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A. Demand Structures
We consider several of the most frequently-used classes of demand functions and verify that they
indeed satisfy pseudo-convexity of the demand rate function and pseudo-concavity of the revenue

rate function.

General Time-Varying Attraction Models
In the attraction models, customers choose each firm with probability proportional to its attraction
value. Specifically, we have the following demand rate functions: for all 7,

where A(t) >0, a;(t,p;) =0 is the attraction value for firm 7 at time ¢, and
ao(t) = ao(t,po) >0

is interpreted as the value of the no-purchase option at time . We emphasize that in order to have
pseudo-convexity of the demand rate function holds with respect to one’s own price (Proposition
1(i)), we need the no-purchase value to be positive. Since A(t) is always positive, it does not have

impact on the signs of derivatives we will consider, hence we drop it in the following discussion.

LEMMA 1 (SUFFICIENT CONDITION OF PSEUDO-CONVEXITY). If a twice continuously differ-
entiable function f:R— R satisfies that f'(x) =0= f"(x) >0, then f is pseudo-convez, i.e., for

any x1 and xo, (X1 —xa) f'(22) 2 0= f(z1) = f(22).

Proof of Lemma 1. For each xy with f'(xq) =0, we have f”(xy) > 0. This means that whenever
the function f’ reaches the value 0, it is strictly increasing. Therefore it can reach the value 0 at most
once. If ' does not reach the value 0 at all, then f is either strictly decreasing or strictly increasing,
and therefore pseudo-convex: if f is strictly decreasing, then (x; — xo)f'(22) > 0= 11 < 1, =
f(z1) = f(za); if f is strictly increasing, then (z1 — x2)f'(22) =2 0= 21 = 22 = f(21) = f(x2).

Otherwise f’ must reach the value 0 exactly once, say at xy. Since f”(zq) > 0, it follows that
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f'(x) <0 for x <z, and f'(z) >0 for x > 4. Again in this case, f is pseudo-convex: if xo = ¢, we
always have f(x1) = f(x2) = f(xo) for any x; if 2y <z, then (x; — o) f/(22) > 0= 1, < 1y =
f(z1) = f(z2); and if 25 > xg, then (z1 — 22) f'(22) 2 0= 1 = 23 = f(21) = f(z2). ©

We can extend Lemma 1 to the functional space.

LEMMA 2. Let V' be a Hilbert space with associated scalar product {-,-) and J[f] be a functional
that is Gateaux-differentiable on V. If for any functional feV,

dJ[f;h] =0 for all directions h#0 a.e.
= §°J[f;h,h] >0 for all such directions, (A1)

then J[f] is pseudo-convex in the functional f, i.e., for any f, f'eV,
' =1V D 2 0= J[f]1 = J[f] (A2)

Proof of Lemma 2. Consider any functional f, f' € V. By the definition of Gateaux differential
(see, e.g., Luenberger 1997, Section 7.2), for any direction h,

a7;0) = i NI gy o) (A3)
S 31fihh] = tim PO ZOIER] 0y oy (A)

To show that J[f] is pseudo-convex in the functional f, let A’ = f' — f and consider the class of
functionals {f(e) = f +eh’,e€ R}. Note that f(e=1) = f’ and f(e=0) = f. By Equations (A3) and
(A4), the stipulation (A1) is equivalent to

dJ[f+o<h]‘ —0— L Jran

0. A5
da - da? ~ (45)

a=0

Note that the stipulation (A5) applies for all functionals f and directions h. In particular, applying
(A5) to the class of functionals f(€) = f + eh’ and the direction h' = f' — f, we have
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d

d
- / — / . A
daJ[f(e)—i-ah]a:O 0:>da2J[f(e)+ah]a=O>0 (A6)
By change of variables, we have
iJ[f(e) +ak] = iJ[f +ah]| =0— d—QJ[f(e) +ab]| = d—ZJ[f +ak]| >0
da -  da e - da? o  da? o '

(A7)
Define f(e) = J[f + eh']. Note that f(e€) is a one-dimensional function of the real variable e. We can

equivalently rewrite (A7) as: for any e,

f'(e)=0=1"(¢) > 0.



By Lemma 1, f(€), as a one-dimensional function, is pseudo-convex in €, and in particular, applying

the pseudo-convexity property to ¢; =1 and e, =0, we have

0<(1-0) F(e=0)=F(e=0)= %J[ereh’] — J[f]=fe=1)=Ff(e=0)=J[f]. (AS8)

e=0

It remains to verify that (f' — f, V;J[f]) =0 is equivalent to f'(e = 0) = LJ[f + eh']| ,=0.To

e=

see this,

S~ 1D =8I0 1= 5T

where the first equation is due to the definition of the scalar product {-,-) (see, e.g., Friesz 2010,

[f+el]|

e=0

Definition 4.35) and the second equation is due to Equation (A3). Hence (A8) is equivalent to

' =1Vl z0=J[f]= J[f].
This completes the proof. o

LEMMA 3. If g(t, f) satisfies that for almost all t, 0g(t, f)/0f = 0= 0%g(t, f)/0f* > 0, then
Jf1=[4 g(t, f(t))dt is pseudo-convex in the functional f={f(t),0<t<T}.

Proof of Lemma 3. We consider any stationary point f such that for all directions h # 0 a.e.,

6J[f;h] = L agg;}f) ‘f_f

where the first equation is due to Luenberger (1997, Example 2 in section 7.2).

We must have %tff) = 0 for almost all ¢. Then by stipulation that dg(¢,f)/0f = 0 =
%g(t, f)/0f* >0, we have 0%g(t, f(t))/0f? > 0 for almost all ¢. Hence, for all directions h # 0 a.e.,
T
; *g(t, f)
52 I [ f:h,h] = J 79 1)
| | Ny

where the first equation is due to repeatedly applying the result of Luenberger (1997, Example 2

h(t)dt =0,

h*(t)dt > 0,
f=f

in section 7.2) to the first variation ¢6.J[ f; h]. Hence we just showed that for any functional f,

dJ[f;h] =0 for all directions h #0 a.e.
= 62J[f;h,h] >0 for all such directions.

By Lemma 2, J[f] is pseudo-convex in the functional f. o
We have the following structural results on the general attraction demand functions. We assume
a;(t) is twice continuously differentiable. For notation simplicity, we drop arguments and let ag =

ao(t) >0, a; = a,;(t,p;),a;, = da;(t,p;)/0p; and al = 0%a,(t,p;)/0p:*.

PROPOSITION 1 (PSEUDO PROPERTIES OF ATTRACTION MODELS). The following pseudo-

properties of general attraction models hold:



(i) if a! > (resp. <)0 for all i, d;(t,p) is pseudo-convez (resp. pseudo-concave) in p; for all i;
(i) if a; >0, a < (resp.>)0 for all i, d;(t,p) is pseudo-convex (resp. pseudo-concave) in p; for
all j #1;
(iii) if 2al —a;al a; > (resp. <)0 for alli, r;(t,p) — pd;(t,p) is pseudo-convez (resp. pseudo-concave)
in p; for alli and peR.

Proof of Proposition 1. (i) Taking the first order derivative of d;(¢,p) with respect to p;,

od; . a//i Zj;éi aj
opi (Xja5)7

Taking the second order derivative of d;(¢,p) with respect to p;,

ani _ a’i’ Zﬁ&i a; 2(@2)2 Zj# a; _ a;’ stﬁi a; <6dz> 2(1;
6p, Zj aj ’

a; > 0. Hence whenever dd;/dp; = 0, 0*d;/0p;* > (resp. <)0 if a > (resp. <)0.

op? (X;a5)? (2 45)° (2 45)?

Since ag > 0, then )

j#i

By Lemma 1, d,(t,p) is pseudo-convex (pseudo-concave) in p; if a > (resp. <)0.
(ii) Taking the first order derivative of d; (¢, p) with respect to p;,

6d1 o aia;‘

op; (X, a5)%

Taking the second order derivative of d;(t,p) with respect to p;,

0%d,; a;al 2a;(a})? a;a] od;\ 2d
w2 (a2 e)? ()2 (9293‘) 205
Whenever 0d;/dp; = 0, 0°d;/dp;* > (resp. <)0 if a; > 0, a7 < (resp. >)0. By Lemma 1, d;(t,p) is
pseudo-convex (pseudo-concave) in p; for all j #1i if a; >0, a < (resp. >)0 for all i.
(iii) Taking the first order derivative of r;(t,p) — pud;(t,p) = (p; — n)d;(t, p) with respect to p;,

87’i .
opi B

adi a; agzj#aj
= o+ )T
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Taking the second order derivative of r;(t,p) with respect to p;,

527"1' ad; ani CL; Z i Qi a/i Z i b a; 2a;
— 27 —+ Di — — 2 J + p; — =g J _t _ ? .
e 2o PTG T g TP T g T »

Whenever dr;/0p; =0, (p: — p)a; X, ., a;/(X; a;)* = —ai/; a;, thus

0%r; a,yl . a; a; a’ 2a 2al — a;a’/a’
LA B e kil : L — L) =_" i/ L > (resp. <)0,
a, Y. a,
) Yt

opi? a (Zj aj)2 N Zj a; Zj a;

if 2a) —a;al /al; > (resp. <)0. By Lemma 1, r;(¢, p) — ud; (¢, p) is pseudo-convex (resp. pseudo-concave)

d; + (pi — )

in p; if 2a; — a;a?/a), > (resp. <)0. o



In the proof of Proposition 1, what we essentially show is that the demand rate function satisfies
that at a stationary point the second order derivative of the function is always positive. Hence, by

Lemmas 2 and 3, we immediately have the following results.

PROPOSITION 2. The following functional pseudo-properties of general attraction models hold:
(i) if o > (resp. <)0 for all i, [J d;(t,p(t))dt is pseudo-convex (resp. pseudo-concave) in
{pi(t),0<t<T} for alli;
(i) if a; >0, a” < (resp.>)0 for all i, [ d;(t,p(t))dt is pseudo-convex (resp. pseudo-concave) in
{p;(t),0<t<T} for all j #1i;
(i4i) if 2a}, — a;alJa; > (resp. <)0 for all i, [ [ri(t,p(t)) — p(t)d;(t, p(t))] dt is pseudo-convex (resp.
pseudo-concave) in {p;(t),0 <t <T'} for alli and {u(t),0<t<T}.

The MNL demand assumes a;(t,p;) = Bi(t) exp(—a;(t)p;), ai(t),5i(t) > 0 for all i. Since af =
a; () B:(t) exp(—a;(t)p;) > 0 and 2a} — a;al /a; = —a; (t) B (t) exp(—a; (t)p;) < 0, we have the follow-

ing corollary as an immediate result of Proposition 2.

COROLLARY 1. For the MNL demand, [ di(t,p(t))dt for all i is pseudo-convex in {p;(t),0 <
t < T}, is pseudo-concave in {p;(t),0 <t < T} for all j #1i, and [; [r;(t,p(t)) — u(t)d;(t,p(t))] dt for
all i and all {p(t),0 <t < T} is pseudo-concave in {p;(t),0 <t <T}.

Linear Models

The demand rate function has the form of

di(t,p) = ai(t) — b;(t)p: + 2 cij(£)pj
J#i
where a;(t),b;(t) > 0 for all ¢ and ¢;;(t) € R for all j # ¢, for all ¢. It is easy to see that d;(¢,p) for any
i is convex in p; for all j and r;(t, ) for all 4 is strictly concave in p;. Then [y d;(t,p(t))dt is convex
in {p;(t),0 <t <T} for all j and [] r;(t,p(t))dt is concave in {p;(t),0 <t < T}. We immediately

have the following result.

PROPOSITION 3 (LINEAR MODEL). For the linear demand model, [] d;(t,p(t))dt for all i is
pseudo-conver in {p;(t),0 <t <T} and [§ ri(t,p(t))dt for all i is pseudo-concave in {p;(t),0 <t <
T}.

Note that these pseudo-properties do not use the signs of cross-price elasticity term c;;’s, hence a

linear demand model of complementary products also satisfies Assumptions 1(b) and 2(a).
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B. The Fixed Point Theorem
THEOREM 1 (BOHNENBLUST AND KARLIN (1950, THEOREM 5)). Let X be a weakly separable
Banach space with S a convex, weakly closed set in X. Let B: S — 25\{D} be a set-valued mapping
satisfying the following:
(a) B(x) is convex for each x € S;
(b) The graph of B,{(x,y)e S x S:yeB(x)}, is weakly closed in X x X. That is, if {x,} and {y,}
are two sequences in S such that x,, — x, y, — y, weakly in X with x,, € B(y,), then necessarily
we have x € B(y);
(¢) U,cs B(x) is contained in a sequentially weakly compact set;

Then there exists x* € S such that x* € B(x*).

C. HJB Equivalence

We establish the equivalency between the HJB equation (6) and the optimization problem by
showing that any feasible solution V(t,fi) to the optimization problem is an upper bound of the
value function V*(t,ﬁ) satisfying the HJB equation (6). We prove it by induction on the value of
e'1i, where € denotes a vector with all entries being ones. As an initial step, for 77 = 0 such that
éTii = 0, by the boundary conditions, V (t,7) = V*(t,7) = 0 for all t. Now suppose for all 7 such
that €77 = I,, we have V (t,7) = V*(t,7) for all t. Let us consider any 7, such that &7, = I, + 1. We
further show by induction on time. As an initial step, for s =0, again by the boundary conditions,
we have V(0,7,) = V*(0,7,) = 0. Suppose for some s, = 0, we have V(s,7,) = V*(s,i,) for all

s€0,s,]. For any i, there exists A > 0 small enough such that

Vi(8o + h, )
= Vi(80,71,) + ’Wi(;‘;’ o)1, 1 o,(h)
> Vi(50,180) + {1i (BT — 50,78,)) — d(B(T = 5, 715)) "V Vi (50, 770) }h + 01 ()
= Vil80,10) + {ri(57* (T = 80, 71)) — d(7* (T = 50, 715)) "V Vi(50, 3,) o + 01 (h)

+ (ﬁ* (T - 807ﬁ0))T(‘/i* (Smﬁo - gl)a V;'*(SO?ﬁO - 52)7 ) ‘/7,* (Smﬁo - gm))h + Ol(h)

= V*(s, + h,7i,) + 02(h),

where the first inequality is due to the feasibility of ‘7(3, 1) to the optimization problem, the second
inequality is due to the inequality constraints in the optimization problem hold for all pricing
strategies, and the third inequality is due to the induction hypothesis. Therefore, there exists a

neighborhood [s,, s, + h,] with h, > 0 such that V;(s,7,) = V;*(s,7,) for all s€[s,,s,+ h,]. ©



D. Computation of OLNE
Friesz (2010, Chapter 10) formulates the equilibrium problem as an infinite-dimensional differen-
tial quasi-variational inequality and computes the generalized differential Nash equilibrium by a
gap function algorithm. Adida and Perakis (2010) discretize the time horizon and solve for the
finite-dimensional generalized Nash equilibrium by a relaxation algorithm. Instead, we explore the
structural property of our differential game and cast the computation of OLNE as a much smaller
size of finite-dimensional nonlinear complementarity problem (NCP).

By Proposition 2, the OLNE is equivalently characterized by the following m?-dimensional NCP:

T
by (cj —j d,(t, 5 (¢ [uij]mxm))dt) — 0, for all 4,7,

0

T
Cj —J dj(t,ﬁ*(t, [MU]me)) dt = O, for all ’i,j7 Hij = 0, for all i,j,
0

with appropriate ancillary decreasing shadow price processes j;;(t) € [0, u1;;] for all i, j that can
shut down demand upon a stockout, where p*(¢;[ftij]mxm) is the solution of (4) for any given
matrix of shadow prices [ft;j]mxm =0 at any time ¢ that may have closed-form solutions in some
cases, e.g., under linear demand models. The process of computing the equilibrium candidate
{0 (t; [pij]mxm),0 < t < T} involves solving the one-shot price competition game (5) at any time
on an on-going basis from ¢ = 0 while keeping checking whether firms have run out of inventory;
whenever a firm’s inventory process hits zero, we can check if there exists decreasing shadow price
processes of shutting down demand: if so, the firm exits the market and the price competition after-
wards only involves remaining firms of positive inventory with an updated demand function taking
consideration of spillover; otherwise, the matrix of shadow prices does not sustain as equilibrium
shadow prices. If a bounded rational OLNE is sought after, we can restrict p;;(t) =0 for all t and
all ¢ # j and further reduce the NCP to an m-dimension problem. Upon a stockout, the checking
of whether there exist appropriate decreasing shadow price processes to shut down demand is also
much simplified for computation of bounded rational OLNE. For many commonly used demand
models, e.g., MNL and linear, there exists a unique equilibrium candidate {p* (¢; [tt:;]mxm), 0 <t <
T} for any set of nonnegative shadow prices [ft;;|mx1 With p;; =0 for all 7 # j. Mature computation
algorithms for NCP with (i) a sub-loop of computing the equilibrium candidate and (ii) upon a
stockout a sub-loop of checking whether choke prices can be generated by decreasing shadow price

processes, can be applied to identify OLNE that indeed satisfies the complementarity condition.

E. Verification of OLNE in Example 2
Since firms have limited capacity relative to the sales horizon, their revenues depend on how high
prices can be set to sell the capacity. It is definitely worse off for any firm ¢ to sell faster in its

monopoly period by setting a price lower than the market-clearing price p* that sells off capacity



over the half horizon. This rules out the possibility that firms want to have a monopoly sales
horizon shorter than 7'/2. What about setting a price higher than p*? Suppose firm i deviates by
evening out € amount of inventory from its monopoly period and competing in selling the e amount
with the competitor in firm —i’s originally monopoly period. First, we check if such a deviation
is jointly feasible. It is obviously feasible for firm ¢ as its total sales volume remains unchanged.
To see the feasibility for firm —i, we check the derivative (dd_;(t,p;,p_:)/0p:)(0Op; *(t,d;,p_i)/0d;),
where p; ' (t,d;,p_;) is the inverse function of d;(¢,p;, p_;). This derivative captures the impact, on
firm —i’s sales, of firm 4’s small change in its sales by varying its price p; while the competitor’s
price p_; is fixed.

od_i(t,pi,p—i) Op; ' (t,di,p—i) [ —y  ifte[(i—1)T/2,iT/2),
op; od; | —yg  otherwise.

The deviation will cause the sales of firm —i to increase by e amount in firm i’s monopoly period
and to decrease by yye amount in firm —i’s originally monopoly period. The total sales of firm
—i will decrease by (vg — 7r)e amount under firm ¢’s deviation, which remains feasible for firm
—i for all e€[0,1). Next, we fix firm —i’s policy at {p*,(t),0 <t <T} to see firm i’s payoff under
the deviation of evening out the € amount. The highest price p firm ¢ can sell the e amount is p
such that (1 —p+ v.p*)T/2 =e€. We solve p =1+ yrp* — 2¢/T. The highest price firm i can sell
the 1 — e amount in its monopoly period is p such that [1 —p+ v (1 4+ vp*)]T/2 =1 — €. We solve
p=p* +2¢/T. The profit firm i can earn under the deviation is

YL —VH 2(2—’YL—’YH’YL)_4€} <p*

p(1—€) + pe = *+e[
p( ) pe=p 1=y T(l—’YH’YL) T

for all e€ (0,1], provided that T > 2G=0L=047L) (note that y;, < vy). Hence if T is sufficiently large,

YH=L
the proposed joint policy is indeed an OLNE where firms are alternating monopolies. o
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