
1

Electronic Companion

Dynamic Pricing of Perishable Assets under Competition

Guillermo Gallego

IEOR Department, Columbia University, New York, NY 10027

gmg2@columbia.edu

Ming Hu

Rotman School of Management, University of Toronto, Toronto, ON M5S 3E6, Canada

ming.hu@rotman.utoronto.ca

A. Demand Structures

We consider several of the most frequently-used classes of demand functions and verify that they

indeed satisfy pseudo-convexity of the demand rate function and pseudo-concavity of the revenue

rate function.

General Time-Varying Attraction Models

In the attraction models, customers choose each firm with probability proportional to its attraction

value. Specifically, we have the following demand rate functions: for all i,

dipt, ~pq “ λptq
aipt, piq

řm

j“0 ajpt, pjq
,

where λptq ą 0, aipt, piq ě 0 is the attraction value for firm i at time t, and

a0ptq ” a0pt, p0q ą 0

is interpreted as the value of the no-purchase option at time t. We emphasize that in order to have

pseudo-convexity of the demand rate function holds with respect to one’s own price (Proposition

1(i)), we need the no-purchase value to be positive. Since λptq is always positive, it does not have

impact on the signs of derivatives we will consider, hence we drop it in the following discussion.

Lemma 1 (Sufficient Condition of Pseudo-Convexity). If a twice continuously differ-

entiable function f :RÑR satisfies that f 1pxq “ 0ùñ f2pxq ą 0, then f is pseudo-convex, i.e., for

any x1 and x2, px1´x2qf
1px2q ě 0ùñ fpx1q ě fpx2q.

Proof of Lemma 1. For each x0 with f 1px0q “ 0, we have f2px0q ą 0. This means that whenever

the function f 1 reaches the value 0, it is strictly increasing. Therefore it can reach the value 0 at most

once. If f 1 does not reach the value 0 at all, then f is either strictly decreasing or strictly increasing,

and therefore pseudo-convex: if f is strictly decreasing, then px1 ´ x2qf
1px2q ě 0 ùñ x1 ď x2 ùñ

fpx1q ě fpx2q; if f is strictly increasing, then px1 ´ x2qf
1px2q ě 0 ùñ x1 ě x2 ùñ fpx1q ě fpx2q.

Otherwise f 1 must reach the value 0 exactly once, say at x0. Since f2px0q ą 0, it follows that
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f 1pxq ă 0 for xă x0, and f 1pxq ą 0 for xą x0. Again in this case, f is pseudo-convex: if x2 “ x0, we

always have fpx1q ě fpx2q “ fpx0q for any x1; if x2 ă x0, then px1´ x2qf
1px2q ě 0ùñ x1 ď x2 ùñ

fpx1q ě fpx2q; and if x2 ą x0, then px1´x2qf
1px2q ě 0ùñ x1 ě x2 ùñ fpx1q ě fpx2q. ˝

We can extend Lemma 1 to the functional space.

Lemma 2. Let V be a Hilbert space with associated scalar product x¨, ¨y and Jrf s be a functional

that is Gateaux-differentiable on V . If for any functional f P V ,

δJrf ;hs “ 0 for all directions h‰ 0 a.e.

ùñ δ2Jrf ;h,hs ą 0 for all such directions, (A1)

then Jrf s is pseudo-convex in the functional f , i.e., for any f, f 1 P V ,

xf 1´ f,∇fJrf sy ě 0ùñ Jrf 1s ě Jrf s. (A2)

Proof of Lemma 2. Consider any functional f, f 1 P V . By the definition of Gateaux differential

(see, e.g., Luenberger 1997, Section 7.2), for any direction h,

δJrf ;hs “ lim
αÑ0

Jrf `αhs´Jrf s

α
“

d

dα
Jrf `αhs

ˇ

ˇ

ˇ

ˇ

α“0

, (A3)

δ2Jrf ;h,hs “ lim
αÑ0

δJrf `αh;hs´ δJrf ;hs

α
“

d2

dα2
Jrf `αhs

ˇ

ˇ

ˇ

ˇ

α“0

. (A4)

To show that Jrf s is pseudo-convex in the functional f , let h1 “ f 1 ´ f and consider the class of

functionals tfpεq “ f ` εh1, ε PRu. Note that fpε“ 1q “ f 1 and fpε“ 0q “ f . By Equations (A3) and

(A4), the stipulation (A1) is equivalent to

d

dα
Jrf `αhs

ˇ

ˇ

ˇ

ˇ

α“0

“ 0ùñ
d2

dα2
Jrf `αhs

ˇ

ˇ

ˇ

ˇ

α“0

ą 0. (A5)

Note that the stipulation (A5) applies for all functionals f and directions h. In particular, applying

(A5) to the class of functionals fpεq “ f ` εh1 and the direction h1 “ f 1´ f , we have

d

dα
Jrfpεq`αh1s

ˇ

ˇ

ˇ

ˇ

α“0

“ 0ùñ
d2

dα2
Jrfpεq`αh1s

ˇ

ˇ

ˇ

ˇ

α“0

ą 0. (A6)

By change of variables, we have

d

dα
Jrfpεq`αh1s

ˇ

ˇ

ˇ

ˇ

α“0

“
d

dα
Jrf `αh1s

ˇ

ˇ

ˇ

ˇ

α“ε

“ 0ùñ
d2

dα2
Jrfpεq`αh1s

ˇ

ˇ

ˇ

ˇ

α“0

“
d2

dα2
Jrf `αh1s

ˇ

ˇ

ˇ

ˇ

α“ε

ą 0.

(A7)

Define fpεq ” Jrf ` εh1s. Note that fpεq is a one-dimensional function of the real variable ε. We can

equivalently rewrite (A7) as: for any ε,

f 1pεq “ 0ùñ f2pεq ą 0.
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By Lemma 1, fpεq, as a one-dimensional function, is pseudo-convex in ε, and in particular, applying

the pseudo-convexity property to ε1 “ 1 and ε2 “ 0, we have

0ď p1´ 0q ¨ f 1pε“ 0q “ f 1pε“ 0q “
d

dε
Jrf ` εh1s

ˇ

ˇ

ˇ

ˇ

ε“0

ùñ Jrf 1s “ fpε“ 1q ě fpε“ 0q “ Jrf s. (A8)

It remains to verify that xf 1 ´ f,∇fJrf sy ě 0 is equivalent to f 1pε“ 0q “ d
dε
Jrf ` εh1s

ˇ

ˇ

ε“0
ě 0. To

see this,

xf 1´ f,∇fJrf sy “ δJrf ;f 1´ f s “
d

dε
Jrf ` εh1s

ˇ

ˇ

ˇ

ˇ

ε“0

,

where the first equation is due to the definition of the scalar product x¨, ¨y (see, e.g., Friesz 2010,

Definition 4.35) and the second equation is due to Equation (A3). Hence (A8) is equivalent to

xf 1´ f,∇fJrf sy ě 0ùñ Jrf 1s ě Jrf s.

This completes the proof. ˝

Lemma 3. If gpt, fq satisfies that for almost all t, Bgpt, fq{Bf “ 0 ùñ B2gpt, fq{Bf2 ą 0, then

Jrf s ” ∫T0 gpt, fptqqdt is pseudo-convex in the functional f “ tfptq,0ď tď T u.

Proof of Lemma 3. We consider any stationary point f̂ such that for all directions h‰ 0 a.e.,

δJrf̂ ;hs “

ż T

0

Bgpt, fq

Bf

ˇ

ˇ

ˇ

ˇ

f“f̂

hptqdt“ 0,

where the first equation is due to Luenberger (1997, Example 2 in section 7.2).

We must have Bgpt,fq

Bf
“ 0 for almost all t. Then by stipulation that Bgpt, fq{Bf “ 0 ùñ

B2gpt, fq{Bf2 ą 0, we have B2gpt, fptqq{Bf2 ą 0 for almost all t. Hence, for all directions h‰ 0 a.e.,

δ2Jrf̂ ;h,hs “

ż T

0

B2gpt, fq

Bf2

ˇ

ˇ

ˇ

ˇ

f“f̂

h2ptqdtą 0,

where the first equation is due to repeatedly applying the result of Luenberger (1997, Example 2

in section 7.2) to the first variation δJrf̂ ;hs. Hence we just showed that for any functional f ,

δJrf ;hs “ 0 for all directions h‰ 0 a.e.

ùñ δ2Jrf ;h,hs ą 0 for all such directions.

By Lemma 2, Jrf s is pseudo-convex in the functional f . ˝

We have the following structural results on the general attraction demand functions. We assume

aiptq is twice continuously differentiable. For notation simplicity, we drop arguments and let a0 ”

a0ptq ą 0, ai ” aipt, piq, a
1
i ” Baipt, piq{Bpi and a2i ” B

2aipt, piq{Bpi
2.

Proposition 1 (Pseudo Properties of Attraction Models). The following pseudo-

properties of general attraction models hold:
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(i) if a2i ą presp.ăq0 for all i, dipt, ~pq is pseudo-convex (resp. pseudo-concave) in pi for all i;

(ii) if ai ą 0, a2i ă presp.ąq0 for all i, dipt, ~pq is pseudo-convex (resp. pseudo-concave) in pj for

all j ‰ i;

(iii) if 2a1i´aia
2
i {a

1
i ą presp.ăq0 for all i, ript, ~pq´µdipt, ~pq is pseudo-convex (resp. pseudo-concave)

in pi for all i and µ PR.

Proof of Proposition 1. (i) Taking the first order derivative of dipt, ~pq with respect to pi,

Bdi
Bpi

“
a1i
ř

j‰i aj

p
ř

j ajq
2
.

Taking the second order derivative of dipt, ~pq with respect to pi,

B2di
Bpi2

“
a2i

ř

j‰i aj

p
ř

j ajq
2
´

2pa1iq
2
ř

j‰i aj

p
ř

j ajq
3

“
a2i

ř

j‰i aj

p
ř

j ajq
2
´

ˆ

Bdi
Bpi

˙

2a1i
ř

j aj
.

Since a0 ą 0, then
ř

j‰i aj ą 0. Hence whenever Bdi{Bpi “ 0, B2di{Bpi
2 ą presp.ăq0 if a2i ą presp.ăq0.

By Lemma 1, dipt, ~pq is pseudo-convex (pseudo-concave) in pi if a2i ą presp.ăq0.

(ii) Taking the first order derivative of dipt, ~pq with respect to pj,

Bdi
Bpj

“´
aia

1
j

p
ř

j ajq
2
.

Taking the second order derivative of dipt, ~pq with respect to pj,

B2di
Bpj2

“´
aia

2
j

p
ř

j ajq
2
`

2aipa
1
jq

2

p
ř

j ajq
3
“´

aia
2
j

p
ř

j ajq
2
´

ˆ

Bdi
Bpj

˙

2a1j
ř

j aj
.

Whenever Bdi{Bpj “ 0, B2di{Bpj
2 ą presp. ăq0 if ai ą 0, a2j ă presp. ąq0. By Lemma 1, dipt, ~pq is

pseudo-convex (pseudo-concave) in pj for all j ‰ i if ai ą 0, a2i ă presp.ąq0 for all i.

(iii) Taking the first order derivative of ript, ~pq´µdipt, ~pq “ ppi´µqdipt, ~pq with respect to pi,

Bri
Bpi

“ di`ppi´µq
Bdi
Bpi

“
ai

ř

j aj
`ppi´µq

a1i
ř

j‰i aj

p
ř

j ajq
2
.

Taking the second order derivative of ript, ~pq with respect to pi,

B2ri
Bpi2

“ 2
Bdi
Bpi

`ppi´µq
B2di
Bpi2

“ 2
a1i
ř

j‰i aj

p
ř

j ajq
2
`ppi´µq

a1i
ř

j‰i aj

p
ř

j ajq
2

˜

a2i
a1i
´

2a1i
ř

j aj

¸

.

Whenever Bri{Bpi “ 0, ppi´µqa
1
i

ř

j‰i aj{p
ř

j ajq
2 “´ai{

ř

j aj, thus

B2ri
Bpi2

“ 2
a1i
ř

j‰i aj

p
ř

j ajq
2
´

ai
ř

j aj

˜

a2i
a1i
´

2a1i
ř

j aj

¸

“
2a1i´ aia

2
i {a

1
i

ř

j aj
ą presp.ăq0,

if 2a1i´aia
2
i {a

1
i ą presp.ăq0. By Lemma 1, ript, ~pq´µdipt, ~pq is pseudo-convex (resp. pseudo-concave)

in pi if 2a1i´ aia
2
i {a

1
i ą presp.ăq0. ˝
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In the proof of Proposition 1, what we essentially show is that the demand rate function satisfies

that at a stationary point the second order derivative of the function is always positive. Hence, by

Lemmas 2 and 3, we immediately have the following results.

Proposition 2. The following functional pseudo-properties of general attraction models hold:

(i) if a2i ą presp. ăq0 for all i, ∫T0 dipt, ~pptqqdt is pseudo-convex (resp. pseudo-concave) in

tpiptq,0ď tď T u for all i;

(ii) if ai ą 0, a2i ă presp.ąq0 for all i, ∫T0 dipt, ~pptqqdt is pseudo-convex (resp. pseudo-concave) in

tpjptq,0ď tď T u for all j ‰ i;

(iii) if 2a1i´ aia
2
i {a

1
i ą presp.ăq0 for all i, ∫T0 rript, ~pptqq´µptqdipt, ~pptqqsdt is pseudo-convex (resp.

pseudo-concave) in tpiptq,0ď tď T u for all i and tµptq,0ď tď T u.

The MNL demand assumes aipt, piq “ βiptq expp´αiptqpiq, αiptq, βiptq ą 0 for all i. Since a2i “

αiptq
2βiptq expp´αiptqpiq ą 0 and 2a1i´ aia

2
i {a

1
i “´αiptqβiptq expp´αiptqpiq ă 0, we have the follow-

ing corollary as an immediate result of Proposition 2.

Corollary 1. For the MNL demand, ∫T0 dipt, ~pptqqdt for all i is pseudo-convex in tpiptq,0 ď

tď T u, is pseudo-concave in tpjptq,0ď tď T u for all j ‰ i, and ∫T0 rript, ~pptqq´µptqdipt, ~pptqqsdt for

all i and all tµptq,0ď tď T u is pseudo-concave in tpiptq,0ď tď T u.

Linear Models

The demand rate function has the form of

dipt, ~pq “ aiptq´ biptqpi`
ÿ

j‰i

cijptqpj,

where aiptq, biptq ą 0 for all i and cijptq PR for all j ‰ i, for all t. It is easy to see that dipt, ~pq for any

i is convex in pj for all j and ript, ~pq for all i is strictly concave in pi. Then ∫T0 dipt, ~pptqqdt is convex

in tpjptq,0 ď t ď T u for all j and ∫T0 ript, ~pptqqdt is concave in tpiptq,0 ď t ď T u. We immediately

have the following result.

Proposition 3 (Linear Model). For the linear demand model, ∫T0 dipt, ~pptqqdt for all i is

pseudo-convex in tpiptq,0ď tď T u and ∫T0 ript, ~pptqqdt for all i is pseudo-concave in tpiptq,0ď tď

T u.

Note that these pseudo-properties do not use the signs of cross-price elasticity term cij’s, hence a

linear demand model of complementary products also satisfies Assumptions 1(b) and 2(a).
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B. The Fixed Point Theorem

Theorem 1 (Bohnenblust and Karlin (1950, Theorem 5)). Let X be a weakly separable

Banach space with S a convex, weakly closed set in X. Let B : SÑ 2SztØu be a set-valued mapping

satisfying the following:

(a) Bpxq is convex for each x P S;

(b) The graph of B, tpx, yq P SˆS : y PBpxqu, is weakly closed in XˆX. That is, if txnu and tynu

are two sequences in S such that xnÑ x, ynÑ y, weakly in X with xn PBpynq, then necessarily

we have x PBpyq;
(c)

Ť

xPS Bpxq is contained in a sequentially weakly compact set;

Then there exists x˚ P S such that x˚ PBpx˚q.

C. HJB Equivalence

We establish the equivalency between the HJB equation (6) and the optimization problem by

showing that any feasible solution ~V pt,~nq to the optimization problem is an upper bound of the

value function ~V ˚pt,~nq satisfying the HJB equation (6). We prove it by induction on the value of

~eT~n, where ~e denotes a vector with all entries being ones. As an initial step, for ~n“ 0 such that

~eT~n“ 0, by the boundary conditions, ~V pt,~nq “ ~V ˚pt,~nq “ 0 for all t. Now suppose for all ~n such

that ~eT~n“ lo, we have ~V pt,~nq ě ~V ˚pt,~nq for all t. Let us consider any ~no such that ~eT~no “ lo`1. We

further show by induction on time. As an initial step, for s“ 0, again by the boundary conditions,

we have ~V p0,~noq “ ~V ˚p0,~noq “ 0. Suppose for some so ě 0, we have ~V ps,~noq ě ~V ˚ps,~noq for all

s P r0, sos. For any i, there exists hą 0 small enough such that

Vipso`h,~noq

“ Vipso,~noq`
BVipso,~noq

Bs
h` o1phq

ě Vipso,~noq` trip~ppT ´ so,~noqq´ ~dp~ppT ´ so,~noqq
T∇~Vipso,~noquh` o1phq

ě Vipso,~noq` trip~p
˚pT ´ so,~noqq´ ~dp~p˚pT ´ so,~noqq

T∇~Vipso,~noquh` o1phq

“ r1´~eT~dp~p˚pT ´ so,~noqqhsVipso,~noq

` ~dp~p˚pT ´ so,~noqq
TpVipso,~no´~e1q, Vipso,~no´~e2q, . . . , Vipso,~no´~emqqh` o1phq

ě r1´~eT~dp~p˚pT ´ so,~noqqhsV
˚
i pso,~noq

` ~dp~p˚pT ´ so,~noqq
TpV ˚i pso,~no´~e1q, V

˚
i pso,~no´~e2q, . . . , V

˚
i pso,~no´~emqqh` o1phq

“ V ˚i pso`h,~noq` o2phq,

where the first inequality is due to the feasibility of ~V ps,~nq to the optimization problem, the second

inequality is due to the inequality constraints in the optimization problem hold for all pricing

strategies, and the third inequality is due to the induction hypothesis. Therefore, there exists a

neighborhood rso, so`hos with ho ą 0 such that Vips,~noq ě V
˚
i ps,~noq for all s P rso, so`hos. ˝
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D. Computation of OLNE

Friesz (2010, Chapter 10) formulates the equilibrium problem as an infinite-dimensional differen-

tial quasi-variational inequality and computes the generalized differential Nash equilibrium by a

gap function algorithm. Adida and Perakis (2010) discretize the time horizon and solve for the

finite-dimensional generalized Nash equilibrium by a relaxation algorithm. Instead, we explore the

structural property of our differential game and cast the computation of OLNE as a much smaller

size of finite-dimensional nonlinear complementarity problem (NCP).

By Proposition 2, the OLNE is equivalently characterized by the following m2-dimensional NCP:

µij

ˆ

Cj ´

ż T

0

djpt, ~p
˚pt; rµijsmˆmqqdt

˙

“ 0, for all i, j,

Cj ´

ż T

0

djpt, ~p
˚pt; rµijsmˆmqqdt ě 0, for all i, j, µij ě 0, for all i, j,

with appropriate ancillary decreasing shadow price processes µ´ijptq P r0, µijs for all i, j that can

shut down demand upon a stockout, where ~p˚pt; rµijsmˆmq is the solution of (4) for any given

matrix of shadow prices rµijsmˆm ě 0 at any time t that may have closed-form solutions in some

cases, e.g., under linear demand models. The process of computing the equilibrium candidate

t~p˚pt; rµijsmˆmq,0ď tď T u involves solving the one-shot price competition game (5) at any time

on an on-going basis from t“ 0 while keeping checking whether firms have run out of inventory;

whenever a firm’s inventory process hits zero, we can check if there exists decreasing shadow price

processes of shutting down demand: if so, the firm exits the market and the price competition after-

wards only involves remaining firms of positive inventory with an updated demand function taking

consideration of spillover; otherwise, the matrix of shadow prices does not sustain as equilibrium

shadow prices. If a bounded rational OLNE is sought after, we can restrict µijptq “ 0 for all t and

all i‰ j and further reduce the NCP to an m-dimension problem. Upon a stockout, the checking

of whether there exist appropriate decreasing shadow price processes to shut down demand is also

much simplified for computation of bounded rational OLNE. For many commonly used demand

models, e.g., MNL and linear, there exists a unique equilibrium candidate t~p˚pt; rµijsmˆmq,0ď tď

T u for any set of nonnegative shadow prices rµiismˆ1 with µij “ 0 for all i‰ j. Mature computation

algorithms for NCP with (i) a sub-loop of computing the equilibrium candidate and (ii) upon a

stockout a sub-loop of checking whether choke prices can be generated by decreasing shadow price

processes, can be applied to identify OLNE that indeed satisfies the complementarity condition.

E. Verification of OLNE in Example 2

Since firms have limited capacity relative to the sales horizon, their revenues depend on how high

prices can be set to sell the capacity. It is definitely worse off for any firm i to sell faster in its

monopoly period by setting a price lower than the market-clearing price p˚ that sells off capacity
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over the half horizon. This rules out the possibility that firms want to have a monopoly sales

horizon shorter than T {2. What about setting a price higher than p˚? Suppose firm i deviates by

evening out ε amount of inventory from its monopoly period and competing in selling the ε amount

with the competitor in firm ´i’s originally monopoly period. First, we check if such a deviation

is jointly feasible. It is obviously feasible for firm i as its total sales volume remains unchanged.

To see the feasibility for firm ´i, we check the derivative pBd´ipt, pi, p´iq{BpiqpBp
´1
i pt, di, p´iq{Bdiq,

where p´1
i pt, di, p´iq is the inverse function of dipt, pi, p´iq. This derivative captures the impact, on

firm ´i’s sales, of firm i’s small change in its sales by varying its price pi while the competitor’s

price p´i is fixed.

Bd´ipt, pi, p´iq

Bpi

Bp´1
i pt, di, p´iq

Bdi
“

"

´γL if t P rpi´ 1qT {2, iT {2q ,
´γH otherwise.

The deviation will cause the sales of firm ´i to increase by γLε amount in firm i’s monopoly period

and to decrease by γHε amount in firm ´i’s originally monopoly period. The total sales of firm

´i will decrease by pγH ´ γLqε amount under firm i’s deviation, which remains feasible for firm

´i for all ε P r0,1q. Next, we fix firm ´i’s policy at tp˚´iptq,0ď tď T u to see firm i’s payoff under

the deviation of evening out the ε amount. The highest price p̄ firm i can sell the ε amount is p̄

such that p1´ p̄` γLp
˚qT {2 “ ε. We solve p̄ “ 1` γLp

˚ ´ 2ε{T . The highest price firm i can sell

the 1´ ε amount in its monopoly period is p̃ such that r1´ p̃`γHp1`γLp
˚qsT {2“ 1´ ε. We solve

p̃“ p˚` 2ε{T . The profit firm i can earn under the deviation is

p̃p1´ εq` p̄ε“ p˚` ε

„

γL´ γH
1´ γHγL

`
2p2´ γL´ γHγLq

T p1´ γHγLq
´

4ε

T



ă p˚

for all ε P p0,1s, provided that T ą 2p2´γL´γHγLq

γH´γL
(note that γL ă γH). Hence if T is sufficiently large,

the proposed joint policy is indeed an OLNE where firms are alternating monopolies. ˝
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