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Supplement to “Intertemporal Segmentation via

Flexible-Duration Group Buying”

A. Comparison with Group-Buying Literature

Through careful comparison with all the existing group-buying literature, we find that the models

in most of the group-buying papers are not readily extendable to the case in which the deadline T

goes to infinity. Besides, even though the models in a few papers allow such an extension, they do

not study exactly what is studied in our paper. We will explain in detail below.

First and foremost, Anand and Aron (2003), Chen and Zhang (2015) and Marinesi et al. (2018)

regard group buying as a mechanism of offering a contingent quantity discount, and show that

the profitability of group buying results from its better response to demand uncertainty. Chen and

Roma (2011) and Jing and Xie (2011) also view group buying as a way to offer a quantity discount

while considering other scenarios. These papers do not take into account customers’ dynamic

sign-up behavior, since they do not assume that customers arrive sequentially. In addition, these

papers do not explicitly consider a deadline T , although there is a deadline for group buying in

the practical business examples they discuss. Consequently, the models in these papers cannot be

extended to accommodate an infinite deadline of T , and moreover, these papers do not contain the

main insights of our paper.

Second, Hu et al. (2013) and Hu et al. (2015) consider customers’ sequential arrival and the

resulting sequential sign-up process. In particular, they develop a two-person and two-period model

where one customer arrives in each period. The group-buying (or crowd-funding) deal succeeds if

and only if both customers sign up for the deal. While we find that the models in these two papers

can be extended to accommodate an infinite deadline (i.e., an N -person and N -period model where

N goes to infinity), they differ significantly from what is studied in our paper. Notice that the

minimum number of sign-ups required in these two papers would also be N , and thus the success

rate of a group-buying deal is still less than 1 as in the case of a finite N , which means there is a

positive probability that group buying may not reach the target. Besides, the high-end customers

may have an incentive to sign up earlier or pay a higher price compared with the low-end customers

due to lack of certainty of success of a group-buying deal, a result of the all-or-nothing nature of

fixed-duration group buying. However, recall that an important characteristic of flexible-duration

group buying is that the success rate is always 1, which means the group-buying campaign is

guaranteed to succeed, even though the waiting times are random and can be long. Moreover, in

flexible-duration group buying, the different sign-up incentives for high- and low-end customers are



2

not driven by the success uncertainty of a group-buying deal, as in fixed-duration group buying.

Rather, they are driven by waiting costs. Therefore, the models in our paper cannot be regarded

as a special case of the models studied in these two papers. (In the main body of the paper, we

discuss in detail the differences in what drives sign-up behavior in flexible- and fixed-duration group

buying.)

Finally, Surasvadi et al. (2017) and Liu and Tunca (2019) assume that customers arrive according

to a Poisson process, and thus, customers sign up for the group-buying deal sequentially and

dynamically. Although the models in these two papers can be extended to accommodate an infinite

deadline T and the corresponding success rate would be 1, the insights differ significantly from those

in our paper. In particular, Surasvadi et al. (2017) propose a contingent markdown mechanism that

resembles group buying, in which the discount price will be offered not only to the sign-ups but also

to all subsequent buyers if the number of sign-ups reaches a pre-specified threshold, or at the end of

the selling season, whichever comes first. In fact, there are important distinctions between the work

of Surasvadi et al. (2017) and ours even if the deadline T goes to infinity. First, the reason for signing

up differs. In Surasvadi et al. (2017), customers sign up and wait for the discount price, and they also

have the option of purchasing the same product at the (higher) regular price and taking immediate

possession. On the contrary, in our paper, customers sign up and wait for a different product (that

can be either horizontally or vertically differentiated from the regular product), which is unavailable

in other channels. Second, customers’ sign-up incentives are different. In Surasvadi et al. (2017),

the low-end customers can never afford to purchase the product at the regular price and thus

have to sign up and wait for the discount price, so their purchasing behavior is independent of the

high-end customers’ sign-up behavior. By contrast, in our paper, the low-end customers can afford

the immediate purchase option and can choose whether to sign up; hence, the low-end customers’

sign-up behavior is influenced by that of the high-end customers and vice versa. Third, Surasvadi

et al. (2017) essentially study intertemporal price discrimination between customers with different

valuations, while our work focuses on intertemporal customer segmentation (we have discussed in

detail how intertemporal customer segmentation differs from intertemporal price discrimination;

see the second paragraph on page 9). In particular, in intertemporal price discrimination, the

firm proactively discriminates between different segments of customers by offering time-varying

prices. By contrast, in intertemporal customer segmentation as studied in our paper, the price

of the group-buying product remains unchanged; hence, the firm passively discriminates between

customers based on their different expected waiting times (and costs). Fourth, Surasvadi et al.

(2017) consider “a single instance interaction between the seller and the consumers” and assume
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that once the deal is on, all subsequent consumers can purchase at the discount price; while in our

paper, once a group-buying deal concludes, another new group-buying deal begins immediately.

Fifth, Surasvadi et al. (2017) assume a limited inventory of the product, and hence, the group-

buying state is composed of the number of sign-ups and the on-hand inventory level; while in our

paper, there is no inventory limitation for the group-buying product since the firm produces the

group-buying product in a batch of size N immediately after the deal is on, and thus, the state of

the group-buying deal is only related to the number of sign-ups.

On the other hand, Liu and Tunca (2019) characterize the stochastic dynamic equilibrium behav-

ior of consumers’ pledging in a group buying with two threshold levels by a recursive differential

and difference equation system. They focus on empirically estimating consumer arrival rates and

utility distributions utilizing data from group-buying events hosted by an online retailer, and pro-

viding empirical evidence for consumer network effects in group buying. By contrast, in our paper,

we consider only one threshold level and focus on the potential implications of intertemporal cus-

tomer segmentation. While intertemporal customer segmentation can exist in the context studied

in their paper, the authors do not formally characterize this behavior, and more importantly, the

underlying driving force differs significantly. (In the main body of the paper, we discuss in detail

the differences between the driving forces of sign-up behavior in flexible- and fixed-duration group

buying.) In particular, Liu and Tunca (2019) do not consider time discounting. Hence intertem-

poral customer segmentation, even if it exists in their model, is driven by sign-up risks under the

finite horizon assumption, and would not exist any more when the horizon is taken to infinity.

B. Premium Group-Buying Product

Proof of Lemma A.1. We prove the lemma by induction. For any state n (1 ! n ! N), there

are three possible cases depending on which segment signs up: high-end segment only (Case 1);

low-end segment only (Case 2); and both segments (Case 3). Suppose a high-end customer signs

up at state n (Case 1), implying that the following IR and IC constraints must be satisfied:

IRH : θH − pG − c ·wG(n)" 0,

ICH : θH − pG − c ·wG(n)"H − rG.

Regardless of what the prices pG and rG are, since wG(n) is monotonously increasing in n, and

the surpluses of purchasing the regular product remain the same for the high-end customers (i.e.,

H− rG), θH−pG− c ·wG(n−1)>H− rG always holds. Thus, a high-end customer who arrives at

state n− 1 would also sign up, because the following constraints can always be satisfied:

IRH : θH − pG − c ·wG(n− 1)> 0,

ICH : θH − pG − c ·wG(n− 1)>H − rG.
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This analysis ensures that once a high-end customer signs up at the specific state n, all the following

high-end customers will also join the group buying. On the other hand, if no high-end customer

signs up at the specific state n, it is implied that θH − pG − c · wG(n) < max{H − rG,0}. This

cannot guarantee that the next arriving high-end customer will also be unwilling to sign up. Cases

2 and 3 can be proved analogously. □

Proof of Proposition A.1. The result follows directly from comparing the profit functions of

the volume, margin, and product-line strategies. Below, we demonstrate how we solve for the

equilibrium in the product-line strategy. In order to sell the premium product to high-end customers

and the regular product to low-end ones, the firm sets the prices while satisfying the following IR

and IC constraints: ,
---.

---/

IRH : θH − pP " 0,

ICH : θH − pP "H − rP,

IRL :L− rP " 0,

ICL :L− rP " θL− pP.

In equilibrium, ICH and IRL are binding, and hence, rP = L and pP = (θ − 1)H + L. The total

inventory holding cost when the firm sells N premium products is

Nh
1

γλ
+(N − 1)h

1

γλ
+ · · ·+h

1

γλ
=

hN(N +1)

2γλ
.

Thus, the firm’s long-run average profit is

πP =
NpP +N 1−γ

γ
rP − hN(N+1)

2γλ

N
γλ

= (θ− 1)Hγλ+Lλ− (N +1)h

2
.

Moreover, the threshold h̄1 for the inventory holding cost h is defined as

h̄1 ≡min

2
2(θ− 1)Hγλ

N +1
,
2(θ− 2)Hγλ+2(1− γ)Lλ

N +1

3
. □

Proof of Corollary 3. The results follow directly from comparing total sales volumes of different

strategies in equilibrium. □

Proof of Corollary 4. (i) Both N̄1 and N̄2 increase in λ.

(ii) x̄G
1 decreases in λ.

(iii) pG and πG always increase in λ regardless of the customer segmentation.

(iv) SG
H(n) and SG

L (n) always (weakly) decrease in λ regardless of the segmentation. □
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C. Contingent Pricing

Proof of Proposition B.1. In similar fashion to the proof of Propositions 1 and 2, there are five

possible scenarios in total for customer segmentation.1 Define the following two cases for ease of

analysis. In Case I, x̄C = 0, 1 ! x̄C < N , and x̄C = N represent scenarios {H}, {H;H + L}, and

{H +L}, respectively. In Case II, x̄C = 0 and 1! x̄C <N represent scenarios {L} and {L;L+H},

respectively. In equilibrium, the prices pC1 , p
C
2 , and rC should satisfy the IR and IC constraints.

For Case I, the IR and IC constraints are
,
-------------.

-------------/

IRH1 : θH − pC1 − c ·wC(n)" 0 x̄C <n!N,

ICH1 : θH − pC1 − c ·wC(n)"H − rC x̄C <n!N,

IRH2 : θH − pC2 − c ·wC(n)" 0 1! n! x̄C,

ICH2 : θH − pC2 − c ·wC(n)"H − rC 1! n! x̄C,

IRL1 :L− rC " 0 x̄C <n!N

ICL1 :L− rC " θL− pC1 − c ·wC(n) x̄C <n!N,

IRL2 : θL− pC2 − c ·wC(n)" 0 1! n! x̄C,

ICL2 : θL− pC2 − c ·wC(n)"L− rC 1! n! x̄C,

where 0! x̄C !N and the expected waiting time wC(n) is

wC(n) =

&
n−1
λ

1! n! x̄C,
x̄C

λ
+ n−x̄C−1

γλ
x̄C <n!N.

Since IRL1 is binding at any state n in equilibrium, we have rC(x̄C) =L. Since ICH1 is binding at

state n=N , we have pC1 (x̄
C) = (θ− 1)H +L− c ·wC(N). Besides, the constraint ICH2 is stronger

than ICL2 because (θ − 1)(H − L) > 0 always holds. In order to satisfy ICH2 at state n = x̄C,

pC2 (x̄
C) = θL− c ·wC(x̄C). So far, we have written all the prices as the functions of x̄C, so the firm’s

long-run average profit πC can be written as

πC(x̄C) =
*
pC1 (x̄

C) · γλ+ rC(x̄C) · (1− γ)λ
+
·P (n> x̄C)+

*
pC2 (x̄

C) ·λ
+
·P (n! x̄C)

=
[pC1 (x̄

C) · γλ+ rC(x̄C) · (1− γ)λ] · (N − x̄C)+ [pC2 (x̄
C) ·λ] · γx̄C

N − (1− γ)x̄C
.

Plugging pC1 (x̄
C), pC2 (x̄

C), and rC(x̄C) into the firm’s long-run average profit πC, we have

πC(x̄C) =
[(θ− 1)Hγ+L]λ(N − x̄C)+ θLγλx̄C − cγ(N − 1)x̄C − c(N − x̄C − 1)(N − x̄C)

N − (1− γ)x̄C
.

Take the second-order derivative of πC(x̄C) w.r.t. x̄C. Denote N̄ ≡ N/(1− γ) > N . We find that

on the one hand, if N > N̄C
1 , when x̄C < N̄ , ∂2πC(x̄C)

∂x̄C2 < 0 always holds, implying that πC(x̄C) is

1 Note that Lemma A.1 is also applicable under contingent pricing. Particularly for the state 1! n < x̄C and x̄C <
n ! N , this proof is similar to that of Lemma A.1. Moreover, for the tipping state x̄C, regardless of the values of
pC1 and pC2 , since the low-end customers begin to join the group buying, i.e., θL− pC2 − c ·wC(x̄C)" 0, the high-end
customers are also willing to join the group buying. That is because θH − pC2 − c ·wC(x̄C) "H − L can always be
satisfied when θ> 1.



6

concave in x̄C; when x̄C > N̄ , ∂2πC(x̄C)

∂x̄C2 > 0 always holds, implying that πC(x̄C) is convex in x̄C.

Besides, limx̄C→N̄− = −∞, limx̄C→N̄+ = +∞. In this case, the optimal x̄C within the constraint

0! x̄C !N , in which πC(x̄C) is concave in x̄C, is determined by x̄C = x̄C
1 , where x̄C

1 ≡N/(1− γ)−
4
cNγ [cN − (1− γ)(θ− 1)(L−Hγ)λ]/[c(1−γ)] is the unique reasonable solution to the first-order

condition ∂πC(x̄C)

∂x̄C
= 0.2 It is easy to verify that x̄C

1 <N if and only if N > N̄C
2 , and x̄C

1 > 0 if and

only if N > N̄C
3 . Note that N̄C

2 > N̄C
1 > 0 if and only if H/L< 1/γ, and N̄C

3 > 0> N̄C
1 if and only

if H/L> 1/γ.

On the other hand, if N < N̄C
1 , when x̄C < N̄ , ∂2πC(x̄C)

∂x̄C2 > 0 always holds, implying that πC(x̄C)

is convex in x̄C; when x̄C > N̄ , ∂2πC(x̄C)

∂x̄C2 < 0 always holds, implying that πC(x̄C) is concave in x̄C.

Besides, limx̄C→N̄− = +∞, limx̄C→N̄+ = −∞. In this case, the optimal x̄C within the constraint

0! x̄C !N , in which πC(x̄C) is convex in x̄C, is determined by the boundary, i.e., either 0 or N .

Therefore, combining the analyses above for Case I, the firm sets x̄C = x̄C
1 when N >

max{N̄C
2 , N̄

C
3 }; otherwise, the firm sets x̄C = N (x̄C = 0) when 0 < N ! max{N̄C

2 ,0} (0 < N !
max{N̄C

3 ,0}).

For Case II, the IR and IC constraints are
,
-------------.

-------------/

IRL1 : θL− pC1 − c ·wC(n)" 0 x̄C <n!N,

ICL1 : θL− pC1 − c ·wC(n)"L− rC x̄C <n!N,

IRL2 : θL− pC2 − c ·wC(n)" 0 1! n! x̄C,

ICL2 : θL− pC2 − c ·wC(n)"L− rC 1! n! x̄C,

IRH1 :H − rC " 0 x̄C <n!N,

ICH1 :H − rC " θH − pC1 − c ·wC(n) x̄C <n!N,

IRH2 : θH − pC2 − c ·wC(n)" 0 1! n! x̄C,

ICH2 : θH − pC2 − c ·wC(n)"H − rC 1! n! x̄C,

where 0! x̄C <N and the expected waiting time wC(n) is

wC(n) =

&
n−1
λ

1! n! x̄C,
x̄C

λ
+ n−x̄C−1

(1−γ)λ
x̄C <n!N.

The constraint ICL1 requires pC1 ! (θ− 1)L+ rC − c ·wC(N). The constraint ICH1 requires pC1 "
(θ− 1)H + rC − c ·wC(x̄C). Since wC(x̄C)! wC(N), the constraints ICL1 and ICH1 can never be

satisfied at the same time when θ> 1. Hence, Case II cannot form the equilibrium.

Comparing the results above, we define three thresholds for the batch size N :

N̄C
1 ≡ (θ− 1)(L−Hγ)(1− γ)λ

c
,

N̄C
2 ≡ (θ− 1)(L−Hγ)λ

c
,

N̄C
3 ≡ (θ− 1)(Hγ−L)γλ

c
.

2 The other solution is ruled out because it is always greater than N and is not within the constraint 0! x̄C !N .
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For a given L, N̄C
1 and N̄C

2 decrease in H/L, while N̄C
3 increases in H/L. Besides, N̄C

2 < N̄1 and

N̄C
3 < N̄2 always hold. Thus, the REE when offering group buying under contingent pricing is

(i) when H/L! 1/γ,

(1) if N ! N̄C
2 , x̄

C =N , rC = L, pC1 = (θ− 1)H +L− cN/λ+ c/(γλ), pC2 = θL− c(N − 1)/λ,

and πC = θLλ− c(N − 1);

(2) if N > N̄C
2 , x̄

C = x̄C
1 , r

C = L, pC1 = (θ − 1)H + L− c ·wC(N), pC2 = θL− c ·wC(x̄C), and

πC = πC
1 ;

(ii) when H/L> 1/γ,

(1) if N ! N̄C
3 , x̄C = 0, rC = L, pC1 = (θ − 1)H + L − c(N − 1)/(γλ), pC2 = θL, and πC =

(θ− 1)Hγλ+Lλ− c(N − 1);

(2) if N > N̄C
3 , x̄

C = x̄C
1 , r

C = L, pC1 = (θ − 1)H + L− c ·wC(N), pC2 = θL− c ·wC(x̄C), and

πC = πC
1 ;

where

πC
1 ≡ [(θ− 1)Hγ+L]λ(N − x̄C

1 )+ θLγλx̄C
1 − cγ(N − 1)x̄C

1 − c(N − x̄C
1 − 1)(N − x̄C

1 )

N − (1− γ)x̄C
1

. □

Proof of Proposition 3. We can prove the proposition by comparing the equilibrium prices pC1

and pC2 in Proposition B.1. On the one hand, when N >max{N̄C
2 , N̄

C
3 }, we can prove that pC1 >

pG > pC2 if and only if N < N̄C
8 , and pC1 < pG < pC2 if and only if N > N̄C

8 , where N̄C
8 is the unique

reasonable solution to the equation pC1 = pC2 . Note that N̄C
8 >max{N̄1, N̄2}>max{N̄C

2 , N̄
C
3 } always

holds. On the other hand, when N !max{N̄C
2 , N̄

C
3 }, we can easily prove that pC1 " pG " pC2 always

holds. Therefore, the corollary can be proved. □
Proof of Proposition B.2. By comparing the equilibrium profits of uniform pricing (see Propo-

sition 2) and contingent pricing (see Proposition B.1) for each customer segmentation, we can prove

that πC > πG always holds. In addition, by comparing the values of thresholds in Theorems 2 and

B.1, the second part of the corollary can be proved. In detail, the inequations N̄C
5 > N̄4, N̄

C
6 = N̄5,

N̄C
7 > N̄5, and N̄C

7 > N̄6 always hold. □
Proof of Theorem B.1. The range in which one strategy dominates the others follows directly

by comparing the profits. Define the following thresholds for the batch size N :

N̄C ≡

,
-.

-/

N̄C
5 H/L! 1/γ,

N̄C
7 H/L> 1/γ , N̄C

6 > N̄C
3 ,

max{N̄C
6 , N̄

C
7 } H/L> 1/γ , N̄C

6 ! N̄C
3 ,

N̄C
4 ≡ (θ− 1)Lλ

c
+1,

N̄C
6 ≡ [L+(θ− 2)Hγ]λ

c
+1,
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where N̄C
5 and N̄C

7 are the unique positive solution to the equations πC = πV and πC = πM, respec-

tively. By comparison, N̄C
4 = N̄3 > N̄C

2 and N̄C
5 > N̄C

2 always hold. N̄C
4 increases in L. For a given

L, N̄C
5 increases in H/L, N̄C

6 increases in H/L when θ> 2 while decreasing in H/L when 1< θ! 2,

N̄C
7 increases in H/L when θ> θ̄C while decreasing in H/L when 1< θ! θ̄C, where θ̄C > 2. Besides,

when θ> θ̄C, we have N̄C
6 > N̄C

3 and N̄C
7 > N̄C

3 .

Figure C.1 illustrates the regions in the parameter space where it is optimal to offer group

buying, and the resulting market segmentation.

Figure C.1 Optimal Group-Buying Strategy and Customer Segmentation under Contingent Pricing

(a) θ> θ̄C (b) 1< θ! θ̄C

□

D. Unobservable Group Buying

Proof of Proposition C.1. When the pledge-to-go state n is unobservable, there are only three

possible scenarios: only high-end customers sign up (referred to as scenario {H}); only low-end

customers sign up (referred to as scenario {L}); both high- and low-end customers sign up (referred

to as scenario {H +L}). Note that market partitions {H;H +L} and {L;L+H} are not feasible

here because customers cannot infer the expected waiting time from different states when n is

unobservable.

For scenario {H}, the IR and IC constraints are

,
---.

---/

IRL :L− rU " 0,

ICL :L− rU " θL− pU − c ·wU,

IRH : θH − pU − c ·wU " 0,

ICH : θH − pU − c ·wU "H − rU,
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where the expected waiting time wU is

wU =
N!

n=1

n− 1

γλ
·P (n) =

N − 1

2γλ
.

In equilibrium, IRL and ICH are binding. Thus, rU =L, and pU = (θ− 1)H +L− c(N − 1)/(2γλ),

πU = (θ− 1)Hγλ+Lλ− c(N − 1)/2.

For scenario {L}, the IR and IC constraints are

,
---.

---/

IRL : θL− pU − c ·wU " 0,

ICL : θL− pU − c ·wU "L− rU,

IRH :H − rU " 0,

ICH :H − rU " θH − pU − c ·wU,

where the expected waiting time wU is

wU =
N!

n=1

n− 1

(1− γ)λ
·P (n) =

N − 1

2(1− γ)λ
.

The constraints ICL and ICH cannot be satisfied at the same time, because ICL requires pU !

(θ−1)L+rU−c ·wU, and ICH requires pU " (θ−1)H+rU−c ·wU, which are contradictory. Hence,

the second scenario cannot become the equilibrium.

For scenario {H +L}, the IR and IC constraints are

,
---.

---/

IRL : θL− pU − c ·wU " 0,

ICL : θL− pU − c ·wU "L− rU,

IRH : θH − pU − c ·wU " 0,

ICH : θH − pU − c ·wU "H − rU,

where the expected waiting time wU is

wU =
N!

n=1

n− 1

λ
·P (n) =

N − 1

2λ
.

In equilibrium, rU ∈ [L,+∞), pU = θL− c(N − 1)/(2λ), and πU = θLλ− c(N − 1)/2.3

Comparing the results above, the REE when offering the unobservable group buying is

(i) when H/L! 1/γ, rU = θL, pU = θL− c(N − 1)/(2λ), and πU = θLλ− c(N − 1)/2;

(ii) when H/L> 1/γ, rU =L, pU = (θ− 1)H +L− c(N − 1)/(2γλ), and πU = (θ− 1)Hγλ+Lλ−

c(N − 1)/2. □

3 Since no customer purchases the regular product in this scenario, the value of rU has no impact on the equilibrium
profit and customer segmentation as long as rU "L.
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Proof of Theorem C.1. The range in which one strategy dominates the others follows directly

by comparing the profits. Define the following thresholds for the batch size N :

N̄U ≡
&
N̄U

1 H/L! 1/γ,

N̄U
2 H/L> 1/γ,

N̄U
1 ≡ 2(θ− 1)Lλ

c
+1,

N̄U
2 ≡ 2 [L+(θ− 2)Hγ]λ

c
+1.

N̄U
1 increases in L. For a given L, N̄U

2 increases in H/L when θ> 2 while decreasing in H/L when

1< θ! 2. Besides, N̄U
1 > N̄U

2 if and only if H/L< 1/γ.

Figure D.1 illustrates the regions in the parameter space where it is optimal to offer group

buying, and the resulting market segmentation.

Figure D.1 Optimal Unobservable Group-Buying Strategy and Customer Segmentation

(a) θ> 2 (b) 1< θ! 2

□

Proof of Proposition C.2. By comparing the equilibrium profits of the observable case (see

Proposition 2) and the unobservable case (see Proposition C.1), we can prove that when N !

max{N̄1, N̄2}, πU > πG always holds. As for N >max{N̄1, N̄2}, we find a sufficient condition of πU >

πG. Specifically, when θ→+∞, limθ→+∞ πU =+∞> cN [γH +(1− γ)L]/ [(1− γ)(H −L)]+Lλ=

limθ→+∞ πG, implying that there exists a positive threshold θ̄U0 such that πU > πG always holds for

θ > θ̄U0 due to the continuity. In addition, by comparing the values of thresholds in Theorems 2

and C.1, the second part of the corollary can be proved. In detail, N̄U
1 > N̄4 if and only if θ> θ̄U1 ;

N̄U
2 > N̄5 if and only if θ > θ̄U2 ; N̄

U
2 > N̄1 if and only if θ > θ̄U3 ; and N̄U

2 > N̄6 if and only if θ > θ̄U4 ,
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where θ̄U4 is the unique positive solution to the equation N̄U
2 = N̄6, and other thresholds for θ are

defined as

θ̄U1 ≡ c(1− γ)

[L− (H −L)γ]λ
+1,

θ̄U2 ≡ 2− L

Hγ
,

θ̄U3 ≡ 2(Hγ−L)λ− cγ

[2Hγ−L(1− γ)]λ
+1,

θ̄U ≡
&
θ̄U1 H/L! 1/γ,

max{θ̄U2 , θ̄U3 , θ̄U4 } H/L> 1/γ. □

E. Heterogeneous Waiting Costs

We study group buying with customers’ heterogeneous waiting costs, with the superscript “D”

denoting the equilibrium outcome.

Lemma E.1 (Customers’ Sign-up Behavior with Heterogeneous Waiting Costs). If

customers have heterogeneous waiting costs, for any θ ∕= 1 and N , if high-end (low-end) customers

sign up at state n (1 ! n !N), then all high-end (low-end) customers sign up at any subsequent

state n′ (1! n′ ! n).

Proof of Lemma E.1. We prove the lemma by induction. For any state n (1 ! n ! N), there

are three possible cases depending on which segment signs up: high-end segment only (Case 1);

low-end segment only (Case 2); and both segments (Case 3). Suppose a high-end customer signs

up at state n (Case 1), implying that the following IR and IC constraints must be satisfied:

IRH : θH − pD − cH ·wD(n)" 0,

ICH : θH − pD − cH ·wD(n)"H − rD.

Regardless of what the prices pD and rD are, since wD(n) is monotonously increasing in n, and

the surpluses of purchasing the regular product remain the same for the high-end customers (i.e.,

H − rD), θH − pD − cH ·wD(n− 1)>H − rD always holds. Thus, a high-end customer who arrives

at state n− 1 would also sign up, because the following constraints can always be satisfied:

IRH : θH − pD − cH ·wD(n− 1)> 0,

ICH : θH − pD − cH ·wD(n− 1)>H − rD.

The analysis above ensures that once a high-end customer signs up at the specific state n, all the

following high-end customers will also join the group buying. On the other hand, if no high-end

customer signs up at the specific state n, it implies that θH − pD − cH ·wD(n)<max{H − rD,0}.

This cannot guarantee that the next arriving high-end customer will also be unwilling to sign up.

Cases 2 and 3 can be proved analogously. □



12

Proof of Proposition D.1. By Lemma E.1, if the high-end customers sign up first, there are

three possible scenarios: {H}, {H;H +L}, and {H +L}, which are defined as Case I for ease of

analysis. Similarly, if the low-end customers sign up first, there are also three possible scenarios:

{L}, {L;H +L}, and {L+H}, which are defined as Case II. We use the tipping state x̄D to stand

for different scenarios. To be specific, in Case I, x̄D = 0, 1! x̄D <N , and x̄D =N represent scenarios

{H}, {H;H+L}, and {H+L}, respectively. In Case II, x̄D = 0, 1! x̄D <N , and x̄D =N represent

scenarios {L}, {L;H +L}, and {L+H}, respectively.

For Case II, the IR and IC constraints are

,
--------.

--------/

IRL : θL− pD − cL ·wD(n)" 0 1! n!N,

ICL : θL− pD − cL ·wD(n)"L− rD 1! n!N,

IRH1 :H − rD " 0 x̄D <n!N,

ICH1 :H − rD " θH − pD − cH ·wD(n) x̄D <n!N,

IRH2 : θH − pD − cH ·wD(n)" 0 1! n! x̄D,

ICH2 : θH − pD − cH ·wD(n)"H − rD 1! n! x̄D,

where 0! x̄D <N and the expected waiting time wD(n) is

wD(n) =

&
n−1
λ

1! n! x̄D,
x̄D

λ
+ n−x̄D−1

(1−γ)λ
x̄D <n!N.

In equilibrium, IRL is binding at state n=N . Thus, pD(x̄D) = θL− cL ·wD(N). Define two prices

r̄D1 (x̄
D)≡ pD(x̄D)− (θ− 1)H + cH ·wD(x̄D), and r̄D2 (x̄

D)≡ pD(x̄D)− (θ− 1)L+ cL ·wD(N). We can

see that r̄D1 (x̄
D)! r̄D2 (x̄

D) holds if and only if cH ! c̄H , where

c̄H ≡ (θ− 1)(H −L)(1− γ)λ+ cL(N − 1− γx̄D)

(1− γ)(x̄D − 1)
.

To satisfy ICH1 and ICL, the price r
D should meet the constraints rD < r̄D1 (x̄

D) and rD " r̄D2 (x̄
D).

Therefore, when cH ! c̄H , since r̄D1 (x̄
D)! r̄D2 (x̄

D), it is impossible to satisfy these two constraints

at the same time, and hence Case II cannot become the equilibrium. In contrast, when cH > c̄H ,

since r̄D1 (x̄
D)> r̄D2 (x̄

D), it is possible to satisfy these two constraints at the same time, and hence

Case II can become the equilibrium.

Using similar logic, we can show that when cH ! c̄H , Case I can become the equilibrium; while

when cH > c̄H , Case I cannot become the equilibrium, which proves the proposition. □

Proof of Proposition D.2. Based on Proposition D.1, we consider the regions of cH ! c̄H and

cH > c̄H separately.

First, when cH ! c̄H , Case I can be the equilibrium, and the IR and IC constraints are
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,
--------.

--------/

IRH : θH − pD − cH ·wD(n)" 0 1! n!N,

ICH : θH − pD − cH ·wD(n)"H − rD 1! n!N,

IRL1 :L− rD " 0 x̄D <n!N,

ICL1 :L− rD " θL− pD − cL ·wD(n) x̄D <n!N,

IRL2 : θL− pD − cL ·wD(n)" 0 1! n! x̄D,

ICL2 : θL− pD − cL ·wD(n)"L− rD 1! n! x̄D,

where 0! x̄D !N and the expected waiting time wD(n) is

wD(n) =

&
n−1
λ

1! n! x̄D,
x̄D

λ
+ n−x̄D−1

γλ
x̄D <n!N.

In equilibrium, IRL1 is binding. Thus, r
D(x̄D) =L. Whether ICH or ICL2 is binding in equilibrium

depends on the relative size of x̄D. Since wD(n) is monotonously increasing in n, no matter whether

ICH or ICL2 is binding, the binding must happen at the largest possible state n. Define two prices

p̄D1 (x̄
D)≡ θL−cL ·wD(x̄D), p̄D2 (x̄

D)≡ (θ−1)H+L−cH ·wD(N), and we know that p̄D1 (x̄
D)< p̄D2 (x̄

D)

if and only if x̄D > x̄D
1 , where

x̄D
1 ≡ cH(N − 1)+ cLγ− (θ− 1)(H −L)γλ

γcL +(1− γ)cH
.

Then, we can write the price pD as the function of tipping state x̄D:

pD(x̄D) =

&
p̄D2 (x̄

D) 1! x̄D ! x̄D
1 ,

p̄D1 (x̄
D) x̄D

1 < x̄D !N.

We then derive the firm’s long-run average profit πD, also as the function of tipping state x̄D:

πD(x̄D) =
*
pD(x̄D) · γλ+ rD(x̄D) · (1− γ)λ

+
·P (n> x̄D)+

*
pD(x̄D) ·λ

+
·P (n! x̄D)

=
[pD(x̄D) · γλ+L(1− γ)λ] · N−x̄D

γλ
+ [pD(x̄D) ·λ] · x̄D

λ

x̄D

λ
+ N−x̄D

γλ

=
pD(x̄D) · γλN +L(1− γ)λ(N − x̄D)

N − (1− γ)x̄D
.

For x̄D
1 < x̄D !N , plugging pD(x̄D) = p̄D1 (x̄

D) into πD(x̄D), we have

πD(x̄D) =
θLγλN +L(1− γ)λ(N − x̄D)− cLγN(x̄D − 1)

N − (1− γ)x̄D
.

Taking the first-order derivative of πD(x̄D) w.r.t. x̄D, we have

∂πD(x̄D)

∂x̄D
=

γN [L(1− γ)(θ− 1)λ− cL(N − 1+ γ)]

[N − (1− γ)x̄D]
2 .

We can see that ∂πD(x̄D)

∂x̄D
" 0 if and only if N ! N̄D

1 . Therefore, for x̄
D
1 < x̄D !N , when N ! N̄D

1 , the

firm sets x̄D =N ; when N > N̄D
1 , the firm sets x̄D = x̄D

1 . Note that x̄D
1 > 0 if and only if N > N̄D

2 .
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For 1! x̄D ! x̄D
1 , plugging pD(x̄D) = p̄D2 (x̄

D) into πD(x̄D), we have

πD(x̄D) =
[(θ− 1)H +L]γλN +L(1− γ)λ(N − x̄D)− cHN(N − 1)+ cH(1− γ)Nx̄D

N − (1− γ)x̄D
.

Taking the first-order derivative of πD(x̄D) w.r.t. x̄D, we have

∂πD(x̄D)

∂x̄D
=

(1− γ)N [cH +(θ− 1)Hγλ]

[N − (1− γ)x̄D]
2 > 0.

Since ∂πD(x̄D)

∂x̄D
> 0 always holds, for 1! x̄D ! x̄D

1 , the firm always sets x̄D = x̄D
1 .

Second, when cH > c̄H , Case II can be the equilibrium, and the IR and IC constraints are

,
--------.

--------/

IRL : θL− pD − cL ·wD(n)" 0 1! n!N,

ICL : θL− pD − cL ·wD(n)"L− rD 1! n!N,

IRH1 :H − rD " 0 x̄D <n!N,

ICH1 :H − rD " θH − pD − cH ·wD(n) x̄D <n!N,

IRH2 : θH − pD − cH ·wD(n)" 0 1! n! x̄D,

ICH2 : θH − pD − cH ·wD(n)"H − rD 1! n! x̄D,

where 0! x̄D !N and the expected waiting time wD(n) is

wD(n) =

&
n−1
λ

1! n! x̄D,
x̄D

λ
+ n−x̄D−1

(1−γ)λ
x̄D <n!N.

In equilibrium, IRH1 is binding. Thus, r
D(x̄D) =H. Whether IRL or ICH2 is binding in equilibrium

depends on the relative size of x̄D. Since wD(n) is monotonously increasing in n, no matter whether

ICH or ICL2 is binding, the binding must happen at the largest possible state n. Define two prices

p̄D3 (x̄
D)≡ θL− cL ·wD(N), p̄D4 (x̄

D)≡ θH − cH ·wD(x̄D), and we know that p̄D3 (x̄
D)< p̄D4 (x̄

D) if and

only if x̄D < x̄D
2 , where

x̄D
2 ≡ cL(N − 1)+ cH(1− γ)+ θ(H −L)(1− γ)λ

(cH − cL)(1− γ)+ cL
.

Then, we can write the price pD as the function of tipping state x̄D:

pD(x̄D) =

&
p̄D3 (x̄

D) 1! x̄D ! x̄D
2 ,

p̄D4 (x̄
D) x̄D

2 < x̄D !N.

We then derive the firm’s long-run average profit πD, also as the function of tipping state x̄D:

πD(x̄D) =
*
pD(x̄D) · (1− γ)λ+ rD(x̄D) · γλ

+
·P (n> x̄D)+

*
pD(x̄D) ·λ

+
·P (n! x̄D)

=
[pD(x̄D) · (1− γ)λ+Hγλ] · N−x̄D

(1−γ)λ
+ [pD(x̄D) ·λ] · x̄D

λ

x̄D

λ
+ N−x̄D

(1−γ)λ

=
pD(x̄D) · (1− γ)λN +Hγλ(N − x̄D)

N − γx̄D
.
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For x̄D
2 < x̄D !N , plugging pD(x̄D) = p̄D4 (x̄

D) into πD(x̄D), we have

πD(x̄D) =
θH(1− γ)λN +Hγλ(N − x̄D)− cH(1− γ)N(x̄D − 1)

N − γx̄D
.

Taking the first-order derivative of πD(x̄D) w.r.t. x̄D, we have

∂πD(x̄D)

∂x̄D
=

(1− γ)N [(θ− 1)Hγλ− cH(N − γ)]

[N − γx̄D]
2 .

We can see that ∂πD(x̄D)

∂x̄D
" 0 if and only if N ! N̄D

3 . Therefore, for x̄D
2 < x̄D !N , when N ! N̄D

3 ,

the firm sets x̄D =N ; when N > N̄D
3 , the firm sets x̄D = x̄D

2 .

For 1! x̄D ! x̄D
2 , plugging pD(x̄D) = p̄D3 (x̄

D) into πD(x̄D), we have

πD(x̄D) =
θL(1− γ)λN +Hγλ(N − x̄D)− cLN(N − 1)+ cLγNx̄D

N − γx̄D
.

Taking the first-order derivative of πD(x̄D) w.r.t. x̄D, we have

∂πD(x̄D)

∂x̄D
=

(θL+H)γ(1− γ)λN + cLγN

[N − γx̄D]
2 > 0.

Since ∂πD(x̄D)

∂x̄D
> 0 always holds, for 1! x̄D ! x̄D

2 , the firm always sets x̄D = x̄D
2 .

Comparing the results above, we define three thresholds for the batch size N :

N̄D
1 ≡ (θ− 1)(1− γ)Lλ

cL
+1− γ,

N̄D
2 ≡ (θ− 1)(H −L)γλ− γcL

cH
+1,

N̄D
3 ≡ (θ− 1)Hγλ

cH
+ γ,

which determines the optimal tipping state x̄D. Besides, N̄D
1 increases in L, and N̄D

3 increases in H.

For a given L, N̄D
2 increases in H/L. N̄D

2 > N̄D
1 if and only if H > [γcL+(1−γ)cH ]L/(γcL)− (cH −

cL)/[(θ − 1)λ]. Thus, the REE when offering group buying when customers have heterogeneous

waiting costs is

(i) when cH ! c̄H ,

(a) when H ! [γcL +(1− γ)cH ]L/(γcL)− (cH − cL)/[(θ− 1)λ],

(1) if N ! N̄D
1 , x̄

D =N , rD =L, pD = θL− cL(N − 1)/λ, and πD = θLλ− cL(N − 1);

(2) if N > N̄D
1 , x̄

D = x̄D
1 , r

D =L, pD = θL− cL(x̄
D
1 − 1)/λ, and πD = πD

1 ;

(b) when H > [γcL +(1− γ)cH ]L/(γcL)− (cH − cL)/[(θ− 1)λ],

(1) if N ! N̄D
2 , x̄

D = 0, rD = L, pD = (θ − 1)H + L − cH(N − 1)/(γλ), and πD = (θ −

1)Hγλ+Lλ− cH(N − 1);

(2) if N > N̄D
2 , x̄

D = x̄D
1 , r

D =L, pD = θL− cL(x̄
D
1 − 1)/λ, and πD = πD

1 ;
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(ii) when cH > c̄H ,

(1) if N ! N̄D
3 , x̄

D =N , rD =H, pD = θH − cH(N − 1)/λ, and πD = θHλ− cH(N − 1);

(2) if N > N̄D
3 , x̄

D = x̄D
2 , r

D =H, pD = θH − cH(x̄
D
2 − 1)/λ, and πD = πD

2 ;

where

πD
1 ≡ θLγλN +L(1− γ)λ(N − x̄D

1 )− cLγN(x̄D
1 − 1)

N − (1− γ)x̄D
1

,

πD
2 ≡ θH(1− γ)λN +Hγλ(N − x̄D

2 )− cH(1− γ)N(x̄D
2 − 1)

N − γx̄D
2

. □

Proof of Corollary D.1. Since N̄D
2 > N̄2 always holds when cH ! cL, and N̄D

2 < N̄2 always holds

when cL < cH ! c̄H , the corollary can be proved. □

F. Inferior Group-Buying Product

We study group buying of a product that is inferior to the regular product, with the superscript

“I” denoting the equilibrium outcome.

Proof of Proposition E.1. In similar fashion to the proof of Proposition 1, we define x̄I as the

tipping state, where 0! x̄I !N . Note that Lemma A.1 is also applicable to the case with an inferior

group-buying product. Thus, there are five possible scenarios in total for customer segmentation.

Define the following two cases for ease of analysis. In Case I, x̄I = 0, 1 ! x̄I < N , and x̄I = N

represent scenarios {L}, {L;L+H}, and {L+H}, respectively. In Case II, x̄I = 0 and 1! x̄I <N

represent scenarios {H}, and {H;H +L}, respectively. In equilibrium, the prices pI and rI should

satisfy the IR and IC constraints.

For Case II, the IR and IC constraints are
,
--------.

--------/

IRH : θH − pI − c ·wC(n)" 0 1! n!N,

ICH : θH − pI − c ·wC(n)"H − rI 1! n!N,

IRL1 :L− rI " 0 x̄I <n!N,

ICL1 :L− rI " θL− pI − c ·wC(n) x̄I <n!N,

IRL2 : θL− pI − c ·wC(n)" 0 1! n! x̄I,

ICL2 : θL− pI − c ·wC(n)"L− rI 1! n! x̄I,

where 0! x̄I <N and the expected waiting time wC(n) is

wC(n) =

&
n−1
λ

1! n! x̄I,
x̄I

λ
+ n−x̄I−1

γλ
x̄I <n!N.

The constraint ICL1 requires p
I "−(1−θ)L+rI−c ·wC(x̄I). The constraint ICH requires pI !−(1−

θ)H+rI−c ·wC(N). Since wC(x̄I)!wC(N), −(1−θ)L+rI−c ·wC(x̄I)>−(1−θ)H+rI−c ·wC(N)

always holds, so the constraints ICL1 and ICH can never be satisfied at the same time when θ< 1.

Therefore, Case II cannot become the equilibrium.

Using similar logic, we can show that Case I can become the equilibrium, which proves the

proposition. Refer to the proof of Proposition E.2 for details of Case I. □
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Proof of Proposition E.2. We continue the detailed analysis for Case I in this part (see the

definition in the proof of Proposition E.1). The IR and IC constraints are

,
--------.

--------/

IRL : θL− pI − c ·wI(n)" 0 1! n!N,

ICL : θL− pI − c ·wI(n)"L− rI 1! n!N,

IRH1 :H − rI " 0 x̄I <n!N,

ICH1 :H − rI " θH − pI − c ·wI(n) x̄I <n!N,

IRH2 : θH − pI − c ·wI(n)" 0 1! n! x̄I,

ICH2 : θH − pI − c ·wI(n)"H − rI 1! n! x̄I,

where 0! x̄I !N and the expected waiting time wI(n) is

wI(n) =

&
n−1
λ

1! n! x̄I,
x̄I

λ
+ n−x̄I−1

(1−γ)λ
x̄I <n!N.

Suppose rI "L, then IRL is binding at state n=N in equilibrium. Thus, pI(x̄I) = θL− c ·wI(N).

Besides, the constraint IRH1 is weaker than ICH1; the same relationship exists between IRH2 and

ICH2. In order to satisfy ICH1 and ICH2 at state n= x̄I, the price rI should meet the constraints

H − rI " θH − pI − c ·wI(x̄I) and θH − pI − c ·wI(x̄I)"H − rI, implying that H − rI = θH − pI −

c ·wI(x̄I) in equilibrium. Therefore, rI(x̄I) = (1− θ)H + θL− c ·wI(N) + c ·wI(x̄I). So far, we have

written both pI(x̄I) and rI(x̄I) as the functions of x̄I. To satisfy rI " L, the tipping state x̄I " x̄I
1,

where x̄I
1 ≡N −γ− (1−γ)(1− θ)(H−L)λ/c. We then derive the firm’s long-run average profit πI:

πI(x̄I) =
*
pI(x̄I) · (1− γ)λ+ rI(x̄I) · γλ

+
·P (n> x̄I)+

*
pI(x̄I) ·λ

+
·P (n! x̄I)

=
[pI(x̄I) · (1− γ)λ+ rI(x̄I) · γλ] · N−x̄I

(1−γ)λ
+ [pI(x̄I) ·λ] · x̄I

λ

x̄I

λ
+ N−x̄I

(1−γ)λ

=
pI(x̄I) · (1− γ)λN + rI(x̄I) · γλ(N − x̄I)

N − γx̄I
.

Plugging pI(x̄I) and rI(x̄I) into the firm’s long-run average profit πI, we have

πI(x̄I) =
θLλN +(1− θ)HγλN − cN(N − 1)− [θL+(1− θ)H]γλx̄I + cγNx̄I − cγ(N − x̄I − γ)(N − x̄I)/(1− γ)

N − γx̄I
.

Take the second-order derivative of πI(x̄I) w.r.t. x̄I. Denote N̄ ≡ N/γ > N . We find that when

x̄I < N̄ , ∂2πI(x̄I)

∂x̄I2
< 0 always holds, implying that πI(x̄I) is concave in x̄I; when x̄I > N̄ , ∂2πI(x̄I)

∂x̄I2
> 0

always holds, implying that πI(x̄I) is convex in x̄I. Besides, limx̄I→N̄− = −∞, limx̄I→N̄+ = +∞.

In this case, the optimal x̄I within the constraint 0 ! x̄I ! N , in which πI(x̄I) is concave in x̄I,

is determined by x̄I = x̄I
2, where x̄I

2 is the unique reasonable solution to the first-order condition

∂πI(x̄I)

∂x̄I
= 0.4 It is easy to verify that x̄I

1 <N and x̄I
2 <N always hold; x̄I

2 " x̄I
1 if and only if H/L" m̄I

4 The other solution is ruled out because it is always greater than N and is not within the constraint 0! x̄I !N .
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or N ! N̄ I
1; x̄

I
2 > 0 if and only if N > N̄ I

2; and x̄I
1 > 0 if and only if N > N̄ I

3. Therefore, combining

the analyses above, when H/L" m̄I or N ! N̄ I
1, the firm sets x̄I =max{x̄I

2,0}; otherwise, the firm

sets x̄I =max{x̄I
1,0}.

Suppose rI < L, then ICL is binding at state n = N in equilibrium. Thus, pI(x̄I) = rI − (1 −

θ)L− c ·wI(N). Likewise, in order to satisfy ICH1 and ICH2 at state n= x̄I, the price rI should

meet the constraints H − rI " θH − pI − c · wI(x̄I) and θH − pI − c · wI(x̄I) " H − rI, implying

that rI(x̄I) = (1− θ)H + pI(x̄I) + c ·wI(x̄I). Plugging pI(x̄I) into the expression of rI(x̄I), we have

(1− θ)(H −L) = c ·wI(N)− c ·wI(x̄I), which implies that x̄I = x̄I
1. Hence, rI =L. Therefore, rI <L

cannot form the equilibrium in Case I.

Combining the results above, we define the following thresholds for the batch size N :

N̄ I ≡
&
min{N̄ I

2, N̄
I
3} H/L! m̄I,

N̄ I
2 H/L> m̄I,

m̄I ≡ 2− c(1+ γ)

(1− γ)(1− θ)Lλ
,

N̄ I
1 ≡

γ [cγ+(1− γ)(1− θ)(H −L)λ]
2

c(1− γ) [(1− γ)(1− θ)(2L−H)λ− c(1+ γ)]
,

N̄ I
2 ≡

(1− γ)2 [(1− θ)Hλ− c]

c(2− γ)
,

N̄ I
3 ≡

(1− γ)(1− θ)(H −L)λ

c
+ γ,

where m̄I is the threshold for the valuation heterogeneity H/L, which increases in L. For a given

L, N̄ I
1 and N̄ I

3 increase in H/L, and N̄ I
2 increases in H. Thus, the REE when offering group buying

of an inferior product is

(i) when H/L! m̄I,

(1) if N !min{N̄ I
2, N̄

I
3}, x̄I = 0, rI = (1− θ)H + θL− c(N − γ)/ [(1− γ)λ], pI = θL− c(N −

1)/ [(1− γ)λ], and πI = (1− θ)Hγλ+ θLλ− c(N − 1)/(1− γ)− cγ;

(2) if min{N̄ I
2, N̄

I
3}<N !max{N̄ I

1, N̄
I
3}, x̄I = x̄I

2, r
I = (1− θ)H + θL− c ·wI(N) + c ·wI(x̄I),

pI = θL− c ·wI(N), and πI = [pI · (1− γ)λN + rI · γλ(N − x̄I)]/(N − γx̄I);

(3) if N >max{N̄ I
1, N̄

I
3}, x̄I = x̄I

1, r
I = L, pI = θL− γ(1− θ)(H − L)− c(N − 1− γ)/λ, and

πI = [pI · (1− γ)λN + rI · γλ(N − x̄I)]/(N − γx̄I);

(ii) when H/L> m̄I,

(1) if N ! N̄ I
2, x̄

I = 0, rI = (1−θ)H+θL−c(N −γ)/ [(1− γ)λ], pI = θL−c(N −1)/ [(1− γ)λ],

and πI = (1− θ)Hγλ+ θLλ− c(N − 1)/(1− γ)− cγ;

(2) if N > N̄ I
2, x̄

I = x̄I
2, r

I = (1− θ)H + θL− c ·wI(N) + c ·wI(x̄I), pI = θL− c ·wI(N), and

πI = [pI · (1− γ)λN + rI · γλ(N − x̄I)]/(N − γx̄I). □
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Proof of Theorem E.1. For N > N̄ I, x̄I =max{x̄I
1, x̄

I
2}. While for N ! N̄ I, x̄I = 0. We can rig-

orously attest that the equilibrium profit with group-buying where x̄I = x̄I
1 or x̄I = 0 is dominated

by the equilibrium profit without group buying. For x̄I = x̄I
1, we have rI = L and pI < L, hence

πI <Lλ= πV !max{πV,πM} always holds. For x̄I = 0, we can prove that when H/L> 1/γ, πI < πV

always holds, and when H/L! 1/γ, πI < πM always holds, therefore πI <max{πV,πM} in this case.

Only for the equilibrium where x̄I = x̄I
2, it is possible that πI "max{πM,πV}. For x̄I = x̄I

2, we

can prove that πI " πV when N ! N̄ I
4, and πI " πM when N ! N̄ I

5, where N̄ I
4 and N̄ I

5 are the

unique positive solution to the equations πI = πV and πI = πM, respectively. Besides, N̄ I
4 < N̄ I

5 if and

only if H/L< 1/γ. Hence, πI "max{πM,πV} if and only if N̄ I <N !min{N̄ I
4, N̄

I
5}. When γ → 1,

limγ→1 π
I =+∞>Hλ= πM "max{πM,πV}, thus πI >max{πM,πV} always holds, implying that

for a small interval of γ ∈ [1− &,1], the inequation πI >max{πM,πV} holds due to the continuity.

□

G. Horizontally Differentiated Products

We study group buying in the context of horizontally differentiated products, with the superscript

“H” denoting the equilibrium outcome.

Proof of Proposition F.1. In similar fashion to the proof of Propositions 1 and 2, we define x̄H

as the tipping state. There are three possible scenarios in total. We use x̄H = 0, 1! x̄H <N , and

x̄H = N to represent scenarios {G}, {G;G+ R}, and {G+ R}, respectively. In equilibrium, the

prices pH and rH should satisfy the IR and IC constraints:

,
--------.

--------/

IRG : u−L− pH − c ·wH(n)" 0 1! n!N,

ICG : u−L− pH − c ·wH(n)" u−H − rH 1! n!N,

IRR1 : u−L− rH " 0 x̄H <n!N,

ICR1 : u−L− rH " u−H − pH − c ·wH(n) x̄H <n!N,

IRR2 : u−H − pH − c ·wH(n)" 0 1! n! x̄H,

ICR2 : u−H − pH − c ·wH(n)" u−L− rH 1! n! x̄H,

where 0! x̄H !N and the expected waiting time wH(n) is

wH(n) =

&
n−1
λ

1! n! x̄H,
x̄H

λ
+ n−x̄H−1

γλ
x̄H <n!N.

In equilibrium, IRR1 is binding. Thus, rH(x̄H) = u−L. Whether IRG or ICR2 is binding in equi-

librium depends on the relative size of x̄H. Since wH(n) is monotonously increasing in n, no matter

IRG or ICR2 is binding, the binding must happen at the largest possible state n. Define two prices

p̄H1 (x̄
H) ≡ u− L− c ·wH(N), p̄H2 (x̄

H) ≡ u−H − c ·wH(x̄H), and we know that p̄H1 (x̄
H) < p̄H2 (x̄

H) if
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and only if x̄H < x̄H
1 , where x̄H

1 ≡N − 1+ γ− (H −L)γλ/c. Then, we can write the price pH as the

function of tipping state x̄H:

pH(x̄H) =

&
p̄H1 (x̄

H) 1! x̄H ! x̄H
1 ,

p̄H2 (x̄
H) x̄H

1 < x̄H !N.

We then derive the firm’s long-run average profit πH, also as the function of tipping state x̄H:

πH(x̄H) =
*
pH(x̄H) · γλ+ rH(x̄H) · (1− γ)λ

+
·P (n> x̄H)+

*
pH(x̄H) ·λ

+
·P (n! x̄H)

=
pH(x̄H) · γλN +(u−L)(1− γ)λ(N − x̄H)

N − (1− γ)x̄H
.

For x̄H
1 < x̄H !N , plugging pH(x̄H) = p̄H2 (x̄

H) into πH(x̄H), we have

πH(x̄H) =
(u−H)γλN − cγN(x̄H − 1)+ (u−L)(1− γ)λ(N − x̄H)

N − (1− γ)x̄H
.

Taking the first-order derivative of πH(x̄H) w.r.t. x̄H, we have

∂πH(x̄H)

∂x̄H
=−γN [(H −L)(1− γ)(θ− 1)λ+ c(N − 1+ γ)]

[N − (1− γ)x̄H]
2 < 0.

Since ∂πH(x̄H)

∂x̄H
< 0 always holds, for x̄H

1 < x̄H !N , the firm always sets x̄H = x̄H
1 . Note that x̄H

1 > 0 if

and only if N > N̄H.

For 1! x̄H ! x̄H
1 , plugging pH(x̄H) = p̄H1 (x̄

H) into πH(x̄H), we have

πH(x̄H) =
(u−L)γλN − cγNx̄H − cN(N − x̄H − 1)+ (u−L)(1− γ)λ(N − x̄H)

N − (1− γ)x̄H
.

Taking the first-order derivative of πH(x̄H) w.r.t. x̄H, we have

∂πH(x̄H)

∂x̄H
=

c(1− γ)N

[N − (1− γ)x̄H]
2 > 0.

Since ∂πH(x̄H)

∂x̄H
> 0 always holds, for 1! x̄H ! x̄H

1 , the firm always sets x̄H = x̄H
1 .

Combining the results above, we define the following threshold for the batch size N :

N̄H ≡ (H −L)γλ

c
+1− γ,

which determines the optimal tipping state x̄H. Thus, the REE when offering group buying in the

context of horizontally differentiated products is

(i) if N ! N̄H, x̄H = 0, rH = u−L, pH = u−L− c(N − 1)/(γλ), and πH = (u−L)λ− c(N − 1);

(ii) if N > N̄H, x̄H = x̄H
1 , rH = u − L, pH = u − H − c(x̄H

1 − 1)/λ, and πH =

[(u−H)γλN +(u−L)(1− γ)λ(N − x̄H
1 )− cγN(x̄H

1 − 1)]/ [N − (1− γ)x̄H
1 ]. □
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Proof of Theorem F.1. In the product-line strategy, the firm sets prices pP = rP = u−L, and

the firm’s long-run average profit is

πP =
NpP +N 1−γ

γ
rP − hN(N+1)

2γλ

N
γλ

= (u−L)λ− (N +1)h

2
.

The range in which one strategy dominates the others follows directly by comparing the profits.

Define the following thresholds for the inventory holding cost h:

h̄H
1 ≡ 2c(N − 1)

N +1
,

h̄H
2 ≡ 2(u−L)λ− 2πH

1

N +1
,

h̄H ≡max
0
h̄H
1 , h̄

H
2

1
,

where πH
1 = [(u−H)γλN +(u−L)(1− γ)λ(N − x̄H

1 )− cγN(x̄H
1 − 1)]/ [N − (1− γ)x̄H

1 ]. □

H. No Regular Product

We study group buying without the regular product, with the superscript “R” denoting the equi-

librium outcome. Note that each customer decides whether to join the group buying or exit with

no purchase upon arrival.

Proposition H.1 (REE without Regular Product). Without the regular product, for

any given θ > 1 and N , there exist two thresholds for the batch size, N̄R
1 ≡ θ(1− γ)Lλ/c+ 1− γ

and N̄R
2 ≡ θ(H −L)γλ/c+1− γ, such that

(i) when H/L! 1/γ, the firm sets prices so that

(i-1) if N ! N̄R
1 , {H +L} is an REE;

(i-2) if N > N̄R
1 , {H;H +L} is an REE;

(ii) when H/L> 1/γ, the firm sets prices so that

(ii-1) if N ! N̄R
2 , {H} is an REE;

(ii-2) if N > N̄R
2 , {H;H +L} is an REE.

Corollary H.1 (Effect of No Regular Product on Sign-Up Time). Without the reg-

ular product, in intertemporal segmentation the low-end customers join the group buying later than

in the base model.

Proof of Proposition H.1. In similar fashion to the proof of Propositions 1 and 2, we define x̄R

as the tipping state. There are five possible scenarios in total. Define the following two cases for ease

of analysis. In Case I, x̄R = 0, 1! x̄R <N , and x̄R =N represent scenarios {H}, {H;H +L}, and

{H +L}, respectively. In Case II, x̄R = 0 and 1! x̄R <N represent scenarios {L} and {L;H +L},

respectively. In equilibrium, the prices pR and rR should satisfy the IR and IC constraints.
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For Case I, the IR and IC constraints are

,
---.

---/

IRH , ICH : θH − pR − c ·wR(n)" 0 1! n!N,

IRL1 : 0" 0 x̄R <n!N,

ICL1 : 0" θL− pR − c ·wR(n) x̄R <n!N,

IRL2, ICL2 : θL− pR − c ·wR(n)" 0 1! n! x̄R,

where 0! x̄R !N and the expected waiting time wR(n) is

wR(n) =

&
n−1
λ

1! n! x̄R,
x̄R

λ
+ n−x̄R−1

γλ
x̄R <n!N.

Whether ICH or ICL2 is binding in equilibrium depends on the relative size of x̄R. Since wR(n) is

monotonously increasing in n, no matter whether ICH or ICL2 is binding, the binding must happen

at the largest possible state n. Define two prices p̄R1 (x̄
R)≡ θL−c ·wR(x̄R), p̄R2 (x̄

R)≡ θH−c ·wR(N),

and we know that p̄R1 (x̄
R)< p̄R2 (x̄

R) if and only if x̄R > x̄R
1 , where x̄

R
1 ≡N −1+γ− θ(H−L)γλ/c <

x̄G
1 always holds. Then, we can write the price pR as the function of tipping state x̄R:

pR(x̄R) =

&
p̄R2 (x̄

R) 1! x̄R ! x̄R
1 ,

p̄R1 (x̄
R) x̄R

1 < x̄R !N.

We then derive the firm’s long-run average profit πR, also as the function of tipping state x̄R:

πR(x̄R) =
*
pR(x̄R) · γλ

+
·P (n> x̄R)+

*
pR(x̄R) ·λ

+
·P (n! x̄R)

=
pR(x̄R) · γλN
N − (1− γ)x̄R

.

For x̄R
1 < x̄R !N , plugging pR(x̄R) = p̄R1 (x̄

R) into πR(x̄R), we have

πR(x̄R) =
γN [θLγ− c(x̄R − 1)]

N − (1− γ)x̄R
.

Taking the first-order derivative of πR(x̄R) w.r.t. x̄R, we have

∂πR(x̄R)

∂x̄R
=

γN [(θL(1− γ)λ− c(N − 1+ γ)]

[N − (1− γ)x̄R]
2 .

We can see that ∂πR(x̄R)

∂x̄R
" 0 if and only if N ! N̄R

1 . Therefore, for x̄
R
1 < x̄R !N , when N ! N̄R

1 , the

firm sets x̄R =N ; when N > N̄R
1 , the firm sets x̄R = x̄R

1 . Note that x̄R
1 > 0 if and only if N > N̄R

2 .

For 1! x̄R ! x̄R
1 , plugging pR(x̄R) = p̄R2 (x̄

R) into πR(x̄R), we have

πR(x̄R) =
θHγλN − cN(N − 1)+ c(1− γ)Nx̄R

N − (1− γ)x̄R
.

Taking the first-order derivative of πR(x̄R) w.r.t. x̄R, we have

∂πR(x̄R)

∂x̄R
=

(1− γ)N(θHγλ+ c)

[N − (1− γ)x̄R]
2 > 0.
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Since ∂πR(x̄R)

∂x̄R
> 0 always holds, for 1! x̄R ! x̄R

1 , the firm always sets x̄R = x̄R
1 .

For Case II, the IR and IC constraints are

,
---.

---/

IRL, ICL : θL− pR − c ·wR(n)" 0 1! n!N,

IRH1 : 0" 0 x̄R <n!N,

ICH1 : 0" θH − pR − c ·wR(n) x̄R <n!N,

IRH2, ICH2 : θH − pR − c ·wR(n)" 0 1! n! x̄R,

where 0! x̄R <N and the expected waiting time wR(n) is

wR(n) =

&
n−1
λ

1! n! x̄R,
x̄R

λ
+ n−x̄R−1

(1−γ)λ
x̄R <n!N.

For x̄R < n ! N , it is impossible to satisfy ICL and ICH1 constraints at the same time. Hence,

Case II cannot become the equilibrium.

Comparing the results above, we define two thresholds for the batch size N :

N̄R
1 ≡ θ(1− γ)Lλ

c
+1− γ,

N̄R
2 ≡ θ(H −L)γλ

c
+1− γ,

which determines the optimal tipping state x̄R. N̄R
1 increases in L. For a given L, N̄R

2 increases

in H/L. Besides, N̄R
2 > N̄R

1 if and only if H/L> 1/γ. Thus, the REE when offering group buying

without the regular product is

(i) when H/L! 1/γ,

(1) if N ! N̄R
1 , x̄

R =N , pR = θL− c(N − 1)/λ, and πR = θLλ− c(N − 1);

(2) if N > N̄R
1 , x̄

R = x̄R
1 , p

R = θL+ θγ(H −L)− c(N − 2+ γ)/γ, and πR = πR
1 ;

(ii) when H/L> 1/γ,

(1) if N ! N̄R
2 , x̄

R = 0, pR = θH − c(N − 1)/(γλ), and πR = θHγλ− c(N − 1);

(2) if N > N̄R
2 , x̄

R = x̄R
1 , p

R = θL+ θγ(H −L)− c(N − 2+ γ)/γ, and πR = πR
1 ;

where

πR
1 ≡ cγN [θLγ− c(N − 2+ γ)+ θ(H −L)γλ]

c [1+ γ(N − 2+ γ)] + θ(H −L)(1− γ)γλ
.

Since N̄R
1 > N̄1 and N̄R

2 > N̄2 always hold, the region of scenario {H;H+L} shrinks against that

of scenarios {H} and {H +L}. Besides, pR " pG always holds. □
Proof of Corollary H.1. Since x̄R

1 < x̄G
1 always holds, the corollary can be proved. □

I. Fit Uncertainty

We study group buying with fit uncertainty about the group-buying product, with the superscript

“F” denoting the equilibrium outcome.
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Proposition I.1 (REE under Fit Uncertainty). When there is fit uncertainty about the

group-buying product, for any given θ > 1, 0 < χ < 1, and N , there exist two thresholds for the

batch size, N̄F
1 ≡ (θ− 1)(1− γ)Lλ/c+1− γ and N̄F

2 ≡ (θ− 1)(H −L)γλ/c+1− γ, such that

(i) when H/L! 1/γ, the firm sets prices so that

(i-1) if N ! N̄F
1 , {H +L} is an REE;

(i-2) if N > N̄F
1 , {H;H +L} is an REE;

(ii) when H/L> 1/γ, the firm sets prices so that

(ii-1) if N ! N̄F
2 , {H} is an REE;

(ii-2) if N > N̄F
2 , {H;H +L} is an REE.

Theorem I.1 (Profit Comparison under Fit Uncertainty). Suppose θ > 1 and 0< χ<

1. When there is fit uncertainty about the group-buying product, there exists a threshold for the fit

probability, χ̄F, below which it is optimal for the firm to offer the product line via flexible-duration

group buying rather than doing so noncontingently, and above which vice versa.

Proof of Proposition I.1. In similar fashion to the proof of Propositions 1 and 2, we define x̄F

as the tipping state. There are five possible scenarios in total for customer segmentation. Define

the following two cases for ease of analysis. In Case I, x̄F = 0, 1! x̄F <N , and x̄F =N represent

scenarios {H}, {H;H+L}, and {H+L}, respectively. In Case II, x̄F = 0 and 1! x̄F <N represent

scenarios {L} and {L;H +L}, respectively. In equilibrium, the prices pF and rF should satisfy the

IR and IC constraints.

For Case I, the IR and IC constraints are
,
--------.

--------/

IRH : θH − pF − c ·wF(n)" 0 1! n!N,

ICH : θH − pF − c ·wF(n)"H − rF 1! n!N,

IRL1 :L− rF " 0 x̄F <n!N,

ICL1 :L− rF " θL− pF − c ·wF(n) x̄F <n!N,

IRL2 : θL− pF − c ·wF(n)" 0 1! n! x̄F,

ICL2 : θL− pF − c ·wF(n)"L− rF 1! n! x̄F,

where 0! x̄F !N and the expected waiting time wF(n) is

wF(n) =

&
n−1
λ

1! n! x̄F,
x̄F

λ
+ n−x̄F−1

γλ
x̄F <n!N.

In equilibrium, IRL1 is binding. Thus, r
F(x̄F) =L. Whether ICH or ICL2 is binding in equilibrium

depends on the relative size of x̄F. Since wF(n) is monotonously increasing in n, no matter whether

ICH or ICL2 is binding, the binding must happen at the largest possible state n. Define two prices

p̄F1 (x̄
F)≡ θL− c ·wF(x̄F), p̄F2 (x̄

F)≡ (θ− 1)H +L− c ·wF(N), and we know that p̄F1 (x̄
F)< p̄F2 (x̄

F) if



25

and only if x̄F > x̄F
1 , where x̄F

1 ≡N − 1+ γ− (θ− 1)(H −L)γλ/c. Then, we can write the price pF

as the function of tipping state x̄F:

pF(x̄F) =

&
p̄F2 (x̄

F) 1! x̄F ! x̄F
1 ,

p̄F1 (x̄
F) x̄F

1 < x̄F !N.

We then derive the firm’s long-run average profit πF, also as the function of tipping state x̄F:

πF(x̄F) =
*
pF(x̄F) · γλ+ rF(x̄F) · (1− γ)λ

+
·P (n> x̄F) ·χ+

*
pF(x̄F) ·λ

+
·P (n! x̄F) ·χ+ rF ·λ · (1−χ)

=
pF(x̄F) · γλχN +L(1− γ)λχ(N − x̄F)

N − (1− γ)x̄F
+Lλ(1−χ).

For x̄F
1 < x̄F !N , plugging pF(x̄F) = p̄F1 (x̄

F) into πF(x̄F), and then, taking the first-order deriva-

tive of πF(x̄F) w.r.t. x̄F, we have

∂πF(x̄F)

∂x̄F
=

γχN [L(1− γ)(θ− 1)λ− c(N − 1+ γ)]

[N − (1− γ)x̄F]
2 .

We can see that ∂πF(x̄F)

∂x̄F
" 0 if and only if N ! N̄F

1 . Therefore, for x̄
F
1 < x̄F !N , when N ! N̄F

1 , the

firm sets x̄F =N ; when N > N̄F
1 , the firm sets x̄F = x̄F

1 . Note that x̄F
1 > 0 if and only if N > N̄F

2 .

For 1! x̄F ! x̄F
1 , plugging pF(x̄F) = p̄F2 (x̄

F) into πF(x̄F), and then, taking the first-order derivative

of πF(x̄F) w.r.t. x̄F, we have

∂πF(x̄F)

∂x̄F
=

(1− γ)χN [c+(θ− 1)Hγλ]

[N − (1− γ)x̄F]
2 > 0.

Since ∂πF(x̄F)

∂x̄F
> 0 always holds, for 1! x̄F ! x̄F

1 , the firm always sets x̄F = x̄F
1 .

As in the proof of Proposition 1, we know that Case II cannot become the equilibrium. Hence,

we define two thresholds for the batch size N :

N̄F
1 ≡ (θ− 1)(1− γ)Lλ

c
+1− γ,

N̄F
2 ≡ (θ− 1)(H −L)γλ

c
+1− γ,

which determines the optimal tipping state x̄F. Besides, N̄F
1 increases in L. For a given L, N̄F

2

increases in H/L. N̄F
2 > N̄F

1 if and only if H/L> 1/γ. Thus, when fit uncertainty about the group-

buying product exists, the REE when offering group buying is

(i) when H/L! 1/γ,

(1) if N ! N̄F
1 , x̄

F =N , rF =L, pF = θL− c(N −1)/λ, and πF =Lλ[1+(θ−1)χ]− cχ(N −1);

(2) if N > N̄F
1 , x̄

F = x̄F
1 , r

F = L, pF = θL + γ(θ − 1)(H − L) − c(N − 2 + γ)/λ, and πF =

π1χ+Lλ(1−χ);

(ii) when H/L> 1/γ,
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(1) if N ! N̄F
2 , x̄

F = 0, rF = L, pF = (θ− 1)H +L− c(N − 1)/(γλ), and πF = (θ− 1)Hγλχ+

Lλ− cχ(N − 1);

(2) if N > N̄F
2 , x̄

F = x̄F
1 , r

F = L, pF = θL + γ(θ − 1)(H − L) − c(N − 2 + γ)/λ, and πF =

π1χ+Lλ(1−χ);

where π1 is given in the proof of Proposition 2. □

Proof of Theorem I.1. In the product-line strategy, the firm’s long-run average profit is

πP =

5
NpP +N 1−γ

γ
rP − hN(N+1)

2γλ

6
χ

N
γλ

+(Lλ−hN)(1−χ)

= (θ− 1)Hγλχ+Lλ−Nh+
(N − 1)hχ

2
.

The range in which one strategy dominates the others follows directly by comparing the profits.

Define the following thresholds for the fit probability χ:

χ̄F
1 ≡ Nh

(c+h/2)(N − 1)+ (θ− 1)(Hγ−L)λ
,

χ̄F
2 ≡ Nh

(c+h/2)(N − 1)
,

χ̄F
3 ≡ Nh

(θ− 1)Hγλ+Lλ−π1 +(N − 1)h/2
,

χ̄F ≡max
0
χ̄F
1 , χ̄

F
2 , χ̄

F
3

1
. □

J. Endogenized Batch Size

It is technically challenging to simultaneously optimize the batch size and make the pricing decision

in a flexible-duration group-buying campaign. Besides, as we do in our work, most of the literature

on group buying assumes an exogenous batch size for analytical tractability (see, e.g., Jing and

Xie 2011, Hu et al. 2013, 2015, Liu and Tunca 2019), or can only resort to a numerical study when

endogenizing the batch size (see, e.g., Surasvadi et al. 2017, Marinesi et al. 2018).

Without any doubt, a model in which both the price and batch size in flexible-duration group

buying are endogenously determined would be very desirable. Here we use numerical studies to

explore what might happen when the batch size is endogenized. To endogenize the batch size

of the group-buying product, we assume that the firm incurs a fixed setup cost K > 0 for each

batch and a variable cost δ> 0 for each unit of product. Hence, in a group-buying campaign with

batch size N , the long-run average production cost, (K+δN)/
7

x̄G

λ
+ N−x̄G

γλ

8
, should be subtracted

from the firm’s long-run average profit, πG, which is characterized in the proof of Proposition 2.

The following table summarizes the optimal batch size and the corresponding optimal customer

segmentation in group buying under different values of parameters.
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Table J.1 Numerical Analysis for Optimal Batch Size in Group Buying

Parameter value Optimal batch size Optimal customer segmentation

Impact of market

heterogeneity H/L

(K = 200, δ= 1)

H = 6 (H/L= 1.2) N∗ = 46 {H;H +L}
H = 7 (H/L= 1.4) N∗ = 48 {H;H +L}
H = 8 (H/L= 1.6) N∗ = 51 {H;H +L}
H = 9 (H/L= 1.8) N∗ = 54 {H;H +L}
H = 10 (H/L= 2.0) N∗ = 32 {H}
H = 11 (H/L= 2.2) N∗ = 32 {H}
H = 12 (H/L= 2.4) N∗ = 32 {H}

Impact of fixed cost K

(H = 15, δ= 1)

K = 100 N∗ = 23 {H}
K = 200 N∗ = 32 {H}
K = 300 N∗ = 39 {H}
K = 400 N∗ = 45 {H}
K = 500 N∗ = 50 {H}
K = 600 N∗ = 55 {H}

Impact of variable cost δ

(K = 200, H = 15)

δ= 1 N∗ = 32 {H}
δ= 2 N∗ = 32 {H}
δ= 3 N∗ = 32 {H}
δ= 4 N∗ = 32 {H}
δ= 5 N∗ = 32 {H}
δ= 6 N∗ = 32 {H}

Note: Other parameters are set as follows: λ= 5, γ = 0.5, L= 5, c= 0.5, and θ= 3.

Table J.1 shows that as the valuation heterogeneity H/L increases, the optimal batch size of

the group-buying product does not always increase. The underlying reason is as follows. When

the valuation heterogeneity H/L is low, the firm has an incentive to invite both high- and low-

end customers to sign up for the group buying, through intertemporal segmentation {H;H +L}.

Since there are many customers who are interested in group buying, it would not take a long time

for a group-buying campaign to succeed, and thus, the firm can afford to set a relatively large

batch size. On the contrary, when the valuation heterogeneity H/L is high, it is more profitable

for the firm to charge a higher price for the group-buying product and hence invite only high-end

customers to sign up for group buying (corresponding to customer segmentation {H}). In this case,

the expected time for a group-buying campaign to succeed would be longer, as only high-valuation

customers would be interested in signing up. Consequently, the firm cannot choose a large batch

size. Taken together, the optimal batch size of the group-buying product can drop significantly

as the valuation heterogeneity H/L increases. The driving force behind this relationship is the

intertemporal customer segmentation we capture as the main insight in this paper. In addition,

the impact of production cost on the optimal batch size is consistent with common intuition.
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Specifically, as indicated by Table J.1, the optimal batch size always increases in the fixed setup

cost K, while it remains invariant as the variable cost δ changes.
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