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Online Appendix to
“Socially Beneficial Rationality:

The Value of Strategic Farmers, Social Entrepreneurs and

For-Profit Firms in Crop Planting Decisions”

A. Continuous Decisions

We allow a farmer’s planting quantity q to be any fraction between 0 and 1. In period t, as a

strategic farmer bases his planting decision qst on the market price pt in the current period and a

näıve farmer bases his decision qnt on the market price pt−1 in the last period, their individual

objectives are, respectively,

max
qst∈[0,1]

(pt− c)qst and max
qnt ∈[0,1]

(pt−1− c)qnt .

Note that the market price here in a period is determined by the total output of all farmers in

that period as in (3).

Lemma A.1. In any period t,

qst =

 0 if pt < c,
any q ∈ [0,1] if pt = c,
1 if pt > c.

(A.1)

qnt =

 0 if pt−1 < c,
any q ∈ [0,1] if pt−1 = c,
1 if pt−1 > c.

(A.2)

The market dynamics is the same as specified in Proposition 1.

Proof of Lemma A.1. A näıve farmer’s planting decision as (A.2) can be directly derived

according to the definition of a näıve farmer. For a strategic farmer, although he is aware of the

fact that decisions from all strategic farmers can collectively affect the near-future market price

pt, his individual decision qst has no impact on pt, because his land size is infinitesimal relative to

the entire population. Hence, a strategic farmer’s planting decision follows (A.1).

Since the set of strategic farmers with pt = c and näıve farmers with pt−1 = c is of measure zero,

the total amount of crop produced by all farmers as specified in (2) does not change. Therefore,

the market dynamics still follows Proposition 1 even when continuous decisions are

considered. �
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B. Backward-Looking Farmers

In this extension, we assume farmers lack full information (e.g., Ω, α and F (·)) and thus cannot

use (3) to rationally anticipate the near-future market price pt. Instead, in each period strategic

farmers predict the market price on the basis of the average price in the last two periods, i.e.,

p̂t =
pt−1+pt−2

2
. This is a simple but widely used adaptive forecasting method (see Chopra and

Meindl 2013, Chapter 7), as it is easier to obtain the necessary information about historical

prices than future prices. The strategic farmers’ perceived utility becomes

ust = p̂t− c=
pt−1 + pt−2

2
− c. (B.1)

We adopt the convention that pi = p0 for any i < 0. By the same decision and price processes as

in (2)-(3) with pt replaced by p̂t, for any t≥ 1, we have

pt = Ω− b(1−α)F (pt−1)− bαF
(pt−1 + pt−2

2

)
. (B.2)

Proposition B.1. Suppose Assumptions 1-3 hold and there exist backward-looking strategic

farmers (α> 0). If b≤ c̄, then the market price converges to the limiting market price, i.e.,

lim
t→∞

pt = p̄.

Proposition B.1 tells us that as long as there are backward-looking strategic farmers and the

market price is not sensitive to the total supply (i.e., b≤ c̄), the market price converges to the

same value as if the strategic farmers had full information and were forward-looking. This implies

that looking into the past can be as efficient as looking into the future in a stationary market.

C. Impact of Bankruptcy

In this subsection, we consider the scenario that farmers may go bankrupt and quit the farming

business if their loss exceeds the capital or savings. Let L denote the maximal cumulative loss

that farmers can afford. To be self-contained, we restate Proposition 4 in Appendix II as follows

and prove it in Online Appendix K.

Proposition C.1 (Impact of Bankruptcy). Suppose Assumptions 1-4 hold and those

farmers who exit the market due to bankruptcy never come back. Then the market price still

converges, but the limiting market price is (weakly) higher than p̄.

Next, in Section C.1 we will describe the market dynamics if we allow farmers to exit the market

due to bankruptcy, and then in Section C.2 we will present some numerical experiment results

from which we draw managerial insights.
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C.1. Market Dynamics

In this subsection, we explicitly show what happened in each cycle when we incorporate farmer

exiting to the model. For ease of exposure, we just show the case when g(α)< 1.

If no farmers exit in cycle i and all previous cycles, then the price dynamics until cycle i is the

same as (5). That is,

p2i−1 = p̄+ [−g(α)]2i−1(p0− p̄)> p̄,

p2i = p̄+ [−g(α)]2i(p0− p̄)< p̄.

Note that p2i−1 is decreasing and p2i is increasing. Observe also that the näıve farmers with

production cost p2i < c< p2i−1 will suffer a loss c− p2i in period 2i. Moreover, for a näıve farmer

with production cost p2i < c< p2i−1, the total loss until cycle i he has suffered is
∑i

l=1(c− p2l).

For a näıve farmer with production cost p2i−1 < c< p2i−3, the total loss he has suffered is∑i−1

l=1(c− p2l) and he does not suffer any loss in cycle i because he did not plant in cycle i. For a

näıve farmer with production cost p2i−2 < c< p2i, the total loss he has suffered is
∑i−1

l=1(c− p2l)

and he does not suffer any loss in cycle i because he earns surplus in cycle i.

Suppose cycle j is the first cycle that näıve farmers begin to exit the market. That is,∑j

l=1(p2j−1− p2l)≥L. In period 2j, by the definition of j, we have p2j = p̄+ [−g(α)]2j(p0− p̄).

Solving
∑j

l=1(c− p2l) =L yields c≥ 1
j
(L+

∑j

l=1 p2l), indicating that the farmers with

1
j
(L+

∑j

l=1 p2l)≤ c < p2j−1 suffer an overall loss exceeding L and thus exit the market. Let

c2j = 1
j
(L+

∑j

l=1 p2l). Next we have two cases.

Case 1: Suppose c2j < p̄. Then as Part 2 in the proof of Proposition C.1, we could show

c2j = c2j+1 = c∞ and the market price remains higher than p̄.

Case 2: Suppose c2j > p̄.

In period 2j+ 1, the farmers with c < p2j plant the crop. Since p2j < p̄ < c2j, the exited farmers do

not affect this period’s production quantity. Hence, p2j+1 = p̄+ [−g(α)]2j+1(p0− p̄)> p̄. No

farmers exit in this period. Hence, c2j+1 = c2j.

In period 2j+ 2, the farmers with c < p2j+1 are supposed to plant the crop. Note that the ones

with c > c2j+1 have exited the market, so p2j+2 = Ω−αbF (p2j+2)− (1−α)bF (min{p2j+1, c2j+1}).

The näıve farmers with p2j+2 < c<min{p2j+1, c2j+1} suffer a loss c− p2j+2. Solving∑j+1

l=1 (c− p2l)≥L yields c≥ 1
j+1

(L+
∑j+1

l=1 p2l), indicating that the farmers with

1
j+1

(L+
∑j+1

l=1 p2l)≤ c < c2j+1 suffer an overall loss exceeding L and thus exit the market. Let

c2j+2 = 1
j+1

(L+
∑j+1

l=1 p2l) = 1
j+1

(j · c2j + p2j+2). Again, one needs to compare c2j+2 with p̄. If

c2j+2 < p̄, then the price converges and we are done. Otherwise, the dynamics is as follows.
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In period 2j+ 3, the farmers with c < p2j+2 will plant the crop. Since p2j+2 < p̄ < c2j+2, the exited

farmers do not affect this period’s production quantity. Hence,

p2j+3 = Ω−αbF (p2j+3)− (1−α)bF (p2j+2) = Ω−αbF (p2j+3)− (1−α) b
c̄
p2j+2 > p̄. No farmers exit

in this period. Hence, c2j+3 = c2j+2.

Continuing in this fashion, we could show for any k≥ 0, if c2j+2(k−1) > p̄, then c2j+2k−1 = c2j+2(k−1)

and in period 2j+ 2k, the farmers with c2j+2k < c< c2j+2k−1 will exit the market, where

c2j+2k = 1
j+k

(
L+

∑j+k

l=1 p2l

)
. Furthermore,

p2j+2k = Ω−αbF (p2j+2k)− (1−α)bF (min{p2j+2k−1, c2j+2k−1}),

p2j+2k+1 = Ω−αbF (p2j+2k+1)− (1−α)
b

c̄
p2j+2k.

As it can be seen, the price dynamics is quite complicate when the farmer exit is incorporated. In

fact, when g(α)< 1, there are two forces that make the price converge. One is due to the

existence of strategic farmers who can predict the near-future price and alleviate näıve farmers’

herding behavior. The other is due to farmers’ exit which reduces the number of näıve farmers

and thus reduces thee impact of their irrational behavior. These two forces are interwined with

each other, and it becomes hard to explicitly track how many näıve farmers are left in the market

in each period (e.g., ct needs to be updated in each cycle) and thus explicitly write down the

price dynamics equation (e.g., ct needs to be compared with the last period price to see whether

the exited farmers affect the production quantity).

C.2. Numerical Study

Given the complexity of the market dynamics described above, in this subsection we resort to

numerical experiments to draw managerial insights when we allow farmers to exit due to

bankruptcy. We numerically find that when the fraction of strategic farmers α or a farmer’s

budget L is not very small, the farmers’ exit behavior has very limited impact on the market

price dynamics, and thus the model with farmers’ exit tends not to alter the long-term welfare

results derived for our basic model. We summarize our findings into the following observations

and discussions.

Observation C.1. When the fraction of strategic farmers α is not very small, the market

price converges in a way that farmers who exit the market (if any) are all high-cost farmers

(whose cost is above p̄) and the market price converges to p̄.

To give an example, Figure 1 shows the market dynamics across different α when farmers have

limited budget.
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Figure C.1 Numerical comparison of different scenarios across various α.

Parameters: b= 11, c̄= 10,Ω = 12.
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As shown in Figure C.1, with α= 0.15 the market converges slowly, and näıve farmers gradually

go bankrupt (from cycle 3 to cycle 6) after running out of their budgets. But in this case only

high-cost farmers, whose cost is above p̄, exit the market due to bankruptcy. Therefore, farmers’

exit behavior does not change the limiting market price. When α= 0.3, the market converges

even faster, and no farmers exit the market due to bankruptcy. However, when α= 0 (i.e., in the

absence of strategic farmers), some low-cost farmers (whose cost is below p̄ but not very low) go

bankrupt in periods 2 and 4 in the first two cycles, due to the limited budget and highly

fluctuating market price. As fewer and fewer farmers remain in the market, the supply in even

periods decreases since period 2, resulting in an increasing market price in periods 4 and 6. This

process leads to a permanent supply shortage and a market price that is higher than p̄ starting

from the 6th period in the 3rd cycle. This also explains why the market price may converge to a

value higher than p̄ as stated in Proposition C.1 above.

Observation C.2. When the fraction of strategic farmers α is very small, the limiting market

price is higher than p̄ and the limiting market price depends on L in a way that is very difficult

to derive explicit expressions. In addition, the limiting market price is not monotone in L and is

close to or the same as p̄ for L that is not very small.

In Figure C.2 we show the market price dynamics under various budget levels with α= 0 (which

removes the effect of α). We find the limiting price under budget L= 6 is smaller than that under

L= 4 and L= 8.
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Figure C.2 Numerical comparison of different scenarios across various L.

Parameters: b= 11, c̄= 10,Ω = 12.
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When L is getting larger, the limiting price cannot be far away from p̄. In particular, it can be

proved that when b= c̄ the market price converges to p̄ as long as the budget L is greater than

(p̄− p0). That is, the farmer exit does not affect the long-term welfare results as long as the

budget is enough to support farmers with cost c≤ p̄ for just the first cycle.

D. Other Forms of Contracts

In the main model, we assume the SE offers a fixed buyout price contract and the farmers accept

the contract only if the fixed price po is strictly higher than the market price in the last period. In

this section, we first relax the fixed buyout price assumption and consider that the SE offers a

time-varying buyout price contract, and then consider a long-term contract in which case the

type-S farmers commit to cultivate the crop and sell it to SE at po in every period once they

accept the contract.

D.1. Time-varying Contract

Let po := {po1, po2, . . . , pon, . . .} be the time-varying pricing policy. For any given sufficiently small

ε > 0, define T (po; ε) := min{t′ : |pt(po)− p̄| ≤ ε, t≥ t′}. The objective is to find a time-varying

price contract that achieves the fastest convergence to p̄ while the SE does not incur any loss at

any time. For any given sufficiently small ε, the SE aims at solving:

minpo T (po; ε) (D.1)

s.t. πt(p
o)≥ 0 for all t,

where πt is defined in (9).
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Proposition D.1. Suppose Assumptions 1-6 hold.2 The optimal solution to SE’s problem

(D.1) for any sufficiently small ε is

(po2i−1, p
o
2i) =

(
p̄+

(1−α)b

c̄+αb
(p̄− p2i−2),0

)
for any i≥ 1. (D.2)

As implied by Proposition D.1, SE’s time-varying price contract is accepted by farmers only in

odd periods (i.e., period 2i− 1 for any i), when the latest market price p2i−2 is less than p̄ and

thus less than po2i−1. Compared to the optimal price p̄ in the static contract (Proposition 6), the

optimal price po2i−1 in the time-varying contract is higher and thus attracts more type-S farmers

to plant the crops to offset the shortsighted behavior by näıve farmers. Hence, it accelerates the

price convergence. To avoid any loss, the SE has to reduce the price po2i−1 over time to ensure

that it is no more than the corresponding realized market price. In the limit, as i approaches ∞,

the price po2i−1 converges to p̄ from above. Moreover, if the constraint πt ≥ 0 can be relaxed, i.e.,

SE is able to endure losses, the market limiting price can be achieved in one period when α is

sufficiently large.

Proposition D.2. Suppose Assumptions 1-4 hold and the SE has a sufficiently large budget

and can endure losses. At any odd period t, if α≥ p̄−pt−1

c̄−pt−1
, then the SE can set pot =

p̄−pt−1

α
+ pt−1

to stabilize the price in one period; if α<
p̄−pt−1

c̄−pt−1
, then the SE sets pot = c̄ to achieve the highest

rate of the price convergence.

Besides its complexity and inconvenience in revising the contract terms, another potential risk

associated with a time-varying contract, as opposed to committing to a fixed buyout price, is that

the SE could be more speculative and abuse the contract when offering it, in order to earn more

profits in the short term. For instance, the SE could contract with farmers at a price even lower

than p̄ but strictly higher than pt−1 at the beginning of an odd period t and sell at a higher

market price in the end of that period. This could dramatically slow down the market

convergence and result in lower farmer welfare. Therefore, monitoring and regulating SE’s

behavior can be necessary.

D.2. Long-Term Contract

Consider that the SE offers type-S farmers a long-term contract in which a constant buyout price

po is specified. If a type-S farmer accepts the contract, he commits to cultivate the crop and sell it

at po to the SE in every period. It is reasonable to assume that a type-S farmer with production

2 For this result, Assumption 6 can be relaxed to α>α1.
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cost c will accept the contract if po ≥ c, and do not otherwise. (We will verify shortly it is indeed

incentive compatible for type-S farmers to do so.) Then the market price evolves as follows:

pt = Ω− bαF (po)− b(1−α)F (pt−1). (D.3)

We replace the definition of pt by (D.3) and find that Proposition 6 still holds if we relax the

individual welfare constraint in the SE’s problem (10) to that the total individual welfare in each

cycle (as opposed to each period) is nonnegative. As a result, the optimal long-term contract is

also beneficial to both the SE and farmers. However, promoting this contract could be difficult.

First, näıve farmers may hesitate to make any long-term commitment, as they likely find it

difficult to assess its value over the long run. Furthermore, this contract may not seem incentive

compatible: In view of conceivably higher future market prices than the offered contract price,

the farmers may not be willing to be locked in at the contract price.

The following proposition shows that the extent, to which SE’s long-term buyout contract can

help reduce the price fluctuation, varies, depending on the buyout price po and the size of type-S

farmers α.

Proposition D.3. Suppose Assumptions 1-5 hold. Define α̂= b+c̄−Ω

b(1− p
o

c̄ )
.

(i) If α≥ α̂, then pt = Ω−α b
c̄
po− b(1−α) for any t≥ 1.

(ii) If α1 <α< α̂, then limt→∞ pt = p̄− αb(po−p̄)
c̄+(1−α)b

.

(iii) If α≤min{α1, α̂}, then the market price process does not converge.

Similar to Proposition 6, we could show under some conditions, po∗ = p̄ is the unique optimal

solution to SE’s problem (10). In that case, the market price converges to p̄ and the SE receives a

positive profit in each cycle over any finite horizon and the profit per cycle diminishes to 0 in the

limit. In the meantime, both type-S and type-N farmers, with production cost c > c, receive

(weakly) higher welfare due to the market stabilization in the presence of SE, while the ones with

c < c may receive a lower welfare, compared to the surplus that farmers would have received in

the absence of SE.

E. Proof of Propositions 1, 2, and 3

Before the proof of Proposition 1, we first introduce two lemmas.

Lemma E.1. Suppose Assumptions 1-3 hold and g(α)≤ 1. For any i≥ 0, if pi ≤ c̄, then

pi+1 ≤ c̄.
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Proof of Lemma E.1. If pi ≤ c̄, then by (3) we have

pi = Ω− bα pi
c̄
− b(1−α)F (pi−1)≥Ω− bα pi

c̄
− b(1−α), by which we obtain

pi ≥
Ω− (1−α)b

1 +α b
c̄

. (E.1)

Now we show pi+1 ≤ c̄. Suppose for a contradiction that pi+1 > c̄, then it follows by pi ≤ c̄ and (3)

that pi+1 = Ω−αb− (1−α) b
c̄
pi ≤Ω−αb− (1−α) b

c̄

Ω−(1−α)b

1+α bc̄
, where the last inequality holds

because of (E.1). To end the proof, it suffices to show Ω−αb− (1−α) b
c̄

Ω−(1−α)b

1+α bc̄
≤ c̄, which will

arrive a contradiction. We have

Ω−αb− (1−α)
b

c̄

Ω− (1−α)b

1 +α b
c̄

− c̄= (Ω− b− c̄)
{

1− (1−α)b

c̄+αb

}
≤ 0,

where the last inequality holds because Ω≤ b+ c̄ and g(α) = (1−α)b

c̄+αb
≤ 1. �

Lemma E.2. Suppose Assumptions 1-3 hold and g(α)> 1. If p2i−1 ≥ c̄, then for any j ≥ 0,

p2i+2j = p̄− g(α)(c̄− p̄)≤ c̄ and p2i+2j+1 = Ω− b
(
α+ (1−α)

p2i+2j

c̄

)
≥ c̄.

Proof of Lemma E.2. We first derive the expression of p2i. It follows by p2i−1 ≥ c̄ and (3) that

p2i = Ω− b(1−α)− bαF (p2i). Suppose p2i > c̄ for a contradiction. Then p2i = Ω− b≤ c̄, which

contradicts our supposition. Hence it must be the case that p2i ≤ c̄. Therefore,

p2i = Ω− b(1−α)− bα p2i
c̄

, by which we obtain p2i = Ω−(1−α)b

1+α bc̄
= p̄− g(α)(c̄− p̄)≤ c̄.

Next we derive the expression of p2i+1. It follows by p2i ≤ c̄ and (3) that

p2i+1 = Ω− bαF (p2i+1)− b(1−α)
p2i

c̄
. (E.2)

Suppose for a contradiction that p2i+1 < c̄. Then (E.2) reduces to p2i+1 = Ω− bα p2i+1

c̄
− b(1−α)p2i

c̄
,

by which we obtain p2i+1 =
Ω−(1−α) bc̄p2i

1+α bc̄
=

Ω

(
1−(1−2α) bc̄

)
+(1−α)2 b

2

c̄

(1+α bc̄ )2
. However,

p2i+1− c̄=
Ω
(
1− (1− 2α) b

c̄

)
+ (1−α)2b2

c̄

(1 +α b
c̄
)2

− c̄=
1

1 +α b
c̄

(Ω− b− c̄)
(
1− g(α)

)
≥ 0,

where the last inequality holds because Ω≤ b+ c̄ and g(α)> 1. This contradicts our supposition

that p2i+1 < c̄. Therefore, it must be the case that p2i+1 ≥ c̄. Hence (E.2) reduces to

p2i+1 = Ω− bα− b(1−α)p2i
c̄

.

Continuing in this fashion, we could show that for any j ≥ 0, p2i+2j = p̄− g(α)(c̄− p̄)≤ c̄ and

p2i+2j+1 = Ω− bα− b(1−α)
p2i+2j

c̄
≥ c̄. �



10

Proof of Proposition 1. Part 1: We study the case when g(α)≤ 1.

Given p0 ≤ c̄ in Assumption 2, Lemma E.1 implies that pi ≤ c̄ for any i≥ 0. Thus (3) reduces to

pt = Ω−α b
c̄
pt− (1−α) b

c̄
pt−1. Some algebras show that

pt =
Ω

1 +α b
c̄

−
(1−α) b

c̄

1 +α b
c̄

pt−1 = p̄+
{
−

(1−α) b
c̄

1 +α b
c̄

}t
(p0− p̄) = p̄+ [−g(α)]t(p0− p̄).

If g(α)< 1, then limt→∞ pt = p̄. If g(α) = 1, then pt alternates between p0 and 2p̄− p0.

Part 2: We study the case when g(α)> 1.

We first show there exists an i′ ≥ 0 such that p2i−1 ≥ c̄. Suppose for a contradiction that there

does not exists such an i′, then for any t we have pt ≤ c̄. Thus as in Part 1, we have for any t < j,

pt = p̄+ [−g(α)]t(p0− p̄). Note that g(α)> 1, so there must exist an i′ ≥ 0 such that p2i′−1 ≥ c̄

because p0 < p̄, leading to a contradiction.

Therefore, it follows by Lemma E.2 that the market price alternates between two constant

prices. �

Proof of Proposition 2. Note that p2i−1 > p2i. We divide the farmers based on their

production cost endowment. (a) Suppose c≤ p2i. By (1), we have un2i−1 = p2i−2− c= p2i− c≥ 0

and un2i = p2i−1− c > p2i− c≥ 0. Therefore, the farmer plants the crop in both periods. Thus

wn(c) = 1
2
(p2i−1− c) + 1

2
(p2i− c) = 1

2
(p2i−1 + p2i)− c > 0. One can check that us2i−1 ≥ 0 and us2i ≥ 0.

Hence, the strategic farmer plants in both periods too and thus ws(c) = 1
2
(p2i−1 + p2i)− c > 0. (b)

Suppose p2i < c≤ p2i−1. We have un2i−1 = p2i−2− c= p2i− c < 0 and un2i = p2i−1− c≥ 0. Therefore,

the farmer plants the crop only in period 2i. Thus wn(c) = 1
2
(p2i− c)< 0. It is easy to check

us2i−1 = p2i−1− c > 0 and us2i = p2i− c < 0. Hence, the strategic farmer plants only in period 2i− 1

and thus ws(c) = 1
2
(p2i−1− c)> 0. (c) Suppose c > p2i−1. We have un2i−1 = p2i−2− c= p2i− c < 0

and un2i = p2i−1− c < 0. Therefore, the farmer does not plant the crop in any period. Thus

wn(c) = 0. It is easy to check ws(c) = 0. �

Proof of Proposition 3. Part (i)(a): In the presence of strategic farmers, the näıve and

strategic farmers enjoy the same price in each period. Since strategic farmers can predict future

prices based on which their planting decisions are made, it is easy to see they always obtain a

(weakly) higher surplus than the näıve farmers with the same production cost.

Part (i)(b): In the model with näıve farmers only, we use pnt and wni (c) to denote the price in

period t and the welfare of näıve farmers with cost c in cycle i, while in the model with strategic

farmers we use pt and wnsi (c).

If α= 0, by Assumption 4, we have g(α)≥ 1. According to Proposition 2, the näıve farmers’

welfare in the absence of strategic farmers is as follows: (a) If c≤ pn2i−2, then wni (c) =
pn2i−1+pn2i

2
− c.

(b) If pn2i−2 < c≤ pn2i−1, then wni (c) = 1
2
(pn2i− c)< 0. (c) If c > pn2i−1, then wni (c) = 0.
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When g(α)< 1, the prices in cycle i are (p2i−1, p2i). In this case, the näıve farmers’ welfare is as

follows. (a) If c≤ p2i−2, then wnsi (c) =
p2i−1+p2i

2
− c > 0. (b) If p2i−2 < c≤ p2i−1, then

wnsi (c) = 1
2
(p2i− c)< 0. (c) If c > p2i−1, then wnsi (c) = 0.

Next we compare wni (c) with wnsi (c). Note that pn2i−2 < p2i−2 < p2i−1 < p
n
2i−1 and pn2i < p2i for each

cycle i. (i) If pn2i−2 < c≤ p2i−2, then wni (c) = 1
2
(pn2i− c) and wnsi (c) = 1

2
(p2i−1− c) + 1

2
(p2i− c). Since

p2i > p
n
2i and p2i−1 > c, it is easy to see wnsi (c)>wni (c). (ii) If p2i−2 < c≤ p2i−1, then

wni (c) = 1
2
(pn2i− c) and wnsi (c) = 1

2
(p2i− c). We have wnsi (c)>wni (c) because p2i > p

n
2i. (iii) If

p2i−1 < c≤ pn2i−1, then wni (c) = 1
2
(pn2i− c)< 0 and wnsi (c) = 0. Clearly, wnsi (c)>wni (c). (iv) If

c > pn2i−1, then wni (c) =wnsi (c) = 0. Therefore, the näıve farmers with production cost not too low

(to be specific, c > pn2i−2) obtain a higher surplus than that without strategic farmers.

Part (i)(c): We first derive wni (c). If α= 0, by Proposition 1, we have the alternating prices are

(2p̄− p0, p0) if b= c̄ and (Ω− b
c̄
(Ω− b),Ω− b) if b > c̄ and i > i′. By Part (i)(b), we know if

c≤ pn2i−2, then

wni (c) =
pn2i−1 + pn2i

2
− c=

{
p̄− c if b= c̄,
1
2

(
Ω− b

c̄
(Ω− b) + Ω− b

)
− c if b > c̄.

(E.3)

Next we show wnsi (c). If g(α)< 1, by Proposition 1, we have pt = p̄+ [−g(α)]t(p0− p̄). By Part 1b,

we know if c≤ pn2i−2 < p2i−2, then

wnsi (c) =
p2i−1 + p2i

2
− c=

1

2

{
2p̄+ [−g(α)]2i−1(p0− p̄)[1− g(α)]

}
− c > p̄− c.

Hence, wnsi (c)>wni (c) if b= c̄. As for b > c̄, it is hard to compare.

Part (ii)(a): Since the price is stabilized at p̄ in the long run, each strategic farmer obtains the

same surplus as the näıve farmer with the same production cost.

Part (ii)(b): When g(α)< 1, the price is stabilized at p̄. In this case, the näıve farmers with c < p̄

cultivate in both periods and thus obtain limi→∞w
ns
i (c) = p̄− c, while the rest do not cultivate

and thus obtain limi→∞w
ns
i (c) = 0.

In the absence of strategic farmers, the price eventually alternates between two constant prices

limi→∞ p
n
2i−1 and limi→∞ p

n
2i. By Proposition 2, we have (a) If c≤ limi→∞ p

n
2i, then

limi→∞w
n
i (c) =

limi→∞ pn2i−1+limi→∞ pn2i
2

− c; (b) If limi→∞ p
n
2i ≤ c≤ limi→∞ p

n
2i−1, then

limi→∞w
n
i (c) =

limi→∞ pn2i−c
2

; (c) If c > limi→∞ p
n
2i−1, then limi→∞w

n
i (c) = 0.

Note that limi→∞ p
n
2i < p̄ < limi→∞ p

n
2i−1, so one can check limi→∞w

n
i (c)≤ limi→∞w

ns
i (c) for any

c > limi→∞ p
n
2i. Therefore, the näıve farmers with production cost not too low (i.e., c > limi→∞ p

n
2i)

obtain a (weakly) higher surplus than that without strategic farmers.
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Part (ii)(c): Suppose c < limi→∞ p
n
2i. We obtain limi→∞w

ns
i (c) = p̄− c, while limi→∞w

n
i (c) is given

by (E.3). Note that

Ω− b
c̄
(Ω− b) + Ω− b− 2p̄= Ω + (1− b

c̄
)(Ω− b)− 2c̄

b+ c̄
Ω =

b(c̄− b)
c̄

(
Ω

c̄+ b
− 1)> 0,

so limi→∞w
ns
i (c)≤ limi→∞w

n
i (c) where the equality holds only when b= c̄.

Part (iii): We show under some conditions the total welfare of all farmers is improved.

If α= 0, then by Assumption 4, we have g(α)≥ 1. Proposition 1 shows that the alternating prices

(pn2i−1, p
n
2i) are (Ω− p0, p0) if b= c̄ and (Ω− b

c̄
(Ω− b),Ω− b) if b > c̄.

For the farmers with production cost c≤ pn2i, let B1 denote their welfare difference between in the

presence and in the absence of strategic farmers, then we have

B1 =

∫ pn2i

0

{
p̄− c− (

pn2i−1 + pn2i
2

− c)
}1

c̄
dc=

{
0 if b= c̄,
1
2
b
c̄2

(c̄− b)(1− Ω
c̄+b

)(Ω− b)< 0 if b > c̄,

where the last inequality holds because b > c̄ and b≤Ω≤ b+ c̄. For the farmers with production

cost pn2i < c≤ p̄, let B2 denote the welfare difference between in the presence and in the absence of

strategic farmers, then

B2 =

∫ p̄

pn2i

{
p̄− c− 1

2
(pn2i− c)

}1

c̄
dc=

{∫ p̄
pn2i

b−c
2c̄
dc > 0, if b= c̄,

3
4
b2

c̄
(1− Ω

c̄+b
)2 > 0 if b > c̄.

For the farmers with production cost p̄ < c≤ pn2i−1, let B3 denote the welfare difference between in

the presence and in the absence of strategic farmers, then

B3 =

∫ pn2i−1

p̄

{
0− 1

2
(pn2i− c)

}1

c̄
dc=

∫ pn2i−1

p̄

1

2
(c− pn2i)

1

c̄
dc > 0,

where the last inequality holds because c > p̄ > pn2i. For the farmers with production cost

c > pn2i−1, let B4 denote the welfare difference between in the presence and in the absence of

strategic farmers. It is easy to see that B4 = 0.

Clearly, if b= c̄, then
∑4

i=1Bi > 0 and thus the aggregate welfare of all farmers in the presence of

strategic farmers is higher than that in the absence of strategic farmers. Suppose b > c̄, we have

B1 +B2 =
b

4c̄2

(
1− Ω

c̄+ b

)(
bc̄+ 2b2 + (2c̄2− 2b2− 3bc̄)

Ω

c̄+ b

)
> 0,

where the last inequality holds by Ω
c̄+b

< 2b2+bc̄
2b2+3bc̄−2c̄2

which is true because p̄− (Ω− b)≥ 2bc̄(b−c̄)
2b2+3bc̄−2c̄2

.

Given B3 > 0 and B4 = 0, it follows immediately that
∑4

i=1Bi > 0. This completes the proof of

Part (iii). �
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F. Proof of Proposition 5

Each part of Proposition 5 corresponds to each of the following three Lemmas.

Lemma F.1. Suppose Assumptions 1-5 hold and po > p̄.

1. Suppose α>α0.

(a) If α>α1, then limt→∞ pt = p̄− αb(po−p̄)
c̄+(1−α)b

.

(b) If α≤ α1, then the price process does not converge.

2. Suppose α≤ α0.

(a) If α>α2, then limt→∞ pt = p̄− αb(po−p̄)
c̄+(1−α)b

.

(b) If α≤ α1, then the price process does not converge.

Proof of Lemma F.1. Part 1: Suppose α>α0, which is equivalent to

Ω−αb
c̄
po− (1−α)

b

c̄
p0 < p

o. (F.1)

Part 1(a): We will show pt converges if α>α1 and does not converge if α= α1. Note that α≥ α1

is equivalent to b(1−α)≤ c̄.

We first show by induction that for any t≥ 1

pt =
{

1−
(
− (1−α)

b

c̄

)t} Ω−α b
c̄
po

1 + (1−α) b
c̄

+
(
− (1−α)

b

c̄

)t
p0 < p

o, (F.2)

from which whether pt converges can be checked immediately. By (8),

p1 = Ω−α b
c̄
po− (1−α) b

c̄
p0 < p

o, where the equality holds because p0 < p̄ < p
o ≤ c̄ and the

inequality holds because of (F.1). This establishes that (F.2) holds when t= 1.

Suppose (F.2) holds when t= i− 1. Next we will show (F.2) holds when t= i. One has

pi = Ω−αb
c̄
po− (1−α)

b

c̄
pi−1 [by po ≤ c̄ and pi−1 < p

o ≤ c̄]

= Ω−αb
c̄
po− (1−α)

b

c̄

{
{1−

(
− (1−α)

b

c̄

)i−1}
Ω−α b

c̄
po

1 + (1−α) b
c̄

+
(
− (1−α)

b

c̄

)i−1
p0

}
=
{

1−
(
− (1−α)

b

c̄

)i} Ω−α b
c̄
po

1 + (1−α) b
c̄

+
(
− (1−α)

b

c̄

)i
p0

<
{

1−
(
− (1−α)

b

c̄

)i}(1−α) b
c̄
p0 + po

1 + (1−α) b
c̄

+
(
− (1−α)

b

c̄

)i
p0 [by (F.1)]

=

(
− (1−α) b

c̄

)i
+ (1−α) b

c̄

1 + (1−α) b
c̄

p0 +
1−

(
− (1−α) b

c̄

)i
1 + (1−α) b

c̄

po

<

(
− (1−α) b

c̄

)i
+ (1−α) b

c̄

1 + (1−α) b
c̄

po +
1−

(
− (1−α) b

c̄

)i
1 + (1−α) b

c̄

po [by p0 < p
o and (1−α)

b

c̄
≤ 1]

= po.
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This completes the induction. Therefore, if α>α1 which is (1−α) b
c̄
< 1, then

limt→∞ pt =
Ω−α bc̄p

o

1+(1−α) bc̄
= p̄− αb(po−p̄)

c̄+(1−α)b
. If α= α1, then the price alternates between Ω−α b

c̄
po− p0

and p0.

Part 1(b): We will show the price does not converge when α<α1. Note that b(1−α)> c̄.

We first show there exists an i≥ 0 such that pi ≥ po. Suppose for a contradiction that pi < p
o for

any i≥ 0, then as in Part 1(a), we obtain (F.2). Since (1−α) b
c̄
> 1, there must exist an i such

that pi ≥ po, contradicting our supposition.

Define j = min{i : pi ≥ po, pi−k < po,∀k= 1, . . . , i}. That is, period j is the first time that the price

goes above po. Note that pj = Ω−α b
c̄
po− (1−α) b

c̄
pj−1 ≥ po and pj−1 < p̄ (otherwise, pj ≥ po

cannot hold), so it follows the proof of Part 2(b) that pt does not converge.

Part 2: Suppose α<α0, which is equivalent to

Ω−αb
c̄
po− (1−α)

b

c̄
p0 ≥ po. (F.3)

Part 2(a): We will show if α>α2, that is, b < c̄√
1−α , then limt→∞ pt = p̄− αb(po−p̄)

c̄+(1−α)b
.

According to Part 1(a), it suffices to show there exists an i≥ 0 such that p2i < p̄ and

p2i+1 = Ω−α b
c̄
po− (1−α) b

c̄
p2i < p

o. Then it follows the proof of Part 1(a).

Observe that

Ω−αb
c̄
po− (1−α)

b

c̄
(Ω− b)− c̄

≤Ω−αb
c̄

c̄

c̄+ b
Ω− (1−α)

b

c̄
(Ω− b)− c̄ [by po > p̄=

c̄

c̄+ b
Ω]

=
c̄2− (1−α)b2

c̄

( Ω

c̄+ b
− 1
)

≤0. [by b <
c̄√

1−α
and Ω≤ c̄+ b] (F.4)

In the following we derive the formula of p2i+1. We have p1 = Ω−α b
c̄
po− (1−α) b

c̄
p0 ≥ po, where

the last inequality holds because of (F.3). Moreover,

p1 = Ω−α b
c̄
po− (1−α) b

c̄
p0 <Ω−α b

c̄
po− (1−α) b

c̄
(Ω− b)< c̄ where the last inequality holds

because of (F.4). It follows by po ≤ p1 ≤ c̄ that p2 = Ω− b
c̄
p1 <Ω− b

c̄
po <Ω− b

c̄
p̄= p̄ < po ≤ c̄. Since

p2 < p
o < c̄, p3 = Ω−α b

c̄
po− (1−α) b

c̄
p2 ≤ c̄ where the last inequality holds because p2 ≥Ω− b and

(F.4). If p3 ≤ po, then we are done. Suppose p3 > p
o, then p4 = Ω− b

c̄
p3 <Ω− b

c̄
po < p̄ < po ≤ c̄, by

which it follows that p5 = Ω−α b
c̄
po− (1−α) b

c̄
p4.

Continuing in this fashion, we obtain that if p2i−1 > p
o, then p2i < p̄ and

p2i+1 = Ω−αb
c̄
po− (1−α)

b

c̄
p2i = Ω−αb

c̄
po− (1−α)

b

c̄

(
Ω− b

c̄
p2i−1

)
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=
(

1− (1−α)
b

c̄

)
Ω−αb

c̄
po + (1−α)

b2

c̄2
p2i−1

=

(
1− (1−α) b

c̄

)
Ω−α b

c̄
po

1− (1−α) b
2

c̄2

+
(

(1−α)
b2

c̄2

)i{
p1−

(
1− (1−α) b

c̄

)
Ω−α b

c̄
po

1− (1−α) b
2

c̄2

}
.

Note that (1−α) b
2

c̄2
< 1, so limi→∞ p2i+1 =

(
1−(1−α) bc̄

)
Ω−α bc̄p

o

1−(1−α) b
2

c̄2

. Recall that we expect to show there

exists an i≥ 0 such that p2i < p̄ and p2i+1 < p
o. To end the proof, it suffices to show

limi→∞ p2i+1 < p
o. One has

lim
i→∞

p2i+1− po =

(
1− (1−α) b

c̄

)
Ω−α b

c̄
po

1− (1−α) b
2

c̄2

− po =
1

1− (1−α) b
2

c̄2

{(
1− (1−α)

b

c̄

)
Ω−

(
1 +α

b

c̄
− (1−α)

b2

c̄2

)
po
}

<
1

1− (1−α) b
2

c̄2

{(
1− (1−α)

b

c̄

)
Ω−

(
1 +α

b

c̄
− (1−α)

b2

c̄2

) c̄

c̄+ b
Ω
}

= 0.

where the last inequality holds because po > c̄
c̄+b

Ω and (1−α) b
2

c̄2
< 1. This completes the proof of

Part 2(a).

Part 2(b): We will show if α<α1, that is, b≥ c̄
1−α , then pt does not converge.

Again, we have p1 = Ω−α b
c̄
po− (1−α) b

c̄
p0 ≥ po. If p1 > c̄, then p2 = Ω− b, and thus

p3 = Ω−α b
c̄
po− (1−α)(Ω− b)≥Ω−α b

c̄
c̄− (1−α)(Ω− b) = α(Ω− b) + (1−α)b > c̄ where the first

inequality holds because po ≤ c̄ and the second inequality holds because Ω> b and b≥ c̄
1−α . Thus,

the price will alternate between Ω−α b
c̄
po− (1−α)(Ω− b) and Ω− b and we are done. To end the

proof, we assume p1 ≤ c̄ hereafter. Then p2 = Ω− b
c̄
p1 ≤Ω− b

c̄
po <Ω− b

c̄
p̄= p̄ < po < c̄. It follows

that p3 = Ω−α b
c̄
po− (1−α) b

c̄
p2 =

(
1− (1−α) b

c̄

)
Ω−α b

c̄
po + (1−α) b

2

c̄2
p1. One can check

p3− p1 =
(

1− (1−α)
b

c̄

)
Ω−αb

c̄
po +

(
(1−α)

b2

c̄2
− 1
)
p1

≥
(

1− (1−α)
b

c̄

)
Ω−αb

c̄
po +

(
(1−α)

b2

c̄2
− 1
)
po [by p1 ≥ po and b≥ c̄

1−α
>

c̄√
1−α

]

=
(

1− (1−α)
b

c̄

)(
Ω− (1 +

b

c̄
)po
)

≥
(

1− (1−α)
b

c̄

)(
Ω− (1 +

b

c̄
)
c̄

c̄+ b
Ω
)

[by po ≥ c̄

c̄+ b
Ω and 1− (1−α)

b

c̄
≤ 0]

= 0.

Continuing in this fashion, we could show if p2i−1 < c̄, then p2i+1 > p2i−1. That is, if there does

not exist an i such that p2i−1 > c̄, then p2i−1 is increasing in i. This monotonicity and p1 ≥ po

indicates that p2i−1 > p
o, and thus p2i = Ω− b

c̄
p2i−1 < p

o, decreasing in i. Hence, the price does not

converge. Note that if there exists an i such that p2i−1 > c̄, then similar to the above case that

p1 > c̄, the price will alternate between Ω−α b
c̄
po− (1−α)(Ω− b) and Ω− b. �

Lemma F.2. Suppose Assumptions 1-5 hold and po = p̄.
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1. If α>α2, then the market price converges to p̄.

2. Otherwise, the price process does not converge.

Proof of Lemma F.2. Part 1: We will show pt converges if α>α2 and does not converge if

α= α2. Note that α≥ α2 is equivalent to (1−α)b2 ≤ c̄2.

We first prepare some results. Observe that

Ω−αb
c̄
po− (1−α)

b

c̄
(Ω− b)− c̄

=Ω−αb
c̄

c̄

c̄+ b
Ω− (1−α)

b

c̄
(Ω− b)− c̄ [by po =

c̄

c̄+ b
Ω]

=
c̄2− (1−α)b2

c̄

( Ω

c̄+ b
− 1
)

≤0. [by (1−α)b2 < c̄2 and Ω≤ c̄+ b] (F.5)

Then we will show by induction that

p2t+1 = p̄+
(

(1−α)
b2

c̄2

)t
(p1− p̄), p2t+2 = Ω− b

c̄
p2t+1. (F.6)

We first show (F.6) holds when t= 1. One has

p1 = Ω−αb
c̄
po− (1−α)

b

c̄
p0 >Ω−αb

c̄
p̄− (1−α)

b

c̄
p̄= p̄,

where the last inequality holds because p0 < p̄. Moreover,

p1 = Ω−α b
c̄
po− (1−α) b

c̄
p0 <Ω−α b

c̄
po− (1−α) b

c̄
(Ω− b)< c̄ where the last inequality holds

because of (F.5). It follows by po ≤ p1 ≤ c̄ that p2 = Ω− b
c̄
p1 <Ω− b

c̄
po = p̄= po ≤ c̄. Since

p2 < p
o ≤ c̄,

p3 = Ω−α b
c̄
po− (1−α) b

c̄
p2 = Ω−α b

c̄
po− (1−α) b

c̄
(Ω− b

c̄
p1) = p̄+

(
(1−α) b

2

c̄2

)
(p1− p̄)> p̄ where the

last inequality holds because p1 > p̄. Moreover, p3 = Ω−α b
c̄
po− (1−α) b

c̄
p2 ≤ c̄ where the last

inequality holds because p2 ≥Ω− b and (F.5). Observe that po = p̄ < p3 ≤ c̄, so p4 = Ω− b
c̄
p3. This

establishes that (F.6) holds for t= 1.

Suppose (F.6) holds for t= i− 1. Next we show (F.6) holds for t= i. We have

p2i+1 = Ω−αb
c̄
p̄− (1−α)

b

c̄
p2i = Ω−αb

c̄
p̄− (1−α)

b

c̄

(
Ω− b

c̄
p2i−1

)
=
(

1− (1−α)
b

c̄

)
Ω−αb

c̄
p̄+ (1−α)

b2

c̄2
p2i−1

=
(

1− (1−α)
b

c̄

)
Ω−αb

c̄
p̄+ (1−α)

b2

c̄2

{
p̄+

(
(1−α)

b2

c̄2

)i−1

(p1− p̄)
}

= p̄+
(

(1−α)
b2

c̄2

)i
(p1− p̄)> p̄= po,
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where the last inequality holds because p1 > p̄. Note also that p2i+1 = Ω−α b
c̄
p̄− (1−α) b

c̄
p2i < c̄

because p2i >Ω− b and (F.5), so p2i+2 = Ω− b
c̄
p2i+1. This completes the induction.

Therefore, if α>α2, then (1−α) b
2

c̄2
< 1, hence limt→∞ p2i+1 = limt→∞ p2i+2 = p̄. If α= α2, then

(1−α) b
2

c̄2
= 1, hence pt alternates between p1 and Ω− b

c̄
p1.

Part 2: We will show if α<α2, that is, (1−α) b
2

c̄2
> 1, then the price does not converge.

We take a brief detour that

Ω−αb
c̄
po− (1−α)

b

c̄
(Ω− b)

=
c̄

c̄+ b
Ω
(

1− (1−α)
b2

c̄2

)
+ (1−α)

b2

c̄

≥c̄
(

1− (1−α)
b2

c̄2

)
+ (1−α)

b2

c̄
[by Ω≤ c̄+ b and 1− (1−α)

b2

c̄2
< 0]

=c̄. (F.7)

Then we show there exists an i≥ 0 such that p2i+1 ≥ c̄. Suppose there does not exist such an i,

that is, pt ≤ c̄ for any t. Note also that

p1 = Ω−αb
c̄
po− (1−α)

b

c̄
p0 >Ω−αb

c̄
p̄− (1−α)

b

c̄
p̄= p̄= po,

then as in Part 2(a) of Lemma F.1, we have

p2i+1 =

(
1− (1−α) b

c̄

)
Ω−α b

c̄
po

1− (1−α) b
2

c̄2

+
(

(1−α)
b2

c̄2

)i{
p1−

(
1− (1−α) b

c̄

)
Ω−α b

c̄
po

1− (1−α) b
2

c̄2

}
= p̄+

(
(1−α)

b2

c̄2

)i
(p1− p̄)

where the last equality holds because po = p̄. Note that p1 > p̄, so p2i+1 is increasing in i because

(1−α) b
2

c̄2
> 1, by which we know there must exist an i such that p2i+1 ≥ c̄.

Let j = min{i : p2i+1 ≥ c̄}. Since p2j+1 ≥ c̄≥ po, p2j+2 = Ω− bF (p2j+1) = Ω− b, and

p2j+3 = Ω−α b
c̄
po− (1−α) b

c̄
p2j+2 = Ω−α b

c̄
po− (1−α) b

c̄
(Ω− b)≥ c̄, where the last inequality holds

because of (F.7). It can be checked that the price alternates between Ω−α b
c̄
po− (1−α) b

c̄
(Ω− b)

and Ω− b. �

Lemma F.3. Suppose Assumptions 1-5 hold and po < p̄. Then the price process does not

converge.

Proof of Lemma F.3. Whenever the low price in each cycle falls into the range of [po, p̄] which

is a necessary process for convergence, the contract is not effective anymore and thus the price

process will stop converging because the price does not converge when b≥ c̄ in the model with

näıve farmers only and no contract. Therefore, the price does not converge if po < p̄. �

Proof of Proposition 5 The result follows immediately by combining Lemmas F.1, F.2, and

F.3. �
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G. Proof of Proposition 6, Corollaries 2 and 3

Proof of Proposition 6. We first show under some conditions po∗ = p̄ is the unique optimal

solution to SE’s problem (10). We consider three scenarios.

Scenario 1: Suppose po∗ > p̄. Proposition 5 implies that limt→∞ pt = p̄− αb(po∗−p̄)
c̄+(1−α)b

< p̄. Then there

exists a t′ such that for any t≥ t′, πt(po∗) = (pt− po∗)qot < 0, which violates the profit constraint in

problem (10). Hence, po∗ > p̄ cannot be optimal.

Scenario 2: Suppose po∗ = p̄, then limt→∞ pt = p̄. In the long run, both types of farmers receive a

surplus as follows. (i) If c≤ p̄, then limi→∞ w̄
n
i (c;po∗ = p̄) = limi→∞ w̄

s
i (c;p

o∗ = p̄) = p̄− c. (ii) If

c > p̄, then limi→∞ w̄
n
i (c;po∗ = p̄) = limi→∞ w̄

s
i (c;p

o∗ = p̄) = 0.

Scenario 3: Suppose po∗ < p̄. Proposition 5 shows that the price process does not converge.

Moreover, when the lower price in any cycle is lower than po∗, the contract will take effect and

the price will go above po∗. When the lower price goes above po∗, the contract will not take effect

and the price will diverge below po∗. So the lower price keeps going above and below po∗. To

complete the proof, we will show the aggregate welfare of all farmers in every possible case is

lower than that in Scenario 2.

Note that the prices in each cycle i are (p2i−1, p2i) where p2i < p̄ < p2i−1. We have two cases.

Case 1: Suppose p2i−1 ≤ c̄ for any i≥ 1. In this case, p2i = Ω− b
c̄
p2i−1, so

p2i−1+p2i

2
=

Ω+(1− bc̄ )p2i−1

2
<

Ω+(1− bc̄ ) c̄
c̄+bΩ

2
= p̄.

The type-N farmers’ welfare is as follows. (i) If c≤ p2i−2, then w̄ni (c;po∗ < p̄) =
p2i−1+p2i

2
− c < p̄− c.

(ii) If p2i−2 < c≤ p2i−1, then w̄ni (c;po∗ < p̄) = 1
2
(p2i− c). (iii) If c > p2i−1, then w̄ni (c;po∗ < p̄) = 0.

As for type-S farmers, there are two possible subcases. Subcase 1: p2i−2 < p
o∗. That is, the type-S

farmers accept the contract in period 2i− 1 and their welfare is as follows. (i) If c≤ po∗, then

w̄si (c;p
o∗ < p̄) = po∗+p2i

2
− c < p̄− c. (ii) If po∗ < c≤ p2i−1, then w̄si (c;p

o∗ < p̄) = 1
2
(p2i− c). (iii) If

c > p2i−1, then w̄si (c;p
o∗ < p̄) = 0. Subcase 2: p2i−2 ≥ po∗. That is, no type-S farmers accept the

contract in period 2i− 1 and their welfare is the same as type-N farmers.

Comparing with farmers’ welfare in Scenario 2, we obtain

w̄ni (c;po∗ < p̄)≤ lim
i→∞

w̄ni (c;po∗ = p̄) for any 0≤ c≤ c̄

w̄si (c;p
o∗ < p̄)≤ lim

i→∞
w̄si (c;p

o∗ = p̄) for any 0≤ c≤ c̄.

Therefore,∫ c̄

0

lim
i→∞

(
w̄si (c;p

o∗ < p̄) + w̄ni (c;po∗ < p̄)
)1

c̄
dc≤

∫ c̄

0

lim
i→∞

(
w̄si (c;p

o∗ = p̄) + w̄ni (c;po∗ = p̄)
)1

c̄
dc.
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Case 2: Suppose there exists a j ≥ 1 such that p2j−1 > c̄. In this case, p2j = Ω− b, so

p2j+1 = Ω− b
c̄
(Ω− b)> c̄, and thus p2j+2 = Ω− b. Continuing in this fashion, we obtain that

p2i = Ω− b= c and p2i+1 = Ω− b
c̄
(Ω− b) for any i≥ j. That is, no type-S farmers accept the

contract and the price dynamics is the same as the model with all farmers being näıve and no SE.

Hence, the aggregate welfare of all farmers is also the same as that with all farmers being näıve

and no SE.

Note that the aggregate welfare of all farmers in Scenario 2 is the same as that when price is

stabilized at p̄ with a sufficient number of strategic farmers. Therefore, by Part (iii) of

Proposition 3, we have if b= c̄ or b > c̄ and p̄− (Ω− b)≥ 2bc̄(b−c̄)
2b2+3bc̄−2c̄2

, then∫ c̄

0

lim
i→∞

(
w̄si (c;p

o∗ < p̄) + w̄ni (c;po∗ < p̄)
)1

c̄
dc≤

∫ c̄

0

lim
i→∞

(
w̄si (c;p

o∗ = p̄) + w̄ni (c;po∗ = p̄)
)1

c̄
dc.

Combining the above two cases, we see po∗ < p̄ cannot be optimal. This establishes that po∗ = p̄ is

the unique optimal solution.

Part (i): We will show the SE receives a positive profit in the short run and the profit diminishes

to 0 in the long run.

According to the proof of Lemma F.2, the market price when po = p̄ is as follows,

p2i−1 = p̄+
(

(1−α)
b2

c̄2

)i−1

(p1− p̄)> p̄ and p2i = Ω− b
c̄
p2i−1 < p̄.

In each cycle, since p2i−2 < p
o = p̄ < p2i−1, type-S farmers accept the contract in period 2i− 1 and

do not accept in period 2i. Hence, π2i−1(po;p2i−1) = (p2i−1− p̄)qo2i−1 > 0 and π2i(p
o;p2i) = 0. Using

the fact that limi→∞ p2i−1 = p̄, we conclude that limi→∞ π2i−1(po;p2i−1) = 0.

Part (ii): We make the welfare comparison in both short- and long-run.

We use pt and pnt to denote the price in the presence of SE’s contract and in the model with näıve

farmers only, respectively. If α= 0, then by Assumption (4), we have g(α)≥ 1. Proposition 1

shows that the alternating price is (2p̄− p0, p0) if b= c̄ and (Ω− b
c̄
(Ω− b),Ω− b) if b > c̄. Hence,

the näıve farmers’ welfare wni (c) is as follows. (i) If c≤ pn2i−2, then

wni (c) =
pn2i−1 + pn2i

2
− c=

{
p̄− c if b= c̄,
1
2

(
Ω− b

c̄
(Ω− b) + Ω− b

)
if b > c̄.

(ii) If pn2i−2 < c≤ pn2i−1, then wni (c) = 1
2
(pn2i− c). (iii) If c > pn2i−1, then wni (c) = 0. Next we will

derive the welfare of each type of farmers and make a comparison with wni (c). Note that for each

i,

pn2i−2 ≤ p2i−2 < p̄ < p2i−1 ≤ pn2i−1 and pn2i ≤ p2i.
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Part (ii)(a): We will make the welfare comparison in the short run.

The type-S farmers’ welfare is as follows. (i) If c≤ po, then w̄si (c) = po+p2i
2
− c < p̄− c. (ii) If

po < c≤ p2i−1, then w̄si (c) = 1
2
(p2i− c)< 0. (iii) If c > p2i−1, then w̄si (c) = 0. The type-N farmers’

welfare is as follows. (i) If c≤ p2i−2, then

w̄ni (c) =
p2i−1 + p2i

2
− c=

Ω− ( b
c̄
− 1)p2i−1

2
− c

{
= p̄− c if b= c̄,

<
Ω−( bc̄−1) c̄

c̄+bΩ

2
− c= p̄− c if b > c̄

(ii) If p2i−2 < c≤ p2i−1, then w̄ni (c) = 1
2
(p2i− c)< 0. (iii) If c > p2i−1, then w̄ni (c) = 0.

Comparing with wni (c) above, we have that for any c > pn2i−2 = c,

w̄si (c)≥wni (c) and w̄ni (c)≥wni (c).

For any c≤ pn2i−2 = c,

w̄si (c)<w
n
i (c) and w̄ni (c)≤wni (c)

where the above equality holds only when b= c̄.

Part (ii)(b): We will make the welfare comparison in the long run.

In the long run, the price converges to p̄. Hence, both types of farmers’ welfare is just the same as

that in the model with a sufficient number of strategic farmers. Therefore, the result follows

immediately by Part (ii) of Proposition 3.

Part (ii)(c): Observe that the total welfare of all farmers when po = Ω− b is the same as that in

the model with all farmers being näıve and no SE. So Part (ii)(c) follows immediately by the

optimality of po∗ = p̄ to problem (10). �

Proof of Corollary 2 Lemma F.2 implies that if po = p̄, then limt→∞ pt = p̄. Corollary 2 follows

immediately. �

Proof of Corollary 3. Recall that in the model with näıve farmers only, if b= c̄, then the price

alternates between Ω− p0 and p0. If b > c̄, then there exists an i′ such that in each cycle i > i′ the

price alternates between Ω− b
c̄
(Ω− b) and Ω− b. Let (pn2i−1, p

n
2i) denote the alternating prices in

the model with näıve farmers only, and (p2i−1, p2i) denote the price in the presence of SE’s

contract. Note that

pn2i−2 ≤ p2i−2 < p̄ < p2i−1 ≤ pn2i−1 and pn2i ≤ p2i.

(i) Since c1 ≤ pn2i−2, the proof of Part (ii) of Proposition 6 gives us that

w̄si (c1) =
po + p2i

2
− c1,
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w̄ni (c1) =
p2i−1 + p2i

2
− c1 =

p2i−1 + Ω− b
c̄
p2i−1

2
− c1 =

Ω− ( b
c̄
− 1)p2i−1

2
− c1,

wni (c1) =
pn2i−1 + pn2i

2
− c1 =

pn2i−1 + Ω− b
c̄
pn2i−1

2
− c1 =

Ω− ( b
c̄
− 1)pn2i−1

2
− c1.

Since pb = p̄ < p2i−1, we have w̄si (c1)< w̄ni (c1). Note that p2i−1 > p
n
2i−1, so w̄ni (c1)<wni (c1).

Therefore,

w̄si (c1)< w̄ni (c1)<wni (c1). (G.1)

(ii) If pn2i−2 < c2 ≤ p̄, then

w̄si (c2) =
po + p2i

2
− c2,

w̄ni (c2) =

{
p2i−1+p2i

2
− c2 if pn2i−2 < c2 ≤ p2i−2,

1
2
(pn2i− c2) if p2i−2 < c2 ≤ p̄,

wni (c2) =
1

2
(pn2i− c2).

If pn2i−2 < c2 ≤ p2i−2, then w̄si (c1)− w̄si (c2) = c2− c1, w̄ni (c1)− w̄ni (c2) = c2− c1, and

wni (c1)−wni (c2)> c2− c1, and hence w̄si (c1)− w̄si (c2)≤ w̄ni (c1)− w̄ni (c2)≤wni (c1)−wni (c2).

If p2i−2 < c2 ≤ p̄, then one can check w̄si (c2)≥ w̄ni (c2)≥wni (c2). Therefore, by (G.1), we have

w̄si (c1)− w̄si (c2)≤ w̄ni (c1)− w̄ni (c2)≤wni (c1)−wni (c2).

(iii) If p̄ < c2 ≤ pn2i−1, then

w̄si (c2) = w̄ni (c2) =

{
1
2
(p2i− c2)< 0 if p̄ < c2 ≤ p2i−1,

0 if p2i−1 < c2 ≤ pn2i−1,

wni (c2) =
1

2
(pn2i− c2)< 0.

One can check w̄si (c2) = w̄ni (c2)>wni (c2). Therefore, by (G.1), we have

w̄si (c1)− w̄si (c2)≤ w̄ni (c1)− w̄ni (c2)≤wni (c1)−wni (c2).

(iv) If c2 > p
n
2i−1, then w̄si (c2) = w̄ni (c2) =wni (c2) = 0. Therefore, by (G.1), we have

w̄si (c1)− w̄si (c2)≤ w̄ni (c1)− w̄ni (c2)≤wni (c1)−wni (c2). �

H. Proof of Proposition 7

Proof of Proposition 7 As shown in Proposition 6, Parts (i) and (iii) hold immediately. To

complete the proof, it suffices to show the firm obtains a higher profit and p̄ is an optimal

solution to problem (12) if b= c̄.

Part 1: We will show the firm obtains a higher profit, that is, incurs a lower cost, in both short

and long run.
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Suppose there is no contract, i.e., po = 0, then the price alternates between two prices pn2i−1 and

pn2i (we omit the short divergence periods when b > c̄). Note that if b= c̄, then

(pn2i−1, p
n
2i) = (Ω− p0, p0). If b > c̄, then (pn2i−1, p

n
2i) = (Ω− b

c̄
(Ω− b),Ω− b). In this case,

f2i−1(po;po = 0) + f2i(p
o;po = 0)

=pn2i−1q2i−1 + pm(d− q2i−1) + pn2id= pn2i−1

Ω− pn2i−1

b
+ pm

(
d−

Ω− pn2i−1

b

)
+ pn2id

>(pn2i−1 + pn2i)d=

{
Ωd if b= c̄,(
Ω− ( b

c̄
− 1)(Ω− b)

)
d if b > c̄,

where the first equality holds because the market supply in period 2i− 1 can not satisfy the

demand by our assumption that d> limi→∞
Ω−pn2i−1

b
, and the inequality holds because pm > pn2i−1.

Observe that the costs in the short run and in the long run are the same when the price is

alternating forever. Next we will derive the cost when the firm offers a contract with po = p̄ and

then make a comparison with f2i−1(po;po = 0) + f2i(p
o;po = 0) in both short and long run.

Part 1(a): We will make the comparison in the short run.

Suppose the firm offers a contract with po = p̄, then according to the proof of Lemma F.2, the

market price is as follows,

p2i−1 = p̄+
(

(1−α)
b2

c̄2

)i−1

(p1− p̄) and p2i = Ω− b
c̄
p2i−1.

Note that p2i−1 is decreasing in i and limi→∞ p2i−1 = p̄, so there exists an i′ such that

p2i−1 <Ω− bd for any i≥ i′. When i≥ i′, we have

f2i−1(po;po = p̄) + f2i(p
o;po = p̄)

=qo2i−1p
o + (d− qo2i−1)p2i−1 + dp2i <dp2i−1 + dp2i = d(p2i−1 + p2i)

=d
(
p2i−1 + Ω− b

c̄
p2i−1

)
= d
(
Ω− (

b

c̄
− 1)p2i−1

){= Ωd if b= c̄,

<d
(

Ω− ( b
c̄
− 1)(Ω− d)

)
if b > c̄.

<f2i−1(po;po = 0) + f2i(p
o;po = 0).

Therefore, the firm incurs a lower cost than that without the contract in the short run.

Part 1(b): We will make the long run comparison.

Given limi→∞ p2i−1 = limi→∞ p2i = p̄, it follows that

lim
i→∞

f2i−1(po;po = p̄) + f2i(p
o;po = p̄) = 2p̄d=

{
Ωd if b= c̄,
2c̄
c̄+b

Ωd if b > c̄.

Observe that 2c̄
c̄+b

Ω−
{

Ω− ( b
c̄
− 1)(Ω− b)

}
= b

c̄(c̄+b)
(b− c̄)(Ω− b− c̄)< 0, so

limi→∞ f2i−1(po;po = p̄) + f2i(p
o;po = p̄)< f2i−1(po;po = 0) + f2i(p

o;po = 0). Therefore, the firm

incurs a lower cost than without the contract in the long run.
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Part 2: We will show po = p̄ is an optimal solution to problem (12) if b= c̄. We consider two cases.

Case 1: po ≥ p̄= Ω
2
. According to Proposition 5, limt→∞ pt = p̄− αb(po−p̄)

c̄+(1−α)b
= Ω−αpo

2−α < p̄. Assumption

d< Ω−p̄
b

means that the market supply at price p̄ exceeds the demand d, therefore the focal

market supply at price Ω−αpo
2−α which is lower than p̄ also exceeds the demand d. Thus,

lim
i→∞

f2i−1(po;po ≥ p̄) + f2i(p
o;po ≥ p̄) = 2

{
α
po

c̄
po + (d−αp

o

c̄
)
Ω−αpo

2−α

}
.

Taking derivatives to po yields that the unconstrained optimal solution po∗ = Ω+bd
4

, which is

smaller than p̄= Ω
2

because bd <Ω by our assumption. Therefore, the convexity indicates that

limi→∞ f2i−1(po;po = p̄) + f2i(p
o;po = p̄)< limi→∞ f2i−1(po;po > p̄) + f2i(p

o;po > p̄).

Case 2: po < p̄= Ω
2
. If po ≤ p0, then the contract is not effective and the price alternates between

Ω− p0 and p0. If po > p0, then once the low price in each cycle goes above po, the contract will not

be effective anymore, and thus the price alternates between two constant prices. To summarize,

in Case 2 the price will alternate. Suppose the price alternates between p2i−1 and p2i. Note that

p2i = Ω− p2i−1. We have

lim
i→∞

f2i−1(po;po < p̄) + f2i(p
o;po < p̄)

=

{
p2i−1d+ p2id= Ωd if p2i−1 <Ω− bd,

p2i−1q2i−1 + pm(d− q2i−1) + p2id> p2i−1d+ p2id= Ωd otherwise.

Note that limi→∞ f2i−1(po;po = p̄) + f2i(p
o;po = p̄) = 2dp̄= Ωd, so

limi→∞ f2i−1(po;po = p̄) + f2i(p
o;po = p̄)≤ limi→∞ f2i−1(po;po < p̄) + f2i(p

o;po < p̄).

Combining the above two cases, we conclude that po∗ = p̄ is an optimal solution to firm’s problem

(12) if b= c̄. �

I. Proof of Propositions 8 and 9

Before the proof of Proposition 8, we first have the following preparations:

qA,nt = (1−α)P(uA,nt ≥ uB,nt ) = (1−α)P(pAt−1− c≥ pBt−1− (c̄− c))

= (1−α)P(c≤
pAt−1− pBt−1 + c̄

2
) = (1−α)F (

pAt−1− pBt−1 + c̄

2
),

qB,nt = (1−α)[1−F (
pAt−1− pBt−1 + c̄

2
)],

qA,st = αF (
pAt − pBt + c̄

2
),

qB,st = α[1−F (
pAt − pBt + c̄

2
)].

Thus,

pAt = Ω− b(qA,nt + qA,st ) = Ω− b(1−α)F (
pAt−1− pBt−1 + c̄

2
)− bαF (

pAt − pBt + c̄

2
), (I.1)
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pBt = Ω− b(qA,nt + qA,st ) = Ω− b+ b(1−α)F (
pAt−1− pBt−1 + c̄

2
) + bαF (

pAt − pBt + c̄

2
), (I.2)

pAt − pBt = b
{

1− 2(1−α)F (
pAt−1− pBt−1 + c̄

2
)− 2αF (

pAt − pBt + c̄

2
)
}
. (I.3)

Lemma I.1. Suppose Assumptions 1-3 hold and g(α)≤ 1. Then |pAt − pBt | ≤ c̄ for any t≥ 1.

Moreover, pAt − pBt =−g(α)(pAt−1− pBt−1) for any t≥ 2.

Proof of Lemma I.1. Note that g(α)≤ 1 is equivalent to b(1− 2α)≤ c̄. To show |pAt − pBt | ≤ c̄,

we have three cases.

Case 1: Suppose pAt−1− pBt−1 > c̄. Then (I.3) reduces to pAt − pBt = b{1− 2(1−α)− 2αF (p
A
t −p

B
t +c̄

2
)}.

If pAt − pBt > c̄, then pAt − pBt = b{1− 2(1−α)− 2α}=−b < c̄, which arrives a contradiction. If

pAt − pBt <−c̄, then pAt − pBt = b{1− 2(1−α)}=−b(1− 2α)≥−c̄, which arrives a contradiction.

Hence, it must be the case that |pAt − pBt | ≤ c̄.

Case 2: Suppose pAt−1− pBt−1 <−c̄. Then (I.3) reduces to pAt − pBt = b{1− 2αF (p
A
t −p

B
t +c̄

2
)}. If

pAt − pBt > c̄, then pAt − pBt = b(1− 2α)≤ c̄, which arrives a contradiction. If pAt − pBt <−c̄, then

pAt − pBt = b >−c̄, which arrives a contradiction. Hence, it must be the case that |pAt − pBt | ≤ c̄.

Case 3: Suppose |pAt−1− pBt−1| ≤ c̄. Then (I.3) reduces to

pAt − pBt = b
{

1− 2(1−α)
pAt−1− pBt−1 + c̄

2c̄
− 2αF (

pAt − pBt + c̄

2
)
}
. (I.4)

If pAt − pBt > c̄, then pAt − pBt = b{1− 2(1−α)
pAt−1−p

B
t−1+c̄

2c̄
− 2α} ≤ b(1− 2α)≤ c̄, which arrives a

contradiction. If pAt − pBt <−c̄, then

pAt − pBt = b{1− 2(1−α)
pAt−1−p

B
t−1+c̄

2c̄
} ≥ b{1− 2(1−α)}=−b(1− 2α)≥−c̄, which arrives a

contradiction. Hence, it must be the case that |pAt − pBt | ≤ c̄.

This establishes that |pAt − pBt | ≤ c̄ for any t≥ 1. Consequently, (I.4) holds for any t≥ 2 and

reduces to pAt − pBt =− (1−α)b

c̄+αb
(pAt−1− pBt−1). �

Lemma I.2. Suppose Assumptions 1-3 hold and g(α)> 1. Then there exists an i≥ 0 such that

pAi+2j − pBi+2j <−c̄ and pAi+2j+1− pBi+2j+1 > c̄ for any j ≥ 0.

Proof of Lemma I.2. We first show there exists an i≥ 0 such that |pAi − pBi |> c̄. Suppose for a

contradiction that there does not exist such an i, that is, |pAt − pBt | ≤ c̄ for any t≥ 1. Thus, (I.3)

can be reduced to pAt − pBt =−g(α)(pAt−1− pBt−1). Hence,

|pAt − pBt |= g(α)|pAt−1− pBt−1|. (I.5)

Given g(α)> 1, by (I.5), there must exist an i≥ 0 such that |pAi − pBi |> c̄.
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To end the proof, it suffices to show (i) If pAt−1− pBt−1 > c̄, then pAt − pBt <−c̄. (ii) If

pAt−1− pBt−1 <−c̄, then pAt − pBt > c̄.

We first show Case (i). If pAt−1− pBt−1 > c̄, then (I.3) reduces to

pAt − pBt = b{1− 2(1−α)− 2αF (p
A
t −p

B
t +c̄

2
)}. If pAt − pBt > c̄, then

pAt − pBt = b{1− 2(1−α)− 2α}=−b < c̄, which arrives a contradiction. If |pAt − pBt | ≤ c̄, then

pAt − pBt =−g(α)(pAt−1− pBt−1)<−g(α)c̄ <−c̄, which arrives a contradiction. Hence, it must be the

case that pAt − pBt <−c̄. The proof of Case (ii) follows a similar way. �

Proof of Proposition 8. Part (i): If g(α)> 1, then it follows Lemma I.2 that pAt − pBt does not

converge. If g(α) = 1, by Lemma I.1, we have pAt − pBt =−(pAt−1− pBt−1), and hence, pAt − pBt does

not converge. Therefore, pAt and pBt do not converge.

Part (ii): If g(α)< 1, then it follows Lemma I.1 that

pAt − pBt =−g(α)(pAt−1− pBt−1) = [−g(α)]t−1(pA1 − pB1 ). By (I.1) and (I.2), we have

pAt = Ω− b

2
− 1

2
[−g(α)]t−1(pA1 − pB1 )

pBt = Ω− b

2
+

1

2
[−g(α)]t−1(pA1 − pB1 )

and therefore,

lim
t→∞

pAt = lim
t→∞

pBt = Ω− b

2
. �

Before we prove Proposition 9, we first derive some expressions and demonstrate one lemma.

The random yield quantity of two crops in period t are

QA,s
t = γtq̂

A,s
t = γtαP(uA,st ≥ uB,st ) = γtαF (

E[γtP
A
t ]−E[γtP

B
t ] + c̄

2
),

QB,s
t = γtq̂

B,s
t = γtαP(uA,st <uB,st ) = γtα[1−F (

E[γtP
A
t ]−E[γtP

B
t ] + c̄

2
)],

QA,n
t = γtq̂

A,n
t = γt(1−α)P(uA,nt ≥ uB,nt ) = γt(1−α)F (

PA
t−1−PB

t−1 + c̄

2
),

QB,n
t = γtq̂

B,n
t = γt(1−α)P(uA,nt <uB,nt ) = γt(1−α)[1−F (

PA
t−1−PB

t−1 + c̄

2
)].

The market clearing prices of Crops A and B are

PA
t = Ω− b(QA,s

t +QA,n
t ) = Ω− bαγtF (

E[γtP
A
t ]−E[γtP

B
t ] + c̄

2
)− b(1−α)γtF (

PA
t−1−PB

t−1 + c̄

2
),

(I.6)

PB
t = Ω− b(QB,s

t +QB,n
t ) = Ω− bαγt[1−F (

E[γtP
A
t ]−E[γtP

B
t ] + c̄

2
)]− b(1−α)γt[1−F (

PA
t−1−PB

t−1 + c̄

2
)].

(I.7)

Thus,

PA
t −PB

t = bαγt[1− 2F (
E[γtP

A
t ]−E[γtP

B
t ] + c̄

2
)] + b(1−α)γt[1− 2F (

PA
t−1−PB

t−1 + c̄

2
)], (I.8)
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PA
t γt−PB

t γt =
{
α[1− 2F (

E[γtP
A
t ]−E[γtP

B
t ] + c̄

2
)] + (1−α)[1− 2F (

PA
t−1−PB

t−1 + c̄

2
)]
}
bγ2
t ,

E[PA
t γt]−E[PB

t γt] =
{
α[1− 2F (

E[γtP
A
t ]−E[γtP

B
t ] + c̄

2
)] + (1−α)[1− 2F (

PA
t−1−PB

t−1 + c̄

2
)]
}
bE[γ2

t ].

(I.9)

Lemma I.3. Suppose Assumptions 1-3 hold. If b(1− 2α)E[γ2]≤ c̄, then

PA
t −PB

t =


− (1−α)bγt
c̄+αbE(γ2

t )
(PA

t−1−PB
t−1) if |PA

t−1−PB
t−1| ≤ c̄,

− (1−α)bγt
c̄+αbE(γ2

t )
c̄ if PA

t−1−PB
t−1 > c̄,

(1−α)bγt
c̄+αbE(γ2

t )
c̄ if PA

t−1−PB
t−1 <−c̄.

(I.10)

Proof of Lemma I.3. To complete the proof, it is essential to derive the expression of

E[γtP
A
t ]−E[γtP

B
t ]. For the ease of exposition, let Y = E[γtP

A
t ]−E[γtP

B
t ]. We have three cases.

Case 1: Suppose |PA
t−1−PB

t−1| ≤ c̄.

By this supposition, (I.9) reduces to

Y =
{
− (1−α)

PA
t−1−PB

t−1

c̄
+α[1− 2F (

Y + c̄

2
)]
}
bE[γ2

t ]. (I.11)

If Y > c̄, then by (I.11),

Y =
{
− (1−α)

PA
t−1−PB

t−1

c̄
−α

}
bE[γ2

t ]≤ (1−α−α)bE[γ2
t ] = (1− 2α)bE[γ2

t ]≤ c̄,

contradicting the assumption that Y > c̄. The first inequality above holds because

PA
t−1−PB

t−1 ≥−c̄.

If Y <−c̄, then by (I.11),

Y = [−(1−α)
PA
t−1−PB

t−1

c̄
+α]bE[γ2

t ]≥ [−(1−α) +α]bE[γ2
t ] =−(1− 2α)bE[γ2

t ]≥−c̄,

contradicting the assumption that Y <−c̄. The first inequality above holds because

PA
t−1−PB

t−1 ≤ c̄.

Hence, it must be the case that |Y | ≤ c̄. Then by (I.11),

Y =
{
− (1−α)

PA
t−1−PB

t−1

c̄
−αY

c̄

}
bE[γ2

t ]

Y =−(1−α)bE[γ2
t ]

c̄+αbE[γ2
t ]

(PA
t−1−PB

t−1).

Plugging back into (I.8) yields

PA
t −PB

t =− (1−α)bγt
c̄+αbE[γ2

t ]
(PA

t−1−PB
t−1).

Case 2: Suppose PA
t−1−PB

t−1 > c̄.
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By the supposition, (I.9) reduces to

Y =
{
− (1−α) +α[1− 2F (

Y + c̄

2
)]
}
bE[γ2

t ]. (I.12)

If Y > c̄, then Y = [−(1−α)−α]bE[γ2
t ] =−bE[γ2

t ]< c̄, contradicting the assumption that Y > c̄.

If Y <−c̄, then Y = [−(1−α) +α]bE[γ2
t ] =−b(1− 2α)E[γ2

t ]≥−c̄, contradicting the assumption

that Y <−c̄.

Hence, it must be the case that |Y | ≤ c̄. Then by (I.12),

Y =
{
− (1−α)−αY

c̄

}
bE[γ2

t ],

Y =−(1−α)bE[γ2
t ]

c̄+ bE[γ2
t ]

c̄.

Plugging back into (I.8) yields

PA
t −PB

t =− (1−α)bγt
c̄+αbE[γ2

t ]
c̄.

Case 3: Suppose PA
t−1−PB

t−1 <−c̄. Symmetric to Case 2. �

Proof of Proposition 9. Observing (I.6) and (I.7), in order to see whether PA
t and PB

t

converge, it is essential to study whether PA
t −PB

t converges. Hence, in each part we will first

analyze the convergence of PA
t −PB

t , and then come back to the convergence of prices.

Part 1: We will show if I(α,γ)< 0, then the market prices converge in probability towards P̄ .

We first prove the convergence of PA
t −PB

t if I(α,γ)< 0. By (I.10), we have

|PA
t −PB

t | ≤
(1−α)bγt
c̄+αbE[γ2

t ]
· (1−α)bγt−1

c̄+αbE[γ2
t−1]
· · · (1−α)bγ1

c̄+αbE[γ2
1 ]
|PA

0 −PB
0 |,

ln |PA
t −PB

t | ≤
t∑
i=1

ln
(1−α)bγi
c̄+αbE[γ2

i ]
+ ln |PA

0 −PB
0 |.

Doing the same operation to both sides of the above inequality, we obtain

ln |PA
t −PB

t | − ln |PA
0 −PB

0 | − tE[ln (1−α)bγ

c̄+αbE[γ2]
]√

t · var[ln (1−α)bγ

c̄+αbE[γ2]
]

≤

∑t

i=1[ln (1−α)bγi
c̄+αbE[γ2

i ]
−E[ln (1−α)bγi

c̄+αbE[γ2
i ]

]]√
t · var[ln (1−α)bγ

c̄+αbE[γ2]
]

.

Note that the right hand side of the above inequality converges to the standard normal

distribution N(0,1) as t→∞, according to Central Limit Theorem. Thus,

lim
t→∞

P(|PA
t −PB

t | ≥ ε) = lim
t→∞

P(ln |PA
t −PB

t | ≥ ln ε)

= lim
t→∞

P(
ln |PA

t −PB
t | − ln |PA

0 −PB
0 | − tE[ln (1−α)bγ

c̄+αbE[γ2]
]√

t · var[ln (1−α)bγ

c̄+αbE[γ2]
]

≥
ln ε− ln |PA

0 −PB
0 | − tE[ln (1−α)bγ

c̄+αbE[γ2]
]√

t · var[ln (1−α)bγ

c̄+αbE[γ2]
]

)
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≤ lim
t→∞

P(

∑t

i=1[ln (1−α)bγi
c̄+αbE[γ2

i ]
−E[ln (1−α)bγi

c̄+αbE[γ2
i ]

]]√
t · var[ln (1−α)bγ

c̄+αbE[γ2]
]

≥
ln ε− ln |PA

0 −PB
0 | − tE[ln (1−α)bγ

c̄+αbE[γ2]
]√

t · var[ln (1−α)bγ

c̄+αbE[γ2]
]

)

=Pr(N(0,1)≥∞) = 0,

where the second last equality holds because the left hand side above is a standard normal

distribution and in the right hand side E[ln (1−α)bγ

c̄+αbE[γ2]
] = I(α,γ)< 0.

Given PA
t −PB

t converges to 0 in probability, it follows immediately by (I.8) that

limt→∞Pr(|E[PA
t γt]−E[PB

t γt]|< ε) = 1. Plugging back into (I.6) and (I.7) yields

limt→∞Pr(|PA
t − P̄ |> ε) = limt→∞Pr(|PB

t − P̄ |> ε) = 0.

Part 2: We will show the convergence if I(α,γ) = 0 and non-convergence if I(α,γ)> 0.

Part 2(a): We first prove the convergence of PA
t −PB

t if I(α,γ) = 0 and non-convergence if

I(α,γ)> 0.

Before analyzing PA
t −PB

t , we first prepare some useful results about P̃A
t − P̃B

t which is defined

as follows,

P̃A
t − P̃B

t =− (1−α)bγt
c̄+αbE[γ2

t ]
(P̃A

t−1− P̃B
t−1),

|P̃A
0 − P̃B

0 | ≤ c̄.

We have

|P̃A
t − P̃B

t |=
(1−α)bγt
c̄+αbE[γ2

t ]
· (1−α)bγt−1

c̄+αbE[γ2
t−1]

. . .
(1−α)bγ1

c̄+αbE[γ2
1 ]
|P̃A

0 − P̃B
0 |.

Thus,

ln |P̃A
t − P̃B

t |=
t∑
i=1

ln
(1−α)bγi
c̄+αbE[γ2

i ]
+ ln |P̃A

0 − P̃B
0 |.

Through some algebra, we get

ln |P̃A
t − P̃B

t | − ln |P̃A
0 − P̃B

0 | − tE[ln (1−α)bγi
c̄+αbE[γ2

i ]
]√

t · var[ln (1−α)bγi
c̄+αbE[γ2

i ]
]

=

∑t

i=1[lnγi−E[ln (1−α)bγi
c̄+αbE[γ2

i ]
]]√

t · var[ln (1−α)bγi
c̄+αbE[γ2

i ]
]

−→N(0,1).

Then we have

lim
t→∞

P(|P̃A
t − P̃B

t |< ε) = lim
t→∞

P(ln |P̃A
t − P̃B

t |< ln ε)

= lim
t→∞

P(
ln |P̃A

t − P̃B
t | − ln |P̃A

0 − P̃B
0 | − tE[ln (1−α)bγi

c̄+αbE[γ2
i ]

]√
t · var[ln (1−α)bγi

c̄+αbE[γ2
i ]

]
<

ln ε− ln |P̃A
0 − P̃B

0 | − tE[ln (1−α)bγi
c̄+αbE[γ2

i ]
]√

t · var[ln (1−α)bγi
c̄+αbE[γ2

i ]
]

)

= lim
t→∞

P(

∑t

i=1[ln (1−α)bγi
c̄+αbE[γ2

i ]
−E[ln (1−α)bγi

c̄+αbE[γ2
i ]

]]√
t · var[ln (1−α)bγi

c̄+αbE[γ2
i ]

]
<

ln ε− ln |P̃A
0 − P̃B

0 | − tE[ln (1−α)bγi
c̄+αbE[γ2

i ]
]√

t · var[ln (1−α)bγi
c̄+αbE[γ2

i ]
]

)
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= lim
t→∞

P(

∑t

i=1[ln (1−α)bγi
c̄+αbE[γ2

i ]
−E[ln (1−α)bγi

c̄+αbE[γ2
i ]

]]√
t · var[ln (1−α)bγi

c̄+αbE[γ2
i ]

]
<

ln ε− ln |P̃A
0 − P̃B

0 |√
t · var[ln (1−α)bγi

c̄+αbE[γ2
i ]

]
−
√

t

var[ln (1−α)bγi
c̄+αbE[γ2

i ]
]
E[ln

(1−α)bγi
c̄+αbE[γ2

i ]
]).

Hence,

lim
t→∞

P(|P̃A
t − P̃B

t |< ε) =

{
Pr(N(0,1)<−∞) = 0 if E[ln (1−α)bγi

c̄+αbE[γ2
i ]

] = I(α,γ)> 0,

Pr(N(0,1)< 0) = 1/2 if E[ln (1−α)bγi
c̄+αbE[γ2

i ]
] = I(α,γ) = 0.

By the same process, we could show

lim
t→∞

P(|P̃A
t − P̃B

t |> 1) =

{
1 if E[ln (1−α)bγi

c̄+αbE[γ2
i ]

] = I(α,γ)> 0,

1/2 if E[ln (1−α)bγi
c̄+αbE[γ2

i ]
] = I(α,γ) = 0.

Observing that PA
t −PB

t , within the range of [−1,1], follows a similar process as P̃A
t − P̃B

t . Once

PA
t −PB

t jumps out of [−1,1], it nevertheless will be pulled back into [−1,1].

If I(α,γ)> 0, then limt→∞P(|P̃A
t − P̃B

t |< ε) = 0 and limt→∞P(|P̃A
t − P̃B

t |> 1) = 1, implying that

even if PA
t −PB

t can be pulled back, the process will inevitably keep growing out of the range

[−1,1]. Thus, PA
t −PB

t does not converge.

If I(α,γ) = 0, then limt→∞P(|P̃A
t − P̃B

t |< ε) = 1/2 and limt→∞P(|P̃A
t − P̃B

t |> 1) = 1/2, implying

that the process PA
t −PB

t within the range of [−1,1] will end up with two possible results: one is

out of the range of [−1,1] and the other is 0, each with half probability. Since the process will be

pulled back whenever it gets out of [−1,1] and each time there is 1/2 probability that it will

converge to 0 whenever it is in [−1,1], the process will eventually converge to 0. That is,

limt→∞P(|PA
t −PB

t |< ε) = 1 for any ε > 0.

Part 2(b): We analyze whether PA
t and PB

t converge.

We have if I(α,γ) = 0, then the sequence PA
t −PB

t will converge to 0. It now follows by (I.8) that

limt→∞Pr(|E[PA
t γt]−E[PB

t γt]|< ε) = 1. Plugging back into (I.6) and (I.7) yields

lim
t→∞

Pr(|PA
t − P̄ |> ε) = lim

t→∞
Pr(|PB

t − P̄ |> ε) = 0.

If I(α,γ)> 0, then PA
t −PB

t does not converge. Therefore, by (I.6) and (I.7) the prices (PA
t , P

B
t )

do not converge. �

J. Proof of Results in Appendix B

Before the proof of Proposition B.1, we first introduce a lemma.

Lemma J.1. Suppose Assumptions 1-3 hold. In the model with backward looking strategic

farmers, if b≤ c̄, then the recursive equation of market price pt(t≥ 1) is

pt = Ω− b
c̄

(
(1− α

2
)pt−1 +

α

2
pt−2

)
.
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Proof of Lemma J.1. If 0≤ pt−1 ≤ c̄ and 0≤ pt−1+pt−2

2
≤ c̄ for any t≥ 0, then (B.2) reduces to

pt = Ω− b
c̄

(
(1− α

2
)pt−1 +

α

2
pt−2

)
.

To complete the proof, we will prove by induction that 0≤ pt−1 ≤ c̄ and 0≤ pt−1+pt−2

2
≤ c̄ for any

t≥ 0.

By Assumption 2 and the convention that pi = 0 for any i < 0, we have 0≤ p0 ≤ c̄ and

0≤ p0+p−1

2
≤ c̄.

For any given t≥ 1, suppose 0≤ pt−1 ≤ c̄ and 0≤ pt−1+pt−2

2
≤ c̄, then we have

pt = Ω− b
c̄

(
(1− α

2
)pt−1 +

α

2
pt−2

)
<Ω− b

c̄

(
(1− α

2
)(Ω− b) +

α

2
(Ω− b)

)
= Ω− b

c̄
(Ω− b) = (1− b

c̄
)(Ω− b− c̄) + c̄≤ c̄.

Therefore, 0≤ pt+pt−1

2
≤ c̄. We have now established that 0≤ pt−1 ≤ c̄ and 0≤ pt−1+pt−2

2
≤ c̄ for any

t≥ 0. �

Proof of Proposition B.1. We first show the existence of the limit. By Lemma J.1,

pt− p̄=−b
c̄

(
(1− α

2
)(pt−1− p̄) +

α

2
(pt−2− p̄)

)
. (J.1)

Since b≤ c̄, we have |pt− p̄| ≤ (1− α
2
)|pt−1− p̄|+ α

2
|pt−2− p̄|, and so

|pt− p̄| − |pt−1− p̄| ≤−α
2
(|pt−1− p̄| − |pt−2− p̄|). Therefore, limt→∞ |pt− p̄| exists. Remember that

we expect to show limt→∞ pt− p̄ exists. Suppose limt→∞ |pt− p̄|=A> 0 (Note that A 6= 0.

Otherwise, we are done). Thus, for any given ε > 0, there exists a T such that for any t > T ,

|pt− p̄| ∈ (A− ε,A+ ε). (J.2)

Suppose for a contradiction that limt→∞ pt− p̄ does not exist. It follows from (J.2) that there

must exist a t1 with t1− 1>T and t1− 2>T such that pt1−1− p̄∈ (−A− ε,−A+ ε) and

pt1−2− p̄∈ (A− ε,A+ ε). Therefore, by (J.1),

pt1 − p̄=− b
c̄
(1− α

2
)(pt1−1− p̄)− b

c̄
α
2
(pt1−2− p̄)∈ ( b

c̄
(1−α)A− ε′, b

c̄
(1−α)A+ ε′). Clearly,

|pt1 − p̄| /∈ (A− ε,A+ ε), contradicting the fact (J.2). Consequently, limt→∞ pt− p̄ does exist.

Second, we compute the limit. Let limt→∞ pt− p̄=B. Then by (J.1), we obtain B = 0. �

K. Proof of Results in Appendix C

Proof of Proposition C.1. Incorporating farmer exit, the market dynamics becomes,

pt = Ω−αbF (pt)− (1−α)bF (min{pt−1, ct−1}) (K.1)
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where ct−1 denotes the threshold such that at the end of period t− 1, the farmers with

production cost c > ct−1 exit the market and the rest stay in the market (for simplicity, we

consider the farmers who do not plant because of high production cost above the relatively higher

price in each cycle as that they exit the market).

Part 1: We show there exists an i′ such that ci ≤ p̄ for any i≥ i′. Suppose for a contradiction that

there does not exist such an i′, that is, ct > p̄ for any t≥ 1. We consider two cases.

Case 1: For any fixed t, if pt−1 < p̄, then by (K.1), pt = Ω−αbF (pt)− (1−α) b
c̄
pt−1 where the last

equality holds because pt−1 < p̄ < ct−1. Next we show pt > p̄. Suppose for a contradiction that

pt ≤ p̄, then pt = Ω−α b
c̄
pt− (1−α) b

c̄
pt−1, from which we obtain pt = p̄− g(α)(pt−1− p̄)> p̄ where

the last inequality holds because pt−1 < p̄, arriving a contradiction. So it must be the case that

pt > p̄.

Case 2: For any fixed t, if pt−1 > p̄, then by (K.1),

pt <Ω−αbF (pt)− (1−α)
b

c̄
p̄ (K.2)

where the last inequality holds because min{pt−1, ct−1}> p̄. Next we show pt ≤ c̄. Suppose for a

contradiction that pt > c̄, then pt <Ω−αb− (1−α) b
c̄
p̄= c̄+αb

c̄+b
Ω−αb. Since

c̄+αb
c̄+b

Ω−αb− c̄= (c̄+αb)( Ω
c̄+b
− 1)< 0 because Ω< c̄+ b by Assumption 1, we have pt ≤ c̄, which

arrives a contradiction. So it must be the case that pt ≤ c̄. Hence, (K.2) reduces to

pt <Ω−α b
c̄
pt− (1−α) b

c
p̄, from which we obtain pt < p̄.

The above two cases show that if ct > p̄ for any t≥ 1, then the price will fluctuate above and

below p̄ constantly, indicating that the planting farmers with c > p̄ will incur a loss in each cycle

and thus exit the market eventually. As a result, the left farmers in the market must be the ones

with c≤ p̄.

Part 2: We show the price converges.

Case 1: For any fixed i≥ i′, if pi < p̄, then by (K.1), pi+1 ≥Ω−αbF (pi+1)− (1−α) b
c̄
pi, where the

last inequality holds because min{pi, ci} ≤ pi. Next we show pi+1 > p̄. Suppose for a contradiction

that pi+1 ≤ p̄, then pi+1 ≥Ω−α b
c̄
pi+1− (1−α) b

c̄
pi, from which we obtain

pi+1 > p̄− g(α)(pi− p̄)> p̄, arriving a contradiction. So it must be the case that pi+1 > p̄.

Case 2: For any fixed i≥ i′, if pi > p̄, then by (K.1), pi+1 = Ω−αbF (pi+1)− (1−α) b
c̄
ci. Next we

show pi+1 > p̄. Suppose for a contradiction that pi+1 < p̄, then pi+1 = Ω−α b
c̄
pi+1− (1−α) b

c̄
ci,

from which we obtain pi+1 = p̄− g(α)(ci− p̄)> p̄, arriving a contradiction. Hence it must be the

case that pi+1 > p̄.
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Taking the above cases into consideration, we have pi+1 > p̄ for any i≥ i′. Note that ci ≤ p̄, so

each period all näıve farmers with c≤ ci will cultivate the crop and sell it at price pi+1 above

their production cost earning a positive surplus, and thus no more näıve farmers exit the market.

Hence ci = ci+1 = · · ·= c∞.

Therefore, for any t≥ i′+ 1, pt = Ω−αbF (pt)− (1−α) b
c̄
ct where the last equality holds because

ct ≤ p̄ < pt−1. Since ct = ct+1 = · · ·= c∞, we have pt = pt+1 = · · ·= p∞. That is, the price converges

to pt, higher than p̄.

L. Proof of Results in Appendix D.1

Before the proof of Proposition D.1, we first introduce three lemmas.

Lemma L.1. Suppose Assumptions 1-6 hold. For any feasible solution to optimization problem

(D.1), the contract is not effective in period 2i for any i≥ 1.

Proof of Lemma L.1. Part 1: We show if p2i−2 < p̄, then p2i−1 > p̄ for any fixed i≥ 1.

If po2i−1 ≤ p2i−2, then p2i−1 = Ω− bF (p2i−2)>Ω− bF (p̄) = p̄ and we are done. Hence, we need only

consider the case when po2i−1 > p2i−2. Note that p̄= c̄
c̄+b

Ω< c̄, since p2i−2 < p̄, so p2i−2 < c̄.

Consequently,

p2i−1 = Ω− bαF (po2i−1)− b(1−α)
p2i−2

c̄
. (L.1)

We take a brief detour to show po2i−1 ≤ c̄. Suppose for a contradiction that po2i−1 > c̄, then

p2i−1 = Ω− bα− b(1−α)
p2i−2

c̄
<Ω− bα− b(1−α)

Ω− b
c̄

=
(

1− (1−α)
b

c̄

)
Ω−αb+ (1−α)

b2

c̄

≤
(

1− (1−α)
b

c̄

)
(b+ c̄)−αb+ (1−α)

b2

c̄
= c̄ < po2i−1,

where the second last inequality holds because Ω≤ b+ c̄ and 1− (1−α) b
c̄
≥ 0. Thus,

π2i−1(po2i−1) = (p2i−1− po2i−1)qo2i−1 < 0, violating the profit constraint in Problem (D.1). Therefore,

it must be the case that po2i−1 ≤ c̄ as claimed.

Plugging po2i−1 ≤ c̄ back into (L.1) yields p2i−1 = Ω−α b
c̄
po2i−1− (1−α) b

c̄
p2i−2. The profit constraint

π2i−1(po2i−1)≥ 0 requires that p2i−1 ≥ po2i−1, by which we derive po2i−1 ≤
Ω−(1−α) bc̄p2i−2

1+α bc̄
. We have

p2i−1 = Ω−αb
c̄
po2i−1− (1−α)

b

c̄
p2i−2 ≥Ω−αb

c̄

Ω− (1−α) b
c̄
p2i−2

1 +α b
c̄

− (1−α)
b

c̄
p2i−2

=
1

1 +α b
c̄

(
Ω− (1−α)

b

c̄
p2i−2

)
>

1

1 +α b
c̄

(
Ω− (1−α)

b

c̄
p̄
)

= p̄.

Part 2: We show that if pt−1 > p̄, then pot ≤ pt−1 and pt < p̄.
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Suppose for a contradiction that pot > pt−1, then

pt = Ω− bαF (pot )− b(1−α)F (pt−1)<Ω− bF (p̄) = p̄,

where the inequality holds because pot > pt−1 > p̄. Thus, πt(p
o
t ) = (pt− pot )qot < 0, violating the

profit constraint in problem (D.1). Therefore, it must be the case that pot ≤ pt−1, which indicates

that the contract will not be effective in period t. Moreover, pt = Ω− bF (pt−1)<Ω− bF (p̄) = p̄.

Recall that p0 < p̄. Combining Parts 1 and 2, we see that p2i < p̄ < p2i−1 and po2i ≤ p2i−1 for any

i≥ 1. Therefore, the contract is not effective in period 2i for any i≥ 1. �

Lemma L.2. Suppose Assumptions 1-6 hold. For any fixed t, suppose pt−1 < p̄. Consider the

following one-period problem.

min
pbt

(pt− p̄)2 (L.2)

s.t. pt = Ω− bαF (pot )− b(1−α)F (pt−1),

pt−1 < p
o
t ≤ pt. (L.3)

Then po∗t = p̄+ (1−α)b

c̄+αb
(p̄− pt−1)≤ c̄.

Proof of lemma L.2. We first derive the formula of pt. It follows by pt−1 < p̄ and p̄= c̄ Ω
c̄+b
≤ c̄

that pt−1 < c̄. Next we show pot ≤ c̄. Suppose for a contradiction that pot > c̄. On one hand, πt ≥ 0

requires that pt ≥ pot , hence it follows that pt > c̄. On the other hand,

pt = Ω− bα− b(1−α)
pt−1

c̄
[by pot > c̄ and pt−1 ≤ c̄]

≤Ω− bα− b(1−α)
Ω− b
c̄

[by pt−1 ≥Ω− b]

=
(

1− (1−α)
b

c̄

)
Ω−αb+ (1−α)

b2

c̄

≤
(

1− (1−α)
b

c̄

)
(b+ c̄)−αb+ (1−α)

b2

c̄
[by Ω≤ b+ c̄ and 1− (1−α)

b

c̄
≥ 0]

= c̄,

which arrives a contradiction. Hence, it must be the case that pot ≤ c̄. Since pt−1 ≤ c̄ and pot ≤ c̄, we

have

pt = Ω−αb
c̄
pot − (1−α)

b

c̄
pt−1. (L.4)

Plugging (L.4) back into (L.3) gives pt−1 < p
o
t ≤

Ω−(1−α) bc̄pt−1

1+α bc̄
. Hence, problem (L.2) can be

written as

min
pot

( b

c̄+ b
Ω−αb

c̄
pot − (1−α)

b

c̄
pt−1

)2

(L.5)
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s.t. pt−1 < p
o
t ≤

Ω− (1−α) b
c̄
pt−1

1 +α b
c̄

.

Taking derivatives to the objective function in (L.5) yields the unconstrained optimal solution

1
α

(
c̄
c̄+b

Ω− (1−α)pt−1

)
. Observe that

1

α

( c̄

c̄+ b
Ω− (1−α)pt−1

)
−

Ω− (1−α) b
c̄
pt−1

1 +α b
c̄

=
(1−α)c̄

α(c̄+αb)

( c̄

c̄+ b
Ω− pt−1

)
> 0,

where the last inequality holds because pt−1 < p̄= c̄
c̄+b

Ω. Therefore, the convexity indicates that

po∗t =
Ω−(1−α) bc̄pt−1

1+α bc̄
= p̄+ (1−α)b

c̄+αb
(p̄− pt−1). One can verify that po∗ ≤ c̄. �

Lemma L.3. Suppose Assumptions 1-6 hold.

1. Suppose Ω− b≤ p̃2i < p2i < p̄. If p̃o2i+1 = p̄+ (1−α)b

c̄+αb
(p̄− p̃2i) and po2i+1 = p̄+ (1−α)b

c̄+αb
(p̄− p2i), then

p̃2i+2 < p2i+2 < p̄. That is, implementing an optimal contract based on a lower low price in

cycle i will admit a lower low price in cycle i+ 1.

2. Suppose Ω− b≤ p̃2i = p2i < p̄. If p̃o2i+1 = 0 and po2i+1 = p̄+ (1−α)b

c̄+αb
(p̄− p2i), then

p̃2i+2 < p2i+2 < p̄. That is, offering no contract will admit a lower low price than

implementing the optimal contract in odd period 2i+ 1.

Proof of Lemma L.3. Part 1: Note that c̄≥ po2i+1 > p2i, so

p2i+1 = Ω−αb
c̄
po2i+1− (1−α)

b

c̄
p2i = Ω−αb

c̄

Ω− (1−α) b
c̄
p2i

1 +α b
c̄

− (1−α)
b

c̄
p2i

=
1

1 +α b
c̄

(
Ω− (1−α)

b

c̄
p2i

)
>

1

1 +α b
c̄

(
Ω− (1−α)

b

c̄
p̄
)

= p̄.

where the last inequality holds because p2i < p̄. Lemma L.1 implies that no contract is effective in

period 2i+ 2. Hence, p2i+2 = Ω− bF (p2i+1). Note also that

p2i+1− c̄=
1

1 +α b
c̄

(
Ω− (1−α)

b

c̄
p2i

)
− c̄≤ 1

1 +α b
c̄

(
Ω− (1−α)

b

c̄
(Ω− b)

)
− c̄

=
(

1− (1−α)
b

c̄

)
(Ω− b− c̄)< 0,

so p2i+2 = Ω− b
c̄
p2i+1. By the same process, we obtain p̃2i+2 = Ω− b

c̄
p̃2i+1. Observe that

p̃2i+1 > p2i+1 by p̃2i < p2i, so p̃2i+2 ≤ p2i+2.

Part 2: By p̃o2i+1 = 0, it follows that p̃2i+1 = Ω− b
c
p̃2i >Ω− b

c̄
p̄= p̄. According to Lemma L.1, no

contract is effective in period 2i+ 2. Thus, p̃2i+2 = Ω− bF (p̃2i+1)≤Ω− b
c̄
p̃2i+1.

On the other hand, given p2i < p
o
2i+1, we have p2i+1 = Ω−α b

c̄
po2i+1− (1−α) b

c̄
p2i. As in Part 1, we

have p2i+2 = Ω− b
c̄
p2i+1.

Observe that p̃2i+1 > p2i+1 by p̃2i = p2i < p
o
2i+1, so p̃2i+2 < p2i+2. �
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Proof of Proposition D.1. Lemma L.1 implies that the infinite horizon problem can be viewed

as an infinite number of independent problem, each of which consists of one cycle (two periods),

and Lemma L.2 gives the optimal solution of each independent problem. Moreover, Lemma L.3

shows that with the optimal operation, the prices will be closer to the market limiting price in

the current cycle if they are closer to the market limiting price in the last cycle. Combing the

three lemmas, we arrive the conclusion. �

Before we prove Proposition D.2, we first introduce a lemma.

Lemma L.4. Suppose Assumptions 1-6 hold. For any fixed t, suppose pt−1 < p̄. Consider the

following one-period problem.

min
pot

(pt− p̄)2 (L.6)

s.t. pt = Ω− bαF (pot )− b(1−α)F (pt−1),

pt−1 < p
o
t ≤ c̄. (L.7)

If α<
p̄−pt−1

c̄−pt−1
, then po∗t = c̄.

Proof of lemma L.4. We first derive the formula of pt. To achieve this, we expect to show

pot ≤ c̄ and pt−1 ≤ c̄. Since pt−1 < p̄ and p̄= c̄ Ω
c̄+b
≤ c̄, it follows immediately that pt−1 < c̄. Note

that pot > c̄ has the same dynamic effect as that pot = c̄, so without loss of generality we assume

pot ≤ c̄. Therefore, we have

pt = Ω−αb
c̄
pot − (1−α)

b

c̄
pt−1. (L.8)

Hence, problem (L.6) can be written as

min
pot

( b

c̄+ b
Ω−αb

c̄
pot − (1−α)

b

c̄
pt−1

)2

(L.9)

s.t. pt−1 < p
o
t ≤ c̄.

Taking derivatives to the objective function in (L.9) yields the unconstrained optimal solution

1
α

(
c̄
c̄+b

Ω− (1−α)pt−1

)
. Observe that

1

α

( c̄

c̄+ b
Ω− (1−α)pt−1

)
− c̄=

1

α

(
p̄− (1−α)pt−1−αc̄

)
> 0,

where the last inequality holds because α<
p̄−pt−1

c̄−pt−1
. Therefore, the convexity indicates that

po∗t = c̄. �
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Proof of Proposition D.2. Part (a): We show the case if α≥ p̄−pt−1

c̄−pt−1
.

Note that po1 = p̄−p0
α

+ p0 ≤ c̄ by α≥ p̄−p0
c̄−p0

, so

p1 = Ω−αbF (po1)− (1−α)bF (p0) = Ω−αb
c̄
po1− (1−α)

b

c̄
p0

= Ω−αb
c̄

( p̄− p0

α
+ p0

)
− (1−α)

b

c̄
p0 = p̄.

Part (b): We show the case if α<
p̄−pt−1

c̄−pt−1
.

As in Lemma L.1, we could show for any solution to optimization problem (D.1) (without the

profit constraint), the contract is not effective in period 2i for any i≥ 1. That is, the infinite

horizon problem can be viewed as an infinite number of independent problem, each of which

consists of one cycle. Moreover, Lemma L.4 gives the optimal solution of such independent

problem. Combining these two lemmas completes the proof of Part (b). �

M. Proof of Results in Appendix D.2

Before we prove Proposition D.3, we first introduce a lemma.

Lemma M.1. Suppose Suppose Assumptions 1-5 hold and α< α̂.

(a) If α>α1, then limt→∞ pt = p̄− αb(po−p̄)
c̄+(1−α)b

.

(b) If α≤ α1, then the price process does not converge.

Proof of Lemma M.1. Note that α< α̂ is equivalent to

Ω−αb
c̄
po− b(1−α)< c̄. (M.1)

Part 1: We will show the price converges if α>α1 and does not converge if α= α1. Note that

α≥ α1 is the same to

b(1−α)≤ c̄.

We have two cases.

Case 1: Suppose Ω−α b
c̄
po− (1−α) b

c̄
p0 ≤ c̄.

We will show by induction that for any t≥ 1,

pt =
1−

(
− (1−α) b

c̄

)t
1 + (1−α) b

c̄

(
Ω−αb

c̄
po
)

+
(
− (1−α)

b

c̄

)t
p0 ≤ c̄, (M.2)

from which Part 1 follows immediately.

Note that po ≤ c̄ and p0 ≤ c̄, so p1 = Ω−α b
c̄
po− (1−α) b

c̄
p0 ≤ c̄, where the last inequality holds

because of the supposition in Case 1. Hence, (M.2) holds when t= 1. Suppose (M.2) holds when

t= i− 1, and we will show it holds when t= i. One can check

pi = Ω−αb
c̄
po− (1−α)

b

c̄
pi−1 [by po ≤ c̄ and pi−1 ≤ c̄]
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= Ω−αb
c̄
po− (1−α)

b

c̄

{1−
(
− (1−α) b

c̄

)i−1

1 + (1−α) b
c̄

(
Ω−αb

c̄
po
)

+
(
− (1−α)

b

c̄

)i−1

p0

}
=

1−
(
− (1−α) b

c̄

)i
1 + (1−α) b

c̄

(
Ω−αb

c̄
po
)

+
(
− (1−α)

b

c̄

)i
p0

≤
1−

(
− (1−α) b

c̄

)i
1 + (1−α) b

c̄

(
1−α)

b

c̄
p0 + c̄

)
+
(
− (1−α)

b

c̄

)i
p0 [by Ω−αb

c̄
po− (1−α)

b

c̄
p0 ≤ c̄]

=
1−

(
− (1−α) b

c̄

)i
1 + (1−α) b

c̄

c̄+
(1−α) b

c̄
+
(
− (1−α) b

c̄

)i
1 + (1−α) b

c̄

p0

≤ c̄. [by p0 ≤ c̄]

This establishes that (M.2) holds for any t≥ 1.

Therefore, if α>α1, that is, b(1−α)< c̄, then limt→∞ pt =
Ω−α bc̄p

o

1+(1−α) bc̄
= p̄− αb(po−p̄)

c̄+(1−α)b
. If α= α1, the

price alternates between p0 and Ω−α b
c̄
po− p0.

Case 2: Suppose Ω−α b
c̄
po− (1−α) b

c̄
p0 > c̄.

We will show there exists an i≥ 0 such that pi ≤ c̄ and Ω−α b
c̄
po− (1−α) b

c̄
pi ≤ c̄, then the

analysis follows the same as Case 1.

We have p1 = Ω−α b
c̄
po− (1−α) b

c̄
p0 > c̄, where the last inequality holds because of the

supposition in Case 2. Then p2 = Ω−α b
c̄
po− (1−α)b < c̄, where the last inequality holds because

of (M.1). Thus,

p3 = Ω−αb
c̄
po− (1−α)

b

c̄
p2 = Ω−αb

c̄
po− (1−α)

b

c̄

(
Ω−αb

c̄
po− (1−α)b

)
=
(

1− (1−α)
b

c̄

)(
Ω−αb

c̄
po
)

+ (1−α)
b

c̄
b(1−α)

≤
(

1− (1−α)
b

c̄

)(
b(1−α) + c̄

)
+ (1−α)

b

c̄
b(1−α)

= c̄,

where the last inequality holds because (M.1) and b(1−α)≤ c̄. This completes the proof of Case

2.

Part 2: We will show if α<α1, that is, b(1−α)> c̄, then the price process does not converge.

We first show there exists an i≥ 0 such that pi > c̄. Suppose for a contradiction that there does

not exist such an i; i.e, pt ≤ c̄ for any t. Then by the same process as Case 1 of Part 1, we obtain

pt =
1−
(
−(1−α) bc̄

)t
1+(1−α) bc̄

(Ω−α b
c̄
po) +

(
− (1−α) b

c̄

)t
p0. Since (1−α) b

c̄
> 1, there must exist an i≥ 0 such

that pi > c̄, which arrives a contradiction.

Now we show the price does not converge. It follows by pi > c̄ that pi+1 = Ω−α b
c̄
po− (1−α)b < c̄,

where the last inequality holds because of (M.1). Then

pi+2 = Ω−αb
c̄
po− (1−α)

b

c̄
pi+1 =

(
1− (1−α)

b

c̄

)(
Ω−αb

c̄
po
)

+ (1−α)
b

c̄
b(1−α)



38

>
(

1− (1−α)
b

c̄

)(
(1−α)b+ c̄

)
+ (1−α)

b

c̄
b(1−α) = c̄,

where the last inequality holds by 1− (1−α) b
c̄
< 0 and (M.1). Continuing in this fashion, we find

that for any j ≥ 0,

pi+2j+1 = Ω−αb
c̄
po− (1−α)b < c̄, and pi+2j+2 = Ω−αb

c̄
po− (1−α)

b

c̄
pi+2j+1 > c̄.

That is, the price alternates between two constant prices and does not converge. �

Proof of Proposition D.3. Part (i): Note that α≥ α̂ is equivalent to

Ω−αb
c̄
pb− b(1−α)≥ c̄.

We have

p1 = Ω−αb
c̄
po− (1−α)

b

c̄
p0 ≥Ω−αb

c̄
po− (1−α)b≥ c̄,

where the first inequality holds because p0 ≤ c̄. Consequently, p2 = Ω−α b
c̄
po− (1−α)b≥ c̄. One

can check that for any t≥ 1, pt = Ω−α b
c̄
po− (1−α)b≥ c̄.

Parts (ii) and (iii): It follows immediately from Lemma M.1. �
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