and profit-maximizing delivery

fee 0* are 7 (p*) = <Rp@> (Mf\/%)

du—x) _ Rx(p=x)
x2 n(2p—x) °

(ii) When ¢; < ¢ < ¢2, we have

_ ou—x)? _ Rx(p—x)? * %\
_2R(u—x) X ) and 6 (p )_
T 2p—Xx

Note that here 7 (p*) is a constant regarding A;.

.. . N Ap)? -
o If Ay <)y, similar to Case (i), 7 (p*) = Ay (R—p— P«:ﬁAl)‘ n_us = % and 6* (p*) =
(n—~A1)
(ﬂf/xl)? Note that 7 (p*) increases with A; on (0, Ao
.. . N " 2 2
o If \y < Ay < <2y, similar to Case (i), 7 (p*) = p (,u— F‘fp) 2R d’(”XQX) = i’?;‘;f;))
T~ 2p—Xx
and 6* (p*) = ¢(“§X) ﬁé(l‘j X) Note that here m (p*) is a constant regarding A;.

2R(p—x) >R— 2 b

2p—x  — po

o If = ,u < Ay < )3, the restaurant’s profit-maximizing price is p* (A;) =
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Proposition D.8. From Proposition D.7(2), 7 (p*) = (R —p— W) (M — /;—i)) ‘ =
2R(p—x)
2p—x

$(n—x)% _ Rx(p—x)® * (%) = w=x) _ Rx(u=x) ) i ;
“XQX = H’Ez‘;j}i) and 6* (p*) = ’;2" = Méﬁ*;{) . Note that here 7 (p*) is a constant regarding A;.

o If \s <Ay <p— /%, the restaurant’s profit-maximizing price is p* (A;) = R — e by Propo-

n=Ay

sition D.8. From Proposition D.7(2), the platform’s profit 7 is 7 (p*) = < e—¢ )Al

_p__c
p=R-=xy

<::1§;51) Ay and 0* (p*) = :_;;fl Note that 7 (p*) increases with Ay on (A5, —/%].

o If Ay >pu— /%, the restaurant’s profit-maximizing price is p*(A;) = R — \/ﬁ>R and we
have R — = < R — \/ﬁ? <R- ;—1 by Proposition D.8. From Proposition D.7(2), 7 (p*) =
() (= ) = (c=0) (/2 —1) and 6" (p*) = UL Note that h
< p |y - bR\ /TR (c—9) A an (p*) . ote that here

7 (p*) is a constant regarding A;.

(iii) When ¢ > ¢, following the same discussion as in the ¢ < ¢; and ¢; < ¢ < ¢, cases, we have

c—¢ ’ : *) o _® —
o If Ay <=2y, the platform’s profit 7 is 7 (p*) = Ay (R P /L—A1> r_ut T GAD? and
A (n—A1)?
0* (p*) = (;ﬁ/\i)” Note that 7 (p*) increases with A; on (0, <2y,
o If c;(b,u <Ay <p—/F, the platform’s profit 7 is 7 (p*) = (:—;1?1) Ay e = (:_X’J 1
=R
and 6* (p*) = :_;/‘fl Note that 7 (p*) increases with A; on (“=2u, pu— =

o If Ay > pu— /%, the platform’s profit 7 is 7 (p*) = (c — ¢) (w [ B8 — 1) and 0* (p*) = %.

Note that here 7 (p*) is a constant regarding A;. O

D.1.4. Social Welfare
We next investigate social welfare, which is defined as the sum of the restaurant’s equilibrium profit
in Proposition D.8 and the platform’s equilibrium profit in Corollary D.8 under the restaurant’s
optimal food price p*(A;) in Proposition D.8 and the food delivery platform’s best-response delivery
fee 0*(p*) in Corollary D.8. Similar to Corollary C.4, customers have zero utility in equilibrium;
otherwise, either the restaurant or the food delivery platform could raise the price without changing

the throughput, which would lead to a higher profit.

COROLLARY D.9 (Social Welfare—Tech-Savvy Only). When there are no traditional cus-
tomers, i.e., Ag =0, social welfare under the restaurant’s optimal food price p* in Proposition D.8

and the food delivery platform’s best response fee 6 (p*) in Corollary D.8 is
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S (Ay)
When ¢ < ¢
if A< A RA, — 2L
if Ay > Ao R(Z#éx)(u;x)Q
p(2u—x
When ¢ < ¢ < ¢y
if A< A RA, — 2L
if dg <Ay < g R2p+x) (p—x)°

p(2p=x)

’Lf>\3<A1<[L w/cp‘ RAl—%

if My >p— /% o+ Ru— (c—l—d))\/?“

When ¢ > ¢
Fh<p—VF  RA-EL
if Ay >p— /% ¢+ Ru—(c+¢) /2

Moreover, we have S* (A1) is a weakly increasing function of Ay for Ve.

Proof of Corollary D.9. From Proposition D.8 and Corollary D.8, we have
(i) When ¢ < ¢y,

o If Ay <Xy, we have S(Ay) =II" (Ay) + 7" (p*) = <R_ (e 22 )2> At <3(A§ =R -2
o If A, > Ao, we have S(Al) — I+ (Al) + 7 (p*) _ 2R2(l/: ;() + 11)2(2/; );())2 _ R(QZ-(&;/(L)E/;) x)?

(11) When ¢1<¢§¢2,
o If Ay <)Xy, we have S (A;) =1I" (Ay) + 7" (p*) = (R —

>A1+ o(A1)? )" — RA, — DA

(n— A)2 (n—A1) p=~Ay”
2 2
o If Ay < Ay < A, we have S (A) = II* (Ay) + 7 (p*) = 2RO | Blio® _ RCie(i®
o If )\3<A1§M—\/%, we have S(Al) ( 1)+ ( ): —Al)A1+(;J,C—_/f)1)A1:
RA, — 24
p—A1°

o If Ay > pi— /%, we have S(Ay) =IT* (Ay) + 7 (p*) = (VR — ) + (c— ) (\/@_1) -

¢+ Ru—(c+ o) @.

(iii) When ¢ > ¢,
o If Ay < =24, we have S(A;) =II* (A) + 7" (p*) = (R— (Hf“" 2) A+ "5(:\1)22 =RA, — AL

A1) p—=Ar"

o If =2) <Ay <p— /%, we have S(Al):H*(Al)—FW*(p*):(R—M A1)A1+(u Al)Al
RA, — 221
L7 u—Ays

o Tf Ay > 1 — /%, we have S (A;) =1T* (Ay) + 7 (p*) = (VRi— )’ + (c— &) (\/% - 1) -
¢+ Rp—(c+) /2. O
We have Proposition A.1 from Proposition D.8, Corollary D.8 and Corollary D.9. [J

D.2. Proof of of Lemma A.1
Similar to Lemma 1, the optimal monopoly food price p° and delivery fee #° maximize not only
the aggregated profit but also social welfare; and the centralized owner’s goal of maximizing the

aggregated profit aligns with a social planner’s goal of maximizing social welfare.
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Similar to the proof of Lemma 1, we first derive the socially optimal joining rates of food-delivery
and walk-in customers.

Under the condition of no traditional customers, i.e., Ag =0, due to the lower waiting cost by using
delivery service, it is socially optimal for tech-savvy customers to join using food delivery service.
Then, the socially optimal behavior of tech-savvy customers is identical to unobservable queues in

Chap 3, Hassin and Haviv (2003). We give the following proposition without proof.

PROPOSITION D.9 (Social Optimization—Tech-Savvy Only). When there are no tradi-
tional customers, i.e., Ag =0, the mazimum social welfare and socially optimal joining rates of
food-delivery and walk-in customers Ap and Ay are

Se % Ay
IfogAlgu—\/% A1<R—#fA1> A 0
Fa>u—/%  (VBi-va) u—\/% 0

Moreover, we have:
(i) The optimal social welfare S° is a weakly increasing function of A;.

(ii) The socially optimal throughput X}, + A§, is a weakly increasing function of A;.

Next we study how to achieve the socially optimal joining rates of food-delivery and walk-in cus-
tomers, A}, and Ay, characterized in Proposition D.9. Let p° and 6° denote the optimal monopoly
food price and delivery fee that induce the socially optimal joining rates A%, and Aj, in Proposition
D.9. We expect that the solution of p + 6* (p) = p,,,, where 6* (p) is the platform’s best response

delivery fee from Proposition D.7 and

R— 2 if A, <p—/%

p — M—Al R
R—\JOR if Ay > p— /4

is the social optimal price in an unobservable M/M/1 with waiting cost ¢ (see, e.g., Hassin and

Haviv (2003)), is the socially optimal food price p°, and the platform’s best response to p° is 6%
i.e., 0* (p°) = 6°. We next verify this conjecture.

From Proposition D.7, we have the sum of food price p and platform’s best response delivery fee
0 (p):

1. For A, < Cf’,u,

p+0*(p)
_ c c—¢ c—¢ _ )
Fp<R— - P+ A €l By
__c _ né __ 9 __ 9 __ 9
IFR- - <p<R— L R—_t e (R SR

HR- 2 <p<R-¢ R-Y"UD c(p__s s

(n—~A1)? / p—A1 B
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p+9*()
c—¢ [
pr<R—M . p+u o €l -5
R—2(R-p) e(R—“ R <

TR- < <p<R-¢ RV e(R—E,R—Q
e H Iz Iz

©w

When ¢ < £, we have y1— /% <<%y R— /¢8> R—< and R— < <0,

. IfAlgu—,/‘%“,thesolutionofp+0*(p):pm<:>p+ O R _igp°=

n—Aq n—Aq
by Proposition D.7, we have 0° = 0* (p°) = (C_¢)(CR_pO) = Mc_/‘f’l. By Lemma D.11, we have )\D = A1
and Ay =0, which are identical to A}, and Aj, in Proposition D.9.
¢ OR
oIfA1>,u— f”,wehaveR— T>R—m R_(MA
solution of p+ 6*(p) = p,, & R — 7%371)) =R-— ,/% is p° = 0. By Proposition D.7, the food
delivery platform’s best response is §° = R — p°® — Vel _ d’R > R — ——. By Lemma

"

D.11, we have A\p =y — ﬁ = — \/% and Ay = 0, which are identical to )\OD and A, in
Proposition D.9.
When ¢ > £ we have <2y < i — \/@,andR \F<R

o If A gu— \/%, the solution of p+6* (p) =p, < p+ = = A1 =R-—
by Proposition D.7, we have 0° = 6* (p°) = (e 7¢)(CR7P ) —

uA isp°=R

By Lemma D.11, we have )\D = A1

= A1
and Ay =0, which are identical to A7, and Aj, in Proposition D.9.

o If Ay >p— \/%, we have R — ﬁ>R— ﬁ The solution of p + 6* (p) = p,, & R —
% (R—p)=R-— \/% is p’=R — c\/;ﬁ <R- E—Z. By Proposition D.7(2), the food delivery plat-
form’s best response is 6° = M =(c—9¢) \/%. By Lemma D.11, we have A\p = 1 — ﬁ =

w— \/‘L—}f and Ay =0, which are identical to A}, and Aj, in Proposition D.9.

To summarize, the centralized owner of the food service chain can set the food price as

c : @
e if Ay <p—/F

p’=40 if Ay >p—

R—c,/—u it Ay >p—

to induce the socially optimal joining rates A% and Ay, in Proposition D.9 and extract all the

and ¢ < £ (D.13)
s and ¢ > £

=g E’

surpluses from customers; and the delivery platform’s best response is

:_;fl if Ay <p— %
0°=S R—\/%% i Ay >p— /% and p< £ (D.14)
(c—¢) /& if Ay>p—/% and ¢> £

From the expression of p° and #° in (D.13) and (D.14), it is easy to verify that p° and p°+ 0° are

weakly decreasing functions of A, and that 6° is a weakly increasing function of A;.
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The restaurant’s corresponding profit is

IT° (A1) =p° (A) + Ay)

1f0<A1gu—\/% (R—M_CAl)Al

IfA1>u—\/%and¢§ 0

>A1 is a decreasing function of A;, 0 and

[

P |2

From proof of Lemma 1, we have (R - A1
(R — c\/g ) (,u — ﬂ) are constants regarding A;. Thus, I1° (A;) is a weakly decreasing function
of A;.

The platform’s corresponding profit is

7 (p° (A1) =0°X%
IfO<A1§M—\/% MC:/TIA:L
IfA; >p— %andqﬁﬁ% <R—ﬁ)<“_
If Ay > p— /% and ¢ > £ (c—¢)@<ﬂ—

which is clearly a weakly increasing function of A;. [

[

)

=g
N

D.3. Proof of Proposition A.2

We discuss the one-way and two-way RS contracts separately.

1. We first discuss the one-way RS contract with a price ceiling. In a decentralized system under
the platform’s best response delivery fee 6* (p), social welfare can be derived as

1.1 For A; < =2y,

H(p)+7*(p)
pr<R—u - P+l M
If e <R—# o)A
IfR—(H_"fl)2<p§R—% Ru+¢—J/T¢<\/R7—p+¢§—_,,)
I (p) +7* (p)
pr<R—u ™ (P‘f‘u Al)Al

? ¢
HR-2<p<R-%  Rp+o—vid (VE—p+ =)

We have the following results.

o (p+:=

R#+¢ Rc +M . . .
o ( )):@—7f6)2,wh1ch is zero Whenp:R—c,/uﬂ;R—c H%S

317 c (R—p
82(Rp+¢—( Re +¢H(R—P)))
ne . R—p c _ _—2Rc
<p—y/t; and 52 < 0.

" (R-p)®

because (( ﬁ) ) =A;>0.

R—




0 Ruto—viud (vVE—p+—=2
o Ru+o¢—+/uop (x/R—p—i- ﬂf;—_p) decreases in the food price p, because ( . . <8p IR
_ p\/}Td)B < 0'
2(R—p)?

Thus, we have:

e When A1<,u—\/ , we have

(p+ = A1) A, increases in p for p € [O R— = A1j|

—Rp+¢— (ﬁjtm) decreases in p for p € (R—ﬁ,R—;—Z]

—Ru+¢— \ﬁ<\/7+\/—) decrease51npforp€<R W,R—Q}.

m

Thus, II(p) + 7" (p) is a unimodal function of p with the maximum at p° =R — -~

e When A1>/L—\/ , we have

_ <p_|_ :_*;fl> A, increases in p for p € [0 R— — Al}

—Rp+o— (RR—fp + w) is a unimodal function of p with the maximum at p=R—¢ M%
for pe (R— < R ﬁ]
—Rp+¢— \/;<\/7+ \/—) decreases 1npforp€<R :b’R %}
Thus, II(p) + 7* (p) is a unimodal function of p with the maximum at p°=R —¢ %,

When the platform shares 7, fraction of its profit with the restaurant, the restaurant’s profit
is II(p) + um* (p) = (IL(p) + 7* (p)) — (1 — v ) 7 (p). We have shown above that II(p) +7* (p)
is increasing in p for p € [0,p°], and 7* (p) is a weakly decreasing function of p by Proposition
D.7. Thus, the restaurant’s profit II (p) +v,7* (p) increases for p € [0, p°], which means that the
restaurant will set the food price p = p° to maximize its profit. By Lemma A.1, given the food
price p°, the platform’s best-response delivery fee is 6°. Hence, the one-way revenue-sharing
contract with a price ceiling proposed in Proposition A.2 successfully induces the restaurant
and the platform to behave in the socially optimal manner for Vv, € [0, 1].

For the decentralized system, we have the restaurant’s profit IT* (A;) from Proposition D.8,
the platform’s profit 7* (p* (A;)) from Corollary D.8, and social welfare S* (A;) from Corollary
D.9 in equilibrium. Note that IT* (A;) and 7* (p* (A;)) are the minimum profits the restaurant
and the delivery platform target. In the centralized system, under the optimal monopoly food
price p° and delivery fee 6°, we have the restaurant’s profit I1° (A;), the platform’s profit 7° (A,),

and social welfare S°(A;) from Lemma A.1. The range of sharing fraction

I (Ay) —TI° (Ay) _ 7™ (p* (A1))
T € o (po (Al)) ,1 (D15)

makes sure that the restaurant and the platform can reach a win-win situation for the restaurant

and the platform.
. The two-way revenue sharing contract turns the restaurant’s profit function into an affine

transformation of the aggregated profit of the whole service system. Thus, the restaurant will
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set the food price as the socially optimal one p°. Then, from Lemma A.1, the platform’s best
response is to set the delivery fee as 6°. This contract coordinates the whole system in the
socially optimal fashion. From a discussion similar to the one-way RS contract with a price
ceiling, the range of sharing fraction

(A (0 (A)
So(Ay)’ S (A1)

V2 € (D.16)

makes sure that the restaurant and the platform can reach a win-win. [
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