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Abstract  Around the start of this new millennium, scholars in the operations management/
operations research field started to make important contributions to the study of price
competition models. In this tutorial, we review these contributions and partition them
into five broad areas. Most of this tutorial is devoted to the most recent category:
price competition models for multi-echelon supply chains with an arbitrary number
of competing firms and products at each echelon.
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1. Introduction and Summary

Ever since the seminal paper by Bertrand [14], a plethora of papers has emerged addressing
oligopolistic price competition models. The purpose of those models is to characterize and
study various industries and interactions therein.

Until some 15-20 years ago, almost all of the contributions to this area appeared in the
economics and marketing literature; see Vives [64] for a survey of this literature. Around the
start of this new millennium, scholars in the operations management/operations research
field started to make important contributions to the study of price competition models. The
following provides a broad classification of the various types of contributions made:

I. analyses of the equilibrium behavior of basic workhorse models for price competition
under simple cost structures;

II. the exploration of how more realistic operational cost structures impact the equilib-
rium behavior of basic price competition models;

III. the impact, on price competition, of contractual arrangements among the differ-
ent parties in a supply chain—in particular, when attempting to optimize the aggregate
performance of a decentralized supply chain;

IV. analyses of competition models in which firms compete by selecting operational
standards, along with product prices; and

V. price competition models for multi-echelon supply chains with an arbitrary number
of competing firms and products at each echelon.

In this tutorial, we will give a few illustrations of contributions in each of these five areas.
Each of the five areas is deserving of a full tutorial in its own right. However, the treatment
of the first four areas will be brief; most of the tutorial is devoted to the last and most recent
area (V).
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2. Analyzing the Equilibrium Behavior of Basic Workhorse Models
for Price Competition Under Simple Cost Structures

Every price competition model is based on a consumer choice model that predicts how con-
sumers, or industrial buyers, select among the various products offered in the market. The
consumer choice model predicts expected aggregate sales volumes in the market, for all of
the products offered by the competing firms, as an implicit or explicit vector function of the
prices selected for the various products. One of the most important classes of price com-
petition models for differentiated products employs the so-called multinomial logit (MNL)
discrete choice model. This model was proposed by Daniel McFadden [52], a contribution
later awarded with the 2000 Nobel Prize in Economics. This model may be derived from the
following well-known random utility model: Assume there are J firms in the market indexed
j=1,...,J, each offering a single product. Each of the products can be procured at a given
cost rate and is sold at a given unit price to be selected by the corresponding firm. Let

x; = an L-dimensional vector of observable non-price attributes for firm j;
c¢; = the variable cost rate for firm j;

p; = the price selected by firm j; p; € [p;-“in,p;?‘ax], with 0 < p;-“i“ <c¢; <P
S; = the expected aggregate sales volume for firm j;

H = the population size in the market.

The MNL model assumes that each consumer and buyer in the market selects at most
one unit of one of the J products, by trading off price differentials to be determined by
the competing firms and differences in product attributes that are exogenously given in the
model. Each consumer makes her product choice by assigning a (random) utility value to
each of the J products as well as the no-purchase option, referred to as product 0. The
consumer then chooses the option with the highest utility value. Thus let

denote the utility attributed to product j by consumer 4. Similarly, the consumer assigns
the following utility to the no-purchase option:

UiOZUO(.’L'17...,£L'J)+6i0, 221,2, (2)

As mentioned above, z; is a vector of observable product attributes for product j. By
contrast, €;; and €;o denote a random unobservable utility component. The function g;(-)
is decreasing in the price level p;, with lim,; ;. g;(p;) = —00. It is well known that when
the random components ¢;; are independent and identically distributed (i.i.d.) and follow
a Type I extreme value or Gumbel distribution, a simple closed-form expression can be
derived for the expected sales volumes {S;: j=1,2,...,J} (Luce and Suppes [51] attribute
this derivation to an unpublished manuscript by Holman and Marley):

eti ()49, (p))
Sj=H—— — =12
eug(xl,...,.LJ) + Em:l eum(lm)“l‘gm(pm)

Almost all applications of the MNL models specify the g;(-) functions as affine. Under
such an affine specification, Anderson et al. [5] establish the existence of a (unique) Nash
equilibrium in the special case where all firms are symmetric (i.e., have identical character-
istics). Bernstein and Federgruen [10] extend this result for the case of general asymmetric
firms and a generalization of MNL models referred to as attraction models. The general
attraction model can be retrieved by a special nonaffine choice of the g;(-) functions. For
the same model, Gallego et al. [41] provide sufficient conditions for the existence of a unique
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equilibrium, under cost structures that depend on the firm’s sales volume according to an
increasing convex function.

The MNL model satisfies the so-called independence of irrelevant alternatives (ITA) axiom,
according to which the ratio of any pair of firms’ market shares is independent of the set
of other alternatives that are offered to the consumers. This axiom was first postulated by
Luce [50], but Debreu [27] points out that the ITA property is highly restrictive, as illustrated
by his famous red bus—blue bus example: the relative market share of an alternative is,
in general, significantly affected if a close substitute to this alternative is added to the
choice set.

Ben-Akiva [8] proposes an extension of the MNL model referred to as the nested logit (NL)
model, which remedies this limitation. The model also allows for a consumer choice process
in which consumers arrive at their ultimate product choice in two (or more) stages: the
consumer first selects among broad classes of alternatives, referred to as nests. In a second
stage, she chooses a specific variant among the selected class of alternatives. For example,
when purchasing an automobile, the consumer may first decide on whether a subcompact,
compact, midsize, SUV, or minivan best suits her needs and desires; after selecting one of
these categories, she proceeds to select a specific make and model within the chosen category
or nest. As a second example, in deciding on what travel option to purchase for a trip from
New York to Washington, DC, the first-stage choice may be between air and train as two
broad “nests”; in a second stage, the consumer selects a specific flight (train) if the former
(latter) is chosen.

Assume, therefore, that the J products are partitioned into n nests, with nest | contain-
ing m; products, | =1,2,...,n. Assume further that all price sensitivity functions g;(-)
in (1) are linear. Using a double index to differentiate among the products, let

as =ws(z1s) and  gis(pis) = —Bispis, 1=1,2,...,n,s=1,2,...,my.

Finally, let Q;(p) denote the probability of a consumer selecting nest I, and g,;(p) the
conditional probability of selecting product s in nest I, given nest [ is selected in the first
stage. In the nested logit models, there are positive constants v;, [ =1,2,...,n such that

()
TF Y (@)

eals*ﬁlspls
qs1(p) = S can—Bup’

Qi(p)

where a;(p) =Y., e®s~PisPis for each [, so that

s=

Sis(p) = HQ1(p)qs)1(p)-

A second major restriction of the pure MNL model is that, except for the random e terms,
all consumers make the same trade-offs among prices and all other observable attributes.
However, in most applications, there is systematic customer heterogeneity based on, for
example, demographic attributes, income level, geographic location, or past purchasing
history.

To allow for such heterogeneity, and at the same time eliminate the above restriction (ITA),
the so-called mixed multinomial logit (MMNL) model was proposed apparently first by
Boyd and Mellman [16] and Cardell and Dunbar [20]; earlier papers in the 1970s (e.g.,
Westin [65]) had derived a similar model by treating, in a single-segment model, the attribute
vector as random with a given distribution. McFadden and Train [53] show that, under mild
conditions, any discrete choice model derived from random utility maximization generates
choice probabilities that can be approximated, arbitrarily closely, by an MMNL model.
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The MMNL model partitions the market into K segments, indexed by k=1,2,..., K,
with hj customers in segment k (Zszl hi = H). A potentially different set of utility func-
tions, of type (1) and (2), is assumed for each segment. Thus, let u;;; denote the utility
value attributed to product j by consumer ¢ in segment k. Then,

wijk = k() + gk (Pj) + €ijik,
Uiok = Uok(T1,...,27) + €0k,

where the € terms are again i.i.d. random variables with a Gumbel distribution. Thus, it is
easily shown that
etik(®5)+gik(pj)

K
S;= E h i .
P euok (Z1,.-5wy) Zm*l eUmk (Tm)+gmk(Pm)

In spite of the huge popularity of MMNL models in both the theoretical and empirical
literatures, it is not known, in general, whether a Nash equilibrium of prices exists and
whether the equilibria can be uniquely characterized as the solutions to the system of first-
order-condition (FOC) equations. (This system of equations is obtained by specifying that
all firms’ marginal profit values equal 0.) Indeed, there are many elementary price com-
petition models in which either no or a multiplicity of Nash equilibria exist. For example,
the seminal paper by Berry et al. [13], which studies market shares in the U.S. automo-
bile industry, introduced, at least in the empirical industrial organization literature, a new
estimation methodology to circumvent the problem that prices, as explanatory variables of
sales volumes, are typically endogenously determined. The paper postulates an MNL model
with random coefficients for the industry. One of the empirical methods developed in the
paper is based on estimating the model parameters as those under which the observed price
vector satisfies the FOC equations. Berry et al. [13, Footnote 12] acknowledge that it is
unclear whether their model possesses an equilibrium, let alone a unique equilibrium. Even
if these questions can be answered in the affirmative, so that the observed price vector can
be viewed as the unique price equilibrium, it is unclear whether it is necessarily identified
by the FOC equations on which the estimation method relies.!

Gallego and Wang [40] recently characterized the equilibrium behavior in an important
class of nested logit models where there are n firms in the market, each of which has one
of the nests as its product assortment. The authors show that it is always optimal for each
firm to choose a wuniform “adjusted markup” for all of its products. In other words, each
firm ¢ chooses an adjusted markup 6; and sets its prices as follows:

1
pis=C¢Cis+—+0;, foralls=1,2,...,m;.
/Bis
Given this characterization, the price competition model reduces to a simpler game, in which
each firm 7 selects a single “adjusted markup value” 6; as opposed to a complete price vector.
Moreover, Gallego and Wang [40] show that the reduced game is log-supermodular.

Theorem 1 (Gallego and Wang [40]). The reduced competition model, under the
nested logit demand model, is strictly log-supermodular. Its equilibrium set is, therefore, a
non-empty complete lattice and, in particular, has a component-wise largest and a com-
ponent-wise smallest element, denoted by 0* and 0%, respectively. Furthermore, the largest
equilibrium is preferred by all the firms.

11n Berry et al. [13, p. 853, Footnote 12] they write, “We assume that a Nash equilibrium to this pricing
game exists, and that the equilibrium prices are in the interior of the firms’ strategy sets (the positive
orthant).... However, we are able to check numerically whether our final estimates are consistent with
the existence of an equilibrium. Note that none of the properties of the estimates require uniqueness of
equilibrium, although without uniqueness it is not clear how to use our estimates to examine the effects of
policy and environmental changes.”
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Moreover, under a modest restriction of the model parameters, Gallego and Wang [40]
show that the equilibrium is, in fact, unique.

As to the MMNL model, Aksoy-Pierson et al. [3] showed recently that the resulting com-
petition model may fail to have any (pure) Nash equilibrium. At the same time, they identify
a simple and very broadly satisfied condition under which a Nash equilibrium exists, and
the set of Nash equilibria coincides with the solutions of the system of FOC equations—
a property of essential importance to empirical studies. Their existence condition merely
requires that any single product captures less than a majority of the potential customer
population in any of the market segments; moreover, this restriction on the market shares
only needs to hold when the product is priced at a level that under the condition is shown
to be an upper bound for a rational price choice, irrespective of the prices charged for the
competing products. To guarantee uniqueness of the Nash equilibrium, a second condition
is needed, restricting any given product’s market share to be no more than a third of the
potential market. No restrictions whatsoever are required with respect to the distribution
of population sizes across the different market segments.

Many open questions remain for both the NL and MMNL models. For the former, the equi-
librium behavior remains unknown, when a given firm’s product assortment intersects with
multiple “nests.” However, this is commonplace. In the above automobile market example,
with the subcompacts, compacts, etc., as the nests, all major automobile manufacturers offer
products in all or several of the above nests. Similarly, in the MMNL model, the equilibrium
behavior is unknown when firms offer more than a single product.

3. The Impact of Operational Cost Structures

Almost all price competition models assume simple cost structures—for example, costs that
grow linearly or convexly with the sales volumes. However, more complex cost functions arise
under realistic operational cost structures. Several papers in the recent operations manage-
ment literature have explored what impact those cost structures have on the equilibrium
behavior in the competition model. In this section, we discuss two examples.

3.1. A Deterministic Model with Fixed Order Costs

Consider first a market with N independent and competing retailers, each of whom sells a
single product that is procured from a single common supplier. Demands for each of the
products occur at a constant deterministic rate that, in general, depends on the full vector
of retail prices selected by the firms. Both the supplier and each of the retailers replenish
their inventories in periodic batches, the size of which is driven by fixed procurement costs.
In addition to these fixed procurement costs, each of the firms incurs holding costs that are
proportional to the amount of inventory carried. In this deterministic setting, each retailer
avoids any stockout.

In the case of a single retailer directly procuring from an outside uncapacitated supplier
and selling at a given rate, the model reduces to the oldest, most basic, and still most fre-
quently applied inventory model, usually referred to as the economic order quantity (EOQ)
model; see Harris [44].

We use index i to differentiate the N retailers, i =1,2,..., N. The common supplier is
referred to as firm 0. Let

p; = the retail price selected by firm i, i=1,2,...,N, p=(p1,p2,..-,pn); and
d;(p) = the constant demand rate for product i, i=1,2,...,N.

We confine our analysis to the case where all demand functions are affine; i.e.,

di(p) :ai_ﬁipi+25ijpj, i1=1,2,...,N,
J#i
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where a; >0, 3; >0 and §;; > 0 are linear parameters. These affine demand functions can
only be valid on the polyhedron

P={p=0]d(p) =0},

since, for any vector p ¢ P, some of the products’ sales volumes are negative. We therefore

assume that each firm i selects its retail price within a closed interval [p™ pa] such that

X i]\il [prin pmax] C P. See, however, Section 6 for a tractable way to extend the specification
of the demand function d(-) beyond P onto the full positive orthant R%.

We now turn to a description of the cost structure. All deliveries to and from the supplier
incur fixed and variable costs. In a decentralized setting, it is useful to decompose the fixed
cost associated with a delivery to a retailer into a component incurred by this retailer and
one incurred by the supplier (e.g., an order-processing cost). Inventory carrying costs are
incurred for each location’s inventory, and they are proportional to the prevailing inventory
level. For i =1,2,..., N, define the stationary cost parameters:

K =fixed cost incurred for each delivery to the supplier;

K; =fixed cost incurred for each delivery to retailer ¢,: =1,2,..., N;
K7 = the component of K; incurred by the supplier in a decentralized setting;
K7 =the component of K; incurred by retailer ¢ in a decentralized setting;
K =K]+ Kj;

ho = annual holding cost per unit of inventory at the supplier;

h; = annual holding cost per unit of inventory at retailer ;

h; = h; — hg, incremental or echelon holding cost at retailer 4;

co = cost per unit delivered to the supplier; and

¢; = transportation cost per unit shipped from the supplier to retailer i.

We assume that h; > 0 for all ¢, which means that the cost of carrying a unit at retailer ¢
is at least as large as the cost of carrying it in the supplier’s warehouse. We also assume,
without loss of generality, that in a decentralized setting the variable transportation cost ¢;
is borne by the retailer.

We analyze the retailer competition model assuming the supplier applies a simple linear
pricing scheme charging firm 4 a constant wholesale price w. However, in the next section,
we revisit the equilibrium behavior under more sophisticated pricing schemes that apply a
variety of discounts.

When all wholesale and retail prices are determined, each retailer faces a setting in which

the EOQ model applies. This implies that firm ¢’s optimal long-run average cost value is
given by the well-known EOQ formula:

2d;(p)h; K7, i=1,2,...,N,

and firm ¢’s long-run average profit function is therefore given by

mi(pyw;) = (pi — ¢ — wy) (ai — Bipi + Zﬁijpj) —V2di(p)hi K.

JFi

The competition model thus reduces to a price competition game in which each firm is
faced with a singe choice (i.e., its retail price) but with a cost function that is concave
rather than convez in the sales volume; reflecting the economies of scale, embedded in fixed
delivery costs. Under general parameter combinations, the profit functions, therefore, lack
any of the known structural properties (e.g., quasiconcavity in the firm’s own price variable,
or supermodularity) under which the existence of a Nash equilibrium can be guaranteed.
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Instead, Bernstein and Federgruen [9] derive a broad parameter condition under which
the existence of a Nash equilibrium can be guaranteed. Let €; = —(d;(p)/0p:)(p:/di(p))
denote the absolute price elasticity of retailer i’s demand. In addition, let

INV; =V 2d;(p)h; K (the optimal total inventory and setup cost for retailer ¢
under the price vector p),

and
REV,; = p;d;(p) (the total gross revenue for retailer ¢ under the price vector p).

Assumption (C1). For all i,

8 x REV;

<
‘= TINY,

Even if the annual inventory carrying cost is as large as 40% of the dollar value of the
inventory (a comfortable upper bound, in practice), the ratio REV; /INV, is at least 2.5 times
the (annual) sales-to-inventory ratio. Dun & Bradstreet [30] reports the sales-to-inventory
ratios in 10 consumer product categories; see Table 2 therein. The average lower quartile of
the retailers’ sales-to-inventory ratios varies between 2.8 and 6.7. Thus, for retailers in any
of these sectors with a sales-to-inventory value above the lower quartiles, the right-hand side
of Assumption (C1) is bounded from below by 56 and in some product lines by 134. Compare
these values with estimated elasticities of demand, which vary between 1.4 and 2.8. (These
estimates are obtained from Tellis [61].) We conclude that Assumption (C1) is comfort-
ably satisfied in most markets. Assumption (C1) is equivalent to the inequality d;(p)>/? >
LBiV2h; K], or d;(p) > o; = 2(8;V2h; K[')*/3. Thus, in vector notation, Assumption (C1)
holds on the compact polyhedron P’ ={p>0|d(p) = a — Bp > a}. This polyhedron has a
largest element p when the matrix B has a nonnegative inverse, where a = (a;), By; = £i; >0
for all 4, and B;j = —f3;; <0 for all j #i (B~! >0 is guaranteed if B is a positive-definite
matrix). We henceforth assume that the cube X i]il[p?“in,p?‘ax

Under Assumption (C1), we propose the following theorem.

] is contained in P’.

Theorem 2 (Bernstein and Federgruen [9]). Suppose Assumption (C1) holds. Then
the price competition model has a Nash equilibrium.

Moreover, a much more precise characterization of the equilibrium behavior can be
achieved by strengthening Assumption (C1) as follows.

Assumption (C2). For all i,

4 x REV;

<
‘= TINY,

As demonstrated above, Assumption (C2) continues to be easily satisfied in the 10 product
markets reviewed in Dun & Bradstreet [30]. In particular, under the stronger Assump-
tion (C2), it is possible to show that the equilibrium is unique and globally stable. The latter
means that the market converges to this equilibrium, irrespective of its starting point, if
the firms, iteratively, adjust their price as a best response to the price selection of their
competitors. More specifically, assuming Assumption (C2) applies throughout the feasible
], Bernstein and Federgruen [9] prove the following.

min , max

] N
price space X;_; [p™", p}

Theorem 3 (Bernstein and Federgruen [9]). Suppose Assumption (C2) holds.
(a) The price competition model is supermodular and has a unique equilibrium p*.
(b) Equilibrium p* is globally stable.

(c) Equilibrium p* is increasing in w.>

2 The monotonicity in this tutorial is in its weaker sense unless explicitly stated otherwise.
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3.2. A Stochastic Single-Season Model

The following is a second and final example of a price competition model in which the explicit
consideration of operational costs and risks has a fundamental impact on the analysis of the
equilibrium behavior and the ultimate price equilibria themselves. This model assumes a
single sales season, and a single procurement opportunity at the start of the season, as in the
most basic of stochastic inventory models: the famous “newsvendor model.” The demand
faced by each firm 4 is random with a known but general cumulative distribution function
(c.d.f.) Gi(-| p1,...,pn), which depends on the prices of all N products in the market. We
restrict ourselves to the case where the random variables D;(p), i =1,2,..., N, are of the
multiplicative form D;(p) = d;(p)e;, with €; as a general random variable whose distribution
is independent of the price vector p. Equivalently,

~ x

Gite 0 =Gi (1)
with G;(-) as the c.d.f. of ¢; and g¢;(-) its probability density function. (Most of the results
carry over to the case of additive demand shocks (i.e., D;(p) = d;(p) + €;), again with ¢;
as a random variable whose distribution is independent of the price vector p.) Without
loss of generality, we normalize Fe; =1,i=1,2,..., N so that ED;(p) =d;(p). Because the
products offered by the retailers are substitutes, we make the standard assumption that the
demand functions d;(p) are differentiable with

Ldi(p ) <0 and 0d;(p)

Op; Op;

>0, j#i.

In addition, we assume the following.

Assumption (A). For each i=1,2,...,N, the function logd;(p) has increasing differ-
ences in (p;,p;) for all j #1.

Milgrom and Roberts [54] identified the linear, logit, Cobb—Douglas, and constant elas-
ticity of substitution demand functions as satisfying Assumption (A). (It is easily verified
that Assumption (A) is essentially weaker than the requirement that the expected demand
functions d;(p) have increasing differences in (p;,p;), j # ¢ themselves.) Finally, we again
assume that each retailer i chooses his price p; from a closed interval [piin, pmax].

As in the previous deterministic model, we assume that all N retail firms share a common
supplier. This supplier charges, again, a constant wholesale price w; to retailer i. However,
to mitigate and share the demand risk with the retailers, the supplier offers to buy back
any unit left over at the end of the season at a rate b; <w;, i=1,2,..., N. Such buy-back
agreements are commonplace in many supply chains.

This competition model translates into a competition game in which each firm is required
to select two quantities:

p; = the retail price of firm ¢, and
y; = firm 4’s order quantity with the supplier.

However, it is easily shown that the two-dimensional competition game reduces to a one-
dimensional price competition game. This reduction is possible because it is easily shown
from the standard newsvendor analysis that, under a given price vector p, firm i’s expected
profits are maximized by selecting a procurement quantity:

- i — W .
yi(p):di(p)Gil(l;__b_), i=1,2,...,N,

where G;*(-) denotes the inverse function of the c.d.f. G;(-). Substituting these optimal
procurement quantities into the well-known expected profit function in the newsvendor
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model, one shows that the two-dimensional competition game reduces to a one-dimensional
price competition game, with profit functions:

) = { w6 (225 ) - - mp 60 (B ) ‘“’H' 3)

Under deterministic demands, there is no need for operational risk hedging, and the profit
functions are given by 78 (p) = (p; — w;)d;(p), i=1,2,...,N. Thus

#i(p) = 3 (p) Li(fi(pi)),

where
Ji(pi) = (pi —w;)/(p; — b;) = the critical fractile for retailer i,

and

Li(f) = G = FEIGT(f) — el

—1
[ ugi(w) du

f

is the factor by which retailer i’s expected profits are discounted because of the prevailing
demand uncertainty. (The second equality in the definition of L;( f) follows by integration by
parts.) In other words, under a given price vector p in the market, each retailer i’s expected
profits equal the profit value in the corresponding deterministic system multiplied with a
loss factor that depends only on the retailer’s chosen critical fractile f; and the shape of
the c.d.f. of ¢;. The profit functions, 7;(p), under operational risk hedging, see (3), have a
much more complex structure than their deterministic counterparts 7 (p). Nevertheless,
Bernstein and Federgruen [11] were able to characterize the equilibrium behavior, in this
case under fully general parameter conditions, by establishing the reduced game as a log-
supermodular game.

G
—G (-1 [ Gilwdu=

Theorem 4 (Bernstein and Federgruen [11]). Suppose Assumption (A) holds. Fix
the vectors b < w.

(a) There exists a Nash equilibrium p* for the reduced retailer game that arises under the
(w, b)-payment scheme, and (p*,y(p*)) is a Nash equilibrium in the original game.

(b) If the reduced retailer game has multiple Nash equilibria, these equilibria constitute a
sublattice of RN. In particular, there exists a component-wise smallest and largest equilib-
rium p and p, respectively.

(¢) The equilibrium p is preferred by all N retailers among all Nash equilibria.

Bernstein and Federgruen [11] also show that the existence of a unique Nash equilibrium
and its monotonicity with respect to wholesale prices and buy-back rates can be established
under an additional restriction on the class of c.d.f.s {G;(-)} as well as the (deterministic)
demand functions d(p); see Theorem 4 therein.

4. Perfect Coordination Mechanisms

The operations management field has, from its onset, been interested in comparing the
supply chain—wide aggregate performance in a decentralized setting with its first-best per-
formance, achieved when the supply chain is fully centralized and all decisions are made
by a single decision maker with the objective of maximizing aggregate profits in the supply
chain; see Cachon [18], Lariviere [47], and Cachon and Lariviere [19] for early contributions
in this area.

Of particular interest is the identification of so-called perfect coordination mechanisms.
A coordination mechanism is defined as a complete set of commercial terms between the
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suppliers and the retailers they service. Such terms include (i) a wholesale pricing scheme,
(ii) return policies or revenue sharing agreements, (iii) restrictions or times at which orders
may be placed, and (iv) reallocation mechanisms through annual fees, rebates, etc.

A coordination mechanism is perfect if, in the decentralized system, in equilibrium, the
supply chain—wide profits equal the optimal aggregate profits in the centralized system.
A mechanism is acceptable if and only if it permits channel members to achieve expected
profits at least equal to their status quo.

In some settings, a perfect coordination mechanism can be obtained with a simple linear
wholesale pricing scheme, where the supplier charges a constant per-unit wholesale price to
each of the retailers; possibly differentiated by retailers. (We omit a discussion under which
settings it is legal to adopt different wholesale prices for different retailers.) A linear wholesale
pricing scheme that results in perfect coordination can be turned into an acceptable and
perfect coordination mechanism by adding a fixed periodic payment from the retailers to
the supplier, or from the latter to the retailers. Such schemes are referred to as two-part
tariff schemes.

In other settings, no two-part tariff scheme can achieve perfect coordination but a more
sophisticated mechanism does, often taken from mechanisms and commercial arrangements,
frequently implemented in real-world supply chains. Such arrangements include buy-back
arrangements, discount schemes, and revenue sharing schemes, among others. Below, we
discuss a few examples.

We start with the stochastic single-season model, discussed in Section 3.2. Let ¢; denote
the cost rate per unit at which the supplier is able to procure item ¢ and assume that, even
in the absence of a buy-back agreement, each retailer ¢ has the option to salvage any leftover
inventory at a unit price v;. There exists a pair of price and order quantity vectors (pI ,yI )
that maximizes aggregate supply chain profits in the centralized system.

Bernstein and Federgruen [11] prove that perfect coordination can be achieved with a

(unique) set of linear wholesale price/buy-back arrangements {w},b} | i =1,2,..., N} under
which the supplier charges retailer i a constant wholesale price w; but guarantees to buy
back any leftover units at a rate b}, where ¢; < w} < p! and b} =wv;, i =1,2,...,N. The

existence result is predicated on sufficient conditions that guarantee that, under an arbitrary
choice of a wholesale price vector w and buy-back rates b, the competition game has a unique
price equilibrium vector p* that is component-wise increasing in the vector of wholesale
price w; see Bernstein and Federgruen [11, Theorem 6] for details. Finally, we have ¢; <
wi <pl,i=1,2,...,N, implying a strictly positive margin for the supplier, as long as the
deterministic demand functions {d;} have the property dd;/0p; > 0 for all i # j—in other
words, as long as the demand for any product exhibits some sensitivity with respect to the
prices charged for the competing items.

Thus, a linear wholesale pricing scheme, combined with a (linear) buy-back scheme, exists
under which perfect coordination can be achieved; however, it exists only under certain
restrictions for the deterministic demand functions d(p) and the shape of the c.d.f.s G;(-)
of the random factors {¢; |i=1,2,...,N}.

In parallel, perfect coordination can be achieved, in a fully general setting, through the
use of a so-called price-discount sharing scheme (PDS). As with buy-back arrangements,
these schemes incentivize the retailers to purchase large quantities and to reduce their retail
price to stimulate sales. The idea behind buy-back agreements is to mitigate the retailer’s
risk exposure. By contrast, the idea behind a PDS is to incentivize the retailer to reduce
her retail price by offering to adjust the wholesale price downward when the retailer reduces
her price from a given list price. The simplest PDS schemes are linear and anchored on a
base wholesale price w® and retail price p°. Here, the wholesale price is a linear function of
the retail price (i.e., w =w(p)) and is specified as

w=w"—alAp or Aw=alAp, where Ap=p’—p and Aw=uw"—w. (4)
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Here, w° is a constant base or gross wholesale price, p° is an arbitrary reference value

(e.g., the “list price”), and a >0 is a constant. The PDS scheme is to be combined with a
traditional buy-back arrangement at a buy-back rate set at a given constant § below the
(net) wholesale price; i.e.,

b=w—4. (5)

Under the scheme (4) and (5), the supplier compensates the retailer for every sold unit at
the rate of a$ for every dollar the retailer discounts from the reference value p°. Lal et al. [46]
consider such a shared price discount scheme. However, they restrict the retailer to one
possible discount size only; they also discuss a cooperative merchandising agreement in the
consumer packaged goods industry, which embodies this type of PDS scheme. In an article
in the Sloan Management Review, Ailawadi et al. [2] report on an increasing trend toward
trade promotions® and explain that the most effective discount schemes tie the supplier’s
price directly to the retail price according to a given PDS scheme.

To achieve perfect coordination in our model, a nonlinear PDS is required, where Aw; =
H;(Ap;), with H,(-) being a specific nonlinear increasing adjustment function; see Bernstein
and Federgruen [11, Theorem 5].

We now turn our attention to the first competition model covered in Section 3.1, where
the various firms in the supply chain incur fixed delivery and order costs. Here, the design
of a perfect coordination scheme is considerably more complex, for reasons explained below.

Even the assessment of the optimal solution strategy for the centralized system—the
necessary benchmark for any perfect coordination scheme—is difficult, and this is the case
even under a given choice of the retail price vector p°; hence a given vector of demand
rates d° =d(p°). To date, the optimal procurement strategy in the centralized system with
fixed demand rates remains unknown but is undoubtedly of a prohibitively complex nature,
precluding its practical implementability.

However, Roundy [58], in a landmark paper, shows that a simple so-called power-of-two
replenishment strategy is guaranteed to come within 2% of optimality: under such a strategy,
every facility ¢ =0,1,..., N, brings in replenishment batches after a constant interval Tj,
and all intervals {T; |i=1,2,..., N} are power-of-two multiples of some base period Ty; i.e.,
T, =2™T),, where m; is a positive or negative integer, or zero. The replenishment batches
are brought into the system just in time when the inventory level drops to zero. The optimal
power-of-two interval vector T' can be computed with a simple O(Nlog N) algorithm, and
this algorithm can be embedded into a procedure that identifies the optimal price vector p’
for the centralized system.

To design a perfect coordination mechanism in the decentralized system, a first require-
ment is, therefore, that all facilities agree to commit themselves to placing their orders
at replenishment epochs selected from the power-of-two grid {...,%Tb, %Tb, %Tb, Ty, Ty,
Ty, Ty, ..}. Even so, it has been shown that perfect coordination can not be achieved with a
linear wholesale pricing scheme, or even with one that sets the wholesale price as a decreas-
ing function of the retailer’s order size, in accordance with a general (nonlinear) discount
scheme.

Bernstein and Federgruen [9] show that a perfect coordination scheme can be constructed,
but it requires the utilization of no less than three types of discount schemes: (i) a traditional
discount scheme under which the wholesale price is adjusted as a function of the order size,
(ii) a scheme where the wholesale price is adjusted as a function of the chosen replenishment
interval, and (iii) a scheme under which the wholesale price is adjusted as a function of the

3 They note, “In 1996, the percentage of retail sales made ‘on deal’ across forty packaged goods categories
included in the Market Fact Book averaged about 37 percent—up almost 5 percentage points from 1991”
(Ailawadi et al. [2, p. 83]).
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total annual sales volume. More specifically, if retailer ¢ chooses a replenishment interval T;—
thus with an annual sales volume ¢; = d;(p)—the per-unit wholesale price w; is set as follows:
1 2 3
wi(q5, T) = w (Tigs) +w§ (1) +w§ (i)

?

Quantity discounts based on the retailer’s replenishment frequency and annual sales volume,
as reflected by components wEQ) and wgg), are prevalent in many industries. (See Brown and
Medoff [17] and Munson and Rosenblatt [55]. See Chen et al. [22] for additional discussion
on this issue.)

Many supply chains have adopted an alternative business model, referred to as vendor-
managed inventories (VMIs). In its purest form, the retailers empower the supplier to deter-
mine when and how their inventories are to be replenished. All inventory and delivery costs
are assigned to the supplier as well. Instead of having to respond passively to an arbitrary
pattern of retailers’ orders, a VMI enables the supplier to determine an efficient coordinated
procurement strategy to service all of the retailers. Indeed, Bernstein and Federgruen [9]
show that, under such a VMI arrangement, perfect coordination can be achieved with a
simple linear wholesale pricing scheme.

What, then, are the essential features of the supply chain cost structure that allow for
perfect coordination with a linear wholesale pricing scheme? This question was addressed
by Bernstein et al. [12]. Bernstein et al. [12] show that such a linear wholesale pricing
scheme exists under the following general setting, referred to as echelon operational auton-
omy (EOA).

Consider a two-echelon supply chain with a supplier distributing a single (or closely sub-
stitutable) product to N retailers, who in turn sell the product to the consumer market.
All demands must be satisfied in their entirety. For i =1,2,..., N, let p; be the retail price
charged by retailer ¢, and let g; be its annual consumer demand. The two sets of variables are
related to each other via general, continuously differentiable, inverse demand functions p; =
filqr,...yqn),i=1,2,...,N. Let gmax denote a nonrestrictively large upper bound for the
retailers’ annual demand volumes. For substitutable products, each retailer’s price decreases
when he or any of his competitors increases their targeted sales volume; i.e., 0f;/d¢; <0,
i,7=1,2,...,N.

Our main assumption reflects the supply chain members’ cost structures. Let o;, i =
0,1,..., N, denote the complete set of operational decisions that are controlled by firm . For
example, o; may denote a set of capacity decisions, possibly in combination with an infinite
horizon replenishment policy. EOA requires that each retailer i’s operational decisions o;
impact his own cost only. However, the supplier’s operational decisions oy may impact the
costs of all chain members. Under EOA, the chain members’ costs depend on the vector ¢
and the operational decisions, and the members costs may be described by the following
continuous functions:

ho(q,00) = cost incurred by the supplier,
h;(q,00,0;) = cost incurred by retailer i, i=1,2,..., N.

The supplier charges the retailers for their purchases according to a given pricing scheme
and determines her operational decisions oy so as to induce perfect coordination. To do so,
09 is chosen to minimize aggregate costs. Decisions are made in the following sequence, at
the beginning of the planning horizon, and cannot be revoked thereafter: in the first stage, a
wholesale pricing scheme is specified; in the second stage, the retailers simultaneously select
their sales volumes; in the third stage, the supplier chooses her operational decisions o¢; and
in the final stage, the retailers choose their operational decisions ¢;,i=1,2,..., N.

Thus, for any given vector ¢, operational decisions are determined as follows: the supplier
selects 0((q), taking into account each retailer i’s response o;(q,00) to minimize its own
cost h;. This gives rise to reduced cost functions ho(q) and h;(q),i=1,2,..., N. Formally, let

07 (q,00) = argmaxh;(g,00,0;)

gi
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and

N
og(q) = argmin{ho(q, 00) + Z hi(g, 00,07 (g, 00))}.
70 i=1
Thus, ho(q) = ho(q, 05 (q)) and hi(q) = hi(q,05(q), 07 (4,95 (a)))-
It is easily verified that in the traditional business model, EOA is violated, hence requiring
a complex, multitiered discount scheme, while EOA is regained under a VMI arrangement,
thus enabling a linear wholesale pricing scheme to coordinate the system perfectly.

5. Multidimensional Competition

Firms rarely compete on the basis of prices and design attributes alone. Increasingly, various
types of operational (for example, service) metrics play a large, perhaps dominant, role
in determining the competitors’ market shares and, hence, in the competitive dynamics.
Such operational service metrics include waiting time standards in service systems (see,
e.g., Allon and Federgruen [4]) and product availability measures when goods, rather than
services, are sold. Modeling such multidimensional competition settings requires a consumer
choice model in which the firms’ expected sales volumes depend on the vector of selected
operational (service) standards along with the firms’ price vector. In this section, we review
one such model, which may be viewed as a generalization of the model in Section 3.2.

Consider an industry with N independent retailers facing random demands. We analyze
a periodic review infinite-horizon model in which each retailer ¢ positions himself in the
market by selecting a steady-state fill rate f;, where the fill rate is defined as the fraction of
customer demands satisfied from on-hand inventory as well as a retail price p;. Without loss
of practical generality, we restrict ourselves to service levels in the interval [0.5,1). While
the fill-rate target levels f are stationary choices, the retail price may, in principle, be varied
in each period. Each retailer may, at the beginning of each period, place an order with his
supplier, assumed to have ample capacity to fill any size order completely and in time for
the retailer to meet this period’s demand. Stockouts are backlogged. Thus, each retailer ¢
makes the following choices: (i) a one-time choice of f; at the beginning of the planning
horizon and (ii) at the beginning of each period ¢ a retail price as well as the quantity to be
ordered from the supplier.

One of the novel features of the model is that the demand faced by each retailer 4, in
any period t, has a distribution that may depend on the entire vector of retail prices p in
that period as well as the entire vector of fill-rate target levels f. Thus, let D;(p, f) be the
random demand faced by retailer 7 in period ¢ under the retail price vector p and the service-
level vector f, where the c.d.f. of D;;, denoted by él(x | p, f), depends on the entire vector p
as well as the complete vector of service levels f. Thus, demands in any period depend on
the target fill rates, not on the actual inventory levels. We assume that the demand variables
are of the multiplicative form; i.e.,

D =d; (pu f)eita

with €;; as a general continuous random variable whose distribution is stationary and inde-
pendent of the retail price vector p and the service-level vector f;i.e., foralli=1,2,..., N,
the sequence {¢;;} has a common general c.d.f. G;(-) and density function g;(-) such that

As in Section 3.2, we normalize F(ey) =1, i =1,2,...,N and ¢t =1,2,..., so that
ED;(p, f) =dit(p, ). In other words, the functions {d;(p, f)} may be viewed as represent-
ing the expected one-period sales volumes. As in virtually all inventory models, we assume
that the sequence of random variables {€;; |t =1,2,...}, and hence the sequence {D;; |t =
1,2,...}, is independent for all i =1,..., N. At the same time, we allow for arbitrary corre-
lations between the demands faced by the different retailers in any given period.
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Information about the firms’ service levels is not always as readily available as the unit
price. In the business-to-business world, service-level guarantees are routinely provided by
the vendors, often backed up with chargeback agreements for violations of these guarantees.
Software systems allow retailers to monitor their vendors’ compliance and provide them with
comparative data regarding groups of vendors’ service levels. In the business-to-consumer
world, firms increasingly advertise service-level measures, as well as independent Internet
services that rate online retailers in terms of their fill-rate performance (along with other
service measures). Even when such information is not publicly available, consumers develop
estimates on the basis of their own (repeat-purchase) experience as well as on the basis of
word of mouth and other reputational information.

We assume the following basic monotonicity properties:

ad;(p, f) <0 ad;(p, f) >0 ad;(p, f) ad;(p, f) <0
b pey ) ap]

op; — Ofi of;  — 7

In other words, if a retailer increases his retail price (fill rate), this results in a decrease
(increase) of his own expected sales while those of his competitors increase (decrease).
No firm’s sales are expected to increase under a uniform price increase.

Assumption (DO0).

=0,

Jj#i.

N
od;

ZF)‘ <0, foralli=1,2,...,N.

j=1 P

Decisions are made in the following sequence: at the beginning of each period, all retailers

simultaneously determine their prices and order quantities for that period; then, these orders

are filled.

Each retailer pays the supplier a constant per-unit wholesale price, inclusive of delivery
costs, or he incurs production costs at a constant rate. Holding costs are proportional to
end-of-period inventories. A retailer may incur direct, out-of-pocket, backlogging costs; if
S0, these are proportional to the backlog size. Thus, for each retailer i=1,2,..., N,

w; = the per-unit wholesale price paid by retailer 7,
hj = the per-period holding cost for each unit carried in inventory, and
h;” = the per-period direct backlogging cost for each unit backlogged at retailer i.

Contrary to most standard inventory models, but more representative of actual cost/
service trade-offs experienced in practice, our model does not require that direct backlogging
costs exist (i.e., that h; > 0). Even if h; =0, every firm is incentivized to carry appropriate
safety stocks because a large backorder frequency or, equivalently, a low fill rate reduces the
retailer’s average sales while increasing those of his competitors.

When characterizing the equilibrium behavior of the industry, it is necessary to distinguish
among three possible scenarios.

1. Price competition only: Here, we assume that the firms’ service levels are exogenously
chosen but characterize how the price equilibrium and inventory strategy vary with the
chosen service levels.

2.  Simultaneous price and service-level competition: Here, each of the firms simultane-
ously chooses a service level and a combined price and inventory strategy.

3. Two-stage competition: The firms make their competitive choices sequentially. In the
first stage, all firms simultaneously choose a service level; in the second stage, the firms
simultaneously choose a combined pricing and inventory strategy with full knowledge of the
service levels selected by all competitors.

Fudenberg and Tirole [38] refer to the equilibria arising under scenario 2 as open-loop
equilibria and those under scenario 3 as closed-loop equilibria. See Gallego and Hu [39] for
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the comparison of these equilibrium concepts in a context of an infinite-dimensional price
competition over a finite horizon and under capacity constraints.

Bernstein and Federgruen [10] show that in each of the three scenarios the infinite-horizon
periodic review game is equivalent to a single-season game, in which each retailer ¢ competes
with two instruments (p;, f;) € [p™®, pa¥] x [0.5,1) and a reduced profit function

ﬂ-i(paf) = (pl —W; — kl(fz))d’t(pa f)a

where

+| -1 hi T -1 hi i
k:i(fi):hiE[Gi (max{fi,w})—ei] +hiE{ei—Gi (max{fi,w}>] .

Note that k;(f) is the expected (end-of-period) inventory cost per unit of sales, required
to guarantee a given service level of at least f. It can be shown that the function k;(-)
is convexly increasing and differentiable. The following represents the equivalency result in
scenario 2 (i.e., under simultaneous price and service competition).

Theorem 5 (Bernstein and Federgruen [10]). Consider scenario 2 (simultaneous
price and service competition). Assume that (p*, f*) is a Nash equilibrium in the reduced
single-stage game. The N -tuple of infinite-horizon stationary strategies under which retailer i
adopts a stationary price pf, a fill rate f}, and a base-stock policy with (stationary) base-
stock level

* * * * - * hl_
b0, ) = di (0", )G 1(max{fi W})

is a Nash equilibrium in the infinite-horizon game.

It thus suffices to characterize the equilibrium behavior in the single-season reduced game.
The latter depends on the structural form of the deterministic demand functions d(p, f).
Bernstein and Federgruen [10] provide the characterization of three classes of demand
functions:

1. Generalized MNL models: This is an MNL model in which product j’s utility measure
is specified as
uij = a;(pj; fj) + €ij,
a variant of (1). (We omit the intercept term w;(z;).) Within this model, special attention
is given to the following structure:

ui; =b;(f;) — a;pj + €5 (6)

ie., a;(pj, fj) =bj(f;) — ajpj, where b;(-) is a concave, increasing, and differentiable func-
tion.
II. Affine demand functions:

di(p, f)=a; —bp;j+ Y cqap+Bifi = > _ vith
oy %

with b;, B3, positive constants and cj;,y; nonnegative constants.
ITI. The log-separable model:

dj(p, f)=v;(f)a;(p)-

As a mere illustration, we exhibit some of the equilibrium behavior in the special gen-
eralized MNL mode, specified by (6). See Bernstein and Federgruen [10] for a much more
detailed treatment.
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For each product j =1,2,..., N, define fj(-’ as the unique root of the function

b (f;
5j(f)5k§(fj)*Lf])- (7)

@;
The first term on the right-hand side of (7) represents the incremental operational costs
associated with a marginal increase in the service level, while the second term denotes the
incremental retail price value (i.e., the price increase that this marginal increase permits
without altering the expected utility of firm j). Thus f]Q represents the unique service level
for which the incremental operational costs equal the incremental retail price value. We

conclude the following.

Theorem 6 (Bernstein and Federgruen [10]). Consider the generalized MNL model,
and assume that Assumption (D0) holds. For every fized service-level vector f, there exists
a unique Nash equilibrium p*(f) in the price game. The pair (p*(f°), f°) is the unique Nash
equilibrium in the simultaneous single-stage (reduced) retailer game.

6. Price Competition Models for Multi-Echelon Supply Chains

Until recently, almost all of the literature on two-echelon settings was confined to very special
settings—for example, a single supplier with a single product selling to several competing
retailers, or several suppliers each with a single product competing for the business of a
single buyer, or an assembly system with one or two final products. The models reviewed
in Section 3, for example, assumed a single supplier selling a single product to a number of
competing retailers.

In practice, however, oligopolistic competition prevails at all echelons of the market. Thus,
it is highly desirable to build a general model in which, at each echelon of the supply process,
an arbitrary number of firms compete. These firms offer one or multiple products to some
or all of the firms at the next or possibly subsequent echelons, with firms in the most
downstream echelon selling to the end consumer; at each echelon, the offered products are
differentiated,* and the firms belonging to this echelon engage in price competition. In this
section, we focus on building and analyzing such a general framework.

For simplicity of exposition, we consider a two-echelon system where a set 7 = {1,2,...,J}
of suppliers compete by selling any number of grossly substitutable products via a pool
Z={1,2,...,1I} of competing retailers. We generalize this to settings with an arbitrary
number of echelons in Section 6.5. As a concrete example, consider the market for television
sets. Each of the mega brands (Samsung, RCA, Magnavox, Mitsubishi, etc.) sells a line of
television types, differentiated by type (LCD or plasma), screen size (197, 277, 327, etc.),
and screen resolution (720 versus 1080 pixels), among other features. Different brands offer
different subsets of the collection of all possible combinations; each sells these to some or
all of the consumer electronics chains and general department stores. Thus, we aim for a
model in which the firms’ product assortments themselves are endogenously determined, in
contrast to the established literature.

We denote by N the set of all products potentially offered in the market and let N = |N].
To differentiate among different products, we employ a triple of indices (i, 7,k): i denotes

4See Corbett and Karmarkar [25] for a framework of competition of multi-echelon systems in selling a
homogeneous product, with firms at each echelon engaging in Cournot (i.e., quantity) competition. Under
this framework, Cho [23] investigates the impact of horizontal mergers. Adida and DeMiguel [1] analyze a
setting with M suppliers, each selling the same collection of P products to a set of N retailers. In the first
stage, the suppliers engage in homogeneous Cournot competition for each of the P products. In the second
stage, the retailers engage in quantity competition responding to announced wholesale prices, one for each
of the P products. DeMiguel and Xu [28] analyze a sequential competition model involving two groups of
suppliers ultimately delivering the same homogeneous good to the same consumer market. Bimpikis et al. [15]
analyze a model with N suppliers and a number of separate markets; in each market, a homogeneous good
is offered by a specific subset of the N suppliers who engage in Cournot competition.
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the retailer through which the product is sold, and j denotes the supplier procuring the
product. We allow any supplier to sell multiple products through any one of the retailers and
use the index k to differentiate among the various products potentially sold by supplier j
to retailer 4. All suppliers apply a linear pricing scheme for all of their products and clients;
variable distribution and handling costs are easily incorporated in these schemes.

Let K(4,7) denote the set of products offered by supplier j to retailer i. For i € Z,j € J
and k € K(i,7), let

ciji = the constant marginal supply cost of supplier j for product £ sold at retailer 1,
Dijr = the retail price charged by retailer 7 for product k provided by supplier j,

wj;t, = the wholesale price charged by supplier j for product & sold at retailer ¢, and
d;jr = the consumer demand for product k provided by supplier j at retailer 1.

Let p, w, ¢, and d be the corresponding vectors. For any i € Z, let N (i) denote the set
of products offered to retailer ¢ by the various suppliers; i.e., N(i) = {(i,5,k) | j € T,
keK(i,j)}.

The sequence of events in such a two-echelon model is as follows. In the first stage,
with the exogenously given supply costs ¢, the suppliers simultaneously decide on their
product assortment and wholesale prices among all products they can potentially sell to the
retailers. In the second stage, given wholesale prices selected in the first stage, all retailers
simultaneously decide on their product assortment and retail prices to maximize their total
profits among all products of all suppliers they choose to do business with.

6.1. The Demand Model

To start with, we need to have a well-defined demand system that has the potential to lead
to tractable solutions for a multi-echelon sequential competition model. Along with variants
of the MNL model, such as NL and MMNL models, the most frequently used demand model
in economics, marketing, and operations management employs affine demand functions.
The demand value of each product may depend on the prices of all products offered in
the market. As in the majority of supply chain competition models, we assume that this
dependence is in principle described by general affine functions (see, for example, the first
model in Section 3). In matrix notation, this gives rise to a system of demand equations:

q(p) =a— Rp, (8)

where a € RY ={z |z >0} and R € RV*N. We call a the intercept vector, of which each
entry measures the potential market size of a product, as it would be the demand vector if all
products were offered for free. We call R the matrix of price sensitivity coefficients. Any of its
diagonal elements, r;;, measures the potential direct price sensitivity of product I’s demand
with respect to its own price p;, whereas any off-diagonal entry, r;;/, with I’ # [, measures
the potential cross-product price sensitivity of product I’s demand with respect to price py
of product I’. In our base model, we assume that the various products are substitutes.

Assumption (Z). The matriz R is a Z-matriz (i.e., has nonpositive off-diagonal entries).

This means that any product’s demand volume does not decrease when the price of an
alternative product is increased (see, however, Section 6.7 for a generalized model allowing
for certain types of complementarities).

As pointed out by many authors, starting with Shubik and Levitan [59] and reviewed in
Section 3, the affine structure in Equation (8) cannot be used for arbitrary price vectors
p>0.% After all, unless the price vector p is chosen in the polyhedron

P={p>0|q(p)=a— Rp>0},

5 The inequalities in this tutorial are in the component-wise sense for a vector or matrix.
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some of the components of the g-vector are negative. We call P the effective retail price
polyhedron. (Note that P # &, since p=0 € P, as a > 0.) To solve this difficulty, some
authors—for example, Allon and Federgruen [4]—have replaced the right-hand side of (8)
by its positive part: d(p) = [a — Rp]T = max{a — Rp,0}, effectively truncating the demand
functions at zero. This works well in single-product competition models. However, as pointed
out by Soon et al. [60] and Farahat and Perakis [32], the truncation procedure fails when
firms sell multiple products. Consider, for example, a monopoly with two products, prod-
ucts 1 and 2, with a demand function dy (p1, p2) = max{a; —by1p1 +b12p2,0} and da(p1,p2) =
max{as — baops + b21p1,0}, where a;,b;; >0, i =1,2, and b;; > 0 for i # j; setting the price
of product 1 above its marginal cost while increasing the price of product 2 to infinity leads
to zero profits for product 2 but an infinite profit value for product 1.

Instead, Shubik and Levitan [59] suggest that the extension of the demand functions
beyond P satisfy the following intuitive regularity condition.

Definition 1 (Regularity). A demand function D(p): RY — RY is said to be regular if
for any price vector p and product I, D;(p) =0= D(p+ Ae;) = D(p) for any A >0, where ¢;
denotes the /th unit vector.

In other words, if a product is priced out of the market, under a given price vector, an
increase in its price does not affect any of the demand volumes. While intuitive and seemingly
innocuous, Soon et al. [60] show that there is one, and only one, regular extension d(p) of the
affine demand functions ¢(p) in (8). Under this extension, the demand volumes generated
under an arbitrary price vector p are obtained by applying the affine function ¢(-) to the
projection Q(p) of p onto the polyhedron P; i.e.,

where we have the following definition.

Definition 2 (Projection). For any p € RY, the projection Q(p) of p onto P is defined
as the vector p’ = p—t, with ¢ as the unique solution to the following linear complementarity
problem (LCP): 0<d(p)=a— R(p—1t) Lt >0; i.e.,

dlp)=a—R(p—1t)>0, t>0, and o)
9
t'la—R(p-1)]=0,
where the superscript “T” is the transpose operator of a vector or matrix.

The above LCP has a unique solution so that the projection operator is well defined, as
long as the matrix R is positive definite; see, e.g., Cottle et al. [26, Theorem 3.1.6]. We
therefore assume the following.

Assumption (P). The matriz R is positive definite.

There are many standard numerical procedures to verify the positive definiteness property.
The following dominant diagonality conditions are often assumed in the literature, as they
are very intuitive and likely to hold in many applications:

(D) (strict row-dominant diagonality) R; ;> Z |Ry 1|, foralll,
VL
(D’) (strict column-dominant diagonality) R; ;> Z |Ry.q], for all l.
Ul

Condition (D) is equivalent to the assumption that no product’s demand value increases
as a result of a uniform price increase of all products by the same amount. Condition (D’)
is equivalent to the assumption that aggregate sales do not increase as a result of a price
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increase of any one of the products. The two dominant diagonality conditions are sufficient
to ensure that R is positive definite.

The following proposition provides equivalent characterizations of the demand func-
tion d(p).

Proposition 1 (Demand System). Under Assumptions (P) and (Z), the following
specifications of the demand function d(p) are equivalent:

(a) (Regular extension) d(p) =a — Rp for p € P; d(p) is a regular function.

(b) (LCP representation) There exists a unique vector of price corrections, t, such that
0<d(p)=a—R(p—t)Lt>0.

(¢) (Projection mapping) d(p) = q(2p)). If p€ P, QUp) =p; if p ¢ P, Qp) is on the
boundary of P, where Q(p) is computed by minimizing any linear objective ¢t with ¢ >0
over the polyhedron, described by (9).

(d) (Piecewise linear function) For any p, there exists a unique product assortment A C N
such that d4(p) = a®* — R4 >0, dz(p) =0, where a* =a — RA’AR.:‘—}AGA >0, and
RA=RA A~ RA,AREARK,A is a positive definite Z-matriz.

In the special case where the matriz R is symmetric, the following specification is equiva-
lent to all of the above:

(e) (Utility maximization) d(p) solves the quadratic utility mazimization problem of a
representative consumer:

“1, _ NTg_ 1T p—1
Iélé‘ié({(R a—p)'d—4d" R'd}.

The representative consumer utility maximization problem has been suggested as an alter-
native foundation for the extended affine functions d(-); see, e.g., Farahat and Perakis
[31, 32]. However, this formulation can only be used when R is symmetric. Indeed, the
matrix R may not be symmetric, as is typically the case when it is estimated in empirical
studies; see, e.g., Dubé and Manchanda [29] and Vilcassim et al. [63].

6.2. The Retailer Competition Model

To characterize the equilibrium behavior in the two-echelon competition model, we need to
understand how the retailers respond to a given vector of wholesale prices w > 0 selected by
the suppliers. Thus, let

mijk(p) = the profit earned by retailer ¢ from the sale of product (j, k)
= (pijk — wijr)dijr(p), and
i (p) = Z mijk(p) = the aggregate profit earned by retailer 1.
(4, k)EN (2)

In response to a given vector of wholesale prices w, the retailers engage in a price competition
game, with profit functions {7;(p): i € I} and feasible price space p € RY. Federgruen and
Hu [37] show that these profit functions are not supermodular over the full feasible strategy
space. Nevertheless, Federgruen and Hu [34] characterize the equilibrium behavior in this
retailer competition game. To summarize the main results, we need to define the following
vectors and matrices:

Ry, vy 0 0
Ry ne 0
T"(R) = . . ) . , (10)
0 0 o RI/(I),N(I)
U(R) = T (R)R+T"(R)], (11)

S=V"(R)\R=T"(R)JR+T"(R)] 'R and b=V"(R)a. (12)
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Federgruen and Hu [34] show that a pure Nash equilibrium always exists. Often, multiple,
sometimes infinitely many, equilibria exist.® There may even be multiple equilibria within
P itself, along with equilibria outside of P. For any equilibrium p outside of P, (p) (€ P,
see Proposition 1(c)) is an equilibrium as well, which is equivalent to p in the sense of
generating an identical product assortment with identical equilibrium sales volumes. The
set of equilibria may therefore be partitioned into one or multiple equivalency classes, each
with a component-wise smallest element that belongs to P.

Federgruen and Hu [37] recently showed, however, that one of the equilibria, which we
refer to as (p* | w), has the unique property of being globally stable and this even when firms
adjust their prices employing the so-called (unique) robust best response mapping RB(-).
This mapping is defined as follows: For any price vector p € Rf ,

RB;(p_ni)) = arg max {(on) —wary) T an ) — Bary, - N P-n () — BN () NGPNG))s
DN (i) Z

st an(y — Ba),—N6)P-N () — BaG) N PA ) > 0} (13)

This best response mapping is well defined since the optimal problem within the curly
brackets in (13) is a strictly concave program. Global stability of this best response mapping
means that, regardless of the market’s starting point p°, a dynamic adjustment process
based on this best response converges to (p* | w), i.e.,
lim RB™ (p°) = (p* | w), (14)
n—oo
where RB(™(-) denotes the n-fold application of the mapping RB(-). Moreover, convergence
in (14) is geometrically fast since Federgruen and Hu [37] show that the robust best response
mapping RB(-) is a contraction mapping.

It should be noted that under the robust best response mapping RB(-), firms do not nec-
essarily select the fully best response among all possible price vectors. Instead, it determines
the best choice among the polyhedron Pi(p_ar)) = {pars) = 0] an)y — Bar(),—N(6)P-NG) —
Rpriy n(iyPAs) > 0}. The big advantage of this “best” response mapping is that it may
be applied by each firm, with very limited local information only. That is, any firm only
needs to know the (affine) raw demand functions gar(;)(-) that pertain to its own products
as well as its own products’ cost rates wps(;). As discussed extensively in the literature, see,
e.g., Vives [64] and Holt and Roth [45], this global stability property adds majorly to the
predictability of the equilibrium. Finally, this special equilibrium (p* | w) has a relatively
simple analytical representation as follows:

(" |w)=w+[R+T"(R)] 'q(w) = [R+T"(R)] 'a+[R+T"(R)]"'T"(R)w,

ifweW={w>0|Q(w)=b—Sw>0}, where b=U"(R)a and S = U"(R)R. In other words,
as long as the wholesale price vector w € W, our special equilibrium (p* | w) is given by an
affine vector function of w, with the same structural property as the function ¢(-), i.e., b>0
and S is a ZP-matrix.

When w ¢ W, we have

(p" |w)=w'+[R+T"(R)]q(w) = [R+T"(R)]'a+[R+T"(R)|"'T"(R)w',

where w’ = O(w) is the projection of w onto the effective wholesale price polyhedron W,
defined as in Definition 2. That is, w’ = w — ¢, with ¢ the unique vector to the following
LCP: t>0,b— S(w—1t) >0 and t"[b— S(w —t)] = 0. (The uniqueness of the solution to

6 The characterizations below represent a refinement of the results in Federgruen and Hu [34]. The latter
contains an erroneous result; in particular, contrary to the statement in Theorem 1 there, P may contain
more than one (non-equivalent) equilibrium.
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the above LCP is guaranteed by the positive definiteness of matrix S, which can be proven
under Assumption (P).)

These characterizations of the equilibrium behavior in the retailer competition model are
all obtained under the minimal conditions (P) and (Z) (i.e., a positive definite matrix R
with nonpositive off-diagonal elements), except that an additional condition is needed to
ensure that the projection O(-) onto the effective wholesale price polyhedron W indeed
projects any w € Rf onto a nonnegative price vector w' = O(w) € Rf. For the projection
operator Q(-) on the effective retail price polyhedron P, we mentioned that Q(p) € RY
whenever p € RY; see Federgruen and Hu [34, Lemma 1 and Proposition 1(a)]. However,
the proof of that result relies on the fact that a > 0 and on Assumptions (P) and (Z). The
analogous properties almost invariably apply to the intercept vector b and the matrix of
price sensitivities S in the supplier competition game as well, but they occasionally fail, as
a counterexample in Federgruen and Hu [34, Example C.1] reveals. To have the projection
onto W well defined, we need to have that b > 0 and that S is a (positive definite) Z-matrix.
This condition is easily verified from the primitives of the model (i.e., the vector a and the
matrix R), with a single matrix inversion and a few matrix multiplications; see (10)—(12). It
can be shown that this condition is satisfied when R is symmetric. See, however, Federgruen
and Hu [34, Proposition 3] for more general sufficient conditions.

One such sufficient condition is that the matrix T7(R) is symmetric. Symmetry of the
matrix T"(R) means that the cross-price sensitivity coefficients need to be identical only
for pairs of products sold by the same retailer. This symmetry assumption is considerably
weaker than the global symmetry assumption of the full matrix R, typically assumed in
models with affine demand functions; see, e.g., Farahat and Perakis [32]. (When demand
functions d(p) are derived from a representative consumer maximizing a quadratic utility
function, the resulting matrix R of price sensitivity coefficients is always symmetric.)

We are now ready to summarize the equilibrium behavior in the retailer competition
model.

Theorem 7 (Retailer Competition Model; Federgruen and Hu [34]). Fiz w > 0.
Suppose R is symmetric and Assumptions (P) and (Z) hold.

(a) The retailer competition game has a pure Nash equilibrium.

(b) Multiple pure Nash equilibria may exist; however, there exists a unique equilibrium p*
which is globally stable under the robust best response mapping, and p* € P.

(c) IfweW, p=w+[R+T"(R)]"1q(w) =[R+T"(R)]ta+[R+T"(R)]'T"(R)w is
an affine function of w.

(@) [fwg W, p* =+ [R+T(R)] " q(w') = [R+T"(R)] " a+ [R+ T (R)] " T" (R)u,
where w' = O(w) is the projection of w onto W.

(e) The equilibrium p* is increasing in w.

Symmetry of R is only required when w ¢ W. Even when w ¢ W, many of the results
in Theorem 7 can be guaranteed simply on the basis of Assumptions (P) and (Z) alone;
in particular, there exists at most one robust and globally stable equilibrium p* in P, and
if p¢ P is an equilibrium, then its projection Q(p) is an equilibrium as well. Thus, if an
equilibrium exists, there is a component-wise smallest equivalent equilibrium. As mentioned
above, the symmetry assumption regarding the matrix R may be replaced by one of several
more complex but weaker conditions—in particular, assumption (NPW) in Federgruen and
Hu [34]; see Proposition 3 therein.

6.3. The Two-Echelon Competition Model

To simplify the exposition, we henceforth confine ourselves to symmetric R matrices, assum-
ing the following.

Assumption (S). The matriz R is symmetric.
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By Theorem 7, any wholesale price vector w > 0 induces a retailer competition game
with a unique equilibrium that is globally stable (under the robust best response mapping).
We, henceforth, assume that the retailers adopt this equilibrium (p* | w) with its unique
characteristics. If w € W, the equilibrium sales volumes are given by

Q(w) =d(p*) = q(p*) =a— Rw— R[R+T"(R)] "q(w)
={I-R[R+T"(R)] '}q(w) ={[R+T"(R)|][R+T"(R)]"' = R[R+T"(R)]” ' }q(w)
=T"(R)[R+T"(R)] 'q(w) = V" (R)q(w) =b— Sw,

where I is an identity matrix, the second identity follows from p* € P, and the third identity
from Theorem 7(c). Similarly, if w ¢ W, we have by Theorem 7(d) that the equilibrium sales
volumes are given by

Qw') =¥ (R)g(w') =b— Sw'.

Thus, the induced demand functions encountered by the suppliers are the (unique) reg-
ular extension of the affine functions Q(w) =b— Sw, as long as the matrix S is positive
definite and has nonpositive off-diagonal elements in the same way the original matrix of
price sensitivity coefficients R does, in view of Assumptions (P) and (Z). Fortunately, both
properties can be shown to apply under Assumptions (P), (Z), and (S). This implies that
the supplier competition model is structurally analogous to the retailer competition model.

To draw an analogy between the retailer and supplier competition models, we reorder
the products so that their supplier index in the triple of indices (i,7,k) comes first. Let
M(1),M(2),..., M(J) denote the sets of products supplied by supplier 1,2,...,J, respec-
tively. Define the matrix

Spa1), M) 0 0
S 0
T(§) = | M<2>:7M<2> ) | |
0 0 S M

and W¥(S) =T%(S)[S + T*(S)]~!. Analogous to the definition of the effective wholesale
price polyhedron W, define the effective supply cost polyhedron C as follows: C'={c >0 |
Us(S)Q(c) > 0}. Let I'(+) denote the projection operator onto C.

Theorem 8 (Supplier Competition in the First Stage of the Two-Stage Game;
Federgruen and Hu [35]). Fiz ¢ > 0. Suppose Assumptions (P), (Z), and (S) hold.

(a) The supplier competition game has a pure Nash equilibrium.

(b) Multiple pure Nash equilibria may exist; however, there exists a unique equilibrium w*,
which is globally stable under the robust best response mapping.

(c) C#2, since0<’=8"1h=R1acC.

(d) IfceC, w*=c+[S+T(5)]7'Q(c) =[S+ T*(S)] "o+ [S+T4(9)]1T*(S)c is an
affine function of w.

(e) Ifcg C, w*=c' +[S+T*(9)]71Q() =[S+ T*(S)] Lo+ [S+T%(S)]~1T*(S)c, where
¢ =T\(c) is the projection of ¢ onto C.

Under Assumptions (P), (Z), and (S), we have ¥* (S)b> 0, and ¥*®(S) S is a Z-matrix,
which ensures that the projection onto the polyhedron C' in the space of cost rate vectors
is well defined, in the sense that any vector c € Rf is projected onto a nonnegative vector
dedC.
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6.4. Comparative Statics

In this subsection, we characterize the impact of the model parameters on equilibrium whole-
sale and retail prices, equilibrium sales volumes, and product assortments under Assump-
tions (P), (Z), and (S). Among the model primitives, we focus on the suppliers’ cost rate
vector ¢ and the intercept vector a of the demand functions ¢( - ), as both relate to important
managerial questions.

6.4.1. Comparative Statics with Respect to Cost Rates. In the marketing lit-
erature, much attention has been devoted to understanding the “pass-through” rates of
exogenous cost changes: when a supplier changes the wholesale price for a given product,
how will the different retailers respond to this price change for the same product (“direct
pass-through rate”) as well as for other products in the same product category (“cross-
brand pass-through rates”)? Here, we characterize the impact of changes in the suppliers’
cost rates on equilibrium prices, sales volumes, and the product assortment. All effects are
computable with little effort, requiring at most a few matrix multiplications and inversions
and the solution of a single linear program with N variables and constraints.

Theorem 9 (Comparative Statics with Respect to ¢; Federgruen and Hu [35]).
Fiz a cost rate vector ® and a product | = (i,j,k), and consider the impact of an increase
of ciji from ¢y, to ciy =y + 0.

(a) (Demand volumes) There exists a minimal threshold AT >0 such that an increase
of § beyond AT has no impact on any of the equilibrium demand volumes; when § < AY,
product l’s demand volume decreases and the demand volume of all other products increases.

(b) (Assortment) An increase of § beyond AT has no impact on the equilibrium assort-
ment; when 6 < AT, the equilibrium assortment remains the same or expands. There exists
a second threshold A < A™ such that, for § <A, the equilibrium assortment does not change
while product 1’s demand volume decreases and that of all other products I #1 increases
proportionally with §.

(¢) (Wholesale and retail prices) The unique equilibrium retail and wholesale price vec-
tors p* and w*, which are globally stable under the robust best response mapping, increase
concavely with §.

Beyond the various monotonicity properties in Theorem 9, our model allows for simple
expressions of the marginal pass-through rates of cost changes. We derive simpler lower
and upper bounds that provide insights into the pass-through rates. For example, the lower
bound shows that at least 50% of a reduction in the wholesale price of a product and at
least 25% of a reduction in the supply cost rate are passed on to the consumer.

Proposition 2. (Bounds for the Cost Pass-Through Rates; Federgruen and
Hu [35]).

(a) Consider the retailer competition model under a given wholesale price vector w. Let
A denote the equilibrium assortment:

(RAY)~'T(RA)

% < (3102) . [RA+T (R 'T(RY) < 5 ,

a’w_A
where (Op*/Ow) ™ denotes the matriz of left-hand derivatives, which is shown to always ezist.

(b) Fizce Ri\_]. Let A denote the unique assortment associated with the price equilibrium

* in the two-stage game:

p

1< (gpﬁ = [RA+ TR T(RA)SA + T(S4)] 7 T(5%)

< (BYTITRA (S T(SH)
= 4
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6.4.2. Comparative Statics with Respect to the Intercept Vector. Goldfarb
et al. [42] have argued that a firm’s brand value should be measured in an equilibrium frame-
work. More specifically, consumer demand functions should be modeled as a function of
the suppliers’ and/or retailers’ brands, represented by brand indicator variables. The brand
value of a firm is then defined as the difference between its profit value when the brand
indicator variable equals 1 (i.e., in the presence of the brand effect) and a counterfactual
equilibrium value when it is set equal to 0 (i.e., in the absence of the brand effect). More
specifically, Goldfarb et al. [42] assume that demands for the various products are specified
by a mixed MNL model in which the intercept of the utility measure of each product is
specified as an affine function of suppliers’ brand indicator variables. Following the same
approach, in our demand model, we specify the intercepts as follows:

J

aije=0a i+ Y Bpz, i=1,2.., 1 j=12..,J,k=12,...,|K@75)
i'=1

where z;;; =11if j=j" and z;;; =0 if j # j'; x;5 represents a vector of observable attribute
values for product (%,j,%k). The same methodology may be used to measure brand values
associated with the different retailers or with different sub-brands (i.e., (j, k)-combinations).
All of these brand value estimations amount to conducting comparative statics analyses
with respect to the intercept vector a.

Here, we summarize those comparative statics results. We show, in particular, that all
equilibrium retail and wholesale prices increase and that the equilibrium product assortment
expands when the intercept vector a increases. In addition, an increase of one of or more
of the intercept values causes all of the suppliers’ and retailers’ profit margins to grow, as
well as their aggregate profit values. One implication is that all brand values, as defined in
Goldfarb et al. [42], are positive.

Theorem 10 (Comparative Statics with Respect to a; Federgruen and Hu [35]).
Fiz ¢ >0 and 0 < a! < a?. An increase in a elicits an increase in the equilibrium whole-
sale and retail prices, assortment, demand volumes, and the retailers’ and suppliers’ profit
margins for all products. It also increases each firm’s profit level and expands the product
assortment. In other words,

(a) (Wholesale prices) w*(T'

(b) (Retail prices) p* (w*(T
(Demand volumes) d(p*(w
(Assortment) Ala 1) C A(a?).
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6.5. The Multi-Echelon Competition Model

In this subsection, we discuss the generalization of the two-echelon model to one in which
products (potentially) travel through an arbitrary number of distribution/production stages
before reaching the end consumer. In the chain of oligopolies, there are m echelons,
FEq, ..., E,, each with an arbitrary number of competing distributors. We number the eche-
lons sequentially, starting with the most downstream echelon of retailers until reaching the
most upstream echelon m. We assume that firms in a given echelon only sell to firms in the
next more downstream echelon; i.e., firms in echelon e only sell to those in echelon e — 1,
while the retailers in echelon 1 sell to the consumer. (Settings where for some of the products
one or more echelons are skipped can be handled as well, analogous to the treatment of the
“direct sales” channel; see Federgruen and Hu [36, Section 5].)
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Products are partially differentiated by the route r traveled in the above multipartite
network. For any such path r € R, the set of all possible paths, there may be up to K distinct
products. We thus label each distinct product with a pair of indices (r, k): product (r, k) is
the kth product distributed along the route r, r € R, and k=1,..., K.

Our starting point is, again, a set of retailer demand functions d(l)(p(l)), with p) the
vector of retail prices, specified as follows on Rf :

4O () = qg;(p(”) =alt) — RWpM if pMePW={pM>0[q" (M) >0}, (15)
¢ (QW (pM)) if p(1) ¢ PO

Here, ") and R are exogenously given, and Q) (p(1)) is the projection of the vector p(*)
onto P defined by Definition 2, with a and R replaced by o) and R™"). Following
the analysis of Section 6.3, one verifies that each of the remaining echelons e =2,...,m
experiences equilibrium demand functions of a similar structure. Define, recursively,

al®) = w(e) (Rle—1)gle—1) 06
R© = 9@ (Rle=D) Rle=1), (16)
where W(©)(R(e=D) = Te~D(RE=D) R 4 Tle~D(RE=D)] =1 e =2,... m. The matrix
T(e)(R(e)) is obtained from the matrix R(®) by replacing by zero any entry that corresponds
to a pair of products that is distributed via different distributors in echelon e; for any pair of
products (1,1') that is distributed via the same distributor in echelon e, T(®)(R(®)); ;; = Rl(,e’)l.
As shown in Section 6.3, after appropriate sequencing of the products, the matrix 7(¢) (R(¢))
is block diagonal, with each block corresponding to a specific distributor in echelon e. The
indirect demand functions for the firms in echelon e are, again, of the form given by (15):
) (pe)) = qu; (p) =a') = ROp( it p € PO = {p(9 20 () 2 0},
¢ Q) (p())) if ple) ¢ P,

where Q(©) (p(e)) is the projection of the price vector p(¢) onto P}, e =2,... ,m. As before
P £z, since 0< (R(9)1ald) = (Rle=D)"1gle=D =...= Rl e P©) e=2,... ,m.

One recursively verifies that the matrix R(¢), e =2, ... ,m, is positive definite. By Theo-
rem 7(a), this, by itself, guarantees the existence of equilibria at any stage of the sequential
competition game.

However, to ensure that the indirect equilibrium demand functions for echelon e are well
defined, we, of course, need to establish that an essentially unique sales volume equilibrium
exists in a certain sense at any downstream echelon [ =1,2,...,e—1—i.e., the equivalency of
equilibria in a robust sense of generating the identical sales volumes and profit levels through-

out all downstream echelons (if multiple equilibria exist, they all project onto the same price
vector in P() that is globally stable under the robust best response mapping for any down-

stream echelon [ =1,2,...,e—1). By Theorem 7 (or Theorem 8), this is guaranteed as long
as each of the matrices R®M, R®) ... R is a Z-matrix (i.e., has nonpositive off-diagonal
elements), and a® a® ... al® >0. This condition can easily be checked numerically. In

addition, the condition can be guaranteed, inductively, when R(") = R is a symmetric matrix.
(If R(©) is symmetric, then R(¢TD = wletD (R R = [(R(€))~1 4 T(E)(R(e))il]_l; thus,
REDT = [(ROT) 71 (TO(RE) )77 = [(REO) 4+ (TO(R)) 1)1 = REHD s sym-
metric as well.)

We conclude that as long as we can guarantee that each of the matrices RV, R ..
R™*Y) s a Z-matrix and o™, a®, ... a(m*D) >0 (where R™*D and a(™+D) follow the
same type of definition as R(®) and a(®), e =2,... ,m), one essentially unique equilibrium,
which is globally stable under the robust best response mapping, exists at each stage of the
sequential competition game; the resulting chainwide equilibrium is a subgame perfect Nash
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equilibrium. Moreover, for any echelon e, the values of the unique, robustly and globally
stable, price equilibrium in P(¢) among all equilibria, are computed as follows: Let ¢ denote
the vector of marginal cost rates incurred by the firms in the most upstream echelon:

cmy ) e+ [RU™ T (RO =L g(m)(c) if ce C = Pm+l), an
p = Q(m+1)(c) + [R(m) +T(m)(R(m))]—1q(m)(Q(m+1)(c)) if ¢ ¢ C,
where P("+1) (3 R~1a) follows the same type of definition as P(¢), e=2,...,m, and
p*@ = petD) L [RE) L@ (REN] 71 (pretD))  e=m—1,... 1. (18)

To verify (17) and (18), invoke Theorem 7. Moreover, since p*(™ € P(™) it follows from
Theorem 7 that p*(™~1 is given by (18) and p*(m=1 e P(m=1) One thus verifies by induc-
tion that p*(¢) € P(¢) for all echelons e =1,...,m, so that (18) applies to all echelons e =
1,...,m—1.

The computation of all echelons’ equilibrium price vector {p*(e) |le=1,...,m} is thus con-
fined to the following: one first recursively computes the matrices R(®) and intercept vectors
al® for e=1,...,m+1, via (16). Determination of p*(™) may involve the computation of
the unique solution of an LCP—but only if ¢ ¢ C—which can be achieved by solving a single
linear program with N variables and N constraints. The remaining computations involve
only multiplications and inversions of matrices related to the price sensitivity matrix R.

Under a symmetric matrix R, as we move upstream, the sequence of effective price poly-
hedra expands in the supply chain network. Moreover, as m, the number of echelons, grows,
the sequence of effective price polyhedra {P(e)} converges to a limiting polyhedron.

Proposition 3 (Multi-Echelon Competition; Federgruen and Hu [35]). Suppose
Assumptions (P), (Z), and (S) hold.

(a) For anymeN, P ={p>0]al® —Rp>0} C Pt foralle=1,2,...,m.

(b) For anymeN, PO CH={p|0<p< R 'a} foralle=1,2,...,m+1.

(c) The sequence {P(e),e =1,2,...,m+ 1} converges to a limiting polyhedron P* as m
INCTreases.

Proposition 3 has an implication for the impact of disintermediation: That is, what hap-
pens when retailers can buy products directly from their manufacturers as opposed to
procuring these via a wholesaler? Consider a market with J manufacturers each selling a
group of products to a manufacturer-associated chain of independently owned retailers. Ini-
tially, each manufacturer j sells its products via a dedicated wholesaler at a given price
vector ¢/. By Proposition 3, the effective price polyhedra are nested: P C W C C; see Figure 1
for an example with two products for which the symmetry of matrix R is not required for
the price polyhedra to be nested. Assume ¢ = (c!,...,¢’)T is in the interior of C\W, and
consider how the equilibrium is affected when the middlemen are cut out (i.e., the inter-
mediate echelon of wholesalers is eliminated). On the one hand, it is possible to show that
retail prices will come down. More surprisingly, however, product variety will decrease, all
cost efficiencies not withstanding: in the presence of the intermediary wholesalers, we get
w*(c) € W°; hence, p*(w*(c)) € P° (i.e., all products are sold in the market). Without the
intermediaries, the vector ¢ becomes the new vector of “wholesale” purchase prices for the
retailers. Since ¢ ¢ W, p*(c) is on the boundary of P, implying that some products are no
longer part of the retailer assortment. Proposition 3 implies that disintermediation by elim-
inating a whole echelon of intermediaries would lead to lower prices in the market, therefore
generating larger consumer surplus, but this can be at the cost of reducing the product
variety. From the opposite angle, Proposition 3 also implies that adding intermediaries can
reduce the intensity of price competition, but the marginal benefit of doing so is diminishing
in view of part (c). Disintermediation involves the elimination of one echelon of firms. In the
next subsection, we study the impact of vertical integration, which may only involve one or
a few firms at a given echelon.
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FIGURE 1. Nested effective price polyhedra.
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Notes. Consider two parallel supply chains in which supplier 7, ¢ = 1,2, sells product ¢ exclusively through

retailer i. Let a=(1,1)T and R= (7}& 71"’1), with 0 <~1,v2 <1.

6.6. The Impact of Changes in the Network Structure: Vertical Mergers

Vertical integration occurs when a supplier acquires or merges with one or more of its
client firms. Alternatively, vertical integration may result from internal growth: a firm in
an intermediate echelon of a supply chain may integrate forward by creating its own direct
distribution channel to final consumers or buyers at an echelon further downstream from that
in the very next downstream echelon. Similarly, a firm may integrate backward by deciding
to manufacture the products it used to buy from an upstream supplier, or to purchase them
directly from firms further upstream than their traditional supplier(s). Riordan [56] surveys
the economics literature on the competitive effects of vertical integration. This survey paper
also reviews antitrust regulation and legal challenges of proposed vertical integrations by
the U.S. Department of Justice (DOJ) and the Federal Communications Commission.
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Till now, almost all of the literature has focused on special, relatively simple market
structures in a two-echelon setting, usually with up to two firms at each echelon and at
most one product being transacted between any pair of upstream and downstream firms,
hereafter referred to as suppliers and retailers. It is, however, important to establish robust
price effects that pertain to markets with an arbitrary number of general, nonidentical
suppliers and retailers and any one of the retailers procuring any number of differentiated
products from any given subset of the suppliers. Beyond characterizing whether vertical
mergers result in price increases or decreases, it is important to assess the actual resulting
magnitude in price and consumer welfare changes. Last but not least, it is important to
understand what impact vertical mergers have on the product variety offered in the market.
For example, even if prices decline, consumers may be disenfranchised if the vertical merger
results in reduced product variety.

Product variety is one of the principal “non-price effects” used in antitrust and merger
investigations in the United States (along with “quality,” “service,” and “innovation”). For
example, the 2010, most recent merger guidelines by the DOJ and the Federal Trade Com-
mission (FTC) state that, in addition to price effects, “[eJnhanced market power can also
be manifested in non-price terms and conditions that adversely affect customers, including
reduced product quality, reduced product variety, reduced service, or diminished innovation”
(see U.S. Department of Justice and Federal Trade Commission [62, p. 2]). While the 2010
guidelines are focused on horizontal mergers, the concerns are no less prevalent for vertical
mergers—and for good reasons, as shown in Federgruen and Hu [36]. Moreover, legal schol-
ars such as Averitt and Lande [6, 7], economists such as Carlton and Israel [21], and former
FTC Commissioners Leary [48, 49] and Rosch [57] have argued that the above 2010 FTC
and DOJ guidelines “do not go far in their recognition of non-price effects.” Finally, in 2016,
the American Antitrust Institute devoted its annual symposium to the topic of “Non-Price
Effects of Mergers” (see also Gundlach [43]).

Building on the two-echelon competition model introduced in Section 6.3, Federgruen
and Hu [36] study the simultaneous price and variety effects of vertical mergers. In partic-
ular, Federgruen and Hu [36] consider a vertical merger between one of the suppliers and
a group of retailers this supplier sells to, possibly along with other suppliers. (The sup-
plier may, likewise, sell to other retailers outside of the group she merges with.) After the
merger, any outside supplier continues to offer the merged company all the products she
used to offer one of the merging retailers; similarly, the merging supplier continues to offer
outside retailers any of the products she offered them before the merger. All postmerger
performance measures of interest can be efficiently computed. These measures include the
robustly and globally stable wholesale and retail price equilibria, their associated product
assortment, sales volumes of the different products, firms’ profit values, and a consumer
and social welfare measure. When characterizing the postmerger equilibrium behavior, it
is reasonable to assume that the retail prices of the products sold by the merged company
continue to be determined along with all other retail prices (i.e., as part of the second-stage
retailer competition game). However, in some settings, these prices may be determined by
the merged company during the first-stage competition game. The sequence in which price
decisions are made is often of critical importance. Federgruen and Hu [36] therefore cover
both settings. When the merged company discloses its retail prices up front during the first
competition stage, this is equivalent to a setting where those products are sold directly from
the (merging) supplier to the end consumer. This gives rise to a new type of sequential
oligopoly, with “direct sales,” in contrast to the premerger, strictly hierarchical network
structure.

In a general setting, it is impossible to show categoric directional changes for either the
prices or the product variety: On the one hand, the vertical merger eliminates some of the
double marginalization and hence tends, in and of itself, to reduce prices. However, when a
group of retailers participates in the merger, the merger also has a horizontal component.
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Horizontal mergers tend to result in increased prices, since they reduce the number of
competing retail organizations. The net impact of these two conflicting forces depends on
the specifics of the network structure, the demand functions, and, last but not least, the
exogenously specified cost rates incurred by the suppliers.

To isolate the impact of a vertical merger, Federgruen and Hu [36] analyze the merger of
a supplier with a single retailer with whom she has an exclusive relationship: the supplier
sells exclusively via the retailer and the retailer sources all of his products from this supplier.
In the more common setting where all retail prices continue to be determined during the
second-stage competition game, let C denote the postmerger effective cost rate polyhedron,
and let N* (NV*) denote the set of products sold in the premerger (postmerger) world. Recall
that the premerger robust wholesale price equilibrium is given by w*(I'(¢)) and the robust
retail price equilibrium by p*(w*(I'(¢))). We denote the corresponding postmerger robust

wholesale and retail price equilibria by @*(I'(c)) and p*(@*(I'(c))), respectively.

Theorem 11 (Merger of a Supplier with an Exclusive Retailer; Federgruen and
Hu [36]). Suppose Assumptions (P), (Z), and (S) hold.

(a) (Effective cost rate polyhedron) C' C C.

(b) (Assortment) N* C N*,
(c) (Wholesale prices) *gf‘(c)) <w*(T(c)).
(d) ( (©) <p*(w*(T'(c)))-

W
Retail prices) p*(w*(T

Theorem 11 shows that after the vertical merger, the robust and globally stable wholesale
price equilibrium decreases, as does the robust and globally stable retail price equilibrium.
Moreover, the postmerger equilibrium product assortment is a subset of its premerger coun-
terpart. In other words, any product that failed to be competitive in the premerger market
continues to be uncompetitive after the merger; moreover, the merger may “elbow” some of
the products out of the market. The intuition is as follows. Because a vertical merger elim-
inates double marginalization for the integrated firm, it leads to lower equilibrium prices.
Some products that have high marginal costs with positive demand levels in the premerger
world can be priced out of the market after the merger, as the vertical merger drives down
the equilibrium prices. This result implies that vertical mergers increase consumer welfare
as the market prices decrease; however, this may be achieved at the cost of a reduction of
product variety in the market.

In the alternative setting where the (retail) prices of the merged firm’s products are deter-
mined and disclosed in the first-stage game, Federgruen and Hu [36] obtain somewhat more
restricted comparison results: for any given vector of wholesale prices, the corresponding
robust and globally stable retail price equilibrium is smaller than before the merger, and
the equilibrium product variety is (weakly) reduced as a result of the merger. When the
cost rate vector belongs to the above premerger effective cost rate polyhedron C', all robust
equilibrium wholesale and retail prices weakly decline, as does the product assortment. How-
ever, price increases or expansions of the product assortment may arise for other cost rate
vectors.

6.7. Coexistence of Substitutable and Complementary Products

In this subsection, we extend Section 6.2 to settings with complementary products in addi-
tion to pairs of products that are substitutes for each other. A pair of products (I,1') are
complements if their cross-price elasticities of demand are negative, such that a price increase
for product ! reduces the demand for product !’, and vice versa.

Little has been established in the general literature on price competition with comple-
mentary products, even with demand systems under which all potential products are sold
in the market, for any possible price combination in the feasible price region. Consider, for
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example, the transcendental logarithmic demand functions, first introduced by Christensen
et al. [24] (see also Milgrom and Roberts [54]):

logd,(p) ="+ Y Brlog(p;) + > Y v log(pi)log(p;), where B < 0,77, <0.
JEN JEN iEN

Note that in this type of model, every product n is sold in the market, irrespective of what
price combinations are chosen. If 87 >0 and ~;; > 0 for all j # n, it is easily verified that
all products are substitutes. Moreover, the price competition game is supermodular (see
Milgrom and Roberts [54]), guaranteeing the existence of a Nash equilibrium, along with
several other equilibrium properties. On the other hand, if 8} <0 and v;; <0 for all j #n,
all products are complements. In this case, it is easily verified that the profit functions are
log-submodular. This implies that the best response functions are decreasing; in such games,
it is usually impossible to establish that a pure Nash equilibrium exists; see, e.g., Vives [64,
Section 2.3.2]. (Note also that if some or all of the coefficients 5} < 0 and 7y, <0, the
items’ profit functions also fail to be quasiconcave in their own price variables, so that the
existence of a pure-strategy equilibrium cannot be established on the basis of the Debreu
theorem, either.)

Clearly, treatment of complementary products is even considerably more challenging in a
demand system that allows retailers (and wholesalers) to select among the potential products
that they want to carry, based on the various price choices by all members of the supply
chain. Nevertheless, we have been able to extend our results to allow for systems with
complementary products (i.e., a matrix R that fails to be a Z-matrix) under the following
relaxation of the Z-property.

Assumption (C) (Substitutes and Complements). The matriz R satisfies
(a) Riy, —n(i) S0 for any retailer i; and
(b) RXfl(i),N(z‘) >0 for any retailer 1.

Assumption (C)(a) stipulates that products carried by distinct retailers are gross substi-
tutes. Products carried by the same retailer may be complements, as long as the inverse of
each of the retailers’ matrices Rr(;), ar(;) is nonnegative. (If R is positive definite, each of the
submatrices Rar(;), ar(i) is positive definite and hence invertible as well.) Note that Assump-
tion (C) is a significant generalization of Assumption (Z). While the former requires that
all off-diagonal elements of the R-matrix—hence, all cross-elasticities—are nonpositive, the
requirement is now restricted to products (potentially) sold by different retailers (Assump-
tion (C)(a)). Note also that Assumption (C)(b) is easily satisfied when R is a Z-matrix.
However, the condition is considerably more general.

We first characterize the equilibrium behavior in the retailer competition model, when
relaxing Assumption (Z) to Assumption (C).

Our main result in characterizing the equilibrium behavior of the retailer competition
game continues to apply; i.e., there exists a pure Nash equilibrium. Moreover, the effective
retail price polyhedron P contains a unique equilibrium that is globally stable under the
robust best response mapping.

Theorem 12 (Existence of Price Equilibrium in Retailer Competition Model;
Federgruen and Hu [33]). Suppose Assumptions (P) and (C) hold.

(a) IfweW, p*(w)=w+[R+T"(R)] q(w) is a unique equilibrium in P that is globally
stable under the robust best response mapping.

(b) If w¢ W, assume Assumption (NPW) (a weaker condition than Assumption (S); see
Federgruen and Hu [34]) holds, then p* (w') = w' +[R+T"(R)]~tq(w’) is a unique equilibrium
in P that is globally stable (under the robust best response mapping), where w' = ©(w) is
the projection of w onto W.
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Even in Section 6.2, where all products are substitutes (i.e., R is a Z-matrix), there may
be any number of equilibria outside of P. However, in Section 6.2, any equilibrium outside
P is equivalent to one on the boundary of P in the sense of generating the identical sales
volumes and profit levels for all retailers and products. In the generalized model where
Assumption (Z) is relaxed to Assumption (C), this equivalency result may fail to hold. We
now develop sufficient conditions for such an equivalency. It amounts to establishing the
following two results:

(a) If p ¢ P, the projection Q(p) € P.

(b) If p* ¢ P is an equilibrium, then Q(p*) is an equivalent equilibrium.

To establish (b), two auxiliary results are needed:

(b1) The retailers’ market is competitive; i.e., for any pair of products [ and I’ that are
sold by different retailers, d;(p) increases when p;: increases.

(b2) For any firm, there exists a best response to a given competitors’ price vector such
that it employs prices at levels greater than or equal to the corresponding wholesale prices.

As mentioned, (bl) appears to be an immediate consequence of Assumption (C)(a), guar-
anteeing that cross-elasticities of the “raw” demand for pairs of products (I,1') sold by differ-
ent retailers are nonnegative; i.e., ¢;(p) increases when p;: increases. However, when R fails
to be a Z-matrix, the actual demand function d(-) may fail to inherit the “competitiveness
property” of the raw demand functions. Several sufficient conditions do guarantee (bl), but
the simplest such condition is symmetry for the matrix R. We therefore assume symmetry
going forward (i.e., Assumption (S)).

Proposition 4 (A Competitive Retailer Market; Federgruen and Hu [33]). Sup-
pose Assumptions (P), (C), and (S) hold. For any pair of products (1,1") sold via different
retailers, d;, the sales volume of product | increases with the price py of product l'.

We establish result (b2) under the following condition.

Assumption (C*). The matriz R satisfies
(a) kal’ﬁaﬁ >0 for any N QN,N and
(b) RK/I,NRJ\"/, _wn(iy S0 for any N C N (i) and any retailer 4.

As with Assumption (C), Assumption (CT) is a relaxation of the requirement that R is
a Z-matrix: when R is a Z-matrix, R/\"/,/\"/ is both positive definite and a Z-matrix for any
N CN. This implies that kal 2 0. Combined with the assumption a > 0, this completes
the verification of Assumptions (C*)(a) and (CT)(b).

Proposition 5 (Federgruen and Hu [33]). Suppose Assumptions (P), (C), (CT),
and (S) hold. For any w > 0, there exists a best response vector p > w.

Finally, we turn to condition (a). When the matrix R fails to be a Z-matrix, the projection
p=Q(p) onto the polyhedron P of a vector p ¢ P may fail to belong to P: while p satisfies
the inequalities ¢(p) > 0, the condition p > 0 fails to be guaranteed. Soon et al. [60, Lemma 6]
shows that Assumption (C*)(a) is the necessary and sufficient condition to guarantee that
Q(p) e P for all pe Rf . We are now ready to provide a set of sufficient conditions under
which any equilibrium p outside of P, Q(p) is an equivalent equilibrium, and as a result,
there exists an essentially unique equilibrium which is globally stable under the robust best
response mapping.

Theorem 13 (Equivalent Equilibria; Federgruen and Hu [33]). Suppose Assump-
tions (P), (C), (CT), and (S) hold. Fiz w > 0. Any equilibrium p° of the retailer competition
model is equivalent to p = Q(p°) and p*(w') is the essentially unique equilibrium which is
globally stable under the robust best response mapping, where w' = O(w).
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We conclude that, as in Section 6.2, with substitutable products only, the equilibrium in
the retailer competition model is essentially unique under the robust best response mapping
with the conditions of Theorem 13. Moreover, in view of Section 6.3, the induced demand
functions for the suppliers can be structurally identical to the demand functions d(-) faced
by the retailers. This implies that we can extend the characterization of the equilibria to
the first-stage supplier competition game, as we did in Section 6.3.

6.8. Summary and Future Work

The demand model introduced in Section 6.1 has many advantages: First, it is compact
and characterized by a single NV x N matrix, R, of price sensitivity coefficients along with
a single intercept vector for the affine part of the demand functions. Second, depending on
what prices are selected, a different subset of all potential products is offered in the market.
Thus, the model specifies a product assortment, along with specifically associated demand
volumes. This is in sharp contrast to all other commonly used demand models. For example,
under the various variants of the MNL model discussed in Section 2, all products attain
some market share, irrespective of their absolute and relative price levels. Under the demand
model of this section, we are able to obtain a characterization of the equilibrium behavior
of multiechelon competition with a plethora of analytical comparative statics results. More-
over, the equilibria can be computed with only a few matrix multiplications and inverses, in
some cases combined with the solution of a single linear program in N variables and N con-
straints. This, in turn, enables computational comparative statics if analytical comparisons
are intractable. We expect to use the framework as a workhorse model to answer other ques-
tions of managerial importance, such as the impact of horizontal mergers and more general
network structure changes. Future research may also focus on extending the framework to
account for demand uncertainty, capacity constraints, and dynamic interactions.
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