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We study dynamic price competition in an oligopolistic market with a mix of substitutable and complementary
perishable assets. Each firm has a fixed initial stock of items and competes in setting prices to sell them over

a finite sales horizon. Customers sequentially arrive at the market, make a purchase choice, and then leave
immediately with some likelihood of no purchase. The purchase likelihood depends on the time of purchase,
product attributes, and current prices. The demand structure includes time-variant linear and multinomial logit
demand models as special cases. Assuming deterministic customer arrival rates, we show that any equilibrium
strategy has a simple structure, involving a finite set of shadow prices measuring capacity externalities that
firms exert on each other: equilibrium prices can be solved from a one-shot price competition game under the
current-time demand structure, taking into account capacity externalities through the time-invariant shadow prices.
The former reflects the transient demand side at every moment, and the latter captures the aggregate supply
constraints over the sales horizon. This simple structure sheds light on dynamic revenue management problems
under competition, which helps capture the essence of the problems under demand uncertainty. We show that the
equilibrium solutions from the deterministic game provide precommitted and contingent heuristic policies that are
asymptotic equilibria for its stochastic counterpart, when demand and supply are sufficiently large.
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1. Introduction
Providers of perishable capacities, such as airlines,
compete by setting prices to sell fixed capacities over a
finite sales horizon. Online travel sites, such as Expedia,
gather information and list flight fares in real time
among competitive airlines. This price transparency
enables customers to comparison shop among different
products based on product attributes and prices. This
trend requires that airlines respond in real time to
competitors’ pricing strategies. The real-time competi-
tive pricing problem is further complicated by the fact
that aggregate market demands and their elasticities
evolve over time. For example, over the sales horizon,
leisure-class customers tend to arrive earlier hunting
for bargain tickets, and business-class customers tend
to arrive later, willing to pay the full price.

Revenue management (RM) techniques help firms set
the right price at the right time to maximize revenue.
They have been successfully applied to airline and
many other industries. Traditional RM models, however,
typically assume a monopoly setting. The literature on
competitive RM is scant. This is due, in part, to the
challenges imposed by the complex game of capacitated

intertemporal price competition, and the even more
thorny problems of time-varying demands. A few
stylized models have been built to examine the game
from various perspectives. However, no structural
results for the general problem have been discussed.
Algorithmic approaches have also been implemented,
hoping to capture the whole dynamics and a focus on
the computation of equilibrium policies. Yet without
the guidance of structural results on algorithm design,
computational approaches can suffer from the curse of
dimensionality.

We consider a setting where multiple capacity
providers compete to sell their own fixed initial capaci-
ties of differentiated, substitutable or complementary,
perishable items by varying prices over a common
finite sales horizon. On the demand side, customers
sequentially arrive at the market, make a purchase deci-
sion, and then leave immediately with some likelihood
of no purchase. The customers’ arrival rate and their
price sensitivity can vary over time. The likelihood of
purchase depends on the product attributes, prices,
and the time of purchase. Each firm starts with initial
inventories that cannot be replenished during the sales
horizon.
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We seek to uncover the strategic nature of this
competitive RM game. To do this, we formulate this
game as a differential game in continuous time. In
this formulation, we obtain structural results that cap-
ture the nature of how transient market conditions
and aggregate capacity constraints interact to jointly
determine intertemporal pricing behavior in equilib-
rium. The structure revealed by the continuous time
differential game would be lost if the formulation
was instead in discrete time, or if we formulated the
problem as a one-shot game. The structure of the dif-
ferential game arises because (i) intertemporal sales
share aggregate capacity constraints over the entire
sales horizon, and (ii) demands (e.g., arrival rates and
purchase likelihoods) are independent of inventory
levels. Because of the structural result, the computation
of continuous-time equilibrium policies can be cast as
finite-dimensional optimization problems that can be
efficiently solved. These solutions to the differential
game can then be used to derive asymptotically-optimal
heuristics for a formulation that takes into account
demand uncertainty.

We provide two main contributions. First, we focus
on the first-order effect in a market under demand
uncertainty by assuming a deterministic arrival pro-
cess. We show that the equilibrium strategy has a
simple structure: There exists a finite set of shadow
prices measuring aggregate capacity externalities that
firms exert on each other; the equilibrium prices at
any time can be solved from a one-shot price competi-
tion under the current-time demand structure, taking
into account capacity externalities with time-invariant
shadow prices. A firm with ample capacity does not
exert any capacity externality on the price competition.
A firm with limited capacity exerts capacity externality
by alleviating price competition among substitutable
products and by undercutting the prices of other com-
plementary products. Because of the structure, the
computation of infinite-dimensional continuous-time
equilibrium pricing policies reduces to solving for
finite-dimensional shadow prices.

Second, we show that insights from the deterministic
problem are valuable in capturing the essence of the
stochastic problem where customer arrivals follow
certain random process. There is an active research
stream of applying computational approaches, called
approximate dynamic programming (ADP), to generate
heuristics for the stochastic problem in RM. We show
that the shadow prices obtained from the deterministic
problem coincide with the solution obtained from an
affine ADP approach to the stochastic game. More-
over, applying the efficiently computable solutions
of the deterministic game, as committed or contin-
gent (i.e., dynamic) pricing heuristics, to the stochastic
game, sustains as an asymptotic equilibrium, when
demand and supply are sufficiently large. In practice,

our model suggests that in a competitive market envi-
ronment under demand uncertainty, re-solving heuristics
should perform well, in which firms constantly re-solve
deterministic best-response problems with updated
information about market conditions, such as firms’
inventory levels and demand patterns.

1.1. Literature Review
There is a growing body of literature on competitive
RM. Depending on the chosen decision variables, RM
is categorized as quantity-based or price-based, or a
mix of the two. Netessine and Shumsky (2005) exam-
ine one-shot, quantity-based RM duopoly games of
setting booking limit controls under both horizontal
and vertical competition. Jiang and Pang (2011) study
an oligopolistic version in a network RM setting. These
works ignore firms’ intertemporal interactions.

Oligopoly pricing, common in the economics and
marketing literature, is gaining traction within the RM
community. Unlike a standard oligopoly pricing setting,
firms in an RM model are capacity constrained and
pricing decisions need to be made over time. One line
of research is to use variational inequalities to characterize
intertemporal price equilibrium under capacity con-
straints. Perakis and Sood (2006) study a discrete-time
stochastic game of setting prices and protection levels
by using variational inequalities and ideas from robust
optimization. Mookherjee and Friesz (2008) consider a
discrete-time combined pricing, resource allocation,
overbooking RM problem under demand uncertainty
over networks and under competition. Adida and
Perakis (2010) consider a continuous-time deterministic
differential game of joint pricing and inventory control
where each firm’s multiple products share produc-
tion capacity. The authors also study the robust fluid
model of the corresponding stochastic game. See also
Friesz (2010, Chap. 10) for applications of finite or
infinite dimensional quasi-variational inequality to
various RM settings. This research stream seeks efficient
algorithms to compute equilibrium prices. In contrast,
we focus on structural properties of intertemporal
equilibrium pricing behavior.

In the economics and marketing literature, many
works resort to the differential game as a tool to study
dynamic market interactions. Feichtinger and Dockner
(1985) consider a differential game of price competition
without capacity constraints in an oligopolistic market
where the market shares evolve depending on the
current market shares and prices posted by firms.
Instead, we assume that demand depends on the
current prices but not on the market shares, which
conforms to the industries selling perishable assets over
a short sales horizon. Moreover, we allow for more
general demand structures and account for capacity
constraints. Chintagunta and Rao (1996) consider a
differential game of dynamic pricing in a duopolistic
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market with a logit demand and consumer preferences
evolving over time. They focus on the steady state of the
equilibrium open-loop price paths under uncapacitated
price competition. In contrast, we study the differential
game of dynamic pricing with capacity constraints and
focus on structures of transient pricing behavior.

Some works assume that the competition is to sell
a homogeneous product. Mantin (2008) analyzes a
multiperiod duopoly pricing game where a homo-
geneous perishable good is sold to consumers who
visit one of the retailers in each period. Talluri and
Martínez de Albéniz (2011) study perfect competition
of a homogeneous product in an RM setting under
demand uncertainty and derive a closed-form solution
to the equilibrium price paths. They show a structural
property of the equilibrium policy such that the seller
with the lower equilibrium reservation value sells a unit
at a price equal to the competitor’s equilibrium reserva-
tion value. This structural property is due to the nature
of Bertrand competition of a homogeneous product
that a seller is willing to undercut the competitor down
to its own reservation value. The authors also show
that the equilibrium sales trajectory is such that firms
alternatively serve as a monopoly; the firm with less
capacity sells out before the firm with more capacity.
We complement Talluri and Martínez de Albéniz (2011)
by studying price competition of differentiated prod-
ucts and exploring its structural nature. To customers
who shop only for the lowest fares, the products can
be viewed as more or less homogeneous. However,
pricing transparency facilitated by third-party travel
websites exposes the same price to various consumer
segments with heterogeneous price sensitivities, e.g.,
loyal customers and bargain hunters. The aggregate
demand structure is closer to the case of differentiated
products, and the resulting equilibrium behavior is
different from the case of a homogeneous product.

Strategic consumers have been examined in the com-
petitive RM setting with various assumptions, such
as what they know and how they behave. Levin et al.
(2009) present a unified stochastic dynamic pricing
game of multiple firms where differentiated goods
are sold to finite segments of strategic customers who
may time their purchases. The key insight is that firms
may benefit from limiting the information available to
consumers. Liu and Zhang (2013) study dynamic pric-
ing competition between two firms offering vertically
differentiated products to strategic consumers, where
price skimming arises as a subgame perfect equilibrium.
This model may be more applicable to the fashion
industry, and less applicable to the airline industry
where the average price trend is typically upward (see
Pang et al. 2013). We do not take consumers’ strategic
waiting behavior into account and admit this as a
limitation. One may argue that when the aggregate
demand arrival process, as an input to our model, is

calibrated from real data over repeated horizons, it
should, to some extent, have captured the equilibrium
waiting/purchase behavior of strategic consumers.
Consequently, our model may provide a more practical
approach to addressing strategic consumer behavior.
Firms can repeatedly solve the same problem with
updated time-varying demand patterns to address
repeated interactions with strategic consumers.

Two papers closest to ours in the operations man-
agement literature are Lin and Sibdari (2009) and Xu
and Hopp (2006). The former proves the existence
of a pure-strategy subgame perfect Nash equilibrium
in a discrete-time stochastic game with a stationary
multinomial logit (MNL) demand. The main difference,
apart from the demand structure and the choice of how
to model time, is that we focus on the structural nature
of the game and its implications, beyond the existence
and uniqueness results. Similar to our paper, the latter
studies a dynamic pricing problem under oligopolistic
competition in a continuous-time setting. The authors
establish a weak perfect Bayesian equilibrium of the
pricing game. There are several notable differences.
Most significantly, the latter obtains a cooperative fixed-
pricing equilibrium strategy in a perfect competition of
a homogeneous product. We obtain time-varying pricing
strategies for imperfect competition with differentiated
products. Furthermore, Xu and Hopp (2006) assume a
quasi-linear consumer utility function. Our demand
structure allows for a more general consumer utility
function.

In the extension, we study Markovian pricing equi-
librium in a continuous-time dynamic stochastic game
over a finite horizon. In the economics literature, Pakes
and McGuire (1994) develop an algorithm for comput-
ing Markovian equilibrium strategies in a discrete-time
infinite-horizon dynamic game of selling differenti-
ated products. Fershtman and Pakes (2000) apply the
algorithm to a collusive framework with heterogeneity
among firms’ investment, entry, and exit. Borkovsky
et al. (2010) discuss an application of the homotopy
method to solving these dynamic stochastic games.
Farias et al. (2012) introduce a new method to com-
pute Markovian equilibrium strategies in large-scale
dynamic oligopoly models by approximating the best-
response value function with a linear combination of
basis functions. (See references therein for comprehen-
sive review of this line of development.) We show that a
Markovian equilibrium of the continuous-time stochas-
tic game is reduced to an equilibrium of the differential
game if the value functions are approximated by affine
functions. Moreover, instead of discretizing time to
compute a Markovian equilibrium of the stochastic
game like Lin and Sibdari (2009), we show that the
heuristics suggested by the corresponding differential
game are asymptotic equilibria with large supply and
demand.
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2. The Model
We introduce some notation: �+ ≡ 601+�5 and �++ ≡

401+�5, xi denotes the ith component of vector Ex,
Ex−i ≡ 4x11 0 0 0 1 xi−11xi+11 0 0 0 1 xm5

T is a subvector of Ex
with components other than i, and Eei denotes a vector
with the ith element 1 and all other elements 0’s.
For notation simplicity, 0 can denote a scalar or a
vector of any dimension with all entries being zeros.
A function is said to be increasing (decreasing) when it
is nondecreasing (nonincreasing).

We consider a market of m competing firms selling
differentiated perishable assets over a finite horizon
601 T 7. At time t = 0, each firm i has an initial inventory
of Ci units of one product. (All results can be extended
when a firm sells multiple products.) We count the
time forwards, and use t for the elapsed time, and
s ≡ T − t for the remaining time.

2.1. Assumptions
Consumers sequentially arrive at the market and make
a purchase choice based on attributes of the differ-
entiated products and their current prices across the
market. Both the arrival rate to the market and the
purchase likelihood can be time-dependent. We specify
the aggregate demand rate function in a general way: at
any time t ∈ 601 T 7, the vector of demand rates Ed4t1 Ep4t55
for all firms is time-dependent and influenced by the
current market price vector Ep4t5. The general form
of the demand rate functions can allow for general
consumer utility functions and general time-varying
arrival processes. In air-ticket selling, this demand
rate function can be calibrated over repeated sales
horizon from data of arrival rates to the market and
intertemporal price elasticities for the same origin-
destination “local” market. We further assume that
the demand rate function is public information. In the
airline industry, firms typically have access to the same
sources of pricing/sales data and have very similar or
sometimes even identical forecasting systems. We make
the following general assumptions on the demand rate
functions.

Assumption 1 (Demand Rate). The following as-
sumptions hold for all i:

(a) (Differentiability). di4t1 Ep5 is continuously differ-
entiable in Ep for all t;

(b) (Pseudo-Convexity).
∫ T

0 di4t1 Ep4t55dt is pseudo-
convex in 8pi4t510 ≤ t ≤ T 9.

As a technical remark, the pseudo-convexity as-
sumption is a slight relaxation of convexity: a function
f is pseudo-convex on a nonempty open set X if for
any x1y ∈X, 4y−x5T ·ïxf 4x5≥ 0 ⇒ f 4y5≥ f 4x5, where
ïx is the gradient operator. (Similarly, the pseudo-
convexity of a functional in a normed space can be
defined with the gradient replaced by the functional
derivatives.) A function f is pseudo-concave if and only

if −f is pseudo-convex. Pseudo-convexity is stronger
than quasi-convexity but weaker than convexity. Unlike
standard oligopoly pricing problems without capacity
constraints, we resort to this weaker version of convex-
ity on the demand rate function to account for general
demand functions and to address capacity constraints.

We denote the revenue rate function for any firm i
at time t by ri4t1 Ep5≡ pidi4t1 Ep5.

Assumption 2 (Revenue Rate). The following as-
sumptions hold for all i:

(a) (Pseudo-Concavity).
∫ T

0 ri4t1 Ep4t55dt is pseudo-
concave in 8pi4t510 ≤ t ≤ T 9;

(b) (Bounded Revenue). There exists a function R̄i4t5
such that ri4t1 Ep5≤ R̄i4t5 for all t and

∫ T

0 R̄i4t5 dt <�.

The less used pseudo-convexity/concavity assum-
ptions on demand and revenue rates are used to
accommodate commonly used MNL demand functions:

di4t1 Ep5= �4t5
�i4t5e

−�i4t5pi

a04t5+
∑

j �j4t5e
−�j 4t5pj

1 (1)

where �4t5, a04t5, �i4t5, �i4t5 > 0 for all i and t.

Lemma 1. MNL demand functions (1) satisfy Assump-
tions 1 and 2.

Proof of Lemma 1. See Corollary 1 in Electronic
Companion A. (The electronic companion is available
at http://ming.hu.) �

Moreover, Assumptions 1 and 2 are also satisfied
by linear demand functions where differentiated sub-
stitutable and complementary products co-exist, e.g.,
di4t1 Ep5= ai4t5−bi4t5pi+

∑

j 6=i cij4t5pj , where ai4t5, bi4t5 > 0
for all i, and cij4t5 ∈� for all j 6= i, for all t. These linear
demand functions can arise when a representative
consumer in the market maximizes a linear-quadratic
utility function (see, e.g., Federgruen and Hu 2013).

Lemma 2. Linear demand functions satisfy Assump-
tions 1 and 2.

Proof of Lemma 2. See Proposition 3 in Electronic
Companion A. �

It is easy to see that in a linear demand model, each
firm’s feasible strategy set could depend on competi-
tors’ strategies. This is called coupled strategy constraints
(coined by Rosen 1965). We make the following assump-
tions on the feasible strategy set of each firm.

Assumption 3 (Price Set). The following assumptions
hold for any competitors’ prices Ep−i for all i, t:

(a) (Choke Price). There exists a choke price
p�
i 4t1 Ep−i5 such that limpi→p�

i 4t1 Ep−i5
di4t1 Ep5 = 0 and

limpi→p�
i 4t1 Ep−i5

ri4t1 Ep5= 0, which is the only pricing option
when a firm runs out of stock;

(b) (Feasible Set). Other than the choke price that is
available at any time and is the only option on stockout, firm i
chooses prices from the set Pi4t1 Ep−i5 that is a nonempty,
compact and convex subset of 8pi ∈�+ � di4t1 pi1 Ep−i5≥ 09.
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Assumption 3(a) ensures that a firm immediately
exits the market on a stockout. In this case, customers
who originally prefer the stockout firm will spill over to
the remaining firms that still have positive inventory.
The spillover is endogenized from the demand model
according to customers’ preferences and product substi-
tutability. For example, in any MNL demand function,
� is the choke price, yielding the attraction value of
the stockout firm equal to zero. We further illustrate
the spillover effect by the following example.

Example 1 (Demand Model with Spillover). For
a duopoly with stationary linear demand rate func-
tions di4t1 pi1p−i5 = 1 − pi + �p−i, i = 112, � ∈ 60115,
firm 1 can post a choke price p�

1 4t1 p25 = 1 + �p2,
which is solved from d14t1 p11 p25= 1 − p1 +�p2 = 0, to
shut down its own demand. The resulting demand
rate function for firm 2 with the spillover effect
is d24t1 p

�
1 4t1 p251 p25 = 1 − p2 + �p�

1 4t1 p25 = 41 + �5−

41 −�25p2. The spillover-adjusted demand for firm 2
has a higher potential market size (higher intercept, i.e.,
1 +� ≥ 1), and is less price sensitive to firm 2’s own
price (smaller linear coefficient of p2, i.e., 1 − �2 ≤ 1), as
compared to before firm 1 posts the choke price.

In view of Assumption 3(b), we do not exclude the
possibility of shutting down demand by posting a
choke price in a firm’s strategy before its stockout. It is
possible for firms to do so in equilibrium (see Example 2
in §3.5.1). The joint feasible price set at any time t is
denoted by P4t5≡ 8Ep � pi ∈Pi4t1 Ep−i5∪ 8p�

i 4t1 Ep−i591∀ i9.
We also assume that the salvage value of the asset at

the end of the horizon is zero and that all other costs
are sunk. We can always transform a problem with
positive salvage cost ci for firm i to the zero-salvage-
cost case by changing variables from pi to pi − ci in the
demand rate function.

2.2. The Differential Game
We formulate a finite-horizon noncooperative differ-
ential game, where demand is a deterministic fluid
process (Dockner et al. 2000). In the extension, we
consider its stochastic counterpart where demand fol-
lows a random process. Firms compete in influencing
demand rates by adjusting prices. At any time t ∈ 601 T 7,
firm i sets its own price pi4t5. We assume the following
information structure throughout the paper.

Assumption 4 (Information Structure). All firms
have perfect knowledge about each other’s inventory levels
at any time.

This assumption is standard in game theory for
seeking subgame perfect equilibrium. It used to be
unrealistic, but now inventory information in real time
may be considered as being revealed in some way;
almost all online travel agencies and major airlines
offer a feature of previewing seat availability from their
websites.

We denote by Ex4t5 the joint inventory level at time t,
which is assumed to be a continuous quantity in the
differential game. Let X≡ ×i601Ci7 denote the state
space of inventory in the market. (The inventory level
will be discrete in the stochastic extension; see §4.)
We differentiate the following two types of pricing
strategies. In an open-loop strategy, firms make an
irreversible precommitment to a future course of action
at the beginning of the game. Alternatively, feedback
strategies designate prices according to the current time
and joint inventory level, which capture the feedback
reaction of competitors to the firm’s chosen course of
action.

Definition 1 (Open-Loop Strategy). A joint open-
loop strategy Ep4t5 depends only on time t and the given
initial joint inventory level Ex405= EC.

Definition 2 (Feedback Strategy). A joint feed-
back strategy Ep4t1 Ex4t55 depends on time t and the
current joint inventory level Ex4t5.

The set of all joint open-loop strategies such that
Ep4t5 ∈ P4t5 for all t, is denoted by PO . The set of
all joint feedback strategies such that Ep4t1 Ex4t55 ∈P4t5
for all t, is denoted by PF . Let D601T 7 denote the
space of all right-continuous real-valued functions
with left limits defined on interval 601T 7, where the
left discontinuities accommodate price jumps after a
sale in a pricing strategy. Given joint pricing control
path Ep ∈ 4D601T 75m (i.e., 8Ep4t510 ≤ t ≤ T 9 for open-loop
strategies and 8Ep4t5= Ep4t1 Ex4t5510 ≤ t ≤ T 9 for feedback
strategies), we denote the total profit for any firm i by
Ji6Ep7≡

∫ T

0 ri4t1 Ep4t55 dt0 Inventory depletes at the demand
rate, hence the inventory evolves according to the
following kinematic equation: for all i,

ẋi4t5=−di4t1 Ep4t551 0≤ t≤T 1 and xi405=Ci0 (2)

Any firm i’s objective is to maximize its own total
revenue over the sales horizon subject to all capacity
constraints at any time, i.e.,

problem 4Pi5

max
8pi4t510≤t≤T 9

∫ T

0
ri4t1 Ep4t55 dt

s.t. xj4t5=Cj −

∫ t

0
dj4v1 Ep4v55 dv ≥ 01

0 ≤ t ≤ T 1 ∀ j0

(3)

Firms simultaneously solve their own revenue maxi-
mization problems subject to a joint set of constraints,
giving rise to a game with coupled strategy constraints
(3) for all i, i.e., any firm’s feasible strategy set depends
on competitors’ strategies through these capacity con-
straints. For this type of game, Rosen (1965) coined
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the term a generalized Nash game with coupled con-
straints; see also Topkis (1998) for a treatment of such
generalized games. In the differential game, the pricing
strategies are simultaneously presented by all firms
before the game starts. If some pricing policy is not
jointly feasible such that one firm may have negative
inventory at some time, then it will be eliminated from
the joint feasible strategy space. In other words, all
firms face a joint set of constraints, Ex4t5≥ 0 for all t,
in selecting feasible strategies such that their pricing
strategies remain credible. This explains why any firm i
is constrained by all firms’ capacity constraints in its
own revenue maximization problem (Pi).

The definitions of generalized Nash equilibrium
for open-loop (OLNE) and feedback strategies (FNE)
follow immediately. A generalized (omitted hereafter)
OLNE (respectively, FNE) Ep∗ ∈ PO (respectively, ∈ PF )
is an m-tuple of open-loop (respectively, feedback)
strategies such that its control path Ep∗4t5 ∈ 4D601T 75m

and 8p∗
i 4t510 ≤ t ≤ T 9 is a solution to problem (Pi) for all

i. In a non-zero-sum differential game, open-loop and
feedback strategies are generally different, in form or in
terms of generated price path and inventory trajectory.
However, we demonstrate in §3.4 that re-solving OLNE
with the current time and inventory level continuously
over time results in an FNE, which generates the same
price path and inventory trajectory as those of the
OLNE with the same initial time and inventory level.
Because of this relationship between OLNE and FNE,
for convenience, we may loosely call an OLNE, an
equilibrium strategy, in the following discussion.

3. Equilibrium
In this section, we show equilibrium existence, and its
uniqueness in some sense. We fully explore equilibrium
structural properties by deriving necessary conditions
for an equilibrium, and illustrate them with examples.
We also establish sufficient conditions of an equilibrium
for some special equilibrium concepts. These investiga-
tions help build insights and appropriate heuristics for
the intractable stochastic problem.

3.1. Existence
To show the existence of an infinite-dimensional OLNE,
we invoke an infinite-dimensional version of Kakutani’s
fixed-point theorem (Bohnenblust and Karlin 1950).

Proposition 1 (Existence of OLNE). The following
equilibrium existence results hold:

(i) If p�
i 4t1 Ep−i5 ∈Pi4t1 Ep−i5, there exists an OLNE.

(ii) For MNL demands, there exists an OLNE where
firms do not use the choke price � at any time.

We list MNL demand models separately. Because
any feasible price set containing MNLs choke price �

will not be compact and convex, we need to treat them
differently.

3.2. Characterization

3.2.1. Necessary Condition: Equilibrium Structure.
We follow the maximum principle of the differential
game with constrained state space (see, e.g., Hartl
et al. 1995) to derive the set of necessary conditions
for OLNE. Then, under additional assumptions on
demand and revenue rate functions, we verify that the
set of necessary conditions can also be sufficient. The
following necessary conditions capture the structure
that any OLNE has to satisfy.

Proposition 2 (Necessary Condition of OLNE).
If the open-loop pricing policy 8Ep∗4t52 0 ≤ t ≤ T 9, with its
corresponding inventory trajectory 8Ex∗4t52 0 ≤ t ≤ T 9, is an
OLNE, then there exists a matrix of nonnegative shadow
prices M ≡ 6�ij 7m×m ≥ 0 such that the following conditions
are satisfied for all i:

(i) (Equilibrium Prices). For any time t such that
x∗
i 4t5 > 0,

p∗

i 4t5 = arg max
pi∈Pi4t1 Ep∗

−i4t55∪8p
�
i 4t1 Ep∗

−i4t559

{

ri4t1 pi1 Ep∗

−i4t55

−

capacity externality
︷ ︸︸ ︷

∑

j

�ijdj4t1 pi1 Ep∗

−i4t55

}

3 (4)

(ii) (Market Exit). If the period with zero-inventory
Ei = 8t ∈ 601T 7 � x∗

i 4t5= 09 is nonempty, then during this
period, there exist decreasing shadow price processes �ij4t5 ∈

601�ij7 for all j that shut down firm i’s demand, i.e., for
t ∈ 6t̄i1T 7 where t̄i ≡ inf Ei,
p∗

i 4t5 = p�

i 4t1 Ep∗

−i4t55

= arg max
pi∈Pi4t1 Ep∗

−i4t55∪8p
�
i 4t1 Ep∗

−i4t559

{

ri4t1 pi1 Ep∗

−i4t55

−
∑

j

�ij4t5dj4t1 pi1 Ep∗

−i4t55

}

3

(iii) (Complementary Slackness). �ijx
∗
j 4T 5= 0 for

all j .

The OLNE has a simple structure. First, there exists
a finite set of shadow prices, independent of time,
measuring capacity externalities that firms exert on each
other. Second, the intertemporal equilibrium prices at any
time can be solved from a one-shot price competition
game under the current-time demand structure, taking
into account capacity externalities with time-invariant
shadow prices: That is, at any time t, each firm i in the
set of those firms who still have positive inventory,
denoted by S4t5, simultaneously solves the following
one-shot price competition game:

max
pi4t5∈Pi4t1 Ep−i4t55∪8p

�
i 4t1 Ep−i4t559

{

ri4t1 Ep4t55

−
∑

j∈S4t5

�ijdj4t1 Ep4t55

}

1 (5)

with the rest of firms in S4t5 posting choke prices.
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We illustrate this structure in detail. First, we focus
on the shadow prices. The structure states that in the
differential game, at equilibrium the shadow prices that
measure the externalities of any firm’s capacity exerted
on all firms are constant over time before the firm runs
out of stock. Intuitively, the time-invariant shadow
prices are due to the fact that capacity constraints
are imposed on the total sales over the entire sales
horizon, and that the demand rate is independent of
current inventory levels. Technically, the time-invariant
structure comes from our specific adjoint equations
when the maximum principle is applied. Furthermore,
the complementary slackness condition indicates when
and when not to expect capacity externalities. If at
the end of the sales horizon, some firm, along the
equilibrium inventory path, still has positive inventory,
then this firm’s capacity exerts no externalities. Other-
wise, nonzero externalities may be exerted. Whenever
a firm’s inventory level hits zero before the end of the
horizon, the firm has to post an appropriate choke price
to exit the market, which is the only option to avoid
taking orders but being unable to fulfill them. The
demand system among the remaining firms with posi-
tive inventory will be adjusted to account for spillover,
and the firm that has run out of stock no longer exerts
any further capacity externality on all other firms under
the spill-over adjusted demand system.

Second, we discuss how the intertemporal equilib-
rium prices emerge from the interaction between the
current-time demand structure and aggregate supply
constraints. To build intuition, we start with a one-
shot monopoly problem to illustrate the self-inflicted
capacity externality. Suppose in a monopoly mar-
ket with a continuous downward-sloping demand
curve d4p5, a revenue-maximizing firm with capac-
ity C faces a one-shot pricing decision. The revenue
maximization problem can be written as maxp pd4p5,
such that d4p5≤C. The optimal solution is the max-
imum between the market-clearing price pc = inf8p �

d4p5 ≤ C9, and the revenue-maximizing price p∗ =

arg maxp pd4p5. The first-order condition of this prob-
lem is ¡6pd4p5 + �4C − d4p557/¡p = ¡64p − �5d4p57/
¡p = 0, where �≥ 0 is the shadow price of capacity. If
the firm has ample capacity such that d4p∗5≤C, then
the optimal price is the revenue-maximizing price p∗

and the capacity constraint exerts no externality on
setting the price (i.e., �= 0). If the firm has limited
capacity such that d4p∗5 > C , then the optimal price is
the market-clearing price po and the capacity constraint
exerts an externality to boost the optimal price to be
higher than p∗ (i.e., �> 0).

Returning to the intertemporal price competition
game, we have already explained that the shadow
prices, measuring a firm’s capacity externalities exerted
on all firms, are time-invariant. If shadow prices are
known or can be approximated by good proxies, e.g.,

oversales penalty costs, the price equilibrium at any
time is simply to solve a one-shot price competition
game under the current-time demand structure that
has been adjusted for spillover, taking into account
capacity externalities with time-invariant shadow prices
(see problem (5)). Now we illustrate how capacity
externalities influence the equilibrium pricing intertem-
porally. We fix an arbitrary time t and focus on the
first-order conditions of problem (5) of any firm i that
has taken into account capacity externalities. On one
hand, if firms i and j offer substitutable products, then
�ij ¡dj4t1 Ep5/¡pi ≥ 0, and firm j’s scarce capacity exerts
an externality on firm i by pushing up firm i’s price:
Since firm j has limited capacity, it has a tendency to
increase its own price due to the self-inflicted capacity
externality (which we have illustrated for the monopoly
case). Because of the substitutability between products
from firms i and j , the price competition between the
two firms will be alleviated so that firm i can also post
a higher price. On the other hand, if firms i and j offer
complementary products, then �ij ¡dj4t1 Ep5/¡pi ≤ 0, and
firm j’s scarce capacity exerts an externality on firm i
by pushing down firm i’s price: while firm j has a ten-
dency to increase its own price as just explained, due
to the complementarity between products from firms i
and j , firm i has to undercut its price to compensate
for the price increase of firm j . By a similar reasoning,
on stockout, a product’s market exit by posting choke
prices will be a boon for its substitutable products and
a bane for its complementary products.

We close the discussion on the equilibrium structure
by applying Proposition 2 to the specific setting of
stationary demand systems.

Corollary 1 (Stationary Demand System). Sup-
pose the demand system is stationary, i.e., di4t1 Ep5 is inde-
pendent of time t for all i. Then an OLNE has the following
structure: The price trajectories and the available products
in the market remain constant before the first stockout event,
between any two consecutive stockout events, and after the
final stockout event until the end of the sales horizon.

3.2.2. Sufficient Conditions. First, motivated by
firms’ self-interested behavior, we propose a special
notion, bounded rational equilibrium, whose shadow price
matrix is diagonal.

Definition 3 (Bounded Rational OLNE). A boun-
ded rational OLNE has its matrix of constant shadow
prices to satisfy �ij = 0 for all i 6= j ; namely, M ≡ 6�ij 7m×m

is a diagonal matrix with the diagonal 6�ii7m×1 ∈�m
+

.

The bounded rational equilibrium may arise if in the
best-response problem of each firm, only the firm’s own
capacity constraint is taken into account. The bounded
rational equilibrium can be a relevant equilibrium
concept, if firms do not have competitors’ inventory
information and equilibrium outcomes emerge from
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repeated best responses. Moreover, it can also arise
when firms assume that the competitors have suffi-
ciently large capacities as if they would never stock
out.

Proposition 2 provides the necessary conditions of
OLNE; next we show that under additional assumption,
these conditions can be sufficient.

Proposition 3 (Sufficient Condition of OLNE).
The following sufficient conditions of OLNE hold:

(i) If ri4t1 Ep5 is concave in pi and di4t1 Ep5 is convex in pj
for all j , i, t, which is satisfied by the linear demand models,
then necessary conditions in Proposition 2 are also sufficient
for an OLNE.

(ii) If
∫ T

0 6ri4t1 Ep4t55−�4t5di4t1 Ep4t557 dt is pseudo-concave
in 8pi4t510 ≤ t ≤ T 9 for all 8�4t5≥ 010 ≤ t ≤ T 9 and all i,
which is satisfied by the MNL demands (1), then necessary
conditions in Proposition 2 together with �ij4t5= 0 for all
i 6= j and t are sufficient for a bounded rational OLNE.

3.2.3. Comparative Statics. In view of how capacity
externalities influence price competition depending on
the nature of product differentiation, we can obtain the
following comparative statics of equilibrium prices in
bounded rational OLNE with respect to initial capacity
levels.

Proposition 4 (Comparative Statics of Bounded
Rational OLNE in Capacity). Suppose at any time
each firm’s feasible price set is a lattice. If all products
are substitutable such that the price competition is (log-)
supermodular, i.e., ¡di4t1 Ep5/¡pi < 0, ¡24log56ri4t1 Ep5 −

�di4t1 Ep57/¡pi¡pj ≥ 0 for all i, j 6= i, t and �≥ 0, then a
decrease in any firm’s initial capacity level leads to higher
equilibrium prices at any time for all firms in a bounded
rational OLNE. In a duopoly selling complementary prod-
ucts such that the price competition is (log-)submodular, i.e.,
¡di4t1 Ep5/¡pi < 0, ¡24log56ri4t1 Ep5−�di4t1 Ep57/¡pi¡p−i ≤ 0
for all i = 112, t and �≥ 0, then a decrease in one firm’s
initial capacity level leads to higher equilibrium prices at
any time for the firm itself and lower equilibrium prices at
any time for the other firm in a bounded rational OLNE.

Proposition 4 states that the lower any firm’s initial
capacity level is, the higher the bounded rational
OLNE equilibrium prices are at any time for all firms
in a competition of selling substitutable products.
This decreasing monotonicity of equilibrium prices in
capacities is driven by the decreasing monotonicity
of bounded rational shadow prices in initial capacity
levels, as a natural extension of the monopoly case.

3.3. Uniqueness
In our game, one firm’s strategy set depends on com-
petitors’ strategies. This is referred to as generalized
Nash game in the literature. Rosen (1965) investigates
the notion of normalized Nash equilibrium in the context
of finite-dimensional generalized Nash games. In a

series of papers (e.g., Carlson 2002), Carlson extends the
idea to infinite-dimensional generalized Nash games.
Similarly, for our differential game, we can define a
normalized Nash equilibrium that has the constant
shadow prices related in a specific way, and provide a
sufficient condition to guarantee its uniqueness.

Definition 4 (Normalized OLNE). A normalized
OLNE has its matrix of constant shadow prices specified
by one vectors E� ∈�m

+
as �ij = �j for all i and j ; namely,

M ≡ 6�ij 7m×m is a matrix with all rows being equal. (See
Adida and Perakis 2010 for an application of the same
notion.)

Recall that in any firm i’s revenue maximization, the
shadow price �ij , for all j , measures how much exter-
nality firm j’s capacity exerts on firm i. The normalized
Nash equilibrium can be interpreted qualitatively as
follows: All firms use the same set of shadow prices
for a firm’s capacity constraint in their best-response
problems. It may be reasonable to argue that in the
airline industry, each firm infers the same set of shadow
prices from the commonly observed capacity levels
across firms. This is because there are common busi-
ness practices across the airline industry, e.g., most
airlines use very similar or sometimes even identical
RM systems, and they use common external sources of
data. If the normalized Nash equilibrium is applicable,
its uniqueness can be guaranteed under the commonly
used strict diagonal dominance (SDD) condition.

Proposition 5 (Unique Normalized OLNE). Sup-
pose di4t1 Ep5 is twice continuously differentiable in Ep for all
i, t. If di4t1 Ep5 is convex in pj for all i, j , t and

¡2ri4t1 Ep5

¡p2
i

+
∑

j 6=i

∣

∣

∣

∣

¡2ri4t1 Ep5

¡pi¡pj

∣

∣

∣

∣

< 0 (SDD)

for all i, t, then there exists a unique normalized OLNE.

To accommodate MNL demand models where di4t1 Ep5
is not convex in pj , we provide a sufficient condition to
guarantee the uniqueness of a bounded rational OLNE.

Proposition 6 (Unique Bounded Rational OLNE).
Suppose di4t1 Ep5 is twice continuously differentiable in Ep for
all i, t. If ¡di4t1 Ep5/¡pi < 0 for all i, t, and the Jacobian and
Hessian matrix of the demand function Ed4t1 Ep5 with respect
to Ep are negative semidefinite for all Ep ∈P4t5 and all t, then
there exists at most one bounded rational OLNE for any
vector of diagonal shadow prices 6�ii7m×1 ∈�m

+
. Moreover,

there exists a unique bounded rational OLNE for some
vector of diagonal shadow prices.

We show that for any vector of nonnegative diagonal
shadow prices, there exists a unique price equilibrium
at any time, arising from the uncapacitated one-shot
price competition game, with the diagonal shadow
prices as the marginal supply costs. However, an
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arbitrary vector of diagonal shadow prices may not
necessarily result in a bounded rational OLNE. Only if
the entire price path satisfies the equilibrium charac-
terization does this vector of diagonal shadow prices
correspond to an equilibrium, with a unique joint
equilibrium pricing policy. By the result of Propo-
sition 1, which essentially shows the existence of a
bounded rational OLNE, we know that there exists at
least one vector of diagonal shadow prices such that
its corresponding bounded rational OLNE is unique.
As an immediate result of Propositions 5 and 6, we
can provide the following sufficient conditions for
linear demand models to guarantee the uniqueness of
bounded rational OLNE.

Corollary 2. For any linear demand model with
Ed4t1 Ep5= Eat −Bt Ep, where Eat ∈�m

++
, Bt ∈�m×m is a diago-

nally dominant matrix with diagonal entries positive and
off-diagonal entries nonpositive,

(i) there exists a unique normalized OLNE;
(ii) there exists a unique bounded rational OLNE for

some vector of diagonal shadow prices.

Moreover, by Gallego et al. (2006), for a one-shot
unconstrained price competition under the MNL
demand model and with constant marginal supply
costs, there exists a unique Nash equilibrium. Combin-
ing the existence result of bounded rational OLNE for
the MNL demand (see the proof of Proposition 1), we
have the following corollary.

Corollary 3. For the MNL demand (1), there exists a
unique bounded rational OLNE for some vector of diagonal
shadow prices.

3.4. Feedback Nash Equilibrium
So far we have characterized OLNE. In general, FNE
specifies prices for any time and joint inventory levels
at the time, while OLNE only specifies prices as a
function of time. Hence, they may differ in form, even
though they can generate the same inventory trajec-
tory and price path. Next we establish a connection
between OLNE and FNE for our differential game.
Given time t with a joint inventory level Ex4t5, firms can
solve a differential game, denoted by P4t1 Ex4t55, with a
remaining sales horizon 6t1 T 7 and a current inventory
level Ex4t5, as the initial condition. We denote by Epf 4t1 Ex5
the mapping from the initial condition 4t1 Ex5 of the
differential game P4t1 Ex4t5= Ex5, to the equilibrium prices
Ep∗4t5 of an OLNE at its initial time t. Intuitively, Epf 4t1 Ex5
is re-solving OLNE for any initial condition 4t1 Ex5. If
OLNE is unique in some sense as discussed in §3.3, the
designation of the mapping Epf 4t1 Ex5 is unambiguous. In
some other scenarios, even OLNE may not be unique;
a natural focal point can be the Pareto-dominant equi-
librium. For example, for any diagonal shadow prices
6�ii7m×1 ∈�m

+
, if the revenue rate function ri4t1 pi1 Ep−i5

for all i has increasing differences in 4pi1 Ep−i5 for any t,

multiple bounded rational OLNE may arise, but the
largest one is preferred by all firms (see, e.g., Bernstein
and Federgruen 2005, Theorem 2).

Open-loop strategy is a static concept. For a given
initial time and initial capacity levels, it specifies a time-
dependent control path. Feedback strategy is a dynamic
concept and specifies reactions to all possibilities of
current time and joint inventory levels. However, in
our RM differential game, a joint feedback strategy
that solves an OLNE at every time with the current
joint inventory level is an FNE and can generate the
same equilibrium price path and inventory trajectory
as an OLNE.

Again, this is due to the structural nature of our RM
differential game. By the characterization of OLNE,
the set of shadow prices to determine an OLNE for a
differential game P4t1 Ex4t55 depends only on the game’s
initial time and capacity levels, i.e., time t and the joint
inventory level Ex4t5. Hence, the prices for the current
time t in the re-solving feedback strategy are uniquely
determined by the current time t and the current joint
inventory level Ex4t5, and are independent of future
inventory levels. Successively re-solving the open-loop
game for the current time will result in updated prices
solved from the current shadow prices that have fully
captured the capacity externalities over the remaining
horizon. Hence, the re-solving mapping Epf 4t1 Ex5 is an
FNE by definition (Starr and Ho 1969); the existence
of OLNE also guarantees the existence of FNE. In the
extreme case when all firms have ample capacities and
there is no capacity externality, both the re-solving
feedback strategy and open-loop equilibrium reduce to
a one-shot price competition with zero marginal supply
costs at any time, independent of any inventory levels.

Starting from any given initial time and capacity
levels, there exists an OLNE by Proposition 1. Because
the shadow prices along the equilibrium inventory tra-
jectory in this OLNE are constant by Proposition 2, the
re-solving FNE’s prices determined by those shadow
prices evolve along the same price path and result
in the same inventory trajectory as predicted by the
very OLNE. The same type of behavior has been
observed in the monopoly RM problem (Maglaras and
Meissner 2006).

Proposition 7 (Feedback Equilibrium). The re-
solving strategy Epf 4t1 Ex5 is an FNE of the differential game.
For an initial condition 4t01 Ex4t055, the equilibrium price
path and inventory trajectory under the re-solving FNE are
the same as those under its corresponding OLNE with the
same initial condition 4t01 Ex4t055.

We have characterized OLNE and identified an FNE
in a feedback form that results in coincidental price
path and inventory trajectory as its corresponding
OLNE. We caution that this coincidence holds only
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for the deterministic problem. For problems with ran-
dom demand, the price path and inventory trajectory
under open-loop and re-solving feedback strategies, in
general, are different. However, one can surmise that
because a deterministic problem provides the first-order
approximation to the corresponding stochastic problem,
the feedback strategies obtained from the deterministic
problem should serve as a reasonably good heuristic for
the stochastic problem. We will provide more rigorous
arguments for this claim in §4.

3.5. Applications
From the structural characterization of OLNE, we know
that the intertemporal equilibrium prices are jointly
determined by the current-time market condition (on
the intertemporal demand side) and time-independent
shadow prices reflecting capacity externality (on the
aggregate supply side). Next we illustrate with two
examples how these two-sided influences interact
to determine the intertemporal equilibrium pricing
behavior. Each example comes with its own theme,
set to illustrate a set of managerial insights under
the framework. These insights cannot be gained by
analyzing a one-shot capacitated competition model.
Though the analysis is conducted for OLNE, the same
type of intertemporal behavior can also be sustained at
an FNE, by Proposition 7.

3.5.1. Alternating Monopoly. In a dynamic Bert-
rand-Edgeworth competition of selling a homogeneous
product (Talluri and Martínez de Albéniz 2011), along
the trajectory of a noncooperative subgame perfect
equilibrium, firms may avoid head-to-head competition
and take turns acting as monopolists. In other words,
at any time there is only one firm who sells at its
monopoly price and all other firms post choke prices.
Is this phenomenon unique to price competition of a
homogeneous product? For an RM game of differenti-
ated products, can such an outcome be sustained in
equilibrium? The answer is yes, but it depends on the
intertemporal demand structure.

First, we show that for any MNL demand model,
it is impossible to have an alternating monopoly in
equilibrium. We prove this result by contradiction.
Suppose an alternating monopoly sustains in equi-
librium. In an MNL demand model, for any finite
price of a product, no matter how high it is, there
always exists a positive demand rate. Because of this
nature of MNL, we can show that it is beneficial for
any firm to deviate by evening out a sufficiently small
amount of inventory from its own monopoly period
to a competitor’s monopoly period. Hence, we can
reach the following conclusion. (See the appendix for a
rigorous proof.)

Proposition 8. In a differential game with a time-
varying MNL demand (1) and the strategy space for any

firm being the full price space �+, an alternating monopoly
cannot be sustained in equilibrium.

Next, in the following example, we show that for a
time-varying linear demand model, it is possible to
have an alternating monopoly. Because of the nature of
a linear demand model, demand can be zero when
price is sufficiently high. Hence, if a firm is exerted
a sufficiently high externality by the competitor’s
capacity, then it is possible for the firm to optimally
post the choke price even before its stockout.

Example 2 (Alternating Monopoly). Consider
a duopoly with a time-varying linear demand rate
function:
{

d14t1 p11 p25= 1 − p1 +�Hp2

d24t1 p11 p25= 1 − p2 +�Lp1

for t ∈ 601T /251

{

d14t1 p11 p25= 1 − p1 +�Lp2

d24t1 p11 p25= 1 − p2 +�Hp1

for t ∈ 6T /21T 71

where 0 < �L < �H < 1. The feasible price set Pi4t1 p−i5=

8pi ≥ 0 � di4t1 pi1 p−i5≥ 09. In this demand model, firm i,
i = 112, is more sensitive to the competitor’s price in
the ith period 64i−15T /21 iT /25. If firms can be protected
from competition and sell as a monopoly in one period,
firm i would prefer to sell as a monopoly in period
i: without capacity constraints, the monopoly price
that firm i can charge in period i is 41 + �H 5/4241 −

�L�H 55, while firm i can only charge a lower price
41 +�L5/4241 −�L�H 55 in period j 6= i as a monopoly.

Suppose both firms have limited capacity C1 =

C2 = 1 relative to the sales horizon T that is assumed to
be sufficiently large. (See Electronic Companion E for
the lower bound on T such that the equilibrium result
holds.) We propose a joint policy under which two
firms alternately sell as a monopoly for one half of the
sales horizon: p∗

i 4t5= p∗ ≡ 441 +�H 5− 2/T 5/41 −�H�L5,
p∗

−i4t5= p�
−i4t1 p

∗
i 4t55= 1+�Lp

∗ for t ∈ 64i−15T /21 iT /25,
i = 112. The proposed joint policy is such that firm i,
i = 112 will be a monopoly to sell off its capacity
Ci = 1 using the ith half of the sales horizon 601 T 7. (See
Figure 1 for an illustration.)

One intuitive way to verify the proposed joint policy
as an OLNE is to examine if there is an incentive for any
firm to unilaterally deviate from this policy (see Elec-
tronic Companion E for such a verification). By Propo-
sition 3(i), an alternative way of verifying OLNE is to
check against the maximum principle when it is also
sufficient. It is easily verified that the proposed joint
pricing policy and the shadow price processes �ii4t5=
442�H −�L�H

2 −�L
25p∗−4�L+�H +�H

255/4�H −�L5 and
�i1−i4t5= 442 −�L�H −�L5p

∗ − 42 +�H 55/4�H −�L5 for
i = 112 and all t ∈ 601T 5, indeed satisfy the sufficient
conditions. From the behavior of firm 2 in the 1st
half horizon, we can immediately make the following
observation.
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Figure 1 Alternating Monopoly
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Note. This figure illustrates OLNE for �L = 003, �H = 007, and T = 20 with the shadow price processes �ii 4t5= 201636, �i1−i = 007943, i = 112, for all t ∈ 601205.

Observation 1. At an OLNE, a firm may post a
choke price and temporarily exit the market even with
positive on-hand inventory.

By the example illustrated in Figure 1, shadow
prices can be strictly larger than posted prices, e.g.,
�ii4t5 > p∗

i 4t5, t ∈ 601 T 5, i = 112, not necessarily like the
monopoly problem where shadow prices are always no
larger than posted prices. This is summarized below.

Observation 2. At an OLNE (except for bounded
rational OLNE), shadow prices can be larger than
posted prices.

In the oligopoly problem, the posted price of any
firm is jointly determined by shadow prices posted
by all firms. In a market with substitutable products,
positive shadow prices posted by the competitors put
an upward pressure on the firm’s own posted prices to
keep them high. In Figure 1, consider firm i. It is the
sufficiently high positive shadow prices �i1−i4t5 due to
firm −i’s capacity constraint that sustain sufficiently
high positive shadow prices �ii4t5 4> p∗

i 4t55 so that firm i
can glean high profit in its own monopoly period and
shut down its demand in the competitor’s monopoly
period.

From the perspective of shadow prices, it is not only
easy to verify OLNE, but it is also intuitive to see how
capacity externalities interact with the intertemporal
demand structure to determine equilibrium behavior.
We see from Example 2 that the externality exerted by
the competitor’s scarce capacity can lead a firm to shut
down its demand before stockout.

3.5.2. Effective Sales Horizon. We illustrate by an
example that in equilibrium (all) firms may not fully
use the nominal sales horizon 601 T 7 due to competitors’

limited capacities, even under a stationary demand
structure. This poses a stark contrast to the monopoly
case (see, e.g., Gallego and van Ryzin 1994) where
the full sales horizon is always used in the optimal
solution under a stationary demand model.

Example 3 (Head-to-Head). Consider a duopoly
with a stationary and symmetric MNL demand
rate function: di4t1 pi1 p−i5= exp4−pi5/4a0 + exp4−pi5+
exp4−p−i55, t ∈ 601T 7, a0 > 0, i = 112. Other than
the choke price �, firms choose price from the set
Pi4t1 p−i5= 601L7, where L is sufficiently large. Suppose
both firms have limited capacity C1 = C2 = 1 relative to
the sales horizon T that is assumed to be sufficiently
large. We show that the following joint open-loop
policy:

pi4t5= p−i4t5=















ln
(

� − 2
a0

)

t ∈ 601 �51

� t ∈ 6�1T 71

is an OLNE for any � ∈ 6a0 exp4p∗5+ 21T 7, where p∗

is the price equilibrium without capacity constraints
and is characterized by the equation a041 − p5 +

2 exp4−p5 = 0. With the proposed joint policy, both
firms price at ln44� − 25/a05 4≥ p∗5 until the sellout
at time t = � ≤ T ; both firms earn a total revenue
ln44� − 25/a05 that is increasing in � . We verify that the
proposed policy is indeed an OLNE by determining
whether there is any incentive to deviate given that
joint feasibility is maintained. First, given the competi-
tor’s strategy fixed as in the proposed equilibrium, it is
not beneficial for any firm to shorten its effective sales
horizon within period 601 �5. Second, it seems that a
firm may improve its profit by evening out a small
amount of capacity from period 601 �5 and selling it as
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Figure 2 Head-to-Head Competition
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a monopoly in period 6�1T 7. Such a deviation would
be profitable if the amount was made sufficiently small
and if it was jointly feasible. However, it is clear that
such a deviation of evening out some capacity by a
price increase in period 601 �5 will make its competitor
sell more than its capacity in period 601 �5. Thus, such a
deviation is not in the jointly feasible strategy space of
the generalized game, though it is unilaterally feasible.
Therefore, the proposed joint open-loop policy is indeed
an OLNE, where both firms do not fully use the whole
sales horizon (see Figure 2 for an illustration).

Observation 3. Even under a stationary demand
structure, at an OLNE, firms may run out of stock
before the end of the sales horizon.

There are infinite numbers of OLNE differing in
the length of the effective sales horizon. Among all
such equilibria, the one using the whole sales horizon
Pareto-dominates all others, and is the unique bounded
rational OLNE. By Proposition 3(ii), we can also verify
the bounded rational OLNE by checking against the
sufficient condition. It is easy to see that the proposed
joint pricing policy pi4t5 = p−i4t5 = ln44T − 25/a05 for
t ∈ 601 T 5 and the shadow price process for all i, �ii4t5=

ln44T − 25/a05− T /4T − 15, �i1−i4t5 = 0 for t ∈ 601T 5,
satisfy the sufficient condition.

The discrepancy of Observation 3 from the monopoly
case is due to that in the oligopoly. As firms precommit
to OLNE, they also take into account competitors’
capacity constraints to make the pre-commitment credi-
ble. However, in practice, the precise mechanism of
maintaining credibility can be elusive, and the domi-
nating bounded rational OLNE that uses the full sales
horizon is most likely to be sustained.

4. The Stochastic Game
We extend the differential game to account for demand
uncertainty by considering its stochastic-game counter-
part in continuous time. We show that the solutions
suggested by the differential game capture the essence
and provide a good approximation to the stochas-
tic game. The stochastic game formulation can be
viewed as a game version of the optimal dynamic
pricing problem considered in Gallego and van Ryzin
(1994) with time-varying demand structures. Firms
compete in influencing stochastic demand intensity
by adjusting prices. More specifically, demand for a
product is assumed to be a nonhomogeneous Poisson
process with Markovian intensities, instead of deter-
ministic rates. Let N Eu

i 4t5 denote the number of items
sold up to time t for firm i under joint pricing policy
Eu. A demand for any firm i is realized at time t if
dN Eu

i 4t5= 1. We denote the joint Markovian allowable
pricing policy space by P , where any joint allow-
able pricing policy Eu= 8Ep4t1 En4t5510 ≤ t ≤ T 9 satisfies
Ep4t1 En4t55 ∈ P4t5 for all t and

∫ T

0 dN Eu
i 4t5 ≤ Ci for all i.

By the Markovian property of P , we mean that the
pricing policy offered by any firm is a function of the
elapsed time and current joint inventory level; that is,
Ep4t1 En4t55= Ep4t1C1 −N Eu

1 4t51C2 −N Eu
2 4t51 0 0 0 1Cm −N Eu

m4t55
for all t. We want to analyze strategies with Markovian
properties, and again assume the same information
structure as in Assumption 4.

Given pricing policy Eu ∈ P , we denote the expected
profit for any firm i by Gi6 Eu7≡ E6

∫ T

0 pi4t1 En4t55 dN Eu
i 4t57.

The goal of any firm i is to maximize its total expected
profit over the sales horizon. A joint pricing policy
Eu∗ ∈ P constitutes a Nash equilibrium if, whenever
any firm modifies its policy away from the equilibrium,
its own payoff will not increase. More precisely, Eu∗ is
called a Markovian equilibrium strategy if Gi6ui1 Eu∗

−i7≤
Gi6 Eu

∗7 for 6ui1 Eu∗
−i7 ∈ P and all i. By applying Bré-

maud (1980, Theorem VII.T1) to the context of the RM
stochastic game, we show that the following set of
Hamilton–Jacobi–Bellman (HJB) equations is a sufficient
condition for Markovian equilibrium strategies.

Proposition 9 (Stochastic RM Game: HJB). If func-
tions Vi4s1 En52 601T 7× 8�m ∩X9 7→�+ for all i are differ-
entiable in remaining time s ≡ T − t and simultaneously
satisfy the following set of HJB equations:

−
¡Vi4s1 En5

¡t
= sup

pi∈Pi4t1 Ep−i5∪8p
�
i 4t1 Ep−i59

8ri4t1 Ep5−ï EVi4s1 En5T Ed4t1 Ep591

ni>01 (6)

where ï EVi4s1 En5≡ 4ãVi114s1 En51ãVi124s1 En51000, ãVi1m4s1 En55T

and ãVi1j4s1 En5≡Vi4s1 En5−Vi4s1 En− Eej5, with boundary condi-
tions as for all i, (i) Vi401 En5= 0 for all En and (ii) Vi4s1 En5= 0
if ni ≤ 0 for all s, and p∗

i 4t1 En52 601T 7× 8�m ∩X9 7→�+

achieves the supremum in the HJB equations (6) for any
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firm i at all 4t1 En5, then Eu∗ = 8Ep∗4t1 En59 ∈ P is a Markovian
equilibrium strategy.

For a discrete-time version of the stochastic game
under a stationary MNL demand model, Lin and
Sibdari (2009) demonstrate the existence of a Markovian
equilibrium strategy by backward-inductively solving
the set of HJB equations. However, other than the
existence result, no further structural results are known.
For the continuous-time stochastic game, we focus on
exploring its natural links to the differential game that
has a simple and intuitive structural characterization.

4.1. Affine Functional Approximations
The set of HJB equations, as a sufficient condition for
Markovian equilibrium strategies, has two components:
the set of differential and difference Equations (6) that
governs the dynamics, and the boundary conditions. We
focus on applying the affine functional approximation
approach to the dynamics (6) while temporarily ignoring
the feedback-type boundary conditions (see Adelman
2007 for the same approach). The obtained solution
can be used to obtain pricing heuristics, in which the
boundary conditions are re-imposed by posting choke
prices when running out of stock or time. This approach
is a coarse approximation, but it allows us to establish
a natural and novel link between the stochastic game
and its differential counterpart.

To be specific, in the stochastic game, we adopt an
affine functional approximation to the value functions
and temporarily ignore the boundary conditions: Vi4s =

T − t1 En5≈Wi4s = T − t1 En5≡
∫ T

t
�i4v5dv+ Ewi4t5

T · En for
all i, t and En, and Ewi4t5≥ 0 is a piecewise continuously
differentiable function. If we restrict Ewi4t5= Ewi for all
t ∈ 601T 5 and Ewi4T 5= 0, the approximation is called a
quasi-static affine functional approximation (Adelman
2007). The term �i4t5 approximates the marginal value
of time-to-go and Ewi4t5 approximates the marginal
value of capacity at time t. We can see that the affine
functional approximation Wi4s1 En5 does not necessarily
satisfy the boundary conditions, e.g., Wi4s1ni = 01 En−i5
is not necessarily zero because the value of time-to-go
�i4t5= �i4T − s5 may not be zero for s > 0. Omitting
the boundary conditions, we show that the first-order
approximated capacity marginal value process Ewi4t5
is exactly equal to the shadow price process E�i4t5
in the differential game. By Proposition 2, in any
OLNE the shadow price processes are constant before
stockout events, hence we do not lose generality by
restricting the approximation to a quasi-static affine
approximation.

Proposition 10 (Affine Approximation to Sto-
chastic Game). A joint strategy satisfies the conditions
obtained from an affine or quasi-static affine functional
approximation to the value functions in the set of HJB
equations (6) with boundary conditions temporarily omitted
if and only if it is an OLNE in the differential game.

4.2. Heuristics as Asymptotic Equilibria
The differential game can be analyzed to derive
tractable and efficiently computable heuristics for its
stochastic counterpart. Next we propose heuristics
suggested by OLNE and FNE of the differential game,
and show that they are equilibria in an asymptotic
sense for the stochastic game, in the limiting regime
where the potential demand and capacity are propor-
tionally scaled up. Specifically, using k as an index, we
consider a sequence of problems with demand rate
function Edk4t1 Ep5= k Ed4t1 Ep5 and capacity ECk = k EC, and
let k increase to infinity; hereafter, a superscript k will
denote quantities that scale with k.

Definition 5 (Asymptotic Nash Equilibrium). In
the stochastic game, Eu∗ ∈ P is called an asymptotic
Nash equilibrium in the limiting regime of the sequence
of scaled stochastic games, if for any � > 0 and all i,
there exists l such that for all k > l, 41/k5Gk

i 6ui1 Eu∗
−i7≤

41/k5Gk
i 6 Eu

∗7+ � for all 4ui1 Eu∗
−i5 ∈ P .

The quantity � here refers to a small amount relative
to the profit under an asymptotic equilibrium, more
than which a firm’s profit cannot be improved by a
unilateral deviation.

4.2.1. Precommitment. Even under the assumed
information structure that competitors’ inventory lev-
els are known in real time, firms may precommit to
open-loop policies up to the point of stockout. This
decision of precommitment can arise when firms trade
off between price precommitment and pricing flexibil-
ity. As contingent or dynamic pricing in response to
demand uncertainty may intensify competition, price
precommitment can result in higher revenues for firms
than pricing flexibility under competition; see Xu and
Hopp (2006) for a discussion on this in the context of a
homogeneous product and Wang and Hu (2014) for the
case of differentiated products. We assume that firms
implement any open-loop heuristic by precommitting
to the open-loop policy up to the (random) time of run-
ning out of stock and posting choke prices afterwards.
We show that any OLNE heuristic is asymptotically
optimal under competition.

Proposition 11 (OLNE Heuristic as Asymptotic
Nash Equilibrium). Any OLNE heuristic corresponding
to an OLNE of the differential game is an asymptotic Nash
equilibrium (among all pre-committed open-loop heuristics
corresponding to jointly allowable open-loop strategies),
in the limiting regime of the sequence of scaled stochastic
games.

4.2.2. Contingent Pricing. Under the assumed infor-
mation structure, the inventory level of any firm in
real time is public information. The re-solving feedback
strategy Epf 4t1 Ex5 in the differential game provides a
heuristic in feedback form for the stochastic game.
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Because of the differentiability of the demand function
in prices at any time (Assumption 1(a)), by Proposi-
tion 2 and implicit function theorem, we can show that
the re-solving FNE Epf 4t1 Ex5 is piecewise continuous
in the current inventory level Ex for all t. By extend-
ing Maglaras and Meissner (2006) to the competition
context, we show that this feedback heuristic is an
asymptotic Nash equilibrium in the limiting regime as
demand and supply grow proportionally large.

Proposition 12 (FNE as Asymptotic Nash Equi-
librium). The re-solving FNE heuristic Epf 4t1 Ex5 is an
asymptotic Nash equilibrium in the limiting regime of the
sequence of scaled stochastic games.

5. Conclusion
Current RM practice of legacy airlines is carried out
with a pricing team designing fares and an operations
team allocating capacity to fare classes. This flaw is
exacerbated by low cost carriers offering fares with
few or no restrictions and by Internet-enabled price
transparency. RM researchers and practitioners are
trying to integrate pricing and capacity allocation into
a single system that takes into account pricing and
quality attributes of the products available to customers
at the time of purchase. The challenge is the complexity
of solving such systems.

We have shown that such intertemporal pricing prob-
lems under competition, formulated as a differential
game, has a simple structure in nature. The structure
sheds light on how transient market conditions and
aggregate supply constraints interact to determine
intertemporal equilibrium pricing behavior. It is encour-
aging that the existence and uniqueness (in the notion
of normalized or bounded rational equilibrium), of the
equilibrium can be established for two commonly used
demand rate functions—MNL and linear demand func-
tions. Moreover, by the structural characterization, the
infinite-dimensional time-varying equilibrium pricing
policy can be determined by the finite set of shadow
prices measuring capacity externalities. Because of this
structure, the equilibrium computation can be signifi-
cantly facilitated, and be cast as a finite-dimensional
nonlinear complementarity problem. Last, we show
that the equilibrium solutions from the differential
game can provide precommitted or contingent heuristic
policies, capturing the first-order effect for its stochastic
counterpart. The re-solving feedback heuristic, which
is dynamically easy to implement and asymptotically
optimal, should be of practical interest to RM managers.
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Appendix. Proofs

Proof of Proposition 1. We will apply the infinite-
dimensional fixed-point theorem (Bohnenblust and Karlin
1950, Theorem 5; see Electronic Companion B). To apply
the theorem, we consider the following set-valued func-
tion B6Ep7 =

∏

iBi6Ep−i7, for Ep ∈ S =
∏

i Si1 where Bi6Ep−i7 =

arg maxpi∈Si
Ji6pi1 Ep−i7, for Ep−i ∈

∏

j 6=i Sj and Si ≡ 8pi4t510 ≤ t ≤

T � pi4t5 ∈Pi4t1 Ep−i4t551
∫ t

0 di4v1pi4v51 Ep−i4v55 dv ≤Ci1∀ t1 Ep−i ∈

4D601 T 75m−19. For p�
i 4t1 p−i5 ∈Pi4t1 Ep−i5, pi4t5 ∈Pi4t1 Ep−i4t55 is

equivalent to pi4t5∈Pi4t1 Ep−i4t55∪ 8p�
i 4t1 Ep−i4t559. For MNL

demand models, in a best response, it is not beneficial for a
firm to use a choke price at any time if only constrained
with its own capacity: Suppose in the best response there is
a period of time where a firm uses a choke price, then the
firm can even out a small amount of capacity from other
time to sell in this period; the capacity constraint for the firm
is not violated; as long as the feasible set Pi4t1 Ep−i4t55, ∀ t is
sufficiently large to contain the prices to sell the sufficiently
small amount so that the total profit is improved, we reach a
contradiction. Hence, we can use the unilateral feasible set
as defined in Si where pi4t5 ∈Pi4t1 Ep−i4t55 also for MNL. For
MNL demands, the OLNE, of which we show the existence
in this proof as a solution to a fixed-point problem, does not
use the choke price (i.e., �) at any time. But there can be
other OLNE that indeed uses the choke price for positive
measurable set of time (see Example 3).

Step 1. We show that S is convex. It suffices to show that
Si is convex for all i. By Assumption 1(b),

∫ t

0 di4v1pi4v51
Ep−i4v55 dv is pseudo-convex, hence quasi-convex, in 8pi4v510 ≤

v ≤ t9. Then its lower level set 8pi4v510 ≤ v ≤ t �
∫ t

0 di4v1pi4v51 Ep−i4v55 dv ≤Ci9 is convex. Since Pi4t1 Ep−i4t55 is
convex for all t (Assumption 3(b)), Si is convex by the fact
that the intersection of any collection of convex sets is convex.

Step 2. We show that S is weakly closed. It suffices to
show that Si is (strongly) closed for all i. Since Pi4t1 Ep−i5 is
compact in � for all t (Assumption 3(b)), hence Pi4t1 Ep−i5 is
closed for all t and Ep−i by the fact that in an Euclidean space
every compact set is closed. Then 8pi4t510 ≤ t ≤ T � pi4t5 ∈

Pi4t1 Ep−i4t551∀ t9 is closed for all 8Ep−i4t510 ≤ t ≤ T 9 by the fact
that the product of closed sets is closed. Since di4v1 Ep5 is
continuous in Ep (Assumption 1(a)), by Cesari (1983, Theorem
10.8.i),

∫ t

0 di4v1pi4v51 Ep−i4v55dv is a lower semicontinuous
functional in 8pi4v510 ≤ v≤ t9. By an equivalent definition
of lower semicontinuity (Royden 1988, problem 2.50(c)),
the integral functional’s lower level set 8pi4v510 ≤ v ≤ t �
∫ t

0 di4v1 pi4v51 Ep−i4v55 dv ≤ Ci9 is closed. Therefore, Si is closed
by the fact that the intersection of any collection of closed
sets is closed.

Step 3. We show that S is compact. It suffices to show
that Si is compact for all i. Since Pi4t1 Ep−i4t55 is a compact
set for any fixed Ep−i ∈

∏

j 6=i Sj (Assumption 3(b)), the set
8pi4t510 ≤ t ≤ T � pi4t5 ∈Pi4t1 Ep−i4t559 is compact by Tychonoff’s
theorem. Since Si is closed (Step 2) and is a subset of the
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compact set 8pi4t510 ≤ t ≤ T � pi4t5 ∈Pi4t1 Ep−i4t559, Si is compact
by the fact that a closed subset of a compact set is compact.

Step 4. We show that for any Ep ∈ S, B6Ep7 is nonempty. It
suffices to show that for any Ep−i ∈

∏

j 6=i Sj , Bi6Ep−i7 is nonempty.
Under Assumptions 1(a) and 2(b), Ji6pi1 Ep−i7 is a weakly
continuous functional in pi on Si for any fixed Ep−i ∈

∏

j 6=i Sj
by Cesari (1983, Theorem 10.8.v). Hence, the continuous
functional Ji6pi1 Ep−i7 that is bounded above (by Assump-
tion 2(b)) can attain its maximum on the compact set Si by
an infinite-dimensional version of the extreme value theo-
rem (Luenberger 1968, Theorem 2.13.1). Therefore, Bi6Ep−i7 is
nonempty.

Step 5. We show that for any Ep ∈ S, B6Ep7 is convex.
It suffices to show that for any Ep−i ∈

∏

j 6=i Sj , Bi6Ep−i7 =

arg maxpi∈Si
Ji6pi1 Ep−i7 is convex. Since Bi6Ep−i7 is nonempty,

let p∗
i denote an element of the set. By Assumption 2(a), the

integral functional Ji6pi1 Ep−i7=
∫ T

0 ri4t1 pi4t51 Ep−i4t55 dt is pseudo-
concave in pi = 8pi4t510 ≤ t ≤ T 9, and hence is quasi-concave
in pi. By one of equivalent definitions of quasi-concavity,
8pi � Ji6pi1 Ep−i7 ≥ Ji6p

∗
i 1 Ep−i79 is convex for any Ep−i ∈

∏

j 6=i Sj .
Hence, Bi6Ep−i7 = 8pi � Ji6pi1 Ep−i7 ≥ Ji6p

∗
i 1 Ep−i79 ∩ Si is convex

since Si is convex (Step 1).
Step 6. We show that the graph B is weakly closed. Let

84Exn1 Eyn59�n=1 be a sequence in S × S that converges weakly to
4Ex1 Ey5 ∈ S × S such that Exn ∈B6Eyn7, i.e., Ji6pi1 Eyn

−i7≤ Ji6x
n
i 1 Eyn

−i7
for all pi ∈ Si and all i. Under Assumptions 1(a) and 2(b), Ji6Ep7
is weakly continuous in Ep by Cesari (1983, Theorem 10.8.v),
hence Ji6pi1 Ey−i7 = limn→� Ji6pi1 Eyn

−i7 ≤ limn→� Ji6x
n
i 1 Eyn

−i7 =

Ji6xi1 Ey−i7 for all pi ∈ Si and all i. Then Ex ∈B6Ey7.
Step 7. Note that

⋃

Ep∈S B4Ep5 is a subset of S, which is
compact by Step 3. This ensures that

⋃

Ep∈S B4Ep5 is contained
in a sequentially weakly compact set.

Step 8. Combining all of the above steps, we are ready
to apply Bohnenblust and Karlin (1950, Theorem 5). Thus,
B6Ep7 has a fixed point on S, namely, there exists an OLNE
to the following differential game with relaxed constraints:
given competitors’ open-loop price policies 8Ep−i4t510 ≤ t ≤ T 9,
each player i is to simultaneously maxpi∈D601T 7

∫ T

0 ri4t1 Ep4t55 dt
such that pi4t5 ∈Pi4t1 Ep−i4t55 for all t, di4t1 Ep4t55≥ 0 for all t,
Ci −

∫ t

0 di4v1 Ep4v55 dv ≥ 0 for all t. In contrast with the original
differential game, the firms in the game with relaxed con-
straints have bounded rationality and ignore the nonnegative
demand and capacity constraints of competitors in their best
responses.

Step 9. We argue that any OLNE of the game with relaxed
constraints is one of the original game. Suppose 8Ep∗4t510 ≤

t ≤ T 9 is an OLNE of the game with relaxed constraints,
namely, given 8Ep∗

−i4t510 ≤ t ≤ T 9, 8p∗
i 4t510 ≤ t ≤ T 9 for all i

maximizes
∫ T

0 ri4t1 pi4t51 Ep∗
−i4t55 dt subject to pi4t5 ∈Pi4t1 Ep∗

−i4t55,
di4t1 pi4t51 Ep∗

−i4t55 ≥ 0 and
∫ t

0 di4v1pi4v51 Ep∗
−i4v55dv ≤ Ci for

all t. Thus, OLNE satisfies the joint constraints, i.e.,
p∗
j 4t5 ∈ Pj4t1 Ep∗

−j4t55, dj4t1 Ep∗4t55 ≥ 0 and
∫ t

0 dj4v1 Ep∗4v55dv ≤

Cj for all t and all j . Therefore, given 8Ep∗
−i4t510 ≤ t ≤ T 9,

8p∗
i 4t510 ≤ t ≤ T 9 for all i also maximizes

∫ T

0 ri4t1 pi4t51 Ep∗
−i4t55 dt

subject to 4pi4t51 Ep∗
−i4t55 ∈ P4t5, dj4t1 pi4t51 Ep∗

−i4t55 ≥ 0 and
∫ t

0 dj4v1pi4v51 Ep∗
−i4v55 dv ≤Cj for all t and all j . �

Proof of Proposition 2. Introducing piecewise continu-
ously differentiable costate variable E�i4t5= 4�ij 4t51∀ j5 for all i
and t, we define the Hamiltonians Hi2 601 T 7×X×�m ×�m 7→

� by Hi4t1 Ex1 Ep4t51 E�i4t55≡ ri4t1 Ep4t55−
∑

j �ij 4t5dj 4t1 Ep4t55 for all i

and t. In addition, we have the state constraint Ex4t5≥ 0. Hence,
we define the Lagrangians Li2 601 T 7×X×�m ×�m ×�m 7→�
by Li4t1 Ex1 Ep4t51 E�i4t51 E�i4t55≡ ri4t1 Ep4t55−

∑

j �ij 4t5dj 4t1 Ep4t55+
∑

j �ij4t5xj4t5 for all i and t, where Lagrangian multipliers
�ij 4t5 for all i, j are piecewise continuous. Any OLNE 8Ep4t510 ≤

t ≤ T 9, its corresponding costate trajectory 8 E�i4t510 ≤ t ≤ T 9
for all i, its corresponding Lagrange multiplier trajectory
8 E�i4t510 ≤ t ≤ T 9 for all i and its equilibrium state trajectory
8Ex4t510 ≤ t ≤ T 9 need to satisfy the following set of necessary
conditions (namely, the maximum principle for problems
with inequality constraints under the direct adjoining method;
see Hartl et al. 1995, §4): For all t and all i, j ,

pi4t5= arg max
pi∈Pi4t1 Ep−i4t55∪8p

�
i 4t1 Ep−i4t559

Hi4t51 (7)

−
¡�ij4t5

¡t
=

¡Li

¡xj
= �ij4t51 (8)

�ij4T 5xj4T 5= 01 �ij4T 51 xj4T 5≥ 01 (9)

�ij4t5xj4t5= 01 �ij4t51 xj4t5≥ 01 (10)

together with the jump conditions that �ij 4t5 for all i, j may
jump down at the junction time when xj4t5 hits zero, and
the kinematic equation ¡xi4t5/¡t = −di4t1 Ep4t55, xi405=Ci for
all i that is obvious from the context. Note that �ij4t5≥ 0,
�ij4T 5≥ 0, by Equation (8), we have �ij4t5≥ 0 for all t.

Next we equivalently simplify the set of conditions (7)–(10)
together with the jump conditions, by eliminating �ij4t5.
First, for all t < sup8v ∈ 601T 7 � xj4v5 > 09, we have xj4t5 > 0,
thus �ij4t5 = 0 for all i by the complementary slackness
condition (10). Consider ordinary differential equation (8):
The piecewise continuously differentiable costate trajectory
�ij4t5 ≥ 0 with derivative equal to zero everywhere (not
almost everywhere) must be constant, which we can denote
as �ij ≥ 0, before the inventory of firm j hits zero (if it
happens). For t such that xi4t5 > 0 and xj 4t5= 0 for some j , in
the Hamiltonian maximization (7) of firm i we can still set
�ij4t5=�ij even though xj4t5 has hit zero, since at such a
time firm j is simultaneously forced to post a choke price;
hence, the term �ij4t5dj4t1 Ep4t55 is zero regardless of choices
of �ij4t5. Second, in Equation (7), it is understood that for
t ∈ 6t̄i1T 7 (if the set Ei is nonempty), an appropriate costate
variable process, denoted by �−

ij 4t5 to distinguish from �ij ,
can be chosen such that a choke price is the optimal solution
to the Hamiltonian Hi; hence, the state xi4t5 stays at zero. By
Equation (8), such a piecewise continuously differentiable
process �−

ij 4t5 is a decreasing process, which may have a jump-
down discontinuity at the junction time t̄i. Last, consider
the transversality condition (9). If xj 4T 5 > 0, then �ij 4T 5=�ij

for all i, hence condition (9) is equivalent to �ijxj4T 5= 0. If
xj 4T 5= 0, condition (9) and �ijxj 4T 5= 0 always hold regardless
of choices of shadow prices. Therefore, we can reach the
equivalent set of simplified necessary conditions as described
in the proposition. �

Proof of Corollary 1. All firms start with positive
inventory. By Proposition 2, all shadow prices �ij for all
i, j stay constant until some firm, say io, first runs out of
stock and exits the market (i.e., the first stockout event). (It is
possible that multiple firms run out of stock simultaneously.)
Because of the stationary demand structure, the equilibrium
price trajectories solved from (4) and the resulting product
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assortment available in the market remain constant before
the first stockout. After the first stockout, firm io posts choke
prices and the demand system within the remaining firms
who still have positive demand will reset to account for
spillovers from firm io. Because the remaining firms still
have positive inventory, by Proposition 2, the shadow prices
they charge to each other are the same constant as before
the first stockout. Again because of the stationary demand
structure, the equilibrium price trajectories and the resulting
product assortment available in the market stay constant
until another stockout event. The same argument can be
repeatedly applied for the remaining sales horizon. Between
the final stockout event and the end of the horizon, all firms
post constant choke prices to stay out of the market. �

Proof of Proposition 3. (i) Under the concavity of rev-
enue rate functions ri4t1 Ep5 in pi and the convexity of demand
rate functions di4t1 Ep5 in pi for all t, the Hamiltonians Hi, for
all i, are concave in pi for all t. Moreover, the Hamiltonians
Hi, for all i, are independent of Ex, hence they are jointly
concave in 4pi1 Ex5. By Hartl et al. (1995, Theorem 8.3), the
maximum principle is also a sufficient condition for OLNE.

(ii) We only consider bounded rational OLNE and hence
let costate variables �ij4t5 = 0 for all j 6= i and t. Since
∫ T

0 6ri4t1 Ep4t55−�4t5di4t1 Ep4t557 dt for any 8�4t5≥ 010 ≤ t ≤ T 9 is
pseudo-concave in 8pi4t510 ≤ t ≤ T 9 and the Lagrangian Li

at any time is linear in Ex, then
∫ T

0 Li4t5 dt =
∫ T

0 6ri4t1 Ep4t55−
�4t5di4t1 Ep4t55+

∑

j �ij 4t5xj 4t57 dt is jointly pseudo-concave in
48pi4t510 ≤ t ≤ T 91 8Ex4t510 ≤ t ≤ T 95. Because pseudo-concavity
is stronger than invexity, by Arana-Jiménez et al. (2008, Theo-
rem 2), the maximum principle is also a sufficient condition
for any bounded rational OLNE where �ij 4t5= 0 for all j 6= i
and t. See Corollary 1 in Electronic Companion A for the
proof that MNL demands satisfy the pseudo-concavity of
∫ T

0 6ri4t1 Ep4t55−�4t5di4t1 Ep4t557 dt in 8pi4t510 ≤ t ≤ T 9. �

Proof of Proposition 4. First, consider the competition
of substitutable products. For an arbitrary firm, given its com-
petitors’ fixed price paths, we consider its own best-response
problem. In this firm’s constrained optimization problem, let
us tighten its capacity constraint, which is the only constraint
the firm is facing, because we focus on the bounded ratio-
nal OLNE. This tightened capacity constraint increases the
constant shadow price corresponding to this constraint in
the best-response problem. At any time t, p∗

i 4t1 Ep−i4t53�ii5=

arg maxpi∈Pi4t1 Ep−i4t55∪8p
�
i 4t1 Ep−i4t559

8ri4t1 Ep5−�iidi4t1 Ep59 is increas-
ing in �ii, because ri4t1 Ep5−�iidi4t1 Ep5 is supermodular in
4pi1�ii5 due to ¡di4t1 Ep5/¡pi < 0. Therefore, the tightened capac-
ity constraint will lead to a pointwise higher best-response
price path. Because the best-response correspondences of all
firms are increasing in competitors’ price paths, due to the
(log-)supermodularity of profit functions at any time taking
into account capacity constraints, the resulting equilibrium
prices are higher (see Topkis 1998). Second, consider the
competition of two complementary products. The result can
be obtained by reversing the order of the strategy set of one
firm and then applying the obtained result for substitutable
products (see Vives 1999, Remark 2.20). �

Proof of Proposition 5. Define â6Ep1 Eq7 ≡
∫ T

0

∑

i ri ·
4t1 p14t51 0 0 0 1 pi−14t51 qi4t51 pi+14t51 0 0 0 1 pm4t55dt. It is a com-
monly used technique of applying the appropriate fixed-

point theorem to the set-valued mapping arg max
Eq8â6Ep1 Eq7 �

Ci −
∫ T

0 di4t1 Eq4t55 dt ≥ 01∀ i9 to show the existence of a Nash
equilibrium of the original problem. Following the same
procedures as in the proof of Proposition 1 and noting that
di4t1 Eq5 is convex in qj for all i, j , t, we can verify the exis-
tence of a fixed point Ep∗ such that â6Ep∗1 Ep∗7= max Eq8â6Ep

∗1 Eq7 �

Ci −
∫ T

0 di4t1 Eq4t55 dt ≥ 01∀ i9. Such a fixed point Ep∗ is a Nash
equilibrium with shadow prices satisfying �ij = �j for all i, j ,
where E� is the Lagrangian multipliers in the maximization
problem. Following the same procedures as in the proof of
Rosen (1965, Theorem 4) and noting that condition (SDD) at
any time is sufficient for pointwise strict diagonal concavity
and hence for integrally strict diagonal concavity, we can
obtain the desired result. �

Proof of Proposition 6. Let çi4t1 Ep5≡ ri4t1 Ep5−�iidi4t1 Ep5.
The first-order derivative is ¡çi/¡pi = di4t1 Ep5 + 4pi −

�ii5¡di4t1 Ep5/¡pi. The second-order derivatives are ¡2çi/¡pi
2 =

2¡di4t1 Ep5/¡pi + 4pi − �ii5¡
2di4t1 Ep5/¡pi

2 and ¡2çi/¡pi¡pj =

¡di4t1 Ep5/¡pj + 4pi − �ii5¡
2di4t1 Ep5/¡pi¡pj , ∀ j 6= i. Under the

assumption that the Jacobian and Hessian matrix of the
demand function Ed4t1 Ep5 with respect to Ep are negative
semidefinite, the Hessian of Eç4t1 Ep5, and hence its lead-
ing principal submatrices, are all negative definite at Ep =

Ep∗ satisfying ¡çi4t1 Ep5/¡pi = 0 for all i such that xi4t5 >
0. This is because (i) ¡di4t1 Ep5/¡pi < 0; (ii) 4pi − �ii5�Ep=Ep∗ =

−di4t1 Ep5/4¡di4t1 Ep5/¡pi5�Ep=Ep∗ ≥ 0 for all i such that xi4t5 > 0;
and (iii) that the negative semidefiniteness is preserved under
additivity. By the Poincaré–Hopf index theorem (see Vives
1999, §2.5), for any set of shadow prices 8�ii1∀ i9 with �ij = 0
for all i 6= j at any time t, there exists a unique price vector
satisfying ¡çi4t1 Ep5/¡pi = 0 for any set of firms 8i � xi4t5 > 09
together with the rest of firms posting the choke prices.
(Depending on the demand structures, there may exist mul-
tiple choke prices for a firm that effectively shut down its
demand, but they are unique in the sense of generating the
same zero demand and revenue.) Moreover, by the proof of
Proposition 1, there exists a bounded rational OLNE; hence,
for its diagonal shadow prices, the corresponding bounded
rational OLNE is unique. �

Proof of Proposition 8. We prove by contradiction.
Suppose at the joint open-loop equilibrium Ep∗, there exist two
intervals 4b1 b+�5 and 4b̃1 b̃+�5 such that for some firm i,
p∗
i 4t5 is infinite on 4b1 b + �5 and p∗

i 4t5 is finite on 4b̃1 b̃ +

�5, and for any firm j 6= i, p∗
j 4t5 is infinite on 4b̃1 b̃ + �5,

namely, firm i is the monopoly on 4b̃1 b̃+ �5 and some firm
other than firm i can be the monopoly on 4b1 b + �5. Let
p̄i4t1 �5 ≡ inf8pi ≥ 0 � di4t1 pi1 Ep∗

−i4t55 = �/�9, which is finite
for MNL demand rate functions. Let p̃i4t1 �5 ≡ inf8pi ≥ 0 �

di4t1 pi1 Ep∗
−i4t55= di4t1 Ep∗4t55− �/�9. It is easily verified that

p̃i4t1 �5 > p∗
i 4t5 for � > 0 since p̃i4t1 �5 is increasing in �. Further-

more, since p̄i4t1 �5 is decreasing in � and lim�→0 p̄i4t1 �5= �,
there exists sufficiently small �̃4t5 > 0 for any t ∈ 4b̃1 b̃ + �5
such that p̄i4t + b− b̃1 �̃4t55 > p∗

i 4t5. We construct a price policy
for firm i,

pi4t5=











p̄i4t1 �̃4t + b̃− b55 if t ∈ 4b1 b+ �51

p̃i4t1 �̃4t55 if t ∈ 4b̃1 b̃+ �51

p∗
i 4t5 otherwise.
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Under the above policy, firm i evens out a small quantity �̃4t5
at any time t ∈ 4b̃1 b̃+ �5 to the corresponding time t + b− b̃
in 4b1 b+ �5.

First, we determine whether the constructed policy is jointly
feasible. It is obviously feasible for firm i as its total sales
remains unaltered. To see the feasibility for other firms, we
check the derivative 4¡dj4t1 ai1 Ea−i5/¡ai54¡a

−1
i 4t1 di1 Ea−i5/¡di5,

where ai = �i4t5e
−�i4t5pi is the attraction value of firm i,

a−1
i 4t1 di1 Ea−i5= di

∑

k 6=i ak4t5/�4t5−di is the inverse function
of di4t1 ai1 Ea−i5= 4�4t5ai4t55/4ai4t5+

∑

k 6=i ak4t55. This deriva-
tive captures the impact on firm j’s sales volume due
to a small change in firm i’s sales volume by changing
its price pi while the competitor’s price Ep−i is fixed. It is
easily verified that 4¡dj4t1 ai1 Ea−i5/¡ai54¡a

−1
i 4t1 di1 Ea−i5/¡di5=

−aj4t5/
∑

k 6=i ak4t5. The constructed deviation of firm i
will cause any firm j’s sales to stay the same for t ∈

4b̃1 b̃ + �5 since aj4t5 = 0 for t ∈ 4b̃1 b̃ + �5, and to decrease
by aj4t5�4t5/

∑

k 6=i ak4t5 for t ∈ 4b1 b + �5. As long as �4t5 is
sufficiently small, firm i’s deviation does not violate com-
petitors’ capacity constraints and state positivity. Thus, the
deviation is feasible in the generalized Nash game with
coupled constraints.

Next, we compare the profit before and after the
deviation. Under the original policy Ep∗, firm i earns
p∗
i 4t5di4t1 Ep∗4t55 for any time t ∈ 4b̃1 b̃ + �5 and 0 for any

time t ∈ 4b1 b + �5. Under the constructed policy, firm i
earns p̃i4t1 �̃4t55di4t1 p̃i4t1 �̃4t551 Ep∗

−i4t55= p̃i4t1 �̃4t554di4t1 Ep∗4t55−
�̃4t5/�5 > p∗

i 4t54di4t1 Ep∗4t55− �̃4t5/�5 for any time t ∈ 4b̃1 b̃+ �5
and p̄i4t+ b− b̃1 �̃4t554�̃4t5/�5 in the corresponding time in
4b1 b+�5. Since p̄i4t+b− b̃1 �̃4t55 > p∗

i 4t5, the constructed policy
has a positive profit improvement for firm i over p∗

i given Ep∗
−i

is fixed. We see a contradiction to the assumption that Ep∗ is
an equilibrium. �

Proof of Proposition 9. First, to generalize the HJB as a
sufficient condition of the optimal control strategy for a single
firm to the game setting, we require a Markovian equilibrium
strategy that satisfies the set of HJB equations simultaneously.
Second, to apply Brémaud (1980, Theorem VII.T1) to each
firm, the only condition that needs to be verified is the
boundedness of the value functions that are guaranteed
by Assumption 2(b). Last, the boundary conditions that
Vi4s1 En5 = 0 if ni = 0 for all s enforce that on a stockout a
choke price is the only option. Hence, the joint strategy
satisfying the set of HJB equations must be in P . Therefore,
the proof is complete. �

Proof of Proposition 10. Under the affine functional
approximation with boundary conditions omitted, the set of
HJB equations (6) becomes

�i4t5−

(

¡wi14t5

¡t
1 0 0 0 1

¡wim4t5

¡t

)T

En

= sup
pi∈Pi4t1 Ep−i5∪8p

�
i 4t1 Ep−i59

8ri4t1 Ep5− Ewi4t5
T Ed4t1 Ep591

En ∈�m
∩X1 (11)

for all i and t. Taking the difference between Equation (11)
evaluated at 4t1 En5 and at 4t1 En − Eej5 for all j , we obtain
¡wij4t5/¡t = 0 for all i, j and t. Since wij4t5 is piecewise

continuously differentiable, wij 4t5 must be a constant, which
we denote by wij . Hence, we do not lose generality by
restricting the functional approximation to a quasi-static
affine functional approximation with boundary conditions
omitted.

It has been shown that the HJB equation for a discrete-
time monopolistic RM problem can be equivalently stated
as an optimization problem (Adelman 2007). In Electronic
Companion D, we show that it is also true for continuous-
time problems. Specifically, we show that if EV ∗4s1 En5 solves
the set of HJB equations (6) for the continuous-time stochastic
game, and that a differentiable function EV 4s1 En5 is a feasible
solution to a game where any firm i simultaneously solves the
following functional optimization problem given competitors’
strategy Ep−i4t1 En5:

min
8Vi4 · 1 · 59

Vi4T 1 EC5

s.t. −
¡Vi4s1 En5

¡t
≥ 8ri4t1 Ep4t1 En55−ï EVi4s1 En5T Ed4t1 Ep4t1 En5591

∀ Ep4t1 En5 ∈P4t51 ∀ 4t1 En50

Hence, the equilibrium value function EV 4T 1 EC5 at the ini-
tial time t = 0 and state En= EC can be obtained by solving
the functional optimization game. Under the affine func-
tional approximation, we can approximate the functional
minimization problem for any firm i as follows:

4Di5 min
Ewi≥0

∫ T

0
�i4t5dt+ EwT

i
EC

s.t. �i4t5≥ri4t1 Ep4t55− EwT
i

Ed4t1 Ep4t551 ∀ Ep4t5∈P4t51∀ t0

Since 4Di5 is a minimization problem, it is optimal to set

�i4t5= max
pi4t5∈Pi4t1 Ep−i4t55∪8p

�
i 4t1 Ep−i4t559

8ri4t1 Ep4t55− EwT
i

Ed4t1 Ep4t5591 ∀ t

in the objective function. Then the objective of any firm i
becomes

min
Ewi≥0

[

max
pi4t5∈Pi4t1 Ep−i4t55∪8p

�
i 4t1 Ep−i4t5591∀ t

{

∫ T

0
ri4t1 Ep4t55 dt + EwT

i

·

(

EC −

∫ T

0

Ed4t1 Ep4t55 dt

)}]

0

This is equivalent to the maximization problem
maxpi4t5∈Pi4t1 Ep−i4t55∪8p

�
i 4t1 Ep−i4t5591∀ t

∫ T

0 ri4t1 Ep4t55dt with capacity

constraints EC −
∫ T

0
Ed4t1 Ep4t55dt ≥ 0 dualized by the vector

Ewi ≥ 0. Strong duality holds here because this continuous-time
maximization primal problem has pseudo-concave objective
function (Assumption 2(a)) and quasi-convex constraints
(the left-hand sides of “≤” constraints are quasi-convex by
Assumption 1(b)), and both primal and dual are feasible (see
Zalmai 1985). �

Proof of Proposition 11. Suppose Ep = 8Ep4t510 ≤ t ≤ T 9 ∈

PO is any arbitrary joint open-loop policy subject to coupled
constraints (3). Under policy Ep, we denote by �ki the minimum
time of T and the random stopping time when the total
sales process of firm i reach its original capacity in the kth
system. In the deterministic differential game, we denote
by t̄i the minimum time of T and the time when the total
sales of firm i reach its original capacity in the unscaled



Gallego and Hu: Dynamic Pricing of Perishable Assets Under Competition
1258 Management Science 60(5), pp. 1241–1259, © 2014 INFORMS

system, which is also such a time in the scaled regimes
without demand uncertainty. As dictated by Ep, any firm i
implements the open-loop policy pi4t5 up to the time either
t̄i or �k

i whichever comes earlier, and posts only a choke
price afterwards. Without loss of generality, we index firms
such that their deterministic stockout times are ordered as
0 ≤ t̄1 ≤ t̄2 ≤ · · · ≤ t̄n ≤ T . Let Ni4 · 5 for all i denote independent
unit rate Poisson processes. The functional strong law of
large numbers for the Poisson process and composition
convergence theorem assert that as k → �, for any Ep4t5,

Ni4kdi4t1 Ep4t555

k
→ di4t1 Ep4t55

a.s. uniformly in t ∈ 601T 70 (12)

This suggests that in the stochastic system, the random stop-
ping time �ki should be close to its deterministic counterparts
t̄i, at least the relative order, as k goes to infinity. For the
time being, we suppose these stopping times are ordered
almost surely (a.s.) as �k

1 ≤ �k
2 ≤ · · · ≤ �k

n , as k becomes suffi-
ciently large for the simplicity of exposure, which we will
confirm shortly. Up to time �k1 , all firms implement Ep4t5. Argu-
ing by contradiction and applying (12) to firm 1, one can
easily conclude that �k

1 → t̄1 a.s. as k → �. The revenues
of firm 1 extracted under the open-loop policy are Rk

16Ep7≡
∫ min8�k1 1 t̄19

0 p14t5 d4N14kd14t1 Ep4t5555 as k is sufficiently large, and
41/k5Rk

16Ep7→
∫ t̄1

0 r14t1 Ep4t55 dt as k→ �. Recall the fact estab-
lished in Gallego and van Ryzin (1994) that the solution of the
deterministic pricing problem serves as an upper bound for the
revenues extracted in the stochastic system and by Assump-
tion 2(b), we have Gk

16Ep7= E4Rk
16Ep75≤ k

∫ t̄1
0 r14t1 Ep4t55 dt. By the

bounded convergence theorem, 41/k5Gk
16Ep7→

∫ t̄1
0 r14t1 Ep4t55 dt.

The sales of firm 2 is

Dk
26Ep7

≡











































∫ �k1

0
dN24kd24t1 Ep4t555+

∫ t̄1

�k1

dN24kd24t1 p
�

1 4Ep−14t551 Ep−14t555

+

∫ min8�k2 1 t̄29

t̄1

dN24kd24t1 Ep4t555 if �k
1 < t̄11

∫ min8�k2 1 t̄29

0
dN24kd24t1 Ep4t555 otherwise,

as k is sufficiently large. Since �k1 → t̄1 a.s. as k → �, the term
∫ t̄1
�k1
dN24kd24t1 p

�
1 4Ep−14t551 Ep−14t555 is asymptotically negligible.

By applying (12) to firm 2 and arguing by contradiction, one
can conclude that �k

2 → t̄2 a.s. as k → �. The revenues of
firm 2 extracted under the open-loop policy are

Rk
26Ep7≡



























































∫ �k1

0
p24t5 dN24kd24t1 Ep4t555

+

∫ t̄1

�k1

p24t5 dN24kd24t1 p
�

1 4Ep−14t551 Ep−14t555

+

∫ min8�k2 1 t̄29

t̄1

p24t5 dN24kd24t1 Ep4t555 if �k
1 < t̄11

∫ min8�k2 1 t̄29

0
p24t5 dN24kd24t1 Ep4t555 otherwise,

as k is sufficiently large, and 41/k5Rk
26Ep7→

∫ t̄2
0 r24t1 Ep4t55 dt as

k→ �. Moreover, E4Rk
26Ep75≤ k

∫ t̄2
0 r24t1 Ep4t55dt+�, where a

random variable � bounds the revenue over 6�k
1 1 t̄17 from the

spillover sales from firm 1 and �/k is asymptotically negli-
gible. By the bounded convergence theorem, 41/k5Gk

26Ep7=

41/k5E4Rk
26Ep75→

∫ t̄2
0 r24t1 Ep4t55dt. Repeating the same argu-

ment, we conclude that 41/k5Gk
i 6Ep7 →

∫ t̄i
0 ri4t1 Ep4t55dt for

all i, as k → �. Applying this convergence result to an
OLNE Ep∗ and to any of its unilateral deviation 4pi1 Ep∗

−i5, we
have 41/k5Gk

i 6Ep
∗7→

∫ t̄i
0 ri4t1 Ep∗4t55dt and 41/k5Gk

i 6pi1 Ep∗
−i7→

∫ t̄i
0 ri4t1 pi4t51 Ep∗

−i4t55dt for all i, as k → �. In other words,
for any � > 0, there exists l such that for all k > l,
∣

∣41/k5Gk
i 6Ep

∗7−
∫ t̄i

0 ri4t1 Ep∗4t55 dt
∣

∣< �/2 and
∣

∣41/k5Gk
i 6pi1 Ep∗

−i7−
∫ t̄i

0 ri4t1 pi4t51 Ep∗
−i4t55dt

∣

∣< �/2. Since
∫ t̄i

0 ri4t1 pi4t51 Ep∗
−i4t55dt ≤

∫ t̄i
0 ri4t1 Ep∗

i 4t55 dt, then 41/k5Gk
i 6pi1 Ep∗

−i7≤ 41/k5Gk
i 6Ep

∗7+ �. �

Proof of Proposition 12. Suppose Epc = 8Epc4t1 Ex510 ≤ t ≤

T 9 ∈ PF is any arbitrary joint feedback policy in the differen-
tial game subject to coupled constraints (3) and is piecewise
continuous in Ex. The cumulative demand for firm i up to
time t driven by such a policy in the kth system is denoted
by Ni4A

c1 k
i 4t55, where Ac1 k

i 4t5=
∫ t

0 kdi4v1 Epc4v1 41/k5 EXc1 k4v555 dv,
and Xc1 k

i 4t5 = max401kCi − Ni4A
c1 k
i 4t555 for all i denotes

the remaining inventory for firm i at time t. Note that
Ac1 k

i 405= 0, Ac1 k
i 4t5 is nondecreasing and Ac1 k

i 4t25−Ac1 k
i 4t15≤

k
∫ t2
t1
di1max4v5dv, where di1max4v5 ≡ maxEp4v5∈P4v5 di4v1 Ep4v550

This implies that the family of process 841/k5Ac1 k
i 4t59 for

all i is equicontinuous, and therefore relatively compact.
By the Arzelà–Ascoli theorem, we can obtain a converg-
ing subsequence 8km9 of the sequence 841/k5Ac1 k

i 4t59 such
that 41/km5A

c1 km
i 4t5→ Āc

i 4t5 for all i in the following way:
For i = 1, there exists a converging subsequence 8k19, such
that 41/k15A

c1 k1
1 4t5 → Āc

14t5; for i = 2, along sequence 8k19,
there exists a converging subsequence of 8k29, such that
41/k25A

c1 k2
1 4t5 → Āc

14t5 and 41/k25A
c1 k2
2 4t5 → Āc

24t5. We can
repeat the process until we have a subsequence 8km9 satisfying
the desired property. Let Ni4 · 5 for all i denote independent
unit rate Poisson processes. Recall that the functional strong
law of large numbers for the Poisson process asserts that
41/k5Ni4kt5 → t, a.s. uniformly in t ∈ 601T 7 as k → �. By
composition convergence theorem, along the subsequence
8km9 we get that 41/km5Ni4A

c1 km
i 4t55 → Āc

i 4t5 for all i, and
therefore that X̄c1 km

i 4t5≡ 41/km5X
c1 km
i 4t5 converges to a limit

x̄ci 4t5 for all i; the two converging results hold a.s. uniformly
in t ∈ 601 T 7. Using the continuity of Ed4t1 Ep5 in Ep and the piece-
wise continuity of Epf 4t1 Ex5 in Ex, by Dai and Williams (1995,
Lemma 2.4) we get that as km → �, for all i, 41/km5A

c1 km
i 4t5=

∫ t

0 di4v1 Epc4v1 41/km5 EXc1 km 4v555 dv →
∫ t

0 di4v1 Epc4v1 Ēxc4v555 dv, a.s.
uniformly in t ∈ 601 T 7. Thus, we get that as km → �, for all i,

X̄
c1km
i 4t5 = Ci−

1
km

Ni4A
c1km
i 4t55→Ci−

∫ t

0
di4v1 Epc4v1 Ēxc4v555dv

= x̄ci 4t51 (13)

a.s. uniformly in t ∈ 601T 7. This shows that the limiting
state trajectories do not depend on the selection of the
converging subsequence itself. Hence, in the sequel we
denote the converging sequence by k to simplify notation.
The last equality in (13) shows that 8 Ēxc4t510 ≤ t ≤ T 9 is the
state trajectory generated by the feedback policy Epc in the
differential game. By the piecewise continuity of Epc4t1 Ex5

in Ex, we have as k → �, Epc4t1 ĒXc1 k4t55 → Epc4t1 Ēxc4t55, a.s.
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uniformly in t ∈ 601T 7. Again by Dai and Williams (1995,
Lemma 2.4), the revenue extracted under the feedback
strategy Epc after normalization is, for all i, as k → �,

41/k5
∫ T

0 pci 4t1
ĒXc1 k4t55dNi4A

c1 k
i 4t55→

∫ T

0 ri4t1 Epc4t1 Ēxc4t555 dt, a.s.
By Assumption 2(b) and the bounded convergence theorem,
we have

1
k
Gk

i 68Ep
c4t1 ĒXc1 k4t5510 ≤ t ≤ T 97

=
1
k
E

(

∫ T

0
pci 4t1

ĒXc1 k4t55dNi4A
c1 k
i 4t55

)

→

∫ T

0
ri4t1 Epc4t1 Ēxc4t555 dt0 (14)

We apply the convergence result (14) to the FNE Epf :
For any � > 0, there exists l1 such that for all k > l1,
∣

∣41/k5Gk
i 68Ep

f 4t1 ĒXf 1k4t5510 ≤ t ≤ T 97−
∫ T

0 ri4t1 Epf 4t1 Ēxf 4t555dt
∣

∣

< �/2. We apply the convergence result (14) to any uni-
lateral deviation Epc = 4pci 1 Ep

f
−i5 ∈ PF as a feedback policy

in the differential game subject to coupled constraints
(3): for the same � > 0, there exists l2 such that for
all k > l2,

∣

∣41/k5Gk
i 68Ep

c4t1 ĒXc1 k4t5510 ≤ t ≤ T 97 −
∫ T

0 ri4t1 Epc ·

4t1 Ēxc4t555dt
∣

∣ < �/2. Since Epc is a unilateral deviation
from the FNE Epf in the differential game, we have
∫ T

0 ri4t1 Epc4t1 Ēxc4t555dt ≤
∫ T

0 ri4t1 Epf 4t1 Ēxf 4t555dt. Then for all

k > max4l11 l25, 41/k5Gk
i 68Ep

c4t1 ĒXc1 k4t5510 ≤ t ≤ T 97 ≤ 41/k5 ·

Gk
i 68Ep

f 4t1 ĒXf 1k4t5510 ≤ t ≤ T 97+ �. �
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