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A. Tech-Savvy Customers Only

In this section, we temporarily lift the assumption of abundant traditional customers and investi-

gate the case with no traditional customers, i.e., Λ0 = 0. This scenario applies to new restaurants

without established customer bases or when it becomes too risky to dine in restaurants during a

pandemic. Everything else remains the same as our base model. Let p∗T and Π∗
T denote the restau-

rant’s revenue maximizing food price and maximum revenue, respectively, under demand rate Λ1

and no food delivery service.

Proposition A.1 (Equilibrium–Tech-Savvy Only). Under the condition of no traditional

customers, i.e., Λ0 = 0, if the food delivery service is sufficiently inconvenient and the amount

of tech-savvy customers is relatively high, the restaurant operates in a delivery-irrelevant regime.

Otherwise, if the food delivery service is sufficiently convenient or if the food delivery service is not

so convenient and the amount of tech-savvy customers is low, the restaurant operates in a delivery-

only regime–it charges a higher food price compared to that under no food delivery service and all

joining tech-savvy customers use food delivery service. Formally, there exist ϕ1, ϕ2, and λ3, such

that: If (i) ϕ≤ ϕ1; or (ii) ϕ1 < ϕ≤ ϕ2 and Λ1 ≤ λ3; or (iii) ϕ > ϕ2 and Λ1 ≤ (c−ϕ)µ/c, we have

p∗ ≥ p∗T and Π∗ ≥Π∗
T . Otherwise, if (i) ϕ1 <ϕ≤ ϕ2 and Λ1 >λ3; or (ii) ϕ> ϕ2 and Λ1 > (c−ϕ)µ/c,

we have p∗ = p∗T and Π∗ =Π∗
T . Moreover, in all cases, the restaurant’s profit Π∗, platform’s profit

π∗, social welfare S∗, and the restaurant’s demand λ∗
D +λ∗

W are weakly increasing in Λ1 for ∀ϕ.

To illustrate the results of Proposition A.1, similar to Figures 1, 2, and 3, we plot the related

performance measures as a function of tech-savvy customers’ arrival rate Λ1, for ϕ= 0.5, 0.36 and

0.3 in Figures A.1, A.2, and A.3, respectively. Same as Figures 1, 2, and 3, we have ϕ1 = 0.3554 in

Figures A.1, A.2, and A.3.

When the arrival rate of tech-savvy customers is low (see, e.g., Λ1 ≤ 0.4965 in Figures A.1, A.2,

and A.3), the restaurant chooses to set a high food price to grab more residual surplus from food

delivery customers, because a low food price cannot attract more customers, due to the absence

of traditional customers. In other words, the restaurant choose the delivery-only regime over the

delivery-irrelevant regime. On the other hand, when the arrival rate of tech-savvy customers is high,

the restaurant will stay in the delivery-only regime only if the food-delivery service is sufficiently

convenient (see, e.g., ϕ ≤ ϕ1 and Λ1 > 0.6583 in Figure A.3); and it will switch to the delivery-

irrelevant regime if the food-delivery service is not so convenient (see, e.g., ϕ> ϕ1 and Λ1 > 0.6583
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Figure A.1 Equilibrium system behavior as a function of Λ1 for Λ0 = 0, R= 10, µ= c= 1, and ϕ= 0.5.
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Figure A.2 Equilibrium system behavior as a function of Λ1 for Λ0 = 0, R= 10, µ= c= 1, and ϕ= 0.36.

in Figure A.2). The same intuition applies. When the food-delivery service is sufficiently convenient,

the restaurant can extract more surplus from customers by charging a high food price, which

discourages some customers from joining and results in lower throughput; but when the food-

delivery service is not convenient enough, the restaurant can gain more profit from a low food price

which leads to a higher throughput.

In all cases, the throughput is increasing in the amount of tech-savvy customers; see, e.g., Figures

A.1(c), A.2(c), and A.3(c). Naturally, the food delivery platform that connects the restaurant to

the growing pool of tech-savvy customers will bring in more demand for the restaurant.

We also consider the profit maximization problem of a centralized owner of the food service chain

with control of the food price and delivery fee. Under the condition of no traditional customers, i.e.,

Λ0 = 0, we obtain similar results as those under the condition of abundant traditional customers,

i.e., Λ0 ≥ µ.

Lemma A.1 (Optimal Monopoly Prices—Tech-Savvy Only). Suppose there are no tra-

ditional customers, i.e., Λ0 = 0. If the restaurant sets the optimal monopoly food price po, the

platform’s best response will be to charge the optimal monopoly delivery fee θo. (The expressions
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Figure A.3 Equilibrium system behavior as a function of Λ1 for Λ0 = 0, R= 10, µ= c= 1, and ϕ= 0.3.

of po and θo are given by (D.13) and (D.14).) Moreover, the optimal monopoly food price po, the

total price po + θo, and the corresponding restaurant profit Πo are weakly decreasing in Λ1. The

optimal monopoly delivery fee θo, the corresponding throughput, delivery platform’s profit πo, and

social welfare So are weakly increasing in Λ1.

Proposition A.2 (Revenue-Sharing Contract—Tech-Savvy Only). Suppose there are

no traditional customers, i.e., Λ0 = 0. The following RS contracts can coordinate the system and

achieve the maximum aggregated profit.

1. One-way RS contract with a price ceiling—The platform allocates a fraction γ1 of its revenue

to the restaurant while the restaurant cannot set a food price higher than po.

2. Two-way RS contract—Both the restaurant and the platform agree that a fraction γ2 of their

aggregated revenue be allocated to the restaurant.

There always exist a range of sharing fractions that make both parties weakly better off than they

would be without any contract. In particular, the sharing fractions in (D.15) (resp., in (D.16)) of

the Online Appendix B achieve a win-win for both parties under the one-way RS contract with a

price ceiling (resp., two-way RS contract).

B. Numerical Results - Finite Delivery-Worker Pool

Similar to what we did in our base model, we can apply backward induction to derive the plat-

form’s and the restaurant’s equilibrium behavior in this Stackelberg game. First, the food delivery

platform’s optimal delivery fee θ∗ and delivery wage w∗ can be derived as the best response to the

restaurant’s food price p. Second, the restaurant’s optimal food price p∗ can be found by numer-

ical methods. Then, we can derive the desired performance measures including the joining rates

of food-delivery and walk-in customers, the profit levels of the restaurant and the platform, the

delivery workers’ total utility, and social welfare.
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B.1. Uniformly Distributed Opportunity Cost

Next, we study the impact of the delivery-worker pool size N on social welfare when there is

sufficient demand from tech-savvy customers. One might expect that when the delivery-worker

pool gets larger, it becomes socially cheaper to offer the food delivery service, so social welfare

would increase with N . However, Figure B.4, where we display social welfare of the decentralized

system as a function of N under an uniformly distributed opportunity cost, tells a different story.

For ϕ1 > ϕ = 0.2 or 0.3, social welfare of the decentralized system may decrease sharply when

N increases to a threshold value N̄ . When the platform’s pool of delivery workers is not large,

i.e., N ≤ N̄ , as confirmed by Proposition 3, the restaurant overlooks the introduction of the food

delivery service and uses the same food price as in an unobservable queue with only traditional

customers. Indeed, in this case, social welfare increases if the pool of delivery workers gets larger.

However, when the pool is sufficiently large, i.e., N > N̄ , the restaurant will become a delivery-only

kitchen and cater entirely to food-delivery customers out of its own desire for more profit. As a

result, social welfare drops dramatically.

Furthermore, combining observations from Proposition 3 and Figure B.4, we note that it may

be socially beneficial to limit the delivery-worker pool size. The social planner can prevent the

dramatic decline of social welfare by capping the number of delivery workers at N̄ . Depending

on the value of N̄ , the social planner may set a temporary or a permanent cap on the pool size.

For example, in Figure B.4(b), the value of N̄ = 32.41 is relatively large; social welfare increases

to above that of the decentralized system with an infinite number of delivery workers, and then

declines. After the decline at N̄ , social welfare of the decentralized system stays below that of

the decentralized system with an infinite number of delivery workers when the pool size grows.

In this case, the social planner prefers a permanent cap on the delivery-worker pool size at N̄ so

that social welfare stays at the maximum. In Figure B.4(a), the value of N̄ = 11.11 is relatively

small; social welfare declines before increasing to almost that of the decentralized system with

an infinite number of delivery workers. After the drop at N̄ , social welfare of the decentralized

system may return to the same level when the delivery-worker pool size grows. In this case, the

social planner can use a temporary cap, which can be lifted when the potential number of delivery

workers becomes sufficiently large, i.e., when N increases to 27.60.

B.2. Beta Distributed Opportunity Cost

In this subsection, we relax the assumption of the delivery workers’ uniformly distributed oppor-

tunity cost (per unit of time) made in Subsection 6 and show that our insights hold for other

opportunity cost distributions. Specifically, we consider the situation where the delivery workers’

opportunity cost per unit of time σ follows a beta distribution with cumulative distribution func-

tion FBeta (·) and probability density function fBeta (·). The beta distribution Beta (a, b) is a family
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Figure B.4 Social welfare of the decentralized system with N <∞, as function of N for the parameter setting

R= 10, Λ1 =Λ0 = µ= c= 1, and ϕ∈ {0.2,0.3}, where ϕ1 = 0.3554.

of continuous probability distributions defined on the interval [0,1], and can approximate vari-

ous kinds of opportunity cost distributions. For example, its probability density function fBeta (·)

appears as a decreasing function for (a, b) = (1,3), a bell-shaped function for (a, b) = (2,2), and an

increasing function for (a, b) = (5,1). We only need to scale the delivery wage w to the interval

[0,1] to obtain the supply of delivery workers under wage w ∈ [0, β]:

ν (w) =N ·FBeta

(
w

β

)
.

Then the platform’s profit is

π (p, θ,w) = θ ·min(λD, ν (w))−w · ν (w)

= θ ·min

(
λD,NFBeta

(
w

β

))
−wNFBeta

(
w

β

)
,

where λD is the tech-savvy customers’ unconstrained demand for the food delivery service given

by Lemma C.2, and the delivery workers’ total utility is

uD (θ,w) = w · ν (w)−N

∫ w
β

0

xfBeta

(
x

β

)
dx

= wNFBeta

(
w

β

)
−N

∫ w
β

0

xfBeta

(
x

β

)
dx.

As in Figures 2 and 1, we display these measures as a function of the arrival rate of tech-savvy

customers Λ1, for Beta (1,3) in Figures B.5 and B.6, for Beta (2,2) in Figures B.7 and B.8, and

for Beta (5,1) in Figures B.9 and B.10.

By pairwise comparisons of these figures, we confirm our insight that a limited number of delivery

workers can curb the restaurant’s self-interested desire to raise the food price in order to extract

more surplus from the food delivery service, which hurts the platform and social welfare. Capping

the delivery-worker pool size can be an effective means of bringing the platform a higher profit and

sustaining higher social welfare for the society.
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Figure B.5 Equilibrium system behavior as a function of Λ1 under Beta (1,3) opportunity cost distribution, for

the parameter setting R= β = 10, Λ= µ= c= 1, ϕ= 0.3, and N = 3.
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Figure B.6 Equilibrium system behavior as a function of Λ1 under Beta (1,3) opportunity cost distribution, for

the parameter setting R= β = 10, Λ= µ= c= 1, ϕ= 0.3, and N = 10.
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Figure B.7 Equilibrium system behavior as a function of Λ1 under Beta (2,2) opportunity cost distribution, for

the parameter setting R= β = 10, Λ= µ= c= 1, ϕ= 0.3, and N = 10.

C. Proofs of the Main Results

We first label, under the food price p and the delivery fee θ, the expected utility of (tech-savvy or

traditional) walk-in customers,
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Figure B.8 Equilibrium system behavior as a function of Λ1 under Beta (2,2) opportunity cost distribution, for

the parameter setting R= β = 10, Λ= µ= c= 1, ϕ= 0.3, and N = 300.
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Figure B.9 Equilibrium system behavior as a function of Λ1 under Beta (5,1) opportunity cost distribution, for

the parameter setting R= β = 10, Λ= µ= c= 1, ϕ= 0.3, and N = 104.
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Figure B.10 Equilibrium system behavior as a function of Λ1 under Beta (5,1) opportunity cost distribution, for

the parameter setting R= β = 10, Λ= µ= c= 1, ϕ= 0.3, and N = 109.

UW (λ) =R− p− cW (λ) =R− p− c/ (µ−λ) , (C.1)

and the expected utility of food-delivery customers,

UD (λ) =R− p− θ−ϕW (λ) =R− p− θ−ϕ/ (µ−λ) , (C.2)
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for easy reference in the Online Appendix.

We make the following observations regarding the range of the service reward R, the food price p,

the delivery fee θ, and the arrival rate of tech-savvy customers Λ1.

• If R− c
µ
≥ 0, the service reward can cover the waiting cost of walk-in customers when there is

no line on arrival and the food is free.

• If the food price p is upper bounded by R− ϕ
µ
, i.e., p∈

[
0,R− ϕ

µ

]
, customers are willing to use

a food delivery service if the queue is empty and the food delivery service is free.

• If the delivery fee θ is upper bounded by R− p− ϕ
µ
, i.e., θ ∈

[
0,R− p− ϕ

µ

]
, the service reward

is sufficient to offset the sum of the restaurant price p, the delivery fee θ, and the waiting cost for a

customer’s own food preparation ϕ
µ
; otherwise, no customers will consider using the food delivery

service.

• Because the restaurant cannot serve more customers than its capacity µ, the equilibrium

behavior in the Λ1 >µ case is identical to that in the Λ1 ↗ µ case. Thus, we focus on the condition

of Λ1 <µ in our analysis.

C.1. Proof of Proposition 1

To prove Proposition 1, we prove the following Lemmas and Corollaries.

C.1.1. Customer Strategy

Lemma C.2 (Customer Strategy). Under the food price p and delivery fee θ, the joining rates

of food-delivery and walk-in customers, λD and λW , are

λD (p, θ) λW (p, θ)
When p≤R− c

µ−Λ1

if 0< θ≤ (c−ϕ)(R−p)

c
Λ1 µ− c

R−p
−Λ1

if (c−ϕ)(R−p)

c
< θ≤R− p− ϕ

µ
0 µ− c

R−p

When R− c
µ−Λ1

< p≤R− ϕ
µ

if 0< θ≤max
(
R− p− ϕ

µ−Λ1
,0
)

Λ1 0

if max
(
R− p− ϕ

µ−Λ1
,0
)
< θ≤min

(
(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)
µ− ϕ

R−p−θ
0

if θ >min
(

(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)
0 µ− c

R−p

To prove Lemma C.2, we first summarize some properties of the two utility functions UW (λ) and

UD (λ).

Lemma C.3. Regarding utility functions UW (λ) =R−p− c
µ−λ

and UD (λ) =R−p−θ− ϕ
µ−λ

, we

have

1. UW (λ) is a concave decreasing function of λ intersecting the λ-axis at λX
W = µ− c

R−p
, which

decreases in p.

1.1 When p=R− c
µ−Λ1

, UW (λ) intersects the λ-axis at λ=Λ1, i.e., λ
X
W =Λ1.
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2. UD (λ) is a concave decreasing function of λ intersecting the λ-axis at λX
D (θ) = µ− ϕ

R−p−θ
, which

decreases in θ.

2.1 When θ = 0, UD (λ) intersects the λ-axis at λX
D (0) = µ− ϕ

R−p
. When θ =R− p− ϕ

µ
, UD (λ)

intersects the λ-axis at λX
D

(
R− p− ϕ

µ

)
= 0.

2.2 When θ=R−p− ϕ
µ−Λ1

, UD (λ) intersects the λ-axis at λ=Λ1, i.e., λ
X
D

(
R− p− ϕ

µ−Λ1

)
=Λ1.

We have Λ1 ≤ λX
D (θ) if 0< θ≤R− p− ϕ

µ−Λ1
, and Λ1 >λX

D (θ) if θ >R− p− ϕ
µ−Λ1

.

2.3 Furthermore, when p=R− ϕ
µ−Λ1

and θ= 0, we have UD (λ) intersecting the λ-axis at λX
D (0) =

Λ1.

3. UW (λ) and UD (λ) only intersect once at λX (θ) = µ− c−ϕ
θ
, which increases in θ. Moreover, we

have UW (λ)≥UD (λ) if λ≤ λX (θ), and UW (λ)<UD (λ) if λ> λX (θ).

3.1 When θ = c−ϕ
µ−Λ

, UW (λ) and UD (λ) intersect at λ = Λ, i.e., λX
(

c−ϕ
µ−Λ

)
= Λ. Moreover, we

have UD (Λ)≥UW (Λ) if θ≤ c−ϕ
µ−Λ

; and UD (Λ)<UW (Λ) if θ > c−ϕ
µ−Λ

.

3.2 When θ= (c−ϕ)(R−p)

c
, we have λX

W = λX
D (θ) = λX (θ). Moreover, we have (c−ϕ)(R−p)

c
≤R− p−

ϕ
µ
.

3.3 Furthermore, we have
UW (λ) and UD (λ) have no intersection point, and λX

W <λX
D (θ) if θ= 0

λX (θ)<λX
W <λX

D (θ) if 0< θ < (c−ϕ)(R−p)

c

λX (θ) = λX
W = λX

D (θ) if θ= (c−ϕ)(R−p)

c

λX
D (θ)<λX

W <λX (θ) if (c−ϕ)(R−p)

c
< θ≤R− p− ϕ

µ

Proof of Lemma C.3. 1. From ∂UW (λ)

∂λ
= − c

(µ−λ)2
< 0 and ∂2UW (λ)

∂λ2 = − 2c

(µ−λ)3
< 0, we have that

UW (λ) is a concave decreasing function of λ. By solving UW (λ) = 0, we have that UW (λ)

intersects the λ-axis at λX
W = µ− c

R−p
, which decreases in p.

1.1 When p=R− c
µ−Λ1

, we have UW (λ) = c(λ−Λ1)

(λ−µ)(µ−Λ1)
, which intersects the λ-axis at λ=Λ1.

2. From ∂UD(λ)

∂λ
= − ϕ

(µ−λ)2
< 0 and ∂2UD(λ)

∂λ2 = −2 ϕ

(µ−λ)3
< 0, we have that UD (λ) is a concave

decreasing function of λ. By solving UD (λ) = 0, we have that UD (λ) intersects the λ-axis at

λX
D (θ) = µ− ϕ

R−p−θ
, which decreases in θ.

2.1 When θ= 0, we have UD (λ) =R− p− ϕ
µ−λ

, which intersects the λ-axis at λX
D (0) = µ− ϕ

R−p
.

When θ=R−p− ϕ
µ
, we have UD (λ) = ϕλ

µ(λ−µ)
, which intersects the λ-axis at λX

D

(
R− p− ϕ

µ

)
=

0.

2.2 When θ=R− p− ϕ
µ−Λ1

, we have UD (λ) = ϕ(λ−Λ1)

(λ−µ)(µ−Λ1)
, which intersects the λ-axis at λ=Λ1.

Simple algebra gives Λ1 ≤ λX
D (θ)⇔ 0< θ≤R− p− ϕ

µ−Λ1
.

2.3 When p=R− ϕ
µ−Λ1

and θ = 0, we have UD (λ) = ϕ(λ−Λ1)

(λ−µ)(µ−Λ1)
, which intersects the λ-axis at

λX
D (0) = Λ1.

3. By solving UW (λ) =UD (λ), we have λX (θ) = µ− c−ϕ
θ
, which increases in θ. We can also verify

that UW (λ)≥UD (λ)⇔ λ≤ λX (θ).
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3.1 When θ= c−ϕ
µ−Λ

, we have UD (λ) =R− p− c−ϕ
µ−Λ

− ϕ
µ−λ

. Solving UD (λ) =UW (λ) =R− p− c
µ−λ

gives λX
(

c−ϕ
µ−Λ

)
=Λ. We can also verify that UD (Λ)≥UW (Λ)⇔ θ≤ c−ϕ

µ−Λ
.

3.2 When θ= (c−ϕ)(R−p)

c
, we have UD (λ) = ϕ(R−p)

c
− ϕ

µ−λ
and λX

D

(
(c−ϕ)(R−p)

c

)
= µ− c

R−p
. Solving

UD (λ) =UW (λ) =R−p− c
µ−λ

gives λX (θ) = µ− c
R−p

. Clearly, we have λX
W = λX

D (θ) = λX (θ).

Furthermore, we have (c−ϕ)(R−p)

c
≤R− p− ϕ

µ
⇔ p≤R− c

µ
, which is clearly true.

3.3 When θ = 0, we can also verify that UW (λ) and UD (λ) have no intersection point and

λX
W = µ− c

R−p
<λX

D (0) = µ− ϕ
R−p

. When 0< θ < (c−ϕ)(R−p)

c
, we have λX (θ)<λX

W ⇔ µ− c−ϕ
θ

<

µ− c
R−p

⇔ θ < (c−ϕ)(R−p)

c
and λX

W <λX
D (θ)⇔ µ− c

R−p
<µ− ϕ

R−p−θ
⇔ θ < (c−ϕ)(R−p)

c
. Thus, we

have λX (θ)<λX
W <λX

D (θ). Similarly, we can show that when (c−ϕ)(R−p)

c
< θ≤R− p− ϕ

µ
, we

have λX
D (θ)<λX

W <λX (θ). □

The relationship between R − c
µ−Λ1

, R − ϕ
µ−Λ1

, R − c
µ
, and R − ϕ

µ
plays an important role in

characterizing the customers’ equilibrium behavior.

Lemma C.4. If Λ1 ≤ c−ϕ
c
µ, we have

(
R− c2

µϕ
≤
)
R− c

µ−Λ1
<R− c

µ
≤R− ϕ

µ−Λ1
<R− ϕ

µ
.

If Λ1 >
c−ϕ
c
µ, we have R− c

µ−Λ1
<
(
R− c2

µϕ
<
)
R− ϕ

µ−Λ1
<R− c

µ
<R− ϕ

µ
.

Proof of Lemma C.4. First, because ϕ < c, we have R− c
µ
< R− ϕ

µ
, R− c

µ−Λ1
< R− ϕ

µ−Λ1
and

R− c2

µϕ
<R− c

µ
. Moreover, from µ−Λ1 <µ, we have R− c

µ−Λ1
<R− c

µ
and R− ϕ

µ−Λ1
<R− ϕ

µ
. Thus,

we only need to determine the relationship between (i) R− ϕ
µ−Λ1

and R− c
µ
, and (ii) R− c

µ−Λ1
and

R− c2

µϕ
.

Next we can derive

R− c

µ−Λ1

−
(
R− c2

µϕ

)
=

c

ϕ

c

µ (µ−Λ1)

(
c−ϕ

c
µ−Λ1

)
,

and

R− ϕ

µ−Λ1

−
(
R− c

µ

)
=

c

µ (µ−Λ1)

(
c−ϕ

c
µ−Λ1

)
.

Clearly, if Λ1 ≤ c−ϕ
c
µ, we have R− c2

µϕ
≤ R− c

µ−Λ1
and R− c

µ
≤ R− ϕ

µ−Λ1
. If Λ1 >

c−ϕ
c
µ, we have

R − c
µ−Λ1

< R − c2

µϕ
and R − ϕ

µ−Λ1
< R − c

µ
. When we combine the above results, the proof is

complete. □

Next, we prove Lemma C.2. The relative position of the total arrival rate Λ compared to λX
W ,

λX
D (θ), and λX (θ) decides customers’ equilibrium behavior.

Case 1: When Λ1 ≤ c−ϕ
c
µ, we have R− c

µ−Λ1
<R− c

µ
≤R− ϕ

µ−Λ1
<R− ϕ

µ
by Lemma C.4.

1. If p ≤ R− c
µ−Λ1

, we have Λ1 ≤ λX
W = µ− c

R−p
. From Lemma C.3(1), when all customers join

with rate Λ≥ µ> λX
W = µ− c

R−p
, the utility of walk-in is negative, i.e., UW (Λ)< 0.

1.1 If θ≤ (c−ϕ)(R−p)

c
, from Lemma C.3(3.3), we have λX

W ≤ λX
D (θ). Since Λ1 ≤ λX

W ≤ λX
D (θ), from

Lemma C.3(1), we have UW (Λ1) ≥ 0 and UW (λX
W ) = 0; and from Lemma C.3(2), we have
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UD (Λ1) ≥ 0 and UD (λX
W ) ≥ 0. This means that if all tech-savvy customers join (with rate

Λ1), walk-in customers have an incentive to join and obtain positive utility, until the total

arrival rate to the system reaches λX
W = µ− c

R−p
, unless the tech-savvy customers’ arrival

rate reaches Λ1 = λX
W = µ− c

R−p
already. In this case (i) all tech-savvy customers will join

and use the food delivery service, i.e., λD = Λ1; (ii) walk-in customers will join with rate

λW = µ− c
R−p

−Λ1.

1.2 If θ > (c−ϕ)(R−p)

c
, from Lemma C.3(3.3), we have λX

D (θ) < λX
W < λX (θ). Since Λ1 ≤ λX

W <

λX (θ), from Lemma C.3(1) and (3), we have UD (Λ1)<UW (Λ1) and UW (Λ1)≥ 0. This means

that if only tech-savvy customers join, the food delivery service cannot attract customers;

all Λ1 tech-savvy customers will queue themselves and their utility of walk-in is UW (Λ1)≥ 0.

Then walk-in customers may have an incentive to join and obtain positive utility until the

total arrival rate to the system reaches λX
W = µ − c

R−p
, unless the tech-savvy customers’

arrival rate is Λ1 = λX
W = µ− c

R−p
already. In this case, customers’ equilibrium behavior is to

all queue themselves with rate µ− c
R−p

; i.e., λD = 0 and λW = λ1W +λ0W = µ− c
R−p

.

2. If R− c
µ−Λ1

< p≤R− c
µ
≤R− ϕ

µ−Λ1
, we have 0≤R− p− ϕ

µ−Λ1
< (c−ϕ)(R−p)

c
≤R− p− ϕ

µ
, λX

W =

µ− c
R−p

<Λ1 ≤ λX
D (0) = µ− ϕ

R−p
, and µ− c

R−p
≥ 0. From Lemma C.3(1), we have UW (Λ1)< 0.

2.1 If 0< θ≤R−p− ϕ
µ−Λ1

< (c−ϕ)(R−p)

c
, from Lemma C.3(2) and (2.2), we have UD (Λ1)≥ 0. This

means that if all tech-savvy customers join, their utility of using the food delivery service

is non-negative, while the utility of walk-in is negative. Thus, tech-savvy customers will all

join and use the food delivery service and all walk-in customers will balk; i.e., λD =Λ1 and

λW = 0.

2.2 If R−p− ϕ
µ−Λ1

< θ≤ (c−ϕ)(R−p)

c
, from Lemma C.3(2), (2.2), and (3.3), we have λX (θ)≤ λX

W ≤

λX
D (θ)<Λ1 and UD (Λ1)< 0. This means that if all tech-savvy customers join, both options

are unattractive. Then, some tech-savvy customers may balk to avoid negative utility, until

the total arrival rate to the system drops to λX
D (θ), where UW (λX

D (θ)) < UD (λX
D (θ)) = 0

(using Lemma C.3(1) and (2)). They will not reduce the arrival rate further, because UD (λ)>

0 if λ ∈ (λX
D (θ)− ϵ,λX

D (θ)) (using Lemma C.3(2)). Thus, the tech-savvy customers join and

use the food delivery service with rate λX
D (θ) = µ− ϕ

R−p−θ
and other customers balk: i.e.,

λD = λX
D (θ) = µ− ϕ

R−p−θ
and λW = 0. In this case, all customers have zero utility.

2.3 If (c−ϕ)(R−p)

c
< θ≤R− p− ϕ

µ
, similar to Case 1.2 above, we have λD = 0 and λW = µ− c

R−p
.

3. If R− c
µ−Λ1

<R− c
µ
< p≤R− ϕ

µ−Λ1
, we have 0≤R− p− ϕ

µ−Λ1
<R− p− ϕ

µ
< (c−ϕ)(R−p)

c
, λX

W =

µ− c
R−p

<Λ1 ≤ λX
D (0) = µ− ϕ

R−p
, and µ− c

R−p
< 0. From Lemma C.3(1), we have UW (Λ1)< 0.

3.1 If 0< θ≤R−p− ϕ
µ−Λ1

< (c−ϕ)(R−p)

c
, from Lemma C.3(2) and (2.2), we have UD (Λ1)≥ 0. This

means that if all tech-savvy customers join, their utility of using the food delivery service

is non-negative, while the utility of walk-in is negative. Thus, tech-savvy customers will all
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join and use the food delivery service and all walk-in customers will balk: i.e., λD =Λ1 and

λW = 0.

3.2 If R−p− ϕ
µ−Λ1

< θ≤R−p− ϕ
µ
< (c−ϕ)(R−p)

c
, similar to Case 2.2 above, we have λD = µ− ϕ

R−p−θ

and λW = 0.

4. If R − c
µ
≤ R − ϕ

µ−Λ1
< p ≤ R − ϕ

µ
, we have R − p − ϕ

µ−Λ1
< 0 < R − p − ϕ

µ
< (c−ϕ)(R−p)

c
and

µ− c
R−p

< 0.

4.1 If R− p− ϕ
µ−Λ1

< 0 < θ ≤ R− p− ϕ
µ
< (c−ϕ)(R−p)

c
, similar to Case 2.2 above, we have λD =

µ− ϕ
R−p−θ

and λW = 0.

Case 2: When Λ1 >
c−ϕ
c
µ, we have R− c

µ−Λ1
<R− ϕ

µ−Λ1
<R− c

µ
<R− ϕ

µ
by Lemma C.4.

1. If p ≤ R− c
µ−Λ1

, we have Λ1 ≤ λX
W = µ− c

R−p
. From Lemma C.3(1), when all customers join

with rate Λ≥ µ> λX
W = µ− c

R−p
, the utility of walk-in is negative, i.e., UW (Λ)< 0.

1.1 If θ≤ (c−ϕ)(R−p)

c
, from Lemma C.3(3.3), we have λX

W ≤ λX
D (θ). Since Λ1 ≤ λX

W ≤ λX
D (θ), from

Lemma C.3(1), we have UW (Λ1) ≥ 0 and UW (λX
W ) = 0; and from Lemma C.3(2), we have

UD (Λ1)≥ 0 and UD (λX
W )≥ 0. This means that if all tech-savvy customers join (with rate Λ1),

walk-in customers have an incentive to join and obtain positive utility, until the total arrival

rate to the system reaches λX
W = µ− c

R−p
, unless the tech-savvy customers’ arrival rate is

Λ1 = λX
W = µ− c

R−p
already. In this case (i) all tech-savvy customers will join and use the food

delivery service; i.e., λD =Λ1; (ii) walk-in customers will join with rate λW = µ− c
R−p

−Λ1.

1.2 If (c−ϕ)(R−p)

c
< θ≤R−p− ϕ

µ
, from Lemma C.3(3.3), we have λX

D (θ)<λX
W <λX (θ). Since Λ1 ≤

λX
W <λX (θ), from Lemma C.3(1) and (3), we have UD (Λ1)<UW (Λ1) and UW (Λ1)≥ 0. This

means that if only tech-savvy customers join, (i) the food delivery service cannot attract any

customers; (ii) all Λ1 tech-savvy customers will queue themselves and their utility of walk-in

is UW (Λ1)≥ 0. Then walk-in customers may have an incentive to join and obtain positive

utility until the total arrival rate to the system reaches λX
W = µ− c

R−p
, unless the tech-savvy

customers’ arrival rate is Λ1 = λX
W = µ− c

R−p
already. In this case, customers’ equilibrium

behavior is to all queue themselves with rate µ− c
R−p

; i.e., λD = 0 and λW = µ− c
R−p

.

2. If R− c
µ−Λ1

< p≤R− ϕ
µ−Λ1

, we have 0≤R− p− ϕ
µ−Λ1

< (c−ϕ)(R−p)

c
and λX

W = µ− c
R−p

< Λ1 ≤

λX
D (0) = µ− ϕ

R−p
. From Lemma C.3(1), we have UW (Λ1)< 0. Note that µ− c

R−p
> 0, because

p≤R− ϕ
µ−Λ1

<R− c
µ
.

2.1 If 0< θ≤R−p− ϕ
µ−Λ1

< (c−ϕ)(R−p)

c
, from Lemma C.3(2) and (2.2), we have UD (Λ1)≥ 0. This

means that if all tech-savvy customers join, their utility of using the food delivery service

is non-negative, while the utility of walk-in is negative. Thus, all tech-savvy customers will

join and use the food delivery service and all walk-in customers will balk: i.e., λD =Λ1 and

λW = 0.
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2.2 If R−p− ϕ
µ−Λ1

< θ≤ (c−ϕ)(R−p)

c
, from Lemma C.3(2), (2.2), and (3.3), we have λX (θ)≤ λX

W ≤

λX
D (θ)<Λ1 and UD (Λ1)< 0. This means that if all tech-savvy customers join, neither option

is attractive. Then, some tech-savvy customers may balk to avoid negative utility, until the

total arrival rate to the system drops to λX
D (θ), where UW (λX

D (θ))<UD (λX
D (θ)) = 0 (using

Lemma C.3(1) and (2)). They will not reduce the arrival rate further, because UD (λ) > 0

if λ ∈ (λX
D (θ)− ϵ,λX

D (θ)) (using Lemma C.3(2)). Thus, the tech-savvy customers join and

use the food delivery service with rate λX
D (θ) = µ− ϕ

R−p−θ
and other customers balk; i.e.,

λD = λX
D (θ) = µ− ϕ

R−p−θ
and λW = 0. In this case, all customers have zero utility.

2.3 If (c−ϕ)(R−p)

c
< θ≤R− p− ϕ

µ
, similar to Case 2.2 above, we have λD = 0 and λW = µ− c

R−p
.

3. If R− ϕ
µ−Λ1

< p≤R− c
µ
, we have R− p− ϕ

µ−Λ1
< 0< (c−ϕ)(R−p)

c
≤R− p− ϕ

µ
and µ− c

R−p
≥ 0.

3.1 If R− p− ϕ
µ−Λ1

< 0< θ≤ (c−ϕ)(R−p)

c
, similar to Case 2.2 above, we have λD = µ− ϕ

R−p−θ
and

λW = 0.

3.2 If (c−ϕ)(R−p)

c
< θ≤R− p− ϕ

µ
, similar to Case 1.2 above, we have λD = 0 and λW = µ− c

R−p
.

4. If R − ϕ
µ−Λ1

< R − c
µ
< p ≤ R − ϕ

µ
, we have R − p − ϕ

µ−Λ1
< 0 ≤ R − p − ϕ

µ
< (c−ϕ)(R−p)

c
and

µ− c
R−p

< 0.

4.1 If R− p− ϕ
µ−Λ1

< 0< θ≤R− p− ϕ
µ
, similar to Case 2.2 above, we have λD = µ− ϕ

R−p−θ
and

λW = 0.

To summarize, in equilibrium, the joining rates of food-delivery and walk-in customers, λD and

λW , under the food price p and delivery fee θ, are

1. For Λ1 ≤ c−ϕ
c
µ,

λD (p, θ) λW (p, θ)
1.1 When p≤R− c

µ−Λ1

if 0< θ≤ (c−ϕ)(R−p)

c
Λ1 µ− c

R−p
−Λ1

if (c−ϕ)(R−p)

c
< θ≤R− p− ϕ

µ
0 µ− c

R−p

1.2 When R− c
µ−Λ1

< p≤R− c
µ

if 0< θ≤R− p− ϕ
µ−Λ1

Λ1 0

if R− p− ϕ
µ−Λ1

< θ≤ (c−ϕ)(R−p)

c
µ− ϕ

R−p−θ
0

if (c−ϕ)(R−p)

c
< θ≤R− p− ϕ

µ
0 µ− c

R−p

1.3 When R− c
µ
< p≤R− ϕ

µ−Λ1

if 0< θ≤R− p− ϕ
µ−Λ1

Λ1 0

if R− p− ϕ
µ−Λ1

< θ≤R− p− ϕ
µ

µ− ϕ
R−p−θ

0

1.4 When R− ϕ
µ−Λ1

< p≤R− ϕ
µ

if 0< θ≤R− p− ϕ
µ

µ− ϕ
R−p−θ

0

2. For Λ1 >
c−ϕ
c
µ,
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λD (p, θ) λW (p, θ)
2.1 When p≤R− c

µ−Λ1

if 0< θ≤ (c−ϕ)(R−p)

c
Λ1 µ− c

R−p
−Λ1

if (c−ϕ)(R−p)

c
< θ≤R− p− ϕ

µ
0 µ− c

R−p

2.2 When R− c
µ−Λ1

< p≤R− ϕ
µ−Λ1

if 0< θ≤R− p− ϕ
µ−Λ1

Λ1 0

if R− p− ϕ
µ−Λ1

< θ≤ (c−ϕ)(R−p)

c
µ− ϕ

R−p−θ
0

if (c−ϕ)(R−p)

c
< θ≤R− p− ϕ

µ
0 µ− c

R−p

2.3 When R− ϕ
µ−Λ1

< p≤R− c
µ

if 0< θ≤ (c−ϕ)(R−p)

c
µ− ϕ

R−p−θ
0

if (c−ϕ)(R−p)

c
< θ≤R− p− ϕ

µ
0 µ− c

R−p

2.4 When R− c
µ
< p≤R− ϕ

µ

if 0< θ≤R− p− ϕ
µ

µ− ϕ
R−p−θ

0

This result directly leads to Lemma C.2. □

We have several observations from Lemma C.2. First, the tech-savvy customers are willing to pay

at most (c−ϕ)(R−p)

c
for the food delivery service. Otherwise, if the food delivery platform sets the

delivery fee greater than (c−ϕ)(R−p)

c
, no tech-savvy customers would use the food delivery service and

they would rather walk in. This implies that the food delivery platform should set the delivery fee

no more than (c−ϕ)(R−p)

c
. If that is the case, we see from Lemma C.2 that no traditional customers

choose to walk in unless all tech-savvy customers use the food delivery service.

Second, since we assume traditional customers’ demand is abundant (i.e., Λ0 ≥ µ), the restaurant

cannot serve all traditional customers and some of them have to balk. Then our setting is equivalent

to an alternative one where the arrival rate of all potential customers is fixed and sufficiently large.

Among the population, a fraction of customers are tech-savvy customers and the rest are traditional

customers. The monotonicity results in this paper with a growing Λ1 and fixed Λ0 is equivalent to

those with a growing fraction of tech-savvy customers and fixed total customer arrival rate.

Third, when the food delivery platform sets a delivery fee of no more than R − p − ϕ
µ−Λ1

, all

tech-savvy customers will use the food delivery service. Of course, when p is sufficiently low, i.e.,

p≤R− c
µ−Λ1

, we have R−p− ϕ
µ−Λ1

≥ (c−ϕ)(R−p)

c
, so that even when the delivery fee is at the upper

bound (c−ϕ)(R−p)

c
, all tech-savvy customers will use the food delivery service; moreover, when the

food price p is sufficiently high, i.e., p > R− ϕ
µ−Λ1

, we have R− p− ϕ
µ−Λ1

< 0, so no matter what

the delivery fee is, not all tech-savvy customers will use the food delivery service.

C.1.2. Food Delivery Platform Strategy

The food delivery platform’s profit per time unit π is the product of the delivery fee θ and the

joining rate of food-delivery customers λD. From Lemma C.2, we obtain the food delivery platform’s

profit.
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Corollary C.1. Under the food price p and delivery fee θ, the food delivery platform’s profit

π (p, θ) is

π (p, θ)
When p≤R− c

µ−Λ1

if θ≤ (c−ϕ)(R−p)

c
θΛ1

if (c−ϕ)(R−p)

c
< θ≤R− p− ϕ

µ
0

When R− c
µ−Λ1

< p≤R− ϕ
µ

if θ≤max
(
R− p− ϕ

µ−Λ1
,0
)

θΛ1

if max
(
R− p− ϕ

µ−Λ1
,0
)
< θ≤min

(
(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)
θ
(
µ− ϕ

R−p−θ

)
if θ >min

(
(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)
0

From Corollary C.1, we see that the platform has no incentive to set the delivery fee θ too high

because the platform would earn no profit otherwise. The platform will set the delivery fee such

that either all tech-savvy customers will use the food delivery service, in which case the platform’s

profit is π (p, θ) = θΛ1, or a fraction of them will use the food delivery service, in which case

the platform’s profit is π (p, θ) = θ
(
µ− ϕ

R−p−θ

)
. In the first case, the platform’s profit π (p, θ) =

θΛ1 increases in the delivery fee θ, so the platform will charge the highest delivery fee in the

corresponding interval of θ to obtain the maximum profit. In the second case, the platform’s

profit π (p, θ) = θ
(
µ− ϕ

R−p−θ

)
is a unimodal function of θ ∈

[
−∞,R− p− ϕ

µ

]
with a maximum at

θ = R− p−
√

µϕ(R−p)

µ
∈
(
0,R− p− ϕ

µ

)
. Thus, the platform’s optimal delivery fee depends on the

comparison of R− p−
√

µϕ(R−p)

µ
and the corresponding interval of θ. Therefore, the platform will

charge the optimal delivery fee

θ∗ =min

(
max

(
R− p−

√
µϕ (R− p)

µ
,R− p− ϕ

µ−Λ1

)
,
(c−ϕ) (R− p)

c

)
.

The following proposition characterizes the optimal delivery fee and resulting customers’ behavior

in equilibrium.

Proposition C.3 (Food Delivery Platform Strategy). Under the restaurant’s food price

p, the food delivery platform’s best-response delivery fee θ∗(p), the joining rates of food-delivery

and walk-in customers λD (p, θ∗(p)) and λW (p, θ∗(p)) under θ∗(p), are

1. For Λ1 ≤ c−ϕ
c
µ,

θ∗ (p) λD (p, θ∗ (p)) λW (p, θ∗ (p))

If p≤R− c
µ−Λ1

(c−ϕ)(R−p)

c
Λ1 µ− c

R−p
−Λ1

If R− c
µ−Λ1

< p≤R− µϕ

(µ−Λ1)
2 R− p− ϕ

µ−Λ1
Λ1 0

If R− µϕ

(µ−Λ1)
2 < p≤R− ϕ

µ
R− p−

√
µϕ(R−p)

µ
µ−

√
µϕ
R−p

0
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2. For Λ1 >
c−ϕ
c
µ,

θ∗ (p) λD (p, θ∗ (p)) λW (p, θ∗ (p))

If p≤R− c
µ−Λ1

(c−ϕ)(R−p)

c
Λ1 µ− c

R−p
−Λ1

If R− c
µ−Λ1

< p≤R− c2

µϕ

(c−ϕ)(R−p)

c
µ− c

R−p
0

If R− c2

µϕ
< p≤R− ϕ

µ
R− p−

√
µϕ(R−p)

µ
µ−

√
µϕ
R−p

0

Moreover, the food delivery platform’s profit under the platform’s best-response delivery fee π∗ (p)

is a decreasing function of the food price p.

To prove Proposition C.3, we first derive some properties of the food delivery platform’s profit

π (p, θ) = θλD given various λD.

Lemma C.5. The food delivery platform’s profit π (p, θ) depends on the demand rate for the food

delivery service λD:

1. If λD =Λ1, we have π (p, θ) = θΛ1, which strictly increases in θ.

2. If λD = µ− ϕ
R−p−θ

, we have π (p, θ) = θ
(
µ− ϕ

R−p−θ

)
, which is a unimodal function of θ with a

maximum at

θ2 =R− p−
√
µϕ (R− p)

µ
,

which decreases in p.

2.1 θ2 intersects with R− p− ϕ
µ−Λ1

once at p=R− ϕµ

(µ−Λ1)
2 .

• We have θ2 ≤R− p− ϕ
µ−Λ1

⇔ p≤R− ϕµ

(µ−Λ1)
2 , and θ2 >R− p− ϕ

µ−Λ1
⇔ p >R− ϕµ

(µ−Λ1)
2 .

• We have

R− ϕµ

(µ−Λ1)
2 ≥ R− c

µ−Λ1

⇔Λ1 ≤
c−ϕ

c
µ

R− ϕµ

(µ−Λ1)
2 < R− c

µ−Λ1

⇔Λ1 >
c−ϕ

c
µ

where R− c
µ−Λ1

is the intersection point of (c−ϕ)(R−p)

c
and R− p− ϕ

µ−Λ1
.

• We have R− ϕµ

(µ−Λ1)
2 <R− ϕ

µ
.

2.2 θ2 intersects with (c−ϕ)(R−p)

c
once at p=R− c2

µϕ
.

• We have θ2 ≤ (c−ϕ)(R−p)

c
⇔ p≥R− c2

µϕ
, and θ2 >

(c−ϕ)(R−p)

c
⇔ p <R− c2

µϕ
.

• Moreover, we have

R− c2

µϕ
≤ R− c

µ−Λ1

⇔Λ1 ≤
c−ϕ

c
µ

R− c2

µϕ
> R− c

µ−Λ1

⇔Λ1 >
c−ϕ

c
µ

where R− c
µ−Λ1

is the intersection point of (c−ϕ)(R−p)

c
and R− p− ϕ

µ−Λ1
.

• We have R− c2

µϕ
<R− ϕ

µ
.



17

2.3 θ2 intersects with R− p− ϕ
µ
once at p=R− ϕ

µ
.

• We have 0≤ θ2 ≤R− p− ϕ
µ
⇔ p≤R− ϕ

µ
.

Proof of Lemma C.5. 1. If λD =Λ1, we have

π (p, θ) = θλD = θΛ1

which clearly increases in θ.

2. If λD = µ− ϕ
R−p−θ

for 0≤ θ≤R− p− ϕ
µ
, we have

π (p, θ) = θ

(
µ− ϕ

R− p− θ

)
.

Simple algebra shows that π (p, θ) is a unimodal function of θ with a maximum at θ2 =R−p−√
µϕ(R−p)

µ
, which decreases in p.

2.1 We derive

θ2 −
(
R− p− ϕ

µ−Λ1

)
=

ϕ

µ−Λ1

−
√

µϕ (R− p)

µ
,

which increases in p and has a unique root p=R− ϕµ

(µ−Λ1)
2 . Hence, we have: (i) θ2 intersects

with R−p− ϕ
µ−Λ1

only once at p=R− ϕµ

(µ−Λ1)
2 ; and (ii) θ2 ≤R−p− ϕ

µ−Λ1
⇔ p≤R− ϕµ

(µ−Λ1)
2 ,

and θ2 > R− p− ϕ
µ−Λ1

⇔ p > R− ϕµ

(µ−Λ1)
2 . At last, simple algebra gives R− ϕµ

(µ−Λ1)
2 ≥ R−

c
µ−Λ1

⇔Λ1 ≤ c−ϕ
c
µ and R− ϕµ

(µ−Λ1)
2 <R− ϕ

µ
.

2.2 We derive

θ2 −
(c−ϕ) (R− p)

c
=

ϕ

c
(R− p)−

√
µϕ (R− p)

µ

which has two roots p = R − c2

µϕ
and R. Moreover, we have θ2 − (c−ϕ)(R−p)

c
= ϕ−

√
ϕc

µ
< 0

when p=R− c
µ
∈
[
R− c2

µϕ
,R
]
. Hence, we have: (i) θ2 intersects with (c−ϕ)(R−p)

c
only once at

p=R− c2

µϕ
; and (ii) θ2 ≤ (c−ϕ)(R−p)

c
⇔ p≥R− c2

µϕ
, and θ2 >

(c−ϕ)(R−p)

c
⇔ p <R− c2

µϕ
. At last,

simple algebra gives R− c2

µϕ
≤R− c

µ−Λ1
⇔Λ1 ≤ c−ϕ

c
µ and R− c2

µϕ
<R− ϕ

µ
.

2.3 We derive

θ2 −
(
R− p− ϕ

µ

)
=

ϕ−
√
µϕ (R− p)

µ

which increases in p and has a unique root p = R − ϕ
µ
. Moreover, we have θ2 = 0 at p =

R − ϕ
µ
. Hence, we have: (i) θ2 intersects with R − p− ϕ

µ
only once at p = R − ϕ

µ
; and (ii)

θ2 ≤R− p− ϕ
µ
⇔ p≤R− ϕ

µ
. □

Next, we prove Proposition C.3.

When Λ1 ≤ c−ϕ
c
µ, we have R− c2

µϕ
≤R− c

µ−Λ1
≤R− ϕµ

(µ−Λ1)
2 ≤R− ϕ

µ
by Lemma C.5(2.1) and (2.2).

Figure C.11 illustrates the intersection points of (c−ϕ)(R−p)

c
, R− p− ϕ

µ−Λ1
, θ2, and R− p− ϕ

µ
, when

Λ1 ≤ c−ϕ
c
µ.
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Figure C.11 The intersection points of (c−ϕ)(R−p)
c

, R− p− ϕ
µ−Λ1

, θ2 =R− p−
√

µϕ(R−p)

µ
, and R− p− ϕ

µ
, when

Λ1 ≤ c−ϕ
c

µ, for the parameter setting R= 10, Λ0 = µ= c= 1, and ϕ= 0.5.

1. If p ≤ R − c
µ−Λ1

, we have (c−ϕ)(R−p)

c
≤ R − p − ϕ

µ−Λ1
< R − p − ϕ

µ
. From Lemma C.2, we see

that tech-savvy customers are willing to pay a delivery fee of at most (c−ϕ)(R−p)

c
for the food

delivery service, and the demand for the food delivery service is λD =Λ1 when θ≤ (c−ϕ)(R−p)

c
. By

Lemma C.5(1), the food delivery platform will charge the highest delivery fee θ∗ = (c−ϕ)(R−p)

c
to

maximize its profit, and we have λD =Λ1, and λW = µ− c
R−p

−Λ1. The food delivery platform’s

profit π∗ (p) = (c−ϕ)(R−p)

c
Λ1 is clearly a decreasing function of food price p.

2. If R− c
µ−Λ1

≤ p≤R− ϕµ

(µ−Λ1)
2 , we have R− p− ϕ

µ−Λ1
< (c−ϕ)(R−p)

c
. Furthermore, we have θ2 ≤

R− p− ϕ
µ−Λ1

, by Lemma C.5(2.1). From Lemma C.2, the demand for the food delivery service

is λD =Λ1 if θ ≤R− p− ϕ
µ−Λ1

. Then, from Lemma C.5(1), the food delivery platform’s profit

increases in θ. Thus, the platform will charge at least R − p − ϕ
µ−Λ1

for the food delivery

service. From Lemma C.2, the demand for the food delivery service is λD = µ − ϕ
R−p−θ

for

R− p− ϕ
µ−Λ1

≤ θ≤ (c−ϕ)(R−p)

c
. In this case, the food delivery platform’s profit π (p, θ) decreases

in θ for θ ≥R− p− ϕ
µ−Λ1

≥ θ2 by Lemma C.5(2). Thus, the food delivery platform will charge

θ∗ = R− p− ϕ
µ−Λ1

as the delivery fee, and we have λD = Λ1, and λW = 0. The food delivery

platform’s profit π∗ (p) =
(
R− p− ϕ

µ−Λ1

)
Λ1 is clearly a decreasing function of food price p.

3. If R− ϕµ

(µ−Λ1)
2 ≤ p≤ R− ϕ

µ
, we have max

(
R− p− ϕ

µ−Λ1
,0
)
≤ θ2 ≤min

(
(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)
,

by Lemma C.5(2). From Lemma C.2, the demand for the food delivery service is λD =

Λ1 if θ ≤ max
(
R− p− ϕ

µ−Λ1
,0
)
. Then, from Lemma C.5(1), the food delivery plat-

form’s profit increases in θ. Thus, the platform will charge at least max
(
R− p− ϕ

µ−Λ1
,0
)
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for the food delivery service. From Lemma C.2, the demand for the food delivery

service is λD = µ − ϕ
R−p−θ

for max
(
R− p− ϕ

µ−Λ1
,0
)

< θ ≤ min
(

(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)
.

In this case, the food delivery platform’s profit π (p, θ) has its maximum at θ2 on[
max

(
R− p− ϕ

µ−Λ1
,0
)
,min

(
(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)]
by Lemma C.5(2). Thus, the food delivery

platform will charge θ∗ = θ2 =R−p−
√

µϕ(R−p)

µ
as the delivery fee, and we have λD = µ−

√
µϕ
R−p

,

and λW = 0. The food delivery platform’s profit is π∗ (p) = θ∗λD = (R− p)µ+ϕ−2
√
µϕ (R− p).

The first derivative of θ∗λD is

∂π∗ (p)

∂p
=

√
µϕ−µ

√
R− p√

R− p
,

which is negative, because it increases in p and reaches zero when p=R−ϕ/µ. Thus, π∗ (p) =

θ∗λD is a decreasing function of food price p.

When Λ1 >
c−ϕ
c
µ, we have R− ϕµ

(µ−Λ1)
2 <R− c

µ−Λ1
<R− c2

µϕ
<R− ϕ

µ
by Lemma C.5(2.1) and (2.2).

Figure C.12 illustrates the intersection points of (c−ϕ)(R−p)

c
, R− p− ϕ

µ−Λ1
, θ2, and R− p− ϕ

µ
, when

Λ1 >
c−ϕ
c
µ.
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Figure C.12 The intersection points of (c−ϕ)(R−p)
c

, R− p− ϕ
µ−Λ1

, θ2 =R− p−
√

µϕ(R−p)

µ
, and R− p− ϕ

µ
, when

Λ1 >
c−ϕ
c

µ, for the parameter setting R= 10, Λ0 = µ= c= 1, and ϕ= 0.5.

1. If p ≤ R − c
µ−Λ1

, we have (c−ϕ)(R−p)

c
≤ R − p − ϕ

µ−Λ1
< R − p − ϕ

µ
. From Lemma C.2, we see

that tech-savvy customers are willing to pay a delivery fee of at most (c−ϕ)(R−p)

c
for the food

delivery service, and the demand for the food delivery service is λD =Λ1 when θ≤ (c−ϕ)(R−p)

c
. By

Lemma C.5(1), the food delivery platform will charge the highest delivery fee θ∗ = (c−ϕ)(R−p)

c
to
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maximize its profit, and we have λD =Λ1, and λW = µ− c
R−p

−Λ1. The food delivery platform’s

profit π∗ (p) = (c−ϕ)(R−p)

c
Λ1 is clearly a decreasing function of food price p.

2. If R − c
µ−Λ1

< p ≤ R − c2

µϕ
, we have R − p − ϕ

µ−Λ1
< (c−ϕ)(R−p)

c
. Furthermore, we have θ2 ≥

(c−ϕ)(R−p)

c
, by Lemma C.5(2). From Lemma C.2, the demand for the food delivery service is

λD = Λ1 if θ ≤ R − p− ϕ
µ−Λ1

. Then, from Lemma C.5(1), the food delivery platform’s profit

increases in θ. Thus, the platform will charge at least R − p − ϕ
µ−Λ1

for the food delivery

service. From Lemma C.2, the demand for the food delivery service is λD = µ − ϕ
R−p−θ

for

R− p− ϕ
µ−Λ1

< θ≤ (c−ϕ)(R−p)

c
. In this case, the food delivery platform’s profit π (p, θ) increases

in θ for θ ≤ (c−ϕ)(R−p)

c
≤ θ2 by Lemma C.5(2). Thus, the food delivery platform will charge

θ∗ = (c−ϕ)(R−p)

c
as the delivery fee, and we have λD = µ− c

R−p
, and λW = 0. The food delivery

platform’s profit π∗ (p) = (c−ϕ)(R−p)

c

(
µ− c

R−p

)
is clearly a decreasing function of food price p.

3. If R − c2

µϕ
< p ≤ R − ϕ

µ
, we have max

(
R− p− ϕ

µ−Λ1
,0
)
≤ θ2 ≤ min

(
(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)
,

by Lemma C.5(2). From Lemma C.2, the demand for the food delivery service is λD =

Λ1 if θ ≤ max
(
R− p− ϕ

µ−Λ1
,0
)
. Then, from Lemma C.5(1), the food delivery plat-

form’s profit increases in θ. Thus, the platform will charge at least max
(
R− p− ϕ

µ−Λ1
,0
)

for the food delivery service. From Lemma C.2, the demand for the food delivery

service is λD = µ − ϕ
R−p−θ

for max
(
R− p− ϕ

µ−Λ1
,0
)

< θ ≤ min
(

(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)
.

In this case, the food delivery platform’s profit π (p, θ) has its maximum at θ2 on[
max

(
R− p− ϕ

µ−Λ1
,0
)
,min

(
(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)]
by Lemma C.5(2). Thus, the food delivery

platform will charge θ∗ = θ2 =R−p−
√

µϕ(R−p)

µ
as the delivery fee, and we have λD = µ−

√
µϕ
R−p

,

and λW = 0. The food delivery platform’s profit π∗ (p) = (R− p)µ + ϕ − 2
√
µϕ (R− p) is a

decreasing function of food price p, following a discussion similar to the one in the Λ1 ≤ c−ϕ
c
µ

case. □

C.1.3. Restaurant Strategy

The restaurant’s profit Π per time unit is the product of the food price p and the throughput rate,

which is the sum of the joining rates of food-delivery and walk-in customers, i.e., λD + λW . From

Lemma C.2, we obtain the restaurant’s profit.

Corollary C.2. Under the food price p, the restaurant’s profit Π(p) is

1. For Λ1 ≤ c−ϕ
c
µ,

Π(p)

If p≤R− c
µ−Λ1

p
(
µ− c

R−p

)
If R− c

µ−Λ1
< p≤R− µϕ

(µ−Λ1)
2 pΛ1

If p >R− µϕ

(µ−Λ1)
2 p

(
µ−

√
µϕ
R−p

)
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2. For Λ1 >
c−ϕ
c
µ,

Π(p)

If p≤R− c2

µϕ
p
(
µ− c

R−p

)
If p >R− c2

µϕ
p
(
µ−

√
µϕ
R−p

)
The following proposition characterizes the restaurant’s optimal strategy as a Stackelberg leader.

Proposition C.4 (Restaurant Strategy). There exist threshold values ϕ1, λ1, and λ2, such

that, in equilibrium, the restaurant’s optimal price p∗, profit Π∗, and throughput λ∗
D +λ∗

W are

p∗ (Λ1) Π∗ (Λ1) λ∗
D +λ∗

W

When ϕ≤ ϕ1

if 0<Λ1 ≤ λ1 R−
√

c
µ
R

(√
Rµ−

√
c
)2

µ−
√

cµ
R

if λ1 <Λ1 ≤ λ2 R− µϕ

(µ−Λ1)
2 Λ1

(
R− µϕ

(µ−Λ1)
2

)
Λ1

if Λ1 >λ2
2R(µ−χ)

2µ−χ

2R(µ−χ)2

2µ−χ
µ−χ

When ϕ> ϕ1 R−
√

c
µ
R

(√
Rµ−

√
c
)2

µ−
√

cµ
R

where χ is the unique real root of −Rχ3 −µϕχ+2µ2ϕ= 0 in [0, µ]. Moreover, we have

(i) p∗(Λ1)|Λ1≤λ1
< p∗(Λ1)|Λ1>λ1

when ϕ≤ ϕ1.

(ii) Π∗ (Λ1) is a weakly increasing function of Λ1.

(iii) µ−
√

cµ
R
<λ2 if ϕ< c

2
√

Rµ/c−1
≤ ϕ1.

From Corollary C.2, the restaurant’s profit Π(p) depends critically on the interplay of three func-

tions pΛ1, p
(
µ− c

R−p

)
, and p

(
µ−

√
µϕ
R−p

)
. We first summarize some properties of the intersection

points of these three curves in Lemma C.6, C.7, and C.8. These results will help us prove Propo-

sition C.4.

Lemma C.6. Some properties of p
(
µ− c

R−p

)
:

1. It intersects with the x-axis at p=R− c
µ
.

2. It is a unimodal function of p∈
(
0,R− ϕ

µ

]
and

max
p∈(0,R−ϕ

µ ]
p

(
µ− c

R− p

)
=
(√

Rµ−
√
c
)2

argmax
p∈(0,R−ϕ

µ ]
p

(
µ− c

R− p

)
= R−

√
c

µ
R.

3. We have

R−
√

c

µ
R ≤ R− c2

µϕ
⇔ ϕ≥

√
c3

Rµ

R−
√

c

µ
R ≥ R− c2

µϕ
⇔ ϕ≤

√
c3

Rµ
.

Proof of Lemma C.6. 1. This conclusion can be reached immediately by solving p
(
µ− c

R−p

)
=

0.
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2. The first derivative of p
(
µ− c

R−p

)
is

∂
(
p
(
µ− c

R−p

))
∂p

= µ− cR

(R− p)
2 ,

which is µ
c3
(c3 −µϕ2R) at p=R− c2

µϕ
and µ− R

c
(µ−Λ1)

2
at p= p=R− c

µ−Λ1
.

Solving ∂
(
p
(
µ− c

R−p

))
/∂p = 0 gives p∗ = R −

√
c
µ
R. Then, replacing p with p∗ in

p
(
µ− c

R−p

)
leads to the maximum

(√
Rµ−

√
c
)2
. Moreover, ∂

(
p
(
µ− c

R−p

))
/∂p decreases in

p, ∂
(
p
(
µ− c

R−p

))
/∂p≥ 0 if p≤R−

√
c
µ
R and ∂

(
p
(
µ− c

R−p

))
/∂p≤ 0 if p≥R−

√
c
µ
R. This

means that p
(
µ− c

R−p

)
is a unimodal function of p∈

(
0,R− ϕ

µ

]
.

3. We have

R−
√

c

µ
R≤R− c2

µϕ
⇔
√

c

µ
R≥ c2

µϕ
⇔ ϕ≥

√
c3

Rµ
.

Similarly, we have R−
√

c
µ
R>R− c2

µϕ
⇔ ϕ<

√
c3

Rµ
. □

Lemma C.7. Some properties of p
(
µ−

√
µϕ
R−p

)
:

1. It intersects with the x-axis at p=R− ϕ
µ
.

2. It is a unimodal function of p∈
(
0,R− ϕ

µ

]
and

max
p∈(0,R−ϕ

µ ]
p

(
µ−

√
µϕ

R− p

)
=

2R (µ−χ)
2

2µ−χ
,

argmax
p∈(0,R−ϕ

µ ]
p

(
µ−

√
µϕ

R− p

)
=

2R (µ−χ)

2µ−χ
,

where χ is the unique real root of −Rχ3−µϕχ+2µ2ϕ in [0, µ], and χ increases in ϕ. Moreover,

2R(µ−χ)2

2µ−χ
decreases with ϕ.

3. We have

2R (µ−χ)

2µ−χ
≥ R− c2

µϕ
⇔ 0≤ ϕ≤

√
c3 (c+8Rµ)− c2

2Rµ
2R (µ−χ)

2µ−χ
≤ R− c2

µϕ
⇔
√
c3 (c+8Rµ)− c2

2Rµ
<ϕ≤ c,

where

√
c3(c+8Rµ)−c2

2Rµ
≥
√

c3

Rµ
.

4. argmax
p∈(0,R−ϕ

µ ]
p
(
µ−

√
µϕ
R−p

)
= 2R(µ−χ)

2µ−χ
> argmax

p∈(0,R−ϕ
µ ]
p
(
µ− c

R−p

)
=R−

√
c
µ
R for ϕ≤

√
c3(c+8Rµ)−c2

2Rµ
.

Proof of Lemma C.7. 1. This conclusion is immediate when we use p=R− ϕ
µ
in p

(
µ−

√
µϕ
R−p

)
.

2. Simple algebra gives

∂
(
p
(
µ−

√
µϕ
R−p

))
∂p

=
2µ (R− p)−

√
µϕ (R− p)−R

√
µϕ
R−p

2 (R− p)

x=
√

µϕ
R−p

=
1

2µϕ

(
−Rx3 +

(
2µ2 −µx

)
ϕ
)
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p=R− c2

µϕ
=

µ

2c3
(
−Rµϕ2 − c2ϕ+2c3

)
p=R− ϕµ

(µ−Λ1)
2

=
1

2µϕ

(
−R (µ−Λ1)

3 −µϕ (µ−Λ1)+ 2µ2ϕ
)

We can obtain the discriminant of the cubic function −Rx3 −µϕx+2µ2ϕ by using a=−R,

b= 0, c=−µϕ, and d= 2µ2ϕ in ∆= 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2:

∆=−4Rµ3ϕ2 (ϕ+27Rµ)< 0.

This means that −Rx3 − µϕx + 2µ2ϕ has only one real root. Let χ denote this real

root. Furthermore, because −Rx3 −µϕx+2µ2ϕ|x=0 = 2µ2ϕ> 0 and −Rx3 −µϕx+2µ2ϕ|x=µ =

−µ3
(
R− ϕ

µ

)
< 0, this real root χ is in [0, µ]; and ∂

(
p
(
µ−

√
µϕ
R−p

))
/∂p ≥ 0 if x ≤ χ and

∂
(
p
(
µ−

√
µϕ
R−p

))
/∂p≤ 0 if x≥ χ. This means that p

(
µ−

√
µϕ
R−p

)
is a unimodal function of

p∈
(
0,R− ϕ

µ

]
.

From −Rx3 +(2µ2 −µx)ϕ= 0, we have the correspondence between ϕ and χ:

ϕ=
Rχ3

µ (2µ−χ)
=

Rχ2

µ
(

2µ
χ
− 1
) ,

which increases in χ. This means that χ increases with ϕ.

Solving ∂
(
p
(
µ−

√
µϕ
R−p

))
/∂p= 0 gives

√
µϕ

R−p∗ = χ⇒ p∗ =R− µϕ
χ2 ⇒ p∗ = 2R(µ−χ)

2µ−χ
where χ is

the unique real root of −Rχ3−µϕχ+2µ2ϕ in [0, µ]. Then, substituting p∗ for p in p
(
µ−

√
µϕ
R−p

)
leads to the maximum value

(
R− µϕ

χ2

)
(µ−χ) = 2R(µ−χ)2

2µ−χ
.

Clearly, p
(
µ−

√
µϕ
R−p

)
decreases with ϕ, so maxp

(
µ−

√
µϕ
R−p

)
= 2R(µ−χ)2

2µ−χ
decreases with ϕ

too.

3. We have

2R (µ−χ)

2µ−χ
=R− µϕ

χ2
≤R− c2

µϕ
⇔ χ≤ µϕ

c
⇔ −Rx3 −µϕx+2µ2ϕ

∣∣
x=µϕ

c
≤ 0⇔

√
c3 (c+8Rµ)− c2

2Rµ
<ϕ≤ c.

Similarly, we have R− µϕ
χ2 >R− c2

µϕ
⇔ 0≤ ϕ≤

√
c3(c+8Rµ)−c2

2Rµ
. We next prove√

c3

Rµ
≤
√

c3 (c+8Rµ)− c2

2Rµ

2
√
v+1 ≤

√
1+8v (let v=

Rµ

c
)

−4
√
v
(√

v− 1
)
≤ 0,

which is clearly true since v= Rµ
c
≥ 1.

4. We next prove, if ϕ ≤
√

c3(c+8Rµ)−c2

2Rµ
, 2R(µ−χ)

2µ−χ
> R −

√
c
µ
R ⇔ χ < 2µ√

Rµ
c +1

. Since −Rx3 −

µϕx + 2µ2ϕ has only one real root χ ∈ [0, µ], −Rx3 −µϕx+2µ2ϕ|x=0 = 2µ2ϕ > 0, and

−Rx3 −µϕx+2µ2ϕ|x=µ =−µ3
(
R− ϕ

µ

)
< 0, we have

χ <
2µ√
Rµ
c
+1

⇔ −Rx3 −µϕx+2µ2ϕ
∣∣
x= 2µ√

Rµ
c +1

< 0
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⇔ ϕ<
4cRµ

c(
2Rµ

c
+
(
1+ Rµ

c

)√
Rµ
c

) ,
which is clearly true since ϕ ≤

√
c3(c+8Rµ)−c2

2Rµ
= c

√
1+8Rµ

c −1

2Rµ
c

<
4cRµ

c(
2Rµ

c +(1+Rµ
c )

√
Rµ
c

) ; the last

inequality can be verified by replacing Rµ
c

with v; and note that Rµ
c
> 1. □

Lemma C.8. We have the following properties regarding the intersection points of the three

curves pΛ1, p
(
µ− c

R−p

)
, and p

(
µ−

√
µϕ
R−p

)
.

1. p
(
µ− c

R−p

)
and p

(
µ−

√
µϕ
R−p

)
intersect at point

(
R− c2

µϕ
, µ
(
R− c2

µϕ

)(
c−ϕ
c

))
. Moreover, we

have p
(
µ−

√
µϕ
R−p

)
≤ p

(
µ− c

R−p

)
, if p ≤ R − c2

µϕ
, and p

(
µ−

√
µϕ
R−p

)
> p

(
µ− c

R−p

)
, if p >

R− c2

µϕ
.

2. pΛ1 and p
(
µ− c

R−p

)
intersect at point

(
R− c

µ−Λ1
,Λ1

(
R− c

µ−Λ1

))
, which is

(
R−

√
c
µ
R,
(
µ−

√
cµ
R

)(
R−

√
c
µ
R
))

when Λ1 = µ−
√

cµ
R
.

• When max
p∈(0,R−ϕ

µ ]
p
(
µ− c

R−p

)
=
(√

Rµ−
√
c
)2

> max0<λ<µ λ
(
R− µϕ

(µ−λ)2

)
= 2R (µ−χ)2

2µ−χ
,

λ
(
R− c

µ−λ

)
= 2R(µ−χ)2

2µ−χ
has two roots λ3 and λ′

3 in [0, µ] such that λ′
3 ≤ λ3.

• Moreover, c−ϕ
c
µ< λ3 ≤ µ−

√
cµ
R
.

3. pΛ1 and p
(
µ−

√
µϕ
R−p

)
intersect at point

(
R− µϕ

(µ−Λ1)
2 ,Λ1

(
R− µϕ

(µ−Λ1)
2

))
.

• λ
(
R− µϕ

(µ−λ)2

)
is a unimodal function with max0<λ<µ λ

(
R− µϕ

(µ−λ)2

)
= 2R (µ−χ)2

2µ−χ
and

argmax0<λ<µ λ
(
R− µϕ

(µ−λ)2

)
= λ2 ≡ µ−χ.

• When max
p∈(0,R−ϕ

µ ]
p
(
µ− c

R−p

)
=
(√

Rµ−
√
c
)2

< max0<λ<µ λ
(
R− µϕ

(µ−λ)2

)
= 2R (µ−χ)2

2µ−χ
,

λ
(
R− µϕ

(µ−λ)2

)
=
(√

Rµ−
√
c
)2

has two roots λ1 and λ′
1 in [0, µ] such that λ1 ≤ λ′

1.

• Moreover, λ1 <λ2.

4. When Λ1 =
c−ϕ
c
µ, the three curves pΛ1, p

(
µ− c

R−p

)
, and p

(
µ−

√
µϕ
R−p

)
intersect at the same

point
(
R− c2

µϕ
, µ
(
R− c2

µϕ

)(
c−ϕ
c

))
. Moreover,

• Λ1 ≤ c−ϕ
c
µ⇔R− c

µ−Λ1
≤R− µϕ

(µ−Λ1)
2 ; and Λ1 ≥ c−ϕ

c
µ⇔R− c

µ−Λ1
≥R− µϕ

(µ−Λ1)
2 .

• If ϕ≤
√

c3(c+8Rµ)−c2

2Rµ
, we have λ2 ≤ c−ϕ

c
µ; and if ϕ>

√
c3(c+8Rµ)−c2

2Rµ
, we have λ2 >

c−ϕ
c
µ.

Proof of Lemma C.8. 1. Solving p
(
µ− c

R−p

)
= p

(
µ−

√
µϕ
R−p

)
gives p=R− c2

µϕ
. Using p=R−

c2

µϕ
in p

(
µ− c

R−p

)
gives the value µ

(
R− c2

µϕ

)(
c−ϕ
c

)
.

2. Similarly, we have p = R − c
µ−Λ1

by solving pΛ1 = p
(
µ− c

R−p

)
. Using p = R − c

µ−Λ1

in p
(
µ− c

R−p

)
gives the value Λ1

(
R− c

µ−Λ1

)
. Clearly, when Λ1 = µ −

√
cµ
R
, we have(

R− c
µ−Λ1

,Λ1

(
R− c

µ−Λ1

))
=
(
R−

√
c
µ
R,
(
µ−

√
cµ
R

)(
R−

√
c
µ
R
))

.

Further, when max
p∈(0,R−ϕ

µ ]
p
(
µ− c

R−p

)
=
(√

Rµ−
√
c
)2

> max0<λ<µ λ
(
R− µϕ

(µ−λ)2

)
=

2R (µ−χ)2

2µ−χ
,

• We know that λ
(
R− c

µ−λ

)
is a unimodal function maximized at λ = µ −

√
cµ
R
,

λ
(
R− c

µ−λ

)∣∣∣
λ=0

= 0, and limλ→µ λ
(
R− c

µ−λ

)
= −∞, , and 2R(µ−χ)2

2µ−χ
is a constant
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regarding Λ1. Hence, the equation λ
(
R− c

µ−λ

)
= 2R(µ−χ)2

2µ−χ
has two roots if 2R(µ−χ)2

2µ−χ
<

max
p∈(0,R−ϕ

µ ]
p
(
µ− c

R−p

)
=
(√

Rµ−
√
c
)2
.

• We should have λ3 ≥ c−ϕ
c
µ; otherwise, if λ3 <

c−ϕ
c
µ, we will be able to reach the conclusion

that 2R(µ−χ)2

2µ−χ
>λ3

(
R− c

µ−λ3

)
, which controdicts the definition of λ3. If Λ1 = µ−

√
cµ
R
, we have

max
p∈(0,R−ϕ

µ ]
p
(
µ− c

R−p

)
> max

p∈(0,R−ϕ
µ ]
p
(
µ−

√
µϕ
R−p

)
= 2R(µ−χ)2

2µ−χ
, which implies λ3 ≤ µ−

√
cµ
R
. There-

fore, given max
p∈(0,R−ϕ

µ ]
p
(
µ− c

R−p

)
=
(√

Rµ−
√
c
)2

> max0<λ<µ λ
(
R− µϕ

(µ−λ)2

)
= 2R (µ−χ)2

2µ−χ
,

we have c−ϕ
c
µ< λ3 ≤ µ−

√
cµ
R
.

3. Similarly, we have p = R− µϕ

(µ−Λ1)
2 by solving pΛ1 = p

(
µ−

√
µϕ
R−p

)
. Using p = R− µϕ

(µ−Λ1)
2 in

pΛ1 gives the value Λ1

(
R− µϕ

(µ−Λ1)
2

)
.

• Note that λ
(
R− µϕ

(µ−λ)2

)∣∣∣
λ=µ−

√
µϕ

R−p

= p
(
µ−

√
µϕ
R−p

)
, so we can obtain the unimodal-

ity of λ
(
R− µϕ

(µ−λ)2

)
and its maximum by applying results from Lemma C.7. We see

that λ = µ −
√

µϕ
R−p

decreases in p and λ
(
R− µϕ

(µ−λ)2

)∣∣∣
λ=µ−

√
µϕ

R−p

= p
(
µ−

√
µϕ
R−p

)
is a uni-

modal function by Lemma C.7(2), so λ
(
R− µϕ

(µ−λ)2

)
is also a unimodal function. Using p =

argmax
p∈(0,R−ϕ

µ ]
p
(
µ−

√
µϕ
R−p

)
= 2R µ−χ

2µ−χ
and ϕ= Rχ3

µ(2µ−χ)
in λ= µ−

√
µϕ
R−p

gives λ2 = µ− χ. Clearly,

λ2 is the root of λ
(
R− µϕ

(µ−λ)2

)
= 2R(µ−χ)2

2µ−χ
. Moreover, we have max0<λ<µ λ

(
R− µϕ

(µ−λ)2

)
=

max
p∈(0,R−ϕ

µ ]
p
(
µ−

√
µϕ
R−p

)
= 2R (µ−χ)2

2µ−χ
.

• Because λ
(
R− µϕ

(µ−λ)2

)
is a unimodal function of λ, λ

(
R− µϕ

(µ−λ)2

)∣∣∣
λ=0

= 0, and

limλ→µ λ
(
R− µϕ

(µ−λ)2

)
= −∞, we have that λ

(
R− µϕ

(µ−λ)2

)
=
(√

Rµ−
√
c
)2

has two roots if

max0<λ<µ λ
(
R− µϕ

(µ−λ)2

)
= 2R (µ−χ)2

2µ−χ
>
(√

Rµ−
√
c
)2
.

• Because λ1 is the smallest λ satisfying λ
(
R− µϕ

(µ−λ)2

)
=
(√

Rµ−
√
c
)2

and λ2 =

argmax0<λ<µ λ
(
R− µϕ

(µ−λ)2

)
, we have λ1 <λ2.

4. When substituting p = R − c2

µϕ
for p in pΛ1|Λ1=

c−ϕ
c µ

, p
(
µ− c

R−p

)
, and p

(
µ−

√
µϕ
R−p

)
, we

obtain the same value µ
(
R− c2

µϕ

)(
c−ϕ
c

)
. Hence, the three curves intersect at the same point(

R− c2

µϕ
, µ
(
R− c2

µϕ

)(
c−ϕ
c

))
when Λ1 =

c−ϕ
c
µ. Simple algebra gives Λ1 ≤ c−ϕ

c
µ ⇔ R − c

µ−Λ1
≤

R− µϕ

(µ−Λ1)
2 and Λ1 ≥ c−ϕ

c
µ⇔R− c

µ−Λ1
≥R− µϕ

(µ−Λ1)
2 .

When ϕ=

√
c3(c+8Rµ)−c2

2Rµ
, we have λ2 =

c−ϕ
c
µ. Three curves pΛ1, p

(
µ− c

R−p

)
, p
(
µ−

√
µϕ
R−p

)
intersect at λ=R− c2

µϕ
, and this intersection point is the maximum point of p

(
µ−

√
µϕ
R−p

)
by

Lemma C.8(2) and (4). If ϕ≤
√

c3(c+8Rµ)−c2

2Rµ
, we have λ1 < λ2 ≤ c−ϕ

c
µ; if ϕ >

√
c3(c+8Rµ)−c2

2Rµ
, we

have λ2 >
c−ϕ
c
µ. □

Next, we prove Proposition C.4.

Recall from Lemma C.8(4) that (i) When Λ1 ≤ c−ϕ
c
µ, the restaurant’s profit Π(p)

increases on
(
R− c

µ−Λ1
,R− µϕ

(µ−Λ1)
2

]
, so we only need to compare max

p∈
(
0,R− c

µ−Λ1

] p(µ− c
R−p

)
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and max
p∈

[
R− µϕ

(µ−Λ1)
2 ,R−ϕ

µ

] p(µ−
√

µϕ
R−p

)
to determine the restaurant’s maximum profit

Π∗. (ii) When Λ1 > c−ϕ
c
µ, we only need to compare max

p∈
(
0,R− c2

µϕ

] p(µ− c
R−p

)
and

max
p∈

[
R− c2

µϕ ,R−ϕ
µ

] p(µ−
√

µϕ
R−p

)
to determine the restaurant’s maximum profit Π∗.

We next discuss the relationship between p
(
µ− c

R−p

)
and p

(
µ−

√
µϕ
R−p

)
. By Lemma C.7(2), we

have that maxp
(
µ−

√
µϕ
R−p

)
= 2R(µ−χ)2

2µ−χ
decreasing in ϕ.

When ϕ≤
√

c3

Rµ
, we have argmaxp

(
µ− c

R−p

)
=R−

√
c
µ
R≥R− c2

µϕ
by Lemma C.6(3), which leads

to maxp
(
µ−

√
µϕ
R−p

)
≥maxp

(
µ− c

R−p

)
.

When ϕ ≥
√

c3(c+8Rµ)−c2

2Rµ
, we have argmaxp

(
µ−

√
µϕ
R−p

)
= 2R(µ−χ)

2µ−χ
≤ R − c2

µϕ
by Lemma C.7(3),

which leads to maxp
(
µ−

√
µϕ
R−p

)
≤maxp

(
µ− c

R−p

)
.

When ϕ increases to ϕ1 =
Rχ3

1
µ(2µ−χ1)

∈
[√

c3

Rµ
,

√
c3(c+8Rµ)−c2

2Rµ

]
where

χ1 =
3Rµ−

(
c− 2

√
Rcµ

)
−
√(

3Rµ−
(
c− 2

√
Rcµ

))2
+16Rµ

(
c− 2

√
Rcµ

)
4R

is the unique solution of 2R(µ−χ)2

2µ−χ
=
(√

Rµ−
√
c
)2

in [0, µ], we have max
p∈(0,R−ϕ

µ ]
p
(
µ−

√
µϕ
R−p

)
=

max
p∈(0,R−ϕ

µ ]
p
(
µ− c

R−p

)
. Here, we can prove ϕ1 ∈

[√
c3

Rµ
,

√
c3(c+8Rµ)−c2

2Rµ

]
.

1. If ϕ ≤ ϕ1 ⇔ max
p∈(0,R−ϕ

µ ]
p
(
µ−

√
µϕ
R−p

)
= 2R (µ−χ)2

2µ−χ
≥ max

p∈(0,R−ϕ
µ ]
p
(
µ− c

R−p

)
=
(√

Rµ−
√
c
)2
. The

maximum point of p
(
µ−

√
µϕ
R−p

)
is on the right-hand side of R− c2

µϕ
the intersection point of

p
(
µ− c

R−p

)
and p

(
µ−

√
µϕ
R−p

)
; i.e., 2R µ−χ

2µ−χ
>R− c2

µϕ
. Otherwise, if 2R µ−χ

2µ−χ
≤R− c2

µϕ
, we have

2R (µ−χ)2

2µ−χ
<
(√

Rµ−
√
c
)2

by Lemma C.8(1), which contradicts ϕ≤ ϕ1.

Figure C.13 illustrates the restaurant’s profit as a function of p under different Λ1.

• If 0<Λ1 ≤ λ1, the maximum point of p
(
µ− c

R−p

)
must be in

(
0,R− c

µ−Λ1

]
; otherwise there

exists a λ′ < λ1 such that λ′
(
R− µϕ

(µ−λ′)2

)
=
(√

Rµ−
√
c
)2
, which violates the definition of λ1.

Then, as Figure C.13(1) shows, we have Π∗ (Λ1) =max
p∈(0,R−ϕ

µ ]
p
(
µ− c

R−p

)
=
(√

Rµ−
√
c
)2 ≥

max
p∈

[
R− µϕ

(µ−Λ1)
2 ,R−ϕ

µ

] p(µ−
√

µϕ
R−p

)
and p∗ (Λ1) = argmax

p∈(0,R−ϕ
µ ]
p
(
µ− c

R−p

)
=R−

√
c
µ
R. Note that

Π∗ (Λ1) here is a constant regarding Λ1.

• If λ1 <Λ1 ≤ λ2, we have max
p∈

(
0,R− c

µ−Λ1

] p(µ− c
R−p

)
<max

p∈
[
R− µϕ

(µ−Λ1)
2 ,R−ϕ

µ

] p(µ−
√

µϕ
R−p

)
=

p
(
µ−

√
µϕ
R−p

)∣∣∣
p=R− µϕ

(µ−Λ1)
2

= Λ1

(
R− µϕ

(µ−Λ1)
2

)
, as illustrated in Figure C.13(2). In this case,

Π∗ (Λ1) = Λ1

(
R− µϕ

(µ−Λ1)
2

)
and p∗ (Λ1) = R − µϕ

(µ−Λ1)
2 . Recall from Lemma C.8(3) that

λ
(
R− µϕ

(µ−λ)2

)
is a unimodal function with the maximum at λ2, so Π∗ (Λ1) increases in Λ1 on

(λ1, λ2].

• If λ2 <Λ1 ≤ c−ϕ
c
µ, the maximum point of p

(
µ−

√
µϕ
R−p

)
is in

(
R− µϕ

(µ−Λ1)
2 ,R− ϕ

µ

]
, by the

definition of λ2. Then, we have max
p∈

(
0,R− c

µ−Λ1

] p(µ− c
R−p

)
<max

p∈(0,R−ϕ
µ ]
p
(
µ−

√
µϕ
R−p

)
=
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Figure C.13 The restaurant’s profit Π as a function of p, when Λ1 = 0.4, 0.57, 0.65, and 0.7, for the parameter

setting R= 10, Λ0 = µ= c= 1, and ϕ= 0.32.

2R (µ−χ)2

2µ−χ
, as illustrated in Figure C.13(3). In this case, Π∗ (Λ1) =

2R(µ−χ)2

2µ−χ
and p∗ (Λ1) =

2R(µ−χ)

2µ−χ
∈
(
R− µϕ

(µ−Λ1)
2 ,R− ϕ

µ

]
. Note that Π∗ (Λ1) here is a constant regarding Λ1.

• If Λ1 >
c−ϕ
c
µ, max

p∈
(
0,R− c2

µϕ

] p(µ− c
R−p

)
≤max

p∈
[
R− c2

µϕ ,R−ϕ
µ

] p(µ−
√

µϕ
R−p

)
=max

p∈(0,R−ϕ
µ ]
p
(
µ−

√
µϕ
R−p

)
=

2R (µ−χ)2

2µ−χ
, as illustrated in Figure C.13(4). In this case, Π∗ (Λ1) =

2R(µ−χ)2

2µ−χ
and p∗ (Λ1) =

2R(µ−χ)

2µ−χ
∈
(
R− c2

µϕ
,R− ϕ

µ

]
. Note that Π∗ (Λ1) here is a constant regarding Λ1.

To summarize, the restaurant’s maximum profit Π∗ and the profit-maximizing price p∗ are

Π∗ (Λ1) p∗ (Λ1)

if 0<Λ1 ≤ λ1

(√
Rµ−

√
c
)2

R−
√

c
µ
R

if λ1 <Λ1 ≤ λ2 Λ1

(
R− µϕ

(µ−Λ1)
2

)
R− µϕ

(µ−Λ1)
2

if Λ1 >λ2
2R(µ−χ)2

2µ−χ

2R(µ−χ)

2µ−χ

.

By Lemma C.7(2), we have p∗ (Λ1)|Λ1>λ2
= 2R(µ−χ)

2µ−χ
> p∗ (Λ1)|Λ1≤λ1

= R −
√

c
µ
R when ϕ ≤

ϕ1. Then, because p∗ (Λ1)|λ1<Λ1≤λ2
=R− µϕ

(µ−Λ1)
2 decreases in Λ1, we have p∗ (Λ1)|λ1<Λ1≤λ2

=

R− µϕ

(µ−Λ1)
2 > p∗ (Λ1)|Λ1≤λ1

=R−
√

c
µ
R. Thus, p∗(Λ1)|Λ1≤λ1

< p∗(Λ1)|Λ1>λ1
when ϕ≤ ϕ1.

An observation here is that the intersection point of pλ1 and p
(
µ−

√
µϕ
R−p

)
is on the right-

hand side of the maximum point of p
(
µ− c

R−p

)
; i.e., R−

√
c
µ
R<R− µϕ

(µ−λ1)
2 . Otherwise, if R−

µϕ

(µ−λ1)
2 ≤R−

√
c
µ
R, from the definition of λ1 we have p

(
µ−

√
µϕ
R−p

)
≤
(√

Rµ−
√
c
)2

for p≥R−
µϕ

(µ−λ1)
2 . This suggests that there is another intersection point of p

(
µ− c

R−p

)
and p

(
µ−

√
µϕ
R−p

)
on the interval

[
R− µϕ

(µ−λ1)
2 ,R−

√
c
µ
R
]
. Recall that point

(
R− µϕ

(µ−λ1)
2 , λ1

(
R− µϕ

(µ−λ1)
2

))
,
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Figure C.14 The restaurant’s profit Π as a function of p, when Λ1 = 0.4 and 0.7, for the parameter setting

R= 10, Λ0 = µ= c= 1, and ϕ= 0.39.

which is the intersection point of pλ1 and p
(
µ−

√
µϕ
R−p

)
, is on the right-hand side of the

maximum point of p
(
µ−

√
µϕ
R−p

)
. This contradicts our result above that the maximum point

of p
(
µ−

√
µϕ
R−p

)
is on the right-hand side of the intersection point of p

(
µ− c

R−p

)
and

p
(
µ−

√
µϕ
R−p

)
. Thus, we have p∗ (Λ1)|Λ1≤λ1

=R−
√

c
µ
R< p∗ (Λ1)|Λ1↘λ1

=R− µϕ

(µ−λ1)
2 .

Moreover, we note that if Λ1 ≤ λ1, the restaurant’s throughput is µ−
√

cµ
R
, which is indepen-

dent of ϕ; if λ1 < Λ1 ≤ λ2, the restaurant’s throughput is Λ1; and if Λ1 > λ2, the restaurant’s

throughput is λ2 = µ−χ, which decreases in ϕ by Lemma C.7(2). Solving µ−
√

cµ
R
= λ2 gives

ϕ = c

2
√

µR
c −1

≤
√

c3

Rµ
≤ ϕ1. Thus, if ϕ < c

2
√

µR
c −1

, we have µ −
√

cµ
R

< λ2, which implies that

for Λ1 > µ−
√

cµ
R
, the delivery service increases the restaurant’s throughput from µ−

√
cµ
R

to

min (Λ1, λ2).

2. If ϕ > ϕ1 ⇔ max
p∈(0,R−ϕ

µ ]
p
(
µ−

√
µϕ
R−p

)
= 2R (µ−χ)2

2µ−χ
< max

p∈(0,R−ϕ
µ ]
p
(
µ− c

R−p

)
=
(√

Rµ−
√
c
)2
. The

maximum point of p
(
µ− c

R−p

)
is on the left-hand side of the intersection point of p

(
µ− c

R−p

)
and p

(
µ−

√
µϕ
R−p

)
; i.e., R −

√
c
µ
R < R − c2

µϕ
. Otherwise, if R −

√
c
µ
R ≥ R − c2

µϕ
, we have(√

Rµ−
√
c
)2 ≤ 2R (µ−χ)2

2µ−χ
by Lemma C.8(1), which contradicts ϕ > ϕ1. Figure C.14 illustrates

the restaurant’s profit as a function of p under different Λ1.

Following the same discussion as that for the ϕ≤ ϕ1 case, the restaurant’s maximum profit

Π∗ and the profit-maximizing price p∗ are Π∗ =
(√

Rµ−
√
c
)2

at p∗ = R −
√

c
µ
R. Note that

Π∗ (Λ1) here is a constant regarding Λ1.
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At last, the restaurant’s throughput λ∗
D +λ∗

W can be readily derived using Π∗ (Λ1)/p
∗(Λ1). □

Given the restaurant’s optimal food price p∗(Λ1) in Proposition C.4, we can use Proposition C.3

to obtain the platform’s optimal delivery fee θ∗(p∗) and corresponding profit π∗(p∗) in equilibrium

of the Stackelberg game.

Corollary C.3 (Food Delivery Platform’s Profit). There exist threshold values ϕ1, λ1,

and λ2, such that the food delivery platform’s equilibrium profit π∗, delivery fee θ∗, the joining rates

of food-delivery and walk-in customers λ∗
D and λ∗

W under the restaurant’s equilibrium price p∗ are

θ∗(p∗ (Λ1)) π∗(p∗ (Λ1)) λ∗
D λ∗

W

When ϕ≤ ϕ1

if 0<Λ1 ≤ λ1 (c−ϕ)
√

R
µc

Λ1 (c−ϕ)
√

R
cµ

Λ1 µ−
√

cµ
R
−Λ1

if λ1 <Λ1 ≤ λ2
ϕΛ1

(µ−Λ1)
2

ϕ(Λ1)
2

(µ−Λ1)
2 Λ1 0

if Λ1 >λ2
Rχ(µ−χ)

µ(2µ−χ)

Rχ(µ−χ)2

µ(2µ−χ)
µ−χ 0

When ϕ> ϕ1

if 0<Λ1 ≤ µ−
√

cµ
R

(c−ϕ)
√

R
cµ

Λ1 (c−ϕ)
√

R
cµ

Λ1 µ−
√

cµ
R
−Λ1

if Λ1 >µ−
√

cµ
R

(c−ϕ)
√

R
cµ

(c−ϕ)
(√

Rµ
c
− 1
)

µ−
√

cµ
R

0

where χ is the unique real root of −Rχ3 −µϕχ+2µ2ϕ= 0 in [0, µ]. Moreover, we have

(i) π∗(p∗)|Λ1≤λ1
> π∗(p∗)|Λ1↘λ1

when ϕ≤ ϕ1.

(ii) π∗(p∗) is a weakly increasing function of Λ1 when ϕ> ϕ1.

Proof of Corollary C.3. (i) When ϕ≤ ϕ1, similar to the ϕ≤ ϕ1 case in Proposition C.4, we have

λ1 ≤ λ2 ≤ c−ϕ
c
µ.

• If 0< Λ1 ≤ λ1, the restaurant’s profit-maximizing price is p∗ (Λ1) =R−
√

c
µ
R≤R− c

µ−Λ1
by

Proposition C.4. From Proposition C.3(1), the food delivery platform’s profit π and profit maxi-

mizing delivery fee θ∗ are π (p∗) = Λ1
(c−ϕ)(R−p)

c

∣∣∣
p=R−

√
c
µR

=Λ1 (c−ϕ)
√

R
cµ

=Λ1

(
c− Rχ3

µ(2µ−χ)

)√
R
cµ

and θ∗ (p∗) = (c−ϕ)
√

R
µc

=
(
c− Rχ3

µ(2µ−χ)

)√
R
µc
.

• If λ1 < Λ1 ≤ λ2 ≤ c−ϕ
c
µ, the restaurant’s profit-maximizing price is p∗ (Λ1) = R− µϕ

(µ−Λ1)
2 by

Proposition C.4. From Proposition C.3(1), the food delivery platform’s profit π and profit max-

imizing delivery fee θ∗ are π (p∗) = Λ1

(
R− p− ϕ

µ−Λ1

)∣∣∣
p=R− µϕ

(µ−Λ1)
2

= ϕ(Λ1)
2

(µ−Λ1)
2 = (Λ1)

2Rχ3

µ(2µ−χ)(µ−Λ1)
2 and

θ∗ (p∗) = ϕΛ1

(µ−Λ1)
2 =

Λ1Rχ3

µ(2µ−χ)(µ−Λ1)
2 .

• If λ2 < Λ1 ≤ c−ϕ
c
µ, the restaurant’s profit-maximizing price is p∗ (Λ1) =

2R(µ−χ)

2µ−χ
>R− µϕ

(µ−Λ1)
2

by Proposition C.4. From Proposition C.3(1), the food delivery platform’s profit π and profit

maximizing delivery fee θ∗ are π (p∗) =
(
µ−

√
µϕ
R−p

)(
R− p−

√
µϕ(R−p)

µ

)∣∣∣∣
p=

2R(µ−χ)
2µ−χ

= ϕ(µ−χ)2

χ2 =

Rχ(µ−χ)2

µ(2µ−χ)
and θ∗ (p∗) = ϕ(µ−χ)

χ2 = Rχ(µ−χ)

µ(2µ−χ)
.
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• If Λ1 >
c−ϕ
c
µ, the restaurant’s profit-maximizing price is p∗ (Λ1) =

2R(µ−χ)

2µ−χ
>R− c2

µϕ
by Propo-

sition C.4. From Proposition C.3(2), the food delivery platform’s profit π and profit maximizing

delivery fee θ∗ are π (p∗) =
(
µ−

√
µϕ
R−p

)(
R− p−

√
µϕ(R−p)

µ

)∣∣∣∣
p=

2R(µ−χ)
2µ−χ

= ϕ(µ−χ)2

χ2 = Rχ(µ−χ)2

µ(2µ−χ)
and

θ∗ (p∗) = ϕ(µ−χ)

χ2 = Rχ(µ−χ)

µ(2µ−χ)
.

From Proposition C.3, it is easy to verify that when Λ1 ≤ c−ϕ
c
µ the food delivery platform’s profit

π= θ∗λD decreases in the restaurant’s price p for p∈
[
0,R− ϕµ

(µ−Λ1)
2

]
. When Λ1 increases to λ1, the

restaurant’s profit-maximizing price increases from R−
√

c
µ
R to R− µϕ

(µ−λ1)
2 by Proposition C.4, so

the food delivery platform’s profit decreases. Thus, we have Λ1 (c−ϕ)
√

R
cµ

∣∣∣
Λ1=λ1

> ϕ(Λ1)
2

(µ−Λ1)
2

∣∣∣
Λ1=λ1

.

When ϕ= ϕ1, we have 2R(µ−χ1)
2

2µ−χ1
=
(√

Rµ−
√
c
)2
, so λ1 = λ2 = µ−χ1.

(ii) When ϕ > ϕ1, the restaurant’s profit-maximizing price is p∗ (Λ1) = R−
√

c
µ
R by Proposition

C.4.

Recall from Lemma C.8(2) that pΛ1 intersects with p
(
µ− c

R−p

)
at p = R −

√
c
µ
R when Λ1 =

µ−
√

cµ
R
.

• If 0 < Λ1 ≤ c−ϕ
c
µ, the restaurant’s profit-maximizing price is p∗ (Λ1) = R −

√
c
µ
R ≤ R −

c
µ−Λ1

by Proposition C.4. From Proposition C.3(1), the food delivery platform’s profit is

Λ1
(c−ϕ)(R−p)

c

∣∣∣
p=R−

√
c
µR

= Λ1
µ
(c−ϕ)

√
Rµ
c
.

• If c−ϕ
c
µ < Λ1 ≤ µ −

√
cµ
R
, the restaurant’s profit-maximizing price is p∗ (Λ1) = R −

√
c
µ
R ≤

R − c
µ−Λ1

by Proposition C.4. From Proposition C.3(2), the food delivery platform’s profit is

Λ1
(c−ϕ)(R−p)

c

∣∣∣
p=R−

√
c
µR

= Λ1
µ
(c−ϕ)

√
Rµ
c
.

• If Λ1 >µ−
√

cµ
R
, the restaurant’s profit-maximizing price is R− c

µ−Λ1
< p∗ (Λ1) =R−

√
c
µ
R≤

R − c2

µϕ
by Proposition C.4. From Proposition C.3(2), the food delivery platform’s profit is(

µ− c
R−p

)
(c−ϕ)(R−p)

c

∣∣∣
p=R−

√
c
µR

= (c−ϕ)
(√

Rµ
c
− 1
)
.

Clearly, π∗(p∗) is a weakly increasing function of Λ1 when ϕ> ϕ1.

Next, we investigate the food delivery platform’s profit under the restaurant’s profit-maximizing

price p∗, π (p∗), when the tech-savvy customers’ arrival rate is sufficiently large; i.e., Λ1 ↗ µ. If

ϕ≤ ϕ1, we have π (p
∗) = Rχ(µ−χ)2

µ(2µ−χ)
. From the above discussion, we have argmaxχ∈[0,µ] π (p

∗) = 3−
√
5

2
µ.

Correspondingly, ϕ = Rχ3

µ(2µ−χ)

∣∣∣
χ= 3−

√
5

2 µ
= 13

√
5−29
2

Rµ and Rχ(µ−χ)2

µ(2µ−χ)

∣∣∣
χ= 3−

√
5

2 µ
= 5

√
5−11
2

Rµ. If ϕ > ϕ1,

we have π (p∗) = (c−ϕ)
(√

Rµ
c
− 1
)
which clearly decreases in ϕ.

At last, the joining rate of food-delivery customers λ∗
D can be readily derived using π∗(p∗)/θ∗(p∗).

The joining rate of walk-in customers λ∗
W is the difference between λ∗

D + λ∗
W in Proposition C.4

and λ∗
D. □

C.1.4. Social Welfare

We next investigate social welfare, which is defined as the sum of the restaurant’s equilibrium profit
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in Proposition C.4 and the platform’s equilibrium profit in Corollary C.3 under the restaurant’s

optimal food price p∗(Λ1) in Proposition C.4 and the food delivery platform’s best-response delivery

fee θ∗(p∗) in Corollary C.3. Note that customers have zero utility in equilibrium; otherwise, either

the restaurant or the food delivery platform could raise the price without changing the throughput,

which would lead to a higher profit.

Corollary C.4 (Social Welfare). Social welfare under the restaurant’s optimal food price p∗

in Proposition C.4 and the food delivery platform’s best-response delivery fee θ∗(p∗) in Corollary

C.3 is
S∗ (Λ1)

When ϕ≤ ϕ1

if 0<Λ1 ≤ λ1

(√
Rµ−

√
c
)2

+Λ1 (c−ϕ)
√

R
cµ

if λ1 <Λ1 ≤ λ2 RΛ1 − ϕΛ1
µ−Λ1

if Λ1 >λ2
R(2µ+χ)(µ−χ)2

µ(2µ−χ)

When ϕ> ϕ1

if 0<Λ1 ≤ µ−
√

cµ
R

(√
Rµ−

√
c
)2

+Λ1 (c−ϕ)
√

R
cµ

if Λ1 >µ−
√

cµ
R

ϕ+Rµ− (c+ϕ)
√

Rµ
c

where χ is the unique real root of −Rχ3 −µϕχ+2µ2ϕ= 0 in [0, µ]. Moreover, we have

(i) S∗ (Λ1)|Λ1≤λ1
> S∗ (Λ1)|Λ1↘λ1

when ϕ≤ ϕ1.

(ii) S∗ (Λ1) is a weakly increasing function of Λ1 when ϕ> ϕ1.

Proof of Corollary C.4. From Proposition C.4 and Corollary C.3, we have

(i) When ϕ≤ ϕ1,

• If 0<Λ1 ≤ λ1, we have S (Λ1) =Π∗ (Λ1)+π∗(p∗) =
(√

Rµ−
√
c
)2

+Λ1 (c−ϕ)
√

R
cµ
.

• If λ1 < Λ1 ≤ λ2 ≤ c−ϕ
c
µ, we have S (Λ1) = Π∗ (Λ1) + π∗(p∗) = Λ1

(
R− µϕ

(µ−Λ1)
2

)
+ ϕ(Λ1)

2

(µ−Λ1)
2 =

RΛ1 − ϕΛ1
µ−Λ1

.

• If Λ1 >λ2, we have S (Λ1) =Π∗ (Λ1)+π∗(p∗) = 2R(µ−χ)2

2µ−χ
+ Rχ(µ−χ)2

µ(2µ−χ)
= R(2µ+χ)(µ−χ)2

µ(2µ−χ)
.

We have Π∗ (Λ1) is a weakly increasing function of Λ1 from Proposition C.4 and π∗(p∗)|Λ1≤λ1
>

π∗(p∗)|Λ1↘λ1
from Corollary C.3. When Λ1 increases to λ1, the restaurant’s profit-maximizing

price increases from R −
√

c
µ
R to R − µϕ

(µ−λ1)
2 by Proposition C.4, the restaurant’s profit stays

constant while the platform’s profit decreases, i.e.,
(√

Rµ−
√
c
)2

= Λ1

(
R− µϕ

(µ−Λ1)
2

)∣∣∣
Λ1=λ1

and

Λ1 (c−ϕ)
√

R
cµ

∣∣∣
Λ1=λ1

> ϕ(Λ1)
2

(µ−Λ1)
2

∣∣∣
Λ1=λ1

. Therefore, we have S (Λ1)|Λ1≤λ1
> S (Λ1)|Λ1↘λ1

when ϕ≤ ϕ1.

(ii) When ϕ> ϕ1,

• If 0<Λ1 ≤ µ−
√

cµ
R
, we have S (Λ1) =Π∗ (Λ1)+π∗(p∗) =

(√
Rµ−

√
c
)2

+Λ1 (c−ϕ)
√

R
cµ
.

• If Λ1 > µ −
√

cµ
R
, we have S (Λ1) = Π∗ (Λ1) + π∗(p∗) =

(√
Rµ−

√
c
)2

+ (c−ϕ)
(√

Rµ
c
− 1
)
=

ϕ+Rµ− (c+ϕ)
√

Rµ
c
.
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From Proposition C.4 and Corollary C.3, we have Π∗ (Λ1) and π∗(p∗) are weakly increasing functions

of Λ1. Therefore, S (Λ1) is a weakly increasing function of Λ1 when ϕ> ϕ1.

We have Proposition 1 from Proposition C.4, Corollary C.3 and Corollary C.4. □

C.2. Proof of Lemma 1

Due to our unobservable queue assumption and customers’ homogeneity in their service reward

and marginal waiting cost, the centralized owner can extract all customer surplus as profit by

setting the food price and delivery fee (see Chap. 3 of Hassin and Haviv 2003 for a single-segment

problem). Thus, the optimal monopoly food price po and delivery fee θo maximize not only the

aggregated profit but also social welfare. Here, the centralized owner’s goal of maximizing the

aggregated profit aligns with a social planner’s goal of maximizing social welfare.

We first derive (i) the socially optimal joining rates of food-delivery and walk-in customers, and

(ii) the expected utility of food-delivery and that of walk-in customers under the socially optimal

joining rates and zero food price and delivery fee.

Proposition C.5 (Social Optimization). The maximum social welfare and socially optimal

joining rates of food-delivery and walk-in customers λo
D and λo

W are

So λo
D λo

W

If 0<Λ1 ≤
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R
Rµ+ c− 2

√
R (cµ−Λ1 (c−ϕ)) Λ1 µ−

√
cµ−Λ1(c−ϕ)

R
−Λ1

If
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R
<Λ1 ≤ µ−

√
ϕµ
R

Λ1

(
R− ϕ

µ−Λ1

)
Λ1 0

If Λ1 >µ−
√

ϕµ
R

(√
Rµ−

√
ϕ
)2

µ−
√

ϕµ
R

0

Moreover, we have:

(i) The optimal social welfare So is a weakly increasing function of Λ1.

(ii) The socially optimal throughput λo
D +λo

W is a weakly increasing function of Λ1.

Proof of Proposition C.5. 1. When Λ1 >µ−
√

ϕµ
R
, from Hassin and Haviv (2003), it is socially

optimal for tech-savvy customers to join with rate µ −
√

ϕµ
R
, and optimal social welfare is(√

Rµ−
√
ϕ
)2
. If we can increase social welfare further by letting some walk-in customers join,

then it would be more socially beneficial to switch these walk-in customers to tech-savvy cus-

tomers, which contradicts the result from Hassin and Haviv (2003). In this case, the optimal

social welfare
(√

Rµ−
√
ϕ
)2

and the socially optimal throughput µ−
√

ϕµ
R

are both constant

regarding Λ1.

2. When Λ1 ≤ µ−
√

ϕµ
R
, all tech-savvy customers join using the food delivery service. Let λ denote

the total arrival rate, then λ−Λ1 is the arrival rate of walk-in customers. Social welfare is

S (λ) = Λ1

(
R− ϕ

µ−λ

)
+(λ−Λ1)

(
R− c

µ−λ

)
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= Λ1

c−ϕ

µ−λ
+λ

(
R− c

µ−λ

)
for λ≥Λ1,

whose first derivative is

∂S (λ)

∂λ
=

R (λ−µ)
2
+Λ1 (c−ϕ)− cµ

(λ−µ)
2 .

Clearly, we have ∂S
∂λ

≤ 0 if λ≤ λo = µ−
√

cµ−Λ1(c−ϕ)

R
, and ∂S

∂λ
> 0 if λ> λo. Hence, social welfare

is a unimodal function with a unique maximum at λo.

2.1 When Λ1 ≤
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R
⇔ λo ≥ Λ1, it is socially optimal to have λD = Λ1 and

λW = λo −Λ1 = µ−
√

cµ−Λ1(c−ϕ)

R
−Λ1. Here, the throughput is λD + λW = µ−

√
cµ−Λ1(c−ϕ)

R
,

which clearly increases in Λ1. The optimal social welfare is

S (λo) =Rµ+ c− 2
√

R (cµ−Λ1 (c−ϕ)),

which is clearly an increasing function of Λ1.

2.2 When
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R
≤ Λ1 ≤ µ −

√
ϕµ
R

⇔ R (Λ1)
2
+ (c−ϕ− 2Rµ)Λ1 + µ (Rµ− c) ≤

0 ⇔ λo ≤ Λ1, which is true because R (Λ1)
2
+ (c−ϕ− 2Rµ)Λ1 + µ (Rµ− c) is a quadratic

equation and R (Λ1)
2
+(c−ϕ− 2Rµ)Λ1 +µ (Rµ− c)

∣∣∣
Λ1=µ−

√
ϕµ
R

= − (c−ϕ)
√

ϕµ
R

< 0, it is

socially optimal to have λD = Λ1 and λW = 0. In this case, the throughput is Λ1, which

clearly increases in Λ1. The optimal social welfare is Λ1

(
R− ϕ

µ−Λ1

)
, which is a unimodal

function with maximum point Λ∗
1 = µ−

√
ϕµ
R
; hence, it is an increasing function of Λ1 when

Λ1 ≤ µ−
√

ϕµ
R
. □

Next we study how to achieve the socially optimal joining rates of food-delivery and walk-in

customers, λo
D and λo

W , characterized in Proposition C.5. Let po and θo denote the optimal monopoly

food price and delivery fee that induce the socially optimal joining rates λo
D and λo

W .

We first discuss the Λ1 ≤
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R
case, where both tech-savvy customers and tradi-

tional customers join. Our intuition suggests that all customers should expect zero utility when

po and θo are offered; otherwise, if any customers expect a positive utility, these customers have

the incentive to join the system more often, or the food price or delivery fee should be increased

when all customers have already joined the system. Following this rationale, we set p= θ= 0 and

λ= λo
D+λo

W , where λo
D and λo

W are from Proposition C.5, in (C.1) and (C.2) to obtain the utility of

food-delivery customers UD (λo
D, λ

o
W ) and that of walk-in customers UW (λo

D, λ
o
W ) under the socially

optimal joining rates.

Corollary C.5. The expected utility of food-delivery and that of walk-in customers under the

socially optimal joining rates and p= θ= 0 are
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UD (λo
D, λ

o
W ) UW (λo

D, λ
o
W )

If 0<Λ1 ≤
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R
R− ϕ√

cµ−Λ1(c−ϕ)
R

R− c√
cµ−Λ1(c−ϕ)

R

If
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R
<Λ1 ≤ µ−

√
ϕµ
R

R− ϕ
µ−Λ1

R− c
µ−Λ1

If Λ1 >µ−
√

ϕµ
R

R−ϕ
√

R
ϕµ

R− c
√

R
ϕµ

We expect that the centralized owner can set the food price and delivery fee as po =UW (λo
D, λ

o
W ) =

R − c√
cµ−Λ1(c−ϕ)

R

and θo = UD (λo
D, λ

o
W ) − UW (λo

D, λ
o
W ) = c−ϕ√

cµ−Λ1(c−ϕ)
R

where UD (λo
D, λ

o
W ) and

UW (λo
D, λ

o
W ) are given in Corollary C.5, to induce the socially optimal joining rates λo

D and

λo
W in Proposition C.5 and extract all the surpluses from customers. Here, we have po = R −

c√
cµ−Λ1(c−ϕ)

R

≤ R − c
µ−Λ1

⇔ R (µ−Λ1)
2 − (c−ϕ) (µ−Λ1) − ϕµ ≥ 0, which is clearly true since

Λ1 ≤
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R
. By Proposition C.3, the platform’s best response is θo = (c−ϕ)(R−po)

c
=

c−ϕ√
cµ−Λ1(c−ϕ)

R

. Also, by Lemma C.2, we have, under food price po and delivery fee θo, customers’

joining rates are λD =Λ1 and λW = µ− c
R−po

−Λ1 = µ−
√

cµ−Λ1(c−ϕ)

R
−Λ1, which are identical to

λo
D and λo

W in Proposition C.5.

We next discuss the Λ1 >
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R
case. From Proposition C.5, all traditional cus-

tomers balk, the centralized owner operates a system that only serves the tech-savvy customers.

We expect that the solution of p+θ∗ (p) = pm, where θ
∗ (p) is the platform’s best response delivery

fee from Proposition D.7 and

pm =

R− ϕ
µ−Λ1

if Λ1 ≤ µ−
√

ϕµ
R

R−
√

ϕR
µ

if Λ1 >µ−
√

ϕµ
R

.

is the social optimal price in an unobservable M/M/1 with waiting cost ϕ (see, e.g., Hassin and

Haviv (2003)), is the socially optimal food price po, and the platform’s best response to po is θo;

i.e., θ∗ (po) = θo. We next verify this conjecture.

From Proposition C.3, we have the sum of food price p and platform’s best response delivery fee

θ∗ (p):

1. For Λ1 ≤ c−ϕ
c
µ,

p+ θ∗ (p)

If p≤R− c
µ−Λ1

R− ϕ
c
(R− p) ∈

[
c−ϕ
c
R,R− ϕ

µ−Λ1

]
If R− c

µ−Λ1
< p≤R− µϕ

(µ−Λ1)
2 R− ϕ

µ−Λ1
∈
(
R− ϕ

µ−Λ1
,R− ϕ

µ−Λ1

]
If R− µϕ

(µ−Λ1)
2 < p≤R− ϕ

µ
R−

√
µϕ(R−p)

µ
∈
(
R− ϕ

µ−Λ1
,R− ϕ

µ

]
2. For Λ1 >

c−ϕ
c
µ,

p+ θ∗ (p)

If p≤R− c
µ−Λ1

R− ϕ
c
(R− p) ∈

[
c−ϕ
c
R,R− ϕ

µ−Λ1

]
If R− c

µ−Λ1
< p≤R− c2

µϕ
R− ϕ

c
(R− p) ∈

(
R− ϕ

µ−Λ1
,R− c

µ

]
If R− c2

µϕ
< p≤R− ϕ

µ
R−

√
µϕ(R−p)

µ
∈
(
R− c

µ
,R− ϕ

µ

]
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When ϕ≤ c2

Rµ
, we have µ−

√
ϕµ
R

≤ c−ϕ
c
µ, R−

√
ϕR
µ

≥R− c
µ
, and R− c2

µϕ
≤ 0.

• If
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R
< Λ1 ≤ µ−

√
ϕµ
R
, the solution of p+ θ∗ (p) = pm ⇔ R− ϕ

c
(R− p) =

R− ϕ
µ−Λ1

is po =R− c
µ−Λ1

. Also, by Proposition C.3, we have θo = θ∗ (po) = (c−ϕ)(R−po)

c
= c−ϕ

µ−Λ1
. By

Lemma C.2, we have λD =Λ1 and λW = µ− c
R−po

−Λ1 = 0, which are identical to λo
D and λo

W in

Proposition C.5.

• If Λ1 >µ−
√

ϕµ
R
, we have R−

√
ϕR
µ

>R− ϕ
µ−Λ1

, R− µϕ

(µ−Λ1)
2 < 0, and R− c

µ−Λ1
< 0. The solution

of p+ θ∗ (p) = pm ⇔ R −
√

µϕ(R−p)

µ
= R −

√
ϕR
µ

is po = 0. By Proposition C.3, the food delivery

platform’s best response is θo = R− po −
√

µϕ(R−po)

µ
= R−

√
ϕR
µ

> R− ϕ
µ−Λ1

. By Lemma C.2, we

have λD = µ− ϕ
R−po−θo

= µ−
√

µϕ
R

and λW = 0, which are identical to λo
D and λo

W in Proposition

C.5.

When ϕ> c2

Rµ
, we have c−ϕ

c
µ<µ−

√
ϕµ
R
, and R−

√
ϕR
µ

<R− c
µ
.

• If
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R
< Λ1 ≤ µ−

√
ϕµ
R
, the solution of p+ θ∗ (p) = pm ⇔ R− ϕ

c
(R− p) =

R− ϕ
µ−Λ1

is po =R− c
µ−Λ1

. Also, by Proposition C.3, we have θo = θ∗ (po) = (c−ϕ)(R−po)

c
= c−ϕ

µ−Λ1
. By

Lemma C.2, we have λD =Λ1 and λW = µ− c
R−po

−Λ1 = 0, which are identical to λo
D and λo

W in

Proposition C.5.

• If Λ1 > µ −
√

ϕµ
R
, we have R −

√
ϕR
µ

> R − ϕ
µ−Λ1

. The solution of p + θ∗ (p) = pm ⇔ R −
ϕ
c
(R− p) = R −

√
ϕR
µ

is po = R − c
√

R
ϕµ

∈
(
R− c

µ−Λ1
,R− c2

µϕ

)
. By Proposition C.3(2), the food

delivery platform’s best response is θo = (c−ϕ)(R−po)

c
= (c−ϕ)

√
R
ϕµ

>R−po− ϕ
µ−Λ1

= c
√

R
ϕµ

− ϕ
µ−Λ1

.

By Lemma C.2, we have λD = µ− ϕ
R−po−θo

= µ−
√

µϕ
R

and λW = 0, which are identical to λo
D and

λo
W in Proposition C.5.

We expect that the centralized owner of the food service chain can set the food price and delivery

fee as

po =



R− c√
cµ−Λ1(c−ϕ)

R

if 0<Λ1 ≤
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R

R− c
µ−Λ1

if
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R
<Λ1 ≤ µ−

√
ϕµ
R

0 if Λ1 >µ−
√

ϕµ
R

and ϕ≤ c2

Rµ

R− c
√

R
ϕµ

if Λ1 >µ−
√

ϕµ
R

and ϕ> c2

Rµ

(C.3)

and

θo =



c−ϕ√
cµ−Λ1(c−ϕ)

R

if 0<Λ1 ≤
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R

c−ϕ
µ−Λ1

if
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R
<Λ1 ≤ µ−

√
ϕµ
R

R−
√

ϕR
µ

if Λ1 >µ−
√

ϕµ
R

and ϕ≤ c2

Rµ

(c−ϕ)
√

R
ϕµ

if Λ1 >µ−
√

ϕµ
R

and ϕ> c2

Rµ

, (C.4)

to induce the socially optimal joining rates λo
D and λo

W in Proposition C.5 and extract all the

surpluses from customers.
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It is easy to verify that po and po+θo are weakly decreasing functions of Λ1, and that θo is a weakly

increasing function of Λ1.

The restaurant’s corresponding profit is

Πo (Λ1) = po (λo
D +λo

W )

If 0<Λ1 ≤
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R

(
R− c√

cµ−Λ1(c−ϕ)
R

)(
µ−

√
cµ−Λ1(c−ϕ)

R

)
If

2Rµ−c+ϕ−
√

4Rµϕ+(c−ϕ)2

2R
<Λ1 ≤ µ−

√
ϕµ
R

(
R− c

µ−Λ1

)
Λ1

If Λ1 >µ−
√

ϕµ
R

and ϕ≤ c2

Rµ
0

If Λ1 >µ−
√

ϕµ
R

and ϕ> c2

Rµ

(
R− c

√
R
ϕµ

)(
µ−

√
µϕ
R

)
• We consider R− c√

cµ−Λ1(c−ϕ)

R

(µ−
√

cµ−Λ1 (c−ϕ)

R

)

= Rµ+ c− cµ

 R

cµ

√
cµ−Λ1 (c−ϕ)

R
+

1√
cµ−Λ1(c−ϕ)

R


= Rµ+ c− cµ

(
R

cµ
x+

1

x

)
(by x=

√
cµ−Λ1 (c−ϕ)

R
≤
√

cµ

R
)

whose first derivative is

∂
(
Rµ+ c− cµ

(
R
cµ
x+ 1

x

))
∂x

=
cµ−Rx2

x2
≥ 0.

Thus,

(
R− c√

cµ−Λ1(c−ϕ)
R

)(
µ−

√
cµ−Λ1(c−ϕ)

R

)
is an increasing function of x and a decreasing func-

tion of Λ1.

• Next we consider
(
R− c

µ−Λ1

)
Λ1, whose first derivative is

∂
((

R− c
µ−Λ1

)
Λ1

)
∂Λ1

=
R (µ−Λ1)

2 −µc

(µ−Λ1)
2 ,

which is negative if Λ1 ≥ µ−
√

µc
R
. We can prove

2Rµ−c+ϕ−
√

4Rµϕ+(c−ϕ)2

2R
≥ µ−

√
µc
R

by showing that

2Rµ−c+ϕ−
√

4Rµϕ+(c−ϕ)2

2R

∣∣∣∣
ϕ=c

= µ−
√

µc
R

and that
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R
decreases in ϕ, which can be

proved by simple algebra. Thus,
(
R− c

µ−Λ1

)
Λ1 is a decreasing function of Λ1.

• Finally, 0 and
(
R− c

√
R
ϕµ

)(
µ−

√
ϕµ
R

)
are constants regarding Λ1.

Thus, po (λo
D +λo

W ) is a weakly decreasing function of Λ1.

The platform’s corresponding profit is
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πo (po (Λ1)) = θoλo
D

If 0<Λ1 ≤
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R
c−ϕ√

cµ−Λ1(c−ϕ)
R

Λ1

If
2Rµ−c+ϕ−

√
4Rµϕ+(c−ϕ)2

2R
<Λ1 ≤ µ−

√
ϕµ
R

c−ϕ
µ−Λ1

Λ1

If Λ1 >µ−
√

ϕµ
R

and ϕ≤ c2

Rµ

(
R−

√
ϕR
µ

)(
µ−

√
ϕµ
R

)
If Λ1 >µ−

√
ϕµ
R

and ϕ> c2

Rµ
(c−ϕ)

√
R
ϕµ

(
µ−

√
ϕµ
R

)
which is clearly a weakly increasing function of Λ1. □

C.3. Proof of Proposition 2

We discuss the one-way and two-way RS contracts separately.

1. We first discuss the one-way RS contract with a price ceiling. In a decentralized system under

the platform’s best-response delivery fee θ∗ (p), social welfare can be derived as

1.1 For Λ1 ≤ c−ϕ
c
µ,

Π (p)+π∗ (p)

If p≤R− c
µ−Λ1

Rµ+ c+
((
1− ϕ

c

)
Λ1 −µ

)
(R− p)− Rc

R−p

If R− c
µ−Λ1

< p≤R− µϕ

(µ−Λ1)
2

(
R− ϕ

µ−Λ1

)
Λ1

If R− µϕ

(µ−Λ1)
2 < p≤R− ϕ

µ
Rµ+ϕ−

√
µϕ
(√

R− p+ R√
R−p

)
1.2 For Λ1 >

c−ϕ
c
µ,

Π (p)+π∗ (p)

If p≤R− c
µ−Λ1

Rµ+ c+
((
1− ϕ

c

)
Λ1 −µ

)
(R− p)− Rc

R−p

If R− c
µ−Λ1

< p≤R− c2

µϕ
Rµ+ϕ−

(
Rc
R−p

+ ϕµ(R−p)

c

)
If R− c2

µϕ
< p≤R− ϕ

µ
Rµ+ϕ−

√
µϕ
(√

R− p+ R√
R−p

)
We first derive

•
∂(Rµ+c+((1−ϕ

c )Λ1−µ)(R−p)− Rc
R−p)

∂p
= µ −

(
1− ϕ

c

)
Λ1 − R c

(R−p)2
, which is zero when p =

R − c
√

R
cµ−(c−ϕ)Λ1

; R − c
√

R
cµ−(c−ϕ)Λ1

≤ R − c
µ−Λ1

⇔ Λ1 ≤ µ − (c−ϕ)+
√

(c−ϕ)2+4Rµϕ

2R
; and

∂2(Rµ+c+((1−ϕ
c )Λ1−µ)(R−p)− Rc

R−p)
∂p2

= −2Rc

(R−p)3
< 0.

•
∂
(
Rµ+ϕ−

(
Rc

R−p+
ϕµ(R−p)

c

))
∂p

= µϕ
c
− Rc

(R−p)2
, which is zero when p=R− c

√
R
µϕ
; R− c

√
R
µϕ

≤R−

c
µ−Λ1

⇔Λ1 ≤ µ−
√

µϕ
R
; R−c

√
R
µϕ

<R− c2

µϕ
⇔ ϕ> c2

Rµ
, and

∂2
(
Rµ+ϕ−

(
Rc

R−p+
ϕµ(R−p)

c

))
∂p2

= −2Rc

(R−p)3
< 0.

• Rµ+ϕ−
√
µϕ
(√

R− p+ R√
R−p

)
decreases in the food price p, because

∂
(
Rµ+ϕ−

√
µϕ

(√
R−p+ R√

R−p

))
∂p

=

− p
√
µϕ

2(R−p)
3
2
< 0.

It is clear that µ− (c−ϕ)+
√

(c−ϕ)2+4Rµϕ

2R
≤ µ−

√
µϕ
R
.

• When Λ1 ≤ µ− (c−ϕ)+
√

(c−ϕ)2+4Rµϕ

2R
≤ µ−

√
µϕ
R
, we have

—Rµ+c+
((
1− ϕ

c

)
Λ1 −µ

)
(R− p)− Rc

R−p
is a unimodal function on p∈

(
0,R− c

µ−Λ1

]
with

the maximum at p=R− c
√

R
cµ−Λ1(c−ϕ)

;
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—Rµ+ϕ−
(

Rc
R−p

+ ϕµ(R−p)

c

)
decreases with p for p∈

(
R− c

µ−Λ1
,R− c2

µϕ

]
;

—Rµ+ϕ−
√
µϕ
(√

R− p+ R√
R−p

)
decreases with p.

Thus, Π(p)+π∗ (p) is a unimodal function of p with the maximum at po =R− c
√

R
cµ−Λ1(c−ϕ)

.

• When µ− (c−ϕ)+
√

(c−ϕ)2+4Rµϕ

2R
≤Λ1 ≤ µ−

√
µϕ
R
, we have

—Rµ + c +
((
1− ϕ

c

)
Λ1 −µ

)
(R− p) − Rc

R−p
is an increasing function of p for p ∈(

0,R− c
µ−Λ1

]
;

—Rµ+ϕ−
(

Rc
R−p

+ ϕµ(R−p)

c

)
decreases with p for p∈

(
R− c

µ−Λ1
,R− c2

µϕ

]
;

—Rµ+ϕ−
√
µϕ
(√

R− p+ R√
R−p

)
decreases with p.

Thus, Π(p)+π∗ (p) is a unimodal function of p with the maximum at po =R− c
µ−Λ1

.

• When µ − (c−ϕ)+
√

(c−ϕ)2+4Rµϕ

2R
≤ µ −

√
µϕ
R

≤ Λ1 and ϕ ≤ c2

Rµ
, we have µ −

√
ϕµ
R

≤ c−ϕ
c
µ.

Clearly, Π(p)+π∗ (p) is a constant for p∈ [0, po] where po = 0.

• When µ− (c−ϕ)+
√

(c−ϕ)2+4Rµϕ

2R
≤ µ−

√
µϕ
R

≤Λ1 and ϕ> c2

Rµ
, we have c−ϕ

c
µ<µ−

√
ϕµ
R
.

—Rµ + c +
((
1− ϕ

c

)
Λ1 −µ

)
(R− p) − Rc

R−p
is an increasing function of p for p ∈(

0,R− c
µ−Λ1

]
;

—Rµ+ϕ−
(

Rc
R−p

+ ϕµ(R−p)

c

)
is a unimodal function of p with the maximum at p=R−c

√
R
µϕ

for p∈
(
R− c

µ−Λ1
,R− c2

µϕ

]
;

—Rµ+ϕ−
√
µϕ
(√

R− p+ R√
R−p

)
decreases with p.

Thus, Π(p)+π∗ (p) is a unimodal function of p with the maximum at po =R− c
√

R
µϕ
.

In all cases, po here matches the result in Lemma 1, and if the RS contract sets a price ceiling

at po, the restaurant will increase the food price to po to maximize its profit.

When the platform shares γ1 fraction of its profit with the restaurant, the restaurant’s profit

is Π(p) + γ1π
∗ (p) = (Π(p)+π∗ (p))− (1− γ1)π

∗ (p). We have shown above that Π(p) + π∗ (p)

increases in p for p∈ [0, po], and π∗ (p) decreases in p by Proposition C.3. Thus, the restaurant’s

profit Π(p)+γ1π
∗ (p) increases for p∈ [0, po], which means that the restaurant will set the food

price p= po to maximize its profit. By Lemma 1(i), given the food price po, the platform’s best-

response delivery fee is θo. Hence, the price-ceiling one-way revenue-sharing contract proposed

in Proposition 2 successfully induces the restaurant and the platform to behave in the socially

optimal manner for ∀γ1 ∈ [0,1].

For the decentralized system, we have the restaurant’s profit Π∗ (Λ1) from Proposition C.4,

the platform’s profit π∗ (p∗ (Λ1)) from Corollary C.3, and social welfare S∗ (Λ1) from Corollary

C.4 in equilibrium. Note that Π∗ (Λ1) and π∗ (p∗ (Λ1)) are the minimum profits the restaurant

and the delivery platform target. In the centralized system, under the optimal monopoly food

price po and delivery fee θo, we have the restaurant’s profit Πo (Λ1), the platform’s profit πo (Λ1),

and social welfare So (Λ1) from Lemma 1. The range of sharing fraction

γ1 (Λ1)∈
[
Π∗ (Λ1)−Πo (Λ1)

πo (po (Λ1))
,1− π∗ (p∗ (Λ1))

πo (po (Λ1))

]
(C.5)
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makes sure that the restaurant and the platform can reach a win-win.

Specifically, in the decentralized system, when the demand rate of tech-savvy customers is

sufficiently large, i.e., Λ1 ≥ µ, the restaurant’s profit is Π∗ =

{
2R(µ−χ)2

2µ−χ
if ϕ≤ ϕ1(√

Rµ−
√
c
)2

if ϕ> ϕ1

and the

platform’s profit is π∗ =


Rχ(µ−χ)2

µ(2µ−χ)
if ϕ≤ ϕ1

(c−ϕ)
(√

Rµ
c
− 1
)

if ϕ> ϕ1

, which are the minimum profits the

restaurant and the delivery platform aim at. In the centralized system, as Lemma 1 suggests,

the maximum aggregated total profit the service system can obtain is So =
(√

Rµ−
√
ϕ
)2
, and

the food sales and delivery profit under the socially optimal food price po and delivery fee θo are

po
(
µ−

√
ϕµ
R

)
and

(√
Rµ−

√
ϕ
)2 − po

(
µ−

√
ϕµ
R

)
, respectively. Hence, the range of sharing

fraction

γ1 ∈



[
2R(µ−χ)2

2µ−χ −po
(
µ−

√
ϕµ
R

)
(
√
Rµ−

√
ϕ)

2−po
(
µ−

√
ϕµ
R

) ,1− Rχ(µ−χ)2

µ(2µ−χ)

(
√
Rµ−

√
ϕ)

2−po
(
µ−

√
ϕµ
R

)
]

if ϕ≤ ϕ1[
(
√
Rµ−

√
c)

2−po
(
µ−

√
ϕµ
R

)
(
√
Rµ−

√
ϕ)

2−po
(
µ−

√
ϕµ
R

) ,1− (c−ϕ)

(√
Rµ
c −1

)
(
√
Rµ−

√
ϕ)

2−po
(
µ−

√
ϕµ
R

)
]

if ϕ> ϕ1

,

where χ is given in Proposition C.4, makes sure that the restaurant and the platform can reach

a win-win.

2. The two-way revenue-sharing contract turns the restaurant’s profit function into an affine trans-

formation of the aggregated profit of the whole service system. Thus, the restaurant will set the

food price as the socially optimal one po. Then, from Lemma 1, the food delivery platform’s

best response is to set the delivery fee as θo. This contract coordinates the whole system in the

socially optimal fashion. From a discussion similar to the one of the price-ceiling one-way RS

contract, the range of sharing fraction

γ2 (Λ1)∈
[
Π∗ (Λ1)

So (Λ1)
,1− π∗ (p∗ (Λ1))

So (Λ1)

]
(C.6)

makes sure that the restaurant and the platform can reach a win-win. In the extreme case

Λ1 ≥ µ, we have

γ2 ∈



[
2R(µ−χ)2

2µ−χ

(
√
Rµ−

√
ϕ)

2 ,1−
Rχ(µ−χ)2

µ(2µ−χ)

(
√
Rµ−

√
ϕ)

2

]
if ϕ≤ ϕ1[

(
√
Rµ−

√
c)

2

(
√
Rµ−

√
ϕ)

2 ,1−
(c−ϕ)

(√
Rµ
c −1

)
(
√
Rµ−

√
ϕ)

2

]
if ϕ> ϕ1

,

where χ is given in Proposition C.4, makes sure that the restaurant and the platform can reach

a win-win. □

C.4. Proof of Proposition 3

Under the uniformly distributed opportunity cost assumption, when the food delivery platform

sets the delivery wage at w ∈ [0, β] per unit of time, the expected supply of delivery workers is

ν (w) =N ·F (w) =
w

β
N. (C.7)
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Remark 1. For analytical convenience, we use an hourly rate for the delivery wage; see also Cui

et al. (2020). One could also use a piece rate instead of an hourly rate for the delivery wage. Say the

platform sets the delivery wage as l per order. When the demand for the food delivery service is less

than the supply of delivery workers, each delivery worker has equal probability of being assigned

a food delivery order. Then, the supply of delivery workers v (l) satisfies v (l) = N
β

lmin(λD,v(l))

v(l)
, with

solution v (l) =

{
N
β
l if l≤ βλD

N√
N
β
lλD if l > βλD

N

. This expression of delivery-worker supply using a piece rate

is more complicated than that using an hourly rate. We focus on a parsimonious setting with

delivery workers getting an hourly rate to generate the supply of delivery workers.

The total opportunity cost of ν (w) delivery workers is 1
2
w · ν (w). Thus, under delivery fee θ and

delivery wage w, the platform’s profit is

π (p, θ,w) = θ ·min(λD, ν (w))−w · ν (w) = θ ·min

(
λD,

w

β
N

)
− w2

β
N, (C.8)

and the delivery workers’ total utility is

uD (θ,w) =w · ν (w)−N

∫ w

0

xf (x)dx=
1

2

w2

β
N. (C.9)

When the supply of delivery workers is less than the tech-savvy customers’ unconstrained demand

for the food delivery service, i.e., v (w)<λD, the number of tech-savvy customers who walk in by

themselves depends on the comparison of the delivery-worker supply v (w) and the join-up-to level

µ− c
R−p

, in the classical unobservable queue with only traditional customers. If v (w)< µ− c
R−p

,

the tech-savvy customers will walk in with rate min
(
λD, µ− c

R−p

)
− v (w); otherwise, if v (w) ≥

µ − c
R−p

, no tech-savvy customers will walk in. With both cases combined, the joining rate of

walk-in tech-savvy customers is λ1W (θ) =max
(
0,min

(
λD, µ− c

R−p

)
− v (w)

)
.

The food delivery platform should not hire more delivery workers than required by the tech-savvy

customers’ unconstrained demand for the food delivery service, λD, i.e., ν (w) ≤ λD ⇔ w ≤ βλD
N

.

Otherwise, the food delivery platform can reduce the delivery wage while it still manages to fulfill

all demand, which increases its profit.

Lemma C.9. Given the delivery fee θ, the equilibrium delivery wage is

w∗ (θ) =

{
θ
2

if θ≤ 2βλD
N

βλD
N

if θ > 2βλD
N

.

Moreover, under the equilibrium wage w∗ (θ), the food delivery platform’s profit is

π (p, θ,w∗ (θ)) =

{
N
4β
θ2 if θ≤ 2βλD

N

θλD − β
N
λ2
D if θ > 2βλD

N

,

and the joining rates of food-delivery and walk-in tech-savvy customers, λ∗
D (θ) and λ∗

1W (θ), are

λ∗
D (θ) =

{
θ
2β
N if θ≤ 2βλD

N

λD if θ > 2βλD
N

and λ∗
1W (θ) =

{
max

(
0,min

(
λD, µ− c

R−p

)
− θ

2β
N
)

if θ≤ 2βλD
N

0 if θ > 2βλD
N

.
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Proof of Lemma C.9. First, given any delivery fee θ, π (p, θ,w) as a function of w in (C.8) can

be written as

π (p, θ,w) =

{
N
β
(θw−w2) if w

β
N ≤ λD ⇔w≤ βλD

N

θλD − N
β
w2 if w

β
N >λD ⇔w> βλD

N

,

and its first derivative regarding w is

∂

∂w
π (p, θ,w) =

{
N
β
(θ− 2w) if w

β
N ≤ λD ⇔w≤ βλD

N

−2N
β
w if w

β
N >λD ⇔w> βλD

N

.

When the number of participating drivers is more than sufficient to serve all tech-savvy customers’

no-supply-constrained demand, i.e., w
β
N ≥ λD, the food delivery platform’s profit decreases in w,

so the platform should set wage w at no more than βλD
N

. For w ≤ βλD
N

, we have π (p, θ,w) =

N
β
(θw−w2), whose maximum is at w = θ

2
. If θ

2
≤ βλD

N
, the food delivery platform should set the

wage at w∗ (θ) = θ
2
to induce drivers to join with rate θ

2β
N ; otherwise, if θ

2
> βλD

N
, the food delivery

platform should set the wage at w∗ (θ) = βλD
N

to induce drivers to join with rate λD:

w∗ (θ) =

{
θ
2

if θ≤ 2βλD
N

⇔ θ
2
≤ βλD

N
βλD
N

if θ > 2βλD
N

⇔ θ
2
> βλD

N

.

Correspondingly, the joining rate of food-delivery customers is

λ∗
D (θ) =

{
θ
2β
N if θ≤ 2βλD

N

λD if θ > 2βλD
N

,

the joining rate of walk-in tech-savvy customers is

λ∗
1W (θ) =

{
max

(
0,min

(
λD, µ− c

R−p

)
− θ

2β
N
)

if θ≤ 2βλD
N

0 if θ > 2βλD
N

,

and the food delivery platform’s profit is

π (p, θ,w∗ (θ)) =

{
θ2

4β
N if θ≤ 2βλD

N

θλD − β
N
λ2
D if θ > 2βλD

N

. □

As in the base model, the platform’s profit is characterized by two functions: (C.10) and (C.11) in

Lemma C.10 of the Online Appendix. In the first case, (C.10) is an increasing function of delivery

fee θ, so the food delivery platform will charge the highest delivery fee in the corresponding interval

to obtain the maximum profit. In the second case, (C.11) is a unimodal function of θ with a

maximum at θ2 ∈
(
0,R− p− ϕ

µ

)
which is given in Lemma C.10. Then, the platform will charge

an optimal delivery fee θ∗ = min
(
max

(
θ2,R− p− ϕ

µ−Λ1

)
, (c−ϕ)(R−p)

c

)
. The following proposition

gives the platform’s equilibrium strategy and the corresponding joining rates of food-delivery and

walk-in customers.

Proposition C.6 (Food Delivery Platform Strategy). If µ2β ≤ cN , there exists a thresh-

old value Λ̄1 as given in (C.12) and θ2 as given in Lemma C.10 of the Online Appendix, such that

for the food price p, we have the optimal delivery fee θ∗, delivery wage w∗, and the joining rates of

food-delivery and walk-in customers, λ∗
D and λ∗

W , as:
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1. For Λ1 ≤ Λ̄1,

θ∗ w∗ (θ∗) λ∗
D (θ∗) λ∗

W (θ∗)
If p≤R− c

µ−Λ1

if (c−ϕ)(R−p)

c
≤ 2βΛ1

N

(c−ϕ)(R−p)

c

(c−ϕ)(R−p)

2c

N(c−ϕ)(R−p)

2βc
µ− c

R−p
− N(c−ϕ)(R−p)

2βc

if (c−ϕ)(R−p)

c
> 2βΛ1

N

(c−ϕ)(R−p)

c
βΛ1
N

Λ1 µ− c
R−p

−Λ1

If R− c
µ−Λ1

< p≤R− ϕµ

(µ−Λ1)
2 − 2βΛ1

N
R− p− ϕ

µ−Λ1

βΛ1
N

Λ1 0

If R− ϕµ

(µ−Λ1)
2 − 2βΛ1

N
< p≤R− ϕ

µ
θ2

β
N

(
µ− ϕ

R−p−θ2

)
µ− ϕ

R−p−θ2
0

2. For Λ1 > Λ̄1,

θ∗ w∗ (θ∗) λ∗
D (θ∗) λ∗

W (θ∗)
If p≤R− c

µ−Λ1

if (c−ϕ)(R−p)

c
≤ 2βΛ1

N

(c−ϕ)(R−p)

c

(c−ϕ)(R−p)

2c

N(c−ϕ)(R−p)

2βc
µ− c

R−p
− N(c−ϕ)(R−p)

2βc

if (c−ϕ)(R−p)

c
> 2βΛ1

N

(c−ϕ)(R−p)

c
βΛ1
N

Λ1 µ− c
R−p

−Λ1

If R− c
µ−Λ1

< p≤ p̄

if (c−ϕ)(R−p)

c
≤ θ1

(c−ϕ)(R−p)

c

(c−ϕ)(R−p)

2c

N(c−ϕ)(R−p)

2βc
µ− c

R−p
− N(c−ϕ)(R−p)

2βc

if (c−ϕ)(R−p)

c
> θ1

(c−ϕ)(R−p)

c
β
N

(
µ− c

R−p

)
µ− c

R−p
0

If p̄ < p≤R− ϕ
µ

θ2
β
N

(
µ− ϕ

R−p−θ2

)
µ− ϕ

R−p−θ2
0

To prove Proposition C.6, we first prove a Lemma.

Lemma C.10. Under the equilibrium driver wage w∗ (θ), the food delivery platform’s profit

π (p, θ,w∗ (θ)), arrival rates of food-delivery customers λ∗
D (θ), and those who join the queue them-

selves λ∗
1W (θ∗), depend on the no-supply-constrained demand rate for the food delivery service λD:

1. When λD =Λ1, we have

w∗ (θ) =

{
θ
2

if θ≤ 2βΛ1
N

βΛ1
N

if θ > 2βΛ1
N

,

π (p, θ,w∗ (θ)) =

{
N
4β
θ2 if θ≤ 2βΛ1

N

θΛ1 − β
N
(Λ1)

2
if θ > 2βΛ1

N

, (C.10)

λ∗
D (θ) =

{
θ
2β
N if θ≤ 2βΛ1

N

Λ1 if θ > 2βΛ1
N

,

and λ∗
1W (θ∗) =

{
Λ1 − θ

2β
N if θ≤ 2βΛ1

N

0 if θ > 2βΛ1
N

.

In this case, π (p, θ,w∗ (θ)) is an increasing function of θ.

2. When λD = µ− ϕ
R−p−θ

, we have

w∗ (θ) =

{
θ
2

if θ≤ θ1
β
N

(
µ− ϕ

R−p−θ

)
if θ > θ1

,

π (p, θ,w∗ (θ)) =

{ N
4β
θ2 if θ≤ θ1

θ
(
µ− ϕ

R−p−θ

)
− β

N

(
µ− ϕ

R−p−θ

)2

if θ > θ1
, (C.11)

λ∗
D (θ) =

{ θ
2β
N if θ≤ θ1

µ− ϕ
R−p−θ

if θ > θ1
,



43

and λ∗
1W (θ∗) =

{
µ− ϕ

R−p−θ
− θ

2β
N if θ≤ θ1

0 if θ > θ1
,

where θ1 = 1
2

(
R− p+ 2βµ

N
−
√(

R− p− 2βµ
N

)2
+ 8βϕ

N

)
denotes the unique root of θ

β
N −

2
(
µ− ϕ

R−p−θ

)
= 0 on

(
0,R− p− ϕ

µ

)
. In this case, π (p, θ,w∗ (θ)) is a unimodal function of

θ with a maximum at θ2, where θ2 > θ1 is the unique solution of G (θ) ≡ µ − ϕ
R−p−θ

−(
θ− 2 β

N

(
µ− ϕ

R−p−θ

))
ϕ

(R−p−θ)2
= 0 on

[
θ1,R− p− ϕ

µ

]
.

We have some properties of θ1 and θ2:

2.1 θ1 decreases in N and p.

2.2 limN→∞ θ1 = 0.

2.3 θ1 ≤R−p− ϕ
µ
. The equality only holds when p=R− ϕ

µ
, where θ1 =R−p− ϕ

µ
= 0 at p=R− ϕ

µ
.

2.4 θ1 intersects with R− p− ϕ
µ−Λ1

at p= R− ϕ
µ−Λ1

− 2βΛ1
N

. We have θ1 ≤ R− p− ϕ
µ−Λ1

⇔ p≤

R− ϕ
µ−Λ1

− 2βΛ1
N

, and θ1 >R− p− ϕ
µ−Λ1

⇔ p >R− ϕ
µ−Λ1

− 2βΛ1
N

.

2.5 We have θ1 ≤ (c−ϕ)(R−p)

c
⇔ 2

(
µ− c

R−p

)
≤ N

β

(c−ϕ)(R−p)

c
, and θ1 ≥ (c−ϕ)(R−p)

c
⇔ 2

(
µ− c

R−p

)
≥

N
β

(c−ϕ)(R−p)

c
.

2.6 θ2 decreases in N , ϕ, and p.

2.7 θ2 ≤R−p− ϕ
µ
. The equality only holds when p=R− ϕ

µ
, where θ2 =R−p− ϕ

µ
= 0 at p=R− ϕ

µ
.

2.8 θ2 intersects with R− p− ϕ
µ−Λ1

at p=R− ϕµ

(µ−Λ1)
2 − 2βΛ1

N
, which decreases in Λ1.

• We have θ2 ≤ R − p − ϕ
µ−Λ1

⇔ p ≤ R − ϕµ

(µ−Λ1)
2 − 2βΛ1

N
, and θ2 > R − p − ϕ

µ−Λ1
⇔ p >

R− ϕµ

(µ−Λ1)
2 − 2βΛ1

N
.

2.9 When βµ2

cN
∈ (0,1), θ2 intersects with (c−ϕ)(R−p)

c
at p = p̄ ≡ R− c

(
Ξ−

2
3ϕ

β
N − c2

9µ2ϕ2

Ξ
+ c

3µϕ

)
∈

(
R− c2

ϕµ
,R− c

µ

)
, where Ξ= 3

√√
8

27ϕ3
β3

N3 +
1
µ2

(
1
ϕ2 − c2

27ϕ4 − 2c
3ϕ3

)
β2

N2 +
2c3

27µ4ϕ4
β
N
+ 1

µ

(
1
ϕ
− c

3ϕ2

)
β
N
+ c3

27µ3ϕ3 .

• We have θ2 ≤ (c−ϕ)(R−p)

c
⇔ p≥ p̄, and θ2 >

(c−ϕ)(R−p)

c
⇔ p < p̄.

Proof of Lemma C.10. 1. If λD =Λ1, using it in Lemma C.9 gives w∗ (θ), λ∗
D (θ), λ∗

1W (θ∗), and

π (p, θ,w∗ (θ)) =

{
θ2

4β
N if θ≤ 2βΛ1

N

θΛ1 − β
N
(Λ1)

2
if θ > 2βΛ1

N

,

whose first derivative is

∂

∂θ
π (p, θ,w∗ (θ)) =

{
θ
2β
N if θ≤ 2βΛ1

N

Λ1 if θ > 2βΛ1
N

.

Clearly, we have ∂
∂θ
π (p, θ,w∗ (θ))> 0, so π (p, θ,w∗ (θ)) is an increasing function of θ.

2. If λD = µ− ϕ
R−p−θ

for 0≤ θ ≤R− p− ϕ
µ
, using it in Lemma C.9 gives w∗ (θ), λ∗

D (θ), λ∗
1W (θ∗),

and

π (p, θ,w∗ (θ)) =


θ2

4β
N if θ≤ 2β

N

(
µ− ϕ

R−p−θ

)
θ
(
µ− ϕ

R−p−θ

)
− β

N

(
µ− ϕ

R−p−θ

)2

if θ > 2β
N

(
µ− ϕ

R−p−θ

) ,
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whose first derivative is

∂

∂θ
π (p, θ,w∗ (θ)) =


N
2β
θ > 0 if θ≤ 2β

N

(
µ− ϕ

R−p−θ

)
G (θ)≡ µ− ϕ

R−p−θ
−
(
θ− 2 β

N

(
µ− ϕ

R−p−θ

))
ϕ

(R−p−θ)2
if θ > 2β

N

(
µ− ϕ

R−p−θ

) .

Let θ1 = 1
2

(
R− p+ 2βµ

N
−
√(

R− p− 2βµ
N

)2
+ 8βϕ

N

)
denote the unique root of θ −

2β
N

(
µ− ϕ

R−p−θ

)
= 0 on

(
0,R− p− ϕ

µ

)
.

• θ− 2β
N

(
µ− ϕ

R−p−θ

)
increases in θ, N and p.

• θ1 decreases in N and p, because θ− 2β
N

(
µ− ϕ

R−p−θ

)
increases in N and p.

• limN→∞ θ1 = 0.

• θ ≤ θ1 ⇔ θ − 2β
N

(
µ− ϕ

R−p−θ

)
≤ 0 and θ > θ1 ⇔ θ − 2β

N

(
µ− ϕ

R−p−θ

)
> 0, because θ −

2β
N

(
µ− ϕ

R−p−θ

)
increases in θ.

• θ1 intersects with R − p− ϕ
µ
at p = R − ϕ

µ
, and we have θ1 = R − p− ϕ

µ
= 0 at p = R −

ϕ
µ
. We have θ1 < R − p − ϕ

µ
for p < R − ϕ

µ
, because θ − 2β

N

(
µ− ϕ

R−p−θ

)
increases in p and

θ− 2β
N

(
µ− ϕ

R−p−θ

)∣∣∣
θ=R−p−ϕ

µ

=R− p− ϕ
µ
> 0.

• θ1 intersects with R − p − ϕ
µ−Λ1

at p = R − ϕ
µ−Λ1

− 2βΛ1
N

. We have θ1 ≤ R − p −
ϕ

µ−Λ1
⇔ θ− 2β

N

(
µ− ϕ

R−p−θ

)∣∣∣
θ=R−p− ϕ

µ−Λ1

≥ 0⇔ p ≤ R− ϕ
µ−Λ1

− 2βΛ1
N

, and θ1 > R− p− ϕ
µ−Λ1

⇔

θ− 2β
N

(
µ− ϕ

R−p−θ

)∣∣∣
θ=R−p− ϕ

µ−Λ1

< 0⇔ p >R− ϕ
µ−Λ1

− 2βΛ1
N

.

• θ1 ≤ (c−ϕ)(R−p)

c
⇔ θ− 2β

N

(
µ− ϕ

R−p−θ

)∣∣∣
θ=

(c−ϕ)(R−p)
c

≥ 0 ⇔ 2
(
µ− c

R−p

)
≤ N

β

(c−ϕ)(R−p)

c
, and

θ1 ≥ (c−ϕ)(R−p)

c
⇔ θ− 2β

N

(
µ− ϕ

R−p−θ

)∣∣∣
θ=

(c−ϕ)(R−p)
c

< 0⇔ 2
(
µ− c

R−p

)
≥ N

β

(c−ϕ)(R−p)

c
.

Clearly, G (θ) decreases in N , θ, ϕ, and p. Let θ2 denote the solution of the equation G (θ) =

0⇔R− p− µ(R−p−θ)2

ϕ
= 2 β

N

(
µ− ϕ

R−p−θ

)
.

• θ2 is unique on
[
θ1,R− p− ϕ

µ

]
, because G (θ) decreases in θ,

G (0) = ϕ

(R−p)2

(
µ
ϕ
(R− p)

(
R− p− ϕ

µ

)
+2 β

N

(
µ− ϕ

R−p

))
> 0, G (θ1) = µ − ϕ

R−p−θ1
= 1

2
θ
β
N > 0,

and G
(
R− p− ϕ

µ

)
=−µ2

ϕ

(
R− p− ϕ

µ

)
< 0.

• θ2 is decreasing in p, because G (θ) decreases in p.

• θ2 is decreasing in N , because G (θ) decreases in N .

• θ2 is decreasing in ϕ, because G (θ) decreases in ϕ and θ.

• θ2 intersects with R− p− ϕ
µ
at p=R− ϕ

µ
, and we have θ2 =R− p− ϕ

µ
= 0 at p=R− ϕ

µ
. If

p <R− ϕ
µ
, we have θ2 <R− p− ϕ

µ
, because G

(
R− p− ϕ

µ

)
=−µ2

ϕ

(
R− p− ϕ

µ

)
< 0.

• To find the intersection point of θ2 and R − p − ϕ
µ−Λ1

, we solve θ2 = R − p − ϕ
µ−Λ1

⇔

G
(
R− p− ϕ

µ−Λ1

)
= 0 ⇔ p = R − ϕµ

(µ−Λ1)
2 − 2βΛ1

N
, which clearly decreases in Λ1. From simple

algebra, we have θ2 ≤ R − p − ϕ
µ−Λ1

⇔ G
(
R− p− ϕ

µ−Λ1

)
≤ 0 ⇔ p ≤ R − ϕµ

(µ−Λ1)
2 − 2βΛ1

N
, and

θ2 >R− p− ϕ
µ−Λ1

⇔G
(
R− p− ϕ

µ−Λ1

)
> 0⇔ p >R− ϕµ

(µ−Λ1)
2 − 2βΛ1

N
.



45

• To find the intersection point of θ2 and (c−ϕ)(R−p)

c
, we solve θ2 = (c−ϕ)(R−p)

c
⇔

G
(

(c−ϕ)(R−p)

c

)
= 0⇔ 2 β

N

(
µ− c

R−p

)
=R− p− ϕµ(R−p)2

c2
⇐⇒ ϕµx3 − cx2 +2µ β

N
x− 2 β

N
= 0 where

x= R−p
c

. We have

ϕµx3 − cx2 +2µ
β

N
x− 2

β

N

∣∣∣∣
x= 1

µ

= − 1

µ2
(c−ϕ)< 0

ϕµx3 − cx2 +2µ
β

N
x− 2

β

N

∣∣∣∣
x= c

ϕµ

=
2

ϕ
y (c−ϕ)> 0

and the discriminant of ϕµx3 − cx2 +2µ β
N
x− 2 β

N
is ∆=− 4c3β

N
(8αy2 +(27α2 − 10α− 1)y+2),

where α= ϕ
c
∈ (0,1) and y = βµ2

cN
. If we can show that f (y) = 8αy2 +(27α2 − 10α− 1)y+2> 0

for y ∈ (0,1), then we have ∆< 0⇔ ϕµx3−cx2+2µ β
N
x−2 β

N
has a unique real root for y ∈ (0,1).

Before we prove this result, let α0 denote the unique root of the discriminant of f (y): ∆f =

(27α2 − 10α− 1)
2 − 64α in

(
0, 2

√
13+5
27

)
. One can numerically verify that ∆f ≥ 0 if α ∈ [0, α0],

and ∆f ≤ 0 if α∈
[
α0,

2
√
13+5
27

]
.

—If α≥ 2
√
13+5
27

⇔ 27α2 − 10α− 1≥ 0, then we clearly have f (y)> 0.

—If α0 <ϕ< 2
√
13+5
27

, we have ∆f ≤ 0, which means that f (y)> 0 for ∀y ∈ (0,1).

—If ϕ≤ α0, we have ∆f ≥ 0, which means that f (y) = 0 has two real roots:

y1 =
− (27α2 − 10α− 1)−

√
(27α2 − 10α− 1)

2 − 64α

16α

y2 =
− (27α2 − 10α− 1)+

√
(27α2 − 10α− 1)

2 − 64α

16α
,

where y1 < y2. We have

y1 > 1⇔−
(
27α2 − 10α− 1

)
− 16α>

√
(27α2 − 10α− 1)

2 − 64α

⇔ 32α
(
27α2 − 2α+1

)
> 0,

which is clearly true. Thus, we have f (y)> 0 for ∀y ∈ (0,1).

(a) Thus, θ2 =
(c−ϕ)(R−p)

c
⇔ 2 β

N

(
µ− c

R−p

)
=R− p− ϕµ(R−p)2

c2

x=R−p
c⇔ ϕµx3− cx2+2µ β

N
x− 2 β

N
= 0

has a unique root in
(

c
ϕµ
, 1
µ

)
if y= βµ2

cN
∈ (0,1). This is equivalent to θ2 =

(c−ϕ)(R−p)

c
having a

unique root in
(
R− c2

ϕµ
,R− c

µ

)
if y= βµ2

cN
∈ (0,1):

p̄ = R− c

(
Ξ−

2
3ϕ

β
N
− c2

9µ2ϕ2

Ξ
+

c

3µϕ

)

where Ξ =
3

√√√√√ 8

27ϕ3

β3

N 3
+

1

µ2

(
1

ϕ2
− c2

27ϕ4
− 2c

3ϕ3

)
β2

N 2
+

2c3

27µ4ϕ4

β

N
+

1

µ

(
1

ϕ
− c

3ϕ2

)
β

N
+

c3

27µ3ϕ3
.

Since G (θ) decreases in θ, we have θ2 ≤ (c−ϕ)(R−p)

c
⇔G

(
(c−ϕ)(R−p)

c

)
≤ 0⇔ 2 β

N

(
µ− c

R−p

)
≤

R−p− ϕµ(R−p)2

c2

x=R−p
c⇔ ϕµx3−cx2+2µ β

N
x−2 β

N
≤ 0⇔ p≥ p̄. Thus, we have θ2 ≤ (c−ϕ)(R−p)

c
⇔

p≥ p̄, and θ2 >
(c−ϕ)(R−p)

c
⇔ p < p̄.
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Figure C.15 The intersection points of (c−ϕ)(R−p)
c

, R − p− ϕ
µ−Λ1

, θ2, and R − p− ϕ
µ
, when Λ1 ≤ Λ̄T , for the

parameter setting R= 10, Λ= µ= c= 1, ϕ= 0.5, Λ1 = 0.15, and N = 20.

In this case, π (p, θ,w∗ (θ)) is a unimodal function with a maximum at θ2. □

Next, we prove Proposition C.6.

Recall that (c−ϕ)(R−p)

c
intersects R − p − ϕ

µ−Λ1
at p = R − c

µ−Λ1
, and θ2 intersects R − p −

ϕ
µ−Λ1

at p = R − ϕµ

(µ−Λ1)
2 − 2βΛ1

N
. Then, we have R − ϕµ

(µ−Λ1)
2 − 2βΛ1

N
= R − c

µ−Λ1
⇔ g (Λ1) ≡

2βΛ3
1 − 4βµΛ2

1 + (2βµ2 +Nc)Λ1 − Nµ (c−ϕ) = 0. Note that the discriminant of g (Λ1) is ∆g =

−4N 3βc3 (27yα2 +(8y2 − 18y)α+2− y), where y = βµ2

cN
and α = ϕ

c
. When y ≤ 1 ≤ 3/2, we have

27yα2 +(8y2 − 18y)α+2− y≥ 0⇔∆g ≤ 0. Thus, g (Λ1) has a unique real root

Λ̄1 =
2

3
µ+Γ+

1
9
µ2 − 1

6
N c

β

Γ
(C.12)

where Γ=
3

√√√√µ (9 (c− 3ϕ)N − 4βµ2)

108β
+

√
N (2c3N 2 +µ2 (27ϕ2 − 18cϕ− c2)βN +8β2µ4ϕ)

432β3
.

Thus, when Λ1 ≤ Λ̄1, we have p̄ ≤ R − c
µ−Λ1

≤ R − ϕµ

(µ−Λ1)
2 − 2βΛ1

N
; and when Λ1 > Λ̄1, we have

R− ϕµ

(µ−Λ1)
2 − 2βΛ1

N
≤R− c

µ−Λ1
≤ p̄.

If Λ1 ≤ Λ̄1, we have p̄≤R− c
µ−Λ1

≤R− ϕµ

(µ−Λ1)
2 − 2βΛ1

N
≤R− ϕ

µ
. Figure C.15 illustrates the inter-

section points of (c−ϕ)(R−p)

c
, R− p− ϕ

µ−Λ1
, θ2, and R− p− ϕ

µ
, when Λ1 ≤ Λ̄1.

1. If p≤R− c
µ−Λ1

⇔Λ1 ≤ µ− c
R−p

, we have (c−ϕ)(R−p)

c
≤R− p− ϕ

µ−Λ1
<R− p− ϕ

µ
. From Lemma

C.2, we see that tech-savvy customers are willing to pay a delivery fee of at most (c−ϕ)(R−p)

c

for the food delivery service, and the no-supply-constrained demand for the food delivery

service is λD = Λ1 when θ ≤ (c−ϕ)(R−p)

c
. By Lemma C.10(1), the food delivery platform will
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charge the highest delivery fee θ∗ = (c−ϕ)(R−p)

c
to maximize its profit, and we have λ∗

D (θ) ={
N(c−ϕ)(R−p)

2βc
if (c−ϕ)(R−p)

c
≤ 2βΛ1

N

Λ1 if (c−ϕ)(R−p)

c
> 2βΛ1

N

, and λ∗
W (θ∗) = µ− c

R−p
− λ∗

D (θ). From Lemma C.10(1), we

have w∗ (θ) =

{
(c−ϕ)(R−p)

2c
if θ≤ 2βΛ1

N
βΛ1
N

if θ > 2βΛ1
N

.

2. If R− c
µ−Λ1

< p≤R− ϕµ

(µ−Λ1)
2 − 2βΛ1

N
, we have θ2 ≤R−p− ϕ

µ−Λ1
< (c−ϕ)(R−p)

c
by Lemma C.10(2.8)

and Λ1 > µ− c
R−p

. From Lemma C.2, the no-supply-constrained demand for the food delivery

service is λD =Λ1 if θ≤R−p− ϕ
µ−Λ1

. Then, from Lemma C.10(1), the food delivery platform’s

profit increases in θ. Thus, the platform will charge at least R− p− ϕ
µ−Λ1

for the food delivery

service. From Lemma C.2, the no-supply-constrained demand for the food delivery service is

λD = µ− ϕ
R−p−θ

for R − p− ϕ
µ−Λ1

≤ θ ≤ (c−ϕ)(R−p)

c
. In this case, the food delivery platform’s

profit π (p, θ,w∗ (θ)) decreases in θ for θ ≥ R − p − ϕ
µ−Λ1

≥ θ2 by Lemma C.10(2). Thus, the

food delivery platform will charge θ∗ =R− p− ϕ
µ−Λ1

(which is greater than 2βΛ1
N

because p≤

R− ϕµ

(µ−Λ1)
2 − 2βΛ1

N
) as the delivery fee, and we have λ∗

D (θ∗) = Λ1, and λ∗
W (θ∗) = 0. From Lemma

C.10(1), we have w∗ (θ) = βΛ1
N

.

3. IfR− ϕµ

(µ−Λ1)
2 − 2βΛ1

N
< p≤R− ϕ

µ
, we have max

(
R− p− ϕ

µ−Λ1
,0
)
≤ θ2 ≤min

(
(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)
by Lemma C.10(2.7) and (2.8). We also have Λ1 > µ − c

R−p
here. From Lemma C.2,

the no-supply-constrained demand for the food delivery service is λD = Λ1 if θ ≤

max
(
R− p− ϕ

µ−Λ1
,0
)
. Then, from Lemma C.10(1), the food delivery platform’s profit increases

in θ. Thus, the platform will charge at least max
(
R− p− ϕ

µ−Λ1
,0
)

for the food deliv-

ery service. From Lemma C.2, the no-supply-constrained demand for the food delivery

service is λD = µ − ϕ
R−p−θ

for max
(
R− p− ϕ

µ−Λ1
,0
)
< θ ≤ min

(
(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)
. In

this case, the food delivery platform’s profit π (p, θ,w∗ (θ)) has its maximum at θ2 on[
max

(
R− p− ϕ

µ−Λ1
,0
)
,min

(
(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)]
by Lemma C.5(2). Thus, the food deliv-

ery platform will charge θ∗ = θ2 as the delivery fee, and we have λ∗
D (θ∗) = µ− ϕ

R−p−θ2
, which is

greater than µ− c
R−p

because θ2 ≤ (c−ϕ)(R−p)

c
, and λ∗

W (θ∗) = 0. From Lemma C.10(2), we have

w∗ (θ) = β
N

(
µ− ϕ

R−p−θ2

)
.

If Λ1 > Λ̄1, we have R− ϕµ

(µ−Λ1)
2 − 2βΛ1

N
≤R− c

µ−Λ1
≤ p̄ < R− ϕ

µ
. Figure C.16 illustrates the inter-

section points of (c−ϕ)(R−p)

c
, R− p− ϕ

µ−Λ1
, θ2, and R− p− ϕ

µ
, when Λ1 > Λ̄1.

1. If p≤R− c
µ−Λ1

⇔Λ1 ≤ µ− c
R−p

, we have (c−ϕ)(R−p)

c
≤R− p− ϕ

µ−Λ1
<R− p− ϕ

µ
. From Lemma

C.2, we see that tech-savvy customers are willing to pay a delivery fee of at most (c−ϕ)(R−p)

c

for the food delivery service, and the no-supply-constrained demand for the food delivery

service is λD = Λ1 when θ ≤ (c−ϕ)(R−p)

c
. By Lemma C.10(1), the food delivery platform will

charge the highest delivery fee θ∗ = (c−ϕ)(R−p)

c
to maximize its profit, and we have λ∗

D (θ) ={
N(c−ϕ)(R−p)

2βc
if (c−ϕ)(R−p)

c
≤ 2βΛ1

N

Λ1 if (c−ϕ)(R−p)

c
> 2βΛ1

N

, and λ∗
W (θ∗) = µ− c

R−p
− λ∗

D (θ). From Lemma C.10(1), we

have w∗ (θ) =

{
(c−ϕ)(R−p)

2c
if θ≤ 2βΛ1

N
βΛ1
N

if θ > 2βΛ1
N

.
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Figure C.16 The intersection points of (c−ϕ)(R−p)
c

, R − p− ϕ
µ−Λ1

, θ2, and R − p− ϕ
µ
, when Λ1 > Λ̄T , for the

parameter setting R= 10, Λ= µ= c= 1, ϕ= 0.5, Λ1 = 0.45, and N = 20.

2. If R − c
µ−Λ1

< p ≤ p̄, we have R − p − ϕ
µ−Λ1

< (c−ϕ)(R−p)

c
≤ θ2, by Lemma C.5(2.9) and Λ1 >

µ − c
R−p

. From Lemma C.2, the no-supply-constrained demand for the food delivery service

is λD = Λ1 if θ ≤ R − p − ϕ
µ−Λ1

. Then, from Lemma C.10(1), the food delivery platform’s

profit increases in θ. Thus, the platform will charge at least R− p− ϕ
µ−Λ1

for the food deliv-

ery service. From Lemma C.2, the no-supply-constrained demand for the food delivery service

is λD = µ − ϕ
R−p−θ

for R − p − ϕ
µ−Λ1

< θ ≤ (c−ϕ)(R−p)

c
. In this case, the food delivery plat-

form’s profit π (p, θ,w∗ (θ)) increases in θ for θ ≤ (c−ϕ)(R−p)

c
≤ θ2 by Lemma C.10(2). Thus, the

food delivery platform will charge θ∗ = (c−ϕ)(R−p)

c
as the delivery fee, and we have λ∗

D (θ) ={
N(c−ϕ)(R−p)

2βc
if (c−ϕ)(R−p)

c
≤ θ1

µ− c
R−p

if (c−ϕ)(R−p)

c
> θ1

, and λ∗
1W (θ∗) =

{
µ− c

R−p
− N(c−ϕ)(R−p)

2βc
if (c−ϕ)(R−p)

c
≤ θ1

0 if (c−ϕ)(R−p)

c
> θ1

.

(Note that we have µ− c
R−p

≥ N(c−ϕ)(R−p)

2βc
if (c−ϕ)(R−p)

c
≤ θ1, by Lemma C.10(2.5).) Then, the

number of customers who join the queue themselves is λ∗
1W (θ∗). From Lemma C.10(1), we have

w∗ (θ) =

{
(c−ϕ)(R−p)

2c
if (c−ϕ)(R−p)

c
≤ θ1

β
N

(
µ− c

R−p

)
if (c−ϕ)(R−p)

c
> θ1

.

3. If p̄ < p ≤ R − ϕ
µ
, we have max

(
R− p− ϕ

µ−Λ1
,0
)

≤ θ2 ≤ min
(

(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)
by

Lemma C.10(2.7) and (2.9). We also have Λ1 > µ − c
R−p

here. From Lemma C.2,

the no-supply-constrained demand for the food delivery service is λD = Λ1 if θ ≤

max
(
R− p− ϕ

µ−Λ1
,0
)
. Then, from Lemma C.10(1), the food delivery platform’s profit increases

in θ. Thus, the platform will charge at least max
(
R− p− ϕ

µ−Λ1
,0
)

for the food deliv-

ery service. From Lemma C.2, the no-supply-constrained demand for the food delivery
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service is λD = µ − ϕ
R−p−θ

for max
(
R− p− ϕ

µ−Λ1
,0
)
< θ ≤ min

(
(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)
. In

this case, the food delivery platform’s profit π (p, θ,w∗ (θ)) has its maximum at θ2 on[
max

(
R− p− ϕ

µ−Λ1
,0
)
,min

(
(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)]
by Lemma C.10(2). Thus, the food deliv-

ery platform will charge θ∗ = θ2 as the delivery fee, and we have λ∗
D (θ∗) = µ− ϕ

R−p−θ2
, which is

greater than µ− c
R−p

because θ2 ≤ (c−ϕ)(R−p)

c
, and λ∗

W (θ∗) = 0. From Lemma C.10(1), we have

w∗ (θ) = β
N

(
µ− ϕ

R−p−θ2

)
. □

From Proposition C.6, we have the restaurant’s profit Π as a function of the food price p when

Λ1 > Λ̄1:

Restaurant’s Profit Π

If p≤ p̄ p
(
µ− c

R−p

)
If p̄ < p≤R− ϕ

µ
p
(
µ− ϕ

R−p−θ2

)
The restaurant’s strategy is decided by the interplay of p

(
µ− c

R−p

)
and p

(
µ− ϕ

R−p−θ2

)
.

Clearly, if maxp p
(
µ− c

R−p

)
≥ maxp p

(
µ− ϕ

R−p−θ2

)
, then the restaurant’s equilibrium price is

p∗ = argmaxp
(
µ− c

R−p

)
= R −

√
c
µ
R and its equilibrium profit is Π∗ = maxp p

(
µ− c

R−p

)
=(√

Rµ−
√
c
)2
.

Note from Lemma C.10(2.6) that θ2 decreases in N , so p
(
µ− ϕ

R−p−θ2

)
increases in N . This

means that there exists an N̄ such that maxp p
(
µ− c

R−p

)
=maxp p

(
µ− ϕ

R−p−θ2

)
for N = N̄ , and

maxp p
(
µ− c

R−p

)
≥maxp p

(
µ− ϕ

R−p−θ2

)
for N ≤ N̄ . In this case, the restaurant’s equilibrium price

stays at p∗ =R−
√

c
µ
R.

We next prove that p
(
µ− ϕ

R−p−θ2

)
decreases in ϕ. Recall that θ2 satisfies G (θ2) = 0⇔ R− p−

ϕµ(R−p−θ2)
2

ϕ2 = 2 β
N

(
µ− ϕ

R−p−θ2

)
. If ϕ

R−p−θ2
decreases in ϕ, we will have R−p−ϕµ(R−p−θ2)

2

ϕ2 decreas-

ing in ϕ while 2 β
N

(
µ− ϕ

R−p−θ2

)
increases in ϕ, which contradicts the definition of θ2. Hence, we

must have ϕ
R−p−θ2

increasing in ϕ, which leads to p
(
µ− ϕ

R−p−θ2

)
decreasing in ϕ. Thus, we have

that N̄ increasing in ϕ. □

D. Proofs of the Results in Online Appendix A
D.1. Proof of Proposition A.1

To prove Proposition A.1, we give the following Lemma and Corollary.

D.1.1. Customer Strategy

Lemma D.11 (Customer Strategy—Tech-Savvy Only). When there are no traditional

customers, i.e., Λ0 = 0, under the food price p and delivery fee θ, the joining rates of food-delivery

and walk-in customers, λD and λW , are
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λD (p, θ) λW (p, θ)
When p≤R− c

µ−Λ1

if 0< θ≤ c−ϕ
µ−Λ1

Λ1 0

if c−ϕ
µ−Λ1

< θ≤R− p− ϕ
µ

0 Λ1

When R− c
µ−Λ1

< p≤R− ϕ
µ

if 0< θ≤max
(
R− p− ϕ

µ−Λ1
,0
)

Λ1 0

if max
(
R− p− ϕ

µ−Λ1
,0
)
< θ≤min

(
(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)
µ− ϕ

R−p−θ
0

if θ >min
(

(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)
0 µ− c

R−p

Proof of Lemma D.11. When Λ1 ≤ c−ϕ
c
µ, we have R − c

µ−Λ1
< R − c

µ
≤ R − ϕ

µ−Λ1
< R − ϕ

µ
by

Lemma C.4.

1. If p≤R− c
µ−Λ1

, we have Λ1 ≤ λX
W = µ− c

R−p
. From Lemma C.3(1), we have UW (Λ1)≥ 0.

1.1 If θ≤ c−ϕ
µ−Λ1

, we have Λ1 ≥ λX (θ) and UD (Λ1)≥UW (Λ1)≥ 0 by Lemma C.3(3.1). This means

that, if all tech-savvy customers join, they obtain greater utility from using the delivery

service. In this case, all tech-savvy customers will join using food delivery service; i.e., λD =

Λ1 and λW = 0.

1.2 If θ > c−ϕ
µ−Λ1

, we have Λ1 <λX (θ) by Lemma C.3(3.3). Further, since Λ1 ≤ λX
W , from Lemma

C.3(1) and (3), we have UW (Λ1) > UD (Λ1) and UW (Λ1) ≥ 0. In this case, all tech-savvy

customers will join and walk in themselves, i.e., λD = 0 and λW =Λ1.

2. If R− c
µ−Λ1

< p≤ R− c
µ
≤ R− ϕ

µ−Λ1
, we have 0≤ R− p− ϕ

µ−Λ1
< (c−ϕ)(R−p)

c
≤ R− p− ϕ

µ
, and

Λ1 >λX
W = µ− c

R−p
≥ 0. From Lemma C.3(1), we have UW (Λ1)< 0.

2.1 If 0< θ ≤R− p− ϕ
µ−Λ1

< (c−ϕ)(R−p)

c
, from Lemma C.3(2) and (2.2), we have UD (Λ1)≥ 0>

UW (Λ1). This says that if all tech-savvy customers join, their utility of using the food delivery

service is non-negative while the walk-in utility is negative. Thus, all tech-savvy customers

will join and use the delivery service, i.e., λD =Λ1 and λW = 0.

2.2 If R−p− ϕ
µ−Λ1

< θ≤ (c−ϕ)(R−p)

c
, from Lemma C.3(2), (2.2), and (3.3), we have λX (θ)≤ λX

W ≤

λX
D (θ)<Λ1 and UD (Λ1)< 0. This says that when all tech-savvy customers join, both walk-in

and food delivery are unattractive. Some tech-savvy customers may balk to avoid negative

utility, until the total arrival rate to the system returns to λX
D (θ), where UW (λX

D (θ)) <

UD (λX
D (θ)) = 0 (using Lemma C.3(1) and (2)). Thus, the tech-savvy customers join and

use the food delivery service with rate λX
D (θ) = µ− ϕ

R−p−θ
and other customers balk: i.e.,

λD = λX
D (θ) = µ− ϕ

R−p−θ
and λW = 0. In this case, all customers have zero utility.

2.3 If (c−ϕ)(R−p)

c
< θ≤R−p− ϕ

µ
, we have λX

D (θ)<λX
W <λX (θ) by Lemma C.3(3.3), and λX

D (θ)<

λX
W <Λ1. Then, all tech-savvy customers joining (either walk in or order food delivery) does

not lead to positive utility – some customers will balk, until the total arrival rate to the

system drops to λX
W , where UD (λX

W )<UW (λX
W ) = 0 by Lemma C.3(1) and (3). This means
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that tech-savvy customers will walk in themselves until the joining rate reaches µ− c
R−p

, and

nobody will use food delivery; i.e., λD = 0 and λW = µ− c
R−p

. All customers have zero utility.

3. If R− c
µ−Λ1

<R− c
µ
< p≤R− ϕ

µ−Λ1
, we have 0≤R− p− ϕ

µ−Λ1
<R− p− ϕ

µ
< (c−ϕ)(R−p)

c
, λX

W =

µ− c
R−p

<Λ1 ≤ λX
D (0) = µ− ϕ

R−p
, and µ− c

R−p
< 0. From Lemma C.3(1), we have UW (Λ1)< 0.

3.1 If 0 < θ ≤ R− p− ϕ
µ−Λ1

, similar to Case 2.1 above, we have UD (Λ1) ≥ 0 > UW (Λ1) – if all

tech-savvy customers join, their utility of using the food delivery service is non-negative

while the walk-in utility is negative. Then, all tech-savvy customers will join and use the

delivery service; i.e., λD =Λ1 and λW = 0.

3.2 If R−p− ϕ
µ−Λ1

< θ≤R−p− ϕ
µ
< (c−ϕ)(R−p)

c
, similar to Case 2.2 above, we have λD = µ− ϕ

R−p−θ

and λW = 0.

4. If R − c
µ
≤ R − ϕ

µ−Λ1
< p ≤ R − ϕ

µ
, we have R − p − ϕ

µ−Λ1
< 0 < R − p − ϕ

µ
< (c−ϕ)(R−p)

c
and

µ− c
R−p

< 0. From Lemma C.3(1), we have UW (Λ1)< 0.

4.1 If R− p− ϕ
µ−Λ1

< 0 < θ ≤ R− p− ϕ
µ
< (c−ϕ)(R−p)

c
, similar to Case 2.2 above, we have λD =

µ− ϕ
R−p−θ

and λW = 0.

When Λ1 >
c−ϕ
c
µ, we have R− c

µ−Λ1
<R− ϕ

µ−Λ1
<R− c

µ
<R− ϕ

µ
by Lemma C.4.

1. If p≤R− c
µ−Λ1

, we have Λ1 ≤ λX
W = µ− c

R−p
. This case is the same as Case 1 when Λ1 ≤ c−ϕ

c
µ.

2. If R− c
µ−Λ1

< p≤R− ϕ
µ−Λ1

, we have 0≤R− p− ϕ
µ−Λ1

< (c−ϕ)(R−p)

c
and λX

W = µ− c
R−p

≤ Λ1 ≤

λX
D (0) = µ− ϕ

R−p
. From Lemma C.3(1), we have UW (Λ1)< 0.

2.1 If 0< θ ≤R− p− ϕ
µ−Λ1

< (c−ϕ)(R−p)

c
, from Lemma C.3(2) and (2.2), we have UD (Λ1)≥ 0>

UW (Λ1). Similar to the Case 2.1 when Λ1 ≤ c−ϕ
c
µ, we have that all tech-savvy customers will

join and use the delivery service, i.e., λD =Λ1 and λW = 0.

2.2 If R − p − ϕ
µ−Λ1

< θ ≤ (c−ϕ)(R−p)

c
, from Lemma C.3(2), (2.2), and (3.3), we have λX (θ) ≤

λX
W ≤ λX

D (θ)< Λ1 and UD (Λ1)< 0. Similar to the Case 2.2 when Λ1 ≤ c−ϕ
c
µ, we have that

tech-savvy customers join and use the delivery service with rate λX
D (θ) and other customers

balk; i.e., λD = µ− ϕ
R−p−θ

, and λW = 0. Here, all customers have zero utility.

2.3 If (c−ϕ)(R−p)

c
< θ≤R−p− ϕ

µ
, we have λX

D (θ)<λX
W <λX (θ) by Lemma C.3(3.3), and λX

D (θ)<

λX
W <Λ1. Similar to Case 2.2 above, we have λD = 0 and λW = µ− c

R−p
.

3. If R− ϕ
µ−Λ1

< p≤R− c
µ
, we have R− p− ϕ

µ−Λ1
< 0< (c−ϕ)(R−p)

c
≤R− p− ϕ

µ
and µ− c

R−p
≥ 0.

3.1 If R−p− ϕ
µ−Λ1

< 0< θ≤ (c−ϕ)(R−p)

c
, similar to Case 2.2, we have λD = µ− ϕ

R−p−θ
and λW = 0.

3.2 If (c−ϕ)(R−p)

c
< θ≤R− p− ϕ

µ
, similar to Case 2.3, we have λD = 0 and λW = µ− c

R−p
.

4. If R − ϕ
µ−Λ1

< R − c
µ
< p ≤ R − ϕ

µ
, we have R − p − ϕ

µ−Λ1
< 0 < R − p − ϕ

µ
< (c−ϕ)(R−p)

c
and

µ− c
R−p

< 0. From Lemma C.3, we have UW (Λ1)< 0.

4.1 If R−p− ϕ
µ−Λ1

< 0< θ≤R−p− ϕ
µ
, similar to Case 2.2, we have λD = µ− ϕ

R−p−θ
and λW = 0.

To summarize, in equilibrium, the joining rates of food-delivery and walk-in customers, λD and

λW , under the food price p and delivery fee θ, are
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1. For Λ1 ≤ c−ϕ
c
µ,

λD (p, θ) λW (p, θ)
1.1 When p≤R− c

µ−Λ1

if 0< θ≤ c−ϕ
µ−Λ1

Λ1 0

if c−ϕ
µ−Λ1

< θ≤R− p− ϕ
µ

0 Λ1

1.2 When R− c
µ−Λ1

< p≤R− c
µ

if 0< θ≤R− p− ϕ
µ−Λ1

Λ1 0

if R− p− ϕ
µ−Λ1

< θ≤ (c−ϕ)(R−p)

c
µ− ϕ

R−p−θ
0

if (c−ϕ)(R−p)

c
< θ≤R− p− ϕ

µ
0 µ− c

R−p

1.3 When R− c
µ
< p≤R− ϕ

µ−Λ1

if 0< θ≤R− p− ϕ
µ−Λ1

Λ1 0

if R− p− ϕ
µ−Λ1

< θ≤R− p− ϕ
µ

µ− ϕ
R−p−θ

0

1.4 When R− ϕ
µ−Λ1

< p≤R− ϕ
µ

if 0< θ≤R− p− ϕ
µ

µ− ϕ
R−p−θ

0

2. For Λ1 >
c−ϕ
c
µ,

λD (p, θ) λW (p, θ)
2.1 When p≤R− c

µ−Λ1

if 0< θ≤ c−ϕ
µ−Λ1

Λ1 0

if c−ϕ
µ−Λ1

< θ≤R− p− ϕ
µ

0 Λ1

2.2 When R− c
µ−Λ1

< p≤R− ϕ
µ−Λ1

if 0< θ≤R− p− ϕ
µ−Λ1

Λ1 0

if R− p− ϕ
µ−Λ1

< θ≤ (c−ϕ)(R−p)

c
µ− ϕ

R−p−θ
0

if (c−ϕ)(R−p)

c
< θ≤R− p− ϕ

µ
0 µ− c

R−p

2.3 When R− ϕ
µ−Λ1

< p≤R− c
µ

if 0< θ≤ (c−ϕ)(R−p)

c
µ− ϕ

R−p−θ
0

if (c−ϕ)(R−p)

c
< θ≤R− p− ϕ

µ
0 µ− c

R−p

2.4 When R− c
µ
< p≤R− ϕ

µ

if 0< θ≤R− p− ϕ
µ

µ− ϕ
R−p−θ

0

This result directly leads to Lemma D.11. □

D.1.2. Food Delivery Platform Strategy

From Lemma D.11, we obtain the platform’s profit.

Corollary D.6. When there are no traditional customers, i.e., Λ0 = 0, under the food price p

and delivery fee θ, the platform’s profit π (p, θ) is

π (p, θ)
When p≤R− c

µ−Λ1

if 0< θ≤ c−ϕ
µ−Λ1

θΛ1

if c−ϕ
µ−Λ1

< θ≤R− p− ϕ
µ

0

When R− c
µ−Λ1

< p≤R− ϕ
µ

if 0< θ≤max
(
R− p− ϕ

µ−Λ1
,0
)

θΛ1

if max
(
R− p− ϕ

µ−Λ1
,0
)
< θ≤min

(
(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)
θ
(
µ− ϕ

R−p−θ

)
if θ >min

(
(c−ϕ)(R−p)

c
,R− p− ϕ

µ

)
0
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From Corollary D.6, we see that, similar to the case when there is abundant traditional customers

(i.e., Λ0 >µ in Corollary C.3), the platform will set the delivery fee such that either all tech-savvy

customers will use the food delivery service, or a fraction of them will use the food delivery service.

Different from Corollary C.3, in the first case when platform serves all tech-savvy customers, if the

food price is relatively low, i.e., p≤R− c
µ−Λ1

, the highest delivery fee decreases from (c−ϕ)(R−p)

c
to

c−ϕ
µ−Λ1

.

Proposition D.7 (Food Delivery Platform Strategy—Tech-Savvy Only). When there

are no traditional customers, i.e., Λ0 = 0, under the restaurant’s food price p, the platform’s best-

response delivery fee θ∗ (p), the joining rates of food-delivery and walk-in customers λD (p, θ∗ (p))

and λW (p, θ∗ (p)), are

1. For Λ1 ≤ c−ϕ
c
µ,

θ∗ (p) λD (p, θ∗ (p)) λW (p, θ∗ (p))

If p≤R− c
µ−Λ1

c−ϕ
µ−Λ1

Λ1 0

If R− c
µ−Λ1

< p≤R− µϕ

(µ−Λ1)
2 R− p− ϕ

µ−Λ1
Λ1 0

If R− µϕ

(µ−Λ1)
2 < p≤R− ϕ

µ
R− p−

√
µϕ(R−p)

µ
µ−

√
µϕ
R−p

0

2. For Λ1 >
c−ϕ
c
µ,

θ∗ (p) λD (p, θ∗ (p)) λW (p, θ∗ (p))

If p≤R− c
µ−Λ1

c−ϕ
µ−Λ1

Λ1 0

If R− c
µ−Λ1

< p≤R− c2

µϕ

(c−ϕ)(R−p)

c
µ− c

R−p
0

If R− c2

µϕ
< p≤R− ϕ

µ
R− p−

√
µϕ(R−p)

µ
µ−

√
µϕ
R−p

0

Moreover, the food delivery platform’s profit under the platform’s best response delivery fee π∗ (p)

is a weakly decreasing function of the food price p.

Proof of Proposition D.7. When Λ1 ≤ c−ϕ
c
µ,

1. If p ≤ R − c
µ−Λ1

, we have c−ϕ
µ−Λ1

≤ (c−ϕ)(R−p)

c
≤ R − p − ϕ

µ−Λ1
. From Lemma D.11, tech-savvy

customers are willing to pay a delivery fee at most c−ϕ
µ−Λ1

for the delivery service, and the demand

for the delivery service is λD = Λ1 when θ ≤ c−ϕ
µ−Λ1

. Therefore, the platform will charge the

highest food delivery fee θ∗ = c−ϕ
µ−Λ1

to maximize its profit, we have λD =Λ1 and λW = 0. The

food delivery platform’s profit π∗ (p) = c−ϕ
µ−Λ1

Λ1 is a constant regarding the food price p.

2. If p >R− c
µ−Λ1

, the discussion follows Cases 2 and 3 when Λ1 ≤ c−ϕ
c
µ in the proof of Proposition

C.3, and we have the food delivery platform’s profit under the platform’s best response delivery

fee π∗ (p) is a a decreasing function of food price p.

When Λ1 >
c−ϕ
c
µ,

1. If p ≤ R− c
µ−Λ1

, we have c−ϕ
µ−Λ1

≤ (c−ϕ)(R−p)

c
≤ R− p− ϕ

µ−Λ1
< R− p− ϕ

µ
. From Lemma D.11,

similar to Case 1 when Λ1 ≤ c−ϕ
c
µ, we have θ∗ = c−ϕ

µ−Λ1
, λD =Λ1, and λW = 0. The food delivery

platform’s profit π∗ (p) = c−ϕ
µ−Λ1

Λ1 is a constant regarding the food price p.
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2. If p >R− c
µ−Λ1

, the discussion follows Cases 2 and 3 when Λ1 >
c−ϕ
c
µ in the proof of Proposition

C.3, and we have the food delivery platform’s profit under the platform’s best response delivery

fee π∗ (p) is a a decreasing function of food price p. □

D.1.3. Restaurant Strategy

From Corollary D.6, we obtain the restaurant’s profit.

Corollary D.7. When there are no traditional customers, i.e., Λ0 = 0, under the food price p,

the restaurant’s profit Π(p) is

1. For Λ1 ≤ c−ϕ
c
µ,

Π(p)

If p≤R− µϕ

(µ−Λ1)
2 pΛ1

If R− µϕ

(µ−Λ1)
2 < p≤R− ϕ

µ
p
(
µ−

√
µϕ
R−p

)
2. For Λ1 >

c−ϕ
c
µ,

Π(p)
If p≤R− c

µ−Λ1
pΛ1

If R− c
µ−Λ1

< p≤R− c2

µϕ
p
(
µ− c

R−p

)
If R− c2

µϕ
< p≤R− ϕ

µ
p
(
µ−

√
µϕ
R−p

)
The following proposition characterizes the restaurant’s optimal strategy as a Stackelberg leader.

Proposition D.8 (Restaurant Strategy—Tech-Savvy Only). When there are no tradi-

tional customers, i.e., Λ0 = 0, there exist threshold values ϕ1, ϕ2, λ2, and λ3, such that, in equilib-

rium, the restaurant’s optimal price p∗, profit Π∗, and throughput λ∗
D +λ∗

W are

p∗ (Λ1) Π∗ (Λ1) λ∗
D +λ∗

W

When ϕ≤ ϕ1

if Λ1 ≤ λ2 R− µϕ

(µ−Λ1)
2

(
R− µϕ

(µ−Λ1)
2

)
Λ1 Λ1

if Λ1 >λ2
2R(µ−χ)

2µ−χ

2R(µ−χ)2

2µ−χ
µ−χ

When ϕ1 <ϕ≤ ϕ2

if Λ1 ≤ λ2 R− µϕ

(µ−Λ1)
2

(
R− µϕ

(µ−Λ1)
2

)
Λ1 Λ1

if λ2 <Λ1 ≤ λ3
2R(µ−χ)

2µ−χ

2R(µ−χ)2

2µ−χ
µ−χ

if λ3 <Λ1 ≤ µ−
√

cµ
R

R− c
µ−Λ1

(
R− c

µ−Λ1

)
Λ1 Λ1

if Λ1 >µ−
√

cµ
R

R− \
√

c
µ
R

(√
Rµ−

√
c
)2

µ−
√

cµ
R

When ϕ> ϕ2

if Λ1 ≤ c−ϕ
c
µ R− µϕ

(µ−Λ1)
2

(
R− µϕ

(µ−Λ1)
2

)
Λ1 Λ1

if c−ϕ
c
µ<Λ1 ≤ µ−

√
cµ
R

R− c
µ−Λ1

(
R− c

µ−Λ1

)
Λ1 Λ1

if Λ1 >µ−
√

cµ
R

R− \
√

c
µ
R

(√
Rµ−

√
c
)2

µ−
√

cµ
R

Moreover, we have

(i) Π∗ (Λ1) is a weakly increasing function of Λ1 for ∀ϕ.



55

(ii) p∗ ≥ p∗T and Π∗ ≥ Π∗
T , if (i) ϕ ≤ ϕ1; or (ii) ϕ1 < ϕ ≤ ϕ2 and Λ1 ≤ λ3; or (iii) ϕ > ϕ2 and

Λ1 ≤ (c−ϕ)µ/c; and p∗ = p∗T and Π∗ =Π∗
T , if (i) ϕ1 < ϕ≤ ϕ2 and Λ1 > λ3; or (ii) ϕ > ϕ2 and

Λ1 > (c−ϕ)µ/c.

Proof of Proposition D.8 Recall from Corollary D.7 that (i) For Λ1 ≤ c−ϕ
c
µ, the restaurant’s

profit Π(p) linearly increases with p on
(
0,R− µϕ

(µ−Λ1)
2

]
, so the restaurant’s maximum profit Π∗

is max
p∈

[
R− µϕ

(µ−Λ1)
2 ,R−ϕ

µ

] p(µ−
√

µϕ
R−p

)
. (ii) For Λ1 >

c−ϕ
c
µ, the restaurant’s profit Π(p) linearly

increases with p on
(
0,R− c

µ−Λ1

]
, so we only need to compare max

p∈
[
R− c

µ−Λ1
,R− c2

µϕ

] p(µ− c
R−p

)
and max

p∈
(
R− c2

µϕ ,R−ϕ
µ

] p(µ−
√

µϕ
R−p

)
to determine the restaurant’s maximum profit Π∗.

1. If ϕ ≤ ϕ1, following the same discussion in the proof of Proposition C.4, we

have max
p∈(0,R−ϕ

µ ]
p
(
µ−

√
µϕ
R−p

)
= 2R(µ−χ)2

2µ−χ
≥ max

p∈(0,R−ϕ
µ ]
p
(
µ− c

R−p

)
=
(√

Rµ−
√
c
)2
, and

argmaxp
(
µ−

√
µϕ
R−p

)
= 2R(µ−χ)

2µ−χ
≥R− c2

µϕ
.

• If Λ1 ≤ λ2, the maximum point of p
(
µ−

√
µϕ
R−p

)
is in

(
0,R− µϕ

(µ−Λ1)
2

]
by the definition

of λ2. We have max
p∈

(
R− µϕ

(µ−Λ1)
2 ,R−ϕ

µ

] p(µ−
√

µϕ
R−p

)
= p

(
µ−

√
µϕ
R−p

)∣∣∣
p=R− µϕ

(µ−Λ1)
2

. In this case,

Π∗ (Λ1) =
(
R− µϕ

(µ−Λ1)
2

)
Λ1 and p∗ (Λ1) =R− µϕ

(µ−Λ1)
2 . Note that

(
R− µϕ

(µ−λ)2

)
λ is a unimodal

function with the maximum at λ2, so Π∗ (Λ1) increases in Λ1 on (0, λ2].

• If λ2 <Λ1 ≤ c−ϕ
c
µ, the maximum point of p

(
µ−

√
µϕ
R−p

)
is in

(
R− µϕ

(µ−Λ1)
2 ,R− ϕ

µ

]
by the

definition of λ2. In this case, Π∗ (Λ1) =
2R(µ−χ)2

2µ−χ
and p∗ (Λ1) =

2R(µ−χ)

2µ−χ
. Note that Π∗ (Λ1) here

is a constant regarding Λ1.

• If Λ1 > c−ϕ
c
µ, max

p∈
(
R− c

µ−Λ1
,R− c2

µϕ

] p(µ− c
R−p

)
≤ max

p∈
(
R− c2

µϕ ,R−ϕ
µ

] p(µ−
√

µϕ
R−p

)
=

max
p∈(0,R−ϕ

µ ]
p
(
µ−

√
µϕ
R−p

)
= 2R(µ−χ)

2µ−χ
. In this case, Π∗ (Λ1) =

2R(µ−χ)2

2µ−χ
and p∗ (Λ1) =

2R(µ−χ)

2µ−χ
.

Note that Π∗ (Λ1) here is a constant regarding Λ1.

To summarize, the restaurant’s maximum profit Π∗ and the profit-maximizing price p∗ are

Π∗ (Λ1) p∗ (Λ1)

if 0<Λ1 ≤ λ2 Λ1

(
R− µϕ

(µ−Λ1)
2

)
R− µϕ

(µ−Λ1)
2

if Λ1 >λ2
2R(µ−χ)2

2µ−χ

2R(µ−χ)

2µ−χ

.

We next compare p∗ (Λ1) and Π∗ (Λ1) to the restaurant’s revenue maximizing food price and

maximum revenue without food delivery service, p∗T (Λ1) and Π∗
T (Λ1). In a classical unobservable

queue without food delivery service (see, e.g., Edelson and Hilderbrand 1975), we have

p∗T (Λ1) =

{
R− c

µ−Λ1
if Λ1 ≤ µ−

√
cµ
R

R−
√

cR/µ if Λ1 >µ−
√

cµ
R

and Π∗
T (Λ1) =

{
Λ1

(
R− c

µ−Λ1

)
if Λ1 ≤ µ−

√
cµ
R(√

Rµ−
√
c
)2

if Λ1 >µ−
√

cµ
R

.

Note that given ϕ≤ ϕ1, we have λ2 ≤ c−ϕ
c
µ and 2R(µ−χ)2

2µ−χ
≥
(√

Rµ−
√
c
)2
.

For λ2 ≤ µ−
√

cµ
R
, if 0< Λ1 ≤ λ2, we have Λ1 ≤ c−ϕ

c
µ, which implies p∗ (Λ1) =R− µϕ

(µ−Λ1)
2 >

p∗T (Λ1) =R− c
µ−Λ1

. Moreover, we have Π∗ (Λ1) = p∗ (Λ1)Λ1 >Π∗
T (Λ1) = p∗T (Λ1)Λ1. If Λ1 > λ2,
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Figure D.17 The restaurant’s profit Π as a function of p, when Λ1 = 0.5, 0.63, 0.65, 0.8, for the parameter setting

R= 10, µ= c= 1, Λ0 = 0, and ϕ= 0.38.

we have p∗ (Λ1) is a constant regarding Λ1 while p∗T (Λ1) decreases with Λ1 on
(
λ2, µ−

√
cµ
R

]
and then stays constant, which implies p∗ (Λ1) ≥ p∗T (Λ1). From ϕ ≤ ϕ1, we have 2R(µ−χ)2

2µ−χ
≥(√

Rµ−
√
c
)2 ⇔Π∗ (Λ1)≥Π∗

T (Λ1).

Otherwise, for λ2 > µ −
√

cµ
R
, if 0 < Λ1 ≤ µ −

√
cµ
R
, we have Λ1 ≤ c−ϕ

c
µ, which implies

p∗ (Λ1) =R− µϕ

(µ−Λ1)
2 > p∗T (Λ1) =R− c

µ−Λ1
. Moreover, we have Π∗ (Λ1) = p∗ (Λ1)Λ1 >Π∗

T (Λ1) =

p∗T (Λ1)Λ1. If Λ1 >µ−
√

cµ
R
, we have p∗T (Λ1) =R−

√
c
µ
R is a constant regarding Λ1, while p

∗ (Λ1)

decreases with Λ1 on
(
µ−

√
cµ
R
, λ2

]
and then equals to 2R(µ−χ)

2µ−χ
. We have R−

√
c
µ
R< 2R(µ−χ)

2µ−χ
by

Lemma C.7(4), which implies p∗ (Λ1)≥ p∗T (Λ1). Moreover, we have Π∗ (Λ1) is a nondecreasing

function of Λ1 while Π∗
T (Λ1) is a constant regarding Λ1, which implies Π∗ (Λ1)≥Π∗

T (Λ1).

2. If ϕ1 <ϕ≤ ϕ2 ≡
√

c3(c+8Rµ)−c2

2Rµ
, we have max

p∈(0,R−ϕ
µ ]
p
(
µ−

√
µϕ
R−p

)
= 2R(µ−χ)2

2µ−χ
< max

p∈(0,R−ϕ
µ ]
p
(
µ− c

R−p

)
=(√

Rµ−
√
c
)2
, argmaxp

(
µ−

√
µϕ
R−p

)
= 2R(µ−χ)

2µ−χ
≥ R − c2

µϕ
, and λ2 ≤ c−ϕ

c
µ. Figure D.17 illus-

trates the restaurant’s profit as a function of p under different Λ1. Note that when

c−ϕ
c
µ < Λ1 ≤ µ −

√
cµ
R
, we have argmaxp

(
µ− c

R−p

)
= R −

√
c
µ
R ≤ R − c

µ−Λ1
, which implies

max
p∈

[
R− c

µ−Λ1
,R− c2

µϕ

] p(µ− c
R−p

)
= p

(
µ− c

R−p

)∣∣∣
p=R− c

µ−Λ1

=
(
R− c

µ−Λ1

)
Λ1. So we need to

compare
(
R− c

µ−Λ1

)
Λ1 and max

p∈
(
R− c2

µϕ ,R−ϕ
µ

] p(µ−
√

µϕ
R−p

)
to determine the restaurant’s

maximum profit Π∗.

• If Λ1 ≤ λ2, similar to the Λ1 ≤ λ2 case discussed in Case 1, as Figure D.17(1) shows, we

have Π∗ (Λ1) =
(
R− µϕ

(µ−Λ1)
2

)
Λ1 and p∗ (Λ1) =R− µϕ

(µ−Λ1)
2 . We have Π∗ (Λ1) increases in Λ1 on
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(0, λ2].

• If λ2 <Λ1 ≤ c−ϕ
c
µ, similar to the λ2 <Λ1 ≤ c−ϕ

c
µ discussed in ϕ≤ ϕ1 case, we have Π

∗ (Λ1) =

2R(µ−χ)2

2µ−χ
and p∗ (Λ1) =

2R(µ−χ)

2µ−χ
. Note that Π∗ (Λ1) here is a constant regarding Λ1.

• If c−ϕ
c
µ < Λ1 ≤ λ3 ≤ µ−

√
cµ
R
, we have argmaxp

(
µ− c

R−p

)
= R−

√
c
µ
R ≤ R− c

µ−Λ1
and(

R− c
µ−Λ1

)
Λ1 ≤ 2R(µ−χ)2

2µ−χ
, as illustrated in Figure D.17(2). In this case, Π∗ (Λ1) =

2R(µ−χ)2

2µ−χ
and

p∗ (Λ1) =
2R(µ−χ)

2µ−χ
. Note that Π∗ (Λ1) here is a constant regarding Λ1.

• If λ3 < Λ1 ≤ µ −
√

cµ
R
, we have argmaxp

(
µ− c

R−p

)
= R −

√
c
µ
R ≤ R − c

µ−Λ1

and
(
R− c

µ−Λ1

)
Λ1 > 2R(µ−χ)2

2µ−χ
, as illustrated in Figure D.17(3). In this case, Π∗ (Λ1) =(

R− c
µ−Λ1

)
Λ1 and p∗ (Λ1) =R− c

µ−Λ1
. Note that

(
R− c

µ−λ

)
λ is a unimodal function with the

maximum at µ−
√

cµ
R
, so Π∗ (Λ1) increases in Λ1 on

(
λ3, µ−

√
cµ
R

]
.

• If Λ1 > µ −
√

cµ
R
, we have R − c

µ−Λ1
≤ R −

√
c
µ
R < R − c2

µϕ
, which implies

max
p∈

(
R− c

µ−Λ1
,R− c2

µϕ

] p(µ− c
R−p

)
= max

p∈(0,R−ϕ
µ ]
p
(
µ− c

R−p

)
> max

p∈(0,R−ϕ
µ ]
p
(
µ−

√
µϕ
R−p

)
= 2R(µ−χ)2

2µ−χ
,

as illustrated in Figure D.17(4). In this case, Π∗ =
(√

Rµ−
√
c
)2

and p∗ =R−
√

c
µ
R. Note that

Π∗ (Λ1) here is a constant regarding Λ1.

To summarize, the restaurant’s maximum profit Π∗ and the profit-maximizing price p∗ are

Π∗ (Λ1) p∗ (Λ1)

if 0<Λ1 ≤ λ2 Λ1

(
R− µϕ

(µ−Λ1)
2

)
R− µϕ

(µ−Λ1)
2

if λ2 <Λ1 ≤ λ3
2R(µ−χ)2

2µ−χ

2R(µ−χ)

2µ−χ

if λ3 <Λ1 ≤ µ−
√

cµ
R

Λ1

(
R− c

µ−Λ1

)
R− c

µ−Λ1

if Λ1 >µ−
√

cµ
R

(√
Rµ−

√
c
)2

R−
√

c
µ
R

.

We next compare p∗ (Λ1) and Π∗ (Λ1) to the restaurant’s revenue maximizing food price and

maximum revenue without food delivery service, p∗T (Λ1) and Π∗
T (Λ1), respectively. Note that

given ϕ ≤ ϕ2, we have λ2 ≤ c−ϕ
c
µ ≤ λ3 < µ −

√
cµ
R

and 2R(µ−χ)2

2µ−χ
<
(√

Rµ−
√
c
)2
. If Λ1 ≤ λ2,

similar to the λ2 ≤ µ−
√

cµ
R

case in Case 1, we have Λ1 ≤ c−ϕ
c
µ, which implies p∗ (Λ1) = R−

µϕ

(µ−Λ1)
2 ≥ p∗T (Λ1) =R− c

µ−Λ1
and Π∗ (Λ1) = p∗ (Λ1)Λ1 ≥Π∗

T (Λ1) = p∗T (Λ1)Λ1. If λ2 < Λ1 ≤ λ3,

we have p∗ (Λ1) is a constant regarding Λ1, while p∗T (Λ1) decreases with Λ1, which implies

p∗ (Λ1)≥ p∗T (Λ1). Moreover, by the definition of λ3, we have
(
R− c

µ−Λ1

)
Λ1 ≤ 2R(µ−χ)2

2µ−χ
, which

implies Π∗ (Λ1)≥Π∗
T (Λ1). If Λ1 >λ3, clearly we have p∗ (Λ1) = p∗T (Λ1) and Π∗ (Λ1) =Π∗

T (Λ1).

3. If ϕ > ϕ2, we have max
p∈(0,R−ϕ

µ ]
p
(
µ−

√
µϕ
R−p

)
= 2R(µ−χ)2

2µ−χ
< max

p∈(0,R−ϕ
µ ]
p
(
µ− c

R−p

)
=
(√

Rµ−
√
c
)2
,

argmaxp
(
µ−

√
µϕ
R−p

)
= 2R(µ−χ)

2µ−χ
<R− c2

µϕ
, and c−ϕ

c
µ < λ2. Figure D.18 illustrates the restau-

rant’s profit as a function of p under different Λ1.

• If Λ1 ≤ c−ϕ
c
µ, similar to the Λ1 ≤ λ2 case discussed in Case 1, as Figure D.18(1) shows, we

have Π∗ (Λ1) =
(
R− µϕ

(µ−Λ1)
2

)
Λ1 and p∗ (Λ1) =R− µϕ

(µ−Λ1)
2 . Note that Π∗ (Λ1) increases with Λ1

on
(
0, c−ϕ

c
µ
]
.
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Figure D.18 The restaurant’s profit Π as a function of p, when Λ1 = 0.4, 0.6, 0.8, for the parameter setting

R= 10, Λ0 = 0, µ= c= 1, and ϕ= 0.5.

• If c−ϕ
c
µ < Λ ≤ µ −

√
cµ
R
, we have argmaxp

(
µ− c

R−p

)
= R −

√
c
µ
R < R − c

µ−Λ1
and

argmaxp
(
µ−

√
µϕ
R−p

)
= 2R(µ−χ)

2µ−χ
< R − c2

µϕ
, as illustrated in Figure D.18(2). In this case,

Π∗ (Λ1) =
(
R− c

µ−Λ1

)
Λ1 and p∗ (Λ1) = R − c

µ−Λ1
. Note that Π∗ (Λ1) increases with Λ1 on(

c−ϕ
c
µ,µ−

√
cµ
R

]
.

• If Λ1 > µ −
√

cµ
R
, we have R − c

µ−Λ1
≤ R −

√
c
µ
R < R − c2

µϕ
, which implies

max
p∈

(
R− c

µ−Λ1
,R− c2

µϕ

] p(µ− c
R−p

)
= max

p∈(0,R−ϕ
µ ]
p
(
µ− c

R−p

)
> max

p∈(0,R−ϕ
µ ]
p
(
µ−

√
µϕ
R−p

)
, as illus-

trated in Figure D.18(3). In this case, Π∗ =
(√

Rµ−
√
c
)2

and p∗ =R− \
√

c
µ
R. Note that Π∗ (Λ1)

here is a constant regarding Λ1.

To summarize, the restaurant’s maximum profit Π∗ and the profit-maximizing price p∗ are

Π∗ (Λ1) p∗ (Λ1)

if 0<Λ1 ≤ c−ϕ
c
µ Λ1

(
R− µϕ

(µ−Λ1)
2

)
R− µϕ

(µ−Λ1)
2

if c−ϕ
c
µ<Λ1 ≤ µ−

√
cµ
R

Λ1

(
R− c

µ−Λ1

)
R− c

µ−Λ1

if Λ1 >µ−
√

cµ
R

(√
Rµ−

√
c
)2

R−
√

c
µ
R

.

We next compare p∗ (Λ1) and Π∗ (Λ1) to the restaurant’s revenue maximizing food price and

maximum revenue without food delivery service, p∗T (Λ1) and Π∗
T (Λ1). If Λ1 ≤ c−ϕ

c
µ, we have

p∗ (Λ1)≥ p∗T (Λ1) and Π∗ (Λ1) = Λ1p
∗ (Λ1)≥Π∗

T (Λ1) = Λ1p
∗
T (Λ1). If Λ1 >

c−ϕ
c
µ, clearly we have

p∗ (Λ1) = p∗T (Λ1) and Π∗ (Λ1) =Π∗
T (Λ1). □

Given the restaurant’s optimal food price p∗ (Λ1) in Proposition D.8, we can use Proposition D.7 to

obtain the platform’s optimal delivery fee and corresponding profit in equilibrium of the Stackelberg

game.
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Corollary D.8 (Food Delivery Platform’s Profit—Tech-Savvy Only). When there are

no traditional customers, i.e., Λ0 = 0, there exist threshold values ϕ1, ϕ2, λ2, and λ3, such that, in

equilibrium, the food delivery platform’s delivery fee θ∗, equilibrium profit π∗, the joining rates of

food-delivery and walk-in customers λ∗
D and λ∗

W under the restaurant’s equilibrium price p∗ are

θ∗ (p∗ (Λ1)) π∗ (p∗ (Λ1)) λ∗
D λ∗

W

When ϕ≤ ϕ1

if Λ1 ≤ λ2
ϕΛ1

(µ−Λ1)
2

ϕ(Λ1)
2

(µ−Λ1)
2 Λ1 0

if Λ1 >λ2
Rχ(µ−χ)

µ(2µ−χ)

Rχ(µ−χ)2

µ(2µ−χ)
µ−χ 0

When ϕ1 <ϕ≤ ϕ2

if Λ1 ≤ λ2
ϕΛ1

(µ−Λ1)
2

ϕ(Λ1)
2

(µ−Λ1)
2 Λ1 0

if λ2 <Λ1 ≤ λ3
Rχ(µ−χ)

µ(2µ−χ)

Rχ(µ−χ)2

µ(2µ−χ)
µ−χ 0

if λ3 <Λ1 ≤ µ−
√

cµ
R

c−ϕ
µ−Λ1

(
c−ϕ
µ−Λ1

)
Λ1 Λ1 0

if Λ1 >µ−
√

cµ
R

(c−ϕ)
√

R
cµ

(c−ϕ)
(√

Rµ
c
− 1
)

µ−
√

cµ
R

0

When ϕ> ϕ2

if Λ1 ≤ c−ϕ
c
µ ϕΛ1

(µ−Λ1)
2

ϕ(Λ1)
2

(µ−Λ1)
2 Λ1 0

if c−ϕ
c
µ<Λ1 ≤ µ−

√
cµ
R

c−ϕ
µ−Λ1

(
c−ϕ
µ−Λ1

)
Λ1 Λ1 0

if Λ1 >µ−
√

cµ
R

(c−ϕ)
√

R
cµ

(c−ϕ)
(√

Rµ
c
− 1
)

µ−
√

cµ
R

0

Moreover, we have π∗ (p∗) is a weakly increasing function of Λ1 for ∀ϕ.

Proof of Corollary D.8 (i) When ϕ≤ ϕ1, similar to the ϕ≤ ϕ1 case in Proposition D.8, we have

λ2 ≤ c−ϕ
c
µ.

• If Λ1 ≤ λ2 ≤ c−ϕ
c
µ, the restaurant’s profit-maximizing price is p∗ (Λ1) =R− µϕ

(µ−Λ1)
2 >R− c

µ−Λ1

by Proposition D.8. From Proposition D.7(1), the platform’s profit π and profit-maximizing delivery

fee θ∗ are π (p∗) = Λ1

(
R− p− ϕ

µ−Λ1

)∣∣∣
p=R− µϕ

(µ−Λ1)
2

=
ϕΛ2

1

(µ−Λ1)
2 and θ∗ (p∗) = ϕΛ1

(µ−Λ1)
2 . Note that π (p∗)

increases with Λ1 on
(
0, c−ϕ

c
µ
]
.

• If Λ1 > λ2, the restaurant’s profit-maximizing price is p∗ (Λ1) =
2R(µ−χ)

2µ−χ
> R − µϕ

(µ−Λ1)
2 by

Proposition D.8. From Proposition D.7(1), the platform’s profit π and profit-maximizing delivery

fee θ∗ are π (p∗) =

(
R− p−

√
µϕ(R−p)

µ

)(
µ−

√
µϕ
R−p

)∣∣∣∣
p=

2R(µ−χ)
2µ−χ

= ϕ(µ−χ)2

χ2 = Rχ(µ−χ)2

µ(2µ−χ)
and θ∗ (p∗) =

ϕ(µ−χ)

χ2 = Rχ(µ−χ)

µ(2µ−χ)
. Note that here π (p∗) is a constant regarding Λ1.

(ii) When ϕ1 <ϕ≤ ϕ2, we have

• If Λ1 ≤ λ2, similar to Case (i), π (p∗) = Λ1

(
R− p− ϕ

µ−Λ1

)∣∣∣
p=R− µϕ

(µ−Λ1)
2

= ϕ(Λ1)
2

(µ−Λ1)
2 and θ∗ (p∗) =

ϕΛ1

(µ−Λ1)
2 . Note that π (p∗) increases with Λ1 on (0, λ2].

• If λ2 < Λ1 ≤ c−ϕ
c
µ, similar to Case (i), π (p∗) = p

(
µ−

√
µϕ
R−p

)∣∣∣
p=

2R(µ−χ)
2µ−χ

= ϕ(µ−χ)2

χ2 = Rχ(µ−χ)2

µ(2µ−χ)

and θ∗ (p∗) = ϕ(µ−χ)

χ2 = Rχ(µ−χ)

µ(2µ−χ)
. Note that here π (p∗) is a constant regarding Λ1.

• If c−ϕ
c
µ < Λ1 ≤ λ3, the restaurant’s profit-maximizing price is p∗ (Λ1) =

2R(µ−χ)

2µ−χ
≥ R− c2

µϕ
by
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Proposition D.8. From Proposition D.7(2), π (p∗) =

(
R− p−

√
µϕ(R−p)

µ

)(
µ−

√
µϕ
R−p

)∣∣∣∣
p=

2R(µ−χ)
2µ−χ

=

ϕ(µ−χ)2

χ2 = Rχ(µ−χ)2

µ(2µ−χ)
and θ∗ (p∗) = ϕ(µ−χ)

χ2 = Rχ(µ−χ)

µ(2µ−χ)
. Note that here π (p∗) is a constant regarding Λ1.

• If λ3 <Λ1 ≤ µ−
√

cµ
R
, the restaurant’s profit-maximizing price is p∗ (Λ1) =R− c

µ−Λ1
by Propo-

sition D.8. From Proposition D.7(2), the platform’s profit π is π (p∗) =
(

c−ϕ
µ−Λ1

)
Λ1

∣∣∣
p=R− c

µ−Λ1

=(
c−ϕ
µ−Λ1

)
Λ1 and θ∗ (p∗) = c−ϕ

µ−Λ1
. Note that π (p∗) increases with Λ1 on

(
λ3, µ−

√
cµ
R

]
.

• If Λ1 > µ −
√

cµ
R
, the restaurant’s profit-maximizing price is p∗ (Λ1) = R −

√
c
µ
R and we

have R − c
µ−Λ1

≤ R −
√

c
µ
R < R − c2

µϕ
by Proposition D.8. From Proposition D.7(2), π (p∗) =(

(c−ϕ)(R−p)

c

)(
µ− c

R−p

)∣∣∣
p=R−

√
c
µR

= (c−ϕ)
(√

Rµ
c
− 1
)

and θ∗ (p∗) = (c−ϕ)(R−p)

c
. Note that here

π (p∗) is a constant regarding Λ1.

(iii) When ϕ> ϕ2, following the same discussion as in the ϕ≤ ϕ1 and ϕ1 <ϕ≤ ϕ2 cases, we have

• If Λ1 ≤ c−ϕ
c
µ, the platform’s profit π is π (p∗) = Λ1

(
R− p− ϕ

µ−Λ1

)∣∣∣
p=R− µϕ

(µ−Λ1)
2

=
ϕΛ2

1

(µ−Λ1)
2 and

θ∗ (p∗) = ϕΛ1

(µ−Λ1)
2 . Note that π (p∗) increases with Λ1 on

(
0, c−ϕ

c
µ
]
.

• If c−ϕ
c
µ <Λ1 ≤ µ−

√
cµ
R
, the platform’s profit π is π (p∗) =

(
c−ϕ
µ−Λ1

)
Λ1

∣∣∣
p=R− c

µ−Λ1

=
(

c−ϕ
µ−Λ1

)
Λ1

and θ∗ (p∗) = c−ϕ
µ−Λ1

. Note that π (p∗) increases with Λ1 on
(
c−ϕ
c
µ,µ−

√
cµ
R

]
.

• If Λ1 >µ−
√

cµ
R
, the platform’s profit π is π (p∗) = (c−ϕ)

(√
Rµ
c
− 1
)
and θ∗ (p∗) = (c−ϕ)(R−p)

c
.

Note that here π (p∗) is a constant regarding Λ1. □

D.1.4. Social Welfare

We next investigate social welfare, which is defined as the sum of the restaurant’s equilibrium profit

in Proposition D.8 and the platform’s equilibrium profit in Corollary D.8 under the restaurant’s

optimal food price p∗(Λ1) in Proposition D.8 and the food delivery platform’s best-response delivery

fee θ∗(p∗) in Corollary D.8. Similar to Corollary C.4, customers have zero utility in equilibrium;

otherwise, either the restaurant or the food delivery platform could raise the price without changing

the throughput, which would lead to a higher profit.

Corollary D.9 (Social Welfare—Tech-Savvy Only). When there are no traditional cus-

tomers, i.e., Λ0 = 0, social welfare under the restaurant’s optimal food price p∗ in Proposition D.8

and the food delivery platform’s best response fee θ (p∗) in Corollary D.8 is
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S∗ (Λ1)
When ϕ≤ ϕ1

if Λ1 ≤ λ2 RΛ1 − ϕΛ1
µ−Λ1

if Λ1 >λ2
R(2µ+χ)(µ−χ)2

µ(2µ−χ)

When ϕ1 <ϕ≤ ϕ2

if Λ1 ≤ λ2 RΛ1 − ϕΛ1
µ−Λ1

if λ2 <Λ1 ≤ λ3
R(2µ+χ)(µ−χ)2

µ(2µ−χ)

if λ3 <Λ1 ≤ µ−
√

cµ
R

RΛ1 − ϕΛ1
µ−Λ1

if Λ1 >µ−
√

cµ
R

ϕ+Rµ− (c+ϕ)
√

Rµ
c

When ϕ> ϕ2

if Λ1 ≤ µ−
√

cµ
R

RΛ1 − ϕΛ1
µ−Λ1

if Λ1 >µ−
√

cµ
R

ϕ+Rµ− (c+ϕ)
√

Rµ
c

Moreover, we have S∗ (Λ1) is a weakly increasing function of Λ1 for ∀ϕ.

Proof of Corollary D.9. From Proposition D.8 and Corollary D.8, we have

(i) When ϕ≤ ϕ1,

• If Λ1 ≤ λ2, we have S (Λ1) =Π∗ (Λ1)+π∗ (p∗) =
(
R− µϕ

(µ−Λ1)
2

)
Λ1 +

ϕ(Λ1)
2

(µ−Λ1)
2 =RΛ1 − ϕΛ1

µ−Λ1
.

• If Λ1 >λ2, we have S (Λ1) =Π∗ (Λ1)+π∗ (p∗) = 2R(µ−χ)2

2µ−χ
+ Rχ(µ−χ)2

µ(2µ−χ)
= R(2µ+χ)(µ−χ)2

µ(2µ−χ)
.

(ii) When ϕ1 <ϕ≤ ϕ2,

• If Λ1 ≤ λ2, we have S (Λ1) =Π∗ (Λ1)+π∗ (p∗) =
(
R− µϕ

(µ−Λ1)
2

)
Λ1 +

ϕ(Λ1)
2

(µ−Λ1)
2 =RΛ1 − ϕΛ1

µ−Λ1
.

• If λ2 <Λ1 ≤ λ3, we have S (Λ1) =Π∗ (Λ1)+π∗ (p∗) = 2R(µ−χ)2

2µ−χ
+ Rχ(µ−χ)2

µ(2µ−χ)
= R(2µ+χ)(µ−χ)2

µ(2µ−χ)
.

• If λ3 < Λ1 ≤ µ −
√

cµ
R
, we have S (Λ1) = Π∗ (Λ1) + π∗ (p∗) =

(
R− c

µ−Λ1

)
Λ1 +

(
c−ϕ
µ−Λ1

)
Λ1 =

RΛ1 − ϕΛ1
µ−Λ1

.

• If Λ1 > µ−
√

cµ
R
, we have S (Λ1) = Π∗ (Λ1) + π∗ (p∗) =

(√
Rµ−

√
c
)2

+ (c−ϕ)
(√

Rµ
c
− 1
)
=

ϕ+Rµ− (c+ϕ)
√

Rµ
c
.

(iii) When ϕ> ϕ2,

• If Λ1 ≤ c−ϕ
c
µ, we have S (Λ1) =Π∗ (Λ1)+π∗ (p∗) =

(
R− µϕ

(µ−Λ1)
2

)
Λ1 +

ϕ(Λ1)
2

(µ−Λ1)
2 =RΛ1 − ϕΛ1

µ−Λ1
.

• If c−ϕ
c
µ < Λ1 ≤ µ−

√
cµ
R
, we have S (Λ1) = Π∗ (Λ1) + π∗ (p∗) =

(
R− c

µ−Λ1

)
Λ1 +

(
c−ϕ
µ−Λ1

)
Λ1 =

RΛ1 − ϕΛ1
µ−Λ1

.

• If Λ1 > µ−
√

cµ
R
, we have S (Λ1) = Π∗ (Λ1) + π∗ (p∗) =

(√
Rµ−

√
c
)2

+ (c−ϕ)
(√

Rµ
c
− 1
)
=

ϕ+Rµ− (c+ϕ)
√

Rµ
c
. □

We have Proposition A.1 from Proposition D.8, Corollary D.8 and Corollary D.9. □

D.2. Proof of of Lemma A.1

Similar to Lemma 1, the optimal monopoly food price po and delivery fee θo maximize not only

the aggregated profit but also social welfare; and the centralized owner’s goal of maximizing the

aggregated profit aligns with a social planner’s goal of maximizing social welfare.
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Similar to the proof of Lemma 1, we first derive the socially optimal joining rates of food-delivery

and walk-in customers.

Under the condition of no traditional customers, i.e., Λ0 = 0, due to the lower waiting cost by using

delivery service, it is socially optimal for tech-savvy customers to join using food delivery service.

Then, the socially optimal behavior of tech-savvy customers is identical to unobservable queues in

Chap 3, Hassin and Haviv (2003). We give the following proposition without proof.

Proposition D.9 (Social Optimization—Tech-Savvy Only). When there are no tradi-

tional customers, i.e., Λ0 = 0, the maximum social welfare and socially optimal joining rates of

food-delivery and walk-in customers λD and λW are

So λo
D λo

W

If 0≤Λ1 ≤ µ−
√

ϕµ
R

Λ1

(
R− ϕ

µ−Λ1

)
Λ1 0

If Λ1 >µ−
√

ϕµ
R

(√
Rµ−

√
ϕ
)2

µ−
√

ϕµ
R

0

Moreover, we have:

(i) The optimal social welfare So is a weakly increasing function of Λ1.

(ii) The socially optimal throughput λo
D +λo

W is a weakly increasing function of Λ1.

Next we study how to achieve the socially optimal joining rates of food-delivery and walk-in cus-

tomers, λo
D and λo

W , characterized in Proposition D.9. Let po and θo denote the optimal monopoly

food price and delivery fee that induce the socially optimal joining rates λo
D and λo

W in Proposition

D.9. We expect that the solution of p+ θ∗ (p) = pm, where θ∗ (p) is the platform’s best response

delivery fee from Proposition D.7 and

pm =

R− ϕ
µ−Λ1

if Λ1 ≤ µ−
√

ϕµ
R

R−
√

ϕR
µ

if Λ1 >µ−
√

ϕµ
R

.

is the social optimal price in an unobservable M/M/1 with waiting cost ϕ (see, e.g., Hassin and

Haviv (2003)), is the socially optimal food price po, and the platform’s best response to po is θo;

i.e., θ∗ (po) = θo. We next verify this conjecture.

From Proposition D.7, we have the sum of food price p and platform’s best response delivery fee

θ∗ (p):

1. For Λ1 ≤ c−ϕ
c
µ,

p+ θ∗ (p)

If p≤R− c
µ−Λ1

p+ c−ϕ
µ−Λ1

∈
[

c−ϕ
µ−Λ1

,R− ϕ
µ−Λ1

]
If R− c

µ−Λ1
< p≤R− µϕ

(µ−Λ1)
2 R− ϕ

µ−Λ1
∈
(
R− ϕ

µ−Λ1
,R− ϕ

µ−Λ1

]
If R− µϕ

(µ−Λ1)
2 < p≤R− ϕ

µ
R−

√
µϕ(R−p)

µ
∈
(
R− ϕ

µ−Λ1
,R− ϕ

µ

]
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2. For Λ1 >
c−ϕ
c
µ,

p+ θ∗ (p)

If p≤R− c
µ−Λ1

p+ c−ϕ
µ−Λ1

∈
[

c−ϕ
µ−Λ1

,R− ϕ
µ−Λ1

]
If R− c

µ−Λ1
< p≤R− c2

µϕ
R− ϕ

c
(R− p) ∈

(
R− ϕ

µ−Λ1
,R− c

µ

]
If R− c2

µϕ
< p≤R− ϕ

µ
R−

√
µϕ(R−p)

µ
∈
(
R− c

µ
,R− ϕ

µ

]
When ϕ≤ c2

Rµ
, we have µ−

√
ϕµ
R

≤ c−ϕ
c
µ, R−

√
ϕR
µ

≥R− c
µ
, and R− c2

µϕ
< 0.

• If Λ1 ≤ µ−
√

ϕµ
R
, the solution of p+ θ∗ (p) = pm ⇔ p+ c−ϕ

µ−Λ1
=R− ϕ

µ−Λ1
is po =R− c

µ−Λ1
. Also,

by Proposition D.7, we have θo = θ∗ (po) = (c−ϕ)(R−po)

c
= c−ϕ

µ−Λ1
. By Lemma D.11, we have λD =Λ1

and λW = 0, which are identical to λo
D and λo

W in Proposition D.9.

• If Λ1 > µ −
√

ϕµ
R
, we have R −

√
ϕR
µ

> R − ϕ
µ−Λ1

, R − µϕ

(µ−Λ1)
2 < 0, and R − c

µ−Λ1
< 0. The

solution of p+ θ∗ (p) = pm ⇔ R −
√

µϕ(R−p)

µ
= R −

√
ϕR
µ

is po = 0. By Proposition D.7, the food

delivery platform’s best response is θo = R− po −
√

µϕ(R−po)

µ
= R−

√
ϕR
µ

>R− ϕ
µ−Λ1

. By Lemma

D.11, we have λD = µ− ϕ
R−po−θo

= µ−
√

µϕ
R

and λW = 0, which are identical to λo
D and λo

W in

Proposition D.9.

When ϕ> c2

Rµ
, we have c−ϕ

c
µ<µ−

√
ϕµ
R
, and R−

√
ϕR
µ

<R− c
µ
.

• If Λ1 ≤ µ−
√

ϕµ
R
, the solution of p+ θ∗ (p) = pm ⇔ p+ c−ϕ

µ−Λ1
=R− ϕ

µ−Λ1
is po =R− c

µ−Λ1
. Also,

by Proposition D.7, we have θo = θ∗ (po) = (c−ϕ)(R−po)

c
= c−ϕ

µ−Λ1
. By Lemma D.11, we have λD =Λ1

and λW = 0, which are identical to λo
D and λo

W in Proposition D.9.

• If Λ1 > µ −
√

ϕµ
R
, we have R −

√
ϕR
µ

> R − ϕ
µ−Λ1

. The solution of p + θ∗ (p) = pm ⇔ R −
ϕ
c
(R− p) =R−

√
ϕR
µ

is po =R− c
√

R
ϕµ

<R− c2

µϕ
. By Proposition D.7(2), the food delivery plat-

form’s best response is θo = (c−ϕ)(R−po)

c
= (c−ϕ)

√
R
ϕµ
. By Lemma D.11, we have λD = µ− ϕ

R−po−θo
=

µ−
√

µϕ
R

and λW = 0, which are identical to λo
D and λo

W in Proposition D.9.

To summarize, the centralized owner of the food service chain can set the food price as

po =


R− c

µ−Λ1
if Λ1 ≤ µ−

√
ϕµ
R

0 if Λ1 >µ−
√

ϕµ
R

and ϕ≤ c2

Rµ

R− c
√

R
ϕµ

if Λ1 >µ−
√

ϕµ
R

and ϕ> c2

Rµ

(D.13)

to induce the socially optimal joining rates λo
D and λo

W in Proposition D.9 and extract all the

surpluses from customers; and the delivery platform’s best response is

θo =


c−ϕ
µ−Λ1

if Λ1 ≤ µ−
√

ϕµ
R

R−
√

ϕR
µ

if Λ1 >µ−
√

ϕµ
R

and ϕ≤ c2

Rµ

(c−ϕ)
√

R
ϕµ

if Λ1 >µ−
√

ϕµ
R

and ϕ> c2

Rµ

. (D.14)

From the expression of po and θo in (D.13) and (D.14), it is easy to verify that po and po + θo are

weakly decreasing functions of Λ1, and that θo is a weakly increasing function of Λ1.
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The restaurant’s corresponding profit is

Πo (Λ1) = po (λo
D +λo

W )

If 0<Λ1 ≤ µ−
√

ϕµ
R

(
R− c

µ−Λ1

)
Λ1

If Λ1 >µ−
√

ϕµ
R

and ϕ≤ c2

Rµ
0

If Λ1 >µ−
√

ϕµ
R

and ϕ> c2

Rµ

(
R− c

√
R
ϕµ

)(
µ−

√
ϕµ
R

)
From proof of Lemma 1, we have

(
R− c

µ−Λ1

)
Λ1 is a decreasing function of Λ1, 0 and(

R− c
√

R
ϕµ

)(
µ−

√
ϕµ
R

)
are constants regarding Λ1. Thus, Π

o (Λ1) is a weakly decreasing function

of Λ1.

The platform’s corresponding profit is

πo (po (Λ1)) = θoλo
D

If 0<Λ1 ≤ µ−
√

ϕµ
R

c−ϕ
µ−Λ1

Λ1

If Λ1 >µ−
√

ϕµ
R

and ϕ≤ c2

Rµ

(
R−

√
ϕR
µ

)(
µ−

√
ϕµ
R

)
If Λ1 >µ−

√
ϕµ
R

and ϕ> c2

Rµ
(c−ϕ)

√
R
ϕµ

(
µ−

√
ϕµ
R

)
which is clearly a weakly increasing function of Λ1. □

D.3. Proof of Proposition A.2

We discuss the one-way and two-way RS contracts separately.

1. We first discuss the one-way RS contract with a price ceiling. In a decentralized system under

the platform’s best response delivery fee θ∗ (p), social welfare can be derived as

1.1 For Λ1 ≤ c−ϕ
c
µ,

Π (p)+π∗ (p)

If p≤R− c
µ−Λ1

(
p+ c−ϕ

µ−Λ1

)
Λ1

If R− c
µ−Λ1

< p≤R− µϕ

(µ−Λ1)
2

(
R− ϕ

µ−Λ1

)
Λ1

If R− µϕ

(µ−Λ1)
2 < p≤R− ϕ

µ
Rµ+ϕ−

√
µϕ
(√

R− p+ R√
R−p

)
1.2 For Λ1 >

c−ϕ
c
µ,

Π (p)+π∗ (p)

If p≤R− c
µ−Λ1

(
p+ c−ϕ

µ−Λ1

)
Λ1

If R− c
µ−Λ1

< p≤R− c2

µϕ
Rµ+ϕ−

(
Rc
R−p

+ ϕµ(R−p)

c

)
If R− c2

µϕ
< p≤R− ϕ

µ
Rµ+ϕ−

√
µϕ
(√

R− p+ R√
R−p

)
We have the following results.

•
(
p+ c−ϕ

µ−Λ1

)
Λ1 increases in the food price p, because

∂
((

p+ c−ϕ
µ−Λ1

)
Λ1

)
∂p

=Λ1 > 0.

•
∂
(
Rµ+ϕ−

(
Rc

R−p+
ϕµ(R−p)

c

))
∂p

= µϕ
c
− Rc

(R−p)2
, which is zero when p = R − c

√
R
µϕ
; R − c

√
R
µϕ

≤

R− c
µ−Λ1

⇔Λ1 ≤ µ−
√

µϕ
R
; and

∂2
(
Rµ+ϕ−

(
Rc

R−p+
ϕµ(R−p)

c

))
∂p2

= −2Rc

(R−p)3
< 0.
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• Rµ+ϕ−
√
µϕ
(√

R− p+ R√
R−p

)
decreases in the food price p, because

∂
(
Rµ+ϕ−

√
µϕ

(√
R−p+ R√

R−p

))
∂p

=

− p
√
µϕ

2(R−p)
3
2
< 0.

Thus, we have:

• When Λ1 ≤ µ−
√

µϕ
R
, we have

—
(
p+ c−ϕ

µ−Λ1

)
Λ1 increases in p for p∈

[
0,R− c

µ−Λ1

]
.

—Rµ+ϕ−
(

Rc
R−p

+ ϕµ(R−p)

c

)
decreases in p for p∈

(
R− c

µ−Λ1
,R− c2

µϕ

]
.

—Rµ+ϕ−
√
µϕ
(√

R− p+ R√
R−p

)
decreases in p for p∈

(
R− c2

µϕ
,R− ϕ

µ

]
.

Thus, Π(p)+π∗ (p) is a unimodal function of p with the maximum at po =R− c
µ−Λ1

.

• When Λ1 >µ−
√

µϕ
R
, we have

—
(
p+ c−ϕ

µ−Λ1

)
Λ1 increases in p for p∈

[
0,R− c

µ−Λ1

]
.

—Rµ+ϕ−
(

Rc
R−p

+ ϕµ(R−p)

c

)
is a unimodal function of p with the maximum at p=R−c

√
R
µϕ

for p∈
(
R− c

µ−Λ1
,R− c2

µϕ

]
.

—Rµ+ϕ−
√
µϕ
(√

R− p+ R√
R−p

)
decreases in p for p∈

(
R− c2

µϕ
,R− ϕ

µ

]
.

Thus, Π(p)+π∗ (p) is a unimodal function of p with the maximum at po =R− c
√

R
µϕ
.

When the platform shares γ1 fraction of its profit with the restaurant, the restaurant’s profit

is Π(p) + γ1π
∗ (p) = (Π(p)+π∗ (p))− (1− γ1)π

∗ (p). We have shown above that Π(p) + π∗ (p)

is increasing in p for p ∈ [0, po], and π∗ (p) is a weakly decreasing function of p by Proposition

D.7. Thus, the restaurant’s profit Π(p)+γ1π
∗ (p) increases for p∈ [0, po], which means that the

restaurant will set the food price p= po to maximize its profit. By Lemma A.1, given the food

price po, the platform’s best-response delivery fee is θo. Hence, the one-way revenue-sharing

contract with a price ceiling proposed in Proposition A.2 successfully induces the restaurant

and the platform to behave in the socially optimal manner for ∀γ1 ∈ [0,1].

For the decentralized system, we have the restaurant’s profit Π∗ (Λ1) from Proposition D.8,

the platform’s profit π∗ (p∗ (Λ1)) from Corollary D.8, and social welfare S∗ (Λ1) from Corollary

D.9 in equilibrium. Note that Π∗ (Λ1) and π∗ (p∗ (Λ1)) are the minimum profits the restaurant

and the delivery platform target. In the centralized system, under the optimal monopoly food

price po and delivery fee θo, we have the restaurant’s profit Πo (Λ1), the platform’s profit πo (Λ1),

and social welfare So (Λ1) from Lemma A.1. The range of sharing fraction

γ1 ∈
[
Π∗ (Λ1)−Πo (Λ1)

πo (po (Λ1))
,1− π∗ (p∗ (Λ1))

πo (po (Λ1))

]
(D.15)

makes sure that the restaurant and the platform can reach a win-win situation for the restaurant

and the platform.

2. The two-way revenue sharing contract turns the restaurant’s profit function into an affine

transformation of the aggregated profit of the whole service system. Thus, the restaurant will
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set the food price as the socially optimal one po. Then, from Lemma A.1, the platform’s best

response is to set the delivery fee as θo. This contract coordinates the whole system in the

socially optimal fashion. From a discussion similar to the one-way RS contract with a price

ceiling, the range of sharing fraction

γ2 ∈
[
Π∗ (Λ1)

So (Λ1)
,1− π∗ (p∗ (Λ1))

So (Λ1)

]
(D.16)

makes sure that the restaurant and the platform can reach a win-win. □
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