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Online Appendix to

“Joint vs. Separate Crowdsourcing Contests”

A. Proofs.

Proof of Lemma 1. For the sub-contest l, l = 1,2, the expected payoff to contestant i is

E(ui(e
l
i)) = Al

∫ +∞
−∞ Ψ(eli − el∗(n) + ξl)n−1ψ(ξl)dξl − C l(eli). The FOC yields Al

∫ +∞
−∞ (n− 1)Ψ(eli −

el∗(n)+ξl)n−2ψ(eli−el∗(n)+ξl)ψ(ξl)dξl =C l′(eli). In the symmetric equilibrium, contestant i makes

the same effort el∗(n) as other contestants. Since C l′′(·) > 0, the equilibrium effort is given by

el∗(n) =C l′−1
(Al
∫ +∞
−∞ (n− 1)Ψ(ξl)n−2ψ(ξl)2dξl) =C l′−1

(Alh(ξl;n)). �

Proof of Lemma 2. Consider the optimization problem below:

min
e1,e2

C1(e1) +C2(e2) s.t. e1 + e2 = e◦.

The solution to this problem can be typically found by writing the Lagrangean, L(e1, e2, e◦;λ) =

C1(e1) +C2(e2) +λ(e◦− e1− e2), and the FOCs are

∂L

∂e1
=C1′(ẽ1)− λ̃= 0 (3a),

∂L

∂e2
=C2′(ẽ2)− λ̃= 0 (3b),

∂L

∂λ
= e◦− ẽ1− ẽ2 = 0 (3c).(A.1)

Solving the FOCs yields the Lagrange multiplier λ̃= λ(e◦) and the optimal efforts ẽ1(e◦), ẽ2(e◦)

along the two dimensions. Now plugging ẽ1(e◦), ẽ2(e◦) into the objective function and we can get

a new function C◦(e◦) =C1(ẽ1(e◦)) +C2(ẽ2(e◦)) which yields the minimum value of C◦ for a given

e◦. Taking the derivative of C◦ with respect to e◦, we obtain

dC◦(e◦)

de◦
= C1′(ẽ1(e◦))

dẽ1(e◦)

de◦
+C2′(ẽ2(e◦))

dẽ2(e◦)

de◦
. (A.2)

By (A.1a) and (A.1b), C1′(ẽ1) = λ̃ and C2′(ẽ2) = λ̃, we have (A.2)=λ̃
[
dẽ1(e◦)
de◦ + dẽ2(e◦)

de◦

]
. By (A.1c),

e◦ = ẽ1 + ẽ2, and hence dẽ1(e◦)
de◦ + dẽ2(e◦)

de◦ = 1, thus dC◦(e◦)
de◦ = λ̃. Because C1(·) and C2(·) are strictly

increasing, again by (A.1a) and (A.1b), λ̃ > 0, thus, dC◦(e◦)
de◦ > 0, i.e., C◦(e◦) is strictly increasing.

By dC◦(e◦)
de◦ = λ̃, (A.1a) and (A.1b), we have

C◦′(e◦) =C1′(ẽ1) =C2′(ẽ2). (A.3)

By the assumption C2′′(·) > 0, C2′−1
(·) is well-defined, hence C2′−1 (

C1′(ẽ1)
)

= ẽ2. By (A.1c),

ẽ1 + ẽ2 = e◦, we obtain C2′−1 (
C1′(ẽ1)

)
+ ẽ1 = e◦. Because C1′′(·)> 0 and C2′′(·)> 0, C1′−1

(·) and

C2′−1
(·) are strictly increasing, thus ẽ1 is strictly increasing in e◦ by (A.3). Further by (A.1a),

C1′(ẽ1) = λ̃, λ̃ is strictly increasing in e◦. Then because dC◦(e◦)
de◦ = λ̃ that we have just proved, dC

◦(e◦)
de◦

is strictly increasing in e◦, i.e., C◦(e◦) is strictly convex. �
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Proof of Lemma 3. Consider the joint contest with n contestants. Given a fixed aggregate

effort level e◦, all the contestants follow the optimal effort allocation, e◦ = ẽ1 + ẽ2. The strategy

of a contestant is his aggregate effort level, e◦. By Lemma 2, C◦(e◦) is strictly increasing and

strictly convex. Then the expected payoff to contestant i is E(ui(e
◦
i )) = A

∫ +∞
−∞ Ψ◦(e◦i − e◦∗(n) +

ξ◦)n−1ψ◦(ξ◦)dξ◦−C◦(e◦i ). Similar to the derivation in Lemma 1, the equilibrium effort in the joint

contest is e◦∗(n) =C◦′
−1

(A
∫ +∞
−∞ (n− 1)Ψ◦(ξ◦)n−2ψ◦(ξ◦)2dξ◦) =C◦′

−1
(Ah◦(ξ◦;n)). �

Proof of Lemma 4. Denote ξ◦ = ξ1 + ξ2 and it has CDF Ψ◦(ξ◦). Because the random factors

along the two attributes are identical, denote the quantile function of ξl, l = 1,2, by Ψ−1(u) and

the quantile function of ξ◦ by Ψ◦−1(u). Write the formula of E(ξl(n)), l= 1,2,

E(ξl(n)) =

∫ +∞

−∞
ξlnΨ(ξl)n−1ψ(ξl)dξl =

∫ +∞

−∞
ξlnΨ(ξl)n−1dΨ(ξl) =

∫ 1

0

Ψ−1(u)nun−1du, (A.4)

where the last equality is by substituting Ψ−1(u) = ξl. Similarly, E(ξ◦(n)) =
∫ 1

0
Ψ◦−1(u)nun−1du.

Then,

E(ξ1
(n)) +E(ξ2

(n))−E((ξ1 + ξ2)(n)) = E(ξ1
(n)) +E(ξ2

(n))−E(ξ◦(n))

=

∫ 1

0

2Ψ−1(u)nun−1du−
∫ 1

0

Ψ◦−1(u)nun−1du=

∫ 1

0

(2Ψ−1(u)−Ψ◦−1(u))nun−1du. (A.5)

Recall the assumption that ξl, l= 1,2, are identical, and they satisfy the regularity condition that

there exists u0 ∈ (0,1) such that 2Ψ−1(u)−Ψ◦−1(u)< 0 if u ∈ (0, u0), and 2Ψ−1(u)−Ψ◦−1(u)> 0

if u∈ (u0,1). Thus, by (A.5), we have

E(ξ1
(n)) +E(ξ2

(n))−E((ξ1 + ξ2)(n))

=

∫ u0

0

(2Ψ−1(u)−Ψ◦−1(u))nun−1du+

∫ 1

u0

(2Ψ−1(u)−Ψ◦−1(u))nun−1du

>

∫ u0

0

(2Ψ−1(u)−Ψ◦−1(u))nun−1
0 du+

∫ 1

u0

(2Ψ−1(u)−Ψ◦−1(u))nun−1
0 du

=

∫ 1

0

(2Ψ−1(u)−Ψ◦−1(u))nun−1
0 du

= nun−1
0

∫ 1

0

(2Ψ−1(u)−Ψ◦−1(u))du= nun−1
0 [E(ξ1) +E(ξ2)−E(ξ1 + ξ2)] = 0

The inequality is due to that un−1 is strictly increasing in (0,1), and (2Ψ−1(u)−Ψ◦−1(u))nun−1

has a measure of 0 for u= 0,1. As a result, E(ξ1
(n)) +E(ξ2

(n))−E((ξ1 + ξ2)(n))> 0. �

Proof of Proposition 1. Part (i) is directly given by Lemma 4. For part (ii), by Lemmas 1 and

3, the difference of equilibrium efforts with n contestants is

∆e
n = e1∗+ e2∗− e◦∗ =C1′−1 (

A1h(ξ;n)
)

+C2′−1 (
A2h(ξ;n)

)
−C◦′−1

(Ah◦(ξ◦;n))
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= C1′−1 (
A1h(ξ;n)

)
+C2′−1 (

A2h(ξ;n)
)
−C1′−1

(Ah◦(ξ◦;n))−C2′−1
(Ah◦(ξ◦;n)) , (A.6)

where the third equality is driven by Lemma 2 that C◦′(e◦) =C1′(ẽ1) =C2′(ẽ2) and all the cost func-

tions are strictly increasing and strictly convex. The sufficient condition for ∆e
n < 0 is h◦(ξ◦;n)>

max{wh(ξ;n), (1−w)h(ξ;n)}.
Moreover, (a) is directly given by letting w = 1/2. For (b), denote C(·) = C1(·) = C2(·). If

C ′(·) is convex, then C ′−1(·) is concave. By the concavity of C ′−1(·), we have 1
2
(C ′−1(y1) +

C ′−1(y2))≤C ′−1
(
y1+y2

2

)
, where y1 and y2 are in the domain of C ′−1(·). As a result, the inequality

holds for C1′−1
(wAh(ξ;n)) +C2′−1

((1−w)Ah(ξ;n)) =C ′−1(wAh(ξ;n)) +C ′−1((1−w)Ah(ξ;n))≤
2C ′−1(Ah(ξ;n)/2). Furthermore, by (A.6) and C(·) = C1(·) = C2(·), ∆e

n = C ′−1(wAh(ξ;n)) +

C ′−1((1 − w)Ah(ξ;n)) − 2C ′−1(Ah◦(ξ◦;n)) ≤ 2C ′−1(Ah(ξ;n)/2) − 2C ′−1(Ah◦(ξ◦;n)). Since C(·)
is strictly convex, C ′(·) is strictly increasing, and then C ′−1(·) is strictly increasing. Hence, if

h◦(ξ◦;n)>h(ξ;n)/2, ∆e
n < 0. �

Proof of Corollary 1. Denote H(n) = h◦(ξ◦;n)

h(ξ;n)
. For any n, if H(n)>max{w, (1−w)}, then ∆e

n <

0. If ξ ∼N(0, σ), ξ◦ = ξ+ ξ ∼N(0,
√

2σ). We have

h(ξ;n) =

∫ +∞

−∞
(n− 1)Ψ(ξ)n−2ψ(ξ)2dξ =

∫ +∞

−∞
ψ(ξ)dΨ(ξ)n−1 =

1√
2πσ

∫ +∞

−∞
exp(−ξ2/(2σ2))dΨ(ξ)n−1.

By substituting ξ/σ with y, h(ξ;n) = 1√
2πσ

∫ 1

0
exp(−y2/2)dϕ(y)n−1, where ϕ(y)∼N(0,1). Similarly,

for h◦(ξ◦;n), by substituting ξ/(
√

2σ) with ỹ,

h◦(ξ◦;n) =

∫ +∞

−∞
ψ◦(ξ◦)dΨ◦(ξ◦)n−1 =

1

2
√
πσ

∫ +∞

−∞
exp(−ξ◦2/(4σ2))dΨ◦(ξ◦)n−1

=
1

2
√
πσ

∫ +∞

−∞
exp(−ỹ2/2)dϕ(ỹ)n−1.

Then H(n) = h◦(ξ◦;n)

h(ξ;n)
= 1/
√

2. Thus if random factors follow the normal distribution, H(n) = 1/
√

2.

By H(n)>max{w, (1−w)}, if w ∈ (1−
√

2
2
,
√

2
2

), ∆e
n < 0 for any n. �

Corollary A.1 (Individual Performance). For any contestant i, the performance in the

joint contest first-order stochastically dominates the performance in the separate contest, i.e.,

V J
i ≥st V

S
i , if h◦(ξ◦;n)>max{wh(ξ;n), (1−w)h(ξ;n)}.

Proof of Corollary A.1. For contestant i, V S
i = e1∗(n) + ξ1 + e2∗(n) + ξ2 and V J

i = e◦∗(n) + ξ1 +

ξ2. By (A.6), if h◦(ξ◦;n)>max{wh(ξ;n), (1−w)h(ξ;n)}, e1∗(n) + e2∗(n)≤ e◦∗(n). Thus, P{V J
i ≥

z}= P{e◦∗(n) + ξ1 + ξ2 ≥ z}= P{ξ1 + ξ2 ≥ z− e◦∗(n)} ≥ P{ξ1 + ξ2 ≥ z− e1∗(n)− e2∗(n)}= P{V S
i ≥

z} for any z, where the inequality is due to e1∗(n) + e2∗(n) ≤ e◦∗(n). By the definition of usual

stochastic order (see Shaked and Shanthikumar 2007, (1.A.1)), V J
i ≥st V

S
i . �
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Many studies in the literature examine the expected average performance, e.g., Kalra and Shi

(2001), Moldovanu and Sela (2001) and Terwiesch and Xu (2008). Since contestants are ex ante

identical, the expected average performance is equivalent to the expected individual performance in

our context. In some projects, e.g., a sales contest, every individual contestant’s performance counts.

The following corollary compares the two contest mechanisms for each contestant’s performance.

Corollary A.1 shows that the performance of an individual contestant is more likely to be better in

the joint contest than in the separate contest. By V J
i ≥st V

S
i , we immediately have E(V J

i )≥ E(V S
i ).

In contrast to the expected best performance, the combination effect does not play a role in the

expected individual performance. For each given individual, the expected performance only relies

on the equilibrium effort. With the pooling effect prevailing, the expected individual performance

is higher in the joint contest than in the separate contest.

Proof of Proposition 2. If the cost functions are C l(βel), l = 1,2, and C◦(βe◦), by (A.6), the

difference of equilibrium efforts between two contests can be written as

∆e
n =

1

β
C1′−1

(
1

β
A1h(ξ;n)

)
+

1

β
C2′−1

(
1

β
A2h(ξ;n)

)
− 1

β
C1′−1

(
1

β
Ah◦(ξ◦;n)

)
− 1

β
C2′−1

(
1

β
Ah◦(ξ◦;n)

)
.

Since we focus on the case that el∗ > 0 and e◦∗ > 0, then C l′−1
(

1
β
Alh(ξ;n)

)
> 0 and

C l′−1
(

1
β
Ah◦(ξ◦;n)

)
> 0. Denote ∆l = 1

β
C l′−1

(
1
β
Alh(ξ;n)

)
− 1

β
C l′−1

(
1
β
Ah◦(ξ◦;n)

)
, l = 1,2. Note

that ∆e
n = ∆1 + ∆2. Taking derivative of ∆l with respect to β, we obtain

d∆l

dβ
= − 1

β2
C l′−1

(
1

β
Alh(ξ;n)

)
−C l′−1′

(
1

β
Alh(ξ;n)

)
Alh(ξ;n)

β3

+
1

β2
C l′−1

(
1

β
Ah◦(ξ◦;n)

)
+C l′−1′

(
1

β
Ah◦(ξ◦;n)

)
Ah◦(ξ◦;n)

β3
.

By the assumption that C l′′(·) > 0, l = 1,2, C l′(·) is strictly increasing and thus C l′−1
(·) is

strictly increasing. Because h◦(ξ◦;n) > max{wh(ξ;n), (1 − w)h(ξ;n)}, − 1
β2
C l′−1

(
1
β
Alh(ξ;n)

)
+

1
β2
C l′−1

(
1
β
Ah◦(ξ◦;n)

)
> 0. Now we examine two specific forms of the cost functions.

If C l(βel) = exp(ρlβel), ρl > 0, then C l′−1
(x) = 1

ρlβ
ln( x

ρlβ
) and C l′−1′

(x) = 1
ρlβx

. Thus,

C l′−1′ ( 1
β
Alh(ξ;n)

)
Alh(ξ;n)

β3
= 1

ρβ3
and C l′−1′ ( 1

β
Ah◦(ξ◦;n)

)
Ah◦(ξ◦;n)

β3
= 1

ρβ3
. As a result, d∆l

dβ
> 0. If

C l(βel) = al(βel)b
l
, al > 0, bl ≥ 2, then C l′−1′ ( 1

β
Alh(ξ;n)

)
Alh(ξ;n)

β3
= 1

bl−1
(A

lh(ξ;n)

albl
)

1
bl−1 ( 1

β
)
2bl−1

bl−1 and

C l′−1′ ( 1
β
Ah◦(ξ◦;n)

)
Ah◦(ξ◦;n)

β3
= 1

bl−1
(Ah

◦(ξ◦;n)

albl
)

1
bl−1 ( 1

β
)
2bl−1

bl−1 . Since h◦(ξ◦;n) > max{wh(ξ;n), (1 −
w)h(ξ;n)}, C l′−1′ ( 1

β
Alh(ξ;n)

)
Alh(ξ;n)

β3
≤C l′−1′ ( 1

β
Ah◦(ξ◦;n)

)
Ah◦(ξ◦;n)

β3
, and thus d∆l

dβ
> 0. To sum-

marize, for the exponential cost functions C l(βel) = exp(ρlβel), ρl > 0, l= 1,2, and the polynomial

cost functions C l(βel) = al(βel)b
l
, al > 0, bl ≥ 2, we have d∆l

dβ
> 0. Therefore, ∆e

n is strictly increasing

in β.
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By Proposition 1, if h◦(ξ◦;n)>max{wh(ξ;n), (1−w)h(ξ;n)}, ∆e
n < 0. Thus, ∆e

n approaches 0 if

β is increasing. Meanwhile, the difference of the expected best random factors ∆ξ
n is a fixed positive

value. As a result, there exists a threshold β̃ > 0 such that if β ≥ β̃, the difference ∆n = ∆e
n+∆ξ

n ≥ 0,

and if β < β̃, the difference ∆n = ∆e
n + ∆ξ

n < 0. �

Proposition A.1. There exists n̄≥ 2 such that ∆ξ
n is increasing in n∈ [2, n̄].

Proof of Proposition A.1. Denote the r-th order statistic of a random variable with a sample

size n by subscript (r:n) and denote Ψ−1(·) as the quantile function of CDF Ψ(·). It is sufficient to

show that there exists an n̄ such that

E(ξ1
(n−1:n)) +E(ξ2

(n−1:n))−E(ξ◦(n−1:n))≤ 0, (A.7)

when n≤ n̄. According to Chakraborty (1999), (A.7) holds for that the following regularity condi-

tion is satisfied: there exists u0 ∈ (0,1) such that Ψ−1(u) + Ψ−1(u)−Ψ◦−1(u)< 0 if u∈ (0, u0), and

Ψ−1(u) + Ψ−1(u)−Ψ◦−1(u)> 0 if u∈ (u0,1).

Recall the assumption that ξl, l = 1,2, follows a log-concave distribution. Many log-concave

distributions satisfy the regularity condition, e.g., uniform, normal, logistic, Gumbel, Gamma, etc.

By Bagnoli and Bergstrom (2005), Corollary 2, if the PDF is log-concave, then its hazard rate

function is increasing over the support. By Watson and Gordon (1986, Theorem 1), one sufficient

condition for the regularity condition to hold and u0 = 0.5 is that Ψ(·) is a symmetric distribution

with a non-decreasing hazard rate function. Therefore, the existence of n̄ such that (A.7) holds

is guaranteed if the random factors follow a symmetric log-concave distribution or an asymmetric

log-concave distribution satisfying the regularity condition.

Write the formulas of E(ξl(n)) and E(ξl(n−1)), l = 1,2, E(ξl(n)) =
∫ +∞
−∞ ξlnΨ(ξl)n−1ψ(ξl)dξl and

E(ξl(n−1)) =
∫ +∞
−∞ ξl(n− 1)Ψ(ξl)n−2ψ(ξl)dξl. The following recurrence relation holds, see David and

Nagaraja (2003, Chapter 3.4 Relation 1):

nE(ξl(n−1))− (n− 1)E(ξl(n)) =

∫ +∞

−∞
ξln(n− 1)Ψ(ξl)n−2ψ(ξl)dξl−

∫ +∞

−∞
ξln(n− 1)Ψ(ξl)n−1ψ(ξl)dξl

=

∫ +∞

−∞
ξln(n− 1)(Ψ(ξl)n−2−Ψ(ξl)n−1)ψ(ξl)dξl = E(ξl(n−1:n)), (A.8)

where the last equality is because the PDF for the (n− 1)-th order statistics of ξl with the sample

size n is n(n−1)Ψ(ξl)n−2(1−Ψ(ξl))ψ(ξl). A similar relation can be applied to ξ◦, nE(ξ◦(n−1))− (n−
1)E(ξ◦(n)) = E(ξ◦(n−1:n)). By the above relations, we have E(ξl(n−1))−E(ξl(n)) = 1

n
[E(ξl(n−1:n))−E(ξl(n))],

l= 1,2, and E(ξ◦(n−1))−E(ξ◦(n)) = 1
n

[E(ξ◦(n−1:n))−E(ξ◦(n))]. Then,

∆ξ
n−1−∆ξ

n = [E(ξ1
(n−1)) +E(ξ2

(n−1))−E(ξ◦(n−1))]− [E(ξ1
(n)) +E(ξ2

(n))−E(ξ◦(n))]
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= [E(ξ1
(n−1))−E(ξ1

(n))] + [E(ξ2
(n−1))−E(ξ2

(n))]− [E(ξ◦(n−1))−E(ξ◦(n))]

=
1

n

{
[E(ξ1

(n−1:n))−E(ξ1
(n))] + [E(ξ2

(n−1:n))−E(ξ2
(n))]− [E(ξ◦(n−1:n))−E(ξ◦(n))]

}
=

1

n

{
[E(ξ1

(n−1:n)) +E(ξ2
(n−1:n))−E(ξ◦(n−1:n))]− [E(ξ1

(n)) +E(ξ2
(n))−E(ξ◦(n))]

}
=

1

n

{
[E(ξ1

(n−1:n)) +E(ξ2
(n−1:n))−E(ξ◦(n−1:n))]−∆ξ

n

}
.

By Lemma 4, ∆ξ
n ≥ 0. Then ∆ξ

n−1 −∆ξ
n ≤ 0 if E(ξ1

(n−1:n)) + E(ξ2
(n−1:n))− E(ξ◦(n−1:n))≤ 0. By (A.7),

there exists n̄ such that when n≤ n̄, E(ξ1
(n−1:n)) +E(ξ2

(n−1:n))−E(ξ◦(n−1:n))≤ 0. Thus, there exists n̄

such that when n≤ n̄, ∆ξ
n−1−∆ξ

n ≤ 0. The desired result holds. �

It is intuitive that the best performances in both contest mechanisms can be improved by having

more contestants. However, it is unclear which contest mechanism benefits more from additional

contestants. Proposition A.1 shows that the marginal benefit of one additional contestant in boost-

ing the expected best random factors is more significant for the separate contest than for the joint

contest if the number of contestants is not too large. The intuition is as follows. For both contests,

the best performance will be enhanced only if the additional solution is better than every single

one of the solutions in the existing pool. For the joint contest, contestants submit a single solution

along the two dimensions, so the best performance will be improved if the additional aggregate

solution is better. However, for the separate contest, the best performance will be improved if the

additional solution in either attribute is better. When the pool of contestants is small, it is more

likely that the additional contestant is doing better than the existing pool of contestants in one of

the attributes than that he is doing better in the whole project. Thus, if the contestant pool is not

too large, the firm can benefit from obtaining a higher expected best random factors, by having

more contestants in the separate contest than in the joint contest. When the contestant pool is

large, having more contestants may lead to diminishing returns. In Proposition A.2, we compare

the two contest mechanisms in the expected best random factors when the number of contestants

is large enough.

Proposition A.2. (i) If ξ1 and ξ2 have a bounded support [−a,a], lim
n→∞

∆ξ
n = 0.

(ii) If ξ1 and ξ2 are normally distributed, lim
n→∞

∆ξ
n =∞.

Proof of Proposition A.2. First, we prove the following lemma.

Lemma A.1. If PDF ψ(ξ1) is symmetric and log-concave, then

E(ξ1
(n))≥

(
1− 1

2n

)
Ψ−1

(
n

n+ 1
− 1

2n

)
.
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Proof of Lemma A.1. The expectation of the highest order statistics of ξ1 can be written as

E(ξ1
(n)) =

∫ +∞

−∞
ξ1nΨ(ξ1)n−1dΨ(ξ1) =

∫ 1

0

Ψ−1(u)nun−1du,

by letting ξ1 = Ψ−1(u). Let B(u) = nun−1, then we have

E(ξ1
(n)) =

∫ 1

0

Ψ−1(u)B(u)du=

∫ 1

1/2

Ψ−1(u)B(u)du+

∫ 1/2

0

Ψ−1(u)B(u)du

=

∫ 1

1/2

Ψ−1(u)B(u)du−
∫ 1

1/2

Ψ−1(1−u)B(1−u)du

=

∫ 1

1/2

Ψ−1(u)B(u)du−
∫ 1

1/2

Ψ−1(u)B(1−u)du

=

∫ 1

1/2

Ψ−1(u)[B(u)−B(1−u)]du,

where the fourth equality is by the symmetric property that ψ(ξ1) = ψ(−ξ1), Ψ(ξ1) = 1−Ψ(ξ1)

and Ψ−1(1−u) = Ψ−1(u). By Lemma A.2, PDF ψ(ξ1) is unimodal and symmetric at 0, thus ψ(ξ1)

is decreasing in ξ1 ≥ 0. When ξ1 ≥ 0, the CDF Ψ(ξ1) is concave because Ψ′′(ξ1) = ψ′(ξ1)≤ 0. As

a result, Ψ−1(u) is convex in u ∈ [1/2,1]. Let K =
∫ 1

1/2
B(u) − B(1 − u)du =

∫ 1

1/2
[nun−1 − n(1 −

u)n−1]du = 1 − 1/2n, thus
∫ 1

1/2
(B(u) − B(1 − u))/Kdu = 1. Since (B(u) − B(1 − u))/K can be

considered as a PDF, then
∫ 1

1/2
Ψ−1(u){[B(u)−B(1−u)]/K}du is the expectation of Ψ−1(u) with

such PDF. By the convexity of Ψ−1(u) and Jensen’s inequality, we have

E(ξ1
(n))/K =

∫ 1

1/2

Ψ−1(u){[B(u)−B(1−u)]/K}du≥Ψ−1

(∫ 1

1/2

u[B(u)−B(1−u)]/Kdu

)
.

Integrating by parts, we have∫ 1

1/2

u[B(u)−B(1−u)]du =

∫ 1

1/2

[nun−n(1−u)n−1u]du=

(
n

n+ 1
− n

n+ 1

1

2n+1

)
+

∫ 1

1/2

ud(1−u)n

=

(
n

n+ 1
− n

n+ 1

1

2n+1

)
− 1

2n+1
−
∫ 1

1/2

(1−u)ndu

=

(
n

n+ 1
− n

n+ 1

1

2n+1

)
− 1

2n+1
− 1

n+ 1

1

2n+1
=

n

n+ 1
− 1

2n
.

Because K =
∫ 1

1/2
[B(u)−B(1−u)]du= 1−1/2n, E(ξ1

(n))≥KΨ−1
(∫ 1

1/2
u[B(u)−B(1−u)]/Kdu

)
≥(

1− 1
2n

)
Ψ−1

(
( n
n+1
− 1

2n
)
/

(1− 1
2n

)
)
≥
(
1− 1

2n

)
Ψ−1

(
n
n+1
− 1

2n

)
, where the last inequality is

because Ψ−1(·) is increasing and 1− 1
2n
≤ 1. Therefore, the desired inequality holds. �

Now we prove Proposition A.2.

(i) If ξ1 and ξ2 have a bounded support [−a,a], then ξ◦ has the bounded support [−2a,2a].

By Lemma A.1,
(
1− 1

2n

)
Ψ−1

(
n
n+1
− 1

2n

)
≤ E(ξ1

(n)) ≤ a. We have lim
n→∞

(
1− 1

2n

)
Ψ−1

(
n
n+1
− 1

2n

)
≤
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lim
n→∞

E(ξ1
(n)) ≤ lim

n→∞
a. By the Squeeze Theorem, lim

n→∞

(
1− 1

2n

)
Ψ−1

(
n
n+1
− 1

2n

)
= a = lim

n→∞
E(ξ1

(n)) =

a. Similar results can be extended to ξ2 and ξ◦, thus lim
n→∞

∆ξ
n = lim

n→∞
E(ξ1

(n)) + lim
n→∞

E(ξ2
(n)) −

lim
n→∞

E(ξ◦(n)) = a+ a− 2a= 0. The desired result holds.

(ii) If ξl ∼N(0, σ), l= 1,2, the quantile function can be written as

ϕ−1(u) = σ
√

2erf−1(2u− 1), (A.9)

where u∈ (0,1) and erf(u) is the error function, erf(u) = 1
π

∫ u
−u e

t2dt. Then ∆ξ
n can be written as

∆ξ
n =

∫ +∞

−∞
ξ1nϕn−1(ξ1)dϕ(ξ1) +

∫ +∞

−∞
ξ2nϕn−1(ξ2)dϕ(ξ2)−

∫ +∞

−∞
ξ◦nϕ◦n−1(ξ◦)dϕ◦(ξ◦)

=

∫ 1

0

nϕ−1(u)un−1du+

∫ 1

0

nϕ−1(u)un−1du−
∫ 1

0

nϕ◦−1(u)un−1du

=

∫ 1

0

n(2ϕ−1(u)−ϕ◦−1(u))un−1du.

By (A.9), 2ϕ−1(u)−ϕ◦−1(u) = (2
√

2σ− 2σ)erf−1(2u− 1), because ξ◦ ∼N(0,
√

2σ) and ϕ◦−1(u) =

2σerf−1(2u− 1). Hence, we can define a new random variable ξ̃ that is normally distributed with

mean 0 and standard deviation (2−
√

2)σ. Denote its CDF by ϕ̃(ξ̃), then 2ϕ−1(u)− ϕ◦−1(u) =

ϕ̃−1(u). Thus

∆ξ
n =

∫ 1

0

nϕ̃−1(u)un−1du= E(ξ̃(n)). (A.10)

By Lemma A.1, lim
n→∞

(
1− 1

2n

)
ϕ̃−1

(
n
n+1
− 1

2n

)
≤ lim

n→∞
E(ξ̃(n)). Because the normal distribution is

defined on the (−∞,∞), then lim
n→∞

(
1− 1

2n

)
ϕ̃−1

(
n
n+1
− 1

2n

)
=∞. Then if ξ1 and ξ2 follow normal

distributin, lim
n→∞

∆ξ
n =∞. �

Proposition A.2 shows that the limiting behavior of ∆ξ
n depends on the distributions of the

random factors. It is intuitive that when the number of contestants is sufficiently large, the best

performance in both contest mechanisms must be extraordinary. Since contestants are ex ante

identical, the equilibrium effort is equal among all the contestants under each mechanism, so the

firm ex post selects the best realized random factor in each contest. Thus there must be a realized

random factor approaching its upper limit among a sufficiently large number of contestants. It

is well known that when n is sufficiently large, the expectation of the highest order statistics is

approximately equal to the value of n
n+1

-th quantile, E(ξ(n)) ≈ Υ−1
(

n
n+1

)
, where Υ−1(·) is the

quantile function of Υ(·) (see, e.g., David and Nagaraja 2003, pp. 80, (4.5.1)). When n is large

enough, the term n
n+1

approaches 1 and E(ξ(n)) approaches the upper limit of the range of the

random factor.
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When the number of contestants is large enough and the random factors have a bounded support

(e.g., two-sided truncated normal distribution), the expected best random factors in the two contest

mechanisms are approximately equal, since they are both close to the upper bound of the range.

However, with normally distributed random factors that have the unbounded support, the difference

between the expected best random factors approaches infinity when the large pool of contestants

grows even larger. Thus, the separate contest can benefit more from an increasing number of

contestants than the joint contest, even when the pool of contestants is already very large. That

is, the combination effect can be infinitely enhanced by more and more contestants.

Lemma A.2. If PDF ψ(ξ) is twice continuously differentiable and log-concave, then it is uni-

modal.

Proof of Lemma A.2. By the definition of twice differentiable and log-concave function, we

have ∂2 ln[ψ(ξ)]

∂ξ2
= ∂

∂ξ

[
ψ′(ξ)
ψ(ξ)

]
≤ 0. Thus, for any ξ1 ≤ ξ2, ψ′(ξ1)

ψ(ξ1)
≥ ψ′(ξ2)

ψ(ξ2)
, and equivalently,

ψ′(ξ1)ψ(ξ2)−ψ(ξ1)ψ′(ξ2)

ψ(ξ1)ψ(ξ2)
≥ 0. (A.11)

First, consider the case that there exists a ξ∗ such that ψ′(ξ∗) = 0. In (A.11), let ξ2 = ξ∗, then

(A.11) implies that ψ′(ξ1)ψ(ξ∗) ≥ 0. Since ψ(ξ∗) ≥ 0, ψ′(ξ1) ≥ 0 for ξ1 ≤ ξ∗. Similarly, in (A.11),

let ξ1 = ξ∗, then −ψ′(ξ∗)ψ(ξ2) ≥ 0. Thus, ψ′(ξ2) ≤ 0 for ξ2 ≥ ξ∗. Hence, if ξ∗ exists, PDF ψ(ξ) is

increasing for ξ ≤ ξ∗ and decreasing for ξ ≥ ξ∗. Second, if ξ∗ does not exist, because ψ(ξ) is twice

differentiable, ψ(ξ) is either monotone increasing or decreasing. Thus, ψ(ξ) is unimodal. �

Lemma A.3. If ξ follows a symmetric log-concave distribution with mean 0, then h(ξ;n) is

decreasing in n.

Proof of Lemma A.3. By Ales et al. (2016a, p.12, Proposition 1), the equilibrium effort level

e∗ is non-increasing for any n ≥ 2 if and only if the density ψ(ξ) of the output shock ξ satisfies∫ +∞
−∞ (1−Ψ(ξ))Ψ(ξ)ψ′(ξ)dξ ≤ 0. Following the same approach, we now verify that any random factor

that follows a symmetric log-concave distribution with mean 0 satisfies this condition. By Lemma

A.2, the density function of a log-concave distribution is unimodal, which means that there exists

ξ0 such that for ξ < ξ0, ψ′(ξ)≥ 0, for ξ > ξ0, ψ′(ξ)≤ 0. When n≥ 2,

h(ξ;n+ 1)−h(ξ;n) =

∫ +∞

−∞
nΨ(ξ)n−1ψ(ξ)2dξ−

∫ +∞

−∞
(n− 1)Ψ(ξ)n−2ψ(ξ)2dξ

=

∫ +∞

−∞
ψ(ξ)dΨ(ξ)n−

∫ +∞

−∞
ψ(ξ)dΨ(ξ)n−1 =−

∫ +∞

−∞
ψ′(ξ)Ψ(ξ)ndξ+

∫ +∞

−∞
ψ′(ξ)Ψ(ξ)n−1dξ

=

∫ +∞

−∞
(1−Ψ(ξ))Ψ(ξ)n−1ψ′(ξ)dξ =

∫ ξ0

−∞
(1−Ψ(ξ))Ψ(ξ)n−1ψ′(ξ)dξ+

∫ +∞

ξ0

(1−Ψ(ξ))Ψ(ξ)n−1ψ′(ξ)dξ
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≤
∫ ξ0

−∞
(1−Ψ(ξ))Ψ(ξ)Ψ(ξ0)n−2ψ′(ξ)dξ+

∫ +∞

ξ0

(1−Ψ(ξ))Ψ(ξ)Ψ(ξ0)n−2ψ′(ξ)dξ

= Ψ(ξ0)n−2

∫ +∞

−∞
(1−Ψ(ξ))Ψ(ξ)ψ′(ξ)dξ,

where the third equality is due to the integration by parts. Now we verify that if the distribution is

symmetric at 0, then
∫ +∞
−∞ (1−Ψ(ξ))Ψ(ξ)ψ′(ξ)dξ = 0. Because 1−Ψ(ξ) = Ψ(−ξ) and ψ′(ξ) =ψ′(−ξ),

we have ∫ +∞

−∞
(1−Ψ(ξ))Ψ(ξ)ψ′(ξ)dξ

=

∫ +∞

0

(1−Ψ(ξ))Ψ(ξ)ψ′(ξ)dξ+

∫ 0

−∞
(1−Ψ(ξ))Ψ(ξ)ψ′(ξ)dξ

=

∫ +∞

0

(1−Ψ(ξ))Ψ(ξ)ψ′(ξ)dξ+

∫ 0

−∞
(1−Ψ(−ξ))Ψ(−ξ)ψ′(−ξ)dξ

=

∫ +∞

0

(1−Ψ(ξ))Ψ(ξ)ψ′(ξ)dξ−
∫ +∞

0

(1−Ψ(ξ))Ψ(ξ)ψ′(ξ)dξ = 0.

As a result, h(ξ;n+ 1)−h(ξ;n)≤ 0 and h(ξ;n) is decreasing in n. �

Proof of Proposition 3. First, if the cost functions are in the polynomial form, i.e., C l(el) =

al(el)b
l
, al > 0, bl ≥ 2, l= 1,2, by (A.6), the difference of equilibrium efforts is

∆e
n = (a1b1)

− 1
b1−1 (wAh(ξ;n))

1
b1−1 + (a2b2)

− 1
b2−1 ((1−w)Ah(ξ;n))

1
b2−1

−(a1b1)
− 1
b1−1 (Ah◦(ξ◦;n))

1
b1−1 − (a2b2)

− 1
b2−1 (Ah◦(ξ◦;n))

1
b2−1

= (A/a1b1)
1

b1−1

[
(wh(ξ;n))

1
b1−1 −h◦(ξ◦;n)

1
b1−1

]
+(A/a2b2)

1
b2−1

[
((1−w)h(ξ;n))

1
b2−1 −h◦(ξ◦;n)

1
b2−1

]
. (A.12)

Since h(ξ;n)

h◦(ξ◦;n)
=
√

2 for any n, we can rewrite (A.12) as

∆e
n = (A/a1b1)

1
b1−1

[
w

1
b1−1 − (

√
2/2)

1
b1−1

]
h(ξ;n)

1
b1−1

+(A/a2b2)
1

b2−1

[
(1−w)

1
b2−1 − (

√
2/2)

1
b2−1

]
h(ξ;n)

1
b2−1 .

By Lemma A.3, if ξ follows a symmetric log-concave distribution with mean 0, then h(ξ;n) is

decreasing in n. Given w ∈ (1−
√

2/2,
√

2/2), ∆e
n < 0 is increasing in n. Meanwhile, By Proposition

A.2, lim
n→∞

∆ξ
n =∞, therefore the difference of the random factors ∆ξ

n is a positive value that is

increasing in n. As a result, there exists a threshold ñ ∈ [2,∞) such that when n ≤ ñ, ∆n =

∆ξ
n + ∆e

n ≤ 0, and when n≥ ñ, ∆n = ∆ξ
n + ∆e

n ≥ 0.

Second, if the cost functions are in the exponential form, i.e., C l(el) = exp(ρlel), ρl > 0, l= 1,2,

by (A.6), the difference of equilibrium efforts is

∆e
n = ln

(
wh(ξ;n)

h◦(ξ◦;n)

)
/ρ1 + ln

(
(1−w)h(ξ;n)

h◦(ξ◦;n)

)
/ρ2. (A.13)
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By Corollary 1, if ξl ∼N(0, σ), l= 1,2, then 1/H(n) = h(ξ;n)

h◦(ξ◦;n)
=
√

2 for any n. Since w ∈ (1−
√

2
2
,
√

2
2

)

and h(ξ;n)

h◦(ξ◦;n)
=
√

2, ∆e
n < 0 by (A.13). Thus, ∆e

n is a fixed non-positive value for any n. For ∆ξ
n,

by (A.10), ∆ξ
n = E(ξ̃(n)), where ξ̃ ∼N(0, (2−

√
2)σ). By (A.8), E(ξ̃(n−1))−E(ξ̃(n)) = 1

n
[E(ξ̃(n−1:n))−

E(ξ̃(n))] ≤ 0. Thus, E(ξ̃(n)) is increasing in n. By Proposition A.2, lim
n→∞

∆ξ
n = ∞, therefore the

difference of the random factors ∆ξ
n is a positive value that is increasing in n. There exists a

threshold ñ∈ [2,∞) such that when n≤ ñ, ∆n = ∆ξ
n+∆e

n ≤ 0, and when n≥ ñ, ∆n = ∆ξ
n+∆e

n ≥ 0.

�

Proof of Lemma 5. By (A.6), the difference of equilibrium efforts between two contest mecha-

nisms is ∆e
n =C1′−1

(Ah◦(ξ◦;n)) +C2′−1
(Ah◦(ξ◦;n))−C1′−1

(A1h(ξ;n))−C2′−1
(A2h(ξ;n)) .

For part (i), if C l(e) = aeb, l= 1,2, a> 0, b≥ 2, then C l′−1
(x) =

(
x
ab

) 1
b−1 . Thus,

∆e
n =

[(
h◦(ξ◦;n)

ab

) 1
b−1

−
(
wh(ξ;n)

ab

) 1
b−1

+

(
h◦(ξ◦;n)

ab

) 1
b−1

−
(

(1−w)h(ξ;n)

ab

) 1
b−1

]
A

1
b−1 ,

where we denote A1 =wA and A2 = (1−w)A. If h◦(ξ◦;n)>max{wh(ξ;n), (1−w)h(ξ;n)}, then[(
h◦(ξ◦;n)

ab

) 1
b−1

−
(
wh(ξ;n)

ab

) 1
b−1

+

(
h◦(ξ◦;n)

ab

) 1
b−1

−
(

(1−w)h(ξ;n)

ab

) 1
b−1

]
> 0,

and thus ∆e
n is strictly increasing in A.

For part (ii), if C l(e) = exp(ρe), l= 1,2, ρ> 0, then C l′−1
(x) = 1

ρ
ln(x

ρ
). Thus,

∆e
n =

1

ρ

[
ln

(
h◦(ξ◦;n)

wh(ξ;n)

)
+ ln

(
h◦(ξ◦;n)

(1−w)h(ξ;n)

)]
,

where A1 =wA and A2 = (1−w)A. Since ∆e
n is independent from the total amount of prize A, ∆e

n

is fixed for any A. �

Proof of Proposition 4. We first derive a sufficient condition for the firm’s utility UJ
o and US

o to

be concave in the total prize A. Recall that the equilibrium effort level in the joint contest is e◦∗(n) =

C◦′
−1

(Ah◦(ξ◦;n)). Since UJ
o =C◦′

−1
(Ah◦(ξ◦;n))−A=C1′−1

(Ah◦(ξ◦;n))+C2′−1
(Ah◦(ξ◦;n))−A.

By denoting C1′−1
(·) = ϕ1(·) and C2′−1

(·) = ϕ2(·), we have that UJ
o is concave in A if ∂2UJo

∂A2 =

ϕ1′′(Ah◦(ξ◦;n))h◦2(ξ◦;n)+ϕ2′′(Ah◦(ξ◦;n))h◦2(ξ◦;n)≤ 0. It is equivalent to the condition that ϕ1(·)
and ϕ2(·) are concave in the relevant range. Recall that the equilibrium effort level in the separate

contest is el∗(n) = C l′−1
(Alh(ξ;n)), l = 1,2. The utility of the firm is US

o = C1′−1
(A1h(ξ;n)) +

C2′−1
(A2h(ξ;n))−A. The sufficient condition for the firm’s utility US

o to be concave in the total

prize A is ∂2UJo
∂A2 =ϕ1′′(wAh(ξ;n))(wh(ξ;n))2 +ϕ2′′((1−w)Ah(ξ;n))((1−w)h(ξ;n))2 ≤ 0. It is equiv-

alent to the condition that ϕ1(·) and ϕ2(·) are concave in the relevant range.

Due to the concavity of UJ
o with respect to A, the optimal total prize AJ∗ in the joint

contest is the solution to the following FOC of the firm’s problem with respect to A: ∂UJo
∂A

=
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ϕ1′(AJ∗h◦(ξ◦;n))h◦(ξ◦;n) + ϕ2′(AJ∗h◦(ξ◦;n))h◦(ξ◦;n) − 1 = 0. Due to the concavity of US
o with

respect to A, the optimal total prize AS∗ in the joint contest is the solution to the following FOC of

the firm’s problem with respect to A: ∂USo
∂A

=ϕ1′(wAS∗h(ξ;n))wh(ξ;n)+ϕ2′((1−w)AS∗h(ξ;n))(1−
w)h(ξ;n)− 1 = 0. Since C1(·) = C2(·), we denote C1(·) = C2(·) = C(·) and ϕ1(·) = ϕ2(·) = ϕ(·) in

the following proof. Now we can examine the two specific forms of the cost functions. It is simple

to verify that the ϕ(·) of C(e) = aeb, a> 0, b≥ 2 and C(e) = exp(ρe), ρ> 0 is concave.

For part (i), if C(e) = aeb, a > 0, b ≥ 2, then C ′−1(x) =
(
x
ab

) 1
b−1 = ϕ(x). When

b > 2, ϕ′(x) = 1
b−1

( 1
ab

)
1
b−1x

2−b
b−1 . The optimal amount of prize in the joint contest

AJ∗ is given by ϕ1′(AJ∗h◦(ξ◦;n))h◦(ξ◦;n) + ϕ2′(AJ∗h◦(ξ◦;n))h◦(ξ◦;n) − 1 = 0, equiva-

lently, 2ϕ′(AJ∗h◦(ξ◦;n))h◦(ξ◦;n) = 1. Denote X = 1
b−1

( 1
ab

)
1
b−1 > 0. Then, (AJ∗)

2−b
b−1 =

[2X(h◦(ξ◦;n))
1
b−1 ]−1. Moreover, the optimal amount of prize in the separate contest AS∗

is given by ϕ′(wAS∗h(ξ;n))wh(ξ;n) + ϕ′((1 − w)AS∗h(ξ;n))(1 − w)h(ξ;n) = 1, equivalently,

X(wAS∗h(ξ;n))
2−b
b−1wh(ξ;n) + X((1 − w)AS∗h(ξ;n))

2−b
b−1 (1 − w)h(ξ;n) = 1. Therefore, (AS∗)

2−b
b−1 =[

X[(wh(ξ;n))
1
b−1 + ((1−w)h(ξ;n))

1
b−1 ]

]−1

. Because h◦(ξ◦;n) > max{wh(ξ;n), (1 − w)h(ξ;n)},

[2X(h◦(ξ◦;n))
1
b−1 ]−1 <

[
X[(wh(ξ;n))

1
b−1 + ((1−w)h(ξ;n))

1
b−1 ]

]−1

. Since b > 2, 2−b
b−1

< 0, we have

AJ∗ >AS∗.

When b = 2, ϕ(x) = x
ab

, thus UJ
o and US

o are linear functions in A, i.e., UJ
o = ( 2h◦(ξ◦;n)

ab
− 1)A,

and US
o = (h(ξ;n)

ab
− 1)A. There does not exist a finite optimal amount of the total prize for the two

contest mechanisms.

For part (ii), if C(e) = exp(ρe), ρ > 0, then C ′−1(x) = 1
ρ

ln(x
ρ
) = ϕ(x). Then ϕ′(x) = 1

ρx
. For

the joint contest, since the optimal amount of prize AJ∗ is given by ϕ1′(AJ∗h◦(ξ◦;n))h◦(ξ◦;n) +

ϕ2′(AJ∗h◦(ξ◦;n))h◦(ξ◦;n) − 1 = 0, 2
ρAJ∗ = 1, and thus AJ∗ = 2

ρ
. For the separate contest, since

the optimal amount of prize AS∗ is given by ϕ′(wAS∗h(ξ;n))wh(ξ;n) +ϕ′((1−w)AS∗h(ξ;n))(1−
w)h(ξ;n) = 1, we obtain AS∗ = 2

ρ
. The optimal amounts of the total prize in the two contest

mechanisms are the same. �

B. Existence of Equilibrium
B.1. Separate Contest

According to Fudenberg and Tirole (1991), a pure strategy Nash equilibrium exists if the utility

of contestant i, uli, l = 1,2, is quasi-concave in his effort level eli in each sub-contest of the sepa-

rate contest. Recall that uli(e
l
i) = AlP(eli, e

l∗(n))−C l(eli), where P(eli, e
l∗(n)) denotes the winning

probaility of contestant i if he or she makes effort eli and other contestants make effort el∗(n), thus

the second derivative to uli is given by uli
′′
(eli) =Al

∂2P (eli,e
l∗(n))

∂eli
2 −C l′′(eli). We next show the sufficient

conditions for uli
′′
(eli)< 0, under which uli will be concave which implies quasi-concavity. We follow



13

the same approach as in Ales et al. (2016a), using a scale transformation of the random factor to

ξ̃l = αξl with α. The α measures the dispersion of the random factor. Then the probability that

contestant i wins contestant j is

P(eli + ξ̃l ≥ el∗j (n) + ξ̃l) = P(eli− el∗j (n) + ξ̃l ≥ ξ̃l) = P

(
eli− el∗j (n)

α
+ ξl ≥ ξl

)
.

Therefore, P(eli, e
l∗(n)) =

∫∞
−∞Ψ

(
eli−el∗(n)

α
+ ξl

)n−1

ψ(ξl)dξl. The first derivative of P(eli, e
l∗(n)) with

respect to eli is

∂P(eli, e
l∗(n))

∂eli
=

1

α

∫ ∞
−∞

(n− 1)Ψ

(
eli− el∗(n)

α
+ ξl

)n−2

ψ

(
eli− el∗(n)

α
+ ξl

)
ψ(ξl)dξl.

Then, the second derivative of P(eli, e
l∗(n)) with respect to eli is

∂2P(eli, e
l∗(n))

∂eli
2 =

1

α2

∫ ∞
−∞

[
(n− 1)(n− 2)Ψ

(
eli− el∗(n)

α
+ ξl

)n−3

ψ2

(
eli− el∗(n)

α
+ ξl

)
ψ(ξl)

+ (n− 1)Ψ

(
eli− el∗(n)

α
+ ξl

)n−2

ψ′
(
eli− el∗(n)

α
+ ξl

)
ψ(ξl)

]
dξl. (B.1)

If α→∞, the integration in (B.1) converges to a constant, thus if α is sufficiently large, the second

derivative of P(eli, e
l∗(n)) with respect to eli approaches 0. Since C l′′(eli)> 0, the sufficient condition

for uli
′′
(eli) to be negative is that α is sufficiently large. Furthermore, another sufficient condition is

that C l(eli) is sufficiently convex, i.e., C l′′(eli) is sufficiently large. As a result, with those sufficient

conditions, the existence of the equilibrium can be guaranteed.

B.2. Joint Contest

For the joint contest, we can follow a similar approach to derive the sufficient conditions. We show

that the existence of equilibrium in the separate contest guarantees the existence of equilibrium

in the joint contest. Recall that u◦i (e
◦
i ) =AP◦(e◦i , e

◦∗(n))−C◦(e◦i ). Following a similar way in the

discussion of the separate contest, we allow ξ̃l = αξl, l= 1,2, thus ξ◦ = ξ1 + ξ2 = 1
α

(ξ̃1 + ξ̃2) = 1
α
ξ̃◦.

Similarly, the second derivative of P◦(e◦i , e
◦∗(n)) with respect to e◦i is

∂2P◦(e◦i , e
◦∗(n))

∂e◦i
2 =

1

α2

∫ ∞
−∞

[
(n− 1)(n− 2)Ψ◦

(
e◦i − e◦∗(n)

α
+ ξ◦

)n−3

ψ◦2
(
e◦i − e◦∗(n)

α
+ ξ◦

)
ψ◦(ξ◦)

+ (n− 1)Ψ◦
(
e◦i − e◦∗(n)

α
+ ξ◦

)n−2

ψ◦′
(
e◦i − e◦∗(n)

α
+ ξ◦

)
ψ◦(ξ◦)

]
dξ◦,

where ψ◦(·) is the PDF of ξ◦. Therefore, a sufficient condition for the existence of equilibrium in the

joint contest is that α is sufficiently large. Moreover, if the convexity of C l(·), l= 1,2 is sufficiently

large, then the convexity of C◦(·) will be sufficiently large, since C◦(e◦) = minC1(e1)+C2(e2) such

that e1 + e2 = e◦. As a result, the equilibrium exists with those sufficient conditions as claimed.
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C. Individual Rationality
C.1. Separate Contest

For each sub-contest, in the symmetric equilibrium, contestants have the same effort level, and

the winning probability is 1/n if there are n contestants participate. As a result, the individual

rationality constraint is that

C l(el∗) =C l[C l′−1
(Alh(ξl;n))]≤ Al

n
. (C.1)

Similarly, we follow the same approach in Ales et al. (2016a) allowing ξ̃l = αξl, then

h(ξl;n) =

∫ ∞
−∞

(n− 1)Ψ(ξl)n−2ψ(ξl)2dξl =
1

α

∫ ∞
−∞

(n− 1)Ψ(αξl)n−2ψ(αξl)2dαξl

=
1

α

∫ ∞
−∞

(n− 1)Ψ(ξ̃l)n−2ψ(ξ̃l)2dξ̃l =
h(ξ̃l;n)

α
. (C.2)

As a result, C l[C l′−1
(Alh(ξl;n))] = C l[C l′−1

(Alh(ξ̃l;n))/α]. Since C l(·) and C l′−1
(·) are strictly

increasing, if the dispersion of the random factor measured by α is large enough, then (C.1) can

be satisfied.

C.2. Joint Contest

For the joint contest, similarly, the individual rationality constraint is

C◦(e◦∗) =C◦[C◦′
−1

(Ah◦(ξ◦;n))]≤ A

n
. (C.3)

By the same approach, we allow ξ̃l = αξl, l= 1,2, such that αξ◦ = α(ξ1 + ξ2) = ξ̃◦. As a result, by

(C.2), h◦(ξ◦;n) = h◦(ξ̃◦;n)/α. By Lemma 2, C◦(·) and C◦′
−1

(·) are strictly increasing, thus if the

dispersion of the random factor measured by α is large enough, the constraint must be satisfied.

C.3. Discussion

For constraints (C.1) and (C.3), if the dispersion of the random factor measured by α is large

enough, then both of them can be satisfied. Now we demonstrate constraint (C.1) is neither a

sufficient condition of constraint (C.3), nor vice versa.

By Lemma 2 that C◦′(e◦) = C1′(ẽ1) = C2′(ẽ2) in which ẽ1 and ẽ2 are the optimal efforts in the

two attributes given that e◦ = ẽ1 + ẽ2, and C◦∗′(e◦) =Ah◦(ξ◦;n), there are C1′−1
(Ah◦(ξ◦;n)) = ẽ1∗

and C2′−1
(Ah◦(ξ◦;n)) = ẽ2∗. Thus, By the proof of Lemma 2, we have C◦(e◦) = C1(ẽ1) +C2(ẽ2)

C◦(e◦∗) =C1(C1′−1
(Ah◦(ξ◦;n))) +C2(C2′−1

(Ah◦(ξ◦;n))). Then, constraint (C.3) becomes

C◦(e◦∗) =C1(C1′−1
(Ah◦(ξ◦;n))) +C2(C2′−1

(Ah◦(ξ◦;n)))≤ A

n
=
A1 +A2

n
. (C.4)
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If the sufficient condition, h◦(ξ◦;n)>max{wh(ξ;n), (1−w)h(ξ;n)}, in Proposition 1 (ii) holds,

C1(C1′−1
(Ah◦(ξ◦;n))) > C1[C1′−1

(wAh(ξ1;n))] =C1[C1′−1
(A1h(ξ1;n))],

C2(C2′−1
(Ah◦(ξ◦;n))) > C2[C2′−1

((1−w)Ah(ξ1;n))] =C2[C2′−1
(A2h(ξ1;n))],

because C1(·) and C2(·) are strictly increasing and strictly convex functions. However, constraint

(C.1) is generally neither a sufficient condition of (C.4), nor vice versa.

D. Budget Constraint

Assume that the firm has a budget constraint Ā. The following discusses the optimal strategy of

the firm if the cost functions are polynomial or exponential.

D.1. Polynomial Cost

By Lemma 5(i), the difference of effort levels ∆e
n between two contest mechanisms is strictly

increasing in A. And also, the difference of the expected random factors ∆ξ
n is a fixed value given

ρ. As a result, there exists a threshold Â such that if A< Â, the separate contest is optimal and

if A> Â, the joint contest is optimal. Note that the threshold can be 0 or +∞ which means that

one mechanism is optimal for any prize. If the cost functions are polynomial, then AS∗ <AJ∗, and

there exist three cases: 1. Â < AS∗ <AJ∗; 2. AS∗ ≤ Â < AJ∗; 3. AS∗ <AJ∗ ≤ Â. Table 4 shows the

optimal mechanism and optimal prize when the budget contraint Ā is in different ranges if the cost

functions are polynomial.

Table 4 Optimal Prize (Polynomial Cost)

Case 1:

Â <AS∗ <AJ∗

Range of Ā (0, Â) [Â,AS∗) [AS∗,AJ∗) [AJ∗,+∞)

Mechanism separate joint joint joint

Optimal Prize Ā Ā Ā AJ∗

Case 2:

AS∗ ≤ Â <AJ∗

Range of Ā (0,AS∗) [AS∗, Â) [Â,AJ∗) [AJ∗,+∞)

Mechanism separate separate joint joint

Optimal Prize Ā AS∗ Ā AJ∗

Case 3:

AS∗ <AJ∗ ≤ Â

Range of Ā (0,AS∗) [AS∗,AJ∗) [AJ∗, Â) [Â,+∞)

Mechanism separate separate separate separate

Optimal Prize Ā AS∗ AS∗ AS∗

The detailed explanation for Table 4 is as follow:

1. (Â < AS∗ <AJ∗) If Ā ∈ (0, Â), the separate contest is optimal, and the outcome is increasing

in the amount of prize, then optimal amount of prize is Ā. If Ā ∈ [Â,AS∗), the outcome of
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both mechanisms is increasing in the amount of prize, and the joint contest is better than

separate contest if A> Â, thus the firm should choose the joint contest and the optimal prize

is Ā. If Ā∈ [AS∗,AJ∗), though the optimal amount of prize for the separate contest is in this

range, the joint contest is better than the separate contest, so the firm should choose the joint

contest and the optimal prize is Ā. If Ā ∈ [AJ∗,+∞), then the firm should choose the joint

contest and the optimal prize is AJ∗.

2. (AS∗ ≤ Â < AJ∗) If Ā ∈ (0,AS∗), since the separate contest is optimal then the firm should

choose the separate contest and the optimal prize is Ā. If Ā ∈ [AS∗, Â), the separate contest

is better than the joint contest, and the optimal prize is AS∗. If Ā∈ [Â,AJ∗), the outcome of

the joint contest is better than that of the separate contest if Ā ≥ Â. Since the outcome of

the joint contest is increasing in A, the optimal prize is Ā. If Ā∈ [AJ∗,+∞), the firm should

choose the joint contest and the optimal prize is AJ∗.

3. (AS∗ <AJ∗ ≤ Â) If Ā ∈ (0,AS∗), the separate contest is optimal, and the optimal prize is Ā.

If Ā ∈ [AS∗,AJ∗), the separate contest is better than the joint contest, and the optimal prize

is AS∗. If Ā ∈ [AJ∗, Â), the separate contest is still optimal, and the optimal prize is AS∗. If

Ā∈ [Â,+∞], the outcome of both mechanisms is decreasing if A∈ [Â,+∞), thus the separate

contest is optimal and the optimal prize is AS∗.

D.2. Exponential Cost

By Lemma 5, the difference of effort levels ∆e
n between two contest mechanisms is a fixed value

for any A if the cost functions are exponential. Therefore, the problem which contest mechanism

is optimal does not depend on the amount of prize.

Therefore, if the cost functions are exponential, then AS∗ = AJ∗, and there exist two cases: 1.

Ā < A∗; 2. Ā ≥ A∗ in which we denote A∗ = AS∗ = AJ∗. If the separate (or the joint) contest is

optimal and Ā <A∗, then the optimal prize is Ā since the outcome is increasing in the amount of

prize if A<A∗. If Ā≥A∗, then the optimal prize is A∗.

E. Elimination Contest

As an extension of the progressive contest, we examine the elimination contest here.

In the elimination contest, the firm selects a subset of qualified contestants from the first sub-

contest to compete in the second sub-contest. Thus, there are fewer contestants competing in the

second sub-contest than in the first sub-contest. On the other hand, the joint contest counterpart

stays the same, because there is no way to impose a qualification. We first examine the performance

in the second sub-contest with a contestant number nq < n. Since the number of contestants
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becomes smaller than without qualification, the intensity of the competition becomes lower, and

contestants have a higher incentive to make effort.1 For the random factor part, the smaller number

of contestants lowers the diversity of contestants, thus the expected best random factor is lower,

i.e., a smaller sample size of the random factor leads to a lower expected highest order statistics

of the random factor. The pooling effect, in favor of the joint contest, would be weakened since

the equilibrium effort level in the second sub-contest of the separate contest becomes higher,

and the combination effect, in favor of the separate contest, would be reduced too due to the

smaller diversity of contestants in the second sub-contest. In addition, in the first sub-contest, in

anticipation of elimination, contestants would work harder, in favor of the separate contest. The

comparison of the two contest mechanisms depends on the relative strengths of those forces.

In the elimination contest, the firm selects a subset of qualified contestants from the first sub-

contest to compete in the second sub-contest. Thus, there are fewer contestants competing in the

second sub-contest than in the first sub-contest. On the other hand, the joint contest counterpart

stays the same, because there is no way to impose a qualification in the joint contest. We first

examine the performance in the second sub-contest with a contestant number nq < n. Since the

number of contestants becomes smaller than without qualification, the intensity of the competition

becomes lower, and contestants have a higher incentive to make effort. For the random factor

part, the smaller number of contestants lowers the diversity of contestants, thus the expected best

random factor is lower, i.e., a smaller sample size of the random factor leads to a lower expected

highest order statistics of the random factor. The pooling effect, in favor of the joint contest, would

be weakened since the equilibrium effort level in the second sub-contest of the separate contest

becomes higher, and the combination effect, in favor of the separate contest, would be reduced

too due to the smaller diversity of contestants in the second sub-contest. In addition, in the first

sub-contest, in anticipation of elimination, contestants would work harder, in favor of the separate

contest. The comparison of the two contest mechanisms depends on the relative strengths of those

forces.

Lemma E.1. (i) The best expectation of the random factor, E(ξ(n)), is increasing in n.

(ii) If the random factor ξ follows a symmetric log-concave distribution with mean 0, then the

equilibrium effort level is decreasing in n.

1 How the number of contestants influences contestants’ effort level has been well studied. Ales et al. (2019) show
that if the random factor follows the symmetric log-concave distribution, the equilibrium effort level is decreasing in
the number of contestants.
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Proof. of Lemma E.1. For part (i), we verify that E(ξ(n)) ≥ E(ξ(n−1)). By (A.8), we have

nE(ξ(n−1))− (n− 1)E(ξ(n)) = E(ξ(n−1:n)). Thus, E(ξ(n−1))− E(ξ(n)) = [E(ξ(n−1:n))− E(ξ(n))]/n. Since

E(ξ(n−1:n))−E(ξ(n))≤ 0, we have E(ξ(n−1))−E(ξ(n))≤ 0, and thus E(ξ(n))≥ E(ξ(n−1)).

For part (ii), by Lemma A.3, h(ξ;n) is decreasing in n. Since C l(·), l = 1,2, is strictly increas-

ing and strictly convex, el∗(n+ 1) = C l′−1
(h(ξ;n+ 1))≤ C l′−1

(h(ξ;n)) = el∗(n). Equivalently, the

equilibrium effort level is decreasing in n. �

The result in Lemma E.1 is consistent with the intuition. For part (i), with more contestants,

it is more likely to have an outstanding realization of the random factor, thus if the number of

contestants in the second sub-contest is less than that in the first sub-contest, the combination

effect is reduced. For part (ii), since there is less contestants in the second sub-contest, the intensity

of the competition is reduced, thus contestants have a stronger incentive to make effort in the

second sub-contest. In other words, the pooling benefit of the joint contest is reduced too.

F. Synergy Effect

Synergy Effect. The solutions made by a contestant may have a synergy effect while the solutions

made by different contestants do not. That is, the aggregate solution across different attributes

submitted by the same contestant can have a synergy. The synergy effect intuitively favors the

joint contest since every contestant submits an aggregate solution at once. To capture the synergy

effect, we analyze the simplest model with an additive synergy component in Online Appendix F.

We show that if the synergy effect is strong enough, the joint contest becomes optimal.

In this section, we compare the two contest mechanisms with the synergy effect. In some projects,

the two attributes of a project can be closely related such that the aggregated solution of a con-

testant across different attributes is greater than the aggregation of solutions made by different

contestants even if those contestants have the same effort level, i.e., V 1
i +V 2

i ≥ V 1
i +V 2

j . For exam-

ple, if a project contains the two attributes as the theoretical and practical work, contestants may

prefer to work on their own theoretical work when competing in doing the practical work. For the

modular and progressive contests, we show that if the synergy effect is strong enough, then the

joint contest is optimal.

F.1. Modular Contest

Consider a two-person model in which the contestants are indexed by i and j. If the solutions of

the two attributes are made by the same contestant i, then the aggregated solution has an additive

positive synergy benefit µ> 0, i.e., V 1
i +V 2

i +µ. If the solutions of the two attributes are made by

different contestants, there is no such extra synergy benefit.
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(i) joint contest

For the joint contest, contestants are required to submit an aggregate solution across the two

attributes at once. Thus, the aggregate performance of every contestant has the synergy µ. Intu-

itively, in the joint contest, the synergy effect does not play a role in the competition since both

contestants work on the two attributes at the same time. Therefore, the winning probability of

each contestant is the same with what is captured in Lemma 3. By Lemma 3, the equilibrium

effort of each contestant is e◦∗ = C◦′
−1

(Ah◦(ξ◦; 2)). The expected best performance is then V J
2 =

e◦∗ + E(ξ◦(2)) + µ. By denoting γ◦ = ξ1
i − ξ1

i + ξ2
i − ξ2

j with PDF g◦(γ◦), we have h◦(ξ◦; 2) = g◦(0),

and e◦∗ =C◦′
−1

(Ag◦(0)).

(ii) separate contest

In the two sub-contests of the separate contest, contestants make efforts in different attributes.

There are two scenarios. One is that contestant i or j wins both sub-contests. Then, the best

aggregated solution is V S = V 1
t +V 2

t +µ, t= i or j. The other is that contestant i wins the first sub-

contest, and contestant j wins the second sub-contest, or the other way around. Then, for the firm.

the best aggregate solution may not be the best solutions in the two sub-contests, V S = V 1
i + V 2

j

because of the synergy effect. In other words, it is possible that V 1
i +V 2

j <V
1
i +V 2

i +µ. Since two

contestants are assumed to be homogeneous, the two scenarios occur with equal probability, 1/2.

For the first scenario, the best aggregate performance is V S = e1∗ + e2∗ + E(ξ1
(2)) + E(ξ2

(2)) + µ.

For the second scenario, the discussion is a little bit complicated. Suppose that contestant i wins

the first sub-contest, and contestant j wins the second sub-contest. In the modular contest, the

two sub-contest are parallel, contestant’s effort level is not affected by the synergy effect since

they are competing in each attribute (in the progressive contest, the synergy effect does influence

contestants’ effort level; we investigate such influence in the subsequent section). However, the

aggregate solution depends on the synergy effect. Now we show that if the synergy effect is strong

enough, then the joint contest is optimal.

Consider the random factor part and the synergy effect, and denote the first order statistics of

ξl, l = 1,2 with the sample size 2 by subscript (1:2). If the synergy effect is strong enough, then

E(ξ1
(2)) + E(ξ2

(1:2)) + µ > E(ξ1
(2)) + E(ξ2

(2)). This means that if the synergy effect is strong enough,

then though the winners of the two sub-contests are different contestants, the best aggregate

solution is made by the same person. With probability 1/2, the difference in the random factor and

synergy effect between the two contest mechanisms is ∆ξ
2 = E(ξ1

(2)) + E(ξ2
(1:2)) + µ− E(ξ◦(2))− µ =

E(ξ1
(2)) + E(ξ2

(1:2))− E(ξ◦(2)). For E(ξ1
(2)) + E(ξ2

(1:2)), since ξ1 and ξ2 are identical and they follow a

symmetric log-concave distribution Ψ(·) with mean 0, we have
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E(ξ1
(2)) +E(ξ2

(1:2)) =

∫ +∞

−∞
ξ1dΨ(ξ1)2 +

∫ +∞

−∞
ξ2d(2Ψ(ξ2)(1−Ψ(ξ2)) + Ψ(ξ2)2)

= 2

∫ +∞

−∞
ξ1dΨ(ξ1) = 0.

With probability 1/2, the winner of both sub-contests is i or j. Therefore, the difference in the

random factor and synergy effect between the two contest mechanisms is ∆ξ
2 = E(ξ1

(2)) + E(ξ2
(2)) +

µ− E(ξ◦(2))− µ= E(ξ1
(2)) + E(ξ2

(2))− E(ξ◦(2)). The ex ante expected difference is E(∆ξ
2) = 1

2
[E(ξ1

(2)) +

E(ξ2
(1:2)) − E(ξ◦(2))] + 1

2
[E(ξ1

(2)) + E(ξ2
(2)) − E(ξ◦(2))] = E(ξ1

(2)) − E(ξ◦(2)), since ξ1 and ξ2 are identical.

Because ξ◦ = ξ1 + ξ2, ξ◦ ≥st ξ
1, where st means the first order stochastic dominance, thus E(ξ1

(2))−
E(ξ◦(2))≤ 0. As a result, E(∆ξ

2)≤ 0.

By Proposition 1(ii), the pooling effect, ∆e
2 < 0, we obtain ∆2 = ∆e

2 + ∆ξ
2 < 0. In conclusion, if

the synergy effect, µ, is high enough, the joint contest is optimal.

F.2. Progressive Contest

For the progressive contest, in the second sub-contest of the separate contest, contestants are

required to build their work in progress over the solutions in the first sub-contest. We discuss

two scenarios in the second sub-contest: (a) contestants are required to work on the best solution

generated in the first sub-contest; (b) contestants work on their own solution generated in the first

sub-contest. Now, we show that if the synergy effect is strong enough, the joint contest is optimal

for scenario (a).

(i) joint contest

For the joint contest, contestants are required to submit an aggregated solutions across the

two attributes at once. Thus, the aggregated performance of every contestants has the synergy γ.

Therefore, the winning probability of each contestant is the same with what is characterized in

Lemma 3. By Lemma 3, the equilibrium effort of each contestant is e◦∗ = C◦′
−1

(Ah◦(ξ◦; 2)). The

expected best performance is then V sim
2 = e◦∗+E(ξ◦(2)) +µ. By denoting γ◦ = ξ1

i − ξ1
i + ξ2

i − ξ2
j with

CDF G◦(γ◦), h◦(ξ◦; 2) = g◦(0), and e◦∗ =C◦′
−1

(Ag◦(0)).

(ii) separate contest

Without loss of generality, consider that the winner in the first sub-contest is contestant i. In

the second sub-contest, by denoting the random variable γ2 = ξ2
i − ξ2

j with CDF G(γ2) and PDF

g(γ2), we have the winning probability of contestant i as P{e2
i + ξ2

i +µ> e2
j + ξ2

j }=G(e2
i − e2

j +µ),

since contestant i benefits by the synergy effect but contestant j does not. Similarly, the winning

probability of the contestant j is G(−e2
i + e2

j − µ). As a result, the expected utility functions for

contestants i and j are

E(u2
i (e

2
i )) = A2G(e2

i − e2
j +µ)−C2(e2

i ),
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E(u2
j(e

2
j)) = A2G(e2

j − e2
i −µ)−C2(e2

j).

Then, by assuming the existence of the equilibrium, FOCs are given by

A2g(e2
i − e2

j +µ)−C2′(e2
i ) = 0,

A2g(e2
j − e2

i −µ)−C2′(e2
j) = 0.

Therefore, if the random factors follow a symmetric distribution, then g(e2
i −e2

j +µ) = g(e2
j−e2

i −µ).

Thus, there exists a unique solution e2∗
i = e2∗

j = g(µ). By Lemma 1, if the random factors follow

a symmetric log-concave distribution with mean 0, then h(ξl; 2) = g(0)≥ g(µ). Thus, the perfor-

mance of the two contestants is V 2
i = C2′−1

(A2g(µ)) + ξ2 + µ and V 2
j = C2′−1

(A2g(µ)) + ξ2. The

expected best performance in the second sub-contest contest is E(max{V 2
i , V

2
j }) =C2′−1

(A2g(µ))+

E(max{ξ2 + µ, ξ2}). Denote the random variable of max{ξ2 + µ, ξ2} by ξm. The CDF of ξm is

Ψ(ξ2)Ψ(ξ2 − µ) and then E(max{V 2
i , V

2
j }) =

∫ +∞
−∞ ξmdΨ(ξ2)Ψ(ξ2 − µ). By the property of the log-

concave distribution, Ψ(ξ2)Ψ(ξ2−µ)≤Ψ(ξ2−µ/2)Ψ(ξ2−µ/2). As a result,
∫ +∞
−∞ ξmdΨ(ξ2)Ψ(ξ2−

µ)≤
∫ +∞
−∞ ξmdΨ(ξ2−µ/2)Ψ(ξ2−µ/2) = E(ξ2

(2) +µ/2) = E(ξ2
(2)) +µ/2.

Now, we can compare the two contest mechanisms. The expected best performance in the joint

contest is V j
2 = e◦∗ + E(ξ◦(2)) + µ and the expectid best performance in the separate contest is

V s
2 = e1∗ + e2∗ + E(ξ1

(2)) + E(max{ξ2 + µ, ξ2}). The difference is ∆2 = e1∗ + e2∗ − e◦∗ + E(ξ1
(2)) +

E(max{ξ2 +µ, ξ2})−E(ξ◦(2)) +µ.

For the effort part, ∆e
2 = e1∗ + e2∗ − e◦∗. By Proposition 1 (ii), if h◦(ξ◦; 2)>max{wh(ξ; 2), (1−

w)h(ξ; 2)}, namely, g◦(0)>max{wg(0), (1−w)g(0)}, ∆e
2 < 0.

For the random factor part, ∆ξ
2 = E(ξ1

(2)) + E(max{ξ2 + µ, ξ2})− E(ξ◦(2))− µ≤ E(ξ1
(2)) + E(ξ2

(2))−
E(ξ◦(2))−µ/2. Since E(ξ1

(2)) +E(ξ2
(2))−E(ξ◦(2)) is a fixed value. If µ is large enough, then ∆ξ

2 ≤ 0.

Thus, if µ is large enough, then ∆2 = ∆e
2 + ∆ξ

2 < 0, and the joint contest is optimal.

For scenario (b), if contestants work on their own solution generated in the first sub-contest.

Then the solutions of both contestants will contain the positive synergy benefit µ. Therefore, the

second sub-contest is equivalent to the first sub-contest. The comparison between the two contest

mechanisms is equivalent to the comparison between the two effects: the combination and pooling

effects, without the synergy effect.

G. Attributes with Different Importance Levels

Now we show the result of Proposition 1 assuming that two attributes have different importance

levels. In the separate contest, assume that the performance of a contestant in sub-contest l,

l = 1,2, is V l
i = eli + ξli. The total performance of a contestant is V seq

i = θV 1
i + (1− θ)V 2

i , where
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θ ∈ (0,1) denotes the relative importance between the two attributes. In the joint contest, the

performance of a contestant is the aggregation of the performances along two attributes, denoted

by V sim = θV 1
i +(1−θ)V 2

i = θ(e1
i +ξ1

i )+(1−θ)(e2
i +ξ2

i ) = θe1
i +(1−θ)e2

i +θξ1
i +(1−θ)ξ2

i = e◦i +ξ◦i ,

where e◦i = θe1
i + (1− θ)e2

i and ξ◦i = θξ1
i + (1− θ)ξ2

i .

Now we derive the optimal effort allocation by contestant with the above model setup. Similar

to the proof of Lemma 2, the optimization problem for contestant is

min
e1,e2

C1(e1) +C2(e2) s.t. θe1 + (1− θ)e2 = e◦.

The solution to this problem can be typically found by writing the Lagrangean, L(e1, e2, e◦;λ) =

C1(e1) +C2(e2) +λ(e◦− θe1− (1− θ)e2) and the FOCs are

∂L

∂e1
=C1′(ẽ1)− θλ̃= 0 (a),

∂L

∂e2
=C2′(ẽ2)− (1− θ)λ̃= 0 (b),

∂L

∂λ
= e◦− θẽ1− (1− θ)ẽ2 = 0 (c).

Following the same approach as in the proof of Lemma 2, one can obtain that C1′(ẽ1)/θ =

C2′(ẽ2)/(1− θ) =C◦′(e◦), where C◦(e◦) = min
θe1+(1−θ)e2=e◦

{C1(e1) +C2(e2)}. By Lemma 1, the equi-

librium effort in the separate contest is then el∗ = C l′−1
(Alh(ξ;n)), l = 1,2. The expected best

performance in the separate contest is then V seq
n = θe1∗ + (1− θ)e2∗ + θE(ξ(n)) + (1− θ)E(ξ(n)) =

θC1′−1
(A1h(ξ;n))+(1−θ)C2′−1

(A2h(ξ;n))+θE(ξ(n))+(1−θ)E(ξ(n)). For the joint contest, with a

similar proof of Lemma 3, the equilibrium effort is e◦∗ =C◦′
−1

(Ah◦(ξ◦;n)) = θC1′−1
(θAh◦(ξ◦;n))+

(1− θ)C2′−1
((1− θ)Ah◦(ξ◦;n)). Therefore, the expected best performance in the joint contest is

V sim
n = e◦∗+E(ξ◦(n)) = θC1′−1

(θAh◦(ξ◦;n)) + (1− θ)C2′−1
((1− θ)Ah◦(ξ◦;n)) +E(ξ◦(n)).

Now, we show the combination and pooling effects, which are the same as described in Proposition

1 parts (a) and (b). For part (a), denote the quantile function of ξl, l = 1,2, by Ψ−1(u) and the

quantile function of ξ◦ by Ψ◦−1(u). Write the formula of E(ξl(n)), l= 1,2,

E(ξl(n)) =

∫ +∞

−∞
ξ1nΨ(ξl)n−1ψ(ξl)dξl =

∫ +∞

−∞
ξ1nΨ(ξl)n−1dΨ(ξl) =

∫ 1

0

Ψ−1(u)nun−1du, (G.1)

where the last equality is obtained by substituting Ψ−1(u) = ξl. Similarly, E(ξ◦(n)) =∫ 1

0
Ψ◦−1(u)nun−1du. Then,

E(θξ1
(n)) +E((1− θ)ξ2

(n))−E((θξ1 + (1− θ)ξ2)(n)) = θE(ξ1
(n)) + (1− θ)E(ξ2

(n))−E(ξ◦(n))

=

∫ 1

0

Ψ−1(u)nun−1du−
∫ 1

0

Ψ◦−1(u)nun−1du=

∫ 1

0

(Ψ−1(u)−Ψ◦−1(u))nun−1du. (G.2)
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Assume that θξ1 and (1− θ)ξ2, satisfy the regularity condition that there exists u0 ∈ (0,1) such

that Ψ−1(u)−Ψ◦−1(u)< 0 if u ∈ (0, u0), and Ψ−1(u)−Ψ◦−1(u)> 0 if u ∈ (u0,1). Thus, by (G.2),

we have

∫ u0

0

(Ψ−1(u)−Ψ◦−1(u))nun−1du+

∫ 1

u0

(Ψ−1(u)−Ψ◦−1(u))nun−1du

>

∫ u0

0

(Ψ−1(u)−Ψ◦−1(u))nun−1
0 du+

∫ 1

u0

(Ψ−1(u)−Ψ◦−1(u))nun−1
0 du

=

∫ 1

0

(Ψ−1(u)−Ψ◦−1(u))nun−1
0 du= nun−1

0

∫ 1

0

(Ψ−1(u)−Ψ◦−1(u))du

= nun−1
0 [θE(ξ1) + (1− θ)E(ξ2)−E(θξ1 + (1− θ)ξ2)]

= 0.

Thus, the strict inequality holds for non-identical random factors by a similar argument to that

for identical random factors. For the pooling effect, the sufficient condition is then h◦(ξ◦;n) >

max{wh(ξ;n)/θ, (1−w)h(ξ;n)/(1−θ)}, where A1 =wA and A2 = (1−w)A, w ∈ (0,1). As a result,

the only difference is that the sufficient condition for the pooling effect now depends on w and

θ. Since we allow an arbitrary w throughout the whole paper, the pooling effect must exist for a

range of w.

Now we show the range of w for the pooling effect to hold with normally distributed random

factors. Since ξ◦ = θξ+ (1− θ)ξ, if ξ ∼N(0, σ) then ξ◦ ∼N(0,
√
θ2 + (1− θ)2σ). We have

h(ξ;n) =

∫ +∞

−∞
(n− 1)Ψ(ξ)n−2ψ(ξ)2dξ =

∫ +∞

−∞
ψ(ξ)dΨ(ξ)n−1 =

1√
2πσ

∫ +∞

−∞
exp(−ξ2/(2σ2))dΨ(ξ)n−1.

Substitute ξ/σ with y, then h(ξ;n) = 1√
2πσ

∫ 1

0
exp(−y2/2)dϕ(y)n−1, where ϕ(y)∼N(0,1). Similarly,

for h◦(ξ◦;n), by substituting ξ◦/(
√
θ2 + (1− θ)2σ) with ỹ,

h◦(ξ◦;n) =

∫ +∞

−∞
ψ◦(ξ◦)dΨ◦(ξ◦)n−1 =

1√
2(θ2 + (1− θ)2)πσ

∫ +∞

−∞
exp(−ξ◦2/(4σ2))dΨ◦(ξ◦)n−1

=
1√

2(θ2 + (1− θ)2)πσ

∫ +∞

−∞
exp(−ỹ2/2)dϕ(ỹ)n−1.

Then, h◦(ξ◦;n)

h(ξ;n)
= 1√

θ2+(1−θ)2
. The condition h◦(ξ◦;n) > max{wh(ξ;n)/θ, (1− w)h(ξ;n)/(1− θ)} is

equivalent to 1>max{w
√
θ2 + (1− θ)2/θ, (1−w)

√
θ2 + (1− θ)2/(1− θ)}. Then, the range of w is

(1− 1−θ√
θ2+(1−θ)2

, θ√
θ2+(1−θ)2

). Specifically, if θ = 1/2, the range of w is (1−
√

2
2
,
√

2
2

), which is the

same as what we derived in the base model.



24

H. Heterogeneous Contestants
H.1. Model Setup

We consider a two-person model with two expertise types (high and low) in each attribute. In

contrast to the base model in which all the contestants are assumed to be identical for each

attribute, we assume here that contestants are endowed with expertise either xH or xL, xH ≥ xL > 0

in each attribute. The expertise in each attribute follows a two-point distribution. The probability

that a contestant is endowed with xL in each attribute is η ∈ (0,1), and the probability that a

contestant is endowed with xH is 1− η. Suppose we index the two contestants by i and j. The

random factor in each attribute follows the normal distribution N(0, σ), and thus the difference of

random factors between two contestants i and j is denoted by γl = ξli − ξlj, l = 1,2 following the

normal distribution N(0,
√

2σ) with PDF g(·) and CDF G(·).
We assume that the cost functions along the two dimensions are identical in the exponential form,

C(·) =C1(·) =C2(·) = exp(ρe). In each sub-contest, every contestant knows only his own expertise

type and that his opponents’ expertise is drawn independently from the two-point distribution. The

game is a Bayesian game in the Harsanyi sense (see Harsanyi 1968), where “types” are defined by

contestants’ expertise. In the symmetric Bayesian equilibrium, contestants’ behavior is determined

by their types, regardless of their identities. Hence, we use type H or L to refer to a contestant’s

behavior in equilibrium. Also, we call a contestant with high or low expertise in each attribute as

H-type or L-type contestant respectively.

There are several ways to model the behavior of heterogeneous contestants. A commonly used

setting is that different levels of expertise results in different efficiencies in making efforts.2 For

exerting the same amount of effort, an H-type contestant incurs a lower cost than an L-type

contestant. Such a model characterizes the heterogeneity of contestants in their innovation ability.

Contestants with higher talents tend to spend less time in developing novel ideas. It is reasonable

to use the heterogeneous cost model to characterize contestant behavior for projects that require

innovative thinking, such as ideation and art designing contests. For each attribute, if a contestant

is type t=H,L, his cost function is C(·)/xt, l= 1,2. Similar characterizations have been adopted in

Lazear and Rosen (1981), Moldovanu and Sela (2001) and Fey (2008) with slightly different model

setups. The following lemma characterizes the equilibrium effort level in each sub-contest of the

separate contest if contestants’ expertise is independent along the two attributes, or contestants’

2 Another setting is that different levels of expertise provides different starting points. That model characterizes
the heterogeneity of contestants in their skill levels or experience. A skilled programmer may have mastered several
well-developed programming frameworks. An experienced salesperson may have kept in contact with several clients
so that in the sales contest he can guarantee a certain sales volume at the beginning of the competition. Such a
characterization was adopted in Terwiesch and Xu (2008) and Körpeoğlu and Cho (2018).
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expertise is correlated but contestants are not strategic. Based on the equilibrium, we discuss the

strategic behavior of contestants in the subsequent section.

Lemma H.1 (Bayesian Equilibrium). In the sub-contest l, l = 1,2, there exists an equilib-

rium such that el∗H ≥ el∗L . If η = 1/2, such equilibrium is unique and the effort levels have the

following closed forms: el∗L = ln(AlK0xL/ρ)ρ and el∗H = ln(AlK0xH/ρ)ρ, where K0 = g(0)/2 +

g(ln(xH/xL)/ρ)/2.

Proof of Lemma H.1. In the sub-contest l, l= 1,2, of the separate contest, if contestant j with

type H or L makes effort el∗H or el∗L in equilibrium, respectively, the winning probability of contestant

i is ηG(eli−el∗L )+(1−η)G(eli−el∗H). The expected payoff to contestant i is E(uli(e
l
i|xi)) =Al[ηG(eli−

el∗L )+(1−η)G(eli−el∗H)]−C(eli)/xi. The FOC yields Al[ηg(el∗i −el∗L )+(1−η)g(el∗i −el∗H)] =C ′(el∗i )/xi.

In a symmetric equilibrium, contestant i makes effort el∗L if he is L-type and el∗H if he is H-type,

which lead to

Al[ηg(0) + (1− η)g(el∗L − el∗H)] = C ′(el∗L )/xL, (H.1)

Al[ηg(el∗H − el∗L ) + (1− η)g(0)] = C ′(el∗H)/xH . (H.2)

Now we prove that there exists an equilibrium such that el∗L ≤ el∗H . For notation simplicity, we

suppress the superscript l in the proof of el∗L ≤ el∗H . Denote e∗H − e∗L = δH−L. We want to show that

there exists a δH−L ≥ 0. Dividing (H.1) by (H.2), we have

ηg(0) + (1− η)g(−δH−L)

ηg(δH−L) + (1− η)g(0)
=
xHC

′(e∗L)

xLC ′(e∗H)
. (H.3)

By the symmetric assumption of g(·), we have g(δH−L) = g(−δH−L). Then (H.3) becomes

ηg(0) + (1− η)g(δH−L)

ηg(δH−L) + (1− η)g(0)
− xHC

′(e∗L)

xLC ′(e∗H)
= 0. (H.4)

By e∗H = e∗L + δH−L, the left hand side (LHS) of (H.4) is

LHS of (H.4) =
ηg(0) + (1− η)g(δH−L)

ηg(δH−L) + (1− η)g(0)
− xHC

′(e∗L)

xLC ′(e∗L + δH−L)
. (H.5)

If δH−L = 0, (H.5)= 1− xH
xL
≤ 0. If δH−L→∞, then (H.5)→ η

1−η > 0 because lim
δH−L→∞

g(δH−L) = 0.

Since (H.5) is continuous in δH−L, there exists an intermediate point δH−L ≥ 0 such that (H.4) is

satisfied. As a result, there exists an equilibrium such that e∗H ≥ e∗L.

If η = 1/2, then the LHSs of (H.1) and (H.2) are the same. With the exponential cost function,

we have xH
xL

=
exp(ρe∗H )

exp(ρe∗
L

)
. Then, e∗H − e∗L = ln(xH/xL)/ρ. By (H.1) and (H.2),

Al[g(0)/2 + g(ln(xH/xL)/ρ)/2] = C ′(el∗L )/xL = ρ exp(ρel∗L )/xL,
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Al[g(ln(xH/xL)/ρ)/2 + g(0)/2] = C ′(el∗H)/xH = ρ exp(ρel∗H)/xH .

Therefore, the closed form of the equilibrium effort levels are el∗L = ln(AlK0xL/ρ)ρ and el∗H =

ln(AlK0xH/ρ)ρ, where K0 = g(0)/2 + g(ln(xH/xL)/ρ)/2. �

Lemma H.1 shows that there exists an equilibrium such that the H-type contestants exert more

efforts than the L-type contestants. Since their equilibrium performances are V l∗
H = el∗H + ξl and

V l∗
L = el∗L + ξl, l= 1,2, then V l∗

H ≥st V
l∗
L because el∗H ≥ el∗L . That is, the H-type contestants are more

likely to have a higher performance than the L-type contestants. Lemma H.1 also shows that there

exists a unique equilibrium if η = 1/2 and the closed form of the equilibrium effort level can be

obtained. For the mathematical tractability, we assume η= 1/2 in the following analysis.

H.2. Correlated Expertise

We examine two cases that the expertise of a contestants is completely positively or negatively

correlated.

Positive correlation. The contestant who is endowed with high expertise xH (resp., low expertise

xL) in the first attribute will have high expertise xH (resp., low expertise xL) in the second attribute.

Negative correlation. The contestant who is endowed with high expertise xH (resp., low expertise

xL) in the first attribute will have low expertise xL (resp., high expertise xH) in the second attribute.

Since there exists a correlation between the expertise of the two attributes, if the firm discloses

the performance of contestants after the first sub-contest, then contestants can infer the type of

their opponents and the belief of the prior expertise distribution is updated at the beginning of

the second sub-contest. Because the performance of a contestant in the first sub-contest consists of

the effort and the random factor, the way how contestants infer their opponent’s type depends on

what kind of signal they can obtain from the first sub-contest, e.g., the effort, or the performance

(i.e., the effort plus the random factor). If contestants can learn the performances in the first sub-

contest, they may not be able to accurately infer the type of their opponents due to the random

factor, which makes the characterization of contestants’ behavior extremely complicated. Thus,

we focus on the case that contestants can learn his opponent’s effort level by the performance in

the first sub-contest. This is indeed the case when the randomness comes from the preferences or

the private tastes of judges, while the quality of the solution depends on the effort level. In the

symmetric equilibrium, contestant of different types have different effort levels, therefore with the

disclosed information, contestants can accurately learn their opponents’ type.

If contestants are strategic, they may try to hide their type in the first sub-contest, because their

truthful revelation may put them into a disadvantageous position in the second sub-contest. The
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only way for contestants to hide their types is that in the first sub-contest, both contestants have

the same effort level regardless of their true types. This is analogous to Hausch (1986), in which the

only way for a type of players to hide is that they make the same bid as other types of players and

no one has an incentive to deviate. With their identities successfully hidden in the first sub-contest,

in the second sub-contest, neither contestants’ types are revealed, and thus their performances in

the second sub-contest can be characterized by Lemma H.1. For the separate contest, we have the

following results.

Lemma H.2. Assume η= 1/2.

(i) For positively or negatively correlated expertise, contestants truthfully behave in each sub-

contest of the separate contest.

(ii) In the second sub-contest of the separate contest, if both contestants are of the same type,

then the equilibrium effort is e2∗
t = ln(xtA

2g(0)/ρ)/ρ, t = H or L. If one contestant is H-type

and the other is L-type, then the equilibrium efforts are e2∗
H = ln(xHA

2g(ln(xH/xL)/ρ)/ρ)/ρ and

e2∗
L = ln(xLA

2g(ln(xL/xH)/ρ)/ρ)/ρ.

Proof of Lemma H.2. (i) First, we derive the equilibrium effort levels in different sub-contests of

the separate contest at first when contestants truthfully behave in the first sub-contest. In the first

sub-contest, since contestants have no idea about their opponents’ type, thus the equilibrium effort

levels are the same as what is characterized by Lemma H.1. Therefore, if η= 1/2, the equilibrium

effort levels for the H-type and L-type contestants are

e1∗
L = ln

(
xLA

1[g(0)/2 + g(ln(xL/xH)/ρ)/2]/ρ
)
/ρ,

e1∗
H = ln

(
xHA

1[g(0)/2 + g(ln(xL/xH)/ρ)/2]/ρ
)
/ρ.

In the second sub-contest, both contestants will know his opponent’s type. With probability 1/2,

both contestants are either H-type or L-type, and thus the model turns to be the contest with homo-

geneous contestants. By Lemma 1, the equilibrium effort levels are then e2∗
L = ln(xLA

2g(0)/ρ)/ρ

and e2∗
H = ln(xHA

2g(0)/ρ)/ρ.

With probability 1/2, one contestant is high-type and the other is low-type, and the expected

payoff to contestant i is E(u2
i (e

2
i |xi)) = A2G(e2

i − e2∗
H ) − C(e2

i )/xi if i = L or E(u2
i (e

2
i |xi)) =

A2G(e2
i − e2∗

L ) − C(e2
i )/xi if i = H, which leads to the FOC for the H-type and L-type contes-

tants: A2g(e2∗
L − e2∗

H )−C ′(e2∗
L )/xL = 0 and A2g(e2∗

H − e2∗
L )−C ′(e2∗

H )/xH = 0. Since g(·) is symmetric

at 0, C ′(e2∗
L )/xL = C ′(e2∗

H )/xH , equivalently, e2∗
H − e2∗

L = ln(xH/xL)/ρ. Solving the FOC yields the

equilibrium effort levels in the second sub-contest, e2∗
L = ln(xLA

2g(ln(xL/xH)/ρ)/ρ)/ρ and e2∗
H =

ln(xHA
2g(ln(xH/xL)/ρ)/ρ)/ρ.
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Second, we compute the expected utilities of contestants in the first and second sub-contests

if they truthfully behave in the separate contest. By the equilibrium effort levels derived above,

in the first sub-contest, the chance for an H-type or an L-type contestant to compete with an

H-type or L-type contestant is 1/2. Therefore, the ex ante expected utilities for H-type and L-type

contestants are

E(u1
L(e1∗

L |xL)) =
A1

2
[G(0) +G(ln(xL/xH)/ρ)]− A

1

2ρ
[g(0) + g(ln(xL/xH)/ρ)], (H.6)

E(u1
H(e1∗

H |xH)) =
A1

2
[G(0) +G(ln(xH/xL)/ρ)]− A

1

2ρ
[g(0) + g(ln(xH/xL)/ρ)]. (H.7)

In the second sub-contest, if there is an H-type contestant and another is an L-type contestant,

then the expected utilities for H-type and L-type contestants are

E(u2
L(e2∗

L |xL)) = A2G(ln(xL/xH)/ρ)− A
2

ρ
g(ln(xH/xL)/ρ),

E(u2
H(e2∗

H |xH)) = A2G(ln(xH/xL)/ρ)− A
2

ρ
g(ln(xH/xL)/ρ).

Note that the expected utility of an L-type contestant can be negative in the second sub-contest

since xL < xH . That is, if we allow the entry decision to be reconsidered, it is possible that an

L-type contestant self-interestedly drops out of the second sub-contest when she finds that her

opponent is an H-type.

If both contestants are L-type or H-type contestants, the expected utility is E(u2
H(e2∗

H |xH)) =

E(u2
L(e2∗

L |xL)) = A2G(0)− A2

ρ
g(0). Therefore, the ex ante expected utilities of contestants in the

second sub-contest are

E(u2
L(e2∗

L |xL)) =
1

2

[
A2G(ln(xL/xH)/ρ)− A

2

ρ
g(ln(xH/xL)/ρ)

]
+

1

2

[
A2G(0)− A

2

ρ
g(0)

]
, (H.8)

E(u2
H(e2∗

H |xH)) =
1

2

[
A2G(ln(xH/xL)/ρ)− A

2

ρ
g(ln(xH/xL)/ρ)

]
+

1

2

[
A2G(0)− A

2

ρ
g(0)

]
. (H.9)

Third, we show that the utilities of contestants are the same in the second sub-contest, no matter

whether they hide or do not hide their types in the first sub-contest. If contestants hide their

types in the first sub-contest, then the second sub-contest is equivalent to the first sub-contest in

which contestants truthfully behave. As a result, by (H.6) and (H.7), we have the ex ante expected

utilities in the second sub-contest if contestants hide their types as

E(u2
L(e2∗

L |xL)) =
A2

2
[G(0) +G(ln(xL/xH)/ρ)]− A

2

2ρ
[g(0) + g(ln(xL/xH)/ρ)],

E(u2
H(e2∗

H |xH)) =
A2

2
[G(0) +G(ln(xH/xL)/ρ)]− A

2

2ρ
[g(0) + g(ln(xH/xL)/ρ)],
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which are the same as (H.8) and (H.9). In conclusion, no matter whether contestants hide their

types or not, the ex ante expected utilities stay the same in the second sub-contest. By Lemma H.1,

if η = 1/2, the equilibrium that contestants with different types make different efforts is unique.

Since hiding one’s type in the first sub-contest is not beneficial for contestants, they will deviate

to the unique equilibrium in which both contestants truthfully behave in the first sub-contest.

The same result holds for the case that the expertise of the contestant along the two attributes

is negatively correlated.

(ii) The equilibrium effort in the second sub-contest is derived in the first part of proof in (i). �

For Lemma H.2(i), we find that if η = 1/2, contestants have no incentive to hide their types in

the first sub-contest. Since contestants decide on whether to hide their types at the beginning of the

first sub-contest, they need to take into account their ex ante utility in the second sub-contest. We

find that no matter whether contestants hide or do not hide their types in the first sub-contest, the

ex ante utilities in the second sub-contest remain the same if η= 1/2. As a result, hiding one’s type

is not beneficial for contestants. Moreover, by Lemma H.1, if η = 1/2, in the first sub-contest, the

equilibrium is unique such that contestants with different types make different efforts. Therefore,

if contestants hide their types in the first sub-contest, they will deviate because the utilities in

the second sub-contest is the same no matter they hide or not. Thus, contestants’ behavior in the

first sub-contest is characterized by Lemma H.1, i.e., they truthfully behave without any strategic

behavior. In the second sub-contest, contestants know their opponent’s type, the equilibrium efforts

are characterized by Lemma H.2(b).

The expected utility of an L-type contestant can be negative in the second sub-contest of the

separate contest since xL < xH . That is, if we allow the entry decision to be reconsidered, it is

possible that an L-type contestant self-interestedly drops out of the second sub-contest when she

finds that her opponent is an H-type. When this happens, the slack-off effect in the second sub-

contest will be stronger than when the L-type contestant is forced to participate, since the H-type

contestant is the sole remaining participant. As a result, if we allow a contestant to reconsider

her participation in the second sub-contest of the separate contest, the joint contest, which is not

affected by this relaxation, is more likely to be favored than when all contestants are forced to

participate.

H.3. Joint Contest

With the model setup of the positively correlated and negative correlated expertise across the two

attributes, we can derive the contestant behavior in the joint contest. Denote the difference of

random factors between contestants i and j along the two dimensions by γ◦ = ξ1
i + ξ2

i − ξ1
j − ξ2

j =
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(ξ1
i − ξ1

j )+(ξ2
i − ξ2

j ) = γ1 +γ2. By the symmetric property of γ1 and γ2, the random variable γ◦ has

a symmetric PDF g◦(γ◦) and a CDF G◦(γ◦). We assume g◦(0)> g(0)/2, equivalently, h◦(ξ◦; 2)>

h(ξ; 2)/2, which is naturally satisfied by normal distributions.

Lemma H.3. (i) If contestants’ expertise along the two attributes is positively correlated, the

equilibrium efforts for the L-type and H-type contestants are e◦∗L = 2 ln(AK1xL/ρ)/ρ and e◦∗H =

2 ln(AK1xH/ρ)/ρ respectively, where K1 = g◦(2 ln(xH/xL)/ρ)/2 + g◦(0)/2.

(ii) If contestants’ expertise along the two attributes is negatively correlated, then equilibrium

effort is e◦∗ = 2 ln(Ag◦(0)
√
xHxL/ρ)ρ for both contestants.

Proof of Lemma H.3. (i) First, we derive the expressions of C◦i
′(e◦i ). If the expertise along

the two attributes is positively correlated, then a contestant is either H-type or L-type in both

attributes. Therefore, the cost function is C◦(e◦i ) = min{C(ẽ1
i )/xi+C(ẽ2

i )/xi}, i=L,H. By Lemma

2, the optimal allocation of efforts satisfies C ′(ẽ1
i )/xi =C ′(ẽ2

i )/xi, i=L,H. Then, C ′(ẽ1
i )/C

′(ẽ2
i ) = 1,

equivalently, ẽ1
i = ẽ2

i . When C ′(ei) = ρ exp(ρei), since the total cost is C◦i (e◦i ) =C(ẽ1
i )/xi+C(ẽ2

i )/xi,

the derivative of the total cost function is

C◦i
′(e◦i ) =

ρ

2
exp

(
ρe◦i
2

)
/xi +

ρ

2
exp

(
ρe◦i
2

)
/xi = ρ exp

(
ρe◦i
2

)
/xi, (H.10)

i=L,H. Similar to the proof of Lemma H.1, if contestant j with type H or L makes effort e◦∗H or

e◦∗L in equilibrium, respectively, the winning probability of contestant i is G◦(e◦i − e◦∗H )/2 +G◦(e◦i −
e◦∗L )/2. The expected payoff to contestant i is E(u◦(e◦i |xi)) = A[G◦(e◦i − e◦∗H ) +G◦(e◦i − e◦∗L )]/2−
C◦(e◦i ). In the symmetric equilibrium, contestant i makes effort e◦∗L if he is L-type and e◦∗H if he is

H-type, which lead to

A[g◦(0) + g◦(e◦∗L − e◦∗H )]/2 = C◦L
′(e◦∗L ), (H.11)

A[g◦(e◦∗H − e◦∗L ) + g◦(0)]/2 = C◦H
′(e◦∗H ). (H.12)

Since g◦(·) is symmetric at 0, the LHSs of (H.11) and (H.12) are the same. With the exponential

cost function, we have xH
xL

=
exp(ρe◦∗H /2)

exp(ρe◦∗
L
/2)

, Then, e◦∗H − e◦∗L = 2 ln(xH/xL)/ρ. As a result, by (H.11) and

(H.12), we have

A[g◦(0) + g◦(2 ln(xH/xL)/ρ)]/2 = ρ exp (ρe◦∗L /2)/xL, (H.13)

A[g◦(2 ln(xH/xL)/ρ) + g◦(0)]/2 = ρ exp (ρe◦∗H /2)/xH . (H.14)

By (H.13) and (H.14), the equilibrium efforts for the H-type and L-type contestants are e◦∗L =

2 ln(AK1xL/ρ)/ρ and e◦∗H = 2 ln(AK1xH/ρ)/ρ, where K1 = [g◦(2 ln(xH/xL)/ρ) + g◦(0)]/2.
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(ii) Now we derive the expression of C◦i
′(e◦i ) if the expertise along the two attributes is negatively

correlated. Denote the type of contestant by (i1, i2), i1, i2 = H,L, where i1 is the expertise in

the first attribute, and i2 is the expertise in the second attribute. If the expertise along the two

attributes is negatively correlated, a contestant can either be type (H,L) or (L,H). Since the cost

functions for those two types are the same, we derive the expression of the C◦i
′(e◦i ) for type (L,H),

which is the same for type (H,L). If contestant i has expertise xL in the first attribute and xH

in the second attribute, given the aggregate effort e◦i , there exists an optimal allocation of efforts

e◦i = ẽ1
i + ẽ2

i such that C◦(e◦i ) = min{C(ẽ1
i )/xL +C(ẽ2

i )/xH}. By Lemma 2, the optimal allocation

of efforts satisfies C ′(ẽ1
i )/xL =C ′(ẽ2

i )/xH . Then,

C ′(ẽ1
i )/C

′(ẽ2
i ) = xL/xH . (H.15)

When C ′(ei) = ρ exp(ρei), (I.1) becomes exp(ρ(ẽ1
i − ẽ2

i )) = xL/xH , equivalently ẽ1
i − ẽ2

i =

ln(xL/xH)/ρ. Since e◦i = ẽ1
i + ẽ2

i , we have ẽ1
i = [e◦i + ln(xL/xH)/ρ]/2 and ẽ2

i = [e◦i − ln(xL/xH)/ρ]/2.

Since the total cost is C◦(e◦i ) =C(ẽ1
i )/xL +C(ẽ2

i )/xH , the derivative of the total cost function is

C◦
′
(e◦i ) =

ρ

2
exp

(
ρe◦i + ln(xL/xH)

2

)
/xL +

ρ

2
exp

(
ρe◦i − ln(xL/xH)

2

)
/xH

= ρ exp(ρe◦i /2)/
√
xHxL. (H.16)

Following the proof in Lemma 3, we obtain the symmetric equilibrium effort e◦∗ =

2 ln(Ag◦(0)
√
xHxL/ρ)ρ. �

Lemma H.3(i) is similar to Lemma H.1. It shows that the equilibrium effort in the joint contest

is similar to that in the first sub-contest of the separate contest, if the contestants’ expertise

along the two attributes is positively correlated. The only difference is that in the joint contest,

contestants make effort in both attributes at once, and the H-type contestant is better than the

L-type contestant in both attributes, due to the positively correlated expertise. Since the two cost

functions across the two attributes of each type of a contestant are the same, the effort levels of

a contestant in the two attributes are the same. Moreover, Lemma H.3(ii) is similar to Lemma 3.

Since the expertise across the two attributes is negative correlated and the expertise levels xH and

xL are the same for both attributes, then in the joint contest contestants make the same effort

since their aggregate cost functions are the same. With Lemmas H.2 and H.3, we can compare the

equilibrium efforts between the two contest mechanisms.

Proof of Proposition 5. (i) First, we compare the equilibrium effort levels of the H-type contes-

tant between two contest mechanisms.
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By Lemma H.3(i), in the joint contest, the equilibrium effort of the H-type contestant is e◦∗H =

2 ln(AK1xH/ρ)/ρ, where K1 = [g◦(2 ln(xH/xL)/ρ) + g◦(0)]/2. By Lemma H.1, the effort of the H-

type contestant in the first sub-contest is e1∗
H = ln(A1K0xH/ρ)ρ, where K0 = [g(ln(xH/xL)/ρ) +

g(0)]/2. By Lemma H.2, the equilibrium effort level of the H-type contestant in the second sub-

contest is e2∗
H = ln(A2g(ln(xH/xL)/ρ)xH/ρ)/ρ if his opponent is L-type. By Lemma 1, the equilib-

rium effort level of the H-type contestant is e2∗
H = ln(A2g(0)xH/ρ)/ρ if his opponent is H-type. The

probability that an H-type contestant competes with an H-type or L-type contestant is 1/2. Thus,

the difference of the expected equilibrium effort levels between two contest mechanisms is

E(e◦∗H )−E(e1∗
H + e2∗

H ) = 2 ln(AK1xH/ρ)/ρ− [ln(A1K0xH/ρ)/ρ+ ln(A2g(0)xH/ρ)/ρ]/2

−[ln(A1K0xH/ρ)/ρ+ ln(A2g(ln(xH/xL)/ρ)xH/ρ)/ρ]/2

=
1

2ρ

[
ln

(
4K2

1

K0g(0)

4K2
1

K0g(ln(xH/xL)/ρ)

)]
=

1

2ρ

[
ln

(
16K4

1

K2
0g(0)g(ln(xH/xL)/ρ)

)]
,

where the second equality is due to A/2 =A1 =A2. Now we examine the value of
16K4

1

K2
0g(0)g(ln(xH/xL)/ρ)

.

Since g◦(x) = 1
2
√

2πσ
e
− x2

8σ2 and g(x) = 1
2
√
πσ
e
− x2

4σ2 , by denoting δx = ln(xH/xL)/ρ, δx ∈ (0,+∞), we

have the following result,

16K4
1

K2
0g(0)g(ln(xH/xL)/ρ)

=
4(g◦(2δx) + g◦(0))4

(g(δx) + g(0))2g(0)g(δx)
=

[
exp

(
− δ2x

2σ2

)
+ 1
]4

[
exp

(
− δ2x

4σ2

)
+ 1
][

exp
(
− δ2x

2σ2

)
+ exp

(
− δ2x

4σ2

)] .
Since exp

(
− δ2x

2σ2

)
=
[
exp

(
− δ2x

4σ2

)]2

, we can denote z = exp
(
− δ2x

4σ2

)
∈ [0,1]. Note that if z = 0,

xH/xL→+∞, and if z = 1, xH/xL = 1. We have that
16K4

1

K2
0g(0)g(ln(xH/xL)/ρ)

= (z2+1)4

(z+1)(z2+z)
≥ (z2+1)4

(z+1)(z2+1)
≥

(z2+1)3(z+1)

(z+1)(z2+1)
= (z2 + 1)2 ≥ 1. As a result, if the expertise along the two attributes is completely

positively correlated, the H-type contestant makes a higher expected equilibirium effort in the joint

contest than in the separate contest.

Second, we compare the equilibrium effort levels of the L-type contestant between two con-

test mechanisms. By Lemma H.3(i), in the joint contest, the equilibrium effort of the L-type

contestant is e◦∗L = 2 ln(AK1xL/ρ)/ρ, where K1 = [g◦(2 ln(xH/xL)/ρ) + g◦(0)]/2. By Lemma H.1,

the effort of the L-type contestant in the first sub-contest is e1∗
L = ln(A1K0xL/ρ)ρ, where K0 =

[g(ln(xH/xL)/ρ) + g(0)]/2. By Lemma H.2, the equilibrium effort level of the L-type contestant in

the second sub-contest is e2∗
L = ln(A2g(ln(xH/xL)/ρ)xL/ρ)/ρ if his opponent is H-type. By Lemma

1, the equilibrium effort level of the H-type contestant is e2∗
L = ln(A2g(0)xL/ρ)/ρ if his opponent is

L-type. The probability that an H-type contestant competes with an H-type or L-type contestant is
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1/2. Thus, the difference of the expected equilibrium effort levels between two contest mechanisms

is

E(e◦∗L )−E(e1∗
L + e2∗

L ) = 2 ln(AK1xL/ρ)/ρ− [ln(A1K0xL/ρ)/ρ+ ln(A2g(0)xH/ρ)/ρ]/2

−[ln(A1K0xL/ρ)/ρ+ ln(A2g(ln(xH/xL)/ρ)xL/ρ)/ρ]/2

=
1

2ρ

[
ln

(
4K2

1

K0g(0)

4K2
1

K0g(ln(xH/xL)/ρ)

)]
=

1

2ρ

[
ln

(
16K4

1

K2
0g(0)g(ln(xH/xL)/ρ)

)]
,

where the second equality is due to A/2 =A1 =A2. Since the value of E(e◦∗L )− E(e1∗
L + e2∗

L ) is the

same with that of E(e◦∗H )−E(e1∗
H + e2∗

H ). The same result holds for the L-type contestant.

(ii) If the expertise along the two attributes is negatively correlated, then by Lemma H.3(ii), the

effort level will be the same for either type of contestants, i.e., e◦∗ = 2 ln(Ag(0)
√
xHxL/ρ)ρ. Consider

the contestant with type (H,L). By Lemma H.1, the equilibrium effort level of the contestant

in first sub-contest is e1∗
H = ln(A1K0xH/ρ)ρ. By Lemma H.2, the equilibrium effort level of the

contestant in the second sub-contest is e2∗
L = ln(A2g(ln(xH/xL)/ρ)xL/ρ)/ρ if his opponent is type

(L,H). By Lemma 1, the equilibrium effort level of the H-type contestant is e2∗
L = ln(A2g(0)xL/ρ)/ρ

if his opponent is type (H,L). The probability that the contestant with type (H,L) competes with

an contestant with type (H,L) or (L,H) is 1/2. Thus, the difference of the expected equilibrium

effort levels between two contest mechanisms is

E(e◦∗)−E(e1∗
H + e2∗

L ) = 2 ln(Ag◦(0)
√
xHxL/ρ)/ρ− [ln(A1K0xH/ρ)/ρ+ ln(A2g(0)xL/ρ)/ρ]/2

−[ln(A1K0xH/ρ)/ρ+ ln(A2g(ln(xH/xL)/ρ)xL/ρ)/ρ]/2

=
1

2ρ
ln

(
16g◦(0)4

K2
0g(0)g(ln(xH/xL)/ρ)

)
≥ 1

2ρ
ln

(
16g◦(0)4

g4(0)

)
> 0,

where the first inequality is due to g(ln(xH/xL)/ρ) ≤ g(0) and the second inequality is due to

g◦(0)> g(0)/2. Therefore, we have E(e◦∗)−E(e1∗
H +e2∗

L )> 0. For the negatively correlated expertise,

for the contestant with type (H,L), the effort level is higher in the joint contest than in the separate

contest. The same result holds for a contestant with type (L,H) due to the symmetry. �

Proposition 5 shows that if the expertise along the two attributes is perfectly positively corre-

lated, then each contestant has a higher expected effort level in the joint contest than in the separate

contest. Since η = 1/2, with probability 1/2, one contestant is H-type and the other contestant is

L-type. In the second sub-contest of the separate contest, contestants know their opponents’ types.

We find that if one is H-type and the other is L-type, then they make relatively little effort because

the marginal winning probability for additional effort is low. For an L-type contestant, if he knows

that his opponent is H-type, then the winning probability is slim, and thus he will slack off because



34

making great effort incurs a high cost but gains little improvement in the chance of winning. For

an H-type contestant, if he knows that his opponent is L-type who will make little effort, there

is no need for him to make great effort as well. In summary, the information revelation leads to

the low effort level for both types of contestants. With probability 1/2, both contestants will make

little effort in equilibrium in the second sub-contest.

In the first sub-contest, there is no information revelation, and thus either contestant does not

know exactly what type his opponent is, but each contestant takes into account the probability

(which is 1/2) that his opponent is of a different type from him. Therefore, they make little effort,

an effort level lower than if the opponent is definitely of the same type, but higher than the effort

level if the opponent is definitely of a different type. With the analysis and explanation above, we

find that the heterogeneity in expertise leads to a lower effort level than a homogeneous pool of

contestants who have the expertise equal to the average expertise of the heterogeneous pool.

For the joint contest, since contestants are required to submit the aggregate solution, they take

into account the possibility that their opponents are of different types. Then, the joint contest

is analogous to the first sub-contest of the separate contest. However, the heterogeneity of the

expertise is higher in the joint contest than the first sub-contest of the separate contest due to

the positive correlation of expertise. For the L-type (H-type) contestant, the winning probability

is lower (higher) when competing in both attributes at once than competing in one attribute.

Thus, both contestants have a lower effort level in the joint contest than in the first sub-contest of

the separate contest. In summary, though there is no information revelation in the joint contest,

the relatively high heterogeneity in expertise also leads to relatively low effort levels for both

contestants.

With the discussion above, we find that the contestants makes little effort in the separate contest

mainly because of the information revelation in the second sub-contest, and the heterogeneity in

the first sub-contest. Moreover, contestants make little effort in the joint contest because of the

high heterogeneity. For the general case, the comparison between the separate and joint contests

can be ambiguous. But, if the random factors follow the normal distribution and η= 1/2, then the

effect of information revelation and the heterogeneity in the separate contest, and the effect of the

high heterogeneity in the joint contest will be in a similar level. Since those effects mentioned above

can be neutralized, the pooling effect becomes the dominating force, and therefore, each contestant

has a higher equilibrium effort level in the joint contest than in the separate contest.

If contestants’ expertise along the two attributes is negatively correlated, each contestant always

has a higher equilibrium effort level in the joint contest than in the separate contest. Since contes-

tants are strong at one attribute but weak at the other, the effect of information revelation, which
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leads to slack off in the second sub-contest of the separate contest, always exists. However, for the

joint contest, there is no effect of the high heterogeneity since contestants are ex ante identical in

the expertise. As a result, under the joint influence of the pooling effect, each contestant has a

higher equilibrium effort level in the joint contest than in the separate contest.

Discussion. If the project is highly effort-based, then the contestant with a higher effort level

will win with high probability. If the expertise along the two attributes is negatively correlated, the

best efforts in the two sub-contests of the separate contest can be made by different contestants.

To compare the expected best effort levels between the two contest mechanisms, we do following

analysis.

If the expertise along the two attributes is negatively correlated, then by Lemma H.3(ii), the effort

level will be the same for either type of contestants, i.e., e◦∗ = 2 ln(Ag(0)
√
xHxL/ρ)ρ. Consider the

contestant with type (H,L). By Lemma H.1, the equilibrium effort level of the contestant in first

sub-contest is e1∗
H = ln(A1K0xH/ρ)ρ. By Lemma H.2, the equilibrium effort level of the contestant

in the second sub-contest is e2∗
L = ln(A2g(ln(xH/xL)/ρ)xL/ρ)/ρ if his opponent is type (L,H). By

Lemma 1, the equilibrium effort level of the H-type contestant is e2∗
L = ln(A2g(0)xL/ρ)/ρ if his

opponent is type (H,L). The probability that the contestant with type (H,L) competes with an

contestant with type (H,L) or (L,H) is 1/2. Note that if two contestants are the same type, then

the expected best effort level will be either contestants’ effort level in the separate contest. If two

contestants are of different types, then the expected best effort level will the combination of effort

levels owned by the contestant with H-type in each attribute.

Thus, if the the difference of the expected best equilibrium effort levels between two contest

mechanisms is

E(e◦∗)−E(e1∗
H + e2∗

L )/4−E(e1∗
L + e2∗

H )/4−E(e1∗
H + e2∗

H )/2

= 2 ln(Ag◦(0)
√
xHxL/ρ)/ρ− [ln(A1K0xH/ρ)/ρ+ ln(A2g(0)xL/ρ)/ρ]/4

−[ln(A1K0xL/ρ)/ρ+ ln(A2g(0)xH/ρ)/ρ]/4

−[ln(A1K0xH/ρ)/ρ+ ln(A2g(ln(xH/xL)/ρ)xH/ρ)/ρ]/2

=
1

2ρ
ln

(
16g◦(0)4

K2
0g(0)g(ln(xH/xL)/ρ)

√
xL
xH

)
.

Since K0 < g(0) and g◦(0)> g(0)/2, we have K2
0g(0)g(ln(xH/xL)/ρ)< g(0)4 < 16g◦(0)4. If xL and

xH are close, then E(e◦∗)−E(e1∗
H +e2∗

L )> 0. If the difference between xL and xH is sufficiently large,

then E(e◦∗)−E(e1∗
H + e2∗

L )≤ 0. �
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H.4. A Given Sample Path

Though contestants’ expected equilibrium effort levels are higher in the joint contest than in the

separate contest. The two contest mechanisms perform differently in incentivizing contestants’

efforts given different realizations of the pairs of contestants, still under the assumption that ex

ante the contestants only know their own types.

Proposition H.1. (i) For the perfectly positively correlated expertise, (a) if an H-type con-

testant’s opponent is H-type, there exists a threshold on xH/xL, under which e◦∗H − e1∗
H − e2∗

H ≥ 0

and above which e◦∗H − e1∗
H − e2∗

H < 0; (b) if an H-type contestant’s opponent is L-type, for any

xH/xL, e◦∗H − e1∗
H − e2∗

H ≥ 0; (c) if an L-type contestant’s opponent is L-type, there exists a threshold

on xH/xL, under which e◦∗L − e1∗
L − e2∗

L ≥ 0 and above which e◦∗L − e1∗
L − e2∗

L < 0; (d) if an L-type

contestant’s opponent is H-type, for any xH/xL, e◦∗L − e1∗
L − e2∗

L ≥ 0.

(ii) For the perfectly negatively correlated expertise, contestants with type (H,L) or (L,H) have

the higher equilibrium effort level in the joint than in the separate contest.

Proof of Proposition H.1. (i)(a) We compare the equilibrium effort levels of the H-type contes-

tant between the two contest mechanisms if his opponent is H-type.

By Lemma H.3(i), in the joint contest, the equilibrium effort of the H-type contestant

is e◦∗H = 2 ln(AK1xH/ρ)/ρ, where K1 = [g◦(2 ln(xH/xL)/ρ) + g◦(0)]/2. By Lemma H.1, the

effort of the H-type contestant in the first sub-contest is e1∗
H = ln(A1K0xH/ρ)ρ, where K0 =

[g(ln(xH/xL)/ρ) + g(0)]/2. By Lemma 1, the equilibrium effort level of the H-type contestant is

e2∗
H = ln(A2g(0)xH/ρ)/ρ if his opponent is H-type. The difference of the equilibrium effort levels

between two contest mechanisms is

e◦∗H − e1∗
H − e2∗

H = 2 ln(AK1xH/ρ)/ρ− ln(A1K0xH/ρ)ρ− ln(A2g(0)xH/ρ)/ρ= ln

(
4K2

1

K0g(0)

)
/ρ,

where the last equality is due to that A/2 =A1 =A2. Now we examine the value of
4K2

1
K0g(0)

. Since

g◦(x) = 1
2
√

2πσ
e
− x2

8σ2 and g(x) = 1
2
√
πσ
e
− x2

4σ2 , by denoting δx = ln(xH/xL)/ρ, δx ∈ (0,+∞), we have

the following result,

4K2
1

K0g(0)
=

4(g◦(2δx) + g◦(0))2

2(g(δx) + g(0))g(0)
=

[
exp

(
− δ2x

2σ2

)
+ 1
]2

[
exp

(
− δ2x

4σ2

)
+ 1
] .

Since exp
(
− δ2x

2σ2

)
=
[
exp

(
− δ2x

4σ2

)]2

, by denoting z = exp
(
− δ2x

4σ2

)
∈ [0,1], we have

4K2
1

K0g(0)
= (z2+1)2

z+1
.

Note that if z = 0, xH/xL→+∞, and if z = 1, xH/xL = 1. Taking derivative with respect to z, we

find that
[

(z2+1)2

z+1

]′
= 4(z2+1)z(z+1)−(z2+1)2

(z+1)2
= (z2+1)(3z2+4z−1)

(z+1)2
. Therefore, if z ∈ [0,

√
7−2
3

), then 3z2 +
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4z−1< 0, i.e.,
[

(z2+1)2

z+1

]′
< 0 and

4K2
1

K0g(0)
is striclty decreasing. If z ∈ [

√
7−2
3
,1], then 3z2 + 4z−1≥ 0,

i.e.,
[

(z2+1)2

z+1

]′
≥ 0 and

4K2
1

K0g(0)
is increasing.

If z = 0, i.e., xH/xL → +∞, then lim
xH/xL→+∞

4K2
1

K0g(0)
= 1 and thus for z ∈ (0,

√
7−2
3

),
4K2

1
K0g(0)

< 1.

Moreover, if z = 1, i.e., xH = xL,
4K2

1
K0g(0)

= 2 and the value of
4K2

1
K0g(0)

is strictly increasing in z from a

value less than 1 to 2. As a summary, when xH/xL ranges from 1 to +∞, there exists a threshold

below which
4K2

1
K0g(0)

≥ 1, and above which
4K2

1
K0g(0)

< 1. As a result, there exists a threshold on xH/xL

above which e◦∗H − e1∗
H − e2∗

H < 0 and under which e◦∗H − e1∗
H − e2∗

H ≥ 0.

(i)(b) By Lemma H.2, the equilibrium effort level of the H-type contestant in the second sub-

contest is e2∗
H = ln(A2g(ln(xH/xL)/ρ)xH/ρ)/ρ if his opponent is L-type. The difference of the equi-

librium efforts between two contest mechanisms is

e◦∗H − e1∗
H − e2∗

H = 2 ln(AK1xH/ρ)/ρ− ln(A1K0xH/ρ)ρ− ln(A2g(ln(xH/xL)/ρ)xH/ρ)/ρ

= ln

(
4K2

1

K0g(ln(xH/xL)/ρ)

)
/ρ,

where the last equality is due to that A/2 =A1 =A2. Now we examine the value of
4K2

1
K0g(ln(xH/xL)/ρ)

.

With the notation δx = ln(xH/xL)/ρ, δx ∈ (0,+∞), we can obtain

4K2
1

K0g(ln(xH/xL)/ρ)
=

4(g◦(2δx) + g◦(0))2

2(g(δx) + g(0))g(δx)
=

[
exp

(
− δ2x

2σ2

)
+ 1
]2

[
exp

(
− δ2x

2σ2

)
+ exp

(
− δ2x

4σ2

)] .
By denoting z = exp

(
− δ2x

4σ2

)
∈ (0,1), we have

4K2
1

K0g(ln(xH/xL)/ρ)
= (z2+1)2

(z2+z)
> (z2+1)2

(z2+1)
= z2 + 1 ≥ 1.

Therefore, e◦∗H − e1∗
H − e2∗

H > 0 for any xH/xL.

(i)(c) By Lemma H.3(i), in the joint contest, the equilibrium effort of the L-type contes-

tant is e◦∗L = 2 ln(AK1xL/ρ)/ρ, where K1 = [g◦(2 ln(xH/xL)/ρ) + g◦(0)]/2. By Lemma H.1, the

effort of the L-type contestant in the first sub-contest is e1∗
L = ln(A1K0xL/ρ)ρ, where K0 =

[g(ln(xH/xL)/ρ) +g(0)]/2. By Lemma H.1, the equilibrium effort level in the second sub-contest is

e2∗
L = ln(A2g(0)xL/ρ)/ρ if his opponent is L-type, and the difference of the equilibrium effort levels

between two contest mechanisms is

e◦∗L − e1∗
L − e2∗

L = 2 ln(AK1xL/ρ)/ρ− ln(A1K0xL/ρ)/ρ− ln(A2g(0)xL/ρ)/ρ= ln

(
4K2

1

K0g(0)

)
/ρ,

where the last equality is due to that A/2 = A1 = A2. Since the value of e◦∗L − e1∗
L − e2∗

L depends

on the
4K2

1
K0g(0)

, the discussion of the value is similar to (a). Therefore, there exists a threshold on

xH/xL above which e◦∗L − e1∗
L − e2∗

L < 0 and under which e◦∗L − e1∗
L − e2∗

L ≥ 0.
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(i)(d) By Lemma H.2, the equilibrium effort level in the second sub-contest is e2∗
L =

ln(A2g(ln(xL/xH)/ρ)xL/ρ)/ρ if his opponent is H-type. Thus, the difference of the equilibrium

effort levels between two contest mechanisms is

e◦∗L − e1∗
L − e2∗

L = 2 ln(AK1xL/ρ)/ρ− ln(A1K0xL/ρ)/ρ− ln(A2g(ln(xL/xH)/ρ)xL/ρ)/ρ

= ln

(
4K2

1

K0g(ln(xL/xH)/ρ)

)
/ρ= ln

(
4K2

1

K0g(ln(xH/xL)/ρ)

)
/ρ,

where the last equality is due to the symmetry of g(·). Since the value of e◦∗L − e1∗
L − e2∗

L depends

on the
4K2

1
K0g(ln(xH/xL)/ρ)

, the discussion of the value is similar to (b). Therefore, e◦∗L − e1∗
L − e2∗

L > 0

for any xH/xL.

(ii) If the expertise along the two attributes is negatively correlated, then by Lemma H.3, the

effort level will be the same for either type of contestants, i.e., e◦∗ = 2 ln(Ag(0)
√
xHxL/ρ)ρ. If

both contestants are type (H,L), the equilibrium effort level of the contestant in the second sub-

contest is e2∗
H = ln(A2g(0)xH/ρ)/ρ. The difference of the equilibrium efforts between two contest

mechanisms is

e◦∗− e1∗
H − e2∗

L = 2 ln(Ag◦(0)
√
xHxL/ρ)ρ− ln(A1K0xH/ρ)ρ− ln(A2g(0)xL/ρ)/ρ

= ln

(
4g◦(0)2

K0g(0)

)
/ρ≥ ln

(
4g◦(0)2

g(0)2

)
/ρ > 0,

where the first inequality is due to g(ln(xH/xL)/ρ) ≤ g(0) and the second inequality is due to

g◦(0) > g(0)/2. Therefore, we have e◦∗ − e1∗
H − e2∗

L > 0. If a contestant with type (H,L) has an

opponent with type (L,H), then

e◦∗− e1∗
H − e2∗

L = 2 ln(Ag◦(0)
√
xHxL/ρ)ρ− ln(A1K0xH/ρ)ρ− ln(A2g(ln(xL/xH))xL/ρ)/ρ

= ln

(
4g◦(0)2

K0g(ln(xH/xL)/ρ)

)
/ρ≥ ln

(
4g◦(0)2

g(0)2

)
/ρ > 0,

where the first inequality is due to g(ln(xH/xL)/ρ) ≤ g(0) and the second inequality is due to

g◦(0)> g(0)/2.

Therefore, for the negatively correlated expertise, for the contestant with type (H,L), the effort

level is higher in the joint contest than in the separate contest. The same result holds for a contestant

with type (L,H) due to the symmetry. �

The explanation is as follows.

1. Perfectly positive correlation:

If the two contestants are of the same type, by information revelation, in the second sub-

contest, both contestants know their opponents’ type. Therefore, both contestants have a



39

chance to win so they are motivated to make high effort. If the two contestants are of different

types, in the second sub-contest, both contestants will make relatively low effort since the low

type contestant feels little chance to win and the high type contestant feels no need to make

high effort. Moreover, in this case, the effort level is decreasing in the difference between the

high and low expertise because if the difference is large, the low type contestant barely has

any chance to win. However, in the first sub-contest or in the joint contest, contestants do

not know their opponents’ type but they will take into account all the possibilities that their

opponents can be a high type or low type.

For Proposition H.1(i)(a) and (i)(c), if both contestants are of the same type and the differ-

ence between the high and low expertise is large, then both contestants will make relatively low

effort in the first sub-contest and the joint contest since they take into account the possibility

that they may compete with a contestant with a different type. However, the information rev-

elation leads to that both contestants will make high effort in the second sub-contest. Overall,

contestants will make high effort in the separate contest than in the joint contest. In other

words, the effect of information revelation dominates the pooling effect if both contestants

are of the same type and the difference between the high and low expertise is large. If both

contestants are of the same type and the difference between the high and low expertise is

small, then both contestants will make relatively low effort in both contest mechanisms. Thus,

the effect of information revelation is relatively weak and dominated by the pooling effect.

For Proposition H.1(i)(b) and (i)(d), if the two contestants are of different types, then the

information revelation leads to low effort in the second sub-contest of the separate contest.

Therefore, the information revelation has a negative effect on the effort level of contestants,

so each contestant’s effort level is higher in the joint contest than in the separate contest.

2. Perfectly negative correlation:

If contestants’ expertise along the two attributes is negatively correlated, each contestant

always has a higher equilibrium effort level in the joint contest than in the separate contest,

since the effect of information revelation, which leads to slack off in the second sub-contest

of the separate contest, always exists. However, for the joint contest, contestants are ex ante

identical in the expertise, there is no heterogeneity effect. As a result, under the additional

influence of the pooling effect, each contestant has a higher equilibrium effort level in the joint

contest than in the separate contest.
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I. Numerical Study
I.1. Distributions

We perform a numerical study of several commonly used distributions for random factors and

display in Figure I.1 the comparison of the functions h◦(ξ◦;n) and max{wh(ξ;n), (1−w)h(ξ;n)}.
In Figure I.1(a), the normal distribution has mean 0 and σ = 1. In Figure I.1(b), the logistic

distribution has mean 0 and scale 1. In Figure I.1(c), the Gumbel distribution has mean 0 and

scale 1. The contestant number is set to 100, i.e., n= 100. The horizontal dash line is the value

of h◦(ξ◦; 100), and the solid line is the value of max{wh(ξ; 100), (1−w)h(ξ; 100)} with respect to

w. The segment between the two vertical dotted lines on the w-axis contains the values of w that

satisfy the condition h◦(ξ◦; 100)>max{wh(ξ; 100), (1−w)h(ξ; 100)}.

Figure I.1 Comparison between h◦(ξ◦;n) and max{wh(ξ;n), (1−w)h(ξ;n)}
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(b) Logistic distribution
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(c) Gumbel distribution

I.2. Independent Expertise

In the joint contest, there are four types of contestants: (L,L), (L,H), (H,L) and (H,H), and the

prior probability for those types is η2, η(1−η), η(1−η) and (1−η)2 respectively. Since the expertise

levels are the same for both attributes, we recognize the contestants with types (L,H) and (H,L) in

the joint contest as M-type, and he makes effort e◦∗M in the symmetric equilibrium. For the contestant

with type (L,L) or (H,H), he makes effort e◦∗L or e◦∗H respectively in the symmetric equilibrium.

The expected payoff to contestant i is E(u◦i (e
◦
i )) =A[η2G◦(e◦i − e◦∗L ) + (1− η)2G◦(e◦i − e◦∗H ) + 2η(1−

η)G◦(e◦i − e◦∗M)]−C◦i (e◦i ), where i = L,M,H. Therefore, the FOC is given by A[η2g◦(e◦∗i − e◦∗L ) +

(1− η)2g◦(e◦∗i − e◦∗H ) + 2η(1− η)g◦(e◦∗i − e◦∗M)] =C◦i
′(e◦∗i ).

Now we derive the expressions of C◦i
′(e◦i ), i=L,M,H. If contestant i is M-type, he can be type

(H,L) or (L,H). Since the cost functions for those two types are the same, we derive the expression

of the C◦i
′(e◦i ) for type (L,H), which will be the same for type (H,L). If contestant i has expertise

xL in the first attribute and xH in the second attribute, given the aggregate effort e◦i , there exists
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an optimal allocation of efforts e◦i = ẽ1
i + ẽ2

i such that C◦M(e◦i ) = min{C(ẽ1
i )/xL +C(ẽ2

i )/xH}. By

Lemma 2, the optimal allocation of efforts satisfies C ′(ẽ1
i )/xL =C ′(ẽ2

i )/xH . Then,

C ′(ẽ1
i )/C

′(ẽ2
i ) = xL/xH . (I.1)

When C ′(ei) = ρ exp(ρei), (I.1) becomes exp(ρ(ẽ1
i − ẽ2

i )) = xL/xH , equivalently ẽ1
i − ẽ2

i =

ln(xL/xH)/ρ. Since e◦i = ẽ1
i + ẽ2

i , we have ẽ1
i = [e◦i + ln(xL/xH)/ρ]/2 and ẽ2

i = [e◦i − ln(xL/xH)/ρ]/2.

Since the total cost is C◦M(e◦i ) =C(ẽ1
i )/xL +C(ẽ2

i )/xH , the derivative of the total cost function is

C◦
′
M(e◦i ) =

ρ

2
exp

(
ρe◦i + ln(xL/xH)

2

)
/xL +

ρ

2
exp

(
ρe◦i − ln(xL/xH)

2

)
/xH

= ρ exp(ρe◦i /2)/
√
xHxL. (I.2)

By (I.2), the expressions of the derivative of the cost functions for H-type and L-type contestants

are C◦H
′(e◦i ) = ρ exp(ρe◦i /2)/xH , and C◦L

′(e◦i ) = ρ exp(ρe◦i /2)/xL.

Now we can derive the equilibrium effort levels in the joint contest. In the symmetric equilibrium,

contestants with the same type make the same effort, thus we obtain

A[η2g◦(0) + (1− η)2g◦(e◦∗L − e◦∗H ) + 2η(1− η)g◦(e◦∗L − e◦∗M)] = C◦L
′(e◦∗L ) = ρ exp(ρe◦∗L /2)/xL,

A[η2g◦(e◦∗H − e◦∗L ) + (1− η)2g◦(0) + 2η(1− η)g◦(e◦∗H − e◦∗M)] = C◦H
′(e◦∗H ) = ρ exp(ρe◦∗H /2)/xH ,

A[η2g◦(e◦∗M − e◦∗L ) + (1− η)2g◦(e◦∗M − e◦∗H ) + 2η(1− η)g◦(0)] = C◦M
′(e◦∗M) = ρ exp(ρe◦∗M/2)/

√
xHxL.

The solution of the above equations yields the symmetric equilibrium of the contestants’ effort

levels in the joint contest. The closed form solution can be obtained by assuming η = 1/2. By

η= 1/2, those equations become

A[g◦(0)/4 + g◦(e◦∗L − e◦∗H )/4 + g◦(e◦∗L − e◦∗M)/2] = C◦L
′(e◦∗L ) = ρ exp(ρe◦∗L /2)/xL, (I.3)

A[g◦(e◦∗H − e◦∗L )/4 + g◦(0)/4 + g◦(e◦∗H − e◦∗M)/2] = C◦H
′(e◦∗H ) = ρ exp(ρe◦∗H /2)/xH , (I.4)

A[g◦(e◦∗M − e◦∗L )/4 + g◦(e◦∗M − e◦∗H )/4 + g◦(0)/2] = C◦M
′(e◦∗M) = ρ exp(ρe◦∗M/2)/

√
xHxL. (I.5)

Divide (I.5) by (I.3) and divide (I.4) by (I.5),

g◦(e◦∗M − e◦∗L )/4 + g◦(e◦∗M − e◦∗H )/4 + g◦(0)/2

g◦(0)/4 + g◦(e◦∗L − e◦∗H )/4 + g◦(e◦∗L − e◦∗M)/2
= exp(ρ(e◦∗M − e◦∗L )/2)

√
xL
xH

, (I.6)

g◦(e◦∗H − e◦∗L )/4 + g◦(0)/4 + g(e◦∗H − e◦∗M)/2

g◦(e◦∗M − e◦∗L )/4 + g◦(e◦∗M − e◦∗H )/4 + g◦(0)/2
= exp(ρ(e◦∗H − e◦∗M)/2)

√
xL
xH

. (I.7)

We perform the numerical study to solve (I.6) and (I.7) so that we can obtain the effort level of

the H-type, L-type and M-type contestants.
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For the separate contest, since the expertise of the two attributes is independent, there is no

learning behavior and the equilibrium effort level is given by Lemma H.1. In sub-contest l, the

equilibrium effort levels are el∗L = ln(AlK0xL/ρ)ρ and el∗H = ln(AlK0xH/ρ)ρ, where K0 = g(0)/2 +

g(ln(xH/xL)/ρ)/2.

For the H-type contestant, the effort level in the joint contest is e◦∗H and the effort level in the

separate contest is e1∗
H + e2∗

H . For the L-type contestant, the effort level in the joint contest is e◦∗L

and the effort level in the separate contest is e1∗
L + e2∗

L . For the M-type contestant, the effort level

in the joint contest is e◦∗M and the effort level in the separate contest is e1∗
L + e2∗

H or e1∗
H + e2∗

L .

To guarantee the equilibrium existence, we allow σ to be high, so σ = 100. Since we focus on

the positive effort level, the total prize should be high enough such that the inverse cost function,

which is a logarithm function, can induce a positive value. As a result, A= 1000. Moreover, we let

ρ= 1 and xH/xL ∈ [1,100].

Figure I.2 Comparison of effort levels for independent expertise
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(a) Low type contestant
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(b) Median type contestant
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(c) High type contestant

Figure I.2 shows the effort levels of low type, median type and high type contestant in the two

contest mechanisms respectively. The dashed line shows the effort level in the separate contest,

while the solid line shows the effort level in the joint contest. By Figure I.2, we observe that the

effort level of each contestant is higher in the joint contest than in the separate contest.

For the independent expertise case, the heterogeneity exists in both the joint and separate con-

tests. Meanwhile, the two sub-contests and the joint contest are games with incomplete information.

Since both contest mechanisms have the effect of heterogeneity which leads to the slack-off behavior

of contestants, the pooling effect is expected to be dominating. Thus, contestants are expected to

have a higher effort level in the joint contest than in the separate contest. �
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J. Two-Person Model

Consider a two-person model. If ξl ∼N(0, σ), l= 1,2, and n= 2, by the formula of h(ξl;n),

h(ξl; 2) =

∫ +∞

−∞
ψ(ξl)2dξl =

∫ +∞

−∞
ψ(ξl)ψ(−ξl)dξl =

1

2
√
πσ

.

By Lemma 1, the equilibrium effort for sub-contest l in the separate contest is el∗ =

C l′−1
(Al/(2

√
πσ)). In the joint contest, ξ◦ = ξ1 + ξ2 follows N(0,2σ). Thus, h◦(ξ◦; 2) = 1/(2

√
2πσ).

By Lemma 3, the equilibrium effort in the joint contest is e◦∗ = C◦′
−1

(A/(2
√

2πσ)). For Propo-

sition 1(ii), the difference between the equilibrium efforts in the two contest mechanisms is ∆e =

C1′−1
(wA/(2

√
πσ)) + C2′−1

((1 − w)A/(2
√
πσ)) − C1′−1

(A/(2
√

2πσ)) − C2′−1
(A/(2

√
2πσ)). One

sufficient condition for ∆e < 0 is h◦(ξ◦; 2) > max{wh(ξ; 2), (1 − w)h(ξ; 2)}, which is satisfied if

w ∈ (1−
√

2/2,
√

2/2)≈ (0.29,0.71). The inequality is due to C l′(·)> 0, l= 1,2. For Proposition 1

(ii), the condition h◦(ξ◦; 2)>h(ξ; 2)/2 can be naturally satisfied by the normal distribution because

2
√

2σ < 4σ.
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