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Online Appendix to “Distribution-Free Pricing”

A. Alternative Information Structure
A.1. Distribution Symmetry

In this subsection, we consider symmetric distributions. In particular, we consider a class of val-

uation distributions that are symmetric and share the same mean µ and standard deviation σ,

denoted by Fs ⊂F . We will comment on the purpose of this consideration after presenting our

results.

Proposition OA.1. Assume F ∈Fs. The price heuristic

p∗s =
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Moreover, p∗ ≤ p∗s.

Proposition OA.1 shows that the knowledge of the valuation distribution is symmetric results

in less aggressive pricing (i.e., p∗s ≥ p∗) and indeed provides more value. The benefits come from

two sources. First, technically speaking, instead of applying the one-sided Chebyshev’s inequality,

we can resort to the two-sided Chebyshev’s inequality and obtain sharper lower and upper bounds

with the price heuristic p= µ−k∗sσ. Second, by setting the price at the mean valuation, i.e., p= µ,

the seller earns a guaranteed profit of 1
2
(µ− c), regardless of the valuation distribution as long as

it is symmetric. Next, we show the first benefit is limited in the parameter space where the price

heuristic is not equal to the mean valuation (i.e., τ ≥ 4.2).

Proposition OA.2. For all F ∈Fs, if τ ≥ 2(
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≈ 4.2, then Π(p∗;F )

Π(p∗s ;F )
≥ 95%.

Proposition OA.2 shows that the first benefit that comes from using the two-sided Chebyshev’s

inequality is not very significant. That is because symmetry cannot eliminate the extreme case of a

symmetric two-point distribution. Moreover, the second benefit is not more valuable than knowing

the median of the valuation distribution. In other words, except that the area below the mean is

equal to the area above the mean in a distribution, detailed symmetry at other points (other than

the mean) is not helpful. One may argue that the symmetric valuation distribution is impractical,

even though some theoretical work specifically requires such a distributional assumption in order

to derive insights (see, e.g., Fang and Norman 2006). The gain from this somewhat hypothetical

exercise is that even though we impose a very restrictive property such as symmetry on the valuation

distribution, the benefit can be little beyond knowing the median. This insight is further confirmed
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Figure OA.1 Symmetric or Unimodal Distribution
performance

(a)

performance

(b)

performance

(c)

Note. (a) Symmetric distribution with both benefits (b) Symmetric distribution with one benefit (not using the

median information) (c) Unimodal distribution

when we compare the performance guarantees with and without the knowledge of the unimodality

of the valuation distribution. Nevertheless, the percentile information such as the median can be

very valuable. By pricing at the z-th percentile, vz, of the valuation, the seller can guarantee a

profit of z(vz − c).

Figure OA.1(a) shows the performance of symmetric distributions. It is obviously better than

the base model in comparison with Figure 1. By Proposition OA.1, if τ = 1−γ
δ
≤ 4.2, i.e., to the

right of the line 4.2δ+γ = 1, the price heuristic is µ. Thus we can see that the improvement beyond

the base model is due to setting the price to the median µ, namely, the second benefit. Moreover,

by Proposition OA.1, if τ = 1−γ
δ
≤ 1, i.e., to the right of the line δ+ γ = 1, with the price heuristic

being µ, the performance guarantee becomes 1−γ
2−γ , independent of δ. To isolate those two benefits,

Figure OA.1(b) shows the performance guarantee without letting the price heuristic be equal to

the mean. In other words, we display only the first benefit. Comparing Figures 1 and OA.1(b),

we see that applying the two-sided Chebyshev’s inequality affords little or even no benefit beyond

applying the one-sided Chebyshev’s inequality. In particular, when τ = 1−γ
δ
≤ 1.5, i.e., to the right

of the line 3δ+ 2γ = 2, k∗s given by equation (S.18) is less than 1, for which case we have no more

benefit from applying the two-sided Chebyshev’s inequality than the one-sided one.

A.2. Distribution Unimodality

In this subsection, we consider the situation where the seller has the additional information that

the valuation distribution is unimodal, which can be understood as there being one primary market

segment. In particular, we consider a class of valuation distributions that are unimodal and share

the same mean µ and standard deviation σ, denoted by Fu ⊂F .
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Proposition OA.3. Assume F ∈Fu. There exists the price heuristic p∗u that achieves a sharper

performance guarantee. Moreover, p∗u ≥ p∗ if τ ≥ 17
√

2
3
√

3
≈ 4.63, otherwise, p∗u ≤ p∗.

From Proposition OA.3, we can see that if τ ≥ 4.63, p∗u ≥ p∗, otherwise, p∗u ≤ p∗. That is because

the class of unimodal distributions is more concentrated around the mean for smaller standard

deviation σ than the class of general distributions that share the same mean and standard deviation.

Hence, when the standard deviation decreases, the price heuristic increases faster towards the mean

for the unimodal distributions than for the general class of distributions.

The unimodality may reduce the (two-sided) Chebyshev’s bound by a factor of at least 4/9.

However, by Proposition OA.3, this occurs when τ = 1−γ
δ

is large enough (i.e. τ ≥ 5.72), in other

words, when γ or δ is small enough. By Corollary 1(a), the performance guarantee given by the base

model is decreasing in γ and δ, and thus there is little room to improve the performance guarantee

with small values of γ and δ by knowing more information of unimodality. More importantly,

knowing the unimodality does not technically eliminate the possibility of the extreme case of two-

point distributions. In the following proposition, we confirm that the benefit of knowing unimodality

is not very significant.

Proposition OA.4. For all F ∈Fu, if τ ≥ 17
√

2
3
√

3
≈ 4.63, Π(p∗;F )

Π(p∗u;F )
≥ 95%. If 2.65 ≤ τ ≤ 17

√
2

3
√

3
≈

4.63, L
Lu
≥ 87%, where L and Lu are the achievable lower bounds for the model without and with

unimodality, respectively.

Whereas a region with a large middle-class base has a unimodal wealth distribution, another

region with a high Gini index may have a bipolar wealth distribution. Analogously, the targeted

consumer market may also have a valuation distribution that is not unimodal. For example, there

could be many vertically separated segments of customers whose valuations are clustered in their

segment. Although marketing research, which may be expensive, can be used to investigate whether

the customer valuation distribution is unimodal, Proposition OA.4 implies that the additional

benefit of having such information is no more than 15%(≈ 1
87%
− 1).

Figure OA.1(c) shows the performance guarantee for unimodal distributions, with δ ranging

from 0 to 2, and γ ranging from 0 to 1. In comparison with Figure 1, the gap between knowing

the unimodality information and not knowing is not much, as is analytically demonstrated by

Proposition OA.4.

B. Mean-Ranked Clustered Bundling

Algorithm OA.1 Mean-Ranked Clustered Bundling
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1: Input: ci, µi, σi, where i= 1,2, . . . , n

2: Initialize a binary-matrix M with 2n−1 rows and n− 1 columns

3: for j = 1,2, . . . ,2n−1 do

4: Find the index of 0 in j-th row vector of M and store them in an array Kj , update Kj← [0 Kj n]

5: for m= 1,2, . . . , length(Kj)− 1 do

6: Ljm← the total profit lower bound of a bundle with products i∈ {Kj
m + 1,Kj

m + 2, . . . ,Kj
m+1}

7: end for

8: πj←
length(Kj)−1∑

m=1

Ljm

9: end for

10: Let j∗ = arg maxj πj

11: Output: The total profit lower bound πj∗ , and the corresponding clustered bundling for j∗

Proposition OA.5. Algorithm OA.1 can find the optimal mean-ranked clustered bundling, and

its computational complexity is at least O(2n).

Proof of Proposition OA.5. First, we prove that there are 2n−1 cases for mean-ranked clustered

bundling by induction. Consider n = 2, there are two cases: products 1 and 2 are bundled as a

cluster, or products 1 and 2 are divided as two clusters. Suppose n=m, there are 2m−1 cases, then

we prove it is true for n=m+ 1. Consider products 1,2, . . . ,m, there are 2m−1 cases. And for any

case, the product m+ 1 can be put into the last cluster or to be a single cluster. Hence, there

are 2m−1× 2 = 2m cases. Second, Algorithm OA.1 considers 2n−1 cases for mean-ranked clustered

bundling. Thus it contains all cases of for mean-ranked clustered bundling. In other words, it

outputs the optimal mean-ranked clustered bundling. Lastly, it is easy to see the computational

complexity of Algorithm OA.1 is at least O(2n) since there are 2n−1 circles in the outer loop. �

B.1. Fixed Radius Clustering

In this subsection, we consider the heuristic which we called Fixed Radius Clustering (FRC): for

a given radius r, the difference of means of any two products is no more than r in a cluster. We

consider 10000 different radii, and let rj = (µn−µ1)j/9999, where j = 0,1, . . . ,9999. It is easy to see

the heuristic reduces to separate sales when j = 0 and the pure bundle when j = 9999. Thus, this

heuristic is more general with the optimized j∗, and would have a better performance guarantee

than separates sales and the pure bundle. The pseudo-code for the algorithm is given in Algorithm

OA.2. There are two interior loops: steps 5-9 and steps 11-13. The first loop is to produce an array

Kj to store the bundles, where the m-th bundle contains products i∈ {Kj
m + 1,Kj

m + 2, . . . ,Kj
m+1}

and Kj
m is the m-th element of Kj. The second loop applies Theorem 1(b) to calculate Ljm, which

is the lower bound on the profit of the m-th bundle.
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Algorithm OA.2 Fixed Radius Clustering (FRC)

1: Input: ci, µi, σi, where i= 1,2, . . . , n

2: Initialize rj = (µn−µ1)j/9999

3: for j = 1,2, . . . ,10000 do

4: Let m= 1, x= µ1

5: for i= 1,2, . . . , n do

6: if µi >x+ rj then

7: Let x= µi, K
j
m = i− 1, m=m+ 1

8: end if

9: end for

10: Update Kj← [0 Kj n]

11: for m= 1,2, . . . , length(Kj)− 1 do

12: Ljm← the total profit lower bound of a bundle with products i∈ {Kj
m + 1,Kj

m + 2, . . . ,Kj
m+1}

13: end for

14: πj←
length(Kj)−1∑

m=1

Ljm

15: end for

16: Let j∗ = arg maxj πj

17: Output: The total profit lower bound πj∗ , and the corresponding clustered bundling for j∗

Proposition OA.6. The computational complexity of Algorithm OA.2 is O(n).

Proof of Proposition OA.6. Note that steps 5-9 will run no more than n times. And there can

be no more n bundles, i.e., m ≤ n. Thus steps 11-13 also run no more than n times. Hence, the

computational complexity of Algorithm OA.2 is O(n) since it runs the two interior loops “for” no

more than n times. �

B.2. Top-down/Bottom-up Clustering

In this subsection, we consider the Top-down/Bottom-up Clustering algorithm which contains two

processes: “Top-down” and “Bottom-up”. This is why we call it Top-down/Bottom-up Clustering.

If the pure bundle is better than separate sales, we execute the algorithm from the pure bundle

(Top-down). We want to split each bundle into two sub-bundles with better total profit lower

bounds. If a bundle cannot be split into two sub-bundles with a better performance guarantee, i.e.,

the bundle has a larger lower bound than the total lower bounds of any two sub-bundles, we keep

the bundle unchanged. When all bundles cannot be split into two sub-bundles, the “Top-down”

process terminates. If the pure bundle is worse than separate sales, we execute the algorithm from

n separate products (Bottom-up). We want to cluster two adjacent bundles into one if it is better



6

to do so. When any two adjacent bundles cannot be bundled with a better performance guarantee,

the “Bottom-up” process terminates. The pseudo-code is given in Algorithm OA.3.

For the “Top-down” process, there are two arrays K and I, where the former one stores the

bundles with the m-th bundle containing products i∈ {Km + 1,Km + 2, . . . ,Km+1} and Km is the

m-th element of K, and the latter one stores the index of each bundle. Since it starts from the pure

bundle, we initialize K = [0 n] and I = [1] in step 3. The steps 5-9 investigate whether the current

bundles can be split if it is better to do so. If a bundle cannot be split into two sub-bundles, let

its index be 0, otherwise, let the two new bundles’ indices be 1. When all indices are 0, the loop

“while” terminates, i.e., we cannot get a better performance guarantee by “Top-down”. For the

“Bottom-up” process, K stores the bundles. The steps 17-22 investigate whether any two adjacent

bundles can be bundled with a better total profit lower bound for the current bundles. If the first

two adjacent bundles can be bundled, i.e., f = 1, we let the two bundles as the first bundle and the

third one as the second. If the first two adjacent bundles cannot be bundled, i.e., f = 0, we let the

second bundle as the first bundle and the third one as the second (step 19). After doing this for

all bundles, we check whether there exists a case in which two bundles can be bundled (step 23).

If any two adjacent bundles cannot be bundled, let I = 0 and the loop “while” terminates, i.e., we

cannot get a better total profit lower bound by “Bottom-up”. Figure OA.2 illustrates Algorithm

OA.3.

Algorithm OA.3 Top-down/Bottom-up Clustering (TBC)

1: Input: ci, µi, σi, where i= 1,2, . . . , n

2: if the pure bundle is better than separate sales (Top-down) then

3: Initialize two arrays K = [0 n] and I = [1]

4: while I 6= 0 do

5: for m= 1,2, . . . , length(K)− 1 do

6: Let cm = [cKm+1 cKm+2 · · · cKm+1 ], µm = [µKm+1 µKm+2 · · ·µKm+1 ], σm = [σKm+1 σKm+2 · · ·σKm+1 ]

7: If Im = 1, compute fm = split(cm,µm,σm), otherwise, fm = length(µm) (Function split outputs the

optimal size of the first bundle that splits a bundle into two sub-bundles, where the bundles’ parameters

are cm,µm,σm, respectively. The pseudo-code for function split is given in Algorithm OA.4.)

8: If fm = length(µm), let Im = 0, otherwise, let Im = 1; K′2m−1 =Km and K′2m =Km + fm

9: end for

10: Update K′ ← [K′ n] and K ← remove the repeated elements in K′, I ← add one element 1 after each

element 1 in array I

11: end while

12: end if
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13: if the pure bundle is worse than separate sales (Bottom-up) then

14: Initialize an array K = [1 2 · · ·n] and I = 1

15: while I = 1 do

16: Initialize m = 1, t = 1, c1 = [c1 c2 · · · cK1 ], µ1 = [µ1 µ2 · · ·µK1 ], σ1 = [σ1 σ2 · · ·σK1 ], c2 =

[cK1+1 cK1+2 · · · cK2 ], µ2 = [µK1+1 µK1+2 · · ·µK2 ], σ2 = [σK1+1 σK1+2 · · ·σK2 ]

17: for m= 1,2 . . . , length(K)− 1 do

18: Compute f = cluster(c1,µ1,σ1,c2,µ2,σ2) (Function cluster outputs 1 if bundling two sub-bundles is

better, otherwise 0, where the two sub-bundles’ parameters are c1,µ1,σ1, and c2,µ2,σ2, respectively.

The pseudo-code for function cluster is given in Algorithm OA.5.)

19: If f = 1, update c1← [c1 c2],µ1← [µ1 µ2],σ1← [σ1 σ2]; otherwise, update c1← c2,µ1←µ2,σ1←σ2,

let K′t =Km and update t← t+ 1

20: Update m←m+ 1, if m= length(K), break

21: Update c2← [cKm+1 cKm+2 · · · cKm+1 ], µ2← [µKm+1 µKm+2 · · ·µKm+1 ], σ2← [σKm+1 σKm+2 · · ·σKm+1 ]

22: end for

23: Update K′← [K′ n], if length(K)=length(K′), I = 0; otherwise, I = 1 and K←K′

24: end while

25: Update K← [0 K]

26: end if

27: Compute the total profit lower bound of each bundle and store it in L∗, let K∗←K

28: Output: The total profit lower bound L∗, and m-th bundle contains products i∈ {K∗m + 1,K∗m + 2, . . . ,K∗m+1}

Algorithm OA.4 function split

1: function f = split(c,µ,σ)

2: for i= 1,2, . . . , length(µ) do

3: Let t1 =
i∑

j=1

(µj − cj)

/√
i∑

j=1

σ2
j and t2 =

length(µ)∑
j=i+1

(µj − cj)

/√
length(µ)∑
j=i+1

σ2
j (t2 = 0 for i= length(µ))

4: Compute k′1 = 3

√
t1 +

√
t21 + 1 + 3

√
t1−

√
t21 + 1 and k′2 = 3

√
t2 +

√
t22 + 1 + 3

√
t2−

√
t22 + 1

5: Compute L1 =
i∑

j=1

(µj − cj)(1− 3
2t1
k
′3
1 ) and L2 =

length(µ)∑
j=i+1

(µj − cj)(1− 3
2t2
k
′3
2 ) (L2 = 0 for i= length(µ))

6: πi =L1 +L2

7: end for

8: f=index of the maximum in array π= [π1 π2 · · ·πlength(µ)]

9: end

Algorithm OA.5 function cluster

1: function f = cluster(c,µ,σ,c′,µ′,σ′)

2: Let t1 =
length(µ)∑

j=1

(µj − cj)

/√
length(µ)∑

j=1

σ2
j and t2 =

length(µ′)∑
j=1

(µ′j − c′j)

/√
length(µ′)∑

j=1

σ
′2
j

3: Compute k′1 = 3

√
t1 +

√
t21 + 1 + 3

√
t1−

√
t21 + 1 and k′2 = 3

√
t2 +

√
t22 + 1 + 3

√
t2−

√
t22 + 1
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4: Compute L1 =
length(µ)∑

j=1

(µj − cj)(1− 3
2t1
k
′3
1 ) and L2 =

length(µ′)∑
j=1

(µ′j − c′j)(1− 3
2t2
k
′3
2 )

5: Let c
′′

= [c c′],µ
′′

= [µ µ′],σ
′′

= [σ σ′] and t=
length(µ

′′
)∑

j=1

(µ
′′

j − c
′′
j )

/√
length(µ

′′
)∑

j=1

σ
′′2
j

6: Compute k=
3
√
t+
√
t2 + 1 +

3
√
t−
√
t2 + 1 and L=

length(µ
′′

)∑
j=1

(µ
′′

j − c
′′
j )(1− 3

2t
k3)

7: If L1 +L2 <L, f = 1; otherwise, f = 0

8: end

Figure OA.2 Illustration of Algorithm OA.3

(a) (b)

Note. (a) ”Top-down” process. (b) ”Bottom-up” process.

Proposition OA.7. The heuristic out of Algorithm OA.3 has a better performance guarantee

than separates sales and the pure bundle, and its computational complexity is O(n2).

Proof of Proposition OA.7. First, consider the pure bundle is better than separate sales. By

Algorithm OA.3, it executes the “Top-down” process. Note that the “Top-down” process will be

executed if and only if there exists a bundle that can be split into two sub-bundles with a better

performance guarantee. Then the output of the “Top-down” process is better than the pure bundle.

On the one hand, for each interior loop “for”, the algorithm runs length(K)− 1 times and the

function split contains a loop “for” with length(cm) =Km+1−Km circles due to Algorithm OA.4.

Thus, step 7 is executed
length(K)−1∑

m=1

Km+1−Km = n times for each loop “for”. On the other hand,

for the outer loop “while”, at least one bundle is split. There are n products, and then it runs at

most n− 1 times. Consequently, its computational complexity is O(n2).

Second, consider the pure bundle is worse than separate sales. By Algorithm OA.3, it executes the

“Bottom-up” process. Note that the “Bottom-up” process will be executed if and only if there exists

two adjacent bundles that can be bundled with a better performance guarantee. Then the output

of the “Bottom-up” process is better than separate sales. On the one hand, for each interior loop
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“for”, the algorithm runs length(K)− 1≤ n times and the computational complexity of function

cluster is O(1) due to Algorithm OA.5. On the other hand, for the outer loop “while”, at least

one product is bundled. There are n products, and then it runs at most n−1 times. Consequently,

its computational complexity is O(n2). �

C. Proofs

To show Theorem 1, we first prove a version of a one-sided Chebyshev’s inequality (on the left

tail), also known as Cantelli’s inequality, which is often stated in a different form (on the right tail,

for example, see Gallego et al. 2007).

Lemma OA.1 (Cantelli’s Inequality). For a random variable X that has mean µ and stan-

dard deviation σ and all a≥ 0,

P(X <µ− a)≤ P(X ≤ µ− a)≤ σ2

σ2 + a2
.

Equivalently, P(V < µ− kσ)≤ P(V ≤ µ− kσ)≤ 1
1+k2 for any k≥ 0.

Figure OA.3 Valuation Distribution

sales

unprofitable

customers

x

f(x)

Note. p(k) = µ− kσ, k≥ 0

Proof of Lemma OA.1. If a = 0, the inequalities trivially hold. Now consider a > 0. Let Y =

X −µ, then E[Y ] = E[−Y ] = 0 and var[Y ] = var[−Y ] = σ2. Let t= σ2/a≥ 0. We have

P(Y <−a)≤ P(Y ≤−a) = P(−Y ≥ a) = P(−Y + t≥ a+ t) = P

(
−Y + t

a+ t
≥ 1

)
≤ P

((
−Y + t

a+ t

)2

≥ 1

)
≤ E

[(
−Y + t

a+ t

)2
]

=
σ2 + t2

(a+ t)2
=

σ2

σ2 + a2
,

where the last inequality follows from Markov’s inequality. �

A sketch of the proof of Theorem 1. We first give a sketch of the proof here. The upper bound

U in Theorem 1(a) is no less than µ− c, i.e., U ≥ µ− c, where µ− c is the expected profit earned

from all customers under perfect price discrimination (i.e., everyone pays at their own valuation).
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Theorem 1(a) implies that the seller may be able to earn more than µ− c by serving only those

customers whose valuations are no less than the marginal cost c. Hence, the upper bound of the

optimal profit should be no more than µ− c plus the cost of serving unprofitable customers. The

unprofitable sales volume is P(V < c) (to the left of x = c in Figure OA.3). By Lemma OA.1,

we can obtain an upper bound of P(V < c) as 1
1+τ2 ; thus an upper bound of the expected profit

is µ− c+ cP(V < c) ≤ µ− c+ c
1+τ2 = µ− τ2

1+τ2 c. In the extreme case σ = 0, when the valuation

distribution is deterministic, the seller can earn the optimal profit µ − c ≥ 0 by charging price

p= µ. By Theorem 1(a), when σ = 0, τ =∞, then U = µ− c; thus we can see the upper bound U

is achievable.

Next we apply Lemma OA.1 again to find a lower bound on the seller’s profits. Theorem 1(b)

suggests that the profit earned by the seller has a lower bound L, which comes from charging a price

p∗ = µ−k∗σ, below the mean valuation µ. When the seller sets a price in the form of p(k) = µ−kσ

that is less than µ, the sales volumes correspond to the right of x= p(k) in Figure OA.3. By Lemma

OA.1, the complement of that area has an upper bound 1
1+k2 ; hence, that area has a lower bound

1− 1
1+k2 . Then we obtain a lower bound of the profit when charging p(k) = µ− kσ:

(p(k)− c)P(V ≥ p(k))≥ (µ− kσ− c)(1− 1

1 + k2
) = (µ− c)(1− k

τ
)(1− 1

1 + k2
).

The lower bound is maximized by k∗ =
3
√
τ +
√
τ 2 + 1 +

3
√
τ −
√
τ 2 + 1. �

Proof of Theorem 1(a). Define a random variable X such that its density function g(x) = f(x−

c). Hence the distribution of X is a horizontal shift of that of V towards the left by c units. Thus,

the mean and standard deviation of X are µ− c and σ, respectively.

Since any p ≥ c is better off than p < c which yields negative profit, we only need to consider

p≥ c for the profit maximization problem maxp π(p;F ). For any p≥ c,

π(p;F ) = (p− c)P(V ≥ p) = (p− c)P(X ≥ p− c)

≤ E[X|X ≥ p− c]≤ E[X|X ≥ 0] = µ− c−E[X|X < 0], (OA.1)

where the last equality is due to that µ− c= E[X|X < 0] +E[X|X ≥ 0].

Since g(x+ c) = f(x), then

−E[X|X < 0] = E[c−V |V < c]≤ E[c |V < c]≤ cP(V < c)≤ c

1 + ((µ− c)/σ)2
=

c

1 + τ 2
, (OA.2)

where the first inequality is due to valuation V ≥ 0 and the last inequality is due to Lemma OA.1

with k= (µ− c)/σ (where k≥ 0 due to Assumption (P)). Combining (OA.1) and (OA.2), we have

the desired upper bound.
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When σ = 0, we have τ =∞ and U = µ− c which is the exact optimal profit the seller earns

when facing the deterministic valuation µ. �

Proof of Theorem 1(b). Write a price heuristic in the form of p= µ− kσ≥ c for some k≥ 0. In

other words, 0≤ k≤ µ−c
σ

. Then, for all F ∈F ,

max
p>c

π(p;F )≥ π(p= µ− kσ;F ) = (µ− kσ− c)P(V ≥ µ− kσ)≥ (µ− c)(1− kσ

µ− c
)(1− 1

1 + k2
),

(OA.3)

where the inequality is due to P(V < µ− kσ) ≤ 1
1+k2 for k ≥ 0 from Lemma OA.1. For notation

convenience, denote ϕ(k)≡ (1− kσ
µ−c)(1−

1
1+k2 ).

Now we want to maximize the lower bound, (µ− c)ϕ(k), in (OA.3) to obtain the optimal robust

price. It can be verified that ϕ′(k) = −k4−3k2+2kτ
τ(1+k2)2

=− k
τ(1+k2)2

(k3 +3k−2τ). The non-zero stationary

points of ϕ(k) are characterized by ϕ′(k) = 0 which is equivalent to

k3 + 3k= 2τ. (OA.4)

(The function ϕ(k) is minimized at k= 0 or k= µ−c
σ

.) By Cardano’s solution for a cubic function,

the unique real root of (OA.4) is k∗ =
3
√
τ +
√
τ 2 + 1 +

3
√
τ −
√
τ 2 + 1. It is easy to see that indeed,

k∗ ≥ 0 because k∗ = 2τ
(k∗)2+3

≥ 0. Moreover, since −k3 − 3k is decreasing in k, thus for k ≤ k∗,

ϕ′(k)≥ 0 and when k≥ k∗, ϕ′(k)≤ 0. This demonstrates the function ϕ(k) is maximized at k= k∗

with the optimal value

ϕ(k∗) =

(
1− k

∗

τ

)(
1− 1

1 + (k∗)2

)
=

(k∗)2

(k∗)2 + 3
=

(k∗)3

2τ
= 1− 3

2τ
k∗, (OA.5)

where the first equality is by definition of ϕ(k) and the rest of identities are all due to (OA.4).

By (OA.4) and k∗ ≥ 0, we have k∗3 + 3k∗ = 2τ ≥ 3k∗, i.e., k∗ ≤ 2τ/3≤ τ = (µ− c)/σ. Thus, p∗ =

µ− k∗σ≥ c. In view of (OA.3), we immediately have the desired lower bound.

It is easily verifiable that any distribution within the stipulated class of two-point distributions

for any ε indeed has mean µ and standard deviation σ. With the optimal robust price p∗ = µ−k∗σ,

for a given two point distribution with kε = k∗ + ε, only those customers who have the valuation

at the high end of the two points would choose to purchase the product. Thus the resulting profit

is (1− 1
1+k2

ε
)(µ− k∗σ− c) = (µ− c)(1− k∗

τ
)(1− 1

1+k2
ε
), which is asymptotically approximated to the

lower bound (µ− c)ϕ(k∗) = (µ− c)(1− k∗

τ
)(1− 1

1+(k∗)2 ), in view of (OA.3), as ε↘ 0. �

Proof of Theorem 2. For all F ∈F ,

π(p∗ = µ− k∗σ;F )

maxp>c π(p;F )
≥
µ(1− γ)(1− 3

2τ
k∗)

maxp>c π(p;F )
≥
µ(1− γ)(1− 3

2τ
k∗)

µ− τ2

1+τ2 c
=

1− 3
2τ
k∗

1
1−γ −

τ2γ
(1+τ2)(1−γ)

=
1− 3

2τ
k∗

1 + γ
(1−γ)(1+τ2)

,

where the first inequality is due to Theorem 1(b) and the second inequality is due to Theorem

1(a). �
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Proof of Corollary 1. (a) It is trivial to see that ρ depends on the system primitives c,µ,σ only

through the ratios γ and δ. By (OA.4), (k∗)3 + 3k∗ = 2τ = 2 1−γ
δ

. Since the right-hand-side of this

equation is strictly decreasing in γ and δ, its unique real root k∗ must also be strictly decreasing

in γ and δ. Moreover, 1− 3
2τ
k∗ = (k∗)2

(k∗)2+3
is strictly increasing in k∗ and 1 + γ

(1−γ)(1+τ2)
is strictly

increasing in γ and δ. As a result, ρ=
1− 3

2τ k
∗

1+ γ

(1−γ)(1+τ2)

is strictly decreasing in γ and δ.

(b) By (OA.4), (k∗)3 + 3k∗ = 2τ = 2(µ−c)
σ

. Since the right-hand-side of this equation is strictly

decreasing in c, k∗ is strictly decreasing in c and p∗(c,µ,σ) = µ− k∗σ is strictly increasing in c.

By (OA.4), (k∗)3 +3k∗ = 2τ = 2(µ−c)
σ

. Since the right-hand-side of this equation is strictly decreas-

ing in σ, k∗ is strictly decreasing in σ. Again by (OA.4), k∗σ= 2(µ−c)
(k∗)2+3

, thus k∗σ= 2(µ−c)
(k∗)2+3

is strictly

increasing in σ and p∗ = µ− k∗σ is strictly decreasing in σ.

By (OA.4), (k∗)3 + 3k∗ = 2τ = 2(µ−c)
σ

. Taking derivatives with respect to µ on both sides of this

equation, we obtain (3(k∗)2 + 3)∂k
∗

∂µ
= 2

σ
, then ∂k∗

∂µ
σ= 2

3(k∗)2+3
. Since p∗ = µ−k∗σ, ∂p∗

∂µ
= 1− ∂k∗

∂µ
σ=

1− 2
3(k∗)2+3

= 3(k∗)2+1

3(k∗)2+3
> 0, which shows p∗ = µ− k∗σ is strictly increasing in µ. �

Proof of Proposition 1. (a) Because both the mean and standard deviation of the exponential

distribution are 1
λ
, δ= 1. Thus the optimal robust price is p∗ = 1

λ
(1−ke(γ)), under which the profit

is Π(p∗;F ∼ exp(λ)) = ( 1
λ
(1− ke(γ))− c)e−1+ke(γ). Solve the first order condition Π′ = (1− λ(p−

c))e−λp = 0, we have p∗ = 1
λ

+ c and Π
′′ |p=p∗ =−λe−λp − λ(1− λ(p− c))e−λp =−λe−λp∗ < 0. Thus

the optimal profit is 1
λ
e−1−cλ, which is achieved by p∗ = 1

λ
+ c. With γ = c

µ
= cλ, the performance

should be
( 1
λ (1−ke(γ))−c)e−1+ke(γ)

1
λ e
−1−cλ = (1− (ke(γ) + γ))e(ke(γ)+γ). When γ = 0, we have ke(γ)≈ 0.5961,

and then the performance is (1− 0.5961)e0.5961 ≈ 0.7331.

(b) The mean of the uniform distribution is a
2
, and the standard deviation is a

2
√

3
, so the

CV δ is 1√
3
. Thus the optimal robust price is a

2
− ku(γ) a

2
√

3
, under which the profit is (a

2
−

ku(γ) a
2
√

3
− c)

a
2 +ku(γ) a

2
√

3

a
. With the uniform valuation, the profit function is (p− c)a−p

a
, then the

optimal price is a+c
2

, and the optimal profit is
(a−c2 )2

a
. With γ = c

µ
= 2c

a
, the performance should

be
(1− ku(γ)√

3
−γ)(1+

ku(γ)√
3

)

(1− γ2 )2
. When γ = 0, we have ku(γ) ≈ 0.9064, and then the performance is (1 −

0.9064√
3

)(1 + 0.9064√
3

)≈ 0.7261. �

Proof of Proposition 4. We will apply the optimal robust price in Theorem 1(b). It is sufficient

to compare the lower bounds on profitability of selling separately and selling a bundle, because the

lower bounds obtained in Theorem 1(b) is asymptotically tight.

Denote τi = µi−ci
σi

= (1−γ)µi
σi

= 1−γ
δi

for all i, and τn̄ =
(1−γ)

∑
i µi√∑

i σ
2
i

. Moreover, let ki and kn̄ be the

unique real root to

k3
i + 3ki = 2τi =

2

σi
µi(1− γ), k3

n̄ + 3kn̄ = 2τn̄ =
2
∑

i µi√∑
i σ

2
i

(1− γ),
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respectively. By (OA.3) and (OA.5), the profit lower bound for selling n products separately, LSn ,

is:

LSn = (1− γ)
∑
i

µi
k2
i

k2
i + 3

= (1− γ)
∑
i

µi
1

2τi
k3
i =

∑
i

1

2
σik

3
i .

The profit lower bound for selling a bundle of n products, LBn , is:

LBn = (1− γ)
∑
i

µi
k2
n̄

k2
n̄ + 3

= (1− γ)
∑
i

µi
1

2τn̄
k3
n̄ =

√∑
i σ

2
i

2
k3
n̄.

Since

√∑
i σ

2
i∑

i µi
≤mini δi, i.e., τn̄ ≥ τi, and then kn̄ ≥ ki for all i. We have: for all i,

k3
i

k3
n̄

≤ k3
i + 3ki
k3
n̄ + 3kn̄

=
τi
τn̄

=

√∑
i σ

2
i

nσi
. (OA.6)

Then

LSn
LBn

=
∑
i

σi√∑
j σ

2
j

k3
i

k3
n̄

≤
∑
i

1

n
= 1,

where the inequality is due to (OA.6). Now we can conclude that under the condition

√∑
i σ

2
i∑

i µi
≤

mini δi, selling a bundle is guaranteed to generate higher profits than selling separately. �

Proof of Corollaries 2 and 3. It is easy to see that the conditions in Corollary 2 are special

cases of those in Corollary 3. And for Corollaries 2(b), if maxi σi
mini σi

≤
√
n, then

√
nmini σi ≥maxi σi ≥

1√
n

√∑
i σ

2
i , i.e.,

√∑
i σ

2
i ≤ nmini σi. Similarly, for Corollaries 2(c), maxi µi

mini µi
≤
√
n is one sufficient

condition for
√
nmaxi µi ≤

∑
i µi. To prove Corollary 3, it is sufficient to verify that the condition

in Proposition 4 is satisfied.

(a) We have √∑
i σ

2
i∑

i µi
=

√∑
i δ

2
i µ

2
i∑

i µi
≤max

i
δi

√∑
i µ

2
i∑

i µi
≤min

i
δi,

where the last inequality is due to maxi δi
mini δi

≤
∑
i µi√∑
i µ

2
i

.

(b) We have √∑
i σ

2
i∑

i µi
≤
√∑

i σ
2
i

nmini µi
≤ mini σi

maxi µi
≤ σl
µl

= min
i
δi,

where the second inequality is due to maxi µi
mini µi

≤ nmini σi√∑
i σ

2
i

and l= arg mini δi.

(c) We have √∑
i σ

2
i∑

i µi
≤
√
nmaxi σi∑

i µi
≤ mini σi

maxi µi
≤min

i
δi,

where the second inequality is due to maxi σi
mini σi

≤
∑
i µi√

nmaxi µi
. �
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Proof of Proposition 5. The CV of the bundle is δ√
n

. Define τb = 1−γ
δ√
n

=
√
nτ . Let n∗ be the

unique root of
(µ− c)(1− 3

2
√
nτ
k∗b )

µ− τ2

1+τ2 c
= 1− ε, (OA.7)

where k∗b is the unique root of (k∗b )
3 + 3k∗b = 2

√
nτ . It is easy to see that n∗ is decreasing in ε,

because the left hand side of (OA.7) is increasing in n.

By Theorem 1 (b), the lower bound of the robust bundle price p∗b = p∗(nc,nµ,
√
nσ) = nµ−k∗b

√
nσ

is n(µ− c)(1− 3
2
√
nτ
k∗b ), and the upper bound is n

(
µ− τ2

1+τ2 c
)
. The performance guarantee of the

robust bundle price p∗b is
(µ−c)(1− 3

2
√
nτ
k∗b )

µ− τ2

1+τ2 c
, which is increasing in n. Thus if n>n∗, the performance

guarantee should be more than 1− ε.

If γ = 0, (OA.7) becomes 1− 3
2
√
nτ
k∗b =

(k∗b )2

(k∗
b
)2+3

= 1− ε where the first equality is due to (OA.5).

Then k∗b =
√

3
ε
− 3. In view of (OA.4), we have (k∗b )

3 + 3k∗b = 3
ε

√
3
ε
− 3 = 2τb = 2

√
nτ = 2

√
n

δ
. Hence,

n∗ = (3
ε
)2( 3

ε
− 3) δ

2

4
. �

Proof of Proposition 6. Denote the correlation coefficient between valuations for products i and

j by ρij, which is non-positive. Then the standard deviation of the bundle of n products under

non-positive correlations is √√√√ n∑
i=1

σ2
i + 2

n∑
i=1

n∑
j=i+1

σiσjρij ≤

√√√√ n∑
i=1

σ2
i .

The latter is the standard deviation of the bundle of n independent products. Then τ ′′ =∑n
i=1(µi−ci)√∑n

i=1 σ
2
i+2

∑n
i=1

∑n
j=i+1 σiσjρij

≥
∑n
i=1(µi−ci)√∑n

i=1 σ
2
i

= τ ′. Let k′ and k′′ be the unique root of (k′)3 +3k′ = 2τ ′

and (k′′)3 + 3k′′ = 2τ ′′, respectively. Because k3 + 3k is increasing in k, then k′′ ≥ k′. Hence the

guaranteed performance lower bound of the bundle under non-positive correlations is even higher

than that under independent valuations, i.e.,

n∑
i=1

(µi− ci)
(k′′)2

(k′′)2 + 3
≥

n∑
i=1

(µi− ci)
(k′)2

(k′)2 + 3
.

Hence under conditions of Proposition 4 or its Corollaries 2 and 3 or Proposition 5, the bundle is

guaranteed to generate even higher profits than selling separately whose performance is unaffected

by valuation correlations. �

Proof of Proposition 7. Since the absolute value of correlation coefficient is less than 1, i.e.,

−1≤ ρij ≤ 1,

τ ′′ =

∑n

i=1(µi− ci)√∑n

i=1 σ
2
i + 2

∑n

i=1

∑n

j=i+1 σiσjρij
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≥
∑n

i=1(µi− ci)√∑n

i=1 σ
2
i + 2

∑n

i=1

∑n

j=i+1 σiσj
=

∑n

i=1(µi− ci)∑n

i=1 σi
= τ =

1− γ
δ

=
µi− ci
σi

,

where the inequality is due to ρij ≤ 1 and the last three identities are due to Assumption (S) and

σ1
µ1

= σ2
µ2

= · · ·= σn
µn

= δ. Following the same logic as the proof of Proposition 6, we have the desired

conclusion. �

Proof of Proposition 8. Let pi and pb be the prices for product i and the bundle, respectively.

Moreover, pb <
n∑
i=1

pi, otherwise, no customer will buy the bundle. Then if the customer buy product

i or the pure bundle, we have

Vi ≥ pi,

or
n∑
i=1

Vi ≥ pb.

In other words, the fraction of customers who will buy nothing is

P

( n⋂
i=1

(Vi < pi)
⋂ n∑

i=1

Vi < pb

)
.

If the customer buy the pure bundle, we have

n∑
i=1

Vi− pb ≥ Vi− pi ∀i,
n∑
i=1

Vi ≥ pb,

which is equivalent to
n∑
j 6=i

Vj ≥ pb− pi ∀i,
n∑
i=1

Vi ≥ pb.

Therefore, we can write the profit function as follows:

π(pi, pb;Fi ∈Fi)

≥min
i
{pi− ci}

[
1−P

( n⋂
i=1

(Vi < pi)
⋂ n∑

i=1

Vi < pb

)]
+

(
pb−

n∑
i=1

ci−min
i
{pi− ci}

)
P

( n⋂
i=1

(∑
j 6=i

Vj ≥ pb− pi
)⋂ n∑

i=1

Vi ≥ pb
)

≥min
i
{pi− ci}

[
1−P

( n⋂
i=1

(Vi < pi)

)]
+

(
pb−

n∑
i=1

ci−min
i
{pi− ci}

)
P

( n⋂
i=1

(∑
j 6=i

Vj ≥ pb− pi
)⋂ n∑

i=1

Vi ≥ pb
)
,

(OA.8)

where the first inequality is due to pj − cj ≥min{pi− ci}, and the second inequality is due to

1−P

( n⋂
i=1

(Vi < pi)
⋂ n∑

i=1

Vi ≥ pb
)
≥ 1−P

( n⋂
i=1

(Vi < pi)

)
.



16

Next, we will give a lower bound of the last term of (OA.8). We denote pi = µi − kiσi and

pb =
n∑
i=1

µi−kb
√

n∑
i=1

σ2
i , where ki > 0 and kb > 0. Let pb−pi =

∑
j 6=i
µj− k̄i

√∑
j 6=i
σ2
j , where k̄i > 0. Thus,

kiσi + k̄i
√∑

j 6=i
σ2
j = kb

√
n∑
i=1

σ2
i . By Cantelli’s inequality, we have

1−P

( n⋂
i=1

(Vi < pi)

)
= 1−

n∏
i=1

P(Vi < pi = µi− kiσi)≥ 1−
n∏
i=1

1

1 + k2
i

. (OA.9)

Denote Xi =
∑
j 6=i
Vj ≥ pb− pi for i≤ n and Xn+1 =

n∑
i=1

Vi. We can easily obtain that the correlation

between Xn+1 and Xi is ρn+1,i =
√∑

j 6=i
σ2
j

/√
n∑
i=1

σ2
i , and the correlation between Xi and Xj is

ρij =
∑
k 6=i,j

σ2
k

/(√∑
k 6=i

σ2
k

√∑
k 6=j

σ2
k

)
. By Olkin and Pratt’s inequality:

P

( n⋂
i=1

|Xi−µi|
σi

<ki

)
≥ 1− 1

n2

(√
u+
√
n− 1

√√√√n
n∑
i=1

1

k2
i

−u
)2

,

where u=
n∑
i=1

1
k2
i

+ 2
n∑
i=1

∑
j<i

ρij
kikj

and ρij is the correlation between Xi and Xj. We have

P

( n⋂
i=1

(∑
j 6=i

Vj ≥ pb− pi
)⋂ n∑

i=1

Vi ≥ pb
)

=P

( n⋂
i=1

(∑
j 6=i

(Vj −µj)
/√∑

j 6=i

σ2
j ≥−k̄i

)⋂ n∑
i=1

(Vi−µi)
/√√√√ n∑

i=1

σ2
i ≥−kb

)

≥P
( n⋂
i=1

(∣∣∣∣∑
j 6=i

(Vj −µj)
∣∣∣∣/√∑

j 6=i

σ2
j ≤ k̄i

)⋂∣∣∣∣ n∑
i=1

(Vi−µi)
∣∣∣∣/
√√√√ n∑

i=1

σ2
i ≤ kb

)

≥1− 1

(n+ 1)2

(√
u+
√
n

√√√√(n+ 1)

( n∑
i=1

1

k̄2
i

+
1

k2
b

)
−u
)2

≡ T,

(OA.10)

where u=
n∑
i=1

1
k̄2
i

+ 1
k2
b

+ 2

(
n∑
i=1

∑
j<i

ρij
k̄ik̄j

+
n∑
i=1

ρn+1,i

kbk̄i

)
.

If pi−ci = min
j
{pj−cj}, i.e., µi−ci−kiσi ≤ µj−cj−kjσj for j 6= i. Combining Equations (OA.8),

(OA.9) and (OA.10), we have

π(pi, pb;Fi ∈Fi)≥ (µi− ci− kiσi)
(

1−
n∏
i=1

1

1 + k2
i

)
+

(∑
j 6=i

(µj − cj)− k̄i
√∑

j 6=i

σ2
j

)
T.

Hence, we can solve the optimization problems (2), and select the largest value of the n problems

(one for each i), as the lower bound of π(pi, pb;Fi ∈Fi). Moreover, the distribution-free pricing

heuristic can be given by the corresponding optimal solutions. �


