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Abstract. In a crowdsourcing contest, innovation is outsourced by a firm to an open crowd
that competes in generating innovative solutions. Given that the projects typically consist
of multiple attributes, how should the firm optimally design a crowdsourcing contest for
such a project? We consider two alternative mechanisms. One is a joint contest, where the
best solution is chosen from the joint solutions across attributes submitted by all contestants.
The other is multiple separate parallel subcontests, with each dedicated to one attribute of the
project. It is intuitive that the separate contest has the advantage of potentially creating a
“cooperative” final solution contributed by different contestants. However, somewhat
surprisingly, we show that the separate contest may reduce the incentive for the crowd to
exert effort, resulting in the joint contest becoming the optimal scheme. The comparison of
the expected best performances in the two contests depends on the project’s characteristics.
For example, if contestants’ performances have a sufficiently high (respectively, low) level of
randomness, the separate (respectively, joint) contest is optimal. If the number of contestants
is large (respectively, small) enough, the separate (respectively, joint) contest is optimal.
Moreover, we find that when the prize is endogenized, the optimal amount of the prize in
the joint contest is no less than that in the separate contest. Finally, we extend the model to
account for contestants with heterogeneous types.
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1. Introduction

The crowdsourcing contest has been widely adopted
by firms, nonprofit organizations, and governments
to solicit innovative solutions to complex problems. In
a typical crowdsourcing contest, an organizer outsources
its project to those who compete to provide solutions
and offers a prize for the winning solution.

Because a project often has multiple attributes or
dimensions, one method of crowdsourcing is to run a
separate contest in which multiple subcontests are
launched, each dealing with one attribute or di-
mension of the project. For example, in 2013, the
Pentagon launched a contest, through a web portal
called Vehicleforge.mil, for the design of an am-
phibious vehicle for the U.S. Marines. The first sub-
contest, with a $1 million prize, involved mobility and
drive-train subsystems for the vehicle. About six
months later came a subcontest for the design of the
chassis and other subsystems, a contest with another
$1 million prize (see Lohr 2012).

An alternative crowdsourcing mechanism is to
run a joint contest, in which every contestant is re-
quired to submit his or her solution for the whole
project all at once, even though the project may re-
quire contestants to deal with a number of different
attributes. For example, a class of so-called reduction-
to-practice challenges on InnoCentive.com, a leading
innovation crowdsourcing platform, requires con-
testants to submit a prototype that shows an idea in
actual practice—in other words, an aggregate solu-
tion that combines the theoretical work of generating
ideas and the practical work of presenting physical
evidence. As another example, right after the separate
contest for the military vehicle mentioned earlier, the
Pentagon launched a contest with a $2 million prize in
2014. In contrast to the separate contest held in 2013,
this joint contest required contestants to submit a
single solution for an entire vehicle (see Lohr 2012).
One would assume that the separate contest had the
benefit of allowing the best solution for each component
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to be combined, thus leading to an overall best solution.
Therefore, it is puzzling why the Pentagon switched to
the joint mechanism.

Motivated by the examples mentioned earlier, we
study the optimal crowdsourcing contest design for
projects with multiple attributes. We consider two
alternative mechanisms that can be implemented by
the contest organizer, hereafter referred to as the firm.
One is to run a joint contest where the best solution is
chosen from the aggregate solutions submitted by
contestants. The other is to run multiple separate
subcontests, each dealing with one attribute of the
project; the final design is made up of the best design
for each attribute.

1.1. Practical Examples

In this section, we provide more examples of contests
in a separate or joint form. Figure 1 illustrates the
terminology and the main focus of this study.

Modular Separate Contest. In a separate contest, if
designs for individual attributes can be put together
as modules, we refer to such a contest as a modular
contest." The Pentagon’s vehicle design contest men-
tioned earlier is a modular contest. Some crowd-
sourcing contests on data analysis also belong to this
category, such as contests on Kaggle, the platform
for predictive modeling and analytics competitions.
Programming solutions are largely modular because,
for software design, application programming in-
terfaces (APIs) are the methods of communication
between different components of a complete solution.
The API allows the solution programs to work to-
gether even if solutions are written by different con-
testants with different programming languages. For
example, Google launched the Open Images Challenge
in 2018 with two tracks. Both were parallel subcontests
with the same data set. One was for object detection, and
the other was for detecting the visual relationship be-
tween the detected objects. The solutions for the two
tracks were modular.”

Joint Contest with Nondecomposable Solutions. In a
joint contest, aggregate solutions can be nondecomposable.
Here decomposable means that the firm is able to

Figure 1. Contest Classification
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separate an aggregate solution from the joint contest
into component parts so that it can combine the best
parts from different solutions to form a solution that
may not be achieved by any single contestant. However,
not all solutions can be treated this way. For example,
General Electric (GE) Hospital Quest on Kaggle requires
contestants to improve the efficiencies in hospitals and
to make hospital visits hassle free. Many factors come
together to avoid things such as long wait times, poor
communication, and repetitive paperwork. Contestants
are required to submit comprehensive solutions; these
are not necessarily decomposable because the ap-
proaches to specific issues are interdependent.

Modular Separate Contest and Its Joint Counterpart
with Nondecomposable Solutions. It is possible for
the joint counterpart of a separate modular contest to
have an aggregate solution that is nondecomposable.
For example, in object-oriented programming, the well-
known open/closed principle requires that software
entities (classes, modules, functions, etc.) should be open
for extension but closed for modification. This means that
it could be challenging, at the very least, to decompose
programs because programmers may hide functions or
features in their solutions. Hence, the firm may either be
unable to decompose the solutions or prefer not to be-
cause of the high cost.”

1.2. Overview of Main Results

Our analysis shows that, other things being equal,
there are two opposing forces affecting the compar-
ison between the two contest mechanisms. On the one
hand, because each subcontest of the separate contest
focuses on one attribute of the project, the best ag-
gregate performance is made up of the best perfor-
mances in each of those subcontests. However, in the
joint contest, contestants submit a single solution for
all the attributes; thus, the best performance is the
one submitted by a single contestant. Therefore, the
combination of the best performances on different
attributes in the separate contest is more likely to have
a high value than the best performance in the joint
contest. We call this the combination effect. On the other
hand, the contestants’ effort depends on the marginal
expected gain from the contest. In the joint contest,
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the random factors that affect the performance or
evaluation criteria across multiple attributes have
been pooled together in the solutions provided by
contestants, which leads to reduced variability under
mild assumptions. As a result, the marginal expected
gain from each bit of extra effort on any attribute in
thejoint contest is more “worthwhile” than that in the
corresponding subcontest of the separate contest.
This is an intuitive explanation from an individual
contestant’s perspective; the exact reasoning is more
involved because contestants compete with each other
and need to take into account competitors” behavior.
We call this the pooling effect, driven by the pooling of
multiple performances subject to random factors across
different attributes in the joint contest. We show that
pooling, as a common theme in the operations liter-
ature, has a notable application to crowdsourcing
contest design.

The comparison of the expected best performances
in the two contest mechanisms boils down to a com-
parison of those two opposing effects.* The pooling
effect occurs because of the difference in incentives
between the joint and separate contests—the differ-
ent amounts of the prizes and the probability of
winning thatjointly determine the marginal expected
gain from a contest. We find that the relative im-
portance of the random factor (i.e., luck) and effort
level (i.e., sweat) plays a critical role in the compar-
ison between the two contest mechanisms. Some
projects are highly influenced by the random factor
(e.g., ideation or art-designing projects), which we call
randomness-based projects. Some projects rely heavily
on the efforts exerted by contestants (e.g., coding
competitions), which we call effort-based projects. A
contestant’s incentive to make an effort depends on
the relative importance of the effort to the final per-
formance. If a project is randomness based, the con-
testants tend to make less effort because making much
effort will incur a significant cost but gain little. As a
result, the difference in incentives will likely produce
only a small difference in the effort level between the
two types of contests. Hence, the pooling effect is
relatively weak and can easily be dominated by the
combination effect. As a result, the separate contest
tends to be optimal. By contrast, if a project is effort
based, contestants tend to make a considerable effort
because it is worth doing so; thus, the difference in
incentives between the two contests can cause a
significant difference in the effort levels. Therefore,
the pooling effect may be more likely to dominate the
combination effect, and the joint contest tends to
be optimal.

We enhance our main insights by further exploring
the comparison of the two contest mechanisms in the
following directions. First, we investigate the mag-
nitude of the combination effect for different numbers

of contestants. We find that a greater number of
contestants improves the combination effect but may
not affect or may even reduce the pooling effect.
Under some conditions, there exists a threshold for
the number of contestants above which the combi-
nation effect dominates the pooling effect, and the
separate contest is optimal, and below which the
combination effect is dominated by the pooling effect,
and the joint contest is optimal.

Second, we examine the optimal amount of the total
prize for the two contest mechanisms. The results
depend on the curvature of the cost functions (i.e., the
degree of convexity). For each contest mechanism, the
optimal total prize is achieved when the marginal
benefit of increasing the total prize equals the mar-
ginal prize that is one. The marginal benefit for the
firm is the marginal effort improvement by contes-
tants with an increase in the prize. Because the cost
functions are assumed to be convex, the marginal
effort level is decreasing in the total prize. However,
the decreasing rate can be different for different cost
functions. For exponential cost functions, the degree
of convexity is a fixed value, and thus the marginal
effortis decreasing at the same rate for the two contest
mechanisms. Therefore, both mechanisms have the
same optimal total prize. For polynomial cost func-
tions, the degree of convexity is decreasing in the
effort level. The marginal effort is decreasing at a
slower rate in the joint contest than in the separate
contest because contestants make more effort in the
joint contest than in the separate one. Therefore, the
optimal total prize is higher for the joint contest than
for the separate contest.

Finally, we examine contestants who have het-
erogeneous expertise using a stylized model of two
contestants and two (privately known) expertise types
for each attribute. Contestants” expertise in attributes
can be perfectly positively or negatively correlated.
We find that under some conditions, forward-looking
contestants behave myopically by truthfully reveal-
ing their types in the first subcontest of the separate
contest, and for either case of the perfectly positively
or negatively correlated expertise, each contestant
achieves a higher expected equilibrium effort level in
the joint contest than in the separate contest.

2. Literature Review

The modeling of contestants” behavior has been an
active research area in economics. It is also gaining
traction in operations management as part of man-
aging the crowdsourcing of goods and services. There
are many different models in the contest theory, such
as the random factor model, the all-pay auction model,
the random trials model, and the Tullock contest. Konrad
(2007) conducts a comprehensive survey of those
models. With the random factor model in which a
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contestant’s performance is made up of his or her
effort and a random factor, Lazear and Rosen (1981)
show that a contestant’s effort depends on the in-
centive provided by the prize and the cost incurred by
exerting effort. Building on the traditional studies, we
examine the design of the contest with multiple at-
tributes. In our separate contest, each subcontest fo-
cuses on one attribute of the project, and each can be
viewed as a random factor model. However, in the
joint contest, we introduce the multidimensional single-
shot contest model in which contestants self-allocate
their efforts to multiple dimensions and submit an ag-
gregate solution simultaneously.

One of the main research questions in contest de-
sign is how to design the optimal incentive scheme by
allocating the total prize to contestants whose per-
formance can be ranked. Rosen (1986) examines the
elimination contest and finds that a large enough
prize is needed for the best performer. Kalra and
Shi (2001) show that the effort made by an individ-
ual contestant decreases with the number of contes-
tants or the uncertainty in the contest. If several
contestants can be rewarded, the rank-order contest
(i.e., a contestant with better performance is awarded
a larger prize) dominates the multiple-winner contest
(i.e., several top contestants share the total prize equally,
even though their performance is different). The authors
also consider different risk attitudes of contestants. They
show that if contestants are risk neutral, winner-takes-
all WTA) (i.e., the best performer is awarded the total
prize) becomes optimal. Moldovanu and Sela (2001)
use the all-pay auction model to show that if the cost
function is concave or not too convex, WTA is opti-
mal. Terwiesch and Xu (2008) show that WTA is al-
ways optimal for the random factor model (referred
to as a model of an “ideation project” in their paper,
p- 1532) but may or may not be optimal for the all-pay
auction model (referred to asa model of an “expertise-
based project”(p. 1532)). Ales et al. (2017) combine the
random trials and random factor models and find that
WTA is optimal if and only if the benefit of additional
effort for increasing the probability of becoming the
winner is higher than that for increasing the proba-
bility of attaining other ranks. Furthermore, they
show that WTA is optimal if the participation of
contestants is guaranteed and the density function of
the random factor is log-concave. Stouras et al. (2019)
find that whether to use WTA depends on the firm’s
objective, to motivate participation versus to en-
courage contestants to make a high effort. Stouras
etal. (2015) also study the service contest design in an
on-demand service context where agents are ranked
based on their service performance, and higher per-
formers receive priority over incoming service re-
quests. The authors show that a coarse partition of
priority classes, such as two priority classes, can be

optimal. In contrast to one-dimensional contest models,
we consider a separate contest as two subcontests, with
each focusing on one attribute of the project. We assume
that the firm uses the WTA scheme in all subcontests to
start with because the WTA scheme has been proved to
be optimal in most circumstances, especially under our
assumption that the random factor is symmetric log-
concave with mean zero.

Another research question is how the number of
contestants affects the contestants” behavior. Taylor
(1995) examines a contest model in which each con-
testant conducts random trials to find his or her best
shot that can meet a predetermined level. The author
shows that an open-entry contest is not optimal be-
cause it reduces the effort of contestants in the equilib-
rium. Fullerton and McAfee (1999) suggest restricting
the number of contestants and using the auctioning
method to select the two best-qualified contestants to
compete. Later, Che and Gale (2003) show that in
designing the contest for procuring innovations, it is
optimal to let the two most efficient innovators par-
ticipate and compete and to handicap the more effi-
cient innovator if the contestants are asymmetric. All
those studies emphasize the role of random factors in
the contest, as we do, and they suggest that the open-
entry contest may not be optimal, so the firm needs to
restrict the number of contestants. With a different
model setup, Terwiesch and Xu (2008) show that
more contestants intensify the competition and thus
lower the individual effort, but meanwhile, the best
performance can be enhanced by the diversity of
contestants. In keeping with their result, Boudreau
et al. (2011) empirically show that there is an effort-
reducing effect by adding contestants. Ales et al.
(2019) use the random factor model in which the
random factor follows a general distribution. They
find that the effort-reducing effect may or may not
exist depending on the properties of the random
factor’s distribution. Focusing on multiattribute con-
tests, we identify two opposing forces, one on the effort
(the pooling effect) and the other on the random factor
(the combination effect), which jointly influence the firm’s
decision on whether to combine multiple subcontests
into one.

Some work examines the contestants” behavior
when there is a series of contests. One stream of those
studies considers static games in which contestants’
behavior in different competitions is independent.
Rosen (1986) studies a tournament in which the
contestants are paired to compete, and the tourna-
ment proceeds with [log,(n)] stages if there are n
contestants. Konrad and Kovenock (2009) examine
the equilibrium strategies in a series of competitions
in which, in addition to the prize offered for each
competition, there is a grand prize for overall per-
formance. DiPalantino and Vojnovic (2009) consider
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a sequence of crowdsourcing contests in which contestants
can choose which contest(s) to enter. Though the latter
two papers are similar to ours in that the contest designer
splits the contest into several subcontests, their sub-
contests are designed to evaluate the overall performance
over a series of competitions (e.g., English Premier
League) or performances for totally different projects
(e.g., Yahoo Answers). Moreover, their focus is on
characterizing contestants’ behavior instead of the firm’s
decision. The separate contest in our context refers to
multiple subcontests dealing with different attributes
of a project, and those subcontests can have different
cost functions and prizes. In this stream, Korpeoglu
et al. (2018) and Moldovanu and Sela (2006) are the
closest to ours. By the all-pay auction model (con-
testants are heterogeneous and the performance is
the effort that is deterministic), Moldovanu and Sela
(2006) show that if the firm aims to maximize the
expected highest effort, then it is optimal to split the
competitors into two divisions and have multiple
subcontests. In a different context of multiattribute
contests, we find that with the random factor model
(contestants are homogeneous and the performance
consists of the effort and random factor), whether
to raise multiple subcontests depends on the num-
ber of contestants and the characteristics of projects.
Korpeoglu et al. (2018) examine the firm’s decision on
whether to encourage contestants to participate in
parallel contests. In our work, from a unique angle,
we study the project with various attributes, and the
firm can choose to launch multiple subcontests, with
each dealing with one attribute, or a joint contest
dealing with the whole problem.

Another stream of the literature on multiple com-
petitions focuses on the dynamic game in which the
contestants’ behavior in one competition is related to
that in another. Those papers mainly explore the
strategic disclosure of information (on the contes-
tants’ progress) by the firm or by the contestants
themselves in the process of the multistage compe-
tition. Some papers study the effects of information
disclosure among contestants in the research and
development (R&D) competition (e.g., Harris and
Vickers 1987, Choi 1991, Malueg and Tsutsui 1997,
Yildirim 2005). In this stream, the work most closely
related to ours is perhaps on information disclosure
by the contest organizer. The contest organizer can set
some intermediate prizes as milestones throughout
the process so that some contestants’” performances
are revealed (e.g., Goltsman and Mukherjee 2011,
Halac et al. 2017, Bimpikis et al. 2019). Those studies
characterize the strategic behavior of contestants in
the intermediate stages of the contest and explore
the optimal information-disclosure strategies of the
firm in anticipation of that strategic behavior. Jiang
et al. (2019) conduct counterfactual analysis based on

empirical estimations and show that the disclosure of the
evaluations of the performance of contestants through-
out the contest may not be optimal but that the disclosure
of those evaluations at a later time of the horizon may
lead to a better overall contest outcome. The subcontests
in our separate contest are different from “milestones”
in the traditional sense. Each of our subcontests deals
with one attribute. Subcontests can be parallel, or
later subcontests are built on the best outcome of
previous subcontests. Our contest allows contestants
to “cooperate” across attributes, whereas the mech-
anisms in the above-mentioned papers do not. The
presence of multiple attributes in the contest is a
feature of our model that has not been studied. This
unique feature makes it possible to compare two
mechanisms: joint versus separate contests. From a
different angle, Acemoglu etal. (2014) emphasize that
the exact difficulties of innovation tasks may not be
known in advance. The authors take a mechanism
design approach and show that the solution is a
dynamic pricing mechanism that induces workers to
self-select into different skill hierarchical layers.
Table 1 summarizes the taxonomy of some relevant
literature on multiple contests. Some work compares
the joint and separate moves by agents in solving
other related management problems. Hausch (1986)
considers the situation where the seller can choose be-
tween two mechanisms: auctioning two identical objects
at once or launching two auctions with each selling one
object. The author shows that either mechanism can be
optimal depending on the strategic behavior of bidders.
In Hausch’s auction model, if bidders lose, they will
not pay, butin our contest model, no matter whether a
contestant wins or loses, the effort hasbeen made, and
thus the cost is sunk. A variant of the auction model,
the all-pay auction, shares a similarity with our model
that contestants (like bidders) incur cost no matter
whether they win. However, in a typical all-pay auction
model, bidders (analogous to contestants) are assumed to
be heterogeneous, but their bid (analogous to the per-
formance of contestants) is a deterministic mapping of
their type, whereas in our base model, we examine the
homogeneous contestants whose performance consists
of the effort and a random factor. In addition, in Sec-
tion 6, we consider heterogeneous contestants with the
sum of their effort and a random factor as their perfor-
mance. Hu et al. (2013) compare the simultaneous and
sequential group-buying mechanisms. They examine a
two-period model in which sequential arrivals make
sign-up decisions. The firm decides on whether to dis-
close the number of sign-ups in the first period to the
consumers arriving in the second period. They show
that the sequential mechanism has a higher chance
than the simultaneous mechanism of reaching the
predetermined threshold on the number of sign-ups.
Clark and Riis (1998) characterize the behavior of
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Table 1. Multiple Contests

Static games

Dynamic games

Elimination contest
Rosen (1986)

(paired competition with [log,(1)] contests for n

players)
Moldovanu and Sela (2006)
(two divided groups for selecting the best two
players)
Series of independent contests
Konrad and Kovenock (2009)

(paired competition for all possible combinations)

DiPalantino and Vojnovic (2009)

(self-selection of participation in different projects)

Kérpeoglu et al. (2018)

(firm’s influence on contestants’ participation)
Joint contest with multiattributes and multiple
subcontests of separate contest with one on each
attribute

This paper

Information disclosure by players
Choi (1991)
Harris and Vickers (1987)
Malueg and Tsutsui (1997)
Yildirim (2005)

Information disclosure by the firm
Bimpikis et al. (2019)
Goltsman and Mukherjee (2011)
Halac et al. (2017)
Jiang et al. (2019) (empirical)

Separate contest with multiattributes
This paper (see Section 6)

heterogeneous contestants and compare the simul-
taneous and sequential contest mechanisms, similar
to our discussion on heterogeneous contestants. There
are several differences, though. First, the type of con-
testants in their study is one dimensional, whereas we
consider a multidimensional contest. Second, they as-
sume that the type of contestants is common knowl-
edge—that is, complete information. In Section 6, we
consider the learning behavior of contestants dur-
ing the process of the separate contest—that is, the
first subcontest is an incomplete-information game,
and the second subcontest is a complete-information
game under some conditions. Third, they assume
the winner elimination in the sequential contest that
could be common for a firm’s internal competition.
Given our focus on crowdsourcing contests, we as-
sume that contestants can participate in the subse-
quent subcontests regardless of whether they win
in previous subcontests. Chen et al. (2018) employ a
similar model to ours to examine whether to raise a
joint or separate contest. However, they study which
mechanism is optimal if the two dimensions (called
“components” in their paper, p. 6) are complements
or substitutes. In contrast to their work, our study
focuses on how the prize joint with the contest form
motivates performance, which depends on the char-
acteristics of the firm’s project, such as being ran-
domness based or effort based.

Finally, there are two main criteria for evaluating a
contest in the literature: expected best performance
and expected average performance. We focus on the
expected best performance criterion. The two op-
posing effects that we characterize exist when we
adopt the expected best performance criterion, whereas
only one effect, the pooling effect, exists when we
adopt the expected average performance criterion.

The criterion of the expected best performance is
better suited to innovation contests such as a research
or brainstorming contest. In such settings, a single
outstanding solution can be more valuable than thou-
sands of mediocre ones.

Our separate contest resembles the hybrid structure
of idea generation in Girotra et al. (2010), who focus
on the best performance criterion. They show with a
laboratory experiment that the hybrid structure, in
which individuals first work independently and then
work together, can generate more and better ideas
than the team structure, in which the group works
together in time and space. In our separate contest,
contestants work independently in each subcontest,
and the performances from subcontests can be “as-
sembled” to form a final solution. Other than our
unique feature of multiattribute projects, the crowd-
sourcing contest we study typically faces the general
public, who cannot work together, and involves a
monetary incentive that is likely absent in brain-
storming within an organization.

3. Model Setup

Here we develop a base model to examine contes-
tants” behavior in crowdsourcing contests with multiple
attributes. The firm outsources tasks to the public, and
contestants make efforts to win rewards. Let A denote
the total prize of the project. The number of contes-
tants is n > 2, which is exogenously given. A contest
with a fixed number of contestants is commonly seen in
theliterature (e.g., Lazear and Rosen 1981; Moldovanu
and Sela 2001, 2006). In addition, we derive conditions
for the individual participation constraint (nonnegative
payoff) to hold for 7 in Online Appendix C such that
our model can be adapted to an endogenized number
of contestants under some conditions.
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We consider a project with multiple attributes.
Without loss of generality, we assume that the project
consists of two attributes, indexed by 1 and 2. In each
attribute, the performance of a contestant is made up
of two additive components. The first component is the
effort level. The contestant decides his or her effort
levels e! and ¢?, respectively, in those two attributes,
depending on the incentives. The second component
is the random factor. The random factors exist in the
projects with unclear standards or projects in which
contestants have random performances. For exam-
ple, a logo-designing project on 99designs may have
vague criteria because the judges have undisclosed
artistic tastes. Therefore, it is unclear how a submission
will be rated. Moreover, the design work could depend
highly on a designer’s personal experience, random
inspirations, or the designing environment; thus,
performance itself can be arbitrary.

There are random factors along the two attributes,
denoted by &' and &2, respectively. We assume that
the two random factors have the same distribution
with the cumulative density function (CDF) W(.)
and probability density function (PDF) 1(-), which is
common knowledge. (The qualitative insights would
not change for the case in which random factors along
the two attributes follow different distributions.) We
assume that the random factors along the two attri-
butes are independent and that they are identical
and independent across all the contestants. Further-
more, we assume that () is symmetric log-concave
with mean zero and standard deviation ¢ > 0.° The
symmetric log-concavity holds for commonly used
distributions—for example, normal, logistic, and uni-
form distributions.

The performance in each attribute is the sum of the
corresponding effort and random factor. This addi-
tive form of individual performance in a contest is
commonly seen in the literature; see, e.g., Lazear and
Rosen (1981), Kalra and Shi (2001), Terwiesch and
Xu (2008), and Ales et al. (2017). We use subscript i
to denote a specific contestant and superscript [ to
denote a specific attribute. If contestant i makes effort
eg >0,1=1,2, the performance of contestant i in those
two attributes is given by V! = ¢l + &L.°

The cost of exerting effort can be considered in the
form of time/effort consumption or monetary in-
vestment. Assume that cost functions along two at-
tributes are, respectively, C(-) and C?(-), which can
be different. The cost information is common knowl-
edge. Moreover, we assume that C'(-) > 0,C""(:) > 0,
I =1,2, the same as in Stouras et al. (2015). This as-
sumption is also consistent with Ales et al. (2019) and
Terwiesch and Xu (2008). They assume a strictly in-
creasing and strictly concave performance function
that is equivalent to a strictly increasing and strictly
convex cost function.

Weassume that all contests adopt the WTA scheme.
Previous studies have found that WTA is optimal for a
single contest in most circumstances. For example, as
mentioned earlier, Moldovanu and Sela (2001) dem-
onstrate that WTA is optimal with the all-pay auction
model if the cost function is concave or not convex
enough. Terwiesch and Xu (2008) show that WTA is
optimal provided that the form of performance is
V =r(e) + &, where r(e) is a concave function of effort,
and & follows a Gumbel distribution. Based on the
same form of performance, Ales et al. (2017) gener-
alize the distribution of the random factor & and
show that WTA is optimal if the participation of
contestants is guaranteed and the PDF of the random
factor is log-concave.

Some of our results rely on the specific forms of
random factors and cost functions. We present a
table of assumptions for our results in Section 7 for
easy comparison.

3.1. Separate Contest

In the separate contest, the firm launches two sub-
contests (indexed by 1 and 2), each of which focuses
on one attribute of the project. It allocates the total
prize A to two subcontests with an exogenous weight
w € (0,1); hence, prizes in those two subcontests
are A = wA and A? = (1 — w)A. Recall that the cost
functions in the two dimensions can be different.
Here we allow the weight w to be arbitrary because
the firm may allocate different amounts of the prize to
the two subcontests so that contestants can be moti-
vated to make more efforts on one attribute than
the other.”

Furthermore, contestant i’s performances in sub-
contests 1 and 2 are V} and V?, respectively. The total
performance of contestant 7 is in the additive form
of the performance in each subcontest—that is, V7 =
V! + V2. The winners in those two subcontests tend
to be different. Moreover, the performances along
the two attributes may have different levels of im-
portance in the total performance. But, because we
do allow different awards and different cost functions
in those two subcontests, it is without loss of gener-
ality to normalize the relative importance level of
performances to one by modifying the allocation of
prizes and cost functions. In Online Appendix G, we
examine different importance levels for the two at-
tributes and show that our main result still holds.
The assumption of the additive form of the aggregate
performance requires that the solutions made by
different contestants are modular. In practice, the
solutions in the two attributes made by the same
contestant may have a synergy effect. Intuitively,
the synergy effect favors the joint contest. A formal
discussion of the synergy effectis relegated to Online
Appendix F.
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Under the WTA scheme, in subcontest ], [ = 1,2, the
payoff to contestant i is

ul(el) = Al-Cl(e), if i'wins,

—Cl(el), if i loses.
Note that, in our setting, all the contestants have a
priori identical random factors and cost functions. In
Online Appendix H, we formally discuss contestants
with heterogeneous cost functions.

3.2. Joint Contest

In the joint contest, the firm launches a single contest
to collect solutions, so the performance by contestant 7,
denoted by V/, is the aggregation of performances
in two attributes. With a slight abuse of notation, we
write V) = VI + V2 = (el + &) + (2 + &2). Unlike the
separate contest, contestants make an aggregate sub-
mission instead of a solution for each subcontest. Be-
cause the contestant with the best performance wins
the grand prize A, the payoff to any contestant 7 is

et )= [ A= CE-CE), itiwins,
—Cl(e})—C?(e?),  ifiloses.

We assume that the number of contestants in the two
contest mechanisms stays the same. In practice, the
contest mechanism may influence the participation of
contestants; thus, the number of contestants can be
different under the two contest mechanisms (see, e.g.,
Online Appendix E).

4. Equilibrium

In this section, we derive the contestants” equilibrium
behavior in an n-person model. Using the charac-
terized behavior, we then compare the performances
of the joint and separate contests. In the literature,
the random factor models focus on the symmetric
equilibrium; see, e.g., Lazear and Rosen (1981), Kalra
and Shi (2001), Terwiesch and Xu (2008), and Ales
et al. (2019). Thus, we focus on the symmetric equi-
librium as well for the joint and separate contests.

4.1. Subcontests in the Separate Contest

Each subcontest in the separate contest is a one-
dimensional contest. The existence of an equilib-
rium is guaranteed if the expected payoff function is
unimodal (i.e., quasi-concave) in effort over the rel-
evant range. However, the expected payoff function
may not necessarily be unimodal. In Lazear and
Rosen (1981), with the same model setup as ours, a
pure equilibrium exists, provided that the standard
deviation of the random factor is large enough. More-
over, Dixit (1987) and Terwiesch and Xu (2008) make a
stronger assumption—namely that the expected pay-
off function is concave in effort. In Online Appendix B,

we show that a sufficient condition for the existence
of symmetric equilibrium is sufficiently high dispersion
of the random factor, or a sufficiently high convexity
level of the cost functions. The former ensures partici-
pation from all (see Online Appendix C).

Denote the equilibrium efforts in subcontests 1
and 2 of the separate contest by ¢'*(n) and ¢**(n), re-
spectively. For subcontest /, [ = 1,2, suppose that all
the contestants except contestant i make equilibrium
effort ¢*(n). The winning probability of contestant i,
if he or she makes effort €, is

P(iwins with efforte}| others make efforte’ (n))

+00
_ / Wel — e (n) + &) (e!)de.
When el = ¢(n), one can easily verify that those win-
ning probabilities are equal to 1/n because [~ W(&)*!
Y(ENdE! = 1/n. Intuitively, contestants have equal chances
of winning because they are ex ante identical. Define
h(&n) = [T2(n—1)W(E)" ()2 dE!, which measures
the marginal change in the winning probability by
exerting additional effort beyond the competitor and
can be interpreted as the risk taken by the contestant
for making an extra effort; see also W; in Kalra and
Shi (2001) and Iy in Ales et al. (2019). With this
function, we have the following characterization.

Lemma 1. Consider there are n contestants. The equilibrium
effort in subcontest I, 1 =1,2, of the separate contest
is e*(n) = C" " (Ah(E n)) B

If n =2, Lemma 1 has the same characterization of
the contestants’ behavior as Lazear and Rosen (1981).
It shows that the effort in the equilibrium increases in
the prize amount. With a larger prize, contestants
have more incentive to exert effort.

4.2. Joint Contest

Contestants in the joint contest make efforts along
two dimensions. The contestants’ two-dimensional
optimization problem can reduce to a single-dimensional
optimization problem with the help of the follow-
ing lemma.

Lemma 2 (Optimal Effort Allocation in Attributes). The cost
function of the aggregate effort level, resulting from the
optimal allocation of efforts in two attributes, C°(e°)=
ming 2. {C!(e') + C3(¢?)}, is a strictly increasing and
strictly convex function. Given the aggregate effort level
e°, the optimal effort allocation (¢',8%) satisfies C°'(e°) =
Cl(e") = C¥(@).

Lemma 2 characterizes the optimal allocation of
efforts made by contestants in the joint contest. It is
analogous to the optimal allocation of a fixed budget
across products to maximize the total profit in the
economics literature. Given a fixed amount of the
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aggregate effort, contestants optimally allocate the
efforts to two dimensions. The marginal costs across
the two dimensions are equal in the optimal alloca-
tion. Otherwise, say if C’(e!) > C? (¢?), the contestant
can achieve a lower total cost by increasing his or her
effort in the second attribute while reducing it in the
first attribute. Moreover, we show that the total costis
strictly increasing and strictly convexin the aggregate
effort. With Lemma 2, we can transform the two-
dimensional contest to a single-dimensional contest
so that the derivation of the equilibrium effort level
will be the same as in Lemma 1.

Denote the equilibrium effort in the joint contest
by e°*(n). Suppose that all the contestants except
contestant i make equilibrium effort ¢°*(n). Denote
& = &'+ & with PDF ¢°(&°) and CDF W°(&°). The
winning probability of contestant i, if he or she makes
an aggregate effort e, is

P(iwins with efforte] | others make efforte®(n))

+00
=/ ‘If"(ef _eo*(n) + 50)”—1¢O(50)d50.
As aresult, similar to h(&!; 1), we can define h°(E°; n) =
f_+;°(n = 1)W°(&°)"2°(E°)?dE°. By Lemma 2, the total
cost C°(e°) is strictly increasing and strictly convex.
Then the derivation of the equilibrium effort in the
joint contest is analogous to Lemma 1, with the total
prize A.

Lemma 3. Consider there are n contestants. The equilibrium
effort for the joint contest is e°*(n) = C*' "1 (Ah°(E%;n)).

4.3. Comparison
In this section, we compare the expected best perfor-
mances between those two contest mechanisms with
contestants. We denote the highest-order statistic
with a sample size n by subscript (. The expected best
performances in the separate and joint contests are denoted
by V5 and V], respectively, with V5 = E((e** (1) + &) ,)) +
E((e*(n)+&%),) and V] =E((e”*(n) + &' +&2),). De-
note the difference by A, = V; — V]. The comparison
of the two contests depends on the value of A,. If
A, > 0, then the separate contest is optimal; otherwise,
if A, <0, the joint contest is optimal. To compare A,
with zero, we first perform the following transformation.
Because equilibrium efforts are deterministic (as
in the base model, all contestants are homogeneous;
we consider heterogeneous contestants later), we have
E((e"(n) + &) = () + E(&G,), 1=1,2, and E((e™
(n)+ &' +E2),) =€ (n) +E((E' +&2),,). The difference
between the expected best performances can then be
decomposed into two parts as A, = A? + A%, where A, =
e+ —e and A; = E(E(,)) + E(EF))— E((E" + &%)y
The first part, A?, is the difference in the equilibrium

effort levels. The second part, Aﬁ, is the difference
between the expected best random factors.

It is intuitive that A; = E(&(,)) + E(&F,) — E((E" +
&%) 2 0. This can be simply shown as follows.
Denote the realizations of &' and &2 among n con-
testantsby {¢1,...,el}and {€2,..., €2} respectively. Then
max{e},..., el } +max{e?,..., 2} >max; peqr,  ny{eh + €5}
Because such inequality holds for any realization,
E(E(,) + E(&F,) 2 E((E! +&%)y). To find a clear-cut
comparison between the two contests, we need A‘;: >0
to hold strictly, which is satisfied by many commonly
used distributions. To guarantee A > 0, we require
that &, for any [ = 1,2, satisfies the regularity condi-
tion. This regularity condition has been used by
Chakraborty (1999, p. 726) to discuss the multiple
objects auctioning strategy.

Assumption 1 (Regularity Condition). Denote the quantile
function of &, 1= 1,2, by W™ (u) and the quantile function
of & = &' + &2 by W°(u), u € [0, 1]. There exists uq such
that W' (u) + W27 () = W (u) < 0 if u € (0,up) and
W (1) + W27 (1) — WL (u) > 0 if u € (o, 1).

The regularity condition is a condition on the tails
of the distributions. It means that a random draw
from the convolution of two distributions is more
likely to yield a “central” value than random draws
from individual distributions. To see this, consider
the uniform distribution on [—1,1]. Whereas the in-
dividual densities are evenly distributed, the con-
volution of the two uniform distributions is clustered
around the center. Many log-concave distributions
satisfy the regularity condition—for example, uni-
form, normal, logistic, Gumbel, gamma, and so on.
A sufficient condition for the regularity condition to
hold is available for symmetric distributions: If the
hazard function (&)/(1—-W(&)) is nondecreasing,
then the regularity condition holds, and wuy =1/2.
Moreover, by corollary 2 of Bagnoli and Bergstrom
(2005), if the PDF is log-concave, then its hazard
function is increasing over the support. Thus, all the
symmetric log-concave distributions satisfy the reg-
ularity condition.

Lemmad. We have E(&), )+E(E2,)>E((& +€2),),n > 2.

By Lemma 4, the sum of the best realizations of
random factors along the two attributes tends to be
more extreme than the best realization of the sum—
that is, A; > 0.

Proposition 1 (Expected Best Performance).

a. Combination effect: The expected best random factor
in the separate contest is higher than that in the joint
contest—that is, A > 0.

b. Pooling effect: If h°(&°;n) > max{wh(&;n), (1 —w)
h(&;n)}, the equilibrium effort in the joint contest is higher
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than that in the separate contest—that is, AS < 0. More-
over, the condition simplifies to h°(&°;n) > h(&;n)/2 if
one of the following conditions holds: (i) w=1/2 or
(ii) C'(-) = C*(-), and their derivatives are weakly convex.

Proposition 1 characterizes two countervailing forces
that determine the superiority between those two con-
test mechanisms. Part (a) of Proposition 1 is directly
implied by Lemma 4. The separate contest has an ad-
vantage in selecting the best performances mainly driven
by the random factors. Whereas the two subcontests
deal with different attributes of the project, each sub-
contest selects the best performance in each attribute.
Given the same effort by all the contestants, the sep-
arate contest combines the performances with the best
realizations of random factors in those two subcontests.
The aggregated best performance in the separate
mechanism is made up of the best random realizations
along both dimensions and is more likely to have a
high value. Moreover, the best solutions in the two
subcontests may be provided by different contestants.
However, in the joint contest, the contestants” perfor-
mance depends on the sum of those random factors
realized to the same individual; thus, the sum of the
random factors across the two attributes is less ex-
treme. Overall, the sum of the most extreme random
factors across the two subcontests is stochastically
larger than the extreme of the aggregated random
factors in the joint contest. As the old saying goes,
“Twoheads arebetter than one.” Because the separate
contest combines the best random realizations from
each subcontest, we call this the combination effect.

The joint contest encourages a greater effort level
in equilibrium under a mild condition in part (b) of
Proposition 1—that is, h°(&°;n) > max{wh(&;n),(1—-w)
h(&;n)}. We begin our discussion by considering a
special case as in part (b) of Proposition 1, in which the
firm evenly allocates prizes into two subcontests—
that is, w = 1/2. In each subcontest of the separate
contest, the return for the winner is one half of the
total prize. Because the prize induces contestants to
exert an effort, the effort increases with the size of the
prize. However, when making efforts, contestants
consider the expected gain from each bit of extra effort
they make in the process. More specifically, to make it
“worthwhile,” contestants will choose his or her ef-
fort level such that the marginal change in the ex-
pected gain is equal to the marginal cost if a marginal
amount of extra effort is made. In the joint contest, the
term Ah°(&°; n) captures such a marginal change in the
expected gain in the joint contest if a small amount of
additional effort has been exerted in either attribute.
And also, the term Ah(&;n)/2 measures the marginal
change in the expected gain in either subcontest of the
separate contest.

The overall motivation for contestants to make ef-
forts in an attribute is relatively higher in the joint con-
test than in the separate contest if Ah°(£°;n) > Ah(&;n) /2.
The intuition is that because the joint contest adds
together the random factors from two contests, the
aggregate variability level is lower than that in each
individual contest. Thus, the marginal expected gain
from each bit of extra effort on any attribute in the
joint contest is more “worthwhile” than that in the
corresponding subcontest of the separate contest.
As a result, the joint contest pushes contestants to
exert more efforts; we call this the pooling effect.

For a general prize allocation w, if w #1/2, the
marginal expected gains in the two subcontests of
the separate contest are different because the returns
are different in those subcontests—that is, wAh(&; n) #
(1 —w) Ah(&;n). Part (b) of Proposition 1 allows the
cost functions in the two dimensions to be different
and the prize allocation in the separate contest to be
general. For a general prize allocation w € (0,1), the
condition h°(&°;n) > max{wh(&;n), (1 —w)h(E;n)} en-
sures that the induced effort in any attribute of the
joint contest is greater than that in the corresponding
subcontest of the separate contest.

The equilibrium effort level depends on the mar-
ginal cost function, too. Even though the marginal
expected gain in the two attributes of the joint contest
is the same, the induced effort can be different be-
cause of different cost functions in the two attributes.
By allowing the cost functions to be identical and
their derivative functions to be convex, part (b)(ii) of
Proposition 1 shows that a sufficient condition for
A°® < 0 becomes as simple as h°(&°;n) > h(&;n)/2. The
condition that C"'(-) is convex holds for many com-
monly used cost functions, such as the exponential
and polynomial functions.

Example 1. To gain intuition, we first examine a two-
person example in which those random factors follow
a normal distribution. The equilibrium effort levels
for the two-person model of the separate and joint
contests can be derived from Lemmas 1 and 3. If
E'~N(0,0),1=1,2, w=1/2, and n = 2, then the con-
dition h°(£°;2) > h(&;2)/2 is naturally satisfied because
2120 < 40. The formal derivation can be found in
Online Appendix J.

For a normally distributed random factor, if o is
large, the extra effort can enhance the winning prob-
ability by only a little, implying that the contestant
takes a high risk of failure for making an extra bit
of effort. Hence, we can view the value of ¢ as the
amount of risk that contestants bear when making
extra efforts. Overall, a contestant’s effort in each
subcontest depends on the marginal expected gain
A/2-h(&;2) = (A/2)/(24/ro). The higher the marginal
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expected gain, the greater incentive the contestant
has to make an effort, and in equilibrium, contestants
make more efforts.

In the joint contest, the contestant submits an ag-
gregate solution of two attributes in order to win
the whole prize. Therefore, if the contestant wins, the
return for his or her efforts in each attribute is the
whole prize. If random factors are distributed nor-
mally with standard deviation o, the summation of
two random factors has the standard deviation V20.
Thus, the effort in each attribute relies on the corre-
sponding marginal expected return A - h°(£°;2) =
(2V2mo). Because the marginal expected return is
higher for each attribute in the joint contest than in the
separate contest (i.e., A/(2V270) > (A/2)/(2y/70)), the
effort for each attribute is higher in the joint contest.

Corollary 1. If E~N(0,0) and we(1-v2/2,2/2), A < 0
for any n.

Interestingly, if random factors follow a normal
distribution (the arguably most commonly used dis-
tribution in the natural and social sciences), then
he(&°; n)/h(&; n) = 1/V2 for any number of contestants.
Further, if w € (1 -+v2/2,v2/2), then A% <0. As a
special case, if the firm allocates the prizes equally in
the separate contest (i.e., w=1/2), then the joint
contest achieves a higher equilibrium effort level. We
perform numerical studies on the condition in part (b)
of Proposition 1 for normal, logistic, and Gumbel
distributions in Online AppendixI. As an extension of
Proposition 1(b), Corollary A.1 in Online Appendix A
shows that under the same assumption, the joint contest
leads to higher total expected efforts and performances
across two dimensions than the separate contest.

4.4. Luck vs. Sweat

Based on the two effects characterized in the pre-
ceding section, we explore how the two forces change
depending on the project characteristics. By Proposition 1,
we find that the comparison of the two types of con-
tests boils down to a comparison of the combination
effect and pooling effect under the assumption that the
effortlevel and random factor have the same weight in
the performance. However, the relative importance of
the effort level versus the random factor can be dif-
ferent for projects.

We categorize the projects into two types. One
type of projects highly relies on the effort exerted by
contestants—for example, projects that require ex-
periments or some technical work. Another type of
projects highly relies on the inspiration of contestants,
and the performance involves high randomness—see,
for example, ideation or designing projects.

With a slight modification of the base model, we can
characterize the two types of projects by scaling the
effort level with a scalar . Then the cost functions

become Cl(ﬁel), I=1,2,and C°(Be°). The parameter >0
measures the relative importance of the random factor
vs. effort. To see this, by denoting ffe = ¢, we obtain the
performance in the form of V = &/ + &; therefore, 1/
is the weight of the effort while the weight of the
random factor is normalized to one. If f is large, it is
as if the efforts made by contestants contribute little
to their performances; thus, contestants tend not to
make a great effort because doing so incurs high costs.
We call projects with large values of B randomness-
based projects. By contrast, if § is small, the effortis more
important than the random factor in the performance,
and contestants can improve their performance signifi-
cantly with little cost. We call projects with small values
of B effort-based projects.

We examine the two most commonly used forms
of the cost functions. One is the exponential cost
function C'(p'e') = exp(p'ge’), p' >0, 1=1,2, and the
other is the polynomial cost function Cl(ﬁel) = d(pe)?,
a'>0,b =2

Proposition 2. Given that h°(&°;n) > max{wh(&; n), (1 -
w) h(E;n)}, for the cost function C'(p'e') = exp(p'pe’),
pl >0, or Cl(Be!) = al(pe)!, a' >0, b =2, 1=1,2, there
exists a threshold B >0 such that if B > B, the separate
contest is optimal, and if B < P, the joint contest is optimal.”

Proposition 2 shows that the relative importance
between the random factor and effort level plays an
important role in the comparison between the two
contest mechanisms. If the project is randomness
based (i.e., is high), contestants have low effort levels
under both contest mechanisms; thus, the difference in
their effort levels is small (consider the extreme case that
contestants in both contest mechanisms hardly make any
effort). As a result, the pooling effect is weak and can be
dominated by the combination effect, and the separate
contest tends to be optimal. By contrast, if the project is
effort based (i.e., f is low), the joint contest tends to be
optimal. The reason is that contestants are motivated
to make more efforts in both contest mechanisms, and
the difference in the expected gains between the two
contest mechanisms induces a large difference in
efforts. That is, the pooling effect is strong and tends
to dominate the combination effect.

4.5. Number of Contestants
Now we compare the two contest mechanisms for
different numbers of contestants. The Pentagon’s
contest brought together specialized military con-
tractors to design a military vehicle. Thus, its number
of contestants is expected to be smaller than that for
projects on a crowdsourcing platform that do not
require sophisticated technique skills, such as Inno-
Centive and 99designs.

To compare the two contest mechanisms with a
different number of contestants, we must know how
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the combination and pooling effects change with the
number of contestants. By Lemma 4, the difference
between the expected best random factors A is positive.
We investigate how A} changes with respect to the
number of contestants 7 in Propositions A.1 and A.2
in Online Appendix A. Proposition A.1 shows that if
the number of contestants is small, the difference in
the expected best random factors A is increasing in n.
And Proposition A.2 shows the asymptotic behavior
for a sufficiently large number of contestants. In
particular, if the range of random factors is bounded,
A§ approaches zero, and if those random factors are
normally distributed, A5 approaches infinity.

Thus, by Proposition A.2, with normally distrib-
uted random factors that have unbounded support,
the separate contest can benefit more from an in-
creasing number of contestants than the joint contest,
even when the pool of contestants is already very
large. That is, the combination effect may always be
enhanced by more and more contestants.

In general, how the difference between the equi-
librium efforts in those contest mechanisms A{, would
change with one additional contestant can be am-
biguous. However, we can obtain a clear-cut result for
normally distributed random factors with the expo-
nential or polynomial cost functions.

Proposition 3 (Expected Best Performance: Number of
Contestants). If &' ~ N(0,0), 1 =1,2, and w € (1 -2/2,
V2/2), for the exponential or polynomial cost functions,
there exists a threshold 71 > 2 on the number of contestants
above which the separate contest is optimal and under which
the joint contest is optimal.

Proposition 3 shows that if random factors follow a
normal distribution, the joint contest is optimal when
the number of contestants is below a threshold, and
the separate contest is optimal when the number of
contestants is above that threshold. Ales et al. (2019)
study a one-dimensional contest and show that if the
random factor follows a symmetric log-concave distri-
bution (a property that the normal distribution satisfies),
the effort is decreasing in the number of contestants (see
proposition 1 in Ales et al. 2019). This is because a
higher number of contestants intensifies the compe-
tition and reduces contestants’ incentive to expend
effort. With this result, the equilibrium effort in both
contest mechanisms is decreasing in the number of
contestants, but the monotonicity of the difference in
the levels of effort may be ambiguous. However, with
the normally distributed random factors, if the cost
functions are in the exponential form, the difference in
the equilibrium effort between the two contest mecha-
nisms is fixed regardless of the number of contestants;
and if the cost functions are in the polynomial form, the
difference in the equilibrium effort is strictly decreasing
in the number of contestants.

Moreover, for these specific cases, we show that the
difference in random factors is increasing in the
number of contestants, a finding consistent with
Propositions A.1 and A.2(ii) for the general case. The
combination effect is reinforced by a larger number of
contestants, whereas the pooling effect exists but is
not influenced or reduced by the number of contes-
tants. Overall, everything else being equal, if the
number of contestants is relatively small, the com-
bination effect is weak and dominated by the pooling
effect, and thus the joint contest is optimal. Other-
wise, if the number of contestants is sufficiently large,
the combination effect becomes dominant, and the
separate contestis optimal. This may partially explain
the Pentagon’s switching behavior. Because the
number of contestants may be small for a military
project and the combination effect is insignificant
for a small pool of contestants, the joint contest may
perform better than the separate contest. This could
be one reason why the Pentagon switched to the joint
contest after experimenting with the separate contest.
Lastly, when the entry decisions by the contestants
are endogenized, the number of entrants would be
smaller, and then the joint mechanism may be more
likely to be favored.

4.6. Summary of Implications

Figure 2(a) illustrates a comparison between the two
mechanisms depending on the randomness of the
project (see Proposition 2) and the number of con-
testants (see Proposition 3) for normally distributed
random factors and exponential or polynomial cost
functions. Figure 2(b) categorizes the projects into
four groups by their level of randomness (high or
low) and the number of contestants (large or small).
General business plans, brainstorming, and ideation
projects are driven by inspiration and have random
outcomes with a large pool of participants. For ex-
ample, yutongo is a platform on which business
managers can decompose a project into several sub-
questions and then combine ideas generated for each
subquestion. Government-sponsored R&D and the-
oretical challenges may only be tackled by a small
group of specialists with the outcome highly de-
pendent on the effort level, such as the Pentagon’s
military project mentioned earlier. Projects that re-
quire data analysis, predictive modeling, and prac-
tical innovation are often outsourced to the public,
sometimes with participating teams in thousands, on
platforms such as Kaggle and InnoCentive and are
based on the efforts exerted by participants. Projects
on specialized art design platforms such as 99designs
and knowledge-sharing platforms such as Quora are
often outsourced to a relatively small group of spe-
cialized agents and may have highly uncertain out-
comes. In view of Figure 2(a), we expect that the
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Figure 2. (Color online) Comparison Between the Joint and Separate Contests
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projects on the diagonal (i.e., in the (1,1) and (2,2)
cells) of the 2 X 2 matrix are more likely to operate
under both contest mechanisms than the projects on
the off-diagonal (i.e., in the (1,2) and (2, 1) cells) of the
matrix, for which one of the two contest mechanisms
tends to stand out.

5. The Optimal Prize

We have shown that the equilibrium effort levels in
the separate and joint contests are highly influenced
by the amount of prize. Given a fixed total prize,
contestants have a higher effort level in the joint
contest than in the separate contest. The difference in
equilibrium effort levels between the two contest
mechanisms—that is, A{—relies on the specific form
of the cost functions. In the following analysis, we
assume two commonly used forms of the cost func-
tions to compare the two contest mechanisms.'® Here
we focus on the case that the cost functions along
the two attributes are identical, and the condition
h°(&°;n) > max{wh(&;n), (1 — w)h(&; n)} is satisfied. The
general case with different cost functions along the two
attributes is qualitatively the same because the suffi-
cient condition h°(&°;n)>max{wh(&;n),(1—-w)h(&;n)}
guarantees that the equilibrium effort level in either at-
tribute is higher in the joint contest than its counterpart in
the separate contest, and the difference in the total effort
levels can be decomposed to those for each attribute.

Lemma 5. Consider the difference A, of equilibrium effort
levels between two mechanisms.

a. IfCl(e) =a(e), 1=1,2,a>0,b>2, A is strictly
increasing in A. The firm has a higher efficiency of inducing
effort making in investing in the joint contest than in the
separate contest.

b. IfC!(') = exp(pe'), I = 1,2, p > 0, A’ is fixed for any
A. The firm has the same efficiency of inducing effort
making in investing in both contests.

By Lemma 5, we find that the difference in equi-
librium effort levels between the two contest mech-
anisms has different reactions to a larger prize depending

on the cost functions because the degrees of convexity
(curvature) of the cost functions are different. Such a degree
is measured by the Arrow—Pratt coefficient (see Mas-
Colell et al. 1995, p. 190). The degree of the curvature
of the cost function has been used to discuss other
problems in contest theory. For example, Moldovanu
and Sela (2001) show that the Arrow—Pratt coefficient
of the cost function determines whether WTA is op-
timal. The coefficients of the two forms of the cost
function are, respectively,

C"(¢) _ p? exp(pe) .
) " pexplpel) - p (exponential),

Cl”(el) ab(b _ 1)(el)b_2 b-1 .
Cl'(el) - ﬂb(el)h_l = o (POlynormal),

I=1,2.

Because the cost functions along the two attributes are
strictly convex, the marginal cost function for each at-
tribute is increasing. The curvature of the cost functions
measures the marginal cost increase for additional ef-
fort. For example, if the Arrow-Pratt coefficient of a
cost function is zero, the cost function is linear, and the
marginal cost increase is zero. In equilibrium, the mar-
ginal benefit of a higher prize is the inverse of the
marginal cost function in effort. Thus, if the marginal cost
function is increasing, the marginal effort induced by an
additional amount of prize is decreasing in the prize.
For exponential cost functions, at any effort level,
the additional effortinduced by a marginal increase in
the prize is a fixed value. Therefore, the difference A,
is fixed for any prize A. However, for polynomial cost
functions, the decreasing rate of the marginal effort in
the prize is decreasing in the effort level. That is, the
marginal increase in the prize is more efficient in
inducing effort making when the effort level is high.
Because the effort level is higher in the joint contest
than in the separate contest for any given total prize A,
the additional effortinduced by the additional prize is
higher in the joint contest than in the separate contest.
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Thus, the difference A is strictly increasing in A for
polynomial cost functions.

Now we characterize the optimal total prize for the
joint and separate contests if the prize A is endo-
genized without any budget constraint. Denote the
utility of the firm by U5 and U/ in the separate and
joint contests, respectively. The firm needs to deal
with the optimization problems described in Table 2.

The incentive compatibility constraint incorporates
the contestants’ utility-maximization problem into
the firm’s problem, and the individual rationality
constraint guarantees the participation of contestants.
The sufficient condition for the individual rationality
constraint to be satisfied is given in Online Appendix C.
We have the following results on the optimal total prize.

Proposition 4.

a. IfCl(e") =a(e")’,1=1,2,a > 0,b > 2, then, forb > 2,
A* > AS*; for b = 2, there does not exist a finite optimal
total prize for either contest mechanism.

b. If C(¢') = exp(pe), I = 1,2, p > 0, then AJ* = AS*.

Proposition 4 shows a comparison of the optimal
prizes between the two contest mechanisms. If the
cost functions are polynomial, we find that when
b > 2, there exists a finite optimal total prize for each
contest mechanism. However, the optimal prize in the
joint contest is higher than that in the separate contest.
For the firm, the marginal benefit of a marginal in-
crease in the total prize is the marginal effort. At the
optimal prize, the marginal benefit of the additional
total prize must be equal to the marginal increase in
the total prize with value equal to one. If the cost
functions are exponential or polynomial, the marginal
benefit of the additional total prize is weakly decreasing
in the total prize. By part (a) of Lemma 5, the joint
contest has a higher efficiency in motivating contes-
tants to make efforts than the separate contest; thus,
the marginal effort decreases with a larger total prize
ataslower rate in the joint contest than in the separate
contest. Therefore, the optimal total prize is higher in
the joint contest than in the separate contest—that is,
AJ* > AS* When b = 2, the marginal utility of the firm
is linear in the total prize for both contest mecha-
nisms; thus, there does not exist a finite optimal total
prize. If the cost functions are exponential, by part (b)
of Lemma 5, the firm has the same efficiency in investing
in the two contest mechanisms. Therefore, the marginal
benefit of an additional amount of the total prize de-
creases at the same rate for the two contest mechanisms.

Table 2. Prize Optimization

As a result, the optimal total prize for both contest
mechanisms is the same—that is, A* = A5*.

In practice, the firm may have a budget constraint
that serves as the upper bound on the total award.
With Lemma 5 and Proposition 4, in Online Appen-
dix D, we show the optimal choice of the contest
mechanism and the amount of prizes for a given
budget constraint.

6. Heterogeneous Contestants

The analysis for heterogeneous contestants often re-
sorts to the all-pay auction model, in which contes-
tants’ types are their private information and the
equilibrium effort level is a function of their types.
However, the full analysis for the separate auction
with all bidders participating in each, even without
random factors, is intractable (see, e.g., Krishna 2009,
p-221). Moreover, Stouras (2018) finds that the closed
form for the random factor model with heteroge-
neous types in general form may be intractable. For
tractability, we employ a simple two-person and two-
type model. To characterize the forward-looking be-
havior of contestants in the separate contest, we assume
that the expertise “types” that contestants pretend to
be in the first subcontest would be fully learned by
each other through the disclosed performances in
the first subcontest."’

6.1. Model Setup

We consider a two-person model (i.e., n = 2) with two
expertise types (high and low) in each attribute. In
contrast to the base model in which all the contestants
are assumed to be identical for each attribute, we
assume here that contestants are endowed with ex-
pertise either xy or x;, xy > x, > 0 in each attribute,
which is private knowledge to an individual con-
testant. As common knowledge, the expertise in each
attribute follows a two-point distribution. We ex-
amine the case where the probability, denoted by 7,
for one type of contestants to appear is 1/2. The
condition 1 = 1/2 guarantees the tractability of the
model, so that there exists a unique symmetric
equilibrium in which contestants have pure strategies
in the first subcontest of the separate contest. Oth-
erwise, for the general 77, there may only exist a mixed-
strategy equilibrium. Even with 1 = 1/2, contestants
already behave differently from the characterization
of the homogeneous contestants.

Objective and constraints

Separate contest

Joint contest

Objective
Incentive compatibility
Individual rationality

maxy US = Ve, e?*) — A
subject to e = "N ARE; n)), 1=1,2, subject to e = C*' " (Ah°(£°; ),
Aljn>Cle™*),1=1,2

maxs U] = V) (e™*) - A

Aln > C°(e°)
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For simplicity, we assume that the two attributes
of the project are symmetric such that the two sub-
contests of the separate contest are symmetric in
terms of the random factors, cost functions, and prize
allocation.'” The random factor in each attribute
follows the normal distribution N(0, 0), and thus the
difference in random factors between two contes-
tants i and j is denoted by ' =&l - 5}, 1=1,2, fol-
lowing the normal distribution N(0, V20) with PDF g()
and CDF G(-). We assume that the cost functions
along the two dimensions are identical in the expo-
nential form C(-)=C!(-)=C?(-)=exp(pe). In the first
subcontest of the separate contest, every contestant
knows only his or her own expertise type and that his
or her opponent’s expertise is drawn independently
from the two-point distribution. For each attribute,
if a contestant is type t=H,or L, his or her cost
function is C(-)/x;. Similar cost functions have been
adopted in Fey (2008), Lazear and Rosen (1981), and
Moldovanu and Sela (2001) under slightly different
model setups.

6.2. Separate Contest

We examine three cases: that the expertise of a con-
testant is perfectly positively, negatively correlated,
or independent. We derive analytical results for the
correlated expertise cases, and perform a numerical
study for the independent expertise case in Online
Appendix H.

Positive Correlation. The contestant who is endowed
with high expertise xy (respectively, low expertise x)
in the first attribute will have high expertise xy (re-
spectively, low expertise x1) in the second attribute.

Negative Correlation. The contestant who is endowed
with high expertise xy (respectively, low expertise x)
in the first attribute will have low expertise x;, (re-
spectively, high expertise xy) in the second attribute.

Because there exists a correlation between the ex-
pertise of the two attributes, if the firm discloses the
performance of contestants after the first subcontest,
contestants can infer the type of their opponents and
the belief of the prior expertise distribution is updated
for the second subcontest. We focus on the case that
contestants can learn their opponent’s effort level by
his or her performance in the first subcontest. This is
indeed the case when the randomness comes from the
preferences or the private tastes of judges, whereas
the quality of a solution depends on the effort level."”
In the symmetric equilibrium, contestants of different
types have different effort levels; therefore, with
the disclosed information, contestants can accurately
learn their opponent’s type.

If contestants are strategic, they may try to hide
their type in the first subcontest because their truthful

revelation may put them into a disadvantageous
position in the second subcontest. The only way for
contestants to hide their types is that in the first
subcontest both contestants have the same effort level
regardless of their true types.

By part (i) of Lemma H.2 in Online Appendix H, we
find that if 1 = 1/2, contestants have no incentive to
hide their types in the first subcontest. Because con-
testants decide on whether to hide their types at the
beginning of the first subcontest, they need to take
into account their ex ante utility in the second sub-
contest. We find that no matter whether contestants
hide or do not hide their types in the first subcontest,
the ex ante utilities in the second subcontest remain
thesameifn = 1/2. Asaresult, hiding one’s type is not
beneficial for contestants. Moreover, by Lemma H.1
in Online Appendix H, ifn = 1/2, in the first subcontest,
the equilibrium is unique such that contestants with
different types make different efforts. Therefore, if
contestants hide their types in the first subcontest,
they will be worse off because the utilities in the
second subcontest are the same no matter whether
they hide or not. Thus, contestants” behavior in the
first subcontest is characterized by Lemma H.1—that
is, they truthfully behave without any strategic be-
havior. In the second subcontest, contestants know
their opponent’s type, and the equilibrium efforts are
characterized by part (ii) of Lemma H.2.

6.3. Joint Contest

With the model setup of the positively and negatively
correlated expertise across the two attributes, we can
characterize the contestant behavior in the joint
contest. Denote the difference in random factors be-
tween contestants i and j along the two dimensions by
YEEHE - -G =(E -+ (E - =y A
By the symmetric property of y' and 3?2, the ran-
dom variable y° has a symmetric PDF denoted by
g°(y°) and a CDF denoted by G°(y°). Note that
g°(0)>g(0)/2—equivalently, h°(E°;2)> h(&;2)/2—is
naturally satisfied by normal distributions. Parts (i)
and (ii) of Lemma H.3 in Online Appendix H char-
acterize the equilibrium effort levels in the joint
contest with perfectly positively and perfectly nega-
tively correlated expertise, respectively. With Lemmas
H.1,H.2,and H.3, we are able to compare the effort levels
between two contest mechanisms for each contestant.

Proposition 5. If contestants’ expertise along the two at-
tributes is perfectly positively correlated or perfectly nega-
tively correlated, each contestant has a higher expected effort
level in the joint contest than in the separate contest.

In our model setup of two contestants and two types
with an equal probability, forward-looking contestants
behave myopically in the first subcontest of the separate
contest, and their true types are voluntarily revealed at
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Table 3. Summary of Key Assumptions

Key assumptions Proposition 1

Propositions 2 and 4 Propositions 3 and 5

Cost functions

Strictly increasing and strictly convex

Exponential or polynomial

Random factors

Symmetric log-concave

Normal

the beginning of the second subcontest. In this hetero-
geneous-types model, in addition to the pooling and
combination effects, there may exist extra forces that
push contestants to slack off in the joint contest and in
each subcontest of the separate contest.

In either the separate or the joint contest, contes-
tants consider the possibility that their opponent is
of a different type, which differs from the homoge-
neous case. If the two contestants are indeed different
(which will be clear in the second subcontest under
the separate mechanism), they will slack off because
of the heterogeneity. For a low-type contestant, if the
contestant knows that his or her opponent is a high-
type opponent, it is clear that his or her winning
probability is slim; thus, he or she will slack off be-
cause making a great effort incurs a high cost but
gains little in increasing the chance of winning. For a
high-type contestant, if he or she knows that his or her
opponent is a low-type opponent who will make little
effort, there is no need for him or her to go to great
lengths either. Therefore, contestants tend to make
less effort in both the joint and separate contests than
in the homogeneous-types case. Such slack-off be-
havior appears in other contest models, such as the
all-pay auction model (see Clark and Riis 1998).
Moreover, the slack-off behavior is more significant if
contestants know their opponent’s type in the second
subcontest of the separate contest in comparison with
the first subcontest and the joint contest, in which
contestants only take into account the possibility that
their opponent can be of a different type.

For the case of perfectly positive expertise corre-
lation, if the random factors follow the normal dis-
tribution, the forces that push contestants to slack off
under both mechanisms are dominated by the pool-
ing effect; as a result, each contestant has a higher
equilibrium effort level in the joint contest than in the
separate contest. Further, for the case of perfectly
negative expertise correlation, because contestants
who are strong in one attribute must be weak in the
other, there exists no slack-off effect in the joint
contest given that contestants are ex ante identical in
their expertise. However, the slack-off effects resulting
from heterogeneity still exist in the separate contest,
possibly in each subcontest. Hence, jointly driven by the
pooling effect, each contestant always has a higher
equilibrium effort level in the joint contest than in the

separate contest. The dominance of the joint contest
over the separate contest will be reinforced if the con-
testants’ participation is endogenized.

Note that Proposition 5 is on each contestant’s ef-
fortlevel. Actually, the contestant with a higher effort
level may not be the winner because of random fac-
tors. However, if the project is highly effort based and
the random factor is negligible, the contestant with a
higher effort level will win with a high probability. In
the case of a highly effort-based project, for perfectly
positively correlated expertise, the expected best ef-
fort is higher in the joint contest than in the separate
contest because the winner would be the same type in
both subcontests—that is, a high-type contestant is
strong in both attributes. However, for perfectly
negatively correlated expertise, the best effort can be
made by different contestants. If the difference be-
tween the high and low expertise is small, the ex-
pected best effort is higher in the joint contest than in
the separate contest because the pooling effect is
dominating. If that difference is sufficiently large,
the expected best effort is higher in the separate
contest than in the joint contest because the separate
contest can combine the best effortlevels from the two
subcontests. A detailed discussion can be found in
Section H.3 of Online Appendix H.

7. Conclusion

We compare the joint and separate contest mecha-
nisms of crowdsourcing tournaments for projects
with multiple attributes. With the characterization
that a contestant’s aggregate performance is made up
of his or her effort levels and random factors across
multiple dimensions, we find that the comparison
comes down to comparing two opposing effects, the
combination effect and the pooling effect. In addition,
we obtain a set of managerial insights. First, the
magnitudes of the two effects depend on the relative
importance between the effort level and randomness
in contestants’ performances. With exponential or
polynomial cost functions, if the performance has a
high level of randomness, the combination effect is
likely stronger than the pooling effect, and thus, the
separate contest tends to be optimal. If the perfor-
mance highly relies on the effort, the pooling effect is
likely stronger than the combination effect, and the joint
contest tends to be optimal. Second, we investigate how
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the number of contestants affects the comparison. Under
some conditions, if the number of contestants is large
enough, the separate contest tends to be optimal, and if
the number of contestants is small enough, the joint
contest tends to be optimal. Third, we compare the
optimal prize between the two contest mechanisms.
With exponential cost functions, the optimal prizes for
the two contest mechanisms are the same. With poly-
nomial cost functions, the optimal prize is higher for the
joint contest than for the separate contest. Lastly, as an
extension to the base model that assumes that all the
contestants are homogeneous, we show that under some
conditions, heterogeneous-expertise contestants make
more efforts in the joint contest than in the separate
contest because the separate contest has an information-
disclosure function that may reveal contestants’ types
and induce slacking off. As, for tractability, we adopt
somewhat different assumptions for the results men-
tioned above, Table 3 summarizes the key assump-
tions for all the results.

Pooling is a theme widely seen in the operations
literature. In the joint contest, pooling of random
factors reduces risk in effort making and incentivizes
contestants to expend effort. Intuitively, the benefit of
pooling, in favor of the joint contest, increases with
the number of attributes and the variability in the
random factors. However, the combination effect, in
favor of the separate contest, is also expected to in-
crease in those two factors. Again, a comparison of the
two contest mechanisms comes down to the relative
strengths of the combination effect and pooling effect.

There are many limitations to our model. For ex-
ample, we assume that the random factors along
different dimensions follow identical and indepen-
dent distributions. Moreover, in considering the het-
erogeneous contestants, we examine a special case in
which two contestants are endowed with two exper-
tise types of equal probability. Despite these limitations,
our model captures the core trade-off in comparison of
joint versus separate contest mechanisms for projects
with multiple attributes. It can serve as a base for fu-
ture studies on designing multiattribute crowdsourc-
ing contests.
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Endnotes

' Our results are applicable to another type of separate contest, the
progressive contest, in which subcontests of the separate contest are run
sequentially, and the solutions of the subsequent subcontest are built
on the best work in progress from previous subcontests. For example,
Quirky.com, a platform for crowdsourcing innovations, uses the

business model of distributing prizes in subcontests at various stages
of turning an idea into a final product. The stages start with idea
generation, progress to product design, and may conclude with name
and logo designs. A variant of the progressive contest employs elim-
ination: only some contestants with excellent performances in the first
subcontest will be selected to participate in the second subcontest. In
Online Appendix E, we show that the main trade-off of our results still
exists in such a contest form.

2The project with deliverables that are ideas, rather than physical
products, is more likely to be modular even if created by different
contestants because ideas are more fluid than physical products. For
example, yutongo builds up a platform for managers to factor a
project into different subquestions and collect ideas for each of them.
In the idea-collection process, solutions will be rated, and the managers
will select the best combination of ideas to build up the final solution.
Yutongo’s business model is analogous to the crowdsourcing contest
for soliciting ideas (see https://www.yutongo.com/how-it-works).
However, as the solution, a pure idea can be full of random inspira-
tions, with little effort involved, whereas the solutions we focus on
consist of both effort and randomness. When it requires little effort to
generate ideas, the separate contest tends to be optimal.

8Qur results are extendable to joint contests with decomposable
solutions. We find that if the firm can decompose the aggregate
solution submitted in the joint contest and assemble the best indi-
vidual parts, the joint contest tends to be optimal. However, this does
not imply that any unrelated projects should be run as joint contests
just because they are modular and decomposable. Each contest
probably requires specific professional skills, and running unrelated
contest projects jointly can limit the participation of contestants
(because not everyone has all the required skills) and thus lower the
professional level of solutions. Such an effect is not captured in
our model.

*In the absence of random factors, the separate mechanism always
weakly dominates the joint mechanism.

®Proposition 1, the first and foremost result, does not require the
distribution of the random factor to be symmetric, whereas most of
our other results depend on the symmetric property. We show that as
long as a regularity condition can be satisfied, Proposition 1 holds. All
the symmetric log-concave distributions and some commonly used
asymmetric log-concave distributions such as the gamma and
Gumbel distributions satisfy the regularity condition.

®Some studies—for example, Ales et al. (2017), Kalra and Shi (2001),
and Terwiesch and Xu (2008)—assume the performance to be in the
form of V = r(e) + &, where r(-) is a concave function. Such a form of
performance, together with the linear cost function, guarantees that
the first-order condition characterizes the equilibrium strategy. With
such a form, these studies assume that the effort e is nonnegative,
though r(e) may be negative. In our performance form of V =e +¢,
though, e could be negative, which is innocuous in comparing the
performances across different schemes and is analogous to r(e), that
can be negative in others’ performance forms; for consistency, we
assume the effort to be nonnegative as well.

TIf A > A%, A% in our context is not the so-called second prize in
contest theory. There the second prize refers to a small prize awarded
to the contestant whose total outcome ranks in the second place.
Those studies are intended to solve the problem of whether WTA or
some other reward scheme such as the scheme of multiple winners is
optimal for the firm (see, e.g., Kalra and Shi 2001, Moldovanu and
Sela 2001, Terwiesch and Xu 2008). In our context, a contestant may
win the first subcontest but lose the second one. Whereas the two
subcontests focus on different aspects of the project, a contestant who
ranks first in the second subcontest wins the prize AZ.

81F (), 1=1,2, ranges over a bounded support, the symmetric
equilibrium effort may be located at an endpoint of the range—for
example, e = [C' Al £(0))]" = 0, which boils down to a trivial case.
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As a result, we restrict our attention to the case in which the equi-
librium effort is an interior point.

®The result of Proposition 2 relies on a comparison between A%
and A?. The difference AS as a fixed positive value has nothing to do
with B, whereas the value of A is strictly increasing in . The case
B > p may not exist. For the exponential cost function (i.e., C'(p'fe') =
exp(p'pe’), I = 1,2), the difference in the equilibrium effort levels A?
has an upper bound because we require C" " (AR(E; n)/(p'p)) =
In(ATh(&; n)/(p'B)) > 0 and C'™(A° (&%) / (') = In(AR® (€% m) |
(p'B)) > 0,1 =1,2. This means that § cannot be arbitrarily large because
we have, from above, A'h(&; n)/(p'B) > 1 and Ah°(E°;1)/(p'B) > 1. Then
those values of § such that § > f may not exist because A, may have
an upper bound such that A, = A§ + A% < 0 for all the possible values
of B, and thus, the joint contest is always optimal. However, for the
polynomial cost functions C'(8e') = a'(B¢)?, the value of A can be
arbitrarily large; therefore, either contest mechanism can be optimal
depending on the value of .

""For simplicity, we normalize the cost functions such that = 1.
However, one can always scale the cost functions with a general
scalar f.

"' This assumption holds when the randomness in the performance
comes from the preferences or the private tastes of judges, whereas
the quality of the solution depends on the effort level.

20ur results are not sensitive to this assumption per se.

3 Because the performance of a contestant in the first subcontest
consists of the effort and the random factor, the way contestants infer
their opponent’s type depends on what kind of signal a contestant can
obtain from the first subcontest such as the effort or the performance
(i.e., the effort plus the random factor). If contestants can learn the
performances in the first subcontest, they may not be able to accu-
rately infer the type of their opponent because of the random factor,
which makes the characterization of contestants’ behavior extremely
complicated.
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