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Online Appendix to
“Courier Dispatch in On-Demand Delivery”:

Supplementary Derivations and Proofs

A. Major Proofs

Proof of Propositions 1 and 2. We first show the result of Proposition 1. First, note that

we have limλ→0WB(λ,µB,CB) =∞ and limλ→µDWD(λ,µD,CD) =∞, according to (4) and (12).

Thus, we only need to show that WD(λ,µD,CD)−WB(λ,µB,CB) = 0 has a unique solution in λ to

established the desired threshold result in λ.

Consider function

f(a) :=
1

λ

[
a2C1

2T1(T1− a)
− 1

2
− a2C2

T2(T2− a)
− a

3

]
, ∀a> 0, (A.1)

where

T1 =
3

4
, T2 =

45π

2(32 + 15π)
, C1 =

9

8
, C2 = 0.583. (A.2)

Then, according to (4) and (12), we have f(λr) =WD(λ,µD,CD)−WB(λ,µB,CB). Note that f(a) =

0 is a single variable cubic equation, which can be solved using standard methods. In particular,

equation f(a) = 0 only has two positive solutions: a1 ≈ 0.5689 and a2 ≈ 1.150 (the exact symbolic

solutions with T1, T2, C1, C2 are cumbersome, thus omitted). Thus, we have 0� a1� T1 = µDr and

T1� a2, which implies that 0 =WD(λ,µD,CD)−WB(λ,µB,CB) has a unique solution λex = a1/r

on (0, µD).

We use the same technique to show Proposition 2. According to (4) and (12), with slight abuse

of notation we write WB(λ,µB,CB) and WD(λ,µD,CD) as WB(r,λ,µB,CB) and WD(r,λ,µD,CD),

respectively, to emphasize their dependence on r. have

lim
r→0

WB(r,λ,µB,CB) =
1

2λ
> 0 = lim

r→0
WD(r,λ,µD,CD),

and limr→T1
WD(r,λ,µD,CD) =∞. Next, since a1 is the unique solution to f(a) = 0 on a∈ (0, T1),

there is a unique rex = a1/λ such that WD(r,λ,µD,CD) = WB(r,λ,µB,CB). This completes the

proof.

Proof of Corollary 1. (i) This part follows Proposition 1 and 2 directly, where we have shown

that serving dedicated leads to shorter wait time comparing to serving batch when either the

demand is low or the radius is small, and vice versa. Thus, using the expression for the price in

(1), we reach the desired result.
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(ii) We use the exactly same proof technique as in the proof of Proposition 1 and 2. We only

need to modify the definition of function f(·) is in (A.1) to

f(a) :=
1

λ

[
a2C1

2T1(T1− a)
− 1

4
− a2C2

2T2(T2− a)− a
6

]
, ∀a> 0,

where parameters T1, T2, C1, and C2 are defined in (A.2). Then, we have f(λr) =WD(λ,µD,CD)−

WB(λ,µB,CB)/2. Again, function f(a) = 0 is a simple cubic equation, having a unique solution on

a≈ 0.5087∈ (0, T1]. We omit the details to avoid repetition.

Before proving Propositions 3 and 4, we first provide some properties of the optimal demand

rate. For notational convenience, denote

V ∞D (λ) := V∞(λ,WD(λ,µD,CD)) and V ∞B (λ) := V∞(λ,WB(λ,µB,CB)),

and the optimal solutions to the optimization problems

max
λ∈[0,µD)

V ∞D (λ), and max
λ∈[0,2µB)

V ∞B (λ), (A.3)

as λ∞F and λ∞B , respectively. Further, denote TB = 2µBr=
45π

2(32 + 15π)
and TD = µDr=

3

4
.

Next, we present the optimal solutions and objective values to the optimization problems in

(A.3). Note that the objective functions in (A.3) are strictly concave in λ, since

d2V ∞D (λ)

dλ2
=

cCDTD

r(λ− TD
r

)3
< 0, and

d2V ∞B (λ)

dλ2
=

2cCBTB

r(λ− TB
r

)3
< 0,

respectively. Furthermore, by solving the first order conditions when cr < TB < 2TD, we have

dV ∞D (λ)

dλ
= 1 +

crCD

(
1− T2

D
(TD−λr)2

)
2TD

= 0, and
dV ∞B (λ)

dλ
= 1 +

crCB

(
1− T2

B
(TB−λr)2

)
TB

− cr
3

= 0,

respectively, which imply

λ∞F =
TD
r

(
1− crCD√

crCD[2TD + crCD]

)
, λ∞B =

TB
r

(
1−

√
3crCB√

crCB[3TB + cr(3CB −TB)]

)
,

(A.4)

respectively, and

V ∞D (λ∞F ) = cCD +
TD
r
− 1

r

√
crCD[2TD + crCD], (A.5)

V ∞B (λ∞B ) = c

(
2CB −

1

2
− 1

3
TB

)
+
TB
r
− 4

r

√
3crCB[3TB + cr(3B −TB)], (A.6)

where we have omitted the solutions that are outside the feasible regions.



Chen, Hu: Courier Dispatch in On-Demand Delivery 3

Proof of Proposition 3. Fix r > 0 and define function

g(α) := r (V ∞B (λ∞B )−V ∞D (λ∞F )) = α

(
2CB −

1

2
− TB

3

)
+TB − 4

√
3αCB[3TB +α(3CB −TB)]

−
[
αCD +TD−

√
αCD[2TD +αCD]

]
, (A.7)

where α := cr. By plugging in CD = 9/8, CB = 0.583, TD = 3/4, TB = 45π/(2(32+15π)) and solving

g(α) = 0, we obtain a unique solution α∗ ≈ 0.1355, which implies that function g(·) only “crosses” 0

once. Finally, one can easily verify that limα→0 g(α)> 0. Thus, we have g(α)> 0 for all α∈ (0, α∗)

and g(α)≤ 0 when α≥ α∗. Therefore, it is better for the vendor to serve dedicated if c≥ α∗/r and

to operate batch otherwise, which implies the first statements in Proposition 3.

Next, we show the second statements in Proposition 3. Recall that the threshold on the wait

cost c can be expressed as α= cr and the vendor switches from serving batch to dedicated when

α= α∗. Thus, we only need to show that λ∞B >λ∞F when cr= α= α∗, where the optimal non-zero

demands λ∞F and λ∞B are defined in (A.4).

Note that for fixed r and cr= α∗ ≈ 0.1355, we have

λ∞B −λ∞F =
1

r

(
TB −TD +

αCDTD√
αCD[2TD +αCD]

−
√

3αCB√
αCBTB[3TB +α(3CB −TB)]

)
> 0,

where we plug in the value of α∗, CD, CB, TD, and TB to reach the inequity. Thus, we conclude

that when switching from serving batch to dedicated, the optimal demand rate decreases. Finally,

recall the revenue function in (2) equals to demand times price, i.e., λp. When the optimal demand

switches from λB to λF < λB at cr = α∗, the corresponding optimal price surges upwards accord-

ingly. This completes the proof.

Proof of Proposition 4. This proof follows from the same steps as the proof of Proposition 3.

Fix c > 0 and define function

h(α) :=
1

c
(V ∞B (λ∞B )−V ∞D (λ∞F )) =

(
2CB −

1

2
− TB

3

)
+
TB
α
−

4
√

3αCB[3TB +α(3CB −TB)]

α

−

[
CD +

TD
α
−
√
αCD[2TD +αCD]

α

]
, (A.8)

where α= cr. By solving h(α) = 0, we obtain the same unique solution α∗ ≈ 0.1355. We omit the

details for the rest of the proof to avoid repetition.

Proof of Proposition 5. To show the first statement, we show that the social welfare function

in (18) is an non-increasing function w.r.t. w by taking the first order derivative:

∂SW (w)

∂w
=−c

∫ 1

F−1(1− λ
Λr2

)
dF (v) =−c

(
1− λ

Λr2

)
≤ 0.
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Therefore, when fixing λ, the smaller expected wait time translates to higher social welfare. There-

fore, the first statement in Proposition 5 simply follows Propositions 1 and (2).

In order to show the second statement, we consider the large market regime and redefine the

social welfare rate as

SWn(λ,w) = Λnr2

∫ 1

F−1(1− λ
Λnr2

)
(v− cw)dF (v). (A.9)

First, note that we have

lim
n→∞

SWn(λ,w) = lim
n→∞

Λnr2

∫ 1

F−1(1− λ
Λnr2

)
(v− cw)dF (v) (A.10)

= λ

∫ 1

F−1(1− λ
Λnr2

)(v− cw)dF (v)∫ 1

F−1(1− λ
Λnr2

) dF (v)
(A.11)

= λ lim
n→∞

−
dF−1(1− λ

Λcr2
)

dn
(F−1

(
1− λ

Λcr2

)
− cw)f

(
F−1

(
1− λ

Λcr2

))
−
dF−1(1− λ

Λcr2
)

dn
f
(
F−1

(
1− λ

Λcr2

)) (A.12)

= λ(1− cw) := SWinf(λ,w), (A.13)

where the first equality follows (1); the second equality follows L’Hopital rule and Leibniz rule.

Finally, note that we have both max{SWn(λ,WD(λ,µD,CD)),0} and

max{SWn(λ,WB(λ,µB,CB)),0} are Lipschitz continuous. To see this, take

max{SWn(λ,WD(λ,µD,CD)),0}= max

{
−Λnr2

∫ 1

F−1(1− λ
Λnr2

)
v dF (v) +λcWD(λ,µD,CD),0

}
,

as the example. It is easy to verify there exists a λ̂ such that max{SWn(λ,WD(λ,µD,CD)),0}= 0

for all λ ∈ [λ̂, µD) since WD(λ,µD,CD) is convex, increasing and approaching infinity as λ→ µD.

Thus, we only need to focus on λ ∈ [0, λ̂]. Note that the derivative of −Λnr2

∫ 1

F−1(1− λ
Λnr2

)
v dF (v)

is

Λnr2
∂F−1

(
1− λ

Λnr2

)
∂λ

F−1

(
1− λ

Λnr2

)
f

(
F−1

(
1− λ

Λnr2

))
<∞,

since F−1 (·) is a Lipschitz continuous function and thus
∂F−1

(
1− λ

Λnr2

)
∂λ

is finite. Therefore,

the term −Λnr2

∫ 1

F−1(1− λ
Λnr2

)
v dF (v) is also Lipschitz continuous. It is also straight forward

to verify that λcWD(λ,µD,CD) is Lipschitz continuous (see the proof of Lemma 1). Thus,

max{SWn(λ,WD(λ,µD,CD)),0} is a Lipschitz continuous function. Then one can show that

lim
n→0

max
λ∈[0,µD)

SWn(λ,WD(λ,µD,CD)) = max
λ∈[0,µD)

lim
n→0

SWn(λ,WD(λ,µD,CD)) = max
λ∈[0,µD)

λ (1−WD(λ,µD,CD))
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lim
n→0

max
λ∈[0,2µB)

SWn(λ,WB(λ,µB,CB)) = max
λ∈[0,2µB)

lim
n→0

SWn(λ,WB(λ,µB,CB)) = max
λ∈[0,2µB)

λ (1−WB(λ,µB,CB)) ,

following the exactly same proof techniques in the one of Lemma 1. We omit the details to avoid

repetition.

Thus, under a crowded market, social welfare maximization over the demand rate is equivalent

to revenue maximization in Section 5, thus, producing the same results.

Proof of Proposition 6. We prove this result using a coupling argument. First, we note that

the underlying stochasticity comes from the Poisson arrival of orders with the rate λ and their

locations, which are independent and uniformly distributed on a disk. Furthermore, in all dispatch

policies, since we normalized the courier’s speed to 1, the service time is simply the travel distance.

Denote by LD and LC the number of unfilled orders under dedicated and contingent policies,

respectively. We show path-wise dominance: LD ≥ LC when the underlying random events are

coupled.

Consider a hypothetical alternative policy (short for “alternative contingent policy”), which

mimics the contingent policy and follows its delivery decision for each order. More specifically, if

two arrivals under the contingent policy are served in a batch, in the alternative policy, they are

also served in the same batch. However, unlike the original contingent policy, the courier does not

serve both orders in a single trip. Instead, the courier travels to the first location but then travels

back to the hub before heading to the second location. That is, although two orders are leaving the

hub together, the delivery routing is the same as that of dedicated strategy. Thus, the alternative

policy’s total travel distance/service time should be the same as the one under a dedicated policy,

not taking advantage of spatial pooling.

As mentioned, to conduct this alternative policy, we need to mimic the contingent policy. More

specifically, we need to know which orders need to be served in batches and which do not. We first

argue that the alternative policy is feasible at any time t. That is, to execute this alternative policy,

we only need information up to time t of the contingent policy and do not require clairvoyant

information. Note that systems under the alternative policy and the contingent policy behave the

same until the first time two orders need to be batched. For any two orders with locations x1 and

x2, the travel distance under the contingent policy is always no greater than that of the alternative

policy due to triangular inequality (i.e. |x1|+ |x2| ≥ |x1 − x2|). So after the first batch delivery

occurs, the alternative policy induces longer service time and “lags” behind the contingent policy

regarding served orders. Thus, by an induction argument, any subsequent delivery decision under

the contingent policy (which will be mimicked by the alternative policy) is always made no later

than the time the courier becomes idle or the arrival time of the next order in the alternative policy,
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requiring no clairvoyant information for the alternative policy to be implemented. Next, denote

by LA the number of unfilled orders under the alternative contingent policy. Since the decisions

of which orders are served in batches are the same between the two systems, and the alternative

policy leads to no shorter service time, we have LA ≥LC path-wise.

Next, note that the alternative policy is identical to the dedicated policy in terms of the total

service time when coupled since the two policies induce the same routing policy. The only difference

between the two policies is that two orders leave the queue whenever a batch decision is made in

the alternative policy. However, only one order leaves the system at a time in the corresponding

dedicated system. Thus we have LD ≥LA. Therefore, we have reached LD ≥LA ≥LC . Finally, the

result on the expected wait time holds by Little’s Law.

We prove the second statement by considering extreme cases. When the demand rate is close

to zero, the contingent policy leads to a shorter expected wait time than batch delivery since the

time to accumulate orders in batches goes to infinity. On the other hand, when the demand rate

is very large, which leads to a shorter order accumulation time than the travel time for a single

order (1/λ� 2r), it is beneficial for the courier to serve in batches as opposed to adopting the

contingent policy. This completes the proof.

Before proving the rest of Propositions in Section 6, we first present a lemma on the properties

of the revenue function of serving batch, when customer valuations follow a standard uniform

distribution without the large market assumption.

Lemma 2. Consider function

g(λ, r, c,Λ) := λ

{
1− λ

Λr2
− c
[

1

2λ
+

λr2C

T (T −λr)
+
r

3

]}
, (A.14)

with C,T > 0.

(i) Fix Λ, r > 0. Function g is submodular in (λ; c) for c > 0 and λ∈ (0, T/r).

(ii) Fix c,Λ> 0 and C < 1. Function g is submodular in (λ; r) for r >

(
T 2

cCΛ

) 1
4

and λ∈ (0, T/r).

(iii) Fix c, r > 0. Function g is supermodular in (λ;Λ).

For the proofs of Propositions 7 and 8, denote by λ∗D and λ∗B the optimal solutions to (19) and

(20), respectively.

Proof of Proposition 7. We show that, when fixing r,Λ> 0, there exist some cen such that we

have VB(λ∗B,WB(λ∗B, µB,CB))≤ VD(λ∗D,WD(λ∗D, µD,CD)) if c≥ cen.

With slight abuse notation, denote the optimal solution to

max
λ∈[0,2µB)

λ

[
1− λ

Λr2
− cWB(λ,µB,CB)

]
, (A.15)
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by λ∗B(c) for every c > 0. Also recall Proposition 1 and denote by λex the unique solution to

f(λ, r) = 0 for r > 0, which is independent of c.

Consider T =
45π

2(32 + 15π)
and C = CB for function g defined in (A.14). Recall CB ≈ 0.583< 1

and we recognize function g is the revenue function in (A.15) with T = TB and C =CB, so we can

apply the result of Lemma 2 (i) directly. Thus, we have λ∗B(c) is decreasing when c is increasing

using Topkis’s Theorem (see, e.g., Topkis 1978) since the objective function is submodular in (λ; c).

It is obvious that when c is large enough, we must have λ∗B(c) = 0. Thus, as λex > 0 is independent

w.r.t. c where λex is the threshold on which the wait times are equal under dedicated and batch in

Proposition 1, there exists some cen ∈ (0,2µB) such that for all c > cen, we have λex >λ∗B(c) since

λ∗B(c) is decreasing w.r.t. c. Therefore, when c≥ cen, we have

VB(λ∗B(c),WB(λ∗B(c), µB,CB)) ≤ λ∗B(c)

[
1− λ

∗
B(c)

Λr2
− cWD(λ∗B(c), µD,CD)

]
≤ VD(λ∗D,WD(λ∗D, µD,CD)),

where the first inequality follows from Proposition 1 since λex > λ∗B(c) and the second inequality

follows from the definition of λ∗D as the optimal solution.

Proof of Proposition 8. We show that, when considering Λ, c > 0 such that
Λ

c3
> L :=

1 + 8(
√

2CB + 6CB + 8
√

2C3
B + 8C2

B)

16CB

(
2(32 + 16π)

45π

)2

≈ 13.39, there exists a threshold, ren, on the

service radius r, such that we have VB(λ∗B,WB(λ∗B, µB,CB))≤ VD(λ∗D,WD(λ∗D, µD,CD)) if r≥ ren.

Denote by λ∗B(r) the optimal solution to

max
λ∈[0,1/(2µB))

λ

[
1− λ

Λr2
− cWB(λ,µB,CB)

]
, (A.16)

when fixing r > r := 3

√
5π

32 + 15π

1

(0.583Λc)
1
4

. Note that we only need to consider the case where

λ∗B(r) solves the first order condition since any λ∗B(r) that approaches the boundaries leads

to a negative objective value, which implies VD(λ∗D,WD(λ∗D, µD,CD)) ≥ VB(λ∗B,WB(λ∗B, µB,CB))

immediately as VD(λ∗D,WD(λ∗D, µD,CD)) ≥ 0. Furthermore, note that by plugging in T =
2µB
r

=

45π

2(32 + 15π)
and C = CB, function g in (A.14) is the revenue function of serving batch in (20).

Since we have

CB ≈ 0.583< 1, and r > r= 3

√
5π

32 + 15π

1

(0.583Λc)
1
4

=

(
T 2

ΛcCB

) 1
4

,

we can apply Lemma 2(ii) directly and conclude that λ∗B(r) is decreasing w.r.t r when r > r.

Denote r̄= 45π/(c(32 + 15π)(1 + 2
√

1.166)). When r > r̄ have

λ

[
1− λ

Λr2
− cWB(λ,µB,CB)

]
= λ

{
1− λ

Λr2
− c
[

1

2λ
+

λr2CB
TB(TB −λr)

]}
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≤ λ

{
1− c

[
1

2λ
+

λr2CB
T (T −λr)

]}
≤ λ

{
1− cr1 + 2

√
2CB

2T

}
≤ 0,

where the second inequality follows the fact that the term
1

2λ
+

λr2CB
T (T −λr)

is convex in λ and

attains its minimum r
1 + 2

√
2CB

2T
when λ=

T (
√

2CB − 1)

r(2CB − 1)
, and the second inequality follows r > r̄.

Note that there is

r̄=
45π

c(32 + 15π)(1 + 2
√

1.166)
=

2T

c(1 + 2
√

2CB)
>

(
T 2

ΛcCB

) 1
4

= r,

where the inequality follows from
Λ

c3
>L. As λ∗B(r) is decreasing w.r.t. r, we have limr→r̄ λ

∗
B(r) = 0.

Recall that for a finite r, we have λex, the solution to WD(λ,µD,CD) =WB(λ,µB,CB), never equals

to 0. Thus, denote ` = minr∈(r,r̄) λex, which is strictly greater than 0. Then by definition of the

limit, there exists some ren ∈ (r, r̄) such that λ∗B(r)≤ `≤ λex for all r≥ ren.

Finally, consider r≥ ren. We have

VB(λ∗B,WB(λ∗B(r), µB,CB)) ≤ λ∗B(r)

[
1− λ

∗
B(r)

Λr
− cWD(λ∗B(r), µD,CD)

]
≤ VD(λ∗D,WD(λ∗D, µD,CD)),

where the first inequality follows from Proposition 1 since we have λ∗B(r)≤ λex for all r≥ ren and

the second inequality follows from that λ∗D is the optimal solution. This completes the proof.

Proof of Proposition 9. The proof of the first statement follows from the exactly same steps

as the proof of Propositions 3 and 4. We only need to substitute the values of constants by TB =

2µB,Cr=
4

4 +π
, TD = 2µD,Cr=

1

2
, CB,C =

1

2
+

π2

3(4 +π)2
, and CD,C = 1. We still denote α= cr and

let α̂∗ be the new threshold in cr when serving a circular region. We have α̂∗ ≈ 0.057� 0.1809≈ α∗,
where α∗ is the optimal value of alpha when the service region is a disk. That is, when cr ≥ α̂∗,
serving dedicated is better than batch, and vice versa. We omit the details to avoid repetition.

Proof of Proposition 10. To show the first statement, we prove that for any radii r1 ≥ r2, we

have λ∗D(r1)≤ λ∗D(r2) and λ∗B(r1)≤ λ∗B(r2). Since the vendor uses a single fixed price, denote by p∗D

and p∗B the optimal prices under dedicated and batch services. Then, for a disk with radius r, we

must have

p∗D = F−1

(
1− 2λ∗D(s)

Λr2

)
− cWD(s) and p∗B = F−1

(
1− 2λ∗B(s)

Λr2

)
− cWB(s), (A.17)

whenever λ∗D(s), λ∗B(s)> 0, s∈ [0,1], where WD(·) and WB(·) are expected wait times for customers

at different locations under dedicated and batch services, respectively. Whenever λ∗D(s) = λ∗B(s) = 0

for some s∈ [0,1], we have

p∗D ≥ F−1

(
1− 2λ∗D(s)

Λr2

)
− cWD(s) and p∗B ≥ F−1

(
1− 2λ∗B(s)

Λr2

)
− cWB(s). (A.18)
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We show the desired results by contradiction. Suppose for r1 ≥ r2, we have λ∗D(r1)>λ∗D(r2)≥ 0

and λ∗B(r1)>λ∗B(r2)≥ 0, respectively. Since F−1 is a non-decreasing function, we must have

F−1

(
1− 2λ∗D(r1)

Λr2

)
≤ F−1

(
1− 2λ∗D(r2)

Λr2

)
, and F−1

(
1− 2λ∗B(r1)

Λr2

)
≤ F−1

(
1− 2λ∗B(r2)

Λr2

)
.

(A.19)

Furthermore, note that in this setting of distance-dependent wait time, the expected wait time

consists of two parts: in-line delay and the expected travel time of the courier. Although the in-line

delay is the same for all customers despite different locations, the expected travel time for the

courier is increasing w.r.t. the distance from the vendor. Thus, we have WD(r1) > WD(r2) and

WB(r1)>WB(r2). Combining this with (A.19), we have

p∗D = F−1

(
1− 2λ∗D(r1)

Λr2

)
− cWD(r1)<F−1

(
1− 2λ∗D(r2)

Λr2

)
− cWD(r2)≤ p∗D, and

p∗B = F−1

(
1− 2λ∗B(r1)

Λr2

)
− cWB(r1)<F−1

(
1− 2λ∗B(r2)

Λr2

)
− cWB(r2)≤ p∗B, respectively,

which follows (A.17) and (A.18). Thus, we have reached the contraction and this completes the

proof for the desired statement.

The second statement in Proposition 10 follows directly from the first statement. The arguments

for dedicated and batch service are the same so we also show the result for a dedicated delivery

system. Suppose the optimal price leads to that λD(s) equals to zero. Then, for any s′ ∈ [s, r], we

have λD(s′) = 0. Thus, the service region is shrunk to a smaller disk. This completes the proof.

B. Supplementary Proofs in Section 5

Proof of Lemma 1. We only show the argument for function Vn(λ,WD) since the same steps can

be applied to function Vn(λ,WB).

Denote function Jn := min{−Vn(λ,WD),0}. Thus, maximizing Vn(λ,WD) is equivalent to mini-

mizing Jn. Furthermore, by equation (15), denote function

J := lim
n→∞

Jn = min{−λ(1− cWD(λ,µD,CD)),0}.

The rest of this proof is broken into three steps:

1. We show that for each λ∈ [0, µD), there exists a sequence {λ′n} converging to λ such that

lim
n→∞

Jn(λ′n) = J(λ). (B.1)

2. We show that for every λ∈ [0, µD) and for every sequence {λ′n} converging to λ, there is

lim inf
n→∞

Jn(λ′n) = J(λ). (B.2)
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3. Once conditions in Steps 1 and 2 are satisfied, we have that function Jn Γ−converges (see,

e.g., Dal Maso 1993) to function J , which implies that

lim
n→∞

minJn(λ) = min lim
n→∞

Jn(λ).

Thus, the desired result can be obtained.

Step 1: We show a stronger result here: for every λ ∈ [0, µD) and for every sequence {λn} con-

verging to λ, the equation in (B.1) holds. This stronger result also helps us to show the statement

in Step 2.

We begin by showing that function Jn is Lipschitz continuous for every n ∈N. First, note that

0≤ F−1

(
1− λ

Λnr2

)
≤ 1, since w.l.o.g., the bounded support of the valuation distribution function

F is normalized to [0,1]. From the proof of Proposition 1, we know that the wait time function

WD(λ,µD,CD) is strictly convex and increasing in λ with limλ→µDWD(λ,µD,CD) =∞. Therefore,

there exists some λ̂ < µD, such that

F−1

(
1− λ

Λnr2

)
− cWD(λ,µD,CD)≤ 0, so that Jn(λ) = 0, ∀λ > λ̂.

Furthermore, denote KF as the Lipschitz constant for function F−1 and

KW =
∂WD(λ,µD,CD)

∂λ

∣∣∣
λ=λ̂

. (B.3)

Then we have that function WD is Lipschitz continuous when λ ∈ (0, λ̂) with constant KW since

function WD is strictly convex from the proof of Proposition 1. Furthermore, we have function

gn(λ) :=−λ
[
F−1

(
1− λ

Λnr2

)
− cWD(λ,µD,CD)

]
,

is also Lipschitz continuous with constant

Kn = µD max

{
KF

Λnr2
, cKW

}
, (B.4)

since function gn(λ)/λ is the difference between two Lipschitz continuous functions and λ < µD.

Since there is Jn = min{0, gn}, we conclude that function Jn is Lipschitz with factor Kn.

Next, we have

|Jn(λ)−J(λ)| ≤ |gn(λ) +λ(1− cWD(λ,µD,CD))|

= λ

(
1−F−1

(
1− λ

Λnr2

))
< µD

(
1−F−1

(
1− λ

Λnr2

))
, (B.5)

according to the definitions of functions Jn and J , and λ< µD.
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Consider any λ∈ [0, µD) and any sequence {λ′n} converging to λ. By the definition of convergence,

consider ε > 0 and we can find N1 such that there is

|λ′n−λ|<
ε

2K̄
, ∀n≥N1, (B.6)

where K̄ = max{Kn|n ≥ N1}. Furthermore, since F−1 is Lipschitz continuous and monotone

increasing, fixing ε > 0, we can find N2 such that

1−F−1

(
1− λ

Λnr2

)
≤ ε

2µD
, ∀n≥N2. (B.7)

Fix n>Nε := max{N1,N2}, we have

|Jn(λn)−J(λ)| ≤ |Jn(λn)−Jn(λ)|+ |Jn(λ)−J(λ)|

≤ K̄|λn−λ|+µD

(
1−F−1

(
1− λ

Λnr2

))
≤ K̄|λn−λ|+

ε

2

≤ ε

2
+
ε

2
= ε,

where the first inequality follows from the triangular inequality; the second inequality follows from

(B.5) and that function Jn is Lipschitz with constant Kn ≤ K̄; the third inequity follows from

(B.7); and the last inequality follows from (B.6). Therefore, we conclude that (B.1) holds for every

λ∈ [0, µD) and for every sequence {λn} converging to λ.

Step 2: The stronger statement we have shown in step 1 implies the desired result in this step.

Consider any λ ∈ [0, µD) and any sequence {λn} converging to λ. Fix n >Nε = max{N1,N2} and

denote m∗ ∈ arg infm≥n Jm(xm). We have

|Jm∗(λ∗m)−J(λ)| ≤ |Jm∗(λ∗m)−Jm∗(λ)|+ |Jm∗(λ)−J(λ)|

≤ K̄|λ∗m−λ|+µD

(
1−F−1

(
1− λ

Λnr2

))
≤ ε.

Step 3: Now we can conclude that function Jn Γ-Converges to function J as n approaches

infinity, since we have: 1) for each λ ∈ [0, µD), there exists a sequence {λn} converging to λ such

that equation (B.1) holds from step 1; 2) equation (B.2) holds for every λ ∈ [0, µD) and for every

sequence {λn} converging to λ from step 2. Thus, by the property of Γ-Convergence, we have

limn→∞maxλ∈[0,µD) V
n
D (λ) = maxλ∈[0,µD) limn→∞ V

n
D (λ), and this completes the proof.

C. Supplementary Results and Proofs in Section 6

C.1. General Arrival Rate

Proof of Lemma 2. Noting that the function g is continuous and twice differentiable w.r.t. each

variable, we can verify the statements by taking the mixed second derivatives.
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(i) Fix Λ, r > 0 and we have

∂2g(λ, r, c,Λ)

∂λ∂c
=Cr

(
1

T
− T

(T −λr)2

)
− r

3
=
Cλr2(λr− 2T )

T (T −λr)2
− r

3
< 0,

where the inequality follows from λr < T .

(ii) Fix c,Λ> 0 and there is

∂2g(λ, r, c,Λ)

∂λ∂r
=

4λ

Λr3
+
cC

T

(
1− T

2(T +λr)

(T −λr)3

)
− c

3
(C.1)

We verify the right-hand-side of (C.1) is decreasing in λ by taking its derivative w.r.t. λ:

4

Λr3
− 2crCT (2T +λr)

(T −λr)4
<

4

Λr3
− 4crC

T 2
< 0,

where the first inequality follows that the term
2crCT (2T +λr)

(T −λr)4
is increasing in λ, thus, letting

λ= 0, and the second inequality follows r >

(
T 2

cCΛ

) 1
4

. Therefore, the expression in (C.1) reaches

its maximum −c/3 when λ= 0, suggesting submodularity.

(iii) Fix c, r > 0 and we have

∂2g(λ, r, c,Λ)

∂λ∂Λ
=

2λ

Λ2r2
> 0,

and this completes the proof.

C.2. Discussion of the Uniform Distribution Assumption on Customers’ Valuation

As mentioned in Section 6, the assumption that function F (v) = v for v ∈ [0,1] and F (v) = 0 is

not restrictive. According to the proof of Proposition 7 and 8, all we need is that the revenue

function when serving batch VB is submodular in (λ; c) and (λ; r), respectively. Thus, as long

as the distribution function F of customer valuations induces a inverse function F−1 leading to

submodularity, similar to Lemma 2 (i) and (ii), we can still find thresholds in wait cost c and radius

r above which, serving dedicated is optimal.

In particular, for any continuous and twice differentiable function F−1, the result in Proposition

7 still holds. To see this, note that the base price F−1

(
1− λ

Λr2

)
is not a function of c, so it does

not affect submodularity of the revenue function. Thus, the result in lemma 2 still holds.

Similarly, we can extend Proposition 8 under any continuous and twice differentiable function

F−1 such that

λ
∂2F−1

(
1− λ

Λr2

)
∂λ∂r

+
∂F−1

(
1− λ

Λr2

)
∂r

+
cC

T

(
2− T

2(T +λr)

(T −λr)3

)
− c

3
< 0,

where T = 2µB/r and C =CB.
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C.3. Circular City

Proposition C.1. Consider a circular service area with radius r. When the demand rate λ> 0

is exogenous:

(i) There exists a threshold on the demand rate, below which serving dedicated leads to a shorter

wait time and thus a higher revenue, and above which serving batch is optimal.

(ii) There exists a threshold on the service radius, below which serving dedicated leads to a shorter

wait time and thus a higher revenue, and above which serving batch is optimal.

Without the large market assumption, when the demand rate λ is endogenously determined by

the vendor and customer valuations follow a standard uniform distribution:

(iii) There exists a threshold on the customers’ wait cost parameter, above which it is optimal to

serve dedicated.

(iv) There exists a threshold on the service radius, above which it is optimal to serve dedicated.

Proposition C.1 confirms that all the major results in Sections 4 and 5 still hold even if we

change the service area from a disk to a circle.

Proof of Proposition C.1. We only present a proof sketch for each statement as the details

greatly resemble the previous proofs by substituting in CD,C , and CB,C for CD, and CB:

Statements in (i) and (ii) follow from the proof of Propositions 1 and 2, with T1 = µD,Cr, T2 =

2µB,Cr, C1 = 1 and C2 =
1

2
+

π2

3(4 +π)2
. Then we verify that the cubic equation f(a) = 0 has a

unique solution on a∈ (0, T1), which completes the proof.

Statement (iii) follows from the proof of Proposition 7, and statement (iv) follows from the proof

of Proposition 8. We omit the details.

C.4. Multiple Couriers

Proposition C.2. Consider the vendor hires k≥ 2 couriers covering the service area.

(i) When the demand rate λ> 0 is exogenous, there exists a threshold on the demand rate, below

which serving dedicated leads to a shorter wait time and thus a higher revenue, and above which

serving batch is optimal.

(ii) When the demand rate λ is endogenously determined by the vendor and customer valua-

tions follow a standard uniform distribution, there exists a threshold on the customers’ wait cost

parameter, above which it is optimal to serve dedicated.

As Proposition C.2 suggests, there is still a threshold on the exogenous demand rate, below

which serving dedicated leads to a smaller expected wait time and above which serving batch has

the edge when there are k couriers. Furthermore, when the wait cost parameter is relatively large,

we still have that serving dedicated dominates serving batch.
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Proof of Proposition C.2. (i) For notational convenience, we denote µ1 := 2µB,k, µ2 := µF,k and

a :=
√

2(k+ 1). By definition, we have µ2 >µ1. Furthermore, define function

f(λ) := WF,k−WB,k

=
CD

2(kµ1−λ)

(
λ

kµ1

)a−1

−

(
1

2λ
+

CB
2(kµ2−λ)

(
λ

kµ2

)a−1

+
r

3

)
, λ∈ (0, µ1). (C.2)

Note that function f represents the difference in wait times when serving dedicated and batch.

First, we show that function f is strictly increasing w.r.t. λ by taking the first order derivative.

We have

∂f(λ)

∂λ
=

1

2λ2
(1 +CDh(µ1)−CBh(µ2)) ,

where

h(µ,λ) =
kµ
(
λ
kµ

)a
(kµ(a− 1)−λ(a− 2))

(kµ−λ)2
, µ∈ (λ/k,∞). (C.3)

Note that function h is non-increasing w.r.t. µ since by taking the first order derivative, we have

∂h(µ,λ)

∂µ
=

k
(
λ
kµ

)a
(kµ−λ)3

[
(a− 1)ak2µ2− 2(a− 2)akλµ+ (a− 1)(a− 2)λ2

]
=

k
(
λ
kµ

)a
(kµ−λ)3

{a(kµ−λ)[(a− 1)kµ− (a− 2)λ] +λ[akµ− (a− 2)λ]} ≥ 0,

where the inequality follows from that kµ> λ. Thus, we have

∂f(λ)

∂λ
≥ 1

2λ2
(1 +CDh(µ1, λ)−CBh(µ2, λ))> 0,

where the first inequality follows from that function h in non-increasing in µ together with µ2 >µ1

and the second inequality follows from CD >CB.

Next, by acknowledging function f goes to negative infinity and positive infinity when λ

approaches 0 and µ1, respectively, we can reach the first statement in Proposition C.2, since f(λ) = 0

has a unique solution.

(ii) We only need to verify that the revenue function of serving batch,

U(λ, c) := λ

{
1− λ

Λr2
− c

[
1

2λ
+

CB
2(2kµ1−λ)

(
λ

2kµ1

)a−1

+
r

3

]}
, (C.4)

is submodular in (λ, c). By taking its derivatives w.r.t. λ and c, we have

∂2U(λ, c)

∂λ∂c
=−

CB

(
λ
kµ1

)a−1

2(kµ1−λ)2
(akµ− (a− 1)λ)− r

3
< 0,

where the inequality follows from kµ−λ> 0.

The rest of the proof follows from the exactly same steps as in the proof of Proposition 7. Thus,

we omit the details.
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D. Distance-Dependent Wait Time

We dedicate this section to further elaborate the model where customers are sensitive to the

courier’s travel time, besides in-line delay, in Section 6.6.

Unfortunately, it is difficult even to conduct numerical analysis or simulations based on a disk-

shaped area since we do not have closed-form expressions on the demand distribution with respect

to customers’ locations. The cumulative demand on the entire disk is an equilibrium outcome as

customers need to use it when deciding whether to place an order or not. To make the analysis

tractable, we consider a simplified city structure where the disk is stripped down to two rings, with

radii r̄ > r, respectively. Orders only come from locations on the two rings. Since customers are

also sensitive to the travel time, we can expect that the customers on the outer ring need to wait

longer on average compared to those on the inner ring. As a result, the demand for the outer ring

can be different from that of the inner ring. We also assume that the underlying arrival rate of

customers is Λr̄ and Λr, respectively, proportional to the circumference of rings.

We consider dedicated delivery first. Since orders are coming from somewhere either on the outer

ring or on the inner ring, then w.l.o.g., denote by λD,r̄ and λD,r the demand rate at these locations,

respectively. Then, given wait times wr̄ and wr on the two rings, respectively, and price p, we have

λD,r̄
Λr̄

= P(v≥ cwr̄ + p), and
λD,r
Λr

= P(v≥ cwr + p). (D.1)

As a result, whenever an order arrives, with probability
λD,r

λD,r +λD,r̄
the order is on the inner ring

and with probability
λD,r̄

λD,r +λD,r̄
, it comes from the outer ring. Thus, the courier’s total travel

distance per delivery trip is either 2r̄ if the order is on the outer ring, or 2r if the order is on the

inner ring. Thus, we use a Bernoulli random variable X̃D to denote the courier’s travel distance,

where

E[X̃D] = 2r̄
λD,r̄

λD,r +λD,r̄
+ 2r

λD,r
λD,r +λD,r̄

, and E[X̃2
D] = 4r̄2 λD,r̄

λD,r +λD,r̄
+ 4r2 λD,r

λD,r +λD,r̄
. (D.2)

Just like the base model, we can treat this system as an M/G/1 queue with

µ̃D =
1

E[X̃D]
=

λD,r +λD,r̄
2(rλD,r + r̄λD,r̄)

, and ρ̃D =
λD,r +λD,r̄

µ̃D
= 2(rλD,r + r̄λD,r̄). (D.3)

We then derive the coefficient of variation of the arrival and service processes as

C̃D = 1 +
E[X̃2

D]− (E[X̃D])2

(E[X̃D])2
=

(λD,r +λD,r̄)(r
2λD,r + r̄2λD,r̄)

(rλD,r + r̄λD,r̄)2
. (D.4)

Finally, we define the vendor’s revenue as

ṼD = (λD,r +λD,r̄)p
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= λD,r

[
F−1

(
1−

λD,r
Λr

)
− c(WD(λD,r +λD,r̄, µ̃D, C̃D) + r)

]
+λD,r̄

[
F−1

(
1− λD,r̄

Λr̄

)
− c(WD(λD,r +λD,r̄, µ̃D, C̃D) + r̄)

]
= λD,r

[
F−1

(
1−

λD,r
Λr

)
− c
(

2(r2λD,r + r̄2λD,r̄)

1− 2(rλD,r + r̄λD,r̄)
+ r

)]
+λD,r̄

[
F−1

(
1− λD,r̄

Λr̄

)
− c
(

2(r2λD,r + r̄2λD,r̄)

1− 2(rλD,r + r̄λD,r̄)
+ r̄

)]
. (D.5)

Next, we consider batch delivery. Denote the demand rates on the outer and inner rings by λB,r̄

and λB,r, respectively. Denote by X̃B the courier’s travel distance when serving batch delivery.

Then we have

E[X̃B] = 2
λB,r̄

λB,r̄ +λB,r

λB,r
λB,r̄ +λB,r

(
r+ r̄+

1

π

∫ π

0

√
r̄2 + r2− 2r̄r cos(θ)dθ

)
+
(

2r̄+
πr̄

2

)( λB,r̄
λB,r̄ +λB,r

)2

+
(

2r+
πr

2

)( λB,r
λB,r +λB,r

)2

E[X̃2
B] = 2

λB,r̄
λB,r̄ +λB,r

λB,r
λB,r̄ +λB,r

1

π

∫ π

0

(
r+ r̄+

√
r̄2 + r2− 2r̄r cos(θ)

)2

dθ

+

(
λB,r̄

λB,r̄ +λB,r

)2 ∫ πr̄

0

(2r̄+u)2 1

πr̄
du+

(
λB,r

λB,r̄ +λB,r

)2 ∫ πr

0

(2r+u)2 1

πr
du. (D.6)

We can also write the service rate as µ̃B = 1/E[X̃B].

Just like the base model, we can still treat the arrival process as a Erlang-2 process with arrival

rate
1

2
(λB,r +λB,r̄). Thus, this is again a E2/G/1 queue. Finally, the coefficient of variation is

C̃B =
1

2
+

E[X̃2
B]− (E[X̃B])2

(E[X̃B])2
. (D.7)

Using the same approximation in the base model, namely wq as in (11), a customer on the inner

ring has the expected wait time

1

2(λB,r +λB,r̄)
+wq + r≈ 1

2(λB,r +λB,r̄)
+
C̃B
2

(λB,r +λB,r̄)

µ̃B(2µ̃B − (λB,r +λB,r̄))
+ r, (D.8)

and a customer on the outer ring has the expected wait time

1

2(λB,r +λB,r̄)
+wq + r+

1

π

∫ π

0

√
r̄2 + r2− 2r̄r cos(θ)dθ

≈ 1

2(λB,r +λB,r̄)
+
C̃B
2

(λB,r +λB,r̄)

µ̃B(2µ̃B − (λB,r +λB,r̄))
+ r+

1

π

∫ π

0

√
r̄2 + r2− 2r̄r cos(θ)dθ, (D.9)

where we assume the courier always delivers to the inner ring before delivering to the outer ring

when serving in batches8. Thus, we can write the vendor’s revenue function when serving batch as

ṼB = (λB,r +λB,r̄)p

8 Our numerical studies in this section can be easily generalized to the case where the fulfillment order prioritizes the
outer ring or is in a random order.
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= λB,r̄

[
F−1

(
1− λB,r̄

Λr̄

)
− c
(

1

2(λB,r +λB,r̄)
+wq + r+

1

π

∫ π

0

√
r̄2 + r2− 2r̄r cos(θ)dθ

)]
+λB,r

[
F−1

(
1−

λB,r
Λr

)
− c
(

1

2(λB,r +λB,r̄)
+wq + r

)]
. (D.10)

When the demand is exogenous, our major insights still hold. We summarize the results in the

next corollary.

Corollary 2. Suppose the demand is exogenous with λD,r̄ = λD,r = λB,r̄ = λB,r. Then we have:

(i) Dedicated delivery leads to higher revenue when the exogenous demand rate is very low and

batch delivery leads to higher revenue when the demand rate is very high.

(ii) Furthermore ,dedicated delivery leads to higher revenue when the serve region is very small,

i.e., r is small enough, and batch delivery leads to higher revenue when the service region is

very large, i.e., r is large enough.

Proof of Corollary 2. Denote the exogenous demand rate by λ. Note that when the demand is

exogenous and the same among the two rings, shorting service time leads to higher revenue, just

like in our base model.

We first show that E[X̃B]≤ 2E[X̃D] so that the system with batch service has a larger load factor

compared to the system with dedicated service. In other words, the batch system can handle a larger

exogenous demand rate. Using the expressions in (D.2) and (D.6), when λD,r̄ = λD,r = λB,r̄ = λB,r,

we have

2E[X̃D]−E[X̃B]

= 2r̄+ 2r−
(

1

2

(
r̄+ r+

1

π

∫ π

0

√
r̄2 + r2− 2r̄r cos(θ)dθ

)
+

1

4

(
2r̄+

πr̄

2

)
+

1

4

(
2r+

πr

2

))
=

1

2

(
r̄+ r− 1

π

∫ π

0

√
r̄2 + r2− 2r̄r cos(θ)dθ

)
+

1

4

(
2r̄− πr̄

2

)
+

1

4

(
2r− πr

2

)
≥ 0,

where the inequality follows the triangle inequality and the fact that π < 4. The rest of the proof

then follows the logic of Propositions 1 and 2.

When λ approaches 0, the wait times on both rings under batch go to infinity, according to (D.8)

and (D.9), since the term 1/(2λB,r̄ + 2λB,r) = 1/(4λ) goes to infinity in both expressions. On the

other hand, the wait time under dedicated delivery is constant even if λ approaches 0, since WD

goes to zero. When λ approaches µ̃D = 1/E[X̃D] = r̄+ r, which is the upper bound on the demand

rate that can be handled by the dedicated system, the wait time of a dedicated system goes to

infinity. However, the wait time of a batch system is still finite since we have shown that it has a

larger load factor. This shows the first statement.
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We follow the same logic to show the second statement. Suppose r̄ = ar for some a > 1. When

r approaches 0, we have that r̄ = ar also goes to 0 for any a > 0. In this case, the wait time of

dedicated delivery approaches zero since WD(2λ, µ̃D, C̃D) = 2(r̄2 +r2)λ/(1−2λ(r̄+r)) goes to zero.

However, the wait times on both rings under batch delivery are positive according to Propositions 1

and 2, due to the order accumulation time. When r approaches 1/(r+ar), the load under dedicated

service approaches 1, leading to infinite wait time. However, batch service still has finite wait time

due to a larger load factor. This completes the proof.

As we can see, it is very challenging to conduct further analysis using the expressions derived

above, especially for batch delivery, due to the cumbersome expressions. Given the scope of this

paper, we decide to conduct numerical calculations when the vendor endogenizes the demand rate

and customers have uniformly distributed valuations. Furthermore, we assume that the vendor can

only offer one price for customers on the inner and outer rings when endogenizing demand. Our

base model’s insights still carry over to this setting, as shown in Figure 7. We leave the analytical

exploration of distance-dependent wait time as a future research direction.

E. Distance-Dependent Delivery Policy

In this section, we consider a distance-dependent delivery policy. For tractability and coherence,

we consider two couriers on a two-rings-structured service area, introduced in Appendix D. A

distance-dependent delivery policy asks one courier to only focus on the orders on the inner ring

with radius r and serve in Batch. On the other hand, it asks the other courier to only serve orders

on the outer ring with radius r̄ with dedicated service. We shall compare this distance-dependent

delivery policy with two benchmarks, serving only dedicated or batch.

For the first benchmark, the two couriers only serve the two rings with dedicated service. We

combine the derivations from Section 6.7 and Appendix D together. From Appendix D, when given

the wait time and price, the service level on the two rings follows (D.1). Moreover, the first and

second moments of the travel distances follows (D.2); the service rate µ̃D follows (D.3); and the

coefficient of variations C̃D follows (D.4). From Section 6.7, we have the expected wait time for a

customer as

W̃D,2(λ,d)≈ C̃D
2(2µ̃D−λ)

(
λ

2µ̃D

)√6−1

+ d, (E.1)

where the first term is in-line delay and the second term is en-route delay (travel time). Thus, the

vendor’s revenue is

ṼD,2 = (λD,r +λD,r̄)p

= λD,r

[
F−1

(
1−

λD,r
Λr

)
− cW̃D,2(λD,r +λD,r̄, r)

]



Chen, Hu: Courier Dispatch in On-Demand Delivery 19

+λD,r̄

[
F−1

(
1− λD,r̄

Λr̄

)
− cW̃D,2(λD,r +λD,r̄, r̄)

]
, (E.2)

such that

F−1

(
1−

λD,r
Λr

)
− cW̃D,2(λD,r +λD,r̄, r) = F−1

(
1− λD,r̄

Λr̄

)
− cW̃D,2(λD,r +λD,r̄, r̄). (E.3)

For the second benchmark, we consider that the two couriers only serve the two rings in batches.

From Appendix D, we have that the service level still follows (D.1); the first and second moments

of the travel distances follow (D.6); the service rate follows µ̃D = 1/E[X̃B]; and the coefficient

of variations C̃B follows (D.7). Following the base model, assume that the inner-ring orders are

fulfilled first. Thus, using the expression of (26), a customer has the expected wait time of

W̃B,2(λ,d) =
1

2λ
+

C̃B
2(4µ̃B −λ)

(
λ

4µ̃B

)√6−1

+ d, (E.4)

where the first term is the time it takes to cumulate a batch; the second term is the in-line delay;

and the third term is the en-route delay.

Thus, the vendor’s revenue is

ṼB,2 = (λB,r +λB,r̄)p

= λB,r

[
F−1

(
1−

λB,r
Λr

)
− cW̃B,2(λB,r +λB,r̄, r)

]
+λB,r̄

[
F−1

(
1− λB,r̄

Λr̄

)
− cW̃B,2

(
λB,r +λB,r̄, r+

1

π

∫ π

0

√
r̄2 + r2− 2r̄r cos(θ)dθ

)]
,

(E.5)

such that

F−1

(
1−

λB,r
Λr

)
− cW̃B,2(λB,r +λB,r̄, r)

= F−1

(
1− λB,r̄

Λr̄

)
− cW̃B,2

(
λB,r +λB,r̄, r+

1

π

∫ π

0

√
r̄2 + r2− 2r̄r cos(θ)dθ

)
. (E.6)

Finally, we characterize the distance-dependent delivery policy (which we refer to as a hybrid

policy denoted by subscript H). Under this policy, since each courier only focuses on one ring,

we can decompose this service system into two sub-systems. More specifically, we can use the

derivations from Sections 3 and 6.5 to treat the system as a two single-courier service system. To

make a proper comparison, we still define the service level using (D.1), where λH,r̄ and λH,r are

the demand rates on the outer and inner rings, respectively. Then the vendor’s revenue is

ṼH,2 = (λH,r +λH,r̄)p

= λD,r

[
F−1

(
1−

λH,r
Λr

)
− c

(
1

2λH,r
+

λH,rCB,C
2µ

B,C
(2µ

B,C
−λH,r)

+ r+
1

2µB,C

)]
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+λD,r̄

[
F−1

(
1− λH,r̄

Λr̄

)
− c
(

λH,r̄CD,C
2µ̄D,C(µ̄D,C −λH,r̄)

+ r̄

)]
, (E.7)

such that

F−1

(
1−

λH,r
Λr

)
− c

(
1

2λH,r
+

λH,rCB,C
2µ

B,C
(2µ

B,C
−λH,r)

+ r+
1

2µB,C

)

= F−1

(
1− λH,r̄

Λr̄

)
− c
(

λH,r̄CD,C
2µ̄D,C(µ̄D,C −λH,r̄)

+ r̄

)
, (E.8)

where

µ̄D,C =
1

2r̄
, and µ

B,C
=

1

2r+ πr

2

, (E.9)

where the service rates and constants CB,C ,CD,C are all defined in Section 6.5.

Indeed, the hybrid policy mentioned above can take advantage of the en-route efficiency of batch

and the lack of order aggregation time of dedicated delivery. However, it does not always dominate

either the dedicated or batch delivery. In extreme cases in which the two radii are extremely close

to each other, the two rings shrink to one, and then one of the rings shall lose its edge. For example,

with two rings very close to each other and the radii are large, the inner-ring service is inefficient

due to serving batch with a large radius and thus a low sustainable demand rate. Similarly, two

very small rings shall induce an inefficient outer ring, since the outer ring does not take advantage

of a higher sustainable demand rate but serves dedicated delivery.

Even in non-extreme cases, based on the current hybrid policy, we can still find numerical

examples such that it is dominated by dedicated and batch delivery in some parameter regimes.

Another drawback of the current hybrid policy is that it enforces the same price on the two rings. As

a result, services on the two rings need to make compromises with each other can create sustainable

demand levels on each ring. Thus, the resulting demand rates may not be favorable to either ring,

but just rates that keep the service systems on the two rings feasible. Figure E.1 provides an

example of such rare scenarios that the hybrid system can be dominated by both dedicated and

batch delivery.

Our analysis in this section can shed some light and inspire more research on distance-based

delivery policies, since it is a very important and relevant issue that is worth careful consideration

in practice. In our setup, we focus on the case with two couriers, each serving a single ring in the

hybrid system. We point out that it is very difficult to characterize the resulting queueing system

if there is only a single courier who decides to serve either batch or dedicated delivery based on the

order location. Our work may inspire more papers to investigate distance-based service policies in

on-demand delivery.
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Figure E.1 Revenue functions under hybrid, dedicated, and batch services with two couriers. c= 0.1, Λ = 50,

r̄/r= 1.1

F. Simulation Results

In this section, we present the simulation results on the accuracy of several approximations on

expected wait times in this paper.

First, we briefly state our simulation methods. In each sample, consider a unit disk (with radius

r= 1), and generate 1,000 arrivals uniformly distributed inside the disk using a fixed arrival rate λ.

We calculate the average wait time (sample mean) for each sample. When calculating the sample

mean, we exclude the first 200 arrivals to ensure the system has reached a steady state. In total, we

simulate 100 samples for each arrival rate and take the average of sample means as the simulated

expected wait time.

Next, we present the results by comparing the simulated expected wait times versus the approx-

imated wait times. Table F.1 demonstrates that our approximation for the expected wait time in

an E2/G/1 queue using Kingman’s formula in (12) is reasonably good. The percentage difference

is calculated as

Difference (%) :=
|Simulated Time−Approx. Time|

Approx. Time
.

Lastly, we choose parameters λ≤ 2µB so that the approximated system is finite and the comparisons

are meaningful.

In Table F.3, we present the expected wait time with the approximation in (25) and (26), which

are compared to their simulation counterparts, respectively. We choose courier number k= 3.

As we can see from Tables F.2 and F.3, our approximation is relatively accurate except for light

traffic dedicated systems or nearly overloaded batch systems. In the next two figures, we show that

even with approximation errors, our insights on the thresholds in wait cost c and service radius r

still hold with simulation results.
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Table F.1 Performance of approximated expected wait time with Kingman’s formula on E2/G/1 queue

λ(≤ 2µB) utilization ρ Simulated Time Approx. Time Difference (%)
0.2 0.22 2.92 3.02 3.47%
0.3 0.34 2.20 2.33 5.49%
0.4 0.45 1.95 2.11 7.71%
0.5 0.56 1.97 2.16 8.80%
0.6 0.67 2.30 2.50 8.23%
0.7 0.78 3.21 3.41 5.90%
0.8 0.90 6.13 6.55 6.45%

Table F.2 Performance of approximated expected wait time with dedicated delivery and k= 3 couriers

λ(≤ kµD) utilization ρ Simulated Time Approx. Time Difference (%)
0.3 0.13 0.003 0.007 57.48%
0.6 0.27 0.02 0.03 32.91%
0.9 0.40 0.07 0.08 10.18%
1.2 0.53 0.33 0.36 5.38%
1.5 0.67 0.43 0.42 8.35%
1.8 0.80 0.84 0.83 0.48%
2.1 0.93 3.10 3.31 6.12%

Table F.3 Performance of approximated expected wait time with batch delivery and k= 3 couriers

λ(≤ 2kµB) utilization ρ Simulated Time Approx. Time Difference (%)
0.3 0.11 2.00 2.00 0.47%
0.6 0.22 1.17 1.18 1.06%
0.9 0.34 0.91 0.91 0.39%
1.2 0.45 0.79 0.80 0.70%
1.5 0.56 0.77 0.75 1.76%
1.8 0.67 0.84 0.77 9.51%
2.1 0.78 1.14 0.89 27.3%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Dedicated
Batch

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Dedicated
Batch

(b)

Figure F.1 Revenue functions when serving dedicated versus batch under a large market.

(a) r= 1 k= 3, (b) c= 0.5, k= 3

G. Other Delivery Delay

In our base model, we consider that the courier does not stay for any positive amount of time at

each order location, nor has any delay caused by other factors. In this section, we discuss how to

extend our base model to incorporate these features into the model.
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Take delays that occurred at the delivery locations as an example. Suppose each order incurs an

independently and identically distributed extra delay denoted as d at each order location, where

d has mean µd and variance σ2
d, following a known distribution. Further assume that this extra

delay is also independent of the courier’s travel time (the time to cover the distance between two

locations). In reality, there is at most a negligible correlation between the actual travel time and

the time finding a parking space at the delivery location.

Using this setup, we can rewrite the service rate and coefficient of variation as

µ̂D =
1

E[XD] +µd
=

1
4
3
r+µd

, ĈD = 1 +
E[X2

D]− (E[XD])2 +σ2
d

(E[XD] +µd)2
= 1 +

2
9
r2 +σ2

d(
4
3
r+µd

)2 , (G.1)

when the courier serves dedicated delivery, and

µ̂B =
1

E[XB] +µd
=

1
4(32+15π)

45
r+µd

, ĈB =
1

2
+

E[X2
B]− (E[XB])2 +σ2

d

(E[XB] +µd)2
=

1

2
+

5.428r2−
(

4(32+15π)

45
r
)2

+σ2
d(

4(32+15π)

45
r+µd

)2 ,

(G.2)

when serving batch. Then the expected wait time of the two delivery modes can be written as

WD(λ, µ̂D, ĈD) and WB(λ, µ̂B, ĈB), respectively.

We can recreate the analysis in our base model using this alternative setup. Take Section 4 with

exogenous demand for example. We can still show that there are thresholds on demand rate λ and

service radius r, respectively, such that below which serving dedicated is optimal and above which

the courier should serve batch. We only provide a sketch of proof here, using a similar method as

the proofs of Propositions 1 and 2.

Consider function

f(λ, r) := WD(λ, µ̂D, ĈD)−WB(λ, µ̂B, ĈB)

=
1

180πλ(−3 + 4rλ+ 3λµd)(64rλ+ 15π(−3 + 2rλ+ 3λµd))[
8192r2λ2(−3 + 4rλ+ 3λµd)− 1920πrλ(−9 +λ(2r2λ− 9µd(−3 +λµd)− 12r(−2 +λµd) + 9λσ2

d))

+225π2(4(−10 + 9a)r3λ3− 54(−1 +λµd)
2 + 3r2λ2(12− 9a− 28λµd + 9aλµd)

−36rλ(−3 +λ(µd +λµ2
d−λσ2

d)))

]
− r

3
, (G.3)

where a=E[X2
B]− (E[XB])2 ≈ 0.416. One can easily verify that f(λ, r) = 0 is a cubic equation with

respect to either λ or r. Furthermore, it has a unique real solution for λ or r, just as in the proof

of Propositions 1 and 2. Lastly, we only need to verify that WB(λ, µ̂B, ĈB)<WD(λ, µ̂D, ĈD) when

λ (or r) approaches zero, but WB(λ, µ̂B, ĈB)>WD(λ, µ̂D, ĈD) when λ (or r) is sufficiently large.
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As we can see, with the addition of extra delays independent of the delivery trip travel time,

the analysis becomes a lot messier due to complicated algebra operations. Thus, we decide not to

include these features into our base model to preserve a clean yet informative analysis.

H. Non-linear Wait Cost

In our main model, we assume that the customers’ value function has a linear penalty with respect

to the wait time. In this section, we relax that assumption and consider another wait cost function

with practical motivations. In particular, a customer’s utility can be

v− p− c[(w− θ)+]2, (H.1)

where v is still the realization of a customer’s valuation; p is the price; w is the expected wait time;

and θ is a threshold on the wait time. Based on this new utility function, a customer does not

incur wait cost when the expected wait time is below θ, but incurs quadratic wait cost for every

unit of time beyond θ.

First, if the demand is exogenous, just like in the base model, we only need to compare the

expected wait time under the two delivery modes, and the shorter one leads to higher revenue. To

see this, note that under the new utility function of customers, we need to modify the vendor’s

revenue functions under dedicated and batch delivery as the following

V̂D(λ,WD(λ,µD,CD)) = λ

[
F−1

(
1− λ

Λr2

)
− c
[
(WD(λ,µD,CD)− θ)+

]2
]
, (H.2)

and

V̂B(λ,WB(λ,µB,CB)) = λ

[
F−1

(
1− λ

Λr2

)
− c
[
(WB(λ,µB,CB)− θ)+

]2
]
, respectively, (H.3)

where the two wait times WD and WB are derived in (5) and (12), respectively. Thus, a shorter

wait time still leads to higher revenue under this setting. More specifically, when λ is exogenous,

compared to the base model, the only difference is that we may encounter a trivial case in which

an exogenous demand leads to both WD and WB no greater than θ, making the two delivery

mode indifferent. Otherwise, all of the insights in Section 4 still hold. As long as customers’ utility

function is non-increasing in the wait time, our insights in Section 4 still hold.

When the demand is endogenously determined as part of the revenue maximization, we verify

that our major insights in Section 5 still hold numerically. Establishing the analytical propositions

in Section 5 is very challenging due to drastically increasing difficulties introduced by the “kink”

resulted from the threshold θ and the higher order terms created by the quadratic wait penalties.

In Figure H.1, we plot revenue functions with respect to the service radius and the wait cost,

respectively. As we can see, we still observe a threshold below which, serving batch is optimal and

above which, dedicated service is optimal. Thus, the major insights of our base model still hold

even under the non-linear wait cost setup.
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Figure H.1 Revenue functions when serving dedicated versus batch.

(a) c= 0.01, Λ = 50 (b) r= 1, Λ = 50
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