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Appendix A: Proofs

Proof of Lemma 1. Suppose that Rt+1(pt+1) = pt+1c
∑T

i=t+1

∏i

j=t+1(1− q(j)). Then,

Rt(pt) = pt(1− q(t))(c+Rt+1(p
+
t+1))+ (1− pt)(1− q(t))Rt+1(p

−
t+1)

= pt(1− q(t))c+(1− q(t))
(
ptRt+1(p

+
t+1)+ (1− pt)Rt+1(p

−
t+1)

)
= pt(1− q(t))c+(1− q(t))

(
ptp

+
t+1 +(1− pt)p

−
t+1

)
c
∑T

i=t+1

∏i

j=t+1(1− q(j))

= pt(1− q(t))c+(1− q(t))ptc
∑T

i=t+1

∏i

j=t+1(1− q(j)) = ptc
∑T

i=t

∏i

j=t
(1− q(j)).

The fourth equality holds because the updating scheme is a martingale and ptp
+
t+1 +(1− pt)p

−
t+1 = pt. �

Proof of Proposition 1. For notational convenience, letMt(pt) :=Rt(pt)−Wt(pt). From equations (1)-(3),

Mt(pt) =max{Rt(pt)−Bt(pt), 0} , (12)

where Rt(pt)−Bt(pt) = (1− q0(t))ptc−m+pt(1− q0(t))Mt+1(p
+
t+1)+(1−pt)(1− q1(t))Mt+1(p

−
t+1). Suppose

that Rt+1(pt+1) − Bt+1(pt+1) is increasing in pt+1, so Mt+1(pt+1) is increasing in pt+1. For any p′
t ≤ pt,

p+t+1 ≥ p′+
t+1 and p−

t+1 ≥ p′−
t+1 from Assumption 2. The situations are different for q0(t) = 0 and q0(t)> 0, so

we will discuss them separately.

Case 1: q0(t) = 0. Then,

(Rt(pt)−Bt(pt))− (Rt(p
′
t)−Bt(p

′
t)) = (pt − p′

t)c+ pt

(
Mt+1(p

+
t+1)−Mt+1(p

′+
t+1)

)
+(pt − p′

t)Mt+1(p
′+
t+1)

+ (1− pt)(1− q1(t))
(
Mt+1(p

−
t+1)−Mt+1(p

′−
t+1)

)
− (pt − p′

t)(1− q1(t))Mt+1(p
′−
t+1)

≥ (pt − p′
t)c+(pt − p′

t)
(
Mt+1(p

′+
t+1)− (1− q1(t))Mt+1(p

′−
t+1)

)
≥ 0.

The first inequality holds because Mt+1(p
+
t+1) ≥ Mt+1(p

′+
t+1) and Mt+1(p

−
t+1) ≥ Mt+1(p

′−
t+1); the second

inequality holds because pt ≥ p′
t and Mt+1(p

′+
t+1)≥Mt+1(p

′−
t+1)≥ (1− q1(t))Mt+1(p

′−
t+1).

Case 2: q0(t)> 0. Suppose Mt+1(pt+1)≤ (1−q0(t+1))c−m

q0(t+1)
. Then,

(Rt(pt)−Bt(pt))− (Rt(p
′
t)−Bt(p

′
t)) = (pt − p′

t)(1− q0(t))c+ pt(1− q0(t))
(
Mt+1(p

+
t+1)−Mt+1(p

′+
t+1)

)
+(pt − p′

t)(1− q0(t))Mt+1(p
′+
t+1)+ (1− pt)(1− q1(t))

(
Mt+1(p

−
t+1)−Mt+1(p

′−
t+1)

)
− (pt − p′

t)(1− q1(t))Mt+1(p
′−
t+1)

≥
(
(1− q0(t))c+(1− q0(t))Mt+1(p

′+
t+1)− (1− q1(t))Mt+1(p

′−
t+1)

)
(pt − p′

t)

≥
(
(1− q0(t))c− q0(t)Mt+1(p

′−
t+1)

)
(pt − p′

t)≥
(
(1− q0(t))c− q0(t) · (1−q0(t+1))c−m

q0(t+1)

)
(pt − p′

t)

≥ ((1− q0(t))c− (1− q0(t+1))c+m) (pt − p′
t) = ((q0(t+1)− q0(t))c+m) (pt − p′

t)≥ 0.

The first inequality holds because Mt+1(p
+
t+1) ≥ Mt+1(p

′+
t+1) and Mt+1(p

−
t+1) ≥ Mt+1(p

′−
t+1); the second

inequality holds because Mt+1(p
′+
t+1) ≥ Mt+1(p

′−
t+1) ≥ 0; the third inequality holds because Mt+1(pt+1) ≤(

(1 − q0(t + 1))c − m
)
/q0(t + 1); the last inequality holds because q0(t + 1) ≥ q0(t). So Rt(pt) − Bt(pt)



is increasing in pt and Mt(pt) is also increasing in pt from equation (12). Because q0(t) ≤ q0(t + 1) and

Mt+1(pt+1)≤
(
(1− q0(t+1))c−m

)
/q0(t+1), then from equation (12)

Rt(pt)−Bt(pt)≤ (1− q0(t))cpt −m+(1− q1(t)− (q0(t)− q1(t))pt) · (1−q0(t+1))c−m

q0(t+1)

=
(
(1− q0(t))c− (q0(t)− q1(t)) · (1−q0(t+1))c−m

q0(t+1)

)
pt −m+(1− q1(t)) · (1−q0(t+1))c−m

q0(t+1)

≤ (1− q0(t))c−m+(1− q0(t)) · (1−q0(t+1))c−m

q0(t+1)
= (1−q0(t))c−(1−q0(t)+q0(t+1))m

q0(t+1)

≤ (1−q0(t))c−m

q0(t+1)
≤ (1−q0(t))c−m

q0(t)
.

The first inequality holds because

(1− q0(t))c− (q0(t)− q1(t)) · (1−q0(t+1))c−m

q0(t+1)
≥ (1− q0(t))c− q0(t) · (1−q0(t+1))c−m

q0(t+1)

≥ (1− q0(t))c− ((1− q0(t+1))c−m) = (q0(t+1)− q0(t))c+m≥ 0.

From equation (12), Mt(pt)≤ (1−q0(t))c−m

q0(t)
. �

Proof of Theorem 1. Part (a) is obvious from equation (3). For part (b), let

p∗
t = inf {pt ≥ 0 :Rt(pt)−Bt(pt)≥ 0} , (13)

where p∗
t = ∞ if the set is empty. Because Rt(pt) − Bt(pt) is increasing in pt from Proposition 1, then

Rt(pt)−Bt(pt)≥ 0 for any pt ≥ p∗
t and Rt(pt)−Bt(pt)< 0 for any pt < p∗

t . Thus, the optimal policy has a

threshold structure: it is optimal to keep buying the flexible EW if and only if pt ≥ p∗
t . BecauseMt+1(pt+1)≥ 0

for any 0≤ pt+1 ≤ 1, then for any pt ≥ m
(1−q0(t))c

,

Rt(pt)−Bt(pt) = (1− q0(t))ptc−m+ pt(1− q0(t))Mt+1(p
+
t+1)+ (1− pt)(1− q1(t))Mt+1(p

−
t+1)

≥ (1− q0(t))ptc−m≥ 0.

Because Rt(pt)−Bt(pt) is increasing in pt, then p∗
t ≤ m

(1−q0(t))c
from equation (13). �

Proof of Proposition 2. Suppose Rt+1(pt+1)−Bt+1(pt+1) is increasing in pt+1, soMt+1(pt+1) is increasing

in pt+1 from equation (12). For any p′
t ≤ pt, p

+
t+1 ≥ p′+

t+1 and p−
t+1 ≥ p′−

t+1 from Assumption 2. Then,

(Rt(pt)−Bt(pt))− (Rt(p
′
t)−Bt(p

′
t)) = (pt − p′

t)(1− q0(t))c+ pt(1− q0(t))
(
Mt+1(p

+
t+1)−Mt+1(p

′+
t+1)

)
+(pt − p′

t)(1− q0(t))Mt+1(p
′+
t+1)+ (1− pt)(1− q1(t))

(
Mt+1(p

−
t+1)−Mt+1(p

′−
t+1)

)
− (pt − p′

t)(1− q1(t))Mt+1(p
′−
t+1)

≥ (pt − p′
t)
(
(1− q0(t))Mt+1(p

′+
t+1)− (1− q1(t))Mt+1(p

′−
t+1)

)
≥ (pt − p′

t)(1− q1(t))
(
Mt+1(p

′+
t+1)−Mt+1(p

′−
t+1)

)
≥ 0.

The first inequality holds because Mt+1(p
+
t+1) ≥ Mt+1(p

′+
t+1) and Mt+1(p

−
t+1) ≥ Mt+1(p

′−
t+1); the second

inequality holds because q0(t)≤ q1(t); the last inequality holds because pt ≥ p′
t and Mt+1(p

′+
t+1)≥Mt+1(p

′−
t+1).

�
Proof of Lemma 2. (a) Let Nt = at − a1 = at − a denote the number of failures that occur up to month

t. Then, pt+1 = (a+Nt+1)/(a+ b+ t). So, the Beta updating scheme is Markovian. Since

pt+1 =
(a+ b+ t− 1)pt + It

a+ b+ t
= pt +

It − pt

a+ b+ t
,

then p+t+1 > pt > p−
t+1; p

+
t+1 and p−

t+1 are both increasing in pt.



(b) For the Beta updating scheme,

E[pt+1|It] = ptp
+
t+1 +(1− pt)p

−
t+1 = pt(pt +

1− pt

a1 + b1 + t
)+ (1− pt)(pt −

pt

a1 + b1 + t
) = pt,

so it is a martingale. �

Proof of Theorem 2. Since the optimal policy has thresholds p∗
t for the estimated failure probabilities

and the estimate is updated following pt = (a+Nt)/(a+ b+ t− 1), the optimal policy also has a threshold

structure on the number of observed failures Nt. Then, the optimal x∗
t can be found by solving

x∗
t =min

{
xt ∈N :

a+xt

a+ b+ t− 1
≥ p∗

t

}
. (14)

The threshold x∗
t can also be expressed as follows: x∗

t = ⌈(a+ b+ t− 1)p∗
t ⌉ − a, where ⌈y⌉ is the smallest

integer number that is greater than or equal to y. �

Proof of Proposition 3. (a) Suppose that Rt+1(p)≥Rt+2(p), Bt+1(p)≥Bt+2(p) and Wt+1(p)≥Wt+2(p)

for any 0≤ p≤ 1. Because q0(t)≤ q0(t+1) and q1(t)≤ q1(t+1), from equations (1)-(3),

Rt(p) = p(1− q0(t))(c+Rt+1(p
+))+ (1− p)(1− q1(t))Rt+1(p

−)

≥ p(1− q0(t+1))(c+Rt+2(p
+))+ (1− p)(1− q1(t+1))Rt+2(p

−) =Rt+1(p),

Bt(p) =m+ p(1− q0(t))Wt+1(p
+)+ (1− p)(1− q1(t))Wt+1(p

−)

≥m+ p(1− q0(t+1))Wt+2(p
+)+ (1− p)(1− q1(t+1))Wt+2(p

−) =Bt+1(p),

Wt(p) =min{Bt(pt), Rt(Bt)} ≥min{Bt+1(pt+1), Rt+1(Bt+1)}=Wt+1(pt+1),

where p+ (resp., p−) represents the failure probability estimate in the next month when the failure

probability estimate was p and a failure occurred (resp., did not occur) in the current month. Thus,

Rt(p), Bt(p) and Wt(p) are all decreasing in t for 0≤ p≤ 1.

(b) It is obvious that RT (p)−BT (p)≥WT+1(p)−RT+1(p) = 0. Suppose that Rt+1(p)−Bt+1(p)≥Rt+2(p)−

Bt+2(p) for any 0≤ p≤ 1. Then, Mt+1(p)≥Mt+2(p) for any 0≤ p≤ 1 from equation (12).

Rt(p)−Bt(p) = (1− q0(t))pc−m+ p(1− q0(t))Mt+1(p
+)+ (1− p)(1− q1(t))Mt+1(p

−)

≥ (1− q0(t+1))pc−m+ p(1− q0(t+1))Mt+2(p
+)+ (1− p)(1− q1(t+1))Mt+2(p

−)

=Rt+1(p)−Bt+1(p).

The inequality holds because q0(t) ≤ q0(t + 1), q1(t) ≤ q1(t + 1), Rt+1(p
+) − Bt+1(p

+) ≥ Rt+2(p
+) −

Bt+2(p
+) and Rt+1(p

−)−Bt+1(p
−) ≥ Rt+2(p

−)−Bt+2(p
−). Thus, Rt(p)−Bt(p) is decreasing in t for

any 0≤ p≤ 1. �

Proof of Theorem 3. Because Rt(p)−Bt(p) is increasing in p from Proposition 1 and it is decreasing in

t from Proposition 3, then p∗
t is increasing in t from equation (13). �

Proof of Proposition 4. Denote q0(t) = q0(t+1) = · · ·= q0(T ) = q0. Assume that p∗+
t+1 < p∗

t+1 for some t.

Then, p∗−
t+1 ≤ p∗+

t+1 < p∗
t+1, where the first inequality holds because of Assumption 2. From equations (12) and

(13), Mt+1(pt+1) =max{Rt+1(pt+1)−Bt+1(pt+1), 0}= 0 for any pt+1 < p∗
t+1. Then,

Rt(p
∗
t )−Bt(p

∗
t ) = (1− q0)p

∗
t c−m+ pt(1− q0)Mt+1(p

∗+
t+1)+ (1− pt)(1− q1(t))Mt+1(p

∗−
t+1) = (1− q0(t))p

∗
t c−m.



The second equality holds because Mt+1(p
∗+
t+1) = Mt+1(p

∗−
t+1) = 0. Then, p∗

t =
m

(1−q0)c
from equation (13).

Because p∗
t ≤ p∗

t+1 ≤ · · · ≤ p∗
T = m

(1−q0)c
from Theorem 3, then p∗

t = p∗
t+1 = · · ·= p∗

T = m
(1−q0)c

. Since p+t+1 ≥ pt

for 0≤ pt ≤ 1, then p∗+
t+1 ≥ p∗

t = p∗
t+1, which contradicts the assumption that p∗+

t+1 < p∗
t+1. �

Proof of Lemma 3. Part (a) is straightforward. For the exponential smoothing mechanism,

E[pt+1|It] = ptp
+
t+1 +(1− pt)p

−
t+1 = pt((1−α)pt +α)+ (1− pt)(1−α)pt = pt,

so it is a martingale. �

Lemma 5 (a) (Thomson (1994).) A continuous function f(·) on set C is concave if and only if f
(
y1+y2

2

)
≥

f(y1)+f(y2)

2
for any y1 and y2 on C.

(b) If f(·) is a concave function, then f(y1)− f(y2)≥ f(y1 + ϵ)− f(y2 + ϵ) for any y1 ≥ y2 and ϵ≥ 0.

(c) If f(·) is a concave function, then θf(y1)+(1−θ)f(y2)≥ θf(y′
1)+(1−θ)f(y′

2) for any y′
1 ≤ y1 ≤ y2 ≤ y′

2

such that θy1 +(1− θ)y2 = θy′
1 +(1− θ)y′

2, where 0≤ θ≤ 1.

Proof of Lemma 5. (a) See page 121 on Thomson (1994).

(b) Because f(·) is concave, y1 = y1−y2
y1−y2+ϵ

· (y1 + ϵ)+ ϵ
y1−y2+ϵ

· y2 and y2 + ϵ= ϵ
y1−y2+ϵ

· (y1 + ϵ)+ y1−y2
y1−y2+ϵ

· y2,

then

f(y1)≥ y1−y2
y1−y2+ϵ

· f(y1 + ϵ)+ ϵ
y1−y2+ϵ

· f(y2) and f(y2 + ϵ)≥ ϵ
y1−y2+ϵ

· f(y1 + ϵ)+ y1−y2
y1−y2+ϵ

· f(y2).

Thus, f(y1)+ f(y2 + ϵ)≥ f(y1 + ϵ)+ f(y2).

(c) Let z = θy1 +(1− θ)y2 = θy′
1 +(1− θ)y′

2. So y2 = (z− θy1)/(1− θ) and y′
2 = (z− θy′

1)/(1− θ). Then,

θf(y1)+ (1− θ)f(y2)− θf(y′
1)− (1− θ)f(y′

2) = θ(f(y1)− f(y′
1))+ (1− θ)

(
f
(

z−θy1
1−θ

)
− f

(
z−θy′

1

1−θ

))
≥ θ

(
f
(
y1 +

z−y1
1−θ

)
− f

(
y′
1 +

z−y1
1−θ

))
+(1− θ)

(
f
(

z−θy1
1−θ

)
− f

(
z−θy′

1

1−θ

))
= f

(
z−θy1
1−θ

)
−
(
θ · f

(
y′
1 +

z−y1
1−θ

)
+(1− θ)f

(
z−θy′

1

1−θ

))
≥ 0.

The first inequality holds because of part (b) and z ≥ y1; the second equality holds because y1 +
z−y1
1−θ

=

z−θy1
1−θ

; the last inequality holds because f(·) is concave and θ
(
y′
1 +

z−y1
1−θ

)
+(1− θ)

(
z−θy′

1

1−θ

)
= z−θy1

1−θ
. �

Proof of Proposition 5. (a) Denote q0(t) = q1(t) = q(t) for each t = 1,2, . . . , T . Because Rt(pt) =

ptc
∑T

i=t

∏i

j=t
(1−q(j)) and it is independent of α, it is sufficient to prove thatBt(pt) is decreasing concave

in α, which is equivalent to showing that ptWt+1((1−α)pt+α)+(1−pt)Wt+1((1−α)pt) is decreasing con-

cave in α. For any α′ ≤ α, pt((1−α)pt+α)+(1−pt)(1−α)pt = pt((1−α′)pt+α′)+(1−pt)(1−α′)pt = pt

and (1−α)pt ≤ (1−α′)pt ≤ pt ≤ (1−α′)pt +α′ ≤ (1−α)pt +α. Because Wt+1(pt+1) is concave in pt+1,

from Lemma 5,

ptWt+1((1−α)pt +α)+ (1− pt)Wt+1((1−α)pt)≤ ptWt+1((1−α′)pt +α′)+ (1− pt)Wt+1((1−α′)pt).



Thus, both Bt(pt) and Wt(pt) are decreasing in α. For the concavity of Wt(pt) with respect to α, consider

ptWt+1

(
(1− α+α′

2
)pt +

α+α′

2

)
+(1− pt)Wt+1

(
(1− α+α′

2
)pt

)
≥ pt

2

(
Wt+1((1−α)pt +α)+Wt+1((1−α′)pt +α′)

)
+ 1−pt

2

(
Wt+1((1−α)pt)+Wt+1((1−α′)pt)

)
= 1

2

(
ptWt+1((1−α)pt +α)+ (1− pt)Wt+1((1−α)pt)

)
+ 1

2

(
ptWt+1((1−α′)pt +α′)+ (1− pt)Wt+1((1−α′)pt)

)
.

The inequality holds because Wt+1(pt+1) is concave in pt+1. Therefore, both Bt(pt) and Wt(pt) are

concave in α.

(b) Because Rt(pt) is independent of α and Bt(pt) is decreasing in α, then Rt(pt)−Bt(pt) is increasing in

α. From Proposition 1 and equation (13), p∗
t is decreasing in α for all t. �

Proof of Proposition 6. We first show that πt(pt,m,Qt) is increasing in pt by induction. Suppose that

πt+1(pt+1,m,Qt+1) is increasing in pt+1. For any two points pt > p′
t, if p′

t < p∗
t , then πt(p

′
t,m,Qt) = 0 ≤

πt(pt,m,Qt); if p
′
t > p∗

t , we have

πt(pt,m,Qt) =m+λ(1− q0(t))
(
πt+1(p

+
t+1,m,Qt+1)−βc

)
+(1−λ)(1− q1(t))πt+1(p

−
t+1,m,Qt+1)

≥m+λ(1− q0(t))
(
πt+1(p

′+
t+1,m,Qt+1)−βc

)
+(1−λ)(1− q1(t))πt+1(p

′−
t+1,m,Qt+1) = πt(p

′
t,m,Qt).

The inequality holds because p+t+1 ≥ p′+
t+1, p−

t+1 ≥ p′−
t+1 and πt+1(p

+
t+1,m,Qt+1) ≥ πt+1(p

′+
t+1,m,Qt+1),

πt+1(p
−
t+1,m,Qt+1)≥ πt+1(p

′−
t+1,m,Qt+1). Thus, maxm≥0 πt(pt,m,Qt)≥maxm≥0 πt(p

′
t,m,Qt).

For the monotonicity of the profit for the traditional EW, we only need to show that R1(p1) is increasing

in p1 because the support cost S1(Q1) is independent of p1. The value R1(p1)−B1(p1) is increasing in p1

for any m by Propositions 1 and 2. For the special case with monthly premium m= 0, B1(p1) = 0 for any

p1, so R1(p1) is increasing in p1. �
Proof of Theorem 4. We will show that the flexible EW is strictly profitable if and only if p1 < po

1, where

po
1 is expressed as follows

po
1 = inf

{
p1 ≥ 0 : π1(p1,m

∗(p1),Q1)≤ (p1 −λβ)c
∑T

i=1

∏i

j=1(1− q(j))
}
.

The customer’s maximum willingness-to-pay for the traditional EW is R1(p1). Since π1(p1,m
∗(p1),Q1)≥ 0,

the flexible EW is more profitable if and only if π1(p1,m
∗(p1),Q1)≥R1(p1)−S1(Q1). For the existence of

the threshold, we will show that π1(p1,m,Q1)− (R1(p1)− S1(Q1)) is decreasing in p1, which is equivalent

to showing that π1(p1,m,Q1)−R1(p1) is decreasing in p1 because S1(Q1) is independent of p1.

Suppose that πt+1(pt+1,m,Qt+1)−Rt+1(pt+1) is decreasing in pt+1. For pt < p∗
t , πt(pt,m,Qt)−Rt(pt) =

−ptc
∑T

i=t

∏i

j=t
(1− q(j)), which is decreasing in pt. For pt ≥ p∗

t ,

πt(pt,m,Qt)−Rt(pt) =m+λ(1− q(t))
(
πt+1(p

+
t+1,m,Qt+1)−βc

)
+(1−λ)(1− q(t))πt+1(p

−
t+1,m,Qt+1)

− pt(1− q(t))(c+Rt+1(p
+
t+1))− (1− pt)(1− q(t))Rt+1(p

−
t+1)

=m− (1− q(t))(λβc+ ptc)+λ(1− q(t))
(
πt+1(p

+
t+1,m,Qt+1)−Rt+1(p

+
t+1)

)
+(1−λ)(1− q(t))

(
πt+1(p

−
t+1,m,Qt+1)−Rt+1(p

−
t+1)

)
+(1− q(t))(λ− pt)

(
Rt+1(p

+
t+1)−Rt+1(p

−
t+1)

)
=m− (1− q(t))(λβc+ ptc)+λ(1− q(t))

(
πt+1(p

+
t+1,m,Qt+1)−Rt+1(p

+
t+1)

)
+(1−λ)(1− q(t))

(
πt+1(p

−
t+1,m,Qt+1)−Rt+1(p

−
t+1)

)
+(1− q(t))(λ− pt)(p

+
t+1 − p−

t+1)c
∑T

i=t+1

∏i

j=t+1(1− q(j)).



The last equality holds by Lemma 1. Since p+t+1 − p−
t+1 is independent of pt, then (1− q(t))(λ− pt)(p

+
t+1 −

p−
t+1)c

∑T

i=t+1

∏i

j=t+1(1 − q(j)) is decreasing in pt. Because both πt+1(p
+
t+1,m,Qt+1) − Rt+1(p

+
t+1) and

πt+1(p
−
t+1,m,Qt+1)−Rt+1(p

−
t+1) are decreasing in pt, then πt(pt,m,Qt)−Rt(pt) is decreasing in pt. Therefore,

π1(p1,m,Q1)−R1(p1) is decreasing in p1. Next, we will show that π1(p1,m
∗(p1),Q1)−R1(p1) is decreasing

in p1. For any p′
1 ≤ p1, then,

(π1(p1,m
∗(p1),Q1)−R1(p1))− (π1(p

′
1,m

∗(p′
1),Q1)−R1(p

′
1))

≤ (π1(p1,m
∗(p1),Q1)−R1(p1))− (π1(p

′
1,m

∗(p1),Q1)−R1(p
′
1))≤ 0

The first inequality holds because π1(p
′
1,m

∗(p′
1),Q1) ≥ π1(p

′
1,m

∗(p1),Q1); the second inequality holds

because π1(p1,m,Q1)−R1(p1) is decreasing in p1. Therefore, π1(p1,m
∗(P1),Q1)−R1(p1) is decreasing in

p1. Thus, π1(p1,m
∗(p1),Q1)>R1(p1)−S1(Q1) for p1 < po

1. �
Proof of Theorem 5. We will show that the thresholds p̂H

1 and p̌H
1 can be expressed as follows

p̂H
1 = sup

{
pH
1 ≥ 0 : π1(p

H
1 ,m

∗(pL
1 , p

H
1 ),QH

1 )≤ 1
γH (pL

1 −λβ)c
∑T

i=1

∏i

j=1(1− q(j))− γL

γH ·π1(p
L
1 ,m

∗(pL
1 , p

H
1 ),QL

1 )
}
,

p̌H
1 = inf

{
pH
1 ≥ 0 : π1(p

H
1 ,m

∗(pL
1 , p

H
1 ),QH

1 )≤ (pL
1 −λβ)c

∑T

i=1

∏i

j=1(1− q(j))− γL

γH ·π1(p
L
1 ,m

∗(pL
1 , p

H
1 ),QL

1 )
}
.

Under Assumption 4, SL
1 (QL

1 ) = SH
1 (QH

1 ) = λβc
∑T

i=1

∏i

j=1(1− q(j)) by Lemma 4. From Proposition 7, it

is optimal for the traditional EW only to capture market segment H if and only if pH
1 ≥ (pL

1 − λβγL)/γH .

We will consider the two cases separately.

If pH
1 ≥ (pL

1 − λβγL)/γH , the traditional only captures segment H, and that the flexible EW is more

profitable is equivalent to

γLπ1(p
L
1 ,m

∗(pL
1 , p

H
1 ),QL

1 )+ γHπ1(p
H
1 ,m

∗(pL
1 , p

H
1 ),QH

1 )≥ γH (RH
1 (p

H
1 )−SH

1 (QH
1 )) .

By the same argument as in the proof of Theorem 4, we can show that π1(p
H
1 ,m,QH

1 ) − RH
1 (p

H
1 ) is

decreasing in pH
1 for any m. We will next prove that γLπ1(p

L
1 ,m

∗(pL
1 , p

H
1 ),QL

1 )+γH
(
π1(p

H
1 ,m

∗(pL
1 , p

H
1 ),QH

1 )−

RH
1 (p

H
1 )

)
is decreasing in pH

1 . For any p′H
1 ≤ pH

1 ,(
γLπ1(p

L
1 ,m

∗(pL
1 , p

H
1 ),QL

1 )+ γH
(
π1(p

H
1 ,m

∗(pL
1 , p

H
1 ),QH

1 )−RH
1 (p

H
1 )

))
−
(
γLπ1(p

L
1 ,m

∗(pL
1 , p

′H
1 ),QL

1 )

+ γH
(
π1(p

′H
1 ,m∗(pL

1 , p
′H
1 ),QH

1 )−RH
1 (p

′H
1 )

))
≤
(
γLπ1(p

L
1 ,m

∗(pL
1 , p

H
1 ),QL

1 )+ γH
(
π1(p

H
1 ,m

∗(pL
1 , p

H
1 ),QH

1 )−RH
1 (p

H
1 )

))
−
(
γLπ1(p

L
1 ,m

∗(pL
1 , p

H
1 ),QL

1 )

+ γH
(
π1(p

′H
1 ,m∗(pL

1 , p
H
1 ),QH

1 )−RH
1 (p

′H
1 )

))
= γH

((
π1(p

H
1 ,m

∗(pL
1 , p

H
1 ),QH

1 )−RH
1 (p

H
1 )

)
−
(
π1(p

′H
1 ,m∗(pL

1 , p
H
1 ),QH

1 )−RH
1 (p

′H
1 )

))
≤ 0.

The first inequality holds because γLπ1(p
L
1 ,m

∗(pL
1 , p

H
1 ),QL

1 ) + γH
(
π1(p

′H
1 ,m∗(pL

1 , p
H
1 ),QH

1 ) ≤

γLπ1(p
L
1 ,m

∗(pL
1 , p

′H
1 ),QL

1 ) + γH
(
π1(p

′H
1 ,m∗(pL

1 , p
′H
1 ),QH

1 ); the second inequality holds because

π1(p
H
1 ,m,QH

1 ) − RH
1 (p

H
1 ) is decreasing in pH

1 for any m. Therefore, γLπ1(p
L
1 ,m

∗(pL
1 , p

H
1 ),QL

1 ) +

γH
(
π1(p

H
1 ,m

∗(pL
1 , p

H
1 ),QH

1 )− RH
1 (p

H
1 )

)
is decreasing in pH

1 and there exists a threshold p̌H
1 such that the

flexible EW is more profitable if (pL
1 −λβγL)/γH ≤ pH

1 < p̌H
1 , where p̌H

1 is

p̌H
1 = inf

{
pH
1 ≥ 0 : π1(p

H
1 ,m

∗(pL
1 , p

H
1 ),QH

1 )≤ (pL
1 −λβ)c

∑T

i=1

∏i

j=1(1− q(j))− γL

γH ·π1(p
L
1 ,m

∗(pL
1 , p

H
1 ),QL

1 )
}
.



If pH
1 < (pL

1 −λβγL)/γH , the traditional EW captures both segments L and H, and that the flexible EW

is more profitable is equivalent to

γLπ1(p
L
1 ,m

∗(pL
1 , p

H
1 ),QL

1 )+ γHπ1(p
H
1 ,m

∗(pL
1 , p

H
1 ),QH

1 )≥RL
1 (p

L
1 )−S1(Q1) = (pL

1 −λβ)c
∑T

i=1

∏i

j=1(1− q(j)).

The profit of the traditional EW is independent of the prior pH
1 as long as pH

1 > pL
1 and we only need to show

that γLπ1(p
L
1 ,m

∗(pL
1 , p

H
1 ),QL

1 ) + γHπ1(p
H
1 ,m

∗(pL
1 , p

H
1 ),QH

1 ) is increasing in pH
1 . Similarly, for any p′H

1 ≤ pH
1 ,

we have(
γLπ1(p

L
1 ,m

∗(pL
1 , p

H
1 ),QL

1 )+ γHπ1(p
H
1 ,m

∗(pL
1 , p

H
1 ),QH

1 )
)
−
(
γLπ1(p

L
1 ,m

∗(pL
1 , p

′H
1 ),QL

1 )+ γHπ1(p
′H
1 ,m∗(pL

1 , p
′H
1 ),QH

1 )
)

≥
(
γLπ1(p

L
1 ,m

∗(pL
1 , p

′H
1 ),QL

1 )+ γHπ1(p
H
1 ,m

∗(pL
1 , p

′H
1 ),QH

1 )
)
−
(
γLπ1(p

L
1 ,m

∗(pL
1 , p

′H
1 ),QL

1 )+ γHπ1(p
′H
1 ,m∗(pL

1 , p
′H
1 ),QH

1 )
)

= γH
(
π1(p

H
1 ,m

∗(pL
1 , p

′H
1 ),QH

1 )−π1(p
′H
1 ,m∗(pL

1 , p
′H
1 ),QH

1 )
)
≥ 0.

The first inequality holds because m∗(pL
1 , p

H
1 ) is the optimal monthly premium in the heterogeneous mar-

ket of two segments with prior estimates of failure probabilities (pL
1 , p

H
1 ) and γLπ1(p

L
1 ,m

∗(pL
1 , p

H
1 ),QL

1 ) +

γHπ1(p
H
1 ,m

∗(pL
1 , p

H
1 ),QH

1 ) ≥ γLπ1(p
L
1 ,m

∗(pL
1 , p

′H
1 ),QL

1 ) + γHπ1(p
H
1 ,m

∗(pL
1 , p

′H
1 ),QH

1 ); the second inequality

holds because π1(p
H
1 ,m),QH

1 ) is increasing in pH
1 for any m by Proposition 6. Therefore, there exists a

threshold p̂H
1 such that the flexible EW is strictly more profitable if p̂H

1 < pH
1 < (pL

1 −λβγL)/γH , where

p̂H
1 = sup

{
pH
1 ≥ 0 : π1(p

H
1 ,m

∗(pL
1 , p

H
1 ),QH

1 )≤ 1
γH (pL

1 −λβ)c
∑T

i=1

∏i

j=1(1− q(j))− γL

γH ·π1(p
L
1 ,m

∗(pL
1 , p

H
1 ),QL

1 )
}
.

�
Proof of Proposition 7. The maximum willingness-to-pay of type-L and type-H customers are

RL
1 (p

L
1 ) and RH

1 (p
H
1 ), respectively. Under martingale updating schemes and Assumption 4, Rn

1 (p
n
1) =

pn
1c

∑T

i=1

∏i

j=1(1 − q(j)), n ∈ {L,H}. Moreover, RH
1 (p

H
1 ) ≥ RL

1 (p
L
1 ) because pH

1 ≥ pL
1 . From Lemma 4,

SL
1 (QL

1 )) = λLβc
∑T

i=1

∏i

j=1(1− q(j)) and SH
1 (QH

1 )) = λHβc
∑T

i=1

∏i

j=1(1− q(j)).

When the traditional EW captures two market segments, the optimal price is r=RL
1 (p

L
1 ) and the profit is

πt
HL = γL(RL

1 (p
L
1 )−SL

1 (QL
1 ))+ γH(RL

1 (p
L
1 )−SH

1 (QH
1 )); when it only captures segment H, the optimal price

is r=RH
1 (p

H
1 ) and the profit is πt

H = γH(RH
1 (p

H
1 )−SH

1 (QH
1 )). That π

t
HL >πt

H is equivalent to γHRH
1 (p

H
1 )<

RL
1 (p

L
1 )− γLSL

1 (QL
1 ). If the termination probabilities are the same for type-L and type-H customers, i.e.,

QL
1 =QH

1 , then πt
HL >πt

H can be further simplified to pH
1 <

pL1 −λLβγL

γH . �
Proof of Theorem 6. Note that the thresholds of the optimal policies for the two segments are also the

same but the purchase durations are different due to different true failure probabilities. Denote the expected

cost to both types of customers as R1(p1) if buying pay-as-you-go services. For the traditional EW provider,

denote the expected support cost to a type-L (resp., type-H) customer as SL
1 (Q1) (resp., S

H
1 (Q1)). The total

expected profit is equal to

γL
(
R1(p1)−SL

1 (Q1)
)
+ γH

(
R1(p1)−SH

1 (Q1)
)
.

Let πL
t (pt,m,Qt) (resp., πH

t (pt,m,Qt)) be the flexible EW provider’s expected profit per type-L (resp.,

type-H) customer. Similar to the case in a homogeneous market, πL
t (pt,m,Qt) and πH

t (pt,m,Qt) can be



found by solving the following dynamic programs.

If Rt(pt)−Bt(pt)≥ 0,

πL
t (pt,m,Qt) =m+λL(1− q0(t))

(
πt+1(p

+
t+1,m,Qt+1)−βc

)
+(1−λL)(1− q1(t))πt+1(p

−
t+1,m,Qt+1),

πH
t (pt,m,Qt) =m+λH(1− q0(t))

(
πt+1(p

+
t+1,m,Qt+1)−βc

)
+(1−λH)(1− q1(t))πt+1(p

−
t+1,m,Qt+1).

If Rt(pt)−Bt(pt)< 0, πL
t (pt,m,Qt) = πH

t (pt,m,Qt) = 0.

Similar to the proof of Theorem 4, we can easily show that γL(πL
1 (p1,m,Q1)−R1(p1))+γH(πH

1 (p1,m,Q1)−

R1(p1)) is decreasing in p1. Therefore, there exists a threshold p♯
1 for the profitability of the flexible EW

compared to the traditional EW in a heterogeneous market with two segments only differing in the true

failure probability. �

Appendix B: Single Flexible EW vs. Multiple Traditional EWs

As an alternative to offering a flexible EW to differentiate customers and achieve market segmentation, a

provider may instead offer multiple traditional EWs with different coverage durations at different prices. In

this section we consider this alternative and compare the profitability of a single flexible EW versus multiple

traditional EWs in a heterogeneous market.

Suppose that the provider can offer two traditional EWs with durations T and τ respectively, assuming

τ < T . Using the same notations, the willingness-to-pay for the traditional EW with duration τ can be

expressed by Rn
1 (p

n
1)−E[Rn

τ+1(p
n
τ+1)] and the support cost to the warranty provider is Sn

1 (Qn
1)−Sn

τ+1(Qn
τ+1)

for a type-n customer, where E[·] denotes the expectation with respect to pn
τ+1, n ∈ {L,H}. Again, each

customer will select the alternative with the lowest total support cost under the assumption of individual

rationality.

The provider’s problem is to determine prices for the two traditional EWs, denoted by r and rτ respectively,

to maximize the total expected profit:

max
r≥0,rτ≥0

∑
n∈{L,H}

γn
{
(r−Sn

1 (Qn
1)) ·1

(
r≤Rn

1 (p
n
1), r≤ rτ +E[Rn

τ+1(p
n
τ+1)]

)
+
(
rτ −Sn

1 (Qn
1)

+Sn
τ+1(Qn

τ+1)
)
·1

(
rτ +E[Rn

τ+1(p
n
τ+1)]≤Rn

1 (p
n
1), rτ +E[Rn

τ+1(p
n
τ+1)]< r

)}
,

(15)

where the indicator functions 1(·) state the incentive compatibility constraints under which customers will

select the alternative with the lowest support cost.

We assume that a customer will buy the traditional EW with longer duration if she is indifferent in

the total expected support cost between the EWs with durations T and τ . We will show the profitability

comparison by the following numerical example.

Example 7. We continue with Example 4 in a heterogeneous market of two segments with proportions

γL = 65% and γH = 35%. The termination probabilities are: qL0 (t) = qL1 (t) = 0 for t = 1,2, . . . ,6; qL0 (t) =

25%, qL1 (t) = 5% for t= 7,8, . . . ,12; qH0 (t) = 15%, qH1 (t) = 5% for t= 1,2, . . . ,12. We will fix the prior monthly

failure probability of type-H customers at pH
1 = 3% and study the profitability variation with respect to pL

1 ,

the prior failure probability of type-L customers.



Figure 6 Single Flexible EW vs. Two Traditional EWs in a Heterogeneous Market
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Figure 6 shows the profitability comparison between a single flexible EW and two traditional EWs with dif-

ferent durations. For 0≤ pL
1 ≤ 1.5%, the optimal traditional EWs are priced such that only type-H customers

buy the warranty with duration T and the total profit are constantly equal to $3.05; for 1.6%≤ pL
1 < 1.9%,

type-L customers purchase the traditional EW with duration τ = 6 and type-H customers buy the one with

duration T = 12; for 1.9%≤ pL
1 ≤ 2.7%, both the segments buy the traditional EW with duration T = 12; for

pL
1 ≥ 2.7%, the optimal combination of two traditional EWs only captures type-L customers.

As shown by Figure 6, there are clearly instances where the flexible EW is more profitable than a menu

of traditional EWs with varying lengths, i.e., 1.1% ≤ pL
1 ≤ 1.9%. For example, when pL

1 = 1.5%, the profit

of a single flexible EW is $4.55, which is 41% improvement than the menu of two traditional EWs. This

underscores the finding that the flexible EWs are advantageous when the market contains customers who

initially underestimate the failure probability. �




