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We analyze a general model in which, at each echelon of the supply process, an arbitrary number of firms compete, offering
one or multiple products to some or all of the firms at the next echelon, with firms at the most downstream echelon selling to
the end consumer. At each echelon, the offered products are differentiated and the firms belonging to this echelon engage
in price competition. The model assumes a general set of piecewise linear consumer demand functions for all products
(potentially) brought to the consumer market, where each product’s demand volume may depend on the retail prices charged
for all products; consumers’ preferences over the various product/retailer combinations are general and asymmetric. Similarly,
the cost rates incurred by the firms at the most upstream echelon are general as well. We fully characterize the equilibrium
behavior under linear price-only contracts, and we show how all equilibrium performance measures can be computed via a
simple recursive scheme. Moreover, we establish how changes in the model parameters, in particular, exogenous cost rates or
intercept values in the demand functions, impact the system-wide equilibrium. These comparative statics results allow for the
quantification of cost pass-through effects and the measurement and characterization of the firms’ brand value. Lastly, we
illustrate what qualitative impacts various changes in the structure of the supply chain network may bring forth.

Keywords: Stackelberg game; price competition; differentiated products; product assortment; sequential oligopoly;
multiechelon; supply chain network.

Subject classifications : games/group decisions: noncooperative; marketing: pricing; mathematics: matrices.
Area of review : Operations and Supply Chains.
History : Received January 2015; revisions received June 2015, September 2015; accepted September 2015. Published online

in Articles in Advance January 8, 2016.

1. Introduction
Economists and marketing and operations management
researchers have developed many models of competition and
coordination within supply chains. Most studies have focused
on models where competition arises only at one echelon
of the supply process. However, oligopolistic competition
prevails at all echelons of the market.

We analyze a general model in which, at each echelon of
the supply process, an arbitrary number of firms compete,
offering one or multiple products to some or all of the firms
at the next or possibly subsequent echelons, with firms in the
most downstream echelon selling to the end consumer. At
each echelon, the offered products are differentiated and the
firms belonging to this echelon engage in price competition.
Only a few two-echelon sequential oligopoly models have
been addressed, with price competition at both echelons, and
with an arbitrary number of competing firms and products;
see Villas-Boas and Hellerstein (2006), Villas-Boas (2007b)
and Bonnet et al. (2013).

However, to our knowledge, this is the first such model in
which the existence of a subgame perfect Nash equilibrium is
proven, and a full characterization of the equilibrium behavior
is provided. Moreover, we provide such a characterization
for a supply network with an arbitrary number of echelons.
Finally, our model is one in which the product assortment

sold in the market is endogenously determined, along with
all associated prices and demand volumes.

Our model assumes a general set of consumer demand
functions for all N products (potentially) brought to the
consumer market, where each product’s demand volume
may depend on the retail prices charged for all products.
More specifically, the system of consumer demand functions,
for all products potentially offered on the market, is based
on a system of general affine functions.

However, the affine structure cannot be assumed to prevail
on the complete price space: after all, outside of a special
polyhedron P , the affine demand functions predict negative
demand volumes. Shubik and Levitan (1980) stipulated that
the generalization of the affine demand functions (on the
complete price space, i.e., beyond P ) must satisfy a simple
and intuitive regularity condition: under any given price
vector, when some product is priced out of the market, i.e.,
has zero customer demand, any increase of its price has no
impact on the demand volumes. Soon et al. (2009) showed
that, under minimal conditions, there exists one, and only
one, such a regular extension.

This consumer demand model has many advantages:
(i) The model allows for general combinations of direct

and cross-price elasticities and, in particular, asymmetric
demand functions.
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(ii) The model is parsimonious, nevertheless, as it is
fully specified by a single N ×N matrix of price sensitivity
coefficients, and a single N -dimensional intercept vector.

(iii) Along with variants of the multinomial logit (MNL)
model, the most frequently used demand model in market-
ing, operations management, and industrial organization
studies, employs affine demand functions or extensions
thereof; see, e.g., Federgruen and Hu (2015). Online
Appendix C (available as supplemental material at http://dx
.doi.org/10.1287/opre.2015.1443) discusses analogies and
differences when fitting the extended affine versus the
MNL model.

(iv) Depending on the set of prices selected by the com-
peting firms, a different subset of all potential products is
offered on the market. Thus, the model specifies a product
assortment, along with specific associated demand volumes.
This is in sharp contrast to all other commonly used demand
models. For example, under the above variants of the MNL
model, all products attain some market share, irrespective of
their absolute and relative price levels.1

We assume that prices are selected sequentially, starting
with the firms in the most upstream echelon, followed by a
simultaneous price selection by all firms in the next, more
downstream echelon, for all of their products, et cetera.
In the marketing literature, this type of pricing interaction
is referred to as “Manufacturer Stackelberg (MS) models.”
Other types of interaction are conceivable, for example,
vertical Nash (VN) relationships, in which all firms select
their prices simultaneously. Empirical support for (MS)
interactions was provided by Sudhir (2001), Che et al. (2007)
and Villas-Boas and Zhao (2005).2

We initially study a two-echelon sequential oligopoly with
competing suppliers, each selling multiple products through
a pool of multiple competing retailers. We characterize the
equilibrium behavior under linear price-only contracts. In
the second stage, given wholesale prices selected in the first
stage, all retailers simultaneously decide on their product
assortment and retail prices to maximize their total profits
among all products of all suppliers they choose to do business
with. In the first stage, the suppliers anticipate the retailers’
responses when selecting their wholesale prices. We show
that in this two-stage competition model, a subgame perfect
Nash equilibrium always exists. Multiple subgame perfect
equilibria may arise but, if so, all equilibria are equivalent
in the sense of generating unique demands and profits for
all firms. This characterization is obtained, as follows: Any
choice of wholesale prices by the upstream firms induces a
unique set of equilibrium retailer demand quantities, giving
rise to an induced set of equilibrium demand functions for
the first-stage competition model. Moreover, we show that
this set of demand functions is structurally analogous to the
demand functions faced by the retailers, thus allowing for a
similar characterization of the equilibrium behavior among
the suppliers. Finally, we derive a simple computational
scheme for the (unique) equilibrium sales volumes and profit

levels of all firms as well as the component-wise lowest
equilibrium price vectors at both echelons.

We subsequently generalize our results to supply chain
models with an arbitrary set of echelons. The solution scheme
is to backward inductively show that at every stage of the
Stackelberg game, firms face a demand system uniquely
specified by the downstream echelon best-response equilibria.
This demand system has the same structural properties across
all stages.

Our first and foremost contribution is to characterize the
equilibrium behavior of a very general sequential oligopoly
model with price competition at every echelon, and show
how all equilibrium performance measures can be computed
via a simple recursive scheme. Moreover, we establish how
changes in the structure of the supply chain network, or
changes in the model parameters, in particular, exogenous
cost rates, or intercept values in the demand functions,
impact the system-wide equilibrium. Changes in the network
structure include the elimination of intermediate echelons,
or changes in the number of firms in each echelon, or the
specific supplier-retailer pairs that different final products
are associated with. Our comparative statics results allow
for the quantification of cost pass-through effects: more
specifically, our model can be used to quickly ascertain
what impact changes in raw material and component prices
have on the equilibrium prices and product assortments
of all firms at all echelons of the supply chain network.
The channel pass-through problem is of central interest
in the marketing literature; see, e.g., Moorthy (2005) and
Ailawadi et al. (2010, §4) and the references therein, where
it was addressed in a single-echelon setting. Similarly, the
comparative statics with respect to the intercept vector, enable
the measurement and characterization of the brand value of
different retailers and suppliers, following the methodology
of Golfarb et al. (2009).

The following qualitative insights arise from our compara-
tive statics results:

(i) An increase of the marginal cost rate of any of the
suppliers’ products is “passed on” to the suppliers’ wholesale
prices and, subsequently, the retail prices charged by the
retailers. Focusing on the componentwise smallest equilib-
rium price vectors, we prove that the above exogenous cost
increase results in all products’ equilibrium wholesale and
retail prices to go up.

(ii) While all “direct” and all “cross-brand” pass-through
rates are nonnegative, these rates decline as a function of
the suppliers’ marginal cost rates. In other words, when a
supplier experiences an increase in the marginal cost rate for
one of his products, the percentage pass-through applied
to the equilibrium wholesale price of that product and all
substitute products in the market is lower when the absolute
level of the marginal cost rate is higher. The same holds for
the pass-through rates that are applied to the equilibrium
retail prices.

(iii) An increase of a supplier’s marginal cost rate for
any of his products maintains or expands the equilibrium
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product assortment: an expansion occurs when the cost
increase enables other products that failed to be competitive,
to capture a market share, after the cost rate increase.

(iv) As may be expected, when a supplier experiences an
increase in the marginal cost rate of one of his products, the
equilibrium sales volume of that product declines, but that
of all substitute products (whether sold by the same supplier
or any of the competitors) increases.

(v) For any of the supplier products’ marginal cost rates,
we show that increases beyond an easily calculable upper
bound leave the equilibrium assortment, sales volumes and
prices unchanged.

(vi) The direct pass-through rates with respect to the
equilibrium wholesale prices are bounded from below by
50%, assuming the product is part of the market assortment,
i.e., when the equilibrium sales volume is positive. In that
case, the pass-through rates with respect to the equilibrium
retail prices are bounded from below by 25%. No such
uniform lower bounds can be obtained for the cross-brand
pass-through rates, other than that they are always positive;
see above. These threshold results are generally, although not
uniformly, consistent with empirical findings; see Besanko
et al. (2005) and Dubé and Gupta (2008), inter alia.

(vii) An increase in the value of any of the demand
functions’ intercepts elicits an increase in the equilibrium
wholesale and retail prices, demand volumes, and the retailers’
and suppliers’ profit margins for all products. It also increases
each firm’s profit level and weakly expands the product
assortment. This proves that the Goldfarb et al. (2009)
methodology to measure brand values, assigns a positive
value to any of these brand measures.

Section 2 reviews the related literature. Starting with
a supply chain network of two echelons, §3 presents the
model and preliminary results. In §4, we characterize the
equilibrium behavior in the sequential two-stage competition
model, and generalize the model and results to general
sequential oligopolies involving any number of echelons.
Section 5 studies the comparative statics and illustrates how
the impact of various changes in the network structure can
be assessed; see above. Section 6 extends, under minor
conditions, all of our results in the two-echelon sequential
oligopoly model to asymmetric price-sensitivity matrices.
Section 7 concludes the paper.

2. Literature Review
Four papers initiate the study of sequential oligopolies, all
with two duopoly echelons. McGuire and Staelin (2008)
consider the special case of our model where there are
two suppliers each selling a single product exclusively to
a dedicated retailer; see §3. Choi (1996) generalizes this
model to allow each of the suppliers to sell to both retailers.
The demand functions are assumed to be affine on the
complete price space. The model is used to compare various
channel structures that arise when only some of the possible
supplier/retailer combinations are able to trade.

Salinger (1988) assumes that at both echelons, two identi-
cal firms engage in Cournot competition for a homogenous
good. Ordover et al. (1990) model an upstream duopoly of
two identical firms that produce a homogenous good and
engage in price competition, combined with a downstream
duopoly of two firms each selling a differentiated product
and engaging in Bertrand competition as well. If all four
firms are independent, in equilibrium, the upstream suppliers
sell the product at their (common) marginal cost, so that the
model reduces to a standard Bertrand duopoly. Hart and
Tirole (1990) consider a variant of the Ordover et al. (1990)
model in which the two downstream firms sell a homogenous
good and engage in Cournot competition, allowing for the
two upstream firms to incur different cost rates. See Chen
(2001) and Chen and Riordan (2007) for recent variants
of the Ordover et al. (1990) model with sequential price
competition among two duopolies.

Very few sequential oligopoly papers allow for an arbitrary
number of firms at some or all of the echelons: Corbett
and Karmarkar (2001) consider a market consisting of
any number of echelons, however one in which a single
homogenous final good is sold to the end consumer. At
the most downstream echelon, firms engage in Cournot
competition for the single homogenous good, with an affine
demand function. At each echelon, all competing firms are
assumed to have identical characteristics and to engage in
Cournot competition as well. Cho (2014) investigates the
impact of horizontal mergers in the Corbett and Karmarkar
model. Saggi and Vettas (2002) consider a two-echelon
market with two suppliers each selling a single product via its
own dedicated network of retailers. Since all retailers within
the same supplier’s network sell the same undifferentiated
product, they all charge the same price for this product.
The prices for the two products are affine functions of
the aggregate quantities sold in the market. Both the two
suppliers, and the retailers engage, sequentially, in quantity
competition.

Adida and DeMiguel (2011) analyzed the following
generalization of Saggi and Vettas (2002): their model as-
sumes M suppliers, each selling the same collection of P
products to a set of N retailers. The consumers perceive
each of the P products to be identical irrespective of which
of the suppliers it is procured from. The demand model is
specified by a set of affine inverse demand functions for all
retailer/product combinations with multiplicative random
noise factors. The retailers engage in quantity competition
responding to announced wholesale prices, one for each
of the P products, and optimizing a linear combination
of the mean and standard deviation of their profits. The
suppliers engage in homogenous Cournot competition for
each of the P products, separately, based on the equilibrium
aggregate function obtained from the retailer competition
game. The equilibrium wholesale prices are those where
aggregate retailer demand matches aggregate supplier supply.
DeMiguel and Xu (2009) analyze a sequential competition
model involving two groups of suppliers ultimately delivering
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the same homogenous good to the same consumer market,
under a stochastic demand function relating the common
product price to the aggregate quantity sold.

Villas-Boas and Hellerstein (2006) and Villas-Boas
(2007a, b) allow for an arbitrary number of suppliers, prod-
ucts, and retailers. In the latter, the demand functions are gen-
erated from a mixed MNL model. A system-wide sequential
equilibrium is computed, assuming that the price competition
game, at each stage, has a unique price Nash equilibrium
and that this equilibrium is obtained as the unique solution
of the system of First Order Conditions. However, even the
equilibrium behavior in the retailer game, under exogenously
given wholesale prices, is unknown, as of yet. Aksoy-Pierson
et al. (2013) recently developed a set of sufficient conditions
for the special case where each retailer sells a single product,
but the equilibrium behavior in the multiproduct case is still
an open question. This applies, a fortiori, to the suppliers’
competition game in which the induced demand functions
need to be derived from the equilibrium conditions in the
retailer game. The approach in Villas-Boas (2007a) was
used by Chu and Chintagunta (2009) and Bonnet et al.
(2013) to characterize the U.S. server and the German coffee
market, respectively. Villas-Boas and Hellerstein (2006)
outline the same approach for a general set of differentiable
demand functions; they proceed to illustrate the approach for
the case of a two-supplier, two-retailer model with three
products (discussed in §3, Figure 2), assuming affine demand
functions.

We defer the review of the literature on cost pass-throughs
and the measurement of brand values in an equilibrium
framework, to §5.

3. The Two-Echelon Model
Our base model considers a market where a set J≡ 81121
0 0 0 1 J 9 of suppliers compete by selling any number of grossly
substitutable products, via the same pool I≡ 81121 0 0 0 1 I9
of competing retailers. In §4, we generalize this to settings
with an arbitrary number of echelons. As a concrete example,
consider the market for television sets. Each of the mega
brands (Samsung, RCA, Magnavox, Mitsubishi, etc.) sells
a line of television types, differentiated by type (LCD
or plasma), screen size (19", 27", 32", etc.), and screen
resolution (720 versus 1,080 pixels), among other features.
Different brands offer different subsets of the collection of all
possible combinations; each sells these to some or all of the
consumer electronics chains and general department stores.

We denote by N the set of all products offered in the
market and let N ≡ �N�. To differentiate among different
products, we employ a triple of indices 4i1 j1 k5: i denotes the
retailer via which the product is sold, j the supplier procuring
the product. We allow a supplier to sell multiple products
through a retailer, and use the index k to differentiate among
the various products sold by supplier j to retailer i. We
sometimes replace the triple index 4i1 j1 k5 by a single index l,
where l may range from 1 to N . Let K4i1 j5 denote the set

Figure 1. A two-product channel structure (see
McGuire and Staelin 1983, 2008).

Supplier 1 Product 1

Supplier 2 Product 2

Retailer 1

Retailer 2

Consumers

Note. We have N = 2 items: N= 841111151 42121159.

of products offered by supplier j to retailer i. A supplier
may offer different sets of products to different retailers. For
i ∈I1 j ∈J and k ∈K4i1 j5, let
cijk = the constant marginal supply cost of supplier j for

product k sold at retailer i,
pijk = the retail price charged by retailer i for product k

provided by supplier j ,
wijk = the wholesale price charged by supplier j for product

k sold at retailer i, and
dijk = the consumer demand for product k provided by

supplier j at retailer i.
Let c1p1w, and d be the corresponding vectors.

Figure 1 depicts a simple structure with only N = 2
products. This structure was considered by McGuire and
Staelin (1983), later reprinted as McGuire and Staelin (2008).
The authors compute the sequential equilibrium and compare
it with those arising when (i) each supplier merges with
his retailer; (ii) only one of the suppliers merges with his
retailer. The equilibrium under (i) may be determined by
fixing w111 = c111 and w221 = c221, with that under (ii) by
fixing only w111 = c111.

Figure 2 displays a channel structure in which three
products are offered by two suppliers. Since items are
differentiated on the basis of the distributing retailer, the
channel structure gives rise to N = 5 distinct items. When
eliminating product A, one retrieves the channel structure in
Choi (1996) and Moorthy (2005), so that N = 4. (The latter
and Villas-Boas and Hellerstein 2006 also consider settings
where either product B or C is only offered to one of the
retailers, reducing N to N = 3.)

Set N4i5 denotes the set of products offered to any
retailer i, i.e., N4i5= 84i1 j1 k5 � j ∈J1 k ∈K4i1 j59, which is
determined by the channel structure. Depending upon the
prices selected by the suppliers and retailers, it is possible
that only a subset of the products offered to any given

Figure 2. Another channel structure.

Supplier 1
Product A

Retailer 1

Retailer 2

Consumers

Product B

Product CSupplier 2

Notes. We have N = 5 items: N = 84111115, (1,1,2), (1,2,1), (2,1,1),
42121159. For instance, the triple 4211115 refers to the sole product
(product B) that is sold through retailer 2 and provided by supplier 1.
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retailer are actually sold there. Indeed, part of the retailers’
choices is to determine their product assortment.

Our base model assumes that the suppliers may select
arbitrary combinations of wholesale prices. In some settings,
these price choices may need to be constrained: for example,
in some countries, firms are restricted in terms of their ability
to differentiate their prices for an “identical” product sold to
different retailers. In Online Appendix E, we discuss the
prevalence of such price restrictions, and how the equilibrium
analysis and behavior is to be amended when every supplier
has to charge an identical price to all retailers, for each of
his products.

The demand for each product may depend on the prices
of all products offered in the market. As in most supply
chain competition models, this dependence is in principle
described by general affine functions. In matrix notation,
this gives rise to a system of demand equations:

q4p5= a−Rp1 (1)

where a ∈�N
+

≡ 8r ∈� � r ¾ 09 and R ∈�N×N 0
The matrix R is assumed to satisfy two properties: First,

we assume that the various products are substitutes; this
means that any product’s demand volume does not decrease
when the price of an alternative product is increased: see,
however, Federgruen and Hu (2014) for a generalized model,
allowing for certain types of complementarities.

Assumption (Z). The matrix R is a Z-matrix, i.e., has
nonpositive off-diagonal entries.

In addition, we assume the following:

Assumption (P). The matrix R is positive definite.

However, the affine structure (1) can only apply on the
polyhedron P = 8p¾ 0 � q4p5= a−Rp¾ 091 since, for a
price vector p y P , the raw demand functions q4 · 5 predict
negative demand volumes, for some of the products. Shubik
and Levitan (1980) suggest that the extension of the demand
functions, beyond P , satisfy the following intuitive regularity
condition:

Definition 1 (Regularity). A demand function D4p5:
�N

+
→�N

+
is regular, if for any price vector p and product l,

with Dl4p5= 0, an increase in pl does not affect any of the
demand volumes.

Soon et al. (2009) showed that there is one, and only one,
regular extension d4p5 of the affine demand functions q4p5
in (1). Under this extension, the demand volumes generated
under an arbitrary price vector p, are obtained by applying
the affine function q4 · 5 to the projection ì4p5 of p onto
the polyhedron P , i.e.,

d4p5= q4ì4p551 (2)

where for any p ∈�N
+

, the projection ì4p5 of p onto P is
defined as the vector p′ = p− t, with t the unique solution
to the following linear complementarity problem (LCP):

d4p5= a−R4p− t5¾ 01 t ¾ 0 and

tT 6a−R4p− t57= 00
(3)

A unique solution t exists; see Cottle et al. (1992, Theo-
rem 3.3.7) for the general theory of LCPs.

To simplify the exposition, we initially assume that the
matrix R is symmetric:

Assumption (S). The matrix R is symmetric.

Empirical studies, e.g., Manchanda et al. (1999), Vilcassim
et al. (1999), Dubé and Manchanda (2005), and Li et al.
(2015), show that R is, often, asymmetric. In §6, we extend
under weak restrictions all of our results to asymmetric
price-sensitivity matrices R.

All vectors in this paper are column vectors and are repre-
sented by lowercase symbols. All matrices are denoted by
capital letters. The complement set S̄≡N\S for any index
set S⊆N. For a vector a and an index set S1 aS denotes
the subvector with entries specified by S. Similarly, for a
matrix M and index sets S1T ∈N, MS1T denotes the sub-
matrix of M with rows specified by the set S and columns
by the set T. The transpose of a matrix M (vector a) is
denoted by MT (aT ). The symbol 0 denotes a scalar, a vector,
or a matrix with all entries being zeros, and I an identity
matrix of appropriate dimensions. The matrix inequality
X = 4xi1 j5¾ 0 means that xi1 j ¾ 0 for all i1 j .

3.1. The Retailer Competition Model

To characterize the equilibrium behavior in the sequential
oligopoly model, we build on Federgruen and Hu (2015)
establishing how the retailers respond to given wholesale
prices w, selected by the suppliers, i.e., the equilibrium
behavior in the resulting retailer competition game. To
summarize the main results, we define the following vectors
and matrices:

T 4R5=











RT
N4151N415 0 · · · 0

0 RT
N4251N425 · · · 0

000
000

0 0 0
000

0 0 · · · RT
N4I51N4I5











1 (4)

ë4R5= T 4R56R+ T 4R57−11

S ≡ë4R5R= T 4R56R+ T 4R57−1R1 and

b ≡ë4R5a0 (5)

Federgruen and Hu (2015) show that a pure Nash equilibrium
always exists. Often, multiple, sometimes infinitely many,
equilibria exist; however, all equilibria are equivalent in
the sense of generating identical equilibrium sales volumes
for all products. The dependence of these equilibrium sales
volumes on w is described by a new set of affine functions:

Q4w5≡ b− Sw1 (6)

when w ∈ W ≡ 8w ¾ 0 � Q4w5 = b − Sw ¾ 09, or more
generally, by the unique regular extension D4w5 of this set
of affine functions (for arbitrary w):

D4w5≡Q4w′5= b− Sw′1 (7)
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where w′ =ä4w5 is the projection of w onto the effective
wholesale price polyhedron W : w′ ≡w− t, with t the unique
vector such that t ¾ 01 b−S4w− t5¾ 0 and tT 6b−S4w− t57
= 0. (When R is symmetric, b ¾ 0 and S is a Z-matrix;
see Lemma 1; the projection ä4·5 is thus well defined with
ä4w5 ∈W for all w ∈�N .)

Proposition 1 (Retailer Competition Model). Fix
w ∈W .

(a) The retailer competition game has a pure Nash equi-
librium.

(b) Multiple, pure, Nash equilibria may exist; however,
there exists a componentwise smallest equilibrium

p∗
=w′

+ 6R+ T 4R57−1q4w′5

= 6R+ T 4R57−1a+ 6R+ T 4R57−1T 4R5w′
∈ P1

where w′ =ä4w5 is the projection of w onto W . (If w ∈W ,
w′ =w.)

(c) All equilibria p̃ of this game have p∗ as their pro-
jection, i.e., ì4p̃5= p∗, and share the same sales volumes
d4p̃5 = q4ì4p̃55 = q4p∗5 = a−Rp∗ and the same profit
levels for all retailers.

4. The Multistage Competition Model
By Proposition 1, any wholesale price vector w induces
a retailer competition game with an essentially unique
equilibrium: all equilibria are equivalent in the sense of
generating identical sales volumes and profit levels for
all retailers. If w ∈W , the equilibrium sales volumes are
given by

Q4w5=d4p∗4w55=q4p∗4w55

=a−Rw−R6R+T 4R57−1q4w5

=8I−R6R+T 4R57−19q4w5

=
{

6R+T 4R576R+T 4R57−1
−R6R+T 4R57−1

}

q4w5

=T 4R56R+T 4R57−1q4w5

=ë4R5q4w5=b−Sw1 (8)

where the second identity follows from p∗ ∈ P and the
third identity from Proposition 1 parts (b) and (c). This
confirms (6). Similarly, if w yW , we have by Proposition 1
parts (b) and (c) that (7) is confirmed since

D4w5=Q4w′5=ë4R5q4w′5= b− Sw′0 (9)

Thus, the induced demand functions encountered by the
suppliers are the (unique) regular extension of the affine
functions (6), as long as we can show that the matrix S is
positive definite and has nonpositive off-diagonal elements,
i.e., it satisfies properties (P) and (Z), in the same way the
original matrix of price sensitivity coefficients R does. Fortu-
nately, both properties can be shown to apply. This implies

that the supplier competition model is structurally analogous
to the retailer competition model. We first characterize the
equilibrium behavior in this first-stage competition model:
We again define equilibria to be equivalent if they result in
the same sales volumes for all supplier/product combinations
and the same profit values for all suppliers.

Theorem 1. (a) D4 · 5 is the unique regular extension of
the affine induced demand function; see (6); the matrix
S =ë4R5R is a positive definite, symmetric Z-matrix while
b¾ 0.

(b) If a pure equilibrium exists, there exists one and only
one equilibrium in W .

(c) Any equilibrium w0 yW , has ä4w05=w∗; moreover,
all equilibria are equivalent.

Theorem 1 establishes, for the supplier competition model,
a major part of the full equilibrium characterization in
Proposition 1 (the latter pertaining to the retailer competition
model): if a pure Nash equilibrium exists, there exists a
componentwise smallest equilibrium w∗, which belongs
to W ; all other equilibria have w∗ as its projection on W ,
and are equivalent to w∗.

To complete the full equilibrium characterization like
Proposition 1, we need to show that a pure Nash equilibrium
is guaranteed to exist and to provide an explicit formula for
the componentwise smallest equilibrium w∗. Reorder the
products so that their supplier index in the triple of indices
4i1 j1 k5 comes first. Let M4151 0 0 0 1M4J 5 denote the sets of
products supplied by supplier 11 0 0 0 1 J , respectively. Define
the matrix

T 4S5≡











ST
M4151M415 0 · · · 0

0 ST
M4251M425 · · · 0

000
000

0 0 0
000

0 0 · · · ST
M4J 51M4J 5











and ë4S5≡ T 4S56S + T 4S57−1. Note that the operator that
transforms R into T 4R5 is different from that mapping S into
T 4S5. We nevertheless use the same mapping T 4·5 for both
operators to simplify the notation. Finally, analogous to the
definition of the effective wholesale price polyhedron W ,
define the effective polyhedron C of supplier cost vectors as
follows: C = 8c¾ 0 �ë4S5Q4c5¾ 09. Let â4 · 5 denote the
projection operator onto C , which can be defined analogously
to the projection operators ì4·5 and ä4·5.

Theorem 2 (Characterization of Equilibria in the
Supplier Competition Game). (a) C 6= �, since 0 ¶ c0 =

S−1b =R−1a ∈C.
(b) If c ∈C, there exists a unique wholesale price equi-

librium w∗4c5 in W . Any equilibrium w0 outside of W has
ä4w05=w∗4c5 and is equivalent to w∗4c5.

(c) If c y C, let c′ = â4c5 denote the projection of c
onto C. Then w∗4c′5 is the unique wholesale price equilib-
rium in W . Any equilibrium w0 yW has ä4w05=w∗4c′5
and is equivalent to w∗4c′5.
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Thus, for any cost rate vector c ∈ �N
+

, there exists a
componentwise smallest equilibrium w∗4c5 in the supplier
competition game. Moreover, analogous to Proposition 1(b),
one can show

w∗4c5= c+ 6S + T 4S57−1Q4c5

= 6S + T 4S57−1b+ 6S + T 4S57−1T 4S5â4c50 (10)

Note that on the polyhedron C , â4c5= c so that w∗4·5 is an
affine function on this polyhedron.

Finally, we can show that the effective price polyhedra P ,
W , and C are nested.

Proposition 2. P ⊆W ⊆C.

Online Appendix D illustrates our results with respect to
the distribution structure in McGuire and Staelin (2008).

We now discuss the generalization of our two-echelon
model to one in which products (potentially) travel through
an arbitrary number of distribution/production stages before
reaching the end consumer. In the chain of oligopolies,
there are m echelons, E11 0 0 0 1Em, each with an arbitrary
number of competing distributors. We number the echelons
sequentially, starting with the most downstream echelon of
retailers until reaching the most upstream echelon m. We
assume that firms in a given echelon only sell to firms in the
next more downstream echelon, i.e., firms in echelon e only
sell to those in echelon e− 1, and the retailers in echelon 1
sell to the consumer.

Products are partially differentiated by the route r traveled
in the above multipartite network. For any such path r ∈R,
the set of all possible paths, there may be up to K distinct
products. We thus label each distinct product with a pair of
indices 4r1 k5: product 4r1 k5 is the kth product distributed
along the route r , r ∈R, and k = 11 0 0 0 1K.

Our starting point is, again, a set of retailer demand
functions d4154p4155, with p415 the vector of retail prices,
specified as follows on �N

+
:

d4154p4155

≡



























q4154p4155= a415 −R415p4151

if p415 ∈ P 415 ≡ 8p415 ¾ 0 � q4154p4155¾ 091

q4154ì4154p415551

if p415 y P 4150

(11)

Here a415 and R415 are exogenously given, and ì4154p4155 is
the projection of the vector p415 onto P 415, as ì4 · 5 defined
in §3, with a and R replaced by a415 and R415. Following
the analysis of §3, one verifies that each of the remaining
echelons e = 21 0 0 0 1m experiences equilibrium demand
functions of a similar structure. Define, recursively,

a4e5
≡ë 4e54R4e−155a4e−151 R4e5

≡ë 4e54R4e−155R4e−151 (12)

where

ë 4e54R4e−155≡ T 4e−154R4e−155
[

R4e−15
+ T 4e−154R4e−155

]−1
1

e = 21 0 0 0 1m0

The matrix T 4e54R4e55 is obtained from the matrix R4e5 by
replacing by zero any entry that corresponds with a pair
of products that is distributed via different distributors in
echelon e; for any pair of products 4l1 l′5 that is distributed
via the same distributor in echelon e, T 4e54R4e55l1 l′ =R

4e5
l′1 l.

As shown in §4, after appropriate sequencing of the products,
the matrix T 4e54R4e55 is block diagonal, with each block
corresponding with a specific distributor in echelon e. The
indirect demand functions for the firms in echelon e are,
again, of the form given by (11):

d4e54p4e55≡



























q4e54p4e55= a4e5 −R4e5p4e51

if p4e5 ∈ P 4e5 ≡ 8p4e5 ¾ 0 � q4e54p4e55¾ 091

q4e54ì4e54p4e5551

if p4e5 y P 4e51

where ì4e54p4e55 is the projection of the price vector p4e5 onto
P 4e5, e=210001m. As before P 4e5 6=�, since 0¶R4e5−1

a4e5=

R4e−15−1
a4e−15=···=R−1a∈P 4e5, e=210001m.

Applying Theorem 1(a) recursively one verifies that, the
matrix R4e5, e = 21 0 0 0 1m, is positive definite. By Propo-
sition 1(a) (or Theorem 1(b)), this, by itself, guarantees
the existence of equilibria at any stage of the sequential
competition game.

However, to ensure that the indirect equilibrium demand
functions for echelon e are well defined, we, of course,
need to establish that a unique sales volume vector arises in
equilibrium at any downstream echelon l = 1121 0 0 0 1 e− 1,
i.e., the equivalency of equilibria in the sense of generating
the same sales volumes and profit levels throughout all
downstream echelons (if multiple equilibria exist, they all
project onto the same price vector in P 4l5 for any downstream
echelon l = 1121 0 0 0 1 e − 1). By Proposition 1 (or Theo-
rem 2), this is guaranteed as long as each of the matrices
R4151R4251 0 0 0 1R4e5 is a Z-matrix, i.e., has nonpositive off-
diagonal elements, and a4151 a4251 0 0 0 1 a4e5 ¾ 0. This condition
can easily be checked numerically. In addition, by the proof
of Lemma 1, the condition can be guaranteed, inductively,
when R415 =R is a symmetric matrix.

We conclude that as long as we can guarantee that each
of the matrices R4151R4251 0 0 0 1R4m+15 is a Z-matrix and
a4151a4251 0 0 0 1 a4m+15 ¾ 0 (where R4m+15 and a4m+15 follow
the same type of definition as R4e5 and a4e5, e = 21 0 0 0 1m),
one essentially unique equilibrium exists at each stage of
the sequential competition game; the resulting chain-wide
equilibrium is a subgame perfect Nash equilibrium. Moreover,
for any echelon e, the values of the unique price equilibrium
in P 4e5, and the componentwise smallest price equilibrium
among all equilibria, are computed as follows: Let c denote



Federgruen and Hu: Technical Note—Sequential Multiproduct Price Competition
142 Operations Research 64(1), pp. 135–149, © 2016 INFORMS

the vector of marginal cost rates incurred by the firms in the
most upstream echelon:

p∗4m5
=



























c+6R4m5+T 4m54R4m557−1q4m54c51

if c∈C≡P 4m+151

ì4m+154c5+6R4m5+T 4m54R4m557−1q4m54ì4m+154c551

if cyC1

(13)

where P 4m+1543R−1a5 follows the same type of definition
as P 4e5, e = 21 0 0 0 1m, and

p∗4e5
= p∗4e+15

+ 6R4e5
+ T 4e54R4e557−1q4e54p∗4e+1551

e =m− 11 0 0 0 110 (14)

To verify (13) and (14), invoke Proposition 1. Moreover,
since p∗4m5 ∈ P 4m5, it follows from Proposition 1 that p∗4m−15

is given by (14) and p∗4m−15 ∈ P 4m−15. One thus verifies, by
induction, that p∗4e5 ∈ P 4e5 for all echelons e = 11 0 0 0 1m, so
that (14) applies to all echelons e = 11 0 0 0 1m− 1.

The computation of all echelons’ equilibrium price vector
8p∗4e5 � e = 11 0 0 0 1m9 is thus confined to the following: first
one recursively computes the matrices R4e5 and intercept
vectors a4e5 for e= 11 0 0 0 1m+ 1, via (12). Determination
of p∗4m5 may involve the computation of the unique solution
of an LCP—but only if c yC−, which can be achieved by
solving a single linear program; see Lemma A.2(c) in the
online Appendix A. The remaining computations involve
only multiplications and inversions of matrices related to the
price sensitivity matrix R.

Finally, as we move upstream, the sequence of effective
price polyhedra expands, converging to a limiting polyhedron.

Proposition 3. Assume R=R415 is symmetric.
(a) For any m ∈ �, P 4e5 = 8p¾ 0 � a4e5 −R4e5p¾ 09 ⊆

P 4e+15 for all e = 1121 0 0 0 1m.
(b) For any m ∈�, P 4e5 ⊆H ≡ 8p � 0 ¶ p¶R−1a9 for all

e = 1121 0 0 0 1m+ 1.
(c) The sequence 8P 4e51 e = 1121 0 0 0 1m+ 19 converges to

a limiting polyhedron P ∗.

5. Comparative Statics and the Impact of
the Network Structure

In this section, we characterize the impact of various model
parameters on equilibrium performance measures. We focus,
in particular, on the suppliers’ cost rate vector c (§5.1) and
the intercept vector a of the demand functions q4 · 5 (§5.2),
as both relate to important managerial questions. In §5.3 we
show how our results can be used to assess the impact of
changes in the industry structure.

Much attention has been given to understanding the pass-
through rates of exogenous cost changes: when a supplier
changes the wholesale price for a given product, how will the
retail price of the same product (direct pass-through rate) and

other products (cross pass-through rates) respond? The litera-
ture has adopted two approaches: (i) structural/theoretical
models derive the pass-through rates from a formal market
model by characterizing how equilibrium prices depend on
exogenous cost rates; and (ii) reduced form econometric
models stipulate a specific functional relationship between
cost rates and equilibrium prices, unsupported by any under-
lying competition model, and uses empirical data to estimate
the parameters in the resulting regression model.

Few papers follow the first approach, possibly because of
the difficulty to characterize the equilibria in multiproduct
multiretailer models. Besa;nko et al. (2005, §2.2) provided
a review of five such papers; all but one assume a retail
market with a single retailer. Moorthy (2005) addressed the
question in a special model with two manufacturers and
two retailers, which arises as a special case of the network
structure in Figure 2, without product A. (Moorthy also
considers nonlinear demand functions, with several concavity,
supermodularity and dominant diagonal properties, to ensure
the existence of a unique equilibrium.) Goldberg (1995)
characterized the pass-through rates of exogenous wholesale
prices in a model with nested logit demand functions.

For the reduced form approach, the seminal paper is
Besanko et al. (2005), estimating the pass-through behavior
at Dominick’s Finer Foods, a U.S. supermarket chain. The
study involved 78 products over 11 categories. (Earlier
contributions like Chevalier and Curhan 1976 used accounting
measures rather than a rigorous econometric study.) Besanko
et al. (2005) stipulate either an affine dependency of the
equilibrium retail prices with respect to wholesale prices or
an affine relationship among the logarithms of these prices.
We will prove that the former (affine) structure prevails in our
model, but only as long as the wholesale prices are selected
within W . When w yW , the same affine functions need to
be applied to ä4w5, its projection onto W . The statistical
validity of the estimation results in Besanko et al. (2005),
in particular the significance of cross-brand pass-through
rates, was challenged by McAlister (2007). This resulted in
a refined study by Dubé and Gupta (2008), confirming that
most cross-brand pass-through rates are significant, indeed.
To our knowledge, ours represents the first paper in which
the impact of exogenous cost changes is characterized in a
multiechelon supply network of competing firms, i.e., in a
sequential oligopoly.

Goldfarb et al. (2009) have argued that a firm’s brand
value should be measured in an equilibrium framework.
More specifically, consumer demand functions should be
modeled as a function of the suppliers’ and/or retailers’
brands, represented by brand indicator variables.

The brand value of a firm is defined as the difference
between its profit value when the brand indicator variable
equals one (i.e., in the presence of the brand effect), versus
a counterfactual equilibrium value, when it is set equal to
zero (i.e., in the absence of the brand effect). The authors
apply this framework to a sequential two-echelon price
competition model, with a single retailer, i.e., with I = 1,
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but J and K arbitrary. (Even so, the authors must assume
that the first-stage competition model among the suppliers
is well defined and has a unique price Nash equilibrium,
arising as the unique solution of the system of First Order
Conditions.) The model was then applied to the ready-to-eat
breakfast cereal market, with J = 5 national suppliers.

More specifically, Goldfarb et al. (2009) assume that
demands for the various products are specified by a mixed
MNL model, in which the intercept of the utility measure of
each product is specified as an affine function of suppliers’
brand indicator variables. Following the same approach in
our demand model, we specify the intercepts as follows:

aijk = �T xijk +

J
∑

j ′=1

�j ′zjj ′ 1

all i = 11 0 0 0 1 I1 j = 11 0 0 0 1 J 1 k = 11 0 0 0 1K1

where zjj ′ = 1 if j = j ′ and zjj ′ = 0 if j 6= j ′; and xijk

represents a vector of observable attribute values for product
4i1 j1 k5. The same methodology may be used to measure
brand values associated with the different retailers, or with
different subbrands, i.e., 4j1 k5-combinations. All of these
brand value estimations amount to conducting comparative
statics analyses with respect to the intercept vector a; this is
the subject of §5.2.

5.1. Comparative Statics with Respect to the
Cost Rates c

In this subsection, we characterize the impact of changes
in the suppliers’ cost rates, with respect to equilibrium
prices, sales volumes, and the product assortment. All effects
are computable with little effort, requiring at most a few
matrix multiplications and inversions and the solution of
a single linear program with N variables and constraints.
Moreover, we derive various general first- and second-
order monotonicity properties for the relationship between
equilibrium retail and wholesale prices, on the one hand,
and the cost rates on the other.

Theorem 3 (Comparative Statics for the Cost Rates c).
Fix a cost rate vector c0 and a product l = 4i1 j1 k5, and
consider the impact of an increase of cijk from c0

ijk to c′
ijk =

c0
ijk + �.

(a) (Equilibrium demand volumes). There exists a minimal
threshold ã+ ¾ 0 such that an increase of � beyond ã+

has no impact on any of the equilibrium demand volumes;
when �¶ã+, product l’s demand volume decreases and the
demand volume of all other products increases.

(b) (Equilibrium assortment). An increase of � beyond ã+

has no impact on the equilibrium assortment; when �¶ã+,
the equilibrium assortment remains the same or expands.
There exists a second threshold ã¶ã+ such that, for �¶ã,
the equilibrium assortment does not change while product l’s
demand volume decreases and that of all other products
l′ 6= l increases proportionally with �.

(c) (Equilibrium prices). The componentwise smallest
equilibrium retail and wholesale price vectors p∗ and w∗

increase concavely with �.

Beyond these monotonicity properties, our model permits
simple expressions of the pass-through rates of cost changes.
For any A⊆N, let RA ≡RA1A −RA1 ĀR

−1
Ā1 Ā

RĀ1A and SA =

ë4RA5RA. Let 4¡p∗/¡c5− denote the matrix of left-hand
derivatives, which is shown to always exist.

Corollary 1. (a) In the retailer competition model under
a wholesale price vector w ∈W �,

(

¡p∗

¡w

)

= 6R+ T 4R57−1T 4R5¾ 00

(b) Assume c ∈C�.

(

¡p∗

¡c

)

= 6R+ T 4R57−1T 4R56S + T 4S57−1T 4S5¾ 00

(c) Fix c ∈ �N
+

. Let A denote the unique assortment
associated with the price equilibria. Then

(

¡p∗

¡c

)−

= 6RA
+ T 4RA57−1T 4RA56SA

+ T 4SA57−1T 4SA50

(15)

Remark 1. An expression, similar to (15), provides the
matrix of right-hand derives 4¡p∗/¡c5+. In fact, as explained,
almost everywhere, 4¡p∗/¡c5+ = 4¡p∗/¡c5− = 4¡p∗/¡c5.
However, as shown in the proof of Theorem 3(b), it is
possible that, for a given product l, any increase of its
cost rate cl results in a new product l′, to be added to the
equilibrium assortment A, resulting in a new assortment A+.
(This corresponds with the case where in Theorem 3(b), the
threshold ã= 0.) In that case, the matrix 4¡p∗/¡c5+ is given
by (15), with A replaced by A+.

Although the exact expressions of the cost pass-through
rates in (15) are easily computed with a few matrix mul-
tiplications and inversions, we derive simpler lower and
upper bounds that provide insights into the pass-through
rates. For example, the lower bound shows that at least 50%
of a reduction in the wholesale price of a product and at
least 25% of a reduction in the supply cost rate are passed
on to the consumer.

Proposition 4 (Bounds for the Cost Pass-Through
Rates). (a) Consider the retailer competition model under a
given wholesale price vector w. Let A denote the equilibrium
assortment. Then

I

2
¶
(

¡p∗
A

¡wA

)−

= 6RA
+ T 4RA57−1T 4RA5

¶ 4RA5−1T 4RA5

2
0 (16)
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(b) Fix c ∈�N
+

. Let A denote the equilibrium assortment.
Then

I

4
¶
(

¡p∗
A

¡cA

)−

= 6RA
+T 4RA57−1T 4RA56SA

+T 4SA57−1T 4SA5

¶ 4RA5−1T 4RA54SA5−1T 4SA5

4
0

In Online Appendix D, we apply these results to the
McGuire and Staelin (2008) channel structure.

5.2. Comparative Statics with Respect to the
Intercept Vector a

We now derive comparative statics results for the intercept
vector a. We show that all equilibrium retail and wholesale
prices increase and that the equilibrium product assortment
expands when the intercept vector a increases. In addition,
an increase of one of or more of the intercept values causes
all of the suppliers’ and retailers’ profit margins to grow, as
well as their aggregate profit values. One implication is that
all brand values, discussed at the beginning of the section,
are positive. We write p∗ and w∗, as well as the projection
operator â , as p∗4w1a5, w∗4c1a5 and â4c1a5.

Theorem 4 (Comparative Statics on a). Fix c¾ 0 and
0 ¶ a1 ¶ a2. An increase in a elicits an increase in the
equilibrium wholesale and retail prices, demand volumes,
and the retailers’ and suppliers’ profit margins for all
products. It also increases each firm’s profit level and
expands the product assortment. In other words,

(a) (Wholesale prices).
w∗4â4c1a151 a15¶w∗4â4c1a251 a25.

(b) (Retail prices).
p∗4w∗4â4c1a151 a151 a15¶ p∗4w∗4â4c1a251 a251 a25.

(c) (Demand volumes).
d4p∗4w∗4â4c1a151 a151 a155
¶ d4p∗4w∗4â4c1a251 a251 a255.

(d) (Assortment). A4a15⊆A4a25.
(e) (Retail profit margins).

p∗4w∗4â4c1a151 a151 a15−w∗4â4c1a151 a15
¶ p∗4w∗4â4c1a251 a251 a25−w∗4â4c1a251 a25.

(f) (Wholesale profit margins).
w∗4â4c1 a151 a15−â4c1a15¶w∗4â4c1 a251 a25−â4c1a25.

(g) (Profit levels). The profit earned by each firm increases
with the intercept vector a.

Part (g) implies that brand values, as defined in Goldfarb
et al. (2009), are always nonnegative.

5.3. The Impact of Changes in the Network
Structure

In this subsection, we show how our results can be used
to evaluate various changes in the network structure. We
start with the impact of disintermediation, i.e., when an
intermediate echelon of distributors (or “middlemen”) is
eliminated. We then illustrate how for a given set of final

products, the number of retailers and suppliers as well as the
network structure in the industry impact on aggregate profits
and the consumer surplus measure. (The network structure
specifies which supplier-retailer pair each of the products is
associated with.) Under the heading “excessive competition,”
we exemplify how the simultaneous presence of a very large
number of retailers may result in all of them being driven
out of the market, in equilibrium, even in the absence of
any fixed operating costs. We also illustrate the asymptotic
behavior of various cost pass-through rates.

Disintermediation. Consider a market with J manufac-
turers each selling a group of products to a manufacturer-
associated chain of independently owned retailers. Initially,
each manufacturer j sells its products via a dedicated whole-
saler at a given price vector cj . By Proposition 2, P ⊆W ⊆ C .
Assume c = 4c11 0 0 0 1 cJ 5T is in the interior of C\W . What is
the impact of disintermediation, i.e., what happens when the
retailers can buy the products directly from their manufac-
turers? On the one hand, it is possible to show that retail
prices will come down. More surprisingly, however, product
variety decreases, all cost efficiencies not withstanding:
in the presence of the intermediary wholesalers, we get
w∗4c5 ∈W �, hence p∗4w∗4c55 ∈ P �, i.e., all products are sold
in the market. Without the intermediaries, c is the vector of
“wholesale” prices. Since c yW , p∗4c5 is on the boundary
of P implying that some products are no longer part of the
retailer assortment.

Network Structure in Two-Echelon Network. We consider
a market with N = 120 substitutable products. Each product
l= 11 0 0 0 1120 has the same intercept value and the same
diagonal and off-diagonal elements in the specification of
the affine raw demand function ql4p5:

al =
1

1 +�
1 Rll =

1
1 −�2

1 and

Rl1 l′ = −
�

4N − 1541 −�25

(17)

for a given parameter 0 ¶ � < 1. The parameter � may be
viewed as an index of the degree of homogeneity among the
products: when � = 0, the products are completely hetero-
geneous with zero cross-price elasticities; as � increases,
cross-price sensitivities and elasticities increase. In the two-
product case, this specification was hinted at in Staelin’s
commentary article accompanying McGuire and Staelin
(2008).

A more straightforward specification of the raw
demand functions ql4p5 would be ql4p5 = 1 − pl +
∑

l′ 6=l4�/4N − 155pl′ . That specification has the following
undesirable implications: (i) For any fixed price vector p,
aggregate (raw) demand is

∑

l ql4p5=N − 41 −�54
∑

l pl5,
which increases with �. However, since � represents the
degree of homogeneity among the products, one expects
aggregate demand in the market, under a given price vec-
tor p, to decrease with �. (ii) Assuming that each of the
products is sold by an independent retailer, it is easily
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verified from (5) in Federgruen and Hu (2015) that under
a uniform wholesale price w, the componentwise small-
est price equilibrium p∗ has identical components as well.
More specifically, 4p∗5l = 1/4241 −�55+w/2, as long as
w ¶ 41 −�5−1.3 Here too, we observe that equilibrium prices
increase with �, where a decrease would be expected: as the
products become more homogeneous and closer substitutes,
competition intensifies and a decrease in the equilibrium
prices can be anticipated.

The scaled specification in (17) addresses both problems:
(i) under a given price vector p, aggregate raw demand is
given by

∑

l ql4p5= 4N −
∑

l pl5/41 +�5, which decreases
in the degree of homogeneity �; (ii) similarly, under a
uniform wholesale price w and, again, assuming each prod-
uct is sold by an independent retailer, the componentwise
smallest price equilibrium p∗ has identical components,
i.e., 4p∗5l = 1 − 41 −w5/42 −�5, as long as w¶ 1;4 thus,
under (17), equilibrium prices decrease with �, as anticipated.

We vary I , the number of retailers and J , the number
of suppliers, from 1 to 6. We investigate how aggregate
profits in the supply chain, as well as consumer welfare,
vary with the number of retailers and suppliers. To assess the
latter, we assume, since R is symmetric, that the extended
affine demand functions are derived from a consumer utility
maximization problem, where the utility function U4d5=

4R−1a−p5Td−
1
2d

TR−1d; see Federgruen and Hu (2015,
Proposition 1). Consumer welfare is, thus, assessed as the
maximal level of the utility function under the prevailing
equilibrium price vector p.

Each of the 120 products is associated with a unique
supplier-retailer pair. We assign each product a given supplier-
retailer pair as follows. When there are I retailers and J
suppliers, the first N/I products are assigned to retailer 1,
the next N/I products to retailer 2, etc. For the supplier
assignments, we distinguish between the following two
structures: (i) Fixed network structure: we assign the first N/J

Figure 3. (Color online) Fixed network structure: Aggregate profits and consumer welfare.
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products to supplier 1, the next N/J products to supplier 2,
etc. (ii) Random network structure: we randomly select
a subset of N/J products and assign it to supplier 1; we
then randomly select a subset of N/J products from the
remaining products and assign it to supplier 2, etc.

Figure 3 displays for all 36 firm combinations 4I1 J 5,
aggregate profits, and consumer welfare when � = 009,
i.e., when the products are close substitutes. The aggregate
profits are maximized when 4I1 J 5= 41165, i.e., a single
retailer, and a maximum number of suppliers. Figure 4
displays the same measures when � = 001, i.e., when the
products are highly heterogeneous. Here, aggregate profits
are optimized when 4I1 J 5= 45165, as opposed to 41165. In
contrast, consumer welfare is maximized under the same
configuration 4I1 J 5= 45165 whether � = 009 or � = 001.

Under the random network structure and � = 009, the
configuration 4I1 J 5= 41165 maximizes expected aggregate
profits, whereas expected consumer welfare is maximized
when 4I1 J 5= 46165, i.e., when there is maximum competition
at both echelons of the supply chain. When � = 001, the
profit maximizing and the consumer welfare maximizing
configuration are the same: 4I1 J 5= 46165.5

We conclude that aggregate profits in the industry, across
both echelons, are maximized when the number of retailers
is large, at least when the products are sufficiently heteroge-
neous (e.g., � = 001). This is in sharp contrast to known
results in single echelon price competition models. Deneckere
and Davidson (1985), later generalized by Federgruen and
Pierson (2013), showed that under mild conditions, mergers
result in an increase of aggregate equilibrium profits, so that
aggregate profits are maximized when the retailer market
becomes monopolistic (I = 1). The difference in qualitative
behavior is based on the following two features: (i) we
consider aggregate profits among the suppliers and retailers,
as opposed to profits in the retailer echelon, exclusively;
(ii) in standard single-echelon competition models, it is
assumed that wholesale prices are exogenously given and
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Figure 4. (Color online) Fixed network structure: Aggregate profits and consumer welfare.
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remain unaltered in response to a structural change in the
retailer market, for example, a merger. Indeed, in the context
of a single-echelon competition model, no specific adjust-
ment of these wholesale prices can be anticipated. In a
sequential oligopoly model, we automatically determine how
equilibrium wholesale prices are adjusted in response to
such structural changes.

We also note that the optimal industry configurations
depend on the degree of heterogeneity among the products
(� = 001 versus � = 009), as well as the specific network
topology (fixed versus random network structure). This
applies both to the aggregate profits and the consumer surplus
measure. Finally, the optimizing configurations are quite
different from that obtained in Corbett and Karmarkar (2001),
dealing with quantity competition for a single completely
homogenous good. In that model, aggregate profits are
always maximized when 4I1 J 5= 42135 or 4I1 J 5= 43125,
considering all possible 4I1 J 5 pairs in �2. Note that in
Corbett and Karmarkar (2001), both the finished goods and
intermediate goods are completely homogeneous and all
firms have identical characteristics; the network topology,
i.e., which suppliers sell to which retailers, is therefore
immaterial.

Excessive Competition. In (17), the intercept value al

is independent of N . Alternatively, assume each product’s
potential market size al4N5 decreases, as the variety of
differentiated products in the market increases, i.e., as N

increases. Let limN→� al4N 5= a0 ¾ 0. Consider the compo-
nentwise largest vector R−1a in the effective price polyhedra
(e.g., polyhedron C). Because limN→� Rl1 l′4N5= 0 for all
l′ 6= l, limN→�6R4N 57−1a4N5= a041 −�25 · I. Hence, if the
suppliers’ cost rates cl > a041 − �25 for all l = 11 0 0 0 1N ,
there exists a sufficiently large N0 such that for N >N0,
c > 6R4N57−1a4N5. Then all products are driven out of the
market in equilibrium. In other words, even without any fixed

operating costs and when all firms have identical character-
istics, competition in the industry may become excessive,
resulting in all firms exiting. This is in stark contrast to
Corbett and Karmarkar (2001) where all firms stay in the
market, irrespective of the number of competing firms.

Asymptotic Cost Pass-Through Rates. Continuing with
the set of raw demand functions in (17), assume there are N
retailers, each selling one of the N products that is procured
from a dedicated supplier; in other words, the industry
consists of N parallel single-product, single supplier-retailer
chains, but demand for each of the products depends on all
prices in the market. In Figure 5, we display three cost pass-
through rates: (i) the direct cost pass-through rate, (ii) the
cross pass-through rate, and (iii) the aggregate pass-through
rate, defined as the marginal change in the equilibrium price
of a product due to a simultaneous, identical increase of
all of the suppliers’ cost rates. In view of the symmetry
in (17), all three quantities are identical for all products or
product pairs. The direct pass-through rate always increases
from N = 1 to N = 2, and decreases thereafter. The cross
pass-through rate always decreases as N increases, starting
from N = 2. The aggregate pass-through rate increases
as N increases. Second, for both � = 001 and � = 009, the
direct pass-through rate converges to 0.25 and the cross
pass-through rate to 0, when N tends to infinity. For � = 001,
the aggregate pass-through rate converges to 0.2703 and for
� = 009, to 0.7692. Third, cost pass-through rates are larger
when � = 009 than when � = 001. Intuitively, when products
are more substitutable (i.e., � is larger), the firms need to
pass on more of their savings when experiencing a marginal
decrease in the suppliers’ cost rates.

6. Asymmetric Price-Sensitivity Matrices
Price-sensitivity coefficients often fail to be symmetric.
In this section, we show how all of our results can be
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Figure 5. (Color online) Cost pass-through rates: (a) � = 009 (b) � = 001.
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extended to asymmetric R matrices, under far less restrictive
conditions. Starting with the retailer competition model, all
of the characterizations in Proposition 1 continue to apply,
under an asymmetric R-matrix, as long as the following
property holds.

Assumption (A). b =ë4R5a¾ 0 and S is a Z-matrix.

(Indeed, the proof of Proposition 1, in Online Appendix B,
is obtained under this Assumption (A), as opposed to the far
stronger Assumption (S) of a symmetric R matrix.)

Assumption (A) is easily verified from the model’s primi-
tives (the vector a and the matrix R), with a single matrix
inversion and a few matrix multiplications; see (4)–(5). The
following lemma provides a strong but broad sufficient
condition; see Federgruen and Hu (2015, Proposition 3).

Lemma 1. Assumption (A) applies, if the matrix T 4R5 is
symmetric.

Symmetry of the matrix T 4R5 means that the cross-price
sensitivity coefficients are identical for any pair of products
sold by the same retailer. This symmetry assumption is
considerably weaker than the global symmetry Assump-
tion (S) for the full matrix R. (As mentioned, when demand
functions d4p5 are derived from a representative consumer
maximizing a quadratic utility function, the resulting matrix R
of price-sensitivity coefficients is always symmetric, implying
that Assumption (A) is automatically satisfied.)

Even, the weak Assumption (A) is only required when
w yW . Moreover, even when w yW , many of the results
in Proposition 1 can be guaranteed, simply on the basis of
properties (P) and (Z) alone; in particular, there exists at
most one equilibrium p∗ in P and if p̃ y P is an equilibrium,
then its projection ì4p̃5 is an equilibrium as well. Thus, if
an equilibrium exists, there is a componentwise smallest
equilibrium. Assumption (A) is required to ensure that the
projection ä4 · 5 is well defined, in particular that it maps
any vector w ∈�N

+
into a nonnegative vector.

Remark 2. Assumption (A) may be replaced by an even
weaker condition, referred to as Assumption (NPW) in
Federgruen and Hu (2015, see Proposition 3 and Theorem 3).

As far as the two-stage competition model is concerned,
the results in Theorems 1 and 2 parts (a) and (b) all continue
to apply under Assumption (A). Theorem 2(c), i.e., the
characterization of the suppliers’ equilibrium choices, when
c yC , requires a similar condition to Assumption (A), now
to ensure that the projection â4 · 5 onto C is well defined,
i.e., any suppliers’ cost rate vector c ∈�N

+
is projected onto

a nonnegative vector â4c5¾ 0:

Assumption (A′). ë4S5b¾ 0 and ë4S5S is a Z-matrix.

Condition (A′) is, again, easily verified, numerically. As
with Assumption (A), it may be replaced by an even weaker
although more complex condition; see Remark 2.

Similar to condition (A), a sufficient condition for (A′) is
that T 4S5 be symmetric.

Theorem 5. Assume T 4R5 and T 4S5 are symmetric. All
of the results in Theorems 1 (except for the symmetry of
matrix S) and 2, and Proposition 2, continue to apply.

Symmetry of T 4R5 and T 4S5 also suffices to maintain all
comparative statics results in §5.

Theorem 6. Assume T 4R5 and T 4S5 are symmetric. All of the
results in Theorems 3 and 4, Corollary 1, and Proposition 4
continue to apply.

7. Conclusion
We have analyzed a general sequential oligopoly model, in
which, at each echelon of the supply process, an arbitrary
number of firms compete by offering a single or multiple
products to some or all of the firms in the next echelon.
The model assumes sequential noncooperative pricing in the
sense that at the first stage of the multistage competition
model, the firms of the most upstream echelon select their
prices for all products. At the second-stage competition
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model, the firms of the next more downstream echelon select
their price menu. This process continues until at the last
stage, the retailers select all of their retail prices.

We provide a full characterization and simple computa-
tional scheme for the equilibria in this model: Consider,
for example, a model with two echelons. We show that
in this two-stage competition model, a subgame perfect
Nash equilibrium always exists. Multiple subgame perfect
equilibria may arise but, if so, all equilibria are equivalent
in the sense of generating unique demands and profits for all
firms. Indeed, even for a given vector of wholesale prices,
the second-stage retailer competition game always has an
equilibrium but may possess multiple, possibly infinitely
many, equilibria. Nevertheless, these various equilibria are
equivalent in the above sense.

We have shown general comparative statics results with
respect to the exogenous cost parameters in the model, as
well as the intercept vector in the (affine part of) demand
functions: these comparative statics results have important
implications for the assessment of cost pass-through rates and
the measurement of brand values. We have also illustrated
what qualitative impacts various changes in the structure of
the supply chain network bring forth. Additional managerial
questions that may be assessed by our model (or extensions
thereof), include the following:

• Entry or exit of firms. The model provides a convenient
tool to assess the market-wide consequences with respect to
equilibrium price and assortment choices by all firms, due
to the exit or entry of one of them. A firm’s exit may be
modeled by assuming that its products are priced “out of
the market,” i.e., their price levels are sufficiently high to
drive the implied sales volumes down to zero. This modeling
paradigm was first employed by Telser (1965) in the context
of a single-echelon model. Based on this paradigm, it is
possible to derive the set of consumer demand functions
resulting from the exit of any given firm and its associated
products, or the abandonment of any set of product S⊂N,
for that matter: by setting qS4p5= 0, it is possible to express
the “minimal” exit prices p̄S as an affine function of the
remaining prices pS̄. Substituting pS by this affine vector
function, we obtain a new price sensitivity matrix on the
reduced product space, which is again positive definite
and a Z-matrix, assuming the original matrix R is. This
guarantees that the model resulting from any firm’s exit or
the elimination of any product set, has the same type of
equilibrium behavior as the original model; our efficient
procedure to compute the chainwide equilibria, thus allows
for a simple comparison of the pre- and post-exit equilibria.

Modeling of the entry of a new firm or the adoption of
a new set of products is somewhat more involved, since
it requires a respecification/reestimation of the expanded
intercept vector a and price sensitivity matrix R. Thereafter,
the model can again be used to compute and compare the
pre- and post-entry equilibria.

• Impact of new direct sales channels. Upstream suppliers
and distributors may initiate direct sales channels, perhaps by

initiating an online sales channel. A firm may choose to offer
the same set of products sold via brick-and-mortar retailers
via the new direct sales channels, or it may offer distinct
and differentiated products. Finally, firms may contemplate
shifting complete sets of products from traditional brick-
and-mortar channels via independent retailers to direct sales
channels. To allow for such channels, we need to extend
our results to settings where some of the products skip
intermediate echelons; this extension is, indeed, possible. All
of the above structural changes may be assessed effectively
by comparing the equilibria in two related network structures.

• Vertical integration. The economics literature has been
interested in identifying the anticompetitive effects resulting
from vertical integration, i.e., the merger of an upstream
and a downstream firm in a two-echelon model; see, e.g.,
Riordan (1998, 2008). The existing literature has focused
on settings with two firms at both echelons. Our model
may be used to test whether the observed effects hold up in
more general network structures, with an arbitrary number
of firm/product combinations at each echelon. It may also
be used to identify new anticompetitive effects.

• Mergers and spinoffs. The above observations pertain
equally to horizontal mergers or spinoffs of firms belonging
to the same echelon.

Supplemental Material
Supplemental material to this paper is available at http://dx.doi
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Endnotes
1. The recent survey by Ailawadi et al. (2010, p. 282) opens its
section on “product assortment,” as follows: “In contrast with
the vast amount of research on consumer response to product
assortment [0 0 0], there is scant research on how manufacturers and
retailers interact to determine the composition of the assortment.”
2. Ailawadi et al. (2010, p. 276) describe the MS model as the
widely applied “workhorse for modeling manufacturer-retailer
interactions.”
3. When w > 41 −�5−1, all products are priced out of the market,
in equilibrium.
4. When w > 1, all products are priced out of the market, in
equilibrium.
5. Thus, under a random network structure, expected consumer
welfare is maximized when the number of firms is maximized.
Under a fixed network structure, 4I1 J 5= 46165 results in six parallel
chains each, exclusively, dealing with 20 products, as opposed to
4I1 J 5= 45165, where each retailer procures from two suppliers.

http://dx.doi.org/10.1287/opre.2015.1443
http://dx.doi.org/10.1287/opre.2015.1443
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