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Abstract. Problem definition: We study a monopolistic robust pricing problem in which
the seller does not know the customers’ valuation distribution for a product but knows its
mean and variance. Academic/practical relevance: This minimal requirement for informa-
tion means that the pricing managers only need to be able to answer two questions: How
much will your targeted customers pay on average? To measure your confidence in the
previous answer, what is the standard deviation of customer valuations? Methodology:
We focus on the maximin profit criterion and derive distribution-free upper and lower
bounds on the profit function. Results: By maximizing the tight profit lower bound, we ob-
tain the optimal robust price in closed form as well as its distribution-free, worst-case per-
formance bound.We then extend the single-product result to study the robust pure bundle
pricing problem where the seller only knows the mean and variance of each product, and
we provide easily verifiable, distribution-free, sufficient conditions that guarantee the pure
bundle to be more robustly profitable than à la carte (i.e., separate) sales. We further derive
a distribution-free, worst-case performance guarantee for a heuristic scheme in which cus-
tomers choose between buying either a single product or a pure bundle. Moreover, we
generalize separate sales and pure bundling to a scheme called clustered bundling that
imposes a price for each part (i.e., cluster) of a partition of all products and allows custom-
ers to choose one or multiple parts (i.e., clusters), and we provide various algorithms to
compute clustered bundling heuristics. In parallel, most of our results hold for the mini-
max relative regret criterion as well.Managerial implications: The robust price for a single
product is in closed form under the maximin profit or minimax relative regret criterion
and hence, is easily computable. Its interpretation can be easily explained to pricing man-
agers. We also provide efficient algorithms to compute various mixed bundling heuristics
for the multiproduct problem.
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1. Introduction
We study a monopoly pricing problem in which a seller
has to decide on and commit to a price with only limited
knowledge of the customer valuation distribution. This
problem arises when the seller launches an innovative
product with limited market information or when the
seller needs to offer a personalized price to a one-time
customer about whom the seller knows little. Similar
problems also occur when a firm launches a new sub-
scription service, with a bundle of goods and services,
for which detailed information about customer valua-
tions may be hard to obtain. Such pricing problems with
limited information about customers are extremely chal-
lenging yet crucial for the seller’s profitability. Despite
the lack of detailed information, the seller is likely to

know how to answer the following two questions. First,
how much will the targeted customers pay on average?
Second, to measure the confidence level of the previous
answer, what is the standard deviation of customer val-
uations? Technically, these two questions can tease out
information about the first and second moments of the
customer valuation distribution. With answers to those
two questions about the demand, as well as the known
cost information on the supply side, we solve for the ro-
bust pricing problem under various criteria. Under the
focal criterion referred to as the maximin profit criterion,
the seller sets a price to maximize its profit in the worst
scenario among all customer valuation distributions that
share the same mean and standard deviation. Under an
alternative criterion referred to as the minimax relative
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(or absolute) regret criterion, the seller minimizes the
maximum relative (or absolute) regret because of not
knowing the true distribution as opposed to possessing
this information. In any case, we search for the most ro-
bust pricing solution.

Under the maximin profit criterion, we provide a ro-
bust price that is conservative in protecting the seller
against the worst possible profit. The lower bound on
the profit for the robust price is (asymptotically)
achievable; hence, the robust price is the best against all
odds. Furthermore, this optimal robust price is in
closed form and hence, easily computable. It depends
only on the mean and standard deviation of the cus-
tomer valuation distribution, teased out from the two
questions, and on the product’s marginal cost. (Hereaf-
ter, we refer to the knowledge of just the mean and
variance about the valuation distribution as “limited
information.”) We show that the smaller the ratio of
the standard deviation to the mean of the customer
valuation distribution (i.e., the coefficient of variation
(CV)), the higher the optimal robust price and the bet-
ter its performance guarantee. The higher the marginal
cost, the higher the optimal robust price and the worse
its performance guarantee. That is, on the demand
side, the CV of the valuation distribution provides a
relative measure of the concentration of the customer
valuations. The seller needs to set a lower optimal ro-
bust price if the valuation distribution is more dis-
persed. On the supply side, the marginal cost plays a
critical role in determining how aggressive the seller
should be when uncertain about customer valuation.
With only limited information about the demand side,
there is less room for a seller to make a mistake (i.e., in
the range of profitable feasible prices) when the pro-
duction cost is higher. As a result, the performance
guarantee of the optimal robust price becomes worse.
The optimal robust price under the minimax relative
regret criterion has a similar closed form, and hence, it
has the same monotonicity properties as those under
the focal maximin profit criterion, although the latter is
shown to be lower than the former.

We further investigate the benefit of having less or
more information than themean and standard deviation
of the valuation distribution. If the seller knows only the
mean and range of the valuation distribution, the worst
case that results in the largest standard deviation is a
two-point valuation distribution with the two ends of
the range as the possible realizations. Then, the robust
pricing problem can be reduced to the one studied in
our base model. Moreover, we can obtain an optimal ro-
bust price with a sharper performance guarantee if the
seller also knows that the optimal price is below the
mean valuation, the valuation distribution is symmetric
or unimodal, or the third moment information is re-
vealed. However, having such additional information
may be of limited marginal benefit. The intuition is that

it may not help eliminate the worst case of a bipolar val-
uation distribution.

A seller may encounter the same robust pricing
problem in selling multiple products. In this situation,
the seller knows only the mean and standard devia-
tion of the customer valuation distribution for each
product. The seller may sell the products separately
(as “separate sales”) or may choose to sell all products
in a pure bundle (referred to as “pure bundling”) by
setting a bundle price. Under the focal maximin profit
criterion, we apply the optimal robust price from the
single-product problem and compare the performance
of pure bundling with that of separate sales in
the limited information setting. The idea that “bundling
reduces dispersion” and improves profitability is not
new (see, e.g., Adams and Yellen 1976). However, pre-
vious formal statements of the idea rely on specific
assumptions about valuation distributions. In contrast,
we provide easily verifiable sufficient conditions under
which a bundle is guaranteed to be more profitable
than separate sales without making any distributional
assumption. In particular, we show that as long as
the cost structure in terms of profit margins and
the demand characteristics in terms of CVs are the same
for all products, the bundle is more robustly profitable
than separate sales, regardless of the detailed valuation
distributions and how they are correlated. We also
prove that the optimal robust bundle price performs
better than separate sales if the CV of the bundle valua-
tion is smaller. This can be achieved when the bundle is
reasonably large in spite of having nonzero marginal
costs. We illustrate the performance of our robust bun-
dle price with three practical examples: the streaming
subscription service, Spotify, for selling digital goods; a
leading information technology (IT) company offering a
personalized bundle of hardware and software to
commercial customers; and a theater company selling
season tickets to patrons who have correlated valua-
tions for plays. Furthermore, we derive a distribution-
free, worst-case performance guarantee for pricing
under a heuristic scheme in which customers choose
between buying either a single product or a pure
bundle. Lastly, we generalize separate sales and pure
bundling to a novel scheme, which we refer to as
clustered bundling that imposes a price for each part
(referred to as a cluster) of a partition of all products
and allows customers to choose one or multiple parts
(i.e., clusters), and provide various algorithms to
compute such clustered bundling heuristics. In paral-
lel, all of our results except those of Section 4.2, in the
multiproduct problem, hold for the minimax relative
regret criterion as well.

1.1. Contributions
We make the following contributions. First, we provide
a performance guarantee under the focal maximin profit
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criterion for a practical robust pricing problem with
limited information and a general marginal cost. The
optimal robust price is in closed form (hence, easily
computable) and achieves a tight performance lower
bound. We also show that having additional informa-
tion beyond the first and second moments of the valu-
ation distribution may be of little additional value in
protecting the seller from the worst-case scenario. Sec-
ond, we fully characterize the optimal robust price
that minimizes the maximum relative or absolute re-
gret, which is shown to be higher than that under the
maximin profit criterion, whereas the optimal robust
price under the minimax relative regret criterion has a
closed form similar to that under the focal maximin
profit criterion. This result demonstrates how various
distribution-free objectives may result in different op-
timal robust pricing decisions even with the same in-
formation. Third, for the multiproduct problem, we
give theoretical support to the profitability of the pure
bundle over separate sales without making any de-
tailed distributional assumptions. That serves as a for-
malization of the idea that “bundling reduces dis-
persion” in a distribution-free sense, without the need
to resort to any limiting argument on the bundle size.
Finally, we provide various heuristics for the mixed
bundling problem. In particular, we derive a
distribution-free, worst-case performance guarantee
for a heuristic scheme in which customers choose be-
tween buying either a single product or a pure bundle.
We also generalize separate sales and pure bundling
to clustered bundling and provide various algorithms
to compute clustered bundling heuristics. Because of
the similarity between the closed forms of the optimal
robust price under the maximin profit and minimax
relative regret criteria, our results on comparing pure
bundling and separate sales derived for the former cri-
terion hold for the latter one as well.

2. Literature Review
Our work belongs to the stream of research on robust
pricing. This stream studies a one-shot pricing decision
with limited market information. This problem is more
appropriate in practice when the firm has to commit to
a price before the selling season starts or has to quote a
personalized price to a one-time customer. In those sit-
uations, the firm has no opportunity to learn the mar-
ket and update the price, but it has to make a decision
with the limited information it has about customers.
Thiele (2008) studies a monopolistic pricing problem
in which the seller knows the number of potential
buyers and their random valuation support. Cohen
et al. (2021) study a robust pricing model without
knowing the specific form of the demand function. The
authors derive analytical performance bounds for a va-
riety of demand functions with only information about

the marginal cost and the maximum price (i.e., choke
price) at which no customers would want to buy. In
contrast, we impose limited information assumptions
directly on the customer valuation instead of on the
demand function.1 In a similar fashion to our paper,
Bergemann and Schlag (2011) consider a customer val-
uation distribution that is unknown but is assumed to
be in a neighborhood of a given distribution. In con-
trast, we assume that the pricing managers only know
the mean and standard deviation and have no further
detailed information about the valuation distribution.
In the operations literature, this information structure
is often referred to as “distribution free.” Similarly,
Bergemann and Schlag (2008) consider the pricing prob-
lem in which the seller only knows the support of the
possible valuations and has no further distributional in-
formation. However, the authors do not give a perfor-
mance guarantee of the optimal robust price as we do.
We show that the robust pricing problem with informa-
tion about the valuation mean and support can be trans-
formed into our problem. Azar and Micali (2013) study
revenue maximization for auctions of digital goods with
zero marginal costs and give a posted price mechanism
that maximizes revenue in the worst case under the
knowledge of the mean and variance of each bidder’s
marginal distribution. In contrast, we study a robust
pricing problemwith nonnegativemarginal costs.

More recently, Carroll (2017) studies a robust mech-
anism design problem in which a principal wants to
screen an agent along several dimensions of private in-
formation. With the application of his results to the
monopoly pricing of multiple products with private
customer valuations, the author shows that, if the prin-
cipal knows the marginal valuation distribution of
each product but does not know the joint distribution,
separate sales are the most robust solution even when
mixed bundling is allowed, in the sense of achieving the
highest worst-case expected profit among all joint distri-
butions consistent with the knownmarginals. If the sell-
er knows only the mean and variance of the marginal
distribution of each product, for a given correlation struc-
ture, we show that selling a bundle is robustly more
profitable than separate sales under some mild condi-
tions. If the correlation structure turns out to be the
worst for bundling, in which case all products are posi-
tively correlated, bundling is as effective as separate
sales, which is consistent with Carroll (2017). However,
bundling is robustly more profitable than separate sales
for correlation structures other than the worst case,
which restores the robust profitability of bundling over
separate sales in a more general sense. Koçyiğit et al.
(2021) study a robust multiproduct pricing problem
with a rectangular uncertainty set for customer valua-
tions by minimizing the maximum absolute regret and
show that the optimal robust sellingmechanism is to sell
goods separately. In contrast, we consider such a problem
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with moments information under the maximin profit
and minimax relative regret criteria and show when
pure bundling is more robust than separate sales.

The papers most closely related to our work are Kos
and Messner (2015) and Carrasco et al. (2018). Both
papers study revenue maximization of a single prod-
uct with the product cost assumed away and adopt
the maximin revenue criterion, similar to our maximin
profit criterion. Kos and Messner (2015) assume the
information structure of knowing the range of the
mean valuation and the upper bound of the valuation
support. The authors provide the optimal robust de-
terministic price and randomized price distribution.
Our work assumes that the seller knows precisely the
first two (or three) moments of the valuation distribu-
tion and focuses on a deterministic posted pricing pol-
icy for a nonnegative product cost. In a more general
setting than ours, Carrasco et al. (2018) study the opti-
mal mechanism design problem of a seller who is par-
tially informed about the distribution of the buyer’s
valuations by only knowing its first N moments. The
authors characterize the optimal mechanism for N � 2
that contains an allocation rule and a transfer func-
tion, and also, they obtain an optimal robust price
with the product cost being zero.2 We complement
Carrasco et al. (2018) by focusing on the optimal ro-
bust (simple-to-implement posted) price with a non-
zero product cost and obtain a tight lower profit
bound. We also solve the robust pricing problem un-
der alternative criteria and compare various optimal
robust prices. We then extend the single-product re-
sult to study the robust pricing problems of selling
multiple products through separate sales, pure bun-
dling, or mixed bundling heuristic schemes.

We apply our optimal robust price to the (mixed)
bundle pricing problem. In the economics literature, it
is well known that bundling can be an effective way
for a multiproduct monopolist to increase profits. The
early economics papers focus on a two-product mo-
nopoly problem because of the difficulty of analyzing
cases of multiple products. The work on bundling
with more than two products emerges in the literature
on information goods, which have small or even no
marginal costs. In particular, Bakos and Brynjolfsson
(1999) consider a monopolist selling a large number of
information goods with zero marginal costs where the
consumer valuations of those goods are independent
and identically distributed (i.i.d.). By the weak law of
large numbers, they show that “bundling very large
numbers of unrelated information goods can be sur-
prisingly profitable” (Bakos and Brynjolfsson 1999, p.
1913). We calculate a closed-form robust price for
pure bundling of a fixed bundle size with an easily
computable performance guarantee. Our approach
and results go beyond zero marginal costs and the

i.i.d. valuation assumption. We also do not require
any limiting argument on the bundle size (see, e.g.,
Abdallah 2019, Abdallah et al. 2021).

Because it is difficult to compute the optimal mixed
bundling prices with a number of, say n, products
(with 2n − 1 prices to be decided), it is desirable to of-
fer a simple scheme with a small number of prices to
determine yet one that still captures most of the opti-
mal profit of the mixed bundling. Babaioff et al. (2014)
consider a monopolist seller who sells n heteroge-
neous products to a buyer; they show that selling each
product separately or all products together as a bun-
dle can achieve at least a fraction of one-sixth of the op-
timal mixed bundling pricing. Chu et al. (2011) propose
a pricing scheme called bundle-size pricing (BSP),
where the price for a bundle option depends only on
the size of the bundle; they show that the optimal BSP
scheme tends to yield profits close to the optimal profit
of mixed bundling as calculated by numerical experi-
ments. Li et al. (2022) show that the BSP problem can be
approximated by a convex optimization problem using
only the first and second moments of customer valua-
tions; then, they numerically solve the convex optimiza-
tion problem for bundle pricing heuristics. In contrast,
we provide provable performance guarantees for our
pricing heuristics. Ma and Simchi-Levi (2015) introduce
a bundling mechanism called “pure bundling with dis-
posal for cost” (PBDC). Their main purpose is to pro-
vide a theoretical guarantee for the performance of
PBDC that holds for arbitrary independent distributions
by using techniques from the mechanism design litera-
ture. In particular, it is shown that either PBDC or indi-
vidual sales will obtain at least 1/5.2 of the optimal
profit among all incentive-compatible and individually
rational mechanisms.

In economics, there are papers that compare pure
bundling and separate sales (see, e.g., Chakraborty
1999, Fang and Norman 2006). These papers make
restrictive assumptions either about the number of
products or about the detailed valuation distribu-
tions. For example, Fang and Norman (2006) show
that bundling is more profitable than separate sales
with a given finite number of goods, provided that
the distributions of valuations are i.i.d. and follow
a symmetric and log-concave distribution. Further-
more, they assume that all products have the same
marginal cost and that the optimal separate-sales
price is no more than the mean valuation for any
product. In contrast, without making any detailed
distributional assumptions, we impose easily verifi-
able sufficient conditions on the marginal costs and
the means and variances of valuation distributions,
under which selling a bundle is guaranteed to generate
higher profits than selling products separately in a ro-
bust sense. One can view our results as formalizing the
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idea that “bundling reduces dispersion” in a robust sense
because essentially, our sufficient conditions on the valu-
ation distributions of individual products amount to re-
quiring the CV of the bundle valuation to be less than
those of individual products.

Finally, our work is related to robust decision mak-
ing in operations, such as the optimal pricing or inven-
tory decision under three robust criteria; one is to maxi-
mize the seller’s worst-case utility, and the other two are
to minimize the seller’s worst-case relative/absolute re-
gret. In the newsvendor context, Gallego and Moon
(1993) consider the maximin profit criterion, whereas
Perakis and Roels (2008) adopt the minimax absolute re-
gret criterion. In the pricing context, Cohen et al. (2021)
use the maximin profit criterion, whereas Allouah et al.
(2021) study a robust pricing problem with sample valu-
ations under the minimax relative regret criterion. In
our setting, we analyze and compare all three criteria.

3. The Model
Consider a monopoly pricing problem. The seller sells
a product to a market of customers with heterogenous
valuations. The valuation (or willingness to pay) V of
a randomly selected customer in the targeted market
follows a distribution with cumulative distribution
function (c.d.f.) F(v) over a nonnegative support, its
probability density function f(v), mean μ, and stan-
dard deviation σ. The seller incurs a constant marginal
cost c. For any price p, the corresponding profit is

π(p;F) � (p − c)P(V ≥ p) � (p − c)(1 − lim
v→p−

F(v)):

In the case of a continuous distribution F, π(p;F) �
(p− c)(1− F(p)). Our results are generic to accommo-
date continuous and discrete distributions F(·).

Our model setup is the same as in the classical mo-
nopoly pricing problem, except that the seller does
not know the customers’ exact valuation distribution
F(v) when it sets the price. When an innovative prod-
uct or service is being sold, although the exact valua-
tion distribution may be hard to obtain, the mean and
standard deviation information can be much easier to
estimate. It essentially amounts to asking the pricing
managers the following two questions.

(i) How much will your targeted customers pay on
average? (information about μ)

(ii) How sure are you? (information about σ)
Thus, we assume that the seller has an idea about the

finite first and second moments of the valuation distribu-
tion (i.e., μ and σ > 0).3 (If σ � 0, the demand is complete-
ly deterministic, and the optimal price is simply μ.)

We denote by δ ≡ σ=μ the CV of the valuation distri-
bution and by γ ≡ c=μ the ratio of the marginal cost to
the mean valuation. Because the term (1=γ− 1) relates
to the potential profit margin of the product, a low
(high) value of γ corresponds to a high (low) potential

profit margin. The unit-free measure δ is on the demand
side, and the unit-free measure γ is on the supply side.
We further define another unit-free measure that com-
bines the measures on both the demand and supply
sides: for σ > 0, denote

τ ≡ 1− γ

δ
� μ− c

σ
:

The following assumption is the only one we need for
our results.

Assumption (P). μ ≥ c (i.e., γ ≤ 1).
This assumption is satisfied for digital goods whose

reproduction/distribution may incur almost zero
costs (i.e., c ≈ 0). In general, this assumption is innocu-
ous because μ is the average valuation of the targeted
market. Suppose it does not hold. Then, even if the
seller can perfectly price discriminate every customer
within the targeted valuation range such that each one
pays at their own valuation, the expected profit is neg-
ative. This suggests that it is beneficial for the seller to
exclude some very low-valuation customers from its
targeted market. Assumption (P) results in τ ≥ 0.

3.1. The Focal Maximin Profit Criterion
LetF be the class of all (continuous or discrete) distri-
butions that share the same mean μ ≥ c and standard
deviation σ > 0 and are supported on a nonnegative
real line. In particular, F ≡ {F(v),v ≥ 0 | E[V] � μ,
E[V2] � μ2 + σ2}. Armed with this set, our goal is to
solve for an optimal robust price

p∗ � arg max
p

{min
F∈F π(p;F)}

and provide a worst-case performance guarantee for
this optimal robust price p∗, under the focal maximin
profit criterion (see, e.g., Bergemann and Schlag 2011,
Kos and Messner 2015, Carrasco et al. 2018, Cohen
et al. 2021). This criterion protects the seller against
the worst-case scenario in terms of the absolute profit
value, which could be a survivalmeasure for the seller.
We focus on this maximin profit criterion and consid-
er two alternative criteria in Section 5. We will show
that the results obtained under the maximin profit cri-
terion carry over to the minimax relative regret criteri-
on because their optimal robust prices have similar
closed-form expressions.

To provide a distribution-free performance guaran-
tee (in terms of the primitives c, μ, and σ), we first de-
rive a distribution-free upper bound on the optimal
profit. Then, we provide a tight distribution-free lower
bound for any given price p based on which we obtain
an optimal robust price p∗ by maximizing the lower
bound as a function of p. As a result, the performance
lower bound of the optimal robust price p∗ can be
again expressed in terms of the system primitives.
Lastly, we show the performance guarantee of this
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optimal robust price by comparing the distribution-
free lower and upper bounds.

Theorem 1 (Distribution-Free Bounds). We have the fol-
lowing bounds.

(a) (Upper bound) For all F ∈F, maxpπ(p;F) ≤ μ

− τ2

1+τ2 c ≡U:

(b) (Lower bound) For all F ∈F, maxpπ(p;F) ≥
π(p∗ � μ− k∗σ;F) ≥ (μ− c)(1− 3

2τ k
∗) ≡ L, where

k∗ ≡
���������������
τ+

��������
τ2 + 1

√3
√

+
���������������
τ−

��������
τ2 + 1

√3
√

≥ 0:

Moreover, the lower bound is asymptotically achievable by
a series of two-point distributions:

V �
{μ− kεσ withprobability

1
1+ k2ε

,

μ+ 1
kε
σ withprobability1− 1

1+ k2ε
,

with kε � k∗ + ε, as ε↘ 0.
Theorem 1(b) shows the lower bound is “tight” in

an asymptotic sense. This tightness notion follows
from Bertsimas and Popescu (2005, definition 1.2).
Specifically, the lower bound can be asymptotically
achievable by a series of two-point distributions. In a
different setting, Gallego and Moon (1993) model the
robust newsvendor problem as that of finding the size
of order that maximizes the expected profit against the
worst possible demand distribution. In their paper,
only the mean μ and the variance σ2 of the demand are
known without any further assumptions about the
form of the distribution. The authors show that the
worst possible distribution is a two-point distribution
(see Gallego and Moon 1993, remark 2). Theorem 1(b)
suggests that the worst possible distribution for our
model is also a two-point distribution, analogous to the
robust newsvendor problem. In the worst case, the sell-
er faces two distinct customer segments, one with a val-
uation below μ and the other with a valuation above μ.

Taking the ratio of the distribution-free lower
bound L to the upper boundU, we have the following
distribution-free performance guarantee in closed form.
From the sketch of the proof of Theorem 1, we can see
that U is, in fact, also an upper bound on the total profit
when every profitable customer (whose valuation is
more than c) pays their own valuation.Hence, this upper
boundU is also an upper bound on the total profit of ful-
ly personalized pricing. As a result, the following perfor-
mance guarantee is also one on the optimality of using a
single price benchmarked against fully personalized
pricing. Elmachtoub et al. (2021) study such a problem
with the seller knowing the customer valuation distribu-
tion, whereas Cohen et al. (2022) study the problem of
customized pricing for different groups under fairness
constraints.

Theorem 2 (Robust Price and Performance Guarantee).
The optimal robust price is p∗(c,μ,σ) � μ− k∗σ with the

safety factor k∗ �
���������������
τ+ ��������

τ2 + 1
√

3
√

+
���������������
τ− ��������

τ2 + 1
√

3
√

≥ 0, which
achieves the following performance guarantee: For all
F ∈F,

π(p∗;F)
maxpπ(p;F) ≥

1− 3
2τk

∗

1+ γ
(1−γ)(1+τ2)

≡ ρ:

The form of the optimal robust price is analogous
to the optimal order quantity for a newsvendor fac-
ing a normally distributed demand distribution N(μ,
σ): Q∗ � μ+ z∗σ, where z∗ �Φ−1 (critical fractile) and
Φ−1(x) is the inverse function of the c.d.f. of the stan-
dard normal distribution N(0, 1). The safety factor z∗
determines the additional amount of inventory the
newsvendor needs to hold beyond the expected de-
mand to cope with demand uncertainty. Analogously,
in our robust pricing setting, k∗, as a safety factor, deter-
mines the discount the seller needs to offer below the
expected valuation to cope with valuation uncertainty.
In the newsvendor setting, being conservative means
having an order quantity beyond the mean demand,
whereas in the robust pricing setting, being conserva-
tive means charging a price below the mean valuation. It
is easy to see that the safety factor k∗, only depending
on τ, is increasing in τ. That is, the higher the τ value
(i.e., the lower the potential profit margin or the larger
the variability in the valuation distribution), the larger
the safety factor in robust pricing should be and hence,
the lower the optimal robust price.

Corollary 1 (Monotonicity Properties). The following
monotonicity properties hold.

(a) The performance guarantee ρ(c,μ,σ) � ρ(γ,δ) is
strictly decreasing in γ and δ.

(b) The optimal robust price p∗(c,μ,σ) � μ− k∗σ is strict-
ly increasing in c and μ and is strictly decreasing in σ.

Corollary 1(a) first says that the performance guar-
antee ρ is determined by the two unit-free measures γ
and δ. The measure γ captures the potential profitabil-
ity of making a sale, and the measure δ quantifies the
variability in the valuation distribution of the targeted
market. Corollary 1(a) further says that the proposed
optimal robust price is guaranteed to perform better
when the marginal cost is lower or the valuation dis-
tribution has lower variability. The former statement
suggests that the optimal robust price is more likely to
perform well for digital goods than physical products
because digital goods tend to have lower reproduc-
tion and distribution costs. The latter statement, which
is intuitive, suggests that the more accurate market in-
formation the seller has, the higher profits can be
guaranteed. Figure 1 shows the guaranteed perfor-
mance as a function of γ and δ, with γ ranging from
zero to one and δ ranging from zero to two. As the
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upper bound U may not be tight, the actual perfor-
mance of the optimal robust price can be better than
the displayed value. From Figure 1, we see that the
provable performance is good when γ and δ are rela-
tively small. For example, to the left of the line defined
by the equation 5:19δ+ γ � 1, the provable perfor-
mance guarantee is more than 50%. In Section 4, we
will apply the single-product optimal robust price to
the bundling pricing problem and show that the per-
formance of a robust heuristic for the pure bundle can
be very good for even large values of δ of individual
products when the bundle is medium-sized.

Corollary 1(b) implies that if there is more uncer-
tainty in the valuation distribution (measured by its
CV � δ � σ=μ), the optimal robust price should be
more aggressive (i.e., lower). Bergemann and Schlag
(2011) obtain similar insights under a different formu-
lation of the uncertainty set.

Our optimal robust price is designed against theworst
possible situation selected by the nature. Next, we will
demonstrate its performance for five commonly used
distributions: exponential, uniform, truncated normal,
truncated logit, and log-normal distributions. These dis-
tributions are the same distributions adopted by Chu
et al. (2011) to represent various valuation distributions
when the performance of a heuristic bundle pricing poli-
cy was tested. Because we know that the true valuation
distribution is an exponential or uniform distribution,
their optimal price can be easily expressed in closed
form. Then, we can compare the profit of our optimal ro-
bust price without knowing the true distribution to the
optimal profit under the knowledge of the true distribu-
tion. In particular, we can obtain tighter bounds on the
performance of the optimal robust price for those specific
distributions as follows.

Proposition 1.
(a) For an exponential distribution with parameter λ as the

underlying distribution, the profit performance of the optimal
robust price is (1− (ke(γ) + γ))e(ke(γ)+γ), where ke(γ) is the
unique real solution to k3 + 3k � 2(1− γ): In particular, if γ �
0, the profit of our heuristic captures at least 73.31% of
the optimal profit under the knowledge of the true distribution.

(b) For a uniform distribution on [0,a] as the underlying dis-
tribution, the profit performance of the optimal robust price is
(1− ku(γ)=

��
3

√ − γ)(1+ ku(γ)=
��
3

√ )=(1− γ=2)2, where ku(γ)
is the unique real solution to k3 + 3k � 2

��
3

√ (1− γ): In particu-
lar, if γ � 0, the profit of our heuristic captures at least 72.61%
of the optimal profit under the knowledge of the true distribution.

See Proposition S.1 in the online supplement for anal-
ogous results of Proposition 1 for normal, logit, and log-
normal valuation distributions that do not have a closed
form characterization of the optimal price. Figure 2
shows the performance of the optimal robust price for
five distributions: exponential distribution (δ � 1), uni-
formdistribution (δ � 1=

��
3

√ ), truncated normal distribu-
tionwithmean 0 and standard deviation 0.5 for the orig-
inal distribution before truncation, truncated logit
distribution with mean 0.125 and scale parameter 0.25
for the original distribution, and log-normal distribution
withmean 1 and standard deviation 0.5. The latter three
distributions serve as a benchmark for the following nu-
merical studies that adopt parameters of magnitude
similar to Chu et al. (2011, table 2). Figure 3(a) shows
the performance for truncated normal distributions
with σ � 0:5 and μ ranging from –1 to 2.5 for the original
distribution. Figure 3(b) shows the performance for
truncated logit distributions with σ � 0:25 and μ rang-
ing from 0 to 2.5. Figure 3(c) shows the performance for
log-normal distributions with μ � 1 and σ ranging from
0.5 to 2. From these examples, we see that the optimal

Figure 2. (Color online) Performance for Five Distributions

Figure 1. (Color online) Performance Guarantee
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robust price performs decently for commonly used dis-
tributionswhen γ and δ are not too large.

3.2. Alternative Information Structures
We study the situation where the seller may have
less or more information than the mean and variance
of the valuation distribution that we assumed in
the base model. The general approach is similar to
that in the base model. That is, we obtain a price
heuristic by maximizing a distribution-free lower
bound. As the lower bound may not be tight for
these alternative information structures, in this sub-
section we no longer refer to a price heuristic as the
optimal robust price.

3.2.1. Valuation Support. Suppose the seller only
knows the mean μ and the support [vL,vU] of the cus-
tomer valuation. The latter is a form of information
commonly seen in the robust optimization literature.
With these two pieces of information, we can find
the scenario that has the largest standard deviation.
Because the larger the standard deviation, the worse
the performance guarantee for that standard devia-
tion, we can then apply our robust price formula
from the base model to the largest standard devia-
tion to get a performance guarantee against the
worst-case scenario.

Proposition 2. Denote by Fr the class of valuation distri-
butions that share the same mean μ and support [vL,vU].
For all F ∈Fr, the price heuristic p∗r � p∗

(
c,μ,σ �������������������������������

μ(vL + vU) − vLvU −μ2
√ )

achieves the performance guaran-

tee ρ
(
γ,δ � ������������������������������

μ(vL + vU) − vLvU −μ2
√

=μ
)
, where p∗(c,μ, σ)

is specified in Theorem 2 and ρ(γ,δ) is introduced in
Corollary 1.

In practice, the pricing managers may often have
more information, or a hunch, about the valuation

distribution than we assumed in the base model. In
the rest of this subsection, we focus on how much
benefit these additional pieces of information might
bring.

3.2.2. Optimal Price Lower Than Mean. So far, we
have obtained a performance guarantee under the ro-
bust price p∗ � μ− k∗σ that is no more than the mean
valuation μ. For those valuation distributions whose
optimal price is known to be also no more than μ
(which is assumed in Fang and Norman 2006), our ro-
bust price heuristic can achieve a provably sharper
performance guarantee.

Proposition 3. Denote Fl � {F ∈F |min{arg maxpπ
(p;F)} ≤ μ}. For all F ∈Fl, the price heuristic p∗ � μ− k∗σ
achieves a strictly sharper performance guarantee min{1−
k∗=τ, 1− 1=[(k∗)2 + 1]}, of which the relative improvement
beyond the performance guarantee in Theorem 2 is no less
than γ=[(1− γ)(1+ τ2)].

Proposition 3 shows that there is a benefit in knowing
that one of the optimal prices is no more than the mean
valuation.4 The relative improvement in performance
guarantee with the same price heuristic p∗ is at least
γ=[(1− γ)(1+ τ2)], which is increasing in γ and δ. Thus,
the benefit of such additional information to improving
the performance guarantee tends to be higher if the po-
tential profit margin is lower or the variability of the
valuation distribution is higher. This is because in those
situations, the original performance guarantee can be
poor, and there is much room for improvement with ex-
tra information. Figure 4 displays the relative improve-
ment lower bound γ=[(1− γ)(1+ τ2)]. From this figure,
we observe that for a large part of the parameter space
(e.g., when τ is large enough or γ is small enough), the
performance improvement tends to be less than 10%.

3.2.3. Distribution Symmetry or Unimodality. In On-
line Appendix A, we impose two restrictions on the

Figure 3. (Color online) Performance for Commonly Used Distributions

Notes. (a) Truncated normal distribution with μ�0.5 and μ ranging from −1 to 2.5. (b) Truncated logit distribution with σ�0.25 and μ ranging
from 0 to 2.5. (c) Log-normal distributionwith μ=1 and σ ranging from 0.5 to 2.
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valuation distributions, symmetry, or unimodality
(i.e., there is one primary market segment), and show
that within these special classes of distributions, we
can obtain a strictly sharper performance guarantee.
However, we also show that such a performance im-
provement is not significant. Moreover, when we im-
pose a restrictive assumption of symmetry on the valu-
ation distribution, the benefit of doing so can be little
beyond knowing the value of the median.

3.2.4. Third Moment. In the base model, we obtain a
performance guarantee with the knowledge of the first
and second moments of the valuation distribution (see
Theorem 2). Now, we investigate the benefit of know-
ing in addition the third moment of the valuation distri-
bution. Recall that the seller knows the first moment
M1 � μ and the second moment M2 � E(V2) � μ2 + σ2

of the valuation distribution. Now, suppose the seller
also knows the third momentM3 � E(V3).

Bertsimas and Popescu (2005, theorem 3.3) show
that the following bound on the distribution involving
the third moment is tight:

P(V < (1 − k)M1)

≤ 1 − (δ2 + k)3
(η + (δ2 + 1)(δ2 + k))(η + (δ2 + k)2) , (1)

where η � (M1M3 −M2
2)=M4

1. Select a price heuristic in
the form of p � (1− k)M1. Then, the profit can be written
as

π(p;F)
� (p− c)P(V ≥ p) � ((1− k)M1 − c)P(V ≥ (1− k)M1)

≥ (μ− c) 1− k
1− γ

( ) (δ2 + k)3
(η+ (δ2 + 1)(δ2 + k))(η+ (δ2 + k)2)

≡ (μ− c)φ(k),

where the inequality is because of (1). With the addi-
tional third moment information, the seller could maxi-
mize φ(k) to obtain a price heuristic. As a result, the
benefit of knowing M3 can be measured by the relative
performance gap (μ− c)maxkφ(k)=L− 1, where L is the
guaranteed profit with the information about the first
and second moments only (see Theorem 1(b)). The rela-
tive performance improvement (μ− c)maxkφ(k)=L− 1
depends on the system primitives through γ, δ, andM3.

The maximizer of φ(k), as a root to a quartic equa-
tion, has a closed-form expression but is very un-
wieldy. For simplicity, we illustrate the benefit of
knowing the third moment numerically. In particular,
we fix γ � 0, 0:25,0:5 and display the relative and ab-
solute gap as a function of δ and η; see Figure 5(a) and
5(b). As a benchmark, Figure 5(c) shows the perfor-
mance of the base model with only the first and sec-
ond moment information. We make the following
observations from the comparisons. First, the majority
of the absolute gaps is no more than 20%. Second, the
benefit of knowing M3 is decreasing in η. That is, if η

Figure 4. (Color online) Performance Improvement If the
Optimal Price Is Known to Be Lower Than μ

Figure 5. (Color online) Comparison of the ThirdMoment Model and Base Model

Notes. (a) The relative gap. (b) The absolute gap. (c) Benchmark: base model.
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is higher and hence, the skewness is larger, the benefit
of knowingM3 is lower. This is because within the class
of distributions that have a larger skewness, the mass of
the valuation distribution is more concentrated on the
left, and as a result, the price heuristic p∗ � μ− k∗σ with-
out knowing M3 tends to have already performed well.
Third, when the valuation distribution is more variable,
knowing the third moment provides more benefit by
pinning down a subclass of distributions. Lastly, as γ
increases, the benefit of knowing M3 increases signifi-
cantly. This is consistent with the understanding that
the performance guarantee in Theorem 2 decreases in γ
(see Corollary 1(a)). Hence, with a larger value of γ,
there is more room for improvement by knowingM3.

4. Multiproduct Robust Pricing
In this section, we generalize the single-product base
model to consider the distribution-free pricing problem
in selling multiple products. The seller knows only
the mean and standard deviation for each product but
does not know the customers’ exact valuation distribu-
tion for each product. Suppose customer valuations
for n products follow n distributions; for each product
i � 1, 2, : : : ,n, its valuation distribution has the mean μi

and standard deviation σi. We define the CV of product
i as δi � σi=μi. Themarginal cost for product i is ci. As in
Assumption (P), we assume μi ≥ ci for all i. We assume
the valuation distributions across products are inde-
pendent and consider the correlated valuation distribu-
tions in Section 4.1.2. Moreover, customer valuation for
a set of products is additive (i.e., a customer’s valuation
for any subset of the products is the sum of its valua-
tions for all products in the subset).

For any S ⊆ [n] ≡ {1, 2, : : : ,n}, denote by pS, cS, and VS

the price, cost, and customers’ random valuation of the
combination of products in subset S, respectively. Then,
cS �∑

i∈Sci and VS �∑
i∈SVi, where Vi is the (random)

customer valuation for each product i ∈ [n] with c.d.f.
Fi(·). Let pM � (pS,S ∈M) be the price vector of (bun-
dling) assortment M that is a subset of the power set of
[n] (i.e.,M ⊆ P([n])). For example, ifM � {[n]}, the only
product offering is a pure bundle. The firm sets pM, and
each customer chooses subsets ofM such that any prod-
uct is purchased at most once and its total surplus is
maximized. For a given bundling scheme M, the profit
function is

∑
S∈M (pS − cS)qS(pM), where qS(pM) is the

market share for S ∈M and a given price vector pM. In
a fashion similar to the single-product problem, for a
given bundling schemeM, we focus on the robust pric-
ing problem under themaximin profit criterion:

max
pM

{ min
Fi∈Fi,∀i∈[n]

∑
S∈M

(pS − cS)qS(pM)},

where Fi ≡ {Fi(v),v ≥ 0 | E[Vi] � μi,E[V2
i ] � μ2

i + σ2i }.
By Theorem 1(a), an upper bound of the profit for a

single product i is μi − τ2i ci=(1+ τ2i ). Thus, an upper
bound of the optimal profit for the multiproduct
problem with full knowledge of valuation distribu-
tions is

∑n
i�1[μi − τ2i ci=(1+ τ2i )].5 If we can derive a

lower bound of the worst-case profit for a bundling
policy M, we can obtain its performance guarantee
by taking the ratio of the lower and upper bounds.
As the upper bound of the multiproduct problem is
likely loose, the true performance guarantee can be
much better than the displayed value. Again, as the
derived worst-case profit lower bound of a bundling
policy tends not to be tight, in this section we only
deal with robust bundle pricing heuristics.

4.1. À La Carte vs. Pure Bundle
There are two typical ways to sell multiple products:
à la carte (i.e., separate sales) with M � P([n]) and
pS �∑

i∈Spi for any S ∈M for which the seller decides
on each individual product’s price pi, i ∈ [n], or a pure
bundle with M � {[n]} for which the seller decides on
the bundle price pb: that is, either to set a price for
each individual product so customers can buy each
one separately6 or to set a price for the bundle of all
products so customers buy either a pure bundle or
nothing. The latter practice is becoming common as
consumer buying habits trend toward simpler and more
trouble-free experiences. For both selling mechanisms,
we can adopt the performance guarantee result obtained
for a single product to study the multiproduct problems.
In particular, because the seller only knows the first and
second moments of the valuation distribution for each
product, it can apply our robust price for each and
obtain a performance guarantee. The seller can also
compute the first and second moments of the valuation
distribution for the pure bundle of all products, assum-
ing their valuations are independent or there is some
known correlation among them, and obtain the perfor-
mance guarantee for a robust bundle pricing heuristic.
Then, we can compare the performance guarantees of
selling separately and as a pure bundle. It is often un-
clear whether it is more profitable to sell separately or as
a bundle for given known valuation distributions.

Example 1 (�A La Carte vs. Bundle with Known
Distributions). Consider two products. Consumers’ val-
uations for the two products are known and indepen-
dently distributed uniform random variables on [0, 1]
and [0,θ], respectively, where θ > 0. Assume the mar-
ginal cost is zero. Figure 6 shows the optimal profits of
à la carte sales and pure bundle for various values of θ
ranging from zero to two. Although the bundle tends
to outperform à la carte sales, that is not always true.
In other words, à la carte sales can perform better for
specific valuation distributions.

From the robust pricing perspective, when the seller
knows only the first and second moments μi and σi of
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the valuation distributions Vi, we can make more gener-
al statements about when it is more profitable to sell a
bundle. To be isolated from the supply-side effects, we
make the following assumption throughout Section 4.1.

Assumption (S) (Equal Margin). c1
μ1
� c2

μ2
�⋯� cn

μn
� γ.

Assumption (S) allows products to have distinct
valuation distributions on the demand side but re-
quires them to have the same profit margin on the
supply side. This may not be restrictive for some
product lines in which profit margins tend not to vary
much for different products.

4.1.1. Bundling as a Robust Device. For à la carte
sales, the robust price heuristic for product i is
p∗(ci,μi,σi), where the mapping p∗(c,μ,σ) is specified
in Theorem 2. By Theorem 1(b), the lower bound on
each individual product’s profit achieved by our ro-
bust price is tight. For pure bundling, the robust

bundle price heuristic is p∗ ∑ici,
∑

iμi,
�������∑

iσ
2
i

√( )
, and the

lower bound on the bundle’s profit may not be tight
because this lower bound comes from treating the
total valuation of all products as a single random
variable and then applying Chebyshev’s inequality.
Nevertheless, if the profit lower bound of the bundle
(which may not be achievable) is higher than that of
separate sales (which is tight), the pure bundle gen-
erates higher profits than separate sales in a ro-
bust sense.

Proposition 4. If
�������∑

iσ
2
i

√
=
∑

iμi ≤miniδi, selling a bundle
is guaranteed to generate higher profits than selling prod-

ucts separately.

Proposition 4 says that to guarantee that the bundle
is more robustly profitable, it is enough to require that

the CV of the bundle,
�������∑

iσ
2
i

√
=
∑

iμi, be less than the

CVs of all products. In general, it could be computa-
tionally cumbersome to verify whether a bundle is
more profitable than à la carte sales even for given dis-
tributions. Proposition 4 provides easily verifiable
conditions under which the bundle is guaranteed to
be more profitable when the detailed distribution in-
formation, other than the means and variances, is not
available. We now present some special cases of this
proposition.

Corollary 2. For the following cases, selling a bundle is
guaranteed to generate higher profits than selling products
separately: (a) σ1=μ1 � σ2=μ2 �⋯� σn=μn � δ; (b) μ1 �
μ2 �⋯� μn � μ and

�������∑
iσ

2
i

√
≤ nminiσi (in particularmax,

maxiσi=miniσi ≤ ��
n

√ ); (c) σ1 � σ2 �⋯� σn � σ and
��
n

√
maxiμi ≤

∑
iμi (in particular,maxiμi=miniμi ≤

��
n

√
).

Corollary 2(a) says that as long as valuation distribu-
tions for different products have the same CV (a first-
order measure of variability), it is more robust to sell
them in a bundle. This is not trivial as it appears. In
Example 1, all uniform random variables on [0,θ] for
θ > 0 do share the same CV � 1=

��
3

√
. However, given

that their specific forms of distributions are uniform, it
is not always more profitable to sell a bundle. Never-
theless, lacking the detailed information about the dis-
tributions, one would find it more robustly profitable
to offer a bundle instead of à la carte sales. The benefit
comes from a reduced CV � δ=

��
n

√
in the valuation for

the bundle. In part (b), one sufficient condition for�������∑
iσ

2
i

√
≤ nminiσi is maxiσi=miniσi ≤ ��

n
√

. Similarly, in

part (c), one sufficient condition for
��
n

√
maxiμi ≤

∑
iμi is

maxiμi=miniμi ≤
��
n

√
. Thus, parts (b) and (c) imply that

if the valuation distributions have the samemean (stan-
dard deviation) and the ratio of themaximum andmin-
imum of standard deviations (means) is bounded by
the square root of the number of products, it is more ro-
bustly profitable to sell a bundle. Corollary 2 can be
generalized as follows, without requiring characteris-
tics of valuation distributions across products to be the
same.

Corollary 3. For the following cases, selling a bundle
is guaranteed to generate higher profits than selling

products separately: (a) maxiδi=miniδi ≤∑
iμi=

�������∑
iμ

2
i

√
;

(b) maxiμi=miniμi ≤ nminiσi=
�������∑

iσ
2
i

√
; (c) maxiσi=miniσi ≤∑

iμi=(
��
n

√
maxiμi).

Corollary 3 implies that the insights obtained from
Corollary 2 for equal system primitives still hold, as

Figure 6. (Color online) À La Carte Sales vs. Pure Bundle
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long as those primitives do not vary much. Next, we
study the benefit of a large bundle.

Proposition 5 (Large Bundle: Asymptotic Optimality).
Suppose all n products have the same mean μ, standard de-
viation σ, and marginal cost c but can have different distri-
butions. For any ε ∈ (0, 1], there exists a threshold n∗

if γ � 0, n∗ � 3=ε( )2 3=ε− 3( )δ2=4
( )

such that for a bundle

whose size is more than n∗, the robust bundle price p∗b �
p∗(nc, nμ, ��

n
√

σ) achieves an ε-optimality.7 Moreover, n∗ is
decreasing in ε.

The standard argument for the benefits of bundling a
large number of products, such as Bakos andBrynjolfsson
(1999), resorts to the law of large numbers,which requires
all random valuations for products to be independent
and identicallydistributed. SeeAbdallah (2019) for a recent
development along this line. In fact, without this restric-
tive limiting argument, it is difficult, if not impossible, to
extend the result to heterogeneously distributed valua-
tions (which may be correlated; see Proposition 6). From
a robust perspective, Proposition 5 indeed confirms the
benefit of a large bundle regardless of the detailed valua-
tion distributions, as long as they have the same first- and
second-order statistical characteristics.

With n products all sharing the same mean and
standard deviation (hence, the same CV � δ but not
the same distribution), when n is large enough, the

standard deviation of the bundle
�������∑

iσ
2
i

√
=
∑

iμi � δ=
��
n

√
will be sufficiently small. In Figure 7, we fix δ � 1, a
relatively large variability in customers’ valuation,
and let the bundle size range from 100 to 850 and γ
range from 0.5 to 0.8. We see that the bundle perfor-
mance increases in the bundle size n and decreases in
the profit margin measure γ. Moreover, by Proposi-
tion 5, when γ � 0, the minimum near-optimal bundle

size is n∗ � (3=ε)2(3=ε− 3)=(4τ2). Figure 8 displays n∗
as a function of τ by fixing ε � 7%,8%,9%,10%. For
any given τ, the minimum near-optimal bundle size
decreases in ε. In addition, the marginal value of a
larger bundle size decreases. When τ � 3, the mini-
mum near-optimal bundle size is 675 for 0.1-optimali-
ty. However, in order to achieve 0.07-optimality, the
minimum near-optimal bundle size has to be more
than 2,000.

4.1.2. Correlated Values. So far, we assume that cus-
tomer valuations for all products are independent.
Our results continue to hold for nonpositive correlat-
ed values and under some conditions, even for posi-
tive correlated values.

Proposition 6 (Nonpositive Correlation). If the correla-
tion between valuations of any two products is nonpositive,
Proposition 4, Corollaries 2 and 3, and Proposition 5 still
hold.

Recall from Corollary 1(a) that the performance
guarantee decreases in the CV of the valuation dis-
tribution. Thus, nonpositive valuation correlations
among products boost the performance of the bun-
dle because they reduce the CV of the bundle valua-
tion, whereas the performance of selling separately
is unaffected by valuation correlations. By Corollary
1(b), the robust bundle price is higher under nonpos-
itive valuation correlations than under independent
valuations.

Proposition 7. If σ1=μ1 � σ2=μ2 �⋯� σn=μn � δ, selling
a bundle is guaranteed to generate higher profits than selling
products separately, regardless of valuation correlations across
products.

Figure 7. (Color online) Benefit of Large-Bundle Pricing

Figure 8. (Color online) Minimum Bundle Size for
ε-Optimality
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In the bundling literature, it is well known that if
product valuations are known, independent and iden-
tically distributed, profits are higher under pure bun-
dling than under separate sales. Moreover, when the
known valuation distributions are correlated, profits
are higher under pure bundling than under separate
sales if and only if the correlation between the values
for the products is negative or is sufficiently weak if
positive (see, e.g., Belleflamme 2006). In other words, if
the correlations are sufficiently positive, separate sales
can be more profitable for given and known correlated
valuation distributions. However, Proposition 7 con-
firms the benefit of bundling in a robust sense; as long
as the cost structure in terms of profit margins and the
demand characteristics in terms of CVs are the same
across all products, the bundle is more robustly profit-
able than separate sales, regardless of the detailed val-
uation distributions and whether they are negatively
or positively correlated. This is because, to protect
against the worst case of valuation distributions, the
robust bundle price heuristic and its performance
guarantee depend only on the means, variances, and
covariances of the valuation distributions, which de-
termine the CV of the bundle valuation, and moreover,
because this bundle valuation’s CV under correlations
is weakly smaller than those of the individual prod-
ucts. If the correlation structure turns out to be the
worst for bundling, in which case all products are pos-
itively correlated, bundling is as effective as separate
sales, which is consistent with Carroll (2017). Howev-
er, bundling is robustly more profitable than separate
sales for correlation structures other than the worst
case, which restores the robust profitability of bun-
dling over separate sales in a more general sense.

4.1.3. Practical Examples. In the following discussion,
we will illustrate the benefit of our robust bundle price
with three practical examples, each with its own distinc-
tive features. In the first example, the bundle contains
only digital goods that can be considered as having
zero marginal costs, and the bundle is large. Both fea-
tures contribute to the very good performance of our
robust bundle price. In the second example, the bundle
contains a mix of goods with zero and nonzero margin-
al costs, and the bundle is medium-sized. In the last ex-
ample, the bundle is small, and customer valuations are
notably correlated.

4.1.3.1. Spotify. Spotify is a music streaming service
provider. Its premium-tier service gives users unlim-
ited music streaming at a cost of $9.99 per month.
Spotify pays royalties for all of the listening that takes
place through its service by distributing nearly 70%
of its revenues to the copyright holders. A single play
on Spotify Premium was worth on average about
0.68 cents in royalties (Smith 2015). The subscription

service of Spotify is in fact a bundle of zero-marginal-
cost digital goods (i.e., c ≈ 0). We can estimate the aver-
age number of songs a subscriber listens to per month:
9:99×70%
0:0068 ≈ 1028. In general, it would be very hard to

price such bundles, which allow customers to choose
the songs they want. The subscribers on average choose
and listen to about 1,000 songs a month, according to
their own heterogeneous preferences. Fortunately, our
distribution-free performance guarantee for a bundle
only requires estimates of three primitives (i.e., the valu-
ation heterogeneity in a song δ, the profit margin mea-
sure γ, and the bundle size n). We assume all songs
have roughly the same δ, which may be close to reality
because customers choose to play their favorite songs. In
Figure 9, we illustrate the performance guarantee of the
robust bundle price by having δ range from 0.1 to 2, γ
range from 0 to 0.5, and n equal 1,000. We see that for
Spotify, which has γ ≈ 0, a bundle of size 1,000 would
guarantee a performance of about 83% for valuation δ �
1, which is typically considered as “random,” and about
75% for valuation δ � 2, which is typically considered to
be far more than “random.” Moreover, even for
the extreme case where γ � 0:5, which typically corre-
sponds to a profit margin for physical goods and δ � 2,
the performance guarantee exceeds 60%.

4.1.3.2. IT Service Provider. In Xue et al. (2015), the
authors study the pricing problem for personalized
bundles of goods and services. They test their model by
using empirical data from a leading IT service provider.
We adopt the parameters from this paper and use them
as inputs to test our robust bundle price. A typical bun-
dle from this IT company consists of 100 components,
which are a mix of software and hardware. The margin-
al cost of noncustomized commercial software can be
considered as zero (i.e., γ1 � 0 for software). Following

Figure 9. (Color online) Performance for Spotify
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a working paper version of Xue et al. (2015), we choose
γ2 � 55:7% for hardware. In general, 70% of the compo-
nents of a personalized bundle are software. The average
CV of customer valuation for a component varies from
15% to 30%. Because the authors do not differentiate the
CVs between software and hardware, we can consider
the CVs of valuations for software and hardware to be
the same, but they have different means and standard
deviations. That is, if we denote means and standard de-
viations of software and hardware by μ1, μ2, σ1, and σ2,
respectively, σ1=μ1 � σ2=μ2 � δ. Then, assuming inde-
pendence across valuations for different products, the
CV of valuations for the whole bundle is at

δ �
������������������
0:7σ21 + 0:3σ22

√
0:7μ1 + 0:3μ2

�
δ

�������������������
0:7μ2

1 + 0:3μ2
2

√
0:7μ1 + 0:3μ2

�
δ

������������������
0:7 μ1

μ2

( )2+ 0:3

√
0:7 μ1

μ2
+ 0:3

≤ δ����
0:3

√ :

By Corollary 1(b), the performance guarantee is decreas-
ing in γ and δ. Hence, to be conservative, we set the CV
for the whole bundle δ � δ=

����
0:3

√
, where δ ∈ [15%, 30%].

Moreover, because the bundle is a mix of software with
γ1 � 0 and hardware with γ2 � 55:7%, the ratio of the av-
erage cost and mean for the bundle, γ, should be between
0% and 55.7%. To be conservative, we choose γ � 55:7%.
With the primitives estimated as above, Figure 10 shows
the results of applying our robust bundle price to a per-
sonalized bundle that may have about 100–200 compo-
nents. We observe that in all the instances tested with
those very conservative inputs, our robust bundle price
has a performance guarantee of more than 60%.

4.1.3.3. TheatreWorks. TheatreWorks is a theater com-
pany based in Palo Alto, California. It offers a full eight-
play season subscription package. Chu et al. (2011) use
the data of eight different plays or musicals from Theatre-
Works to estimate consumer valuations. Unlike the previ-
ous two examples, consumer valuations of eight plays
or musicals are correlated. The authors assume that the
joint distribution of consumer valuations is an eight-
dimensional bimodal normal distribution, with the esti-
mated values listed in Chu et al. (2011, table 8A). Rather
than assuming a specific joint distribution, we apply our
robust bundle price with μ � 164:7568 and σ � 210:5679,
imputed from the data. As a result, δ � 1:2780. Our heu-
ristic guarantees a profit of $33:47. With Chu et al. (2011)
obtaining the optimal profit of $63:67 under the knowl-
edge of the true valuation distribution, our bundle price
guarantees a 0.5257-optimality without the knowledge of
any detailed distribution information.

4.2. Heuristic Mixed Bundling: A Single Product
or Pure Bundle

The mixed bundling problem with all the combina-
tions of subsets of products priced and available for
purchase is generally challenging. We consider a heu-
ristic bundling scheme that allows customers to choose
from buying only one of the products or a pure bundle
(i.e., the purchase option for any customer is chosen
from the set M � {{1}, {2}, : : : , {n}, [n]}). Thus, the sell-
er has n + 1 number of prices to set. When n � 2, such
a bundling scheme boils down to mixed bundling.

We follow the same idea as the single-product ro-
bust pricing problem to derive a performance guaran-
tee for this heuristic bundling scheme. We first derive
a lower bound by using the the inequality of Olkin
and Pratt (i.e., the multivariate case of Chebyshev’s in-
equality; see Marshall and Olkin 1960)8. Then, we de-
rive a distribution-free heuristic pricing policy by
maximizing the lower bound. With the profit upper
bound

∑n
i�1[μi − τ2i ci=(1+ τ2i )], we can obtain a perfor-

mance guarantee for the heuristic policy.

Proposition 8. Let i∗ � argmaxi{Li}, where Li is the opti-
mal value of Problem (2):

max
k1>0, : : : ,kn>0,kb>0

(μi − ci − kiσi)
(
1−∏n

i�1

1
1+ k2i

)
+
(∑
j≠i

(μj − cj) − ki
��������∑
j≠i

σ2j

√ )
T,

s:t: μi−ci−kiσi ≤ μj−cj−kjσj, ∀j≠ i,

kiσi + ki
��������∑
j≠i

σ2j

√
� kb

��������∑n
i�1

σ2i

√
, ki > 0,

(2)

Figure 10. (Color online) Performance for the IT Service
Provider
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with

T � 1− 1

(n+ 1)2
( ��

u
√ + ��

n
√ �������������������������������

(n+ 1)
(∑n

i�1 1
k
2
i

+ 1
k2b

)
− u

√
)2,

u � ∑n
i�1 1

k
2
i

+ 1
k2b

+ 2
(∑n

i�1
∑

j<i
ρij

kikj
+ ∑n

i�1
ρn+1,i
kbki

)
,

ρn+1,i �
���������∑

j≠iσ
2
j

√
=

����������∑n
i�1 σ2i

√
, and ρij �

∑
k≠i,jσ

2
k=
( ���������∑

k≠iσ
2
k

√
���������∑

k≠jσ
2
k

√ )
. The heuristic bundling scheme, given by p∗i �

μi − k∗iσi, ∀i and p∗b �
∑n

i�1 μi − k∗b
����������∑n

i�1 σ2i
√

, where k∗i , ∀i,
and k∗b are the optimal solutions to Problem (2) for i � i∗,
achieves a distribution-free lower bound Li∗ .

When all products have the same parameters, they
are “symmetric” in a robust sense (i.e., the robust
pricing heuristic derived in Proposition 8 degenerates
to a pricing policy that charges the same price for any
single product), which simplifies the problem. We
summarize this observation as follows.

Corollary 4. Suppose μ1 � μ2 �⋯� μn, σ1 � σ2 �⋯� σn,
and c1 � c2 �⋯� cn. Derive a pricing policy for the heuris-
tic bundling scheme as p∗i � μi − k∗iσi and p∗b �∑n

i�1μi

− k∗b
����������∑n

i�1 σ2i
√

, where k∗i and k∗b are the optimal solutions to

the following optimization problem:

max��
n

√
kb>ki>0

(μi − ci − kiσi)
(
1− 1

(1+ k2i )n
)
+ ((n− 1)(μi − ci)

− ( ��
n

√
kb − ki)σi)T, (3)

where

T � 1− 1

(n+ 1)2
( �����������

n(n− 1)√
ki

+ 1
kb
+ ��

n
√

���������������������������
2n

k
2
i

+ n
k2b

− 2
�����������
n(n− 1)√
kbki

√√ )2

and ki +
�������
n− 1

√
ki � ��

n
√

kb. The optimal value of (3) is a dis-
tribution-free lower bound for the heuristic bundling
scheme.

To show the performance of the heuristic in Propo-
sition 8, we assume that n � 2 (for which our heuristic
bundling scheme is mixed bundling) and that both
products have the same parameters, and we use
the taste distributions from Chu et al. (2011, table 2).
Figure 11 displays the box plots of various percentiles
of the heuristic’s performances benchmarked against
the optimal profit under full information. As ex-
pected, when the marginal cost increases, the perfor-
mance decreases. Even though the performance may
not be stellar, at least Proposition 8 provides a way to
compute a heuristic that performs reasonably and
has a provable performance guarantee.

4.3. Clustered Bundling
In this subsection, we partition n products into k dis-
joint parts (i.e., clusters; [n] �⋃

lSl) and charge a bun-
dle price for each cluster Sl. We refer to this as the
scheme of clustered bundling with M � P({Sl, ∀l}) as a
special case of mixed bundling, which imposes a price
for each part (i.e., cluster) of a partition of all products
and allows customers to choose one or multiple parts

Figure 11. (Color online) Performance of Heuristic Mixed Bundling Pricing

0 50%25%
 ratio of cost to mean 

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

p
er

fo
rm

an
ce

Uniform

0 50%25%
 ratio of cost to mean 

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

p
er

fo
rm

an
ce

Exponential

0 50%25%
 ratio of cost to mean 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p
er

fo
rm

an
ce

Logit

0 50%25%
 ratio of cost to mean 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p
er

fo
rm

an
ce

Normal

0 50%25%
 ratio of cost to mean 

0.35

0.4

0.45

0.5

0.55

0.6

p
er

fo
rm

an
ce

Normal(v)

0 50%25%
 ratio of cost to mean 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
er

fo
rm

an
ce

Lognormal

Chen, Hu, and Perakis: Distribution-Free Pricing
Manufacturing & Service Operations Management, 2022, vol. 24, no. 4, pp. 1939–1958, © 2022 INFORMS 1953

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

10
7.

4.
14

2.
12

0]
 o

n 
20

 A
ug

us
t 2

02
2,

 a
t 0

1:
07

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 
Published in Manufacturing & Service Operations Management on January 20, 2022 as DOI: 10.1287/msom.2021.1055. 

This article has not been copyedited or formatted. The final version may differ from this version.



(i.e., clusters). The idea behind this is that within a clus-
ter that we could leverage Computer Science’s cluster-
ing algorithms to identify, products tend to be similar
in nature, and our robust bundle heuristic for that clus-
ter of products should performwell.

4.3.1. Mean-Ranked Clustered Bundling. We first pro-
pose a naive clustered bundling heuristic, which places
the products with similar means into the same cluster.
Without loss of generality, let μ1 ≤ μ2 ≤⋯≤ μn. We pro-
pose the following heuristic: all products are grouped
into k clusters by order (i.e., any product in the ith cluster
has a smaller index than that of any product in
the (i+ 1)th cluster). We call this heuristic mean-ranked
clustered bundling. To find the optimalmean-ranked clus-
tered bundling, we develop Algorithm OA.1 in the
online appendix. For a sufficiently large number of
products, searching for the optimal mean-ranked clus-
tered bundling may require significant computational
efforts, as we show in Proposition OA.5 in the online ap-
pendix that the computational complexity of Algorithm
OA.1 is exponential. Then, we develop two polynomial
time algorithms to generate a heuristic mean-ranked
clustered bundling: fixed radius clustering (FRC) and
top-down/bottom-up clustering (TBC) algorithms. We
show that both heuristics are more profitable than sepa-
rate sales and the pure bundle, or reduce to one of them
(see the online appendix formore details).

4.3.2. General Clustered Bundling. We next treat
(ci,μi,σi) as the features of product i. It is natural to
place those products with a similar feature vector
into the same cluster. Thus, we propose a practical

heuristic of general clustered bundling (GCB). First,
for any given k � 1, 2, : : : ,n, we divide all products
into k clusters by a commonly used clustering algo-
rithm (e.g., k-means clustering); then, we calculate
the lower bound on the profit of each bundle in the
form of Theorem 1(b), and lastly, we find the optimal
k∗ such that the total profit lower bound is maxi-
mized. It is easy to see this GCB heuristic reduces
to separate sales when k∗ � n and the pure bundle
when k∗ � 1. Thus, this GCB heuristic has a weakly
better performance guarantee than separate sales
and the pure bundle. The pseudocode for the algo-
rithm is given in Algorithm 1.

Algorithm 1 (GCB)
1. Input: xi � (ci,μi,σi), where i � 1, 2, : : : ,n
2. for k � 1, 2, : : : ,n do
3. Using a clustering algorithm to divide {1,

2, : : : ,n} into k clusters
4. Lkm ← the lower bound on the profit of the mth

cluster,m � 1, 2, : : : ,k
5. Lk ←∑

mLkm
6. end for
7. Let k∗ � arg maxkLk
8. Output: The total profit lower bound Lk∗ and the

clustered bundling heuristic corresponding to the
k∗ clusters

4.3.3. Comparison of Various Policies. To compare
the performance guarantees of separate sales, the
pure bundle, FRC, TBC, and GCB, we fix the ratio of
cost to mean as γ � 0 or γ � 0:25 for each product.
For n � 10, 30, or 50, we generate 1,000 scenarios,

Figure 12. (Color online) Performance Guarantees for Five Policies
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and each scenario contains n products with μi indepen-
dently generated from the uniform distribution U[0, 10]
and σi independently generated from the uniform dis-
tribution U[0:1, 5]. Figure 12 displays the box plots of
the performance guarantees (i.e., the sum of the profit
lower bounds of each cluster divided by the sum of the
profit upper bounds of each cluster) across five policies,
where step 3 of Algorithm 1 adopts the celebrated k-
means clustering. It is observed from Figure 12 that the
gap in the performance guarantees between separate
sales and the other four bundling policies becomes larg-
er when n increases. Additionally, the gap in the perfor-
mance guarantees between the pure bundle and our
three heuristics becomes smaller when n increases,
which implies the pure bundle performs well for large
values of n. Furthermore, Figure 13 plots the empirical
distributions of the gap of performance guarantees be-
tween FRC and GCB and between TBC and GCB across
1,000 scenarios. On one hand, when n is relatively
small, GCB may be better or worse than FRC and TBC.
If GCB does better, the gap can be as large as 0.3; how-
ever, the gap is no more than 0.1 if FRC or TBC is better.
On the other hand, TBC dominates the other two heu-
ristics when n is relatively large.

5. Alternative Robust Criteria
Previously, we have focused on the maximin profit
criterion. In this section, we consider two alternative
performance criteria and then compare the optimal ro-
bust prices under all three criteria. Given a price p, if
the true customer valuation distribution is F, then the rel-
ative regret because of not knowing the true distribution

can be measured by 1−π(p;F)= maxzπ(z;F). Denote by
p the optimal price that minimizes the worst relative re-
gret, referred to as the minimax relative regret criterion:
that is,

p � arg minp{maxF∈F1−π(p;F)=maxzπ(z;F)}:
The regret in its absolute term because of not knowing
the true distribution can be measured by maxzπ(z;F)−
π(p;F). Denote by p̃ the optimal price that minimizes
the worst absolute regret, referred to as the minimax
absolute regret criterion: that is, p̃ � arg minp{maxF∈F
[maxzπ(z;F) −π(p;F)]}:

Under the minimax relative regret criterion, the op-
timal robust price and the corresponding worst rela-
tive regret can be characterized as follows.

Theorem 3 (Minimax Relative Regret Criterion). The
optimal price that minimizes the worst relative regret is
p � μ− kσ, where

k �
������������������������������
τ=2+

��������������������
(τ=2)2 + (2=3)3

√
3

√
+

������������������������������
τ=2−

��������������������
(τ=2)2 + (2=3)3

√
3

√
≥ 0,

and the corresponding worst relative regret is 1=(1+ k
2).

Moreover, the worst relative regret is asymptotically
achievable by a series of two-point distributions:

V �
μ− kησ with probability

1
1+ k2η

,

μ+ 1
kη

σ with probability1− 1
1+ k2η

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
with kη � k + η, as η↘ 0.

Figure 13. (Color online) Gap of Performance Guarantees Between FRC and GCB and Between TBC and GCB
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Theorem 3 shows that the optimal robust price p
under the minimax relative regret criterion has a
closed form similar to the optimal price p∗ under the
maximin profit criterion. Moreover, the worst relative
regret for p can also be asymptotically achievable by a
series of two-point distributions. Next, we compare
the optimal prices under the three robust criteria.

Theorem 4 (Three Robust Criteria). The optimal robust
prices under the three criteria are ordered as p∗ < p < p̃,
where the characterization of p̃ is given in the proof.

The optimal robust price p∗ achieves the highest
profit for the seller against the worst possible distri-
bution, p minimizes the maximum relative regret
(i.e., one minus the relative profit gap because of not
knowing the true distribution), and p̃ minimizes the
maximum absolute regret (i.e., the absolute profit
gap because of not knowing the true distribution).
Theorem 4 shows that among the three criteria, the
maximin profit criterion leads to the most aggressive
(i.e., lowest) price. This is because the optimal prices
under the two alternative criteria aim at a profit gap
and are tolerant of less aggressive behavior because
the optimal profits maxzπ(z;F) under the knowledge
of the true extreme distributions are also low. In con-
trast, as a survival measure aimed at the absolute
profit value, the optimal price under the maximin
profit criterion has to be more aggressive. The com-
parison demonstrates the importance of identifying
an appropriate objective in robust price optimiza-
tion, as different criteria result in distinct optimal
robust prices even under the same information
structure. Moreover, with the maximin profit criteri-
on resulting in a lower optimal robust price, it leads
to a higher market penetration level and higher so-
cial welfare than the two alternative criteria.9 Higher
market penetration can be preferred by a for-profit
firm, and higher social welfare can be appealing to a
socially responsible seller.

The alternative optimal robust prices p and p̃ may
not perform well for the absolute profit measure. For
example, consider the two-point distribution Fo de-
fined in Theorem 3 with kη � k + η, where η is suffi-
ciently small. Figure 14(a) displays the relative profit
gap between p∗ and p, [π(p∗;Fo) −π(p;Fo)]=π(p;Fo),
under the two-point distribution Fo, and shows that
the relative gap is always more than one when τ
ranges from 0.5 to 2. Moreover, this relative gap is de-
creasing in τ. Figure 14(b) illustrates the relative profit
gap between p∗ and p̃ under Fo, [π(p∗;Fo) −π(p̃;
Fo)]=π(p̃;Fo), and shows that this relative gap is in-
creasing in δ and γ, always more than zero, and more
than one for most cases.

In a fashion similar to the multiproduct robust pric-
ing problem under the maximin profit criterion, we
can define the multiproduct robust pricing problem
under the minimax relative regret criterion as

min
pM

max
Fi∈Fi,∀i∈[n]

1 −
∑
S∈M

(pS − cS)qS(pM)
max
pS

∑
S∈M

(pS − cS)qS(pM)
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭: (4)

In view of the similarity between the closed forms of
the optimal robust price under the maximin profit and
minimax relative regret criteria, we will compare sep-
arate sales and the pure bundle under the minimax
relative regret criterion. For separate sales, M � P([n])
and pS �∑

i∈Spi for any S ∈M, and the seller decides
on each individual product’s price pi, i ∈ [n]. For the
pure bundle, M � {[n]}, and the seller decides on the
bundle price pb.

Under the minimax relative regret criterion, we say
pure bundling is guaranteed to perform better than
separate sales if the optimal objective value of (4) un-
der pure bundling is smaller than that under separate
sales. All the results in the comparison of pure bun-
dling and separate sales under the maximin profit

Figure 14. (Color online) Performance of Alternative Robust Prices for the Absolute Profit Measure

Notes. (a) The performance of p that is optimal under the minimax relative regret criterion. (b) The performance of p̃ that is optimal under the
minimax absolute regret criterion.
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criterion in Section 4.1 carry over to the minimax rela-
tive regret criterion, which we summarize as follows.

Proposition 9. (Bundling as a Robust Device). Consider
the minimax relative regret criterion. If any condition in
Propositions 4, 6, and 7 or Corollaries 2 and 3 is satisfied,
selling a bundle is guaranteed to perform better than selling
products separately. Moreover, the asymptotic optimality of
a large bundle in Proposition 5 holds.

As results in Section 4.2 rely on the multivariate case
of Chebyshev’s inequality, they cannot be extended to
the minimax relative regret criterion. Nevertheless, the
idea of clustered bundling and the proposed heuristics
in Section 4.3 are sufficiently generic to account for the
minimax relative regret criterion.

6. Concluding Remarks
In this paper, we provide a robust price for the
distribution-free pricing problem of a single product
under two robust criteria. The robust prices (see Theo-
rems 2 and 3) are in closed form and hence, are efficient-
ly computable. Their interpretation can be easily ex-
plained to pricing managers and has a natural
connection with the newsvendor ordering decision that
is widely taught in the Master of Business Administra-
tion classrooms. Both robust prices also have a provable
performance guarantee and are indeed the optimal ro-
bust price for a single product under the associated ro-
bust criterion. We extend the single-product result to the
multiple-product setting by studying separate sales, the
pure bundle, and other bundling heuristics, such as clus-
tered bundling. Given their simplicity and practical val-
ues, we expect the results to provide a tool in situations
where prices need to be determined frequently for dif-
ferent one-time customers of whom the seller has little
knowledge.
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Endnotes
1 If the random customer valuation V is known, the demand func-
tion may be obtained as d(p) �M ·P(V ≥ p), whereM is the potential
market size.
2 Unfortunately, the optimal robust price expression in Carrasco
et al. (2018, p. 257), which corresponds to the problem with c � 0, is
incorrect.
3 Sometimes, the seller may only be sure about the range of the
mean and standard deviation of the valuation distribution. By Cor-
ollary 1(a), it is conservative to let μ be the lower bound of the
mean and σ be the upper bound of the standard deviation.
4 When c � 0, if the valuation distribution is realized as some com-
mon distributions, such as truncated normal, truncated logit, or
log-normal, for the realized distributions, the optimal price is in-
deed less than the mean valuation μ.

5 Abdallah et al. (2021) show that a profit upper bound for the multi-
product pricing problem is the expected profit under perfect price
discrimination (i.e.,

∑n
i�1E[(Vi − ci)+], where E[(Vi − ci)+] is the ex-

pected profit under perfect price discrimination for single product i).
6 Given that the price for each product is set separately, there is no
discount for buying a set of products. Hence, the optimal strategy
for a customer is to buy every product that generates a nonnegative
surplus.
7 That is, the ratio of the guaranteed profit achieved by our robust
bundle price p∗b to the optimal profit achieved by the optimal mixed
bundling prices with M � P([n]), for any given valuation distribu-
tions of n products, is more than 1− ε.
8 Rujeerapaiboon et al. (2018) provide multivariate Chebyshev’s in-
equalities for products of symmetric nonnegative random variables.
9 For any given random valuation V, the market penetration level P(V ≥
p) and the social welfare E[V − c | V ≥ p]P(V ≥ p) are decreasing in p.
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