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Online Appendix to
“Sequential Multi-Product Price Competition in

Supply Chain Networks”

Awi Federgruen and Ming Hu

A. Preliminaries.

A matrix is a P -matrix, if all of its principal minors are positive. It is well known that a positive

definite matrix is a P -matrix. A matrix which is both a Z-matrix and a P -matrix is referred to as

a ZP -matrix. We use the following properties of ZP -matrices.

Lemma A.1 (Properties of ZP -matrices). Let X be a ZP -matrix and Y be a Z-matrix

such that X ≤ Y , i.e., Y −X ≥ 0. Then

(a) X−1 exists and X−1 ≥ 0;

(b) Y is a ZP -matrix and Y −1 ≤X−1;

(c) XY −1 and Y −1X are ZP -matrices; and

(d) If D is a positive diagonal matrix, then DX, XD and X +D are ZP -matrices.

Proof of Lemma A.1. (a)-(d). By Horn and Johnson (1991, Theorem 2.5.3), a ZP -matrix is

a nonsingular, so-called, M -matrix. Properties (a)-(d) of ZP -matrices can be found in Horn and

Johnson (1991, Section 2.5) as properties of M -matrices. �

We need the following properties of the projection operator.

Lemma A.2 (Projection). (a) Ω(p)∈ P ; if p∈ P , Ω(p) = p.

(b) If p /∈ P , Ω(p) is on the boundary of P .

(c) Ω(p) may be computed by minimizing any linear objective φT t with φ> 0 over the polyhedron,

described by (3).

(d) The projection operator Ω(·) is monotonically increasing, and each component of Ω(·) is a

jointly concave function.

Proof of Lemma A.2. (a) See Lemma 2 in Federgruen and Hu (2013).

(b) Since p /∈ P , the correction vector t 6= 0; thus, there exists a product l with tl > 0 and by (3),

[a−R(p− t)]l = 0, implying that Ω(p) is on the boundary of P .

(c) Follows from Theorem 2 in Mangasarian (1976), since R is a Z-matrix.

(d) Let p1 ≤ p2. Fix a product l. To show Ω(p1)l ≤ Ω(p2)l, choose φ ∈ RN as follows: let φl = 1

and φl′ = ε for all l′ 6= l and ε > 0 arbitrarily small. Note that with the change of variables u≡ p− t,

the Linear Program described in part (c) is equivalent to

zε(p)≡ max φTu



2

s.t. u≤ p,

a−Ru≥ 0.

Clearly, zε(p
1) ≤ zε(p2), since the feasible region under p = p2 contains that under p = p1. Thus,

Ω(p1)l = limε↓0 zε(p
1) ≤ limε↓0 zε(p

2) = Ω(p2)l. Finally, by a standard argument, zε(p) is a jointly

concave function, for any ε > 0, and the same applies to Ω(p)l = limε↓0 zε(p). �

B. Proofs.

Proof of Proposition 1. Parts (a) and (b) follow from Theorems 2 and 3 in Federgruen and Hu

(2013). The same pair of theorems also show part (c), i.e., Ω(p̃) = p∗ for any equilibrium p̃. This

implies that all equilibria share the same retailer sales volumes d(p∗); moreover, since p∗ = p̃− t

with t≥ 0 and d(p̃− t) = q(p∗); we have

πi(p̃) =
∑

(j,k)∈N (i)

(p∗ijk + tijk−wijk)[q(p̃− t)]ijk

=
∑

(j,k)∈N (i)

(p∗ijk−wijk)[q(p∗)]ijk +
∑

(j,k)∈N (i)

tijk[q(p̃− t)]ijk

=
∑

(j,k)∈N (i)

(p∗ijk−wijk)[q(p∗)]ijk = πi(p
∗),

where the one next to last identity holds because of (3).

The expression of the component-wise smallest equilibrium for w ∈W and w /∈W follows from

Proposition 4(a) and Theorem 3 in Federgruen and Hu (2013), respectively. �

Proof of Theorem 1. (a) We need to show that the regular extensionD(w) of the affine functions

Q(w) = b− Sw, is obtained by applying the affine functions to the projection Θ(w). The latter

result was shown in Soon et al. (2009), when the matrix S is a positive definite Z-matrix. By

Lemma 1 below, S is a Z-matrix. Moreover,

S ≡Ψ(R)R= T (R)[R+T (R)]−1R= T (R)[I+R−1T (R)]−1 = [T (R)−1 +R−1]−1 (B.1)

is positive definite, since R, and hence T (R), are positive definite and the inverse of a positive

definite matrix is positive definite.

If R is symmetric, so is S: By (B.1), S = [R−1 + T (R)−1]−1. Since R is symmetric, so is T (R)

and so are their inverses R−1 and T (R)−1; the same applies to [R−1 +T (R)−1] and its inverse.

Finally, b = Ψ(R)a ≥ 0 follows from Ψ(R) ≥ 0, a result shown in Federgruen and Hu (2013,

Proposition 4(e)).

Parts (b) and (c). The proof is analogous to that of Theorem 1 in Federgruen and Hu (2013).

The proof of part (b) only requires that S is positive definite, a property just verified. The proof
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of part (c) merely requires that b≥ 0 and S is a positive definite Z-matrix, properties verified in

part (a). �

Proof of Theorem 2. (a) Clearly Q(c0) = b− S(S−1b) = 0. Moreover, since by Theorem 1(a),

S is a positive definite Z-matrix, S−1 ≥ 0, see, e.g., Horn and Johnson (1991, Theorem 2.5.3).

By Theorem 1(a), b ≥ 0, so that 0 ≤ c0 = S−1b = R−1Ψ(R)−1b = R−1a. (To verify the second

equality, note that both R and Ψ(R) are invertible: R is invertible because it is positive definite, by

assumption (P); Ψ(R) = T (R)[T (R) +R]−1 is invertible as the product of two invertible matrices,

with T (R) invertible because it is positive definite, as well.)

(b) Analogous to the proof of Theorem 2 in Federgruen and Hu (2013).

(c) Analogous to the proof of Theorem 3 in Federgruen and Hu (2013), after establishing that

Ψ(S)b≥ 0 and Ψ(S)S is a positive definite Z-matrix (B.2)

to ensure that the projection onto the polyhedron C in the space of cost rate vectors, is well defined,

in the sense that any vector c∈RN+ is projected onto a non-negative vector c′. By Theorem 1(a), S

is a symmetric positive definite Z-matrix and b≥ 0. Thus, the induced demand functions D(w) are

the unique regular extension of the system of affine functions Q(w) = b−Sw with (b,S) sharing the

same properties as (a,R). Applying the above arguments to the functions Q(·), (B.2) follows. �

Proof of Proposition 2. P ⊆W : Since W = {w ≥ 0 : Ψ(R)q(w) ≥ 0}, it suffices to show that

Ψ(R) ≥ 0: if 0 ≤ x ∈ P , q(x) ≥ 0 and Ψ(R)q(x) ≥ 0, i.e., x ∈ W . But, Ψ(R) ≥ 0 follows from

Proposition 4(e) in Federgruen and Hu (2013). The proof of W ⊆C is analogous. �

Proof of Proposition 3. (a) We show that {P (e), e = 1,2, . . . ,m+ 1} is nested. Analogously to

(8), for any e,

a(e+1)−R(e+1)p= Ψ(e+1)(R(e))(a(e)−R(e)p),

see (12). Since R = R(1) is symmetric, Ψ(R(1)) ≥ 0, a result shown in Federgruen and Hu (2013,

Proposition 4(e)). Recursively, for any e, R(e) is symmetric and hence, Ψ(e+1)(R(e))≥ 0. Therefore,

for any e,

P (e) = {p≥ 0 | a(e)−R(e)p≥ 0} ⊆ {p≥ 0 |Ψ(e+1)(R(e))(a(e)−R(e)p)≥ 0}= P (e+1).

(b) We show that {P (e), e= 1,2, . . . ,m+ 1} is contained in hypercube H. For any p∈ P (e), p≥ 0

and a(e)−R(e)p≥ 0. Since R(e) is a ZP -matrix, R(e)−1 ≥ 0, see Lemma A.1(a). Then for any p∈ P (e),

p≥ 0 and p≤R(e)−1
a(e) = · · ·=R−1a, i.e., p∈H.

(c) An alternative characterization of polyhedron P (e) is by its extreme points. Note that P (e) is

an N -dimensional polyhedron with 2N linear constraints: p≥ 0 and a(e) −R(e)p≥ 0. An extreme
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point is the intersection of N hyperplanes corresponding with N constraints chosen from the total

of these 2N constraints. The set of constraints may be referred to by a pair of index sets (A1,A2),

where A1 ⊆N is the index set for the set of constraints p≥ 0 and A2 ⊆N is the index set for the

set of constraints a(e)−R(e)p≥ 0, which are binding at the extreme point:

pA1 = 0 and [q(e)(p)]A2 = [a(e)−R(e)p]A2 = 0.

Note that A1 and A2 must be mutually exclusive, if a> 0: When a product l has its price equal

to 0, since al > 0, its demand cannot be equal to zero; Thus, since |A1 ∪A2|=N , A2 =N \A1. If

for some product l, al = 0, the extreme points may be degenerate, the set of products that have

zero prices may be strictly larger than A1. Nevertheless, it is still sufficient to use one index set

A ⊆ N to characterize an extreme point. That is, an extreme point, denoted by z(e)(A), is the

unique solution of the system of linear equations:

pĀ = 0 and [q(e)(p)]A = [a(e)−R(e)p]A = 0.

(Note that for degenerate extreme points, there exists an index set S ⊃ Ā such that pS = 0.) Since

pĀ = 0,

[q(e)(p)]A = [a(e)−R(e)p]A = a
(e)
A −R

(e)
A,ApA = 0.

Hence, for any e and A,

[z(e)(A)]A = [R
(e)
A,A]−1a

(e)
A ≥ 0, (B.3)

where, because of Lemma A.1(a), the inequality is due to the fact that R(e) is a ZP -matrix and

a(e) ≥ 0, as shown in part (b) (since R(e) is a ZP -matrix, so is R
(e)
A,A). This also verifies that the

extreme points are indeed non-negative.

The extreme point, z(e+1)(A), for polyhedron P (e+1) satisfies: [z(e+1)(A)]Ā = [z(e)(A)]Ā = 0 and

[q(e+1)(p)]A = [Ψ(e+1)(R(e))(a(e)−R(e)z(e+1)(A))]A = 0.

For notational simplicity, we temporarily denote Ψ(e+1)(R(e)) by Ψ. Moreover, since [z(e+1)(A)]Ā =

0, z(e+1)(A) satisfies:

0 = [Ψ(e+1)(R(e))(a(e)−R(e)p)]A = ΨA,A(a
(e)
A −R

(e)
A,ApA) + ΨA,Ā(a

(e)

Ā −R
(e)

Ā,ApA),

i.e.,

ΨA,Aa
(e)
A + ΨA,Āa

(e)

Ā = [ΨA,AR
(e)
A,A+ ΨA,ĀR

(e)

Ā,A][z(e+1)(A)]A.
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We write:

ΨA,Aa
(e)
A ≤ ΨA,Aa

(e)
A + ΨA,Āa

(e)

Ā

= [ΨA,AR
(e)
A,A+ ΨA,ĀR

(e)

Ā,A][z(e+1)(A)]A

≤ ΨA,AR
(e)
A,A[z(e+1)(A)]A, (B.4)

where the first inequality is due to Ψ≥ 0, hence ΨA,Ā ≥ 0 and a(e) ≥ 0, and the second inequality

is due to the fact that R(e) is a Z-matrix, hence R
(e)

Ā,A ≤ 0, while ΨA,Ā ≥ 0 and [z(e+1)(A)]A ≥ 0 (see

(B.3)).

Analogous to the fact that Ψ(e+1)(R(e))R(e) is a ZP -matrix, we can show that ΨA,AR
(e)
A,A is a

ZP -matrix since R
(e)
A,A is a symmetric ZP -matrix. Hence, [ΨA,AR

(e)
A,A]−1 ≥ 0. By (B.3) and (B.4),

[z(e+1)(A)]A ≥ [R
(e)
A,A]−1a

(e)
A = [z(e)(A)]A.

Hence, the series {z(e)(A)} is monotone.

By part (b), this series of extreme points {z(e)(A)} is bounded above by the corresponding

extreme point, h(A), of the hypercube H, characterized by [h(A)]A = [R−1a]A and [h(A)]Ā = 0. By

the Monotone Convergence Theorem, this series of extreme points {z(e)(A)} converges. This argu-

ment holds for an arbitrary index set A, and the corresponding extreme point. Since a polyhedron

can be characterized by its extreme points, the sequence of polyhedra {P (e)} converges. �

Proof of Theorem 3. (a) Let γ ≡Ψ(S)b and U ≡Ψ(S)S. When the suppliers choose the vector

of cost rates [c+ δel], the resulting equilibrium sales volumes are obtained as the unique regular

extension DS(c + δel) of the affine functions QS(c + δel) = γ − U [c + δel]. It follows from (B.2)

that γ ≥ 0 while U is a positive definite Z-matrix, i.e., U has positive diagonal elements and non-

positive off-diagonal elements. Thus, as cl increases by δ, QS
l (c+ δel) decreases linearly. Let ∆+

denote the root of the equation QS
l (c+ δel) = 0. Thus DS(c+ ∆+el) =QS(c+ ∆+el) = 0. By the

definition of regularity, any increase of δ beyond ∆+ has no impact on any of the demand volumes,

see Definition 1. When δ ≤∆+, the remaining monotonicity properties follow from Proposition 2

in Federgruen and Hu (2013), applied to the system of demand functions DS(·).

(b) It follows from part (a) that when δ > ∆+, an increase in δ has no impact on any of the

products’ demand volumes, and, a fortiori, on the equilibrium assortment. When δ≤∆+, it follows

from part (a), that the demand volume of all other products l′ 6= l increases (weakly), while that

of product l remains positive, by the definition of the root ∆+. This implies that, for δ ≤∆+, the

product assortment remains the same or expands.
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Finally, let ∆≡max
{

0≤ δ≤∆+ : assortment A0 is the assortment under the cost rate vector c=

c0 + δel
}

. Thus, when δ ∈ [0,∆], the product assortment remains given by the set A0. This implies

that the demand volume of any product l /∈A0 remains equal to 0, while that of the products in

A0 varies linearly with δ, see Proposition 2 in Federgruen and Hu (2013) applied to the affine

functions QS(·) and the set A0.

(c) It follows from Theorem 2(b) that w∗, the component-wise smallest equilibrium in the supplier

competition game, has w∗ ∈W . Recall from Proposition 1 and (10) that

p∗ = [R+T (R)]−1a+ [R+T (R)]−1T (R)w∗, (B.5)

w∗ = [S+T (S)]−1b+ [S+T (S)]−1T (S)Γ(c). (B.6)

By Lemma A.2(d) applied to the projection operator, Γ(·) is a monotonically increasing operator.

The fact that both p∗ and w∗ are increasing vector-functions of c, thus follows by using the fact

that [R+T (R)]−1T (R)≥ 0 and [S+T (S)]−1T (S)≥ 0, see Proposition 1 parts (d) and (f).

Finally, we have shown that every product l’s equilibrium retail and wholesale price p∗l and w∗l

is an increasing affine function of Γ(c), while Lemma A.2(d) shows that Γ(·) is a vector of jointly

concave functions. This establishes that p∗l and w∗l are jointly concave functions of c. �

Proof of Corollary 1. (a) If w ∈W o, there exists a ball around the vector w which is contained

within W . The result is immediate from (B.5) and Theorem 3(c).

(b) If c ∈ Co, there exists a ball around the vector c which is contained within C so that, in

this ball, Γ(c) = c. The result then follows by substituting (B.6) into (B.5), while the sign of the

elements of the pass-through matrix follows from Theorem 3(c).

(c) When c /∈Co, the marginal pass-through rates of cost changes are no longer immediate from

(B.5) and (B.6). To address this case, we first need the following lemma.

Lemma B.1. Fix c ∈ RN+ . Let A denote the (unique) assortment associated with the equilibria,

under c. Let P o
A denote the subspace of the retail price space RN+ on which the same assortment A

arises.

(a) P o
A =

{
p ∈ RN+ | dA(p) = aA − RApA > 0 and pĀ ≥ R−1

Ā,Ā[aĀ − RĀ,ApA]
}

, where aA ≡ aA −

RA,ĀR
−1
Ā,ĀaĀ ≥ 0, and RA ≡RA,A−RA,ĀR−1

Ā,ĀRĀ,A is a positive definite Z-matrix.

(b)

p∗A = [RA+T (RA)]−1[aA+T (RA)w∗A], (B.7)

w∗A = [SA+T (SA)]−1[bA+T (SA)cA], (B.8)

where bA = Ψ(RA)aA and SA = Ψ(RA)RA.
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Proof of Lemma B.1. (a) Fix p ∈ P o
A. Let t denote the unique price correction vector such

that d(p) = q(p− t). It follows from (3) that tA = 0, since dA(p)> 0. It follows from 0 = dĀ(p) =

aĀ−RĀ,ApA−RĀ,Ā(pĀ− tĀ) and tĀ ≥ 0, that

pĀ− tĀ =R−1
Ā,Ā[aĀ−RĀ,ApA], (B.9)

and pĀ ≥R−1
Ā,Ā[aĀ−RĀ,ApA]. (Since R is positive definite, so is RĀ,Ā, so that RĀ,Ā is invertible.)

This verifies the second set of inequalities in the characterization of P o
A. Substituting (B.9) into

dA(p) = aA−RA,ApA−RA,Ā(pĀ− tĀ), we get

0<dA(p) = (aA−RA,ĀR−1
Ā,ĀaĀ)− (RA,A−RA,ĀR−1

Ā,ĀRĀ,A)pA = aA−RApA, (B.10)

thus verifying the first set of inequalities in the description of P o
A. By Assumptions (Z) and (P),

RA,Ā ≤ 0, RĀ,A ≤ 0 and RĀ,Ā is a positive definite Z-matrix. By Lemma A.1(a), R−1
Ā,Ā ≥ 0 and

hence aA = aA−RA,ĀR−1
Ā,ĀaĀ ≥ aA ≥ 0. Since RA is the Schur complement of a principal submatrix

RA,A of matrix R, RA is positive definite by Lemma A.2(a) in Federgruen and Hu (2013). Moreover,

since RA,ĀR
−1
Ā,ĀRĀ,A ≥ 0, RA ≤RA,A. Therefore, RA is a Z-matrix.

Conversely, fix p∈RN+ . Assume

aA−RApA > 0, (B.11)

pĀ ≥R−1
Ā,Ā[aĀ−RĀ,ApA]. (B.12)

Let tĀ denote the surplus variables in (B.12) and tA = 0. Thus, t = (tA, tĀ) ≥ 0. It suffices to

show that [a−R(p− t)]A > 0 and [a−R(p− t)]Ā = 0. The latter follows immediately from (B.9),

while [a−R(p− t)]A = aA−RA,ApA−RA,Ā(pĀ− tĀ) = aA−RA,ApA−RA,ĀR−1
Ā,Ā[aĀ−RĀ,ApA] =

aA−RApA > 0, by (B.11).

(b) The vector equations (B.7) and (B.8) follow immediately by proving the following result:

Consider the retailer competition model under a given wholesale price vector w. Let p∗ denote the

component-wise smallest equilibrium in this game, and let A denote the associated assortment of

products. In other words, p∗A ∈ P o
A. Then

p∗A = [RA+T (RA)]−1[aA+T (RA)wA]. (B.13)

Applying (B.13) to w=w∗, we get (B.7). The proof of (B.8) is analogous.

To prove (B.13), for p ∈ P o
A, dA(p) = aA −RApA > 0 and dĀ(p) = 0, where aA ≥ 0 and RA is a

positive definite Z-matrix. For p∈ P o
A,

πi(p) = (pN (i)∩A−wN (i)∩A)[aA−RApA]N (i)∩A.
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p∗ must satisfy the First Order Conditions (FOC): for (i, j, k)∈A,

0 =
∂πi(p)

∂pijk
= [aA−RApA]ijk−RAijk,ijk(pijk−wijk)−

∑
(i,j′,k′)∈A,(j′,k′)6=(j,k)

RAij′k′,ijk(pij′k′ −wij′k′).

Rearranging terms, we get

2RAijk,ijkpijk +
∑

(i,j′,k′)∈A,(j′,k′)6=(j,k)

(RAij′k′,ijk +RAijk,ij′k′)pij′k′ +
∑

(i′,j′,k′)∈A,i′ 6=i

RAijk,i′j′k′pi′j′k′

= aAijk +RAijk,ijkwijk +
∑

(i,j′,k′)∈A,(j′,k′)6=(j,k)

RAij′k′,ijkwij′k′ .

It is convenient to write this system of |A| linear equations in |A| unknowns in matrix form as:

[RA+T (RA)]pA = aA+T (RA)wA, or equivalently,

[RA+T (RA)](pA−wA) = aA−RAwA.

Hence, we can write

p∗A = wA+ [RA+T (RA)]−1(aA−RAwA)

= [RA+T (RA)]−1aA+ [I− (RA+T (RA))−1RA]wA

= [RA+T (RA)]−1aA+ [(RA+T (RA))−1(RA+T (RA))− (RA+T (RA))−1RA]wA

= [RA+T (RA)]−1aA+ [RA+T (RA)]−1T (RA)wA

= [RA+T (RA)]−1[aA+T (RA)wA]. �

Theorem 3(c) shows that for every product l, the (component-wise smallest) retail and wholesale

price equilibrium, p∗l and w∗l are concave functions of the cost-rate vector c. This implies that they

are differentiable, almost everywhere. Moreover, their left- and right-hand (partial) derivatives with

respect to any of the cost rates exist, everywhere. These can be obtained, straightforwardly, from

the vector equations (B.7) and (B.8) in Lemma B.1.

Fix a product l = (i, j, k) and consider the marginal impact of a decrease of its cost rate cl to

cl−δ. As in the proof of Theorem 3(b), one verifies that a positive threshold ∆> 0 exists, such that

the assortment A remains unchanged, as long as δ≤∆. (Unlike for cost increases, the threshold for

cost reductions must be positive.) Then, equations (B.7) and (B.8) apply for all cl ∈ (c0
l −∆, c0

l ].

The left-hand derivative expressions follow immediately. �

Proof of Proposition 4. (a) We write

[RA+T (RA)]−1T (RA) = [[T (RA)]−1RA+ I]−1.
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Since R is symmetric, T (RA) is symmetric and then T (RA) ≥ RA. By Lemma A.1(c), since

T (RA) is a ZP -matrix and RA is a Z-matrix, [T (RA)]−1RA is a ZP -matrix. By Lemma A.1(d),

[T (RA)]−1RA+ I is a ZP -matrix, as well. By Lemma A.1(a),

[[T (RA)]−1RA+ I]−1 ≥ 0. (B.14)

Since T (RA) is a ZP matrix, hence [T (RA)]−1 ≥ 0 by Lemma A.1(a). Then because RA ≤ T (RA),

[T (RA)]−1RA ≤ I and hence [T (RA)]−1RA + I ≤ 2I. Since [T (RA)]−1RA + I is a ZP -matrix, we

have by Lemma A.1(b), [RA+T (RA)]−1T (RA) = [[T (RA)]−1RA+ I]−1 ≥ I
2
.

To prove the upper bound in (16), let ∆≡ T (RA)−RA. Then RA = T (RA)−∆. By the symmetry

of T (RA), ∆≥ 0. Then

RA[RA+T (RA)]−1T (RA) = [T (RA)− ∆][RA+T (RA)]−1T (RA)

≤ 1

2
[2T (RA)− ∆][RA+T (RA)]−1T (RA)

=
1

2
[T (RA) +RA][RA+T (RA)]−1T (RA) =

1

2
T (RA),

where the inequality is due to ∆≥ 0 and [RA+ T (RA)]−1T (RA)≥ 0, by (B.14). Since (RA)−1 ≥ 0,

we have the desired upper bound.

(b) Analogously, since S is symmetric (see Theorem 1(a)), T (SA) is symmetric. Hence,

I

2
≤ [SA+T (SA)]−1T (SA)≤ (SA)−1T (SA)

2
.

The bounds on the supplier cost pass through matrix follow immediately because all the bounds

are non-negative matrices. �

Lemma B.2. Fix a1 ≤ a2. (a) P (a1) ⊆ P (a2). (b) W (a1) ⊆ W (a2). (c) C(a1) ⊆ C(a2). (d)

Γ(c, a1)≤ Γ(c, a2). (e) p∗(w,a1)≤ p∗(w,a2). (f) w∗(c, a1)≤w∗(c, a2).

Proof of Lemma B.2. Rather than assuming that the matrix R is symmetric, we prove the

lemma under the far weaker assumptions that T (R) and T (S) are symmetric. (Recall that under

R is symmetric, S is symmetric as well, and so are T (R) and T (S).) Part (a) does not require any

symmetry assumption. Parts (b) and (e) of the lemma only require that T (R) be symmetric.

(a) Recall that

P (a)≡ {p≥ 0 | a−Rp≥ 0}.

Suppose p∈ P (a1), i.e., p≥ 0 and a1−Rp≥ 0. Since a1 ≤ a2, we have p≥ 0 and a2−Rp≥ a1−Rp≥

0, i.e., p∈ P (a2). Hence, P (a1)⊆ P (a2).
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(b) Recall that

W (a)≡ {w≥ 0 |Ψ(R)a−Ψ(R)Rw≥ 0}.

Since T (R) is symmetric, by Proposition 4(e) in Federgruen and Hu (2013), Ψ(R)≥ 0. If a1 ≤ a2,

then Ψ(R)a1 ≤Ψ(R)a2. Hence if w ∈W (a1), w ∈W (a2), i.e., W (a1)⊆W (a2).

(c) Recall that

C(a)≡
{
c≥ 0 |Ψ(S)Ψ(R)a−Ψ(S)Ψ(R)Rc≥ 0

}
.

Since T (R) and T (S) are symmetric, Ψ(R)≥ 0 and Ψ(S)≥ 0, so that Ψ(S)Ψ(R)≥ 0. The result

follows, as in part (b).

(d) The proof is analogous to that of Lemma A.2(d): one easily verifies that the Linear Program

to be solved to compute the projection, under a= a1, has a feasible region that is contained within

the feasible region of the LP associated with a= a2.

(e) By Proposition 1 parts (d) and (c),

p∗(w;a) = [R+T (R)]−1a+ [R+T (R)]−1T (R)Θ(w).

The monotonicity in a follows from [R+T (R)]−1 ≥ 0, an immediate consequence of R+T (R) being

a ZP -matrix, see Lemma A.1(a).

(f) In view of Theorem 2 and (10), it suffices to show that Ψ(R)≥ 0 and [S + T (S)]−1 ≥ 0; the

former follows from T (R) being symmetric, and the latter from the symmetry of T (S). �

Proof of Theorem 4. (a)

w∗(Γ(c, a1), a1)≤w∗(Γ(c, a1), a2)≤w∗(Γ(c, a2), a2),

where the first inequality is due to Lemma B.2(f), and the second inequality is due to Lemma

B.2(d) and Theorem 3(c), i.e., w∗(c) is increasing in c.

(b)

p∗(w∗(Γ(c, a1), a1), a1)≤ p∗(w∗(Γ(c, a1), a1), a2)≤ p∗(w∗(Γ(c, a2), a2), a2),

where the first inequality is due to Lemma B.2(e) and the second inequality is due to part (a) and

Theorem 1(f), i.e., p∗(w) is increasing in w.

(c) Fix an arbitrary product l. We consider two cases.

Case 1. Suppose dl(p
∗(w∗(Γ(c, a1), a1), a1)) = 0. Then the claim trivially holds.

Case 2. Suppose dl(p
∗(w∗(Γ(c, a1), a1), a1)) =DS

l (Γ(c, a1), a1)> 0, where DS
l (·) is defined in the

proof of Theorem 3(a). Note that cl ≥ [Γ(c, a2)]l ≥ [Γ(c, a1)]l = cl, where the first inequality follows
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from (3), the second one from Lemma B.2(d), and the equality from DS
l (Γ(c, a1), a1)> 0 and the

complementary slackness conditions (3), applied to the demand system DS(·). Thus,

0<DS
l (Γ(c, a1), a1) = [Ψ(S)b1]l− [Ψ(S)S]l,NΓ(c, a1)

= [Ψ(S)Ψ(R)a1]l− [Ψ(S)S]l,NΓ(c, a1)

≤ [Ψ(S)Ψ(R)a2]l− [Ψ(S)S]l,NΓ(c, a2) =DS
l (Γ(c, a2), a2),

where the inequality is due to (i) Ψ(S) ≥ 0 since T (S) is symmetric and Ψ(R) ≥ 0 since T (R)

is symmetric, see Proposition 4(e) in Federgruen and Hu (2013), which leads to Ψ(S)Ψ(R)a1 ≤

Ψ(S)Ψ(R)a2; (ii) Ψ(S)S is a Z-matrix since T (S) is symmetric by Proposition 5(b) in Federgruen

and Hu (2013), and (iii) [Γ(c, a1)]l′ ≤ [Γ(c, a2)]l′ for all l′ 6= l, and [Γ(c, a1)]l = [Γ(c, a2)]l = cl.

(d) Immediate from part (c).

(e) For any w ∈W , p∗(w)−w= [R+T (R)]−1q(w), see Proposition 1(d). By Proposition 4(a) in

Federgruen and Hu (2013), the demand volumes under p∗(w) satisfy q(p∗(w)) = Ψ(R)q(w), with

Ψ(R) = T (R)[R+T (R)]−1 invertible. Thus,

p∗(w)−w= [R+T (R)]−1[Ψ(R)]−1q(p∗(w)) = [T (R)]−1q(p∗(w)) = [T (R)]−1d(p∗(w)),

since p∗(w) ∈ P . Moreover, [T (R)]−1 ≥ 0, since T (R) is a ZP -matrix, see Lemma A.1(a). In other

words, the vector of the retailers’ profit margins for all N products is an increasing function of the

vector of equilibrium sales volumes and the latter increases in a by part (c).

(f) Let c1 ≡ Γ(c, a1) ∈ C(a1) ⊆ C(a2) and c2 ≡ Γ(c, a2) ∈ C(a2). It follows from Lemma B.2(f)

that

w∗(c1, a1)− c1 ≤ w∗(c1, a2)− c1 =w∗(Γ(c, a1), a2)−Γ(c, a1)

= [S+T (S)]−1Ψ(R)a2 + [S+T (S)]−1T (S)Γ(c, a1)

≤ [S+T (S)]−1Ψ(R)a2 + [S+T (S)]−1T (S)Γ(c, a2) =w∗(Γ(c, a2), a2)−Γ(c, a2),

where the second and last equality follow from Proposition 1(d) applied to the supplier competition

game under a = a2, respectively with c = c1 ∈ C(a1) ⊆ C(a2) and c = c2 ∈ C(a2). The second

inequality follows from [S + T (S)]−1T (S) ≥ 0, as shown in the proof of Proposition 1(f), and

Γ(c, a1)≤ Γ(c, a2) by Lemma B.2(d).

(g) Immediate from parts (c), (e) and (f). �
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Proof of Theorem 5. Theorem 1(a): The part that D(w) arises as the unique regular extension

of the affine functions Q(w) = b− Sw follows by Soon et al. (2009), if the matrix S is a positive

definite Z-matrix and b≥ 0 (see Soon et al. 2009, Theorem 4 and Lemma 6). By Lemma 1, b≥ 0

and S is a Z-matrix, since T (R) is symmetric. Moreover, by the proof of Theorem 1(a), S is positive

definite. Hence, all results in Theorem 1(a), except for the symmetry of S, continue to apply.

Theorem 1 parts (b) and (c): The proof is analogous to that of Theorem 1 in Federgruen and

Hu (2013). The proof of part (b) only requires that S is positive definite. The proof of part (c)

merely requires that b≥ 0 and S is a positive definite Z-matrix, properties verified in part (a).

Theorem 2(a): The proof of Theorem 2(a) only requires that b≥ 0 and S is a positive definite

Z-matrix, properties verified in Theorem 1(a).

Theorem 2(b): The proof of Theorem 2(b) is analogous to the proof of Theorem 2 in Federgruen

and Hu (2013), requiring only that S is a positive definite Z-matrix, a property verified in Theorem

1(a).

Theorem 2(c): Since b≥ 0 and S is a positive definite Z-matrix, properties verified in Theorem

1(a), the proof of Theorem 2(c) is analogous to the proof of Theorem 3 in Federgruen and Hu

(2013), after establishing that

Ψ(S)b≥ 0 and Ψ(S)S is a positive definite Z-matrix,

which can be shown analogously to Lemma 1 under the symmetry assumption of matrix T (S).

Since S is positive definite, the positive definiteness of matrix Ψ(S)S can be shown analogously to

(B.1).

Proposition 2: The proof of P ⊆W requires Ψ(R)≥ 0, which follows from Proposition 4(e) in

Federgruen and Hu (2013) under the symmetry assumption of matrix T (R). Analogously, the proof

of W ⊆C requires Ψ(S)≥ 0, which is guaranteed by the symmetry assumption of matrix T (S). �

Proof of Theorem 6. Theorem 3: The proof requires that γ = Ψ(S)b ≥ 0 and U = Ψ(S)S is

a positive definite Z-matrix, which can be shown analogously to Lemma 1 under the symmetry

assumption of matrix T (S). In addition, for the proof of Theorem 3(c), one needs to show that

[R + T (R)]−1T (R) ≥ 0 and [S + T (S)]−1T (S) ≥ 0, which can be guaranteed by the symmetry

assumptions of matrices T (R) and T (S), see the proof of Proposition 1(f).

Corollary 1 parts (a) and (b): The proof resorts to Theorems 2 and 3, which have been shown

to hold under the symmetry assumptions of matrices T (R) and T (S).

Lemma B.1: The proof requires that a≥ 0 and R is a positive definite Z-matrix, and that b≥ 0

and S is a positive definite Z-matrix. Since T (R) is symmetric, the latter set of properties follow

from Lemma 1.
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Corollary 1 part (c): The proof resorts to Theorem 3, which has been shown to hold under the

symmetry assumptions of matrices T (R) and T (S).

Proposition 4: The proposition was proved under the far weaker assumptions that T (R) and

T (S) are symmetric, rather than assuming that the matrix R is symmetric. (Note that if T (R) and

T (S) are symmetric, so are T (RA) and T (SA) for any assortment set A.)

Lemma B.2: The lemma was proved under the far weaker assumptions that T (R) and T (S) are

symmetric, rather than assuming that the matrix R is symmetric. Part (a) does not require any

symmetry assumption. Parts (b) and (e) of the lemma only require that T (R) be symmetric.

Theorem 4: The theorem was proved under the far weaker assumptions that T (R) and T (S) are

symmetric, rather than assuming that the matrix R is symmetric. �

C. The Extended Affine Model versus the MNL Model

As mentioned, our demand model is parsimonious, in that it is fully specified by a single N ×N -

matrix R of price sensitivity coefficients, and a single N -dimensional intercept vector a. Cicchetti

et al. (1976), Vilcassim et al. (1999) and Dubé and Manchanda (2005) have used the affine demand

model to study, respectively, a ski-resorts, a personal care products and a packaged frozen entrées

industry, all with N ≤ 6 products. Sudhir (2001), Villas-Boas and Zhao (2005) and Pancras and

Sudhir (2007) have estimated demand functions in food items industries, each with N ≤ 4 products,

employing a (mixed) MNL-model in each. Since N ≤ 6, in each of these 6 studies, the effort to

estimate an extended affine model involves estimating at most 42 parameters. For large values of

N , the task of estimating the N 2 entries of the R-matrix may still be formidable. However, there

are various approaches to reduce the effort. For example, the category partitioning approach is to

partition the products into m�N categories and have Rll′ specified as a function of the category

identities of products (l, l′).

Beyond standard econometric techniques, the parameters may be estimated with field experi-

ments, see Li et al. (2015). Without imposing any structure on the R-matrix, the approach requires

O(N logN) experiments. However, the authors identify several approaches to reduce the number of

required experiments to O(logN). Beyond the category partitioning approach, mentioned above,

the authors address three approaches that impose a sparsity structure on the R-matrix. Using

these field experiments, the authors obtained estimates of the R-matrix in studies involving up to

N = 80 products. These studies addressed grocery, health and beauty product lines.

It is interesting to compare the above with the complexity of fitting an MNL model to a given

industry. The number of parameters in an MNL model is at least equal toK, the number of attribute
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terms in the specified utility measures. (An attribute term is a single attribute value or a function

of the various attribute values considered in the model.) However many MNL specifications assume

that at least some of the coefficients of the attribute terms are product specific. For example, several

specifications employ a product-dependent price sensitivity coefficient in the utility measures, see,

e.g., Gallego and Wang (2014) and Aksoy-Pierson et al. (2013). In such specifications the number

of parameters to be estimated is O(NK) or O(N +K).

The MNL and the affine model are similar in that both models allow the user control over the

parameter complexity, by adjustments in the specification: in the MNL model, this is done by

adjusting the number of attribute terms or by restricting oneself to, say, a uniform price sensitivity

coefficient (for the price term in the utility measure). In the affine model, this is accomplished by

imposing restrictions on the structure of the R-matrix.

It should be noted that the MNL model, intrinsically, comes with many restrictions. For example,

it is well known, see, e.g., Berry et al. (1995, p.847) that in this model, the impact of a price change

by a given product j, on the demand volume of any other product i is one and the same. More

specifically, let εi,j = [(∂di(p))/(∂pj)]/[(di(p))/pj] denote the cross price elasticity of the demand

for product i due to a price change for product j. Then εi,j = bjdjpj/M , independent of the identity

of product i; here, bj denotes the coefficient of the price term in the utility measure for product j

and M the total market size. This is very restrictive: it implies that in the automobile industry,

for example, the cross price elasticity of a price change of the Honda Accord on the sales of other

sedans (e.g. Toyota Camry) is identical to that of coupes or hatchbacks or hybrids, let alone SUVs

or minivans. (See also the discussion on page 847 in Berry et al. 1995). Conversely, if one is willing

to make such restrictive assumptions, the analogous assumption in the extended affine model, is

to specify that all off-diagonal elements in any given column of the R-matrix be identical, thus

immediately reducing the number of parameters to 2N .

Another well-known restriction of the MNL model is the “Independence of Irrelevant Alterna-

tives” assumption: the relative market share of a pair of products i and j is not affected by the

emergence of close substitutes for product i, say. As a final example, pointed out in the paper, the

MNL model assumes that any given product is sold in the market, irrespective of how large its

absolute and relative price (compared to those of substitutes). The extended affine model avoids

this restriction entirely, as explained in the paper.

D. Example.

Consider the distribution structure analyzed in McGuire and Staelin (2008), as depicted in Figure

1 where supplier i, i= 1,2, sells product i exclusively through retailer i.
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Assume that

a=

(
1
1

)
and R=

(
1 −γ1

−γ2 1

)
, with 0≤ γ1, γ2 ≤ 1.

It is easily verified that R is a positive definite Z-matrix. When γ1 6= γ2, R fails to be symmetric

but all of the results in Propositions 1 and 2, and Theorems 1 and 2 continue to hold, see §6.

Clearly, T (R) = I and

Ψ(R) = [I+R]−1 =
1

4− γ1γ2

(
2 γ1

γ2 2

)
.

Then we have

S = Ψ(R)R=
1

4− γ1γ2

(
2− γ1γ2 −γ1

−γ2 2− γ1γ2

)
,

Ψ(S) = T (S)[S+T (S)]−1 =
2− γ1γ2

4(2− γ1γ2)2− γ1γ2

(
2(2− γ1γ2) γ1

γ2 2(2− γ1γ2)

)
.

Hence,

C =

{
c≥ 0

∣∣∣∣ (8 + 6γ1− 3γ1γ2− 2γ2
1γ2)− (8− 9γ1γ2 + 2γ2

1γ
2
2)c1 + γ1(2− γ1γ2)c2 ≥ 0

(8 + 6γ2− 3γ1γ2− 2γ1γ
2
2) + γ2(2− γ1γ2)c1− (8− 9γ1γ2 + 2γ2

1γ
2
2)c2 ≥ 0

}
.

Figure 6 Effective Price Polyhedra

P

(a) Effective retail price polyhedron P

W

(b) Effective wholesale price polyhedron W (c) Effective supply cost polyhedron C

In Figure 6, we exhibit the effective retail price polyhedron P , the effective wholesale price

polyhedron W and the effective marginal cost polyhedron C. As stated in Proposition 2, P ⊆W ⊆

C.

We also provide an example where c∈C and w∗(c)∈ (W \P ). Let γ1 = 0.7, γ2 = 0.3. Then, with

a=

(
1
1

)
and R=

(
1 −0.7
−0.3 1

)
,
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it is easily verified that

b= Ψ(R)a=

(
0.7124
0.6069

)
and S = Ψ(R)R=

(
0.4723 −0.1847
−0.0792 0.4723

)
,

and moreover,

Ψ(S) = T (S)[S+T (S)]−1 =

(
0.5083 0.0994
0.0426 0.5083

)
.

Consider c= (1,1.5)T . It is easily verified that

Ψ(S)Q(c) = Ψ(S)(b−Sc) =

(
0.2607
0.0106

)
> 0,

i.e., c∈Co. By Theorem 2,

w∗(c) = c+ [S+T (S)]−1Q(c) =

(
1.5519
1.5225

)
∈W o.

By Proposition 1(d),

p∗(w∗(c)) =w∗(c) + [R+T (R)]−1q(w∗(c)) =

(
1.8125
1.5331

)
∈ P o

and

d(p∗(w∗(c))) = a−Rp∗(w∗(c)) =

(
0.2607
0.0106

)
> 0.

However, note that

a−Rw∗(c) =

(
0.5139
−0.0569

)
,

i.e., w∗(c) /∈ P .

We now calculate the matrix of cost pass-through rates. LetA denote the equilibrium assortment.

We distinguish between two cases.

Case 1: A=N . It follows from Corollary 1 and Proposition 4 that

I

2
≤
(
∂p∗

∂w

)
= [R+T (R)]−1T (R) = [I+R]−1 =

1

4− γ1γ2

(
2 γ1

γ2 2

)
≤ 1

2(1− γ1γ2)

(
1 γ1

γ2 1

)
=
R−1T (R)

2
,

I

2
≤
(
∂w∗

∂c

)
= [S+T (S)]−1T (S) =

2− γ1γ2

4(2− γ1γ2)2− γ1γ2

(
2(2− γ1γ2) γ1

γ2 2(2− γ1γ2)

)
≤ 2− γ1γ2

2[(2− γ1γ2)2− γ1γ2]

(
2− γ1γ2 γ1

γ2 2− γ1γ2

)
=
S−1T (S)

2
,

I

4
≤
(
∂p∗

∂c

)
=

(
∂p∗

∂w

)(
∂w∗

∂c

)
=

2− γ1γ2

[4(2− γ1γ2)2− γ1γ2](4− γ1γ2)

(
8− 3γ1γ2 2γ1(3− γ1γ2)

2γ2(3− γ1γ2) 8− 3γ1γ2

)
≤ 2− γ1γ2

4(1− γ1γ2)[(2− γ1γ2)2− γ1γ2]

(
2 γ1(3− γ1γ2)

γ2(3− γ1γ2) 2

)
=
R−1T (R)S−1T (S)

4
.
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Thus, the own-brand pass-through rate for the retailers (, in response to an increase of a wholesale

price) grows as either γ1 or γ2 increases from 0 to 1, from a minimum value of 50% to a maximum

value of 2
4−1

= 66 2
3
%. The cross-brand pass-through rates grow from 0% to 33 1

3
% as γ1 and γ2

increases from 0 to 1 (, their maximum value).

Similarly, the own-brand pass-through rates for the suppliers in response to an increase of their

input costs, is given by 2

4− γ1γ2
(2−γ1γ2)2

, an increasing function of γ1γ2, which again increases from 50%

to 66 2
3
%. Note that the cross-brand pass-through rate of product i due to a cost increase of product

j is given by γi
[

(2−γ1γ2)−1

4− γ1γ2
(2−γ1γ2)2

]
; both the numerator and the denominator of the expression within

square brackets are increasing in (γ1γ2). Thus for a given value of γi, the cross-brand pass-through

rate increases from γi
8

to γi
(2−γi)

4(2−γi)2−γi
, as γj increases from 0 to 1. Once again, the cross-brand

pass-through rate varies between 0 and 33 1
3
%. Finally, the marginal change rate in a product’s

retail price, due to an increase of its supplier’s cost rate, increases from a minimum of 25% to a

maximal value of 55.6%, as γ1γ2 increases from 0 to 1.

The γ-parameters are a measure for the competitive intensity. The above results show that all

cost pass-through rates increase as competition becomes more intense.

Case 2: A=N (1) = {1}, i.e., only one of the products, without loss of generality, product 1, is

sold in the market. In this case, aA = aA−RA,ĀR−1
Ā,ĀaĀ = 1+γ1 and RA =RA,A−RA,ĀR−1

Ā,ĀRĀ,A =

1−γ1γ2. Thus,
(
∂w∗A
∂cA

)−
= [SA+T (SA)]−1T (SA) = 1

2
and

(
∂p∗A
∂cA

)−
=
(
∂p∗A
∂wA

)− (
∂w∗A
∂cA

)−
= 1

4
. In other

words, in this monopoly case, the cost pass-through rates are at their minimum levels of 50% and

25%, see Proposition 4.

E. Restrictions on Retailer Prices.

In the US, such restrictions arise potentially because of the Robinson-Patman Act, a Federal law

enacted at the start of the 20th century. To appreciate the importance and prevalence of such price

restrictions, it is important to note that, for example, in the European Community, there is no

direct legislative equivalent to the US Robinson-Patman Act, see, e.g., Spinks (2000) and Whelan

and Marsden (2006).

Even in the US, Kirkland and Ellis (2005) write, when reviewing the “realities of the Robinson-

Patman Act” that “everyone price discriminates. [...] Manufacturers of all kinds, selling to national

accounts and local distributors, do it.” The same authors point out that over the past several

decades, many economists and federal judges, as well as the antitrust enforcement agencies of the

Department of Justice and the Federal Trade Commission, have come “to view the Robinson-

Patman Act as itself – potentially – ‘anticompetitive,’ leading to higher rather than lower prices,
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hurting rather than benefiting consumers.” Based on the same consideration, the Antitrust Mod-

ernization Commission (AMC), established by the 2002 Antitrust Modernization Commission Act,

recommended in its final report AMC (2007) that Congress finally repeal the Robinson-Patman

Act.6 As a result, there has been no government challenge, in the ten years preceding the Kirk-

land and Ellis (2005) report, to any company’s price discrimination under the Act, with just

one exception, described as being “anomalous”. Moreover, “even the number of those [privately

originated] challenges has diminished in recent years, reflecting the poor record of success that

Robinson-Patman Act claims have experienced in recent years.”

Indeed, there are many defenses a “price differentiating” firm may invoke, see, e.g., Kirkland and

Ellis (2005), as well as the discussion in Moorthy (2005). In addition, in many industries, there

has been a steady increase in the use of retailer specific “private” labels and brand variants, with

manufacturers offering different variants of the same product for different retail chains; the differ-

entiation in packaging/labeling/after-sales support is sufficient to consider the products essentially

different and protected from the implications of the Robinson-Patman Act. Bergen et al. (1996)

discuss this advantage as one of many benefits associated with “branded variants”.

In this appendix, we outline how the equilibrium behavior in the base model of Section 3 needs

to be adapted in case all suppliers are required to charge uniform prices across all retailers, for

each of the products they offer to the market. See Section 3 for a discussion of the limited settings

where such price restrictions may prevail.

The above price restrictions require that for each j ∈J and k ∈K(i, j) for some i:

wijk = w̄jk for all retailers i= 1, . . . , I such that (i, j, k)∈N . (E.1)

The restricted choice of wholesale price vectors has, of course, no bearing, whatsoever, on the

equilibrium behavior of the second stage retailer competition game. This implies that Proposition

1 continues to apply. More specifically, any vector of wholesale prices w induces a unique set of

equilibrium demand volumes. If w ∈W ,

D(w) =Q(w) = Ψ(R)a− [Ψ(R)R]w, (E.2)

6 The Commission wrote: “The Commission recommends that Congress finally repeal the Robinson-Patman Act
(RPA). This law, enacted in 1936, appears antithetical to core antitrust principles. Its repeal or substantial overhaul
has been recommended in three prior reports, in 1955, 1969, and 1977. That is because the RPA protects competitors
over competition and punishes the very price discounting and innovation in distribution methods that the antitrust
laws otherwise encourage. At the same time, it is not clear that the RPA actually effectively protects the small business
constituents that it was meant to benefit. Continued existence of the RPA also makes it difficult for the United States
to advocate against the adoption and use of similar laws against U.S. companies operating in other jurisdictions.
Small business is adequately protected from truly anticompetitive behavior by application of the Sherman Act.”
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see (6), where the matrix S ≡Ψ(R)R is positive definite, as shown in Theorem 1(a). Similarly, if

w /∈W ,

D(w) =Q(Θ(w)). (E.3)

Turning, next, to the first stage competition game among the upstream suppliers, it should be

noted that the induced demand functions are given in closed form, by (E.2) and (E.3). This, in itself,

allows for the numerical exploration of equilibria, for example by the use of a tatônnement scheme,

see Topkis (1998) and Vives (1999). To proceed with the equilibrium analysis, recall that it is advan-

tageous to re-sequence the products so that they are lexicographically ranked according to their sup-

plier index (j), product index (k) and, lastly, retailer index (i). Let n≡
∣∣{(j, k)| product (i, j, k)∈

N for at least one retailer i}
∣∣ denote the number of distinct supplier/product combinations. Any

restricted wholesale price vector w̄ can be expanded onto the full price space RN+ from the sup-

plier/product space Rn+, via the transformation w=AT w̄, where the n×N matrix A is defined as

follows:

Ajk,i′j′k′ =

{
1 if j = j′, k= k′ and (i′, j′, k′)∈N ,
0 otherwise.

Let W̄ = {w̄≥ 0 |AT w̄ ∈W}. It is easily verified that on the polyhedron W̄ , the demand functions

D̄(·) are again affine, with

D̄(w̄) = Q̄(w̄)≡A[Ψ(R)a]− (ASAT )w̄.

(D̄(w̄)jk denotes the aggregate induced demand for product k sold by supplier j, across all of

the retailers.) Moreover, since S = Ψ(R)R is positive definite, it is easily verified that the matrix

S̄ ≡ ASAT ∈ Rn×n is positive definite as well. (Verification is immediate from the definition of

positive definiteness; for any z̄ ∈ Rn with z̄ 6= 0, z̄T S̄z̄ = (z̄TA)S(AT z̄) = zTSz, with z =AT z̄ 6= 0.

Thus z̄T S̄z̄ > 0.)

Unfortunately, while the vector of demand volumes D̄(w̄) can be obtained in closed form for all

wholesale price vectors, including vectors w̄ /∈ W̄ , it is no longer true that the demand volumes

D̄(w̄) = Q̄(w̄′), with w̄′ the projection of w̄ onto W̄ . As a consequence, the characterization of

the equilibrium behavior in Theorem 2, no longer applies. However, the following partial charac-

terization of the equilibrium behavior can be obtained if the competition among the suppliers is

restricted to the price space W̄ on which the demand functions are affine. Recall, the interior of

W̄ is the set of all wholesale price vectors under which all supplier/product combinations maintain

a positive market share: We assume, without loss of generality, that the suppliers’ marginal cost

rates satisfy the same type of restrictions as (E.1), i.e.,

cijk = c̄jk for all retailers i= 1, . . . , I such that (i, j, k)∈N . (E.4)
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(If (E.4) is violated, this, itself, provides a legal rationale, even within the context of the Robinson-

Patman Act, for example, to use differentiated wholesale prices, as in our base model.) Under this

cost rate vector c̄, the First Order Conditions of the game with affine demand functions (E.2) have

the unique solution

w̄∗(c̄) = c̄+ [S̄+T (S̄)]−1Q̄(c̄),

see (10). Assume c̄ is such that w̄∗(c̄)∈ W̄ . In other words, assume c̄∈ C̄ = {c̄≥ 0 |Ψ(S̄)Q̄(c̄)≥ 0}.

Then, w̄∗(c̄) is an equilibrium in the restricted competition game, and if c̄ is chosen in the interior

of C̄, w̄∗(c̄) is the unique such equilibrium.
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