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Online Appendix to
“Multi-Product Price and Assortment Competition”

Preliminaries, Proofs and Examples.

A. Preliminaries

We use the following properties of ZP -matrices.

Lemma A.1 (Properties of ZP -matrices). Let X be a ZP -matrix and Y be a Z-matrix such

that X ≤ Y , i.e., Y −X ≥ 0. Then

(a) X−1 exists and X−1 ≥ 0;

(b) Y is a ZP -matrix and Y −1 ≤X−1;

(c) XY −1 and Y −1X are ZP -matrices; and

(d) If D is a positive diagonal matrix, then DX, XD and X +D are ZP -matrices.

Proof of Lemma A.1. (a)-(d). By Horn and Johnson (1991, Theorem 2.5.3), a ZP -matrix is

a nonsingular, so-called, M -matrix. Properties (a)-(d) of ZP -matrices can be found in Horn and

Johnson (1991, Section 2.5) as properties of M -matrices. �

Moreover, we use the following lemma.

Lemma A.2. (a) Suppose X, Y and X + Y are invertible matrices of the same order. Then

X−1 +Y −1 is nonsingular and (X−1 +Y −1)−1 =X(Y +X)−1Y = Y (X +Y )−1X.

(b) If X is positive definite, then the bisymmetric matrix

(
X −Y T

Y 0

)
is positive semi-definite.

(c) If X is positive semi-definite and Y is a P0-matrix, then M =X +Y is a P0-matrix.

Proof of Lemma A.2. (a) Since X−1 + Y −1 = ( I + Y −1X)X−1, (X−1 + Y −1)−1 = X( I +

Y −1X)−1 = X(Y + X)−1Y . The second equality follows from X−1 + Y −1 = Y −1 + X−1 and the

proven first equality.

(b) We verify this directly from the definition of positive semi-definiteness. For any z,

zT
(
X −Y T

Y 0

)
z = (zT1 , z

T
2 )

(
X −Y T

Y 0

)(
z1

z2

)
= zT1 Xz1 + zT2 Y z1− zT1 Y T z2 = zT1 Xz1 ≥ 0,

since X is positive definite.

(c) Suppose M is not a P0-matrix. By one of several equivalent definitions of a P0-matrix (The-

orem 3.4.2 (b) in Cottle et al. 1992), there exists z̃ 6= 0, such that for all k, either z̃k = 0 or

z̃k(Mz̃)k < 0. In other words, there exists z̃ 6= 0 such that z̃k(Mz̃)k = z̃k(Xz̃)k + z̃k(Y z̃)k < 0 for

all k satisfying z̃k 6= 0. Since X is positive semi-definite, z̃k(Xz̃)k ≥ 0. Hence, we have z̃ 6= 0 such

that z̃k(Y z̃)k < 0 for all k satisfying z̃k 6= 0, which contradicts the fact that Y is a P0-matrix, thus

proving the lemma by contradiction. �
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B. Proofs for Sections 2 and 3

Proof of Proposition 1. (a)⇔(b). Under Assumptions (P) and (Z), for any Ñ ⊆ N , RÑ ,Ñ is a

ZP -matrix and hence R−1

Ñ ,Ñ ≥ 0 by Lemma A.1(a). Since a≥ 0,

R−1

Ñ ,ÑaÑ ≥ 0, for all subsets Ñ ⊆N . (B.1)

By Lemma 6 and Theorem 4 in Soon et al. (2009), we have the desired result.

(c)⇔(b). The Lagrangian associated with (2) is given by:

(R−1a− p)Td− 1

2
dTR−1d+ tTd= [R−1a− (p− t)]Td− 1

2
dTR−1d.

Since R is symmetric, (3) represents the complementarity conditions for the quadratic program (2),

which by Assumption (P) are both necessary and sufficient to characterize a unique optimum. �

Lemma B.1. Under conditions

(D) (strict row dominant diagonality) Rik,ik >
∑

(i′,k′)6=(i,k)

|Rik,i′k′ |, ∀(i, k),

(D’) (strict column dominant diagonality) Rik,ik >
∑

(i′,k′)6=(i,k)

|Ri′k′,ik|, ∀(i, k),

R is positive definite.

Proof of Lemma B.1. Since R is strictly row and column diagonally dominant with positive

diagonal entries, 1
2
(R+RT ) is symmetric and strictly row diagonally dominant with positive diag-

onal entries. By Horn and Johnson (1985, Corollary 7.2.3), 1
2
(R + RT ) is positive definite. The

desired result follows because R is positive definite if and only if 1
2
(R+RT ) is positive definite

(Horn and Johnson 1985, P. 399). �

Proof of Lemma 1. (a) By the definition of Ω(p) = p− t, Ω(p) satisfies (3) so that q(Ω(p))≥ 0.

Lemma 6 in Soon et al. (2009) shows that the necessary and sufficient condition for Ω(p)≥ 0, for

any p∈RN+ , is given by (B.1), which holds, as shown in the proof of Proposition 1.

(b) If p∈ P , t= 0 is the unique solution to (3). �

Proposition B.1. For any product l= (i, k), dl(p) is decreasing in its own price and increasing

in the price of any other product l′ 6= l.

Proof of Proposition B.1. The fact that dl(·) is decreasing in pl follows from Theorem 8 of Soon

et al. (2009). The fact that dl(·) is increasing in the prices of the other products was shown in

Corollary 1 of Farahat and Perakis (2010), noting that the proof of that corollary does not depend

on the matrix R being symmetric, but depend on the matrix R being a Z-matrix. �
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Proposition B.2 (Non-negative profit margins in best responses). Fix w ≥ 0 and i ∈ I. For

any price choices p−N (i) by retailer i’s competitors, there exists a best response p∗N (i)(p−N (i))≥wN (i).

Proof of Proposition B.2. Assume for some product (i, k), p̂ik(p−N (i))<wik. Increasing p̂ik to a

value ≥wik improves the profit earned for this product, while, by Proposition B.1, increasing the

sales volume and hence the profit earned for all other products sold by retailer i with a non-negative

profit margin. Thus, sequentially increasing each of the prices p̂ik <wik to the wik-level results in

a profit improvement while ensuring that all profit margins are non-negative. �

Proof of Theorem 1. We first prove parts (b) and (c): Suppose po ∈RN+ \P is an equilibrium. By

Proposition 1(b), there exists a unique t≥ 0 such that 0≤ d(po) = a−RΩ(po) = a−R(po− t) and

tT [a−R(po− t)] = 0. Clearly, tl > 0 for some product l; otherwise, po ∈ P . By the complementarity

condition, dl(p
o) = 0. Let p̂= Ω(po) = po− t. By Proposition 1(b), 0≤ d(po) = q(p̂) = d(p̂) and p̂∈ P .

Clearly, p̂≤ po and p̂ 6= po. Then for any retailer i,

πi(p
o) = (poN (i)−wN (i))

TdN (i)(p
o)

= (poN (i)− tN (i)−wN (i))
TdN (i)(p

o)

= (p̂N (i)−wN (i))
TdN (i)(p̂) = πi(p̂), (B.2)

where the second equality is due to the complementarity of t and d(po). By Proposition B.2, for

given p̂−N (i), there exists a best response p̄N (i) ≥ 0 such that p̄N (i) ≥wN (i). Then

πi(p̂) ≤ max
pN (i)≥0

[(pN (i)−wN (i))
TdN (i)(pN (i), p̂−N (i))]

= (p̄N (i)−wN (i))
TdN (i)(p̄N (i), p̂−N (i))

≤ (p̄N (i)−wN (i))
TdN (i)(p̄N (i), p

o
−N (i))

≤ max
pN (i)≥0

[(pN (i)−wN (i))
TdN (i)(pN (i), p

o
−N (i))]

= πi(p
o) = πi(p̂), (B.3)

where the second inequality is due to p̄N (i) ≥ wN (i) and Proposition B.1; the latter guar-

antees that 0 ≤ dN (i)(p̄N (i), p̂−N (i)) ≤ dN (i)(p̄N (i), p
o
−N (i)). The last equality follows from (B.2).

Thus all inequalities in (B.3) hold as equalities and in particular, πi(p̂) = maxpN (i)≥0[(pN (i) −

wN (i))
TdN (i)(pN (i), p̂−N (i))]. Hence p̂ = Ω(po) is another equilibrium of the retailers’ price com-

petition game, and d(Ω(po)) = d(po), π(Ω(po)) = π(po). By part (a), this implies that a unique

equilibrium p∗ ∈ P exists and Ω(po) = p∗. Moreover, po and p∗ are equivalent.

(a) Soon et al. (2009, Theorem 15) showed that there exists at least one equilibrium po. In view

of part (b), this implies that an equilibrium can be found in P , since Ω(po)∈ P , for all po ∈RN+ . It

remains to show that, within P , no alternative equilibria exist.
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In conjunction with the full competition game in which each retailer is able to select an arbitrary

price vector, we consider a restricted game in which the industry-wide price vector p must be

selected within the polyhedron P . This is a generalized Nash game with coupled constraints, a

term coined by Rosen (1965), i.e., even the feasible price range for any retailer i depends on the

price choices made by the competitors; see also Topkis (1998) for a treatment of such generalized

games.

While the structure of the feasible strategy space is more complex in this restricted game, it

has the advantage that the profit functions are simple quadratic functions, because for p ∈ P ,

d(p) = q(p) = a−Rp is affine.

We prove a stronger result, namely that even the restricted game has at most a single equilibrium

in P . (If p∗ ∈ P is an equilibrium of the full price game, it is, a fortiori, an equilibrium of the

restricted game.) In the restricted game, all feasible price vectors p∈ P , so that d(p) = q(p) = a−Rp.

For any equilibrium po in the restricted game and any retailer i, poN(i) must solve the quadratic

program:

maxpN (i)
(pN (i)−wN (i))

T (aN (i)−RN (i),N (i)pN (i)−RN (i),−N (i)p
o
−N (i))

s.t. a−Rp≥ 0 and pN (i) ≥ 0.

This quadratic program may be formulated as

minpN (i)
−(wTN (i)RN (i),N (i) + aTN (i)− (po−N (i))

TRT
N (i),−N (i))pN (i) +

1

2
pTN (i)(2RN (i),N (i))pN (i)

+wTN (i)(aN (i)−RN (i),−N (i)p
o
−N (i))

s.t. −Rp≥−a, (B.4)

pN (i) ≥ 0. (B.5)

Since R is positive definite, RN (i),N (i) is positive definite, as well. Let yi ≥ 0 and sN (i) ≥ 0 denote

the Lagrange multipliers associated with the constraint sets (B.4) and (B.5), respectively. Also

let ti = (tiN (i), t
i
−N (i)) ≥ 0 denote the surplus variables of constraint set (B.4). Since RN (i),N (i) is

positive definite, the optimal solution to this quadratic program is the unique solution to the

complementarity conditions:

 sN (i)

tiN (i)

ti−N (i)

−
RN (i),N (i) +RT

N (i),N (i) RN (i),−N (i) RT
N (i),N (i) R

T
−N (i),N (i)

−RN (i),N (i) −RN (i),−N (i) 0 0
−R−N (i),N (i) −R−N (i),−N (i) 0 0




pN (i)

po−N (i)

yiN (i)

yi−N (i)
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=

−(RT
N (i),N (i)wN (i) + aN (i))

aN (i)

a−N (i)

 , (B.6)

and

sN (i) ≥ 0, pN (i) ≥ 0, sTN (i)pN (i) = 0,

ti = (tiN (i), t
i
−N (i))≥ 0, yi = (yiN (i), y

i
−N (i))≥ 0, (ti)Tyi = 0. (B.7)

This implies that a price vector p is a generalized Nash equilibrium if and only if vectors s, yi, ti ∈RN+
can be found, for all i, such that (B.6) and (B.7) are satisfied for all i, simultaneously. In other

words, the price vector p is a generalized Nash equilibrium if and only if the extended vector

(p, y1, y2, . . . , y|I|)∈RN(|I|+1)
+ is a solution to a specific master LCP that takes the following form:

(
s, t1, . . . , t|I|

)T − R̃ (p, y1, . . . , y|I|
)T

=
(
−T (R)w+ a,a, . . . , a

)T
,(

s, t1, . . . , t|I|
)
≥ 0,

(
p, y1, . . . , y|I|

)
≥ 0,

(
sT , (t1)T , . . . , (t|I|)T

)


p
y1

...
y|I|

= 0,

where

R̃ ≡


R+T (R) R̊N (1) · · · R̊N (|I|)
−R 0 0 0

...
...

. . .
...

−R 0 0 0

∈RN(|I|+1)×N(|I|+1),

R̊N (i) ≡


0
...

RT
N ,N (i)

...
0

∈R
N×N ,

T (R) ≡


RT
N (1),N (1) 0 · · · 0

0 RT
N (2),N (2) · · · 0

...
...

. . .
...

0 0 · · · RT
N (|I|),N (|I|)

∈RN×N .
We now show that the matrix R̃ is a P0-matrix. To this end, write

R̃= R̃1 + R̃2 ≡


R R̊N (1) · · · R̊N (|I|)

−R̊T
N (1) 0 0 0
...

...
. . .

...

−R̊T
N (|I|) 0 0 0

+


T (R) 0 · · · 0

−R+ R̊T
N (1) 0 0 0

...
...

. . .
...

−R+ R̊T
N (|I|) 0 0 0

 .

MingHu
Comment on Text
minus
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Applying Lemma A.2(b) with X =R, R̃1 is positive semi-definite. Since R is positive definite, it is

easily verified that T (R) is positive definite as well, and for sure, a P0-matrix: let z ∈RN 6= 0, and

note that zTT (R)z = zTN (1)R
T
N (1),N (1)zN (1) + · · ·+ zTN (|I|)R

T
N (|I|),N (|I|)zN (|I|) > 0, since each of the |I|

terms

zTN (i)R
T
N (i),N (i)zN (i) ≥ 0, for all i, (B.8)

with strict inequality for at least one of the terms. (To verify the inequality in (B.8), define z(i) ∈RN

as follows: z
(i)

i′k = zik, if i′ = i and z
(i)

i′k = 0, otherwise. Then, zTN (i)R
T
N (i),N (i)zN (i) = z(i)TRT z(i) ≥ 0.)

For any principal minor of R̃2, if the minor is a sub-matrix of T (R), then such a minor is nonnegative

since T (R) is a P0-matrix; otherwise, the minor must involve a matrix with a full column of

zeros, so that the minor equals zero. Hence R̃2 is a P0-matrix. It follows from Lemma A.2(c) that

R̃ = R̃1 + R̃2 is a P0-matrix. By Theorem 3.4.4 (a) in Cottle et al. (1992), this implies that the

vector (s, t1, . . . , t|I|) is unique among any and all solutions to the master LCP. This implies, in

particular, a−Rp∗ = t1 = · · ·= t|I| ≡ t̂ is unique among any and all generalized Nash equilibria p∗

in P as a solution to the master LCP. Since R is invertible, p∗ =R−1(a− t̂). Since t̂ is unique, there

exists at most one generalized Nash equilibrium in P . �

Proof of Proposition 2. (a) In the proof of Theorem 1, we noted that T (R) is positive definite.

It follows that R+ T (R) is positive definite, and hence is invertible, so that p∗(w) is the unique

solution to the FOC (6).

(b) Note that

q(p∗(w)) = a−Rw−R[R+T (R)]−1q(w)

= {I −R[R+T (R)]−1}q(w)

=
{

[R+T (R)][R+T (R)]−1−R[R+T (R)]−1
}
q(w)

= T (R)[R+T (R)]−1q(w) = Ψ(R)q(w).

Moreover, since R is a positive-definite Z-matrix, T (R) is a positive-definite Z-matrix, hence

a ZP -matrix, therefore T (R)
−1 ≥ 0. Hence w ∈W ⇔ w ≥ 0 and Ψ(R)q(w) ≥ 0⇒ p∗(w) = w +

T (R)
−1

Ψ(R)q(w)≥w≥ 0. In summary, if w ∈W , then q(p∗(w))≥ 0 and p∗(w)≥ 0, i.e., p∗(w)∈ P .

Conversely, assume w≥ 0 and p∗(w)∈ P . Then q(p∗(w)) = Ψ(R)q(w)≥ 0, i.e., w ∈W .

(c) wo =R−1a≥ 0 since R−1 ≥ 0 and a≥ 0; moreover, Ψ(R)q(wo) = Ψ(R)a−Ψ(R)a= 0.

(d) Ψ(R)R = T (R)[R + T (R)]−1R = [R−1 + T (R)
−1

]−1, by Lemma A.2(a). Since both R and

T (R) are positive definite, the same property applies to their inverses and hence to Ψ(R)R.

(e) We first show that Ψ(R) = T (R)[R + T (R)]−1 = [RT (R)−1 + I]−1 ≥ 0. Since R has non-

positive off-diagonal elements, it follows from the definition and symmetry of T (R) that R≤ T (R).
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Since R is a ZP -matrix and T (R) is a Z-matrix, it follows from Lemma A.1(c) that RT (R)
−1

is a ZP -matrix. By Lemma A.1(d), [RT (R)
−1

+ I] is a ZP -matrix, so that, by Lemma A.1(a),

Ψ(R) = [RT (R)
−1

+ I]−1 ≥ 0. Finally, if w ∈ P , q(w)≥ 0 and Ψ(R)q(w)≥ 0, i.e., P ⊆W . �

Proof of Theorem 2. (a) Given Theorem 1, it suffices to verify that p∗ = p∗(w) is indeed an

equilibrium retail price vector over the full strategy space p≥ 0. For any retailer i and any p≥ 0 such

that p−N (i) = p∗−N (i), there exists a unique vector t≥ 0 such that d(p) = a−R(p−t)≥ 0 and tTd(p) =

0, by Proposition 1(b). Since RN (i),N (i) is a positive definite Z-matrix, RN (i),N (i) is a ZP -matrix,

hence R−1
N (i),N (i) ≥ 0. Since R is a Z-matrix, RN (i),−N (i) ≤ 0. Then −R−1

N (i),N (i)RN (i),−N (i)t−N (i) ≥ 0.

Hence,

πi(p) = (pN (i)−wN (i))
TdN (i)(p)

= (pN (i)− tN (i)−wN (i))
TdN (i)(p)

= (pN (i)− tN (i)−wN (i))
T [aN (i)−RN (i),N (i)(pN (i)− tN (i))−RN (i),−N (i)(p

∗
−N (i)− t−N (i))]

= (pN (i)− tN (i)−wN (i))
T

· [aN (i)−RN (i),N (i)(pN (i)− tN (i)−R−1
N (i),N (i)RN (i),−N (i)t−N (i))−RN (i),−N (i)p

∗
−N (i)]

≤ [(pN (i)− tN (i)−R−1
N (i),N (i)RN (i),−N (i)t−N (i))−wN (i)]

T

· [aN (i)−RN (i),N (i)(pN (i)− tN (i)−R−1
N (i),N (i)RN (i),−N (i)t−N (i))−RN (i),−N (i)p

∗
−N (i)]

≡ (p̃N (i)−wN (i))
T (aN (i)−RN (i),N (i)p̃N (i)−RN (i),−N (i)p

∗
−N (i))

≤ (p∗N (i)−wN (i))
T (aN (i)−RN (i),N (i)p

∗
N (i)−RN (i),−N (i)p

∗
−N (i))

= (p∗N (i)−wN (i))
TdN (i)(p

∗) = πi(p
∗).

The second equality is due to the complementarity of t and d(p). The first inequality is due to

adding the term [−R−1
N (i),N (i)RN (i),−N (i)t−N (i))]dN (i)(p)≥ 0 to the right-hand side of the inequality,

since both −R−1
N (i),N (i)RN (i),−N (i)t−N (i) ≥ 0 and dN (i)(p) ≥ 0. The second inequality is due to the

way p∗ = p∗(w) is determined: p∗ satisfies the first-order conditions (6), hence p∗N (i) is the maxi-

mizer of the quadratic concave function πi(pN (i), p
∗
−N (i)) = (pN (i)−wN (i))

T (aN (i)−RN (i),N (i)pN (i)−

RN (i),−N (i)p
∗
−N (i)) among all pN (i).

(b) By part (a), p∗(w) is the unique equilibrium in P . If there were an additional equilibrium po /∈

P , its projection Ω(po) would, by Theorem 1, also be an equilibrium; but Ω(po) is on the boundary

of P and P contains p∗(w)∈ P o as its unique equilibrium, see part (a). This is a contradiction. �

Proof of Proposition 3. (a) “(WRS) ⇒ (NPW)”. The proof is analogous to that of Lemma 1.

(b) “(IS)⇒ (WRS)”. Let E = T (R)−R. Then R= T (R)−E. By the symmetry of T (R), E ≥ 0.

Then S = Ψ(R)R= Ψ(R)[T (R)−E]≤Ψ(R) 1
2
[2T (R)−E] = 1

2
Ψ(R)[T (R) +R] = 1

2
T (R), where the
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inequality follows from Ψ(R)≥ 0, see Proposition 2(e) and E ≥ 0. Thus, the off-diagonal elements of

S are bounded from above by non-positive numbers, i.e., S is a Z-matrix. Moreover, in Proposition

2(e), we showed that Ψ(R) = [I +RT (R)−1]−1 ≥ 0. Thus, b= Ψ(R)a≥ 0. (If a > 0, b= Ψ(R)a > 0.

This is because, assume, to the contrary that for some product (i, k), [Ψ(R)a]ik = 0. Since a > 0,

this implies that the (i, k)th row of Ψ(R) is a row of zero’s, which contradicts the fact that Ψ(R)

has an inverse.) �

Proof of Theorem 3. In view of Theorem 1, it suffices to show that p∗(w′) is a price equilib-

rium. Note that w′ = Θ(w) such that w′ 6= w, w′ ≤ w and Q(w′)T (w − w′) = 0. Moreover, under

Assumption (NPW), w′ ≥ 0, so that w′ ∈W . By Theorem 2, p∗(w′) ∈ P is the unique equilibrium

in P for the retailers’ competition game under the wholesale price vector w′. Thus, for any retailer

i,

πi(p
∗(w′);w) = [p∗N (i)(w

′)−wN (i)]
TdN (i)(p

∗(w′))

= [p∗N (i)(w
′)−wN (i)]

T qN (i)(p
∗(w′))

= [p∗N (i)(w
′)−wN (i)]

TQN (i)(w
′)

= [p∗N (i)(w
′)−wN (i) + (wN (i)−w′N (i))]

TQN (i)(w
′)

= [p∗N (i)(w
′)−w′N (i)]

TdN (i)(p
∗(w′)) = πi(p

∗(w′);w′). (B.9)

The second equality follows from p∗(w′)∈ P , since w′ ∈W . The third equality follows from Propo-

sition 2(b). The fourth equality follows from (wN (i)−w′N (i))
TQN (i)(w

′) = 0, since w′ =w− t is the

solution to the LCP (8). For any retailer i,

πi(p
∗(w′);w) ≤ max

pN (i)≥0
[(pN (i)−wN (i))

TdN (i)(pN (i), p
∗
−N (i)(w

′))]

≤ max
pN (i)≥0

[(pN (i)−w′N (i))
TdN (i)(pN (i), p

∗
−N (i)(w

′))]

= πi(p
∗(w′);w′), (B.10)

where the second inequality is due to 0≤w′ ≤w. By Equation (B.9), all inequalities in (B.10) hold

as equalities and in particular, πi(p
∗(w′);w) = maxpN (i)≥0[(pN (i) − wN (i))

TdN (i)(pN (i), p
∗
−N (i)(w

′))]

for any retailer i. Hence p∗(w′)∈ P is an equilibrium in the retailers’ competition game under the

wholesale price vector w /∈W . �

Proof of Proposition 4. (a) By Theorem 2, if w ∈W o, there exists a ball around the vector w

which is contained within W , and p∗ ∈ P o is the unique Nash equilibrium in the form of (7). The

marginal pass-through rates of wholesale price changes are immediate from (7).
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(b) We write

[R+T (R)]−1T (R) = [[T (R)]−1R+ I]−1.

Since T (R) is symmetric and then T (R)≥R. By Lemma A.1(c), since T (R) is a ZP -matrix and

R is a Z-matrix, [T (R)]−1R is a ZP -matrix. By Lemma A.1(d), [T (R)]−1R+ I is a ZP -matrix, as

well. By Lemma A.1(a),

[[T (R)]−1R+ I]−1 ≥ 0. (B.11)

Since T (R) is a ZP matrix, hence [T (R)]−1 ≥ 0 by Lemma A.1(a). Then because R ≤ T (R),

[T (R)]−1R ≤ I and hence [T (R)]−1R+ I ≤ 2I. Since [T (R)]−1R+ I is a ZP -matrix, we have by

Lemma A.1(b), [R+T (R)]−1T (R) = [[T (R)]−1R+ I]−1 ≥ I
2
.

To prove the upper bound, let ∆≡ T (R)−R. Then R = T (R)− ∆. By the symmetry of T (R),

∆≥ 0. Then

R[R+T (R)]−1T (R) = [T (R)− ∆][R+T (R)]−1T (R)

≤ 1

2
[2T (R)− ∆][R+T (R)]−1T (R)

=
1

2
[T (R) +R][R+T (R)]−1T (R) =

1

2
T (R),

where the inequality is due to ∆≥ 0 and [R+T (R)]−1T (R)≥ 0, by (B.11). Since R−1 ≥ 0, we have

the desired upper bound.

Under a monopoly, T (R) =R and ∂p∗(w)/∂w= I/2, i.e., the lower bound is tight. �

Proof of Proposition 5. (a) If products l and l′ are sold by the same retailer, we write [R̃ +

T (R̃)]−1 = [R+ δEl,l′ + T (R+ δEl,l′)]
−1 = [R+ T (R) + δEl,l′ + δEl′,l]

−1. By Chang (2006, Eq. (6)

and (7)), we can write [R̃+T (R̃)]−1 = [R+T (R)]−1 +H = Ξ(R) +H, where

H = −
(

ΞN ,l ΞN ,l′
)( 0 δ

δ 0

)[(
1 0
0 1

)
+

(
Ξll Ξll′
Ξl′l Ξl′l′

)(
0 δ
δ 0

)]−1(
Ξl,N
Ξl′,N

)
= −δ

(
ΞN ,l ΞN ,l′

)( 0 1
1 0

)[(
1 + Ξll′δ Ξllδ

Ξl′l′δ 1 + Ξl′lδ

)]−1(
Ξl,N
Ξl′,N

)
= Γ(R,δ).

By part (a) of Proposition 2,

∂p̃∗(w)

∂w
− ∂p

∗(w)

∂w
= [R̃+T (R̃)]−1T (R̃)− [R+T (R)]−1T (R)

= [Ξ(R) + Γ(R,δ)][T (R) + δEl′,l]−Ξ(R)T (R)

= Γ(R,δ)T (R) + δ[Ξ(R) + Γ(R,δ)]El′,l

= Γ(R,δ)T (R) + δΥl′l

(
Ξ(R) + Γ(R,δ)

)
,
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where the last equality is due to the fact that M ·El′,l is equivalent to applying the matrix operator

Υl′l(·) to M . Since Γ(R,δ) is a rational function in δ, ∂p̃∗(w)

∂w
− ∂p∗(w)

∂w
is also a rational function in

δ.

If products l and l′ are not sold by the same retailer, T (R̃) = T (R). Then we write [R̃+T (R̃)]−1 =

[R+T (R) + δEl,l′ ]
−1. By Chang (2006, Eq. (6) and (7)), we can write [R̃+T (R̃)]−1 = [R+T (R) +

δEl,l′ ]
−1 = Ξ(R)− δΞN ,l′Ξl,N

1+Ξll′δ
.

By part (a) of Proposition 2,

∂p̃∗(w)

∂w
− ∂p

∗(w)

∂w
= [R̃+T (R̃)]−1T (R̃)− [R+T (R)]−1T (R)

=

[
Ξ(R)− δΞN ,l

′Ξl,N
1 + Ξll′δ

]
T (R)−Ξ(R)T (R)

= −δΞN ,l
′Ξl,N

1 + Ξll′δ
T (R).

(b) If products l and l′ are not sold by the same retailer, T (R̃) = T (R+ δEl,l′) = T (R) which is

symmetric by stipulation. By part (b) of Proposition 4, ∂p̃∗(w)

∂w
≥ I/2≥ 0. �

Proof of Proposition 6. The existence of a unique Cholesky factorization for the matrix

[Φ(R)+Φ(R)T

2
] is guaranteed by the fact that it is symmetric and positive definite. The matrix L

is lower triangular with positive diagonal elements, and therefore has an inverse L−1. Thus, the

matrix G is well defined. Since the matrix [Π(R)+Π(R)T

2
] is positive definite and symmetric, it is

easily verified that G has the same two properties. It is therefore possible to write G ≡ UDUT ,

with D a diagonal matrix with the eigenvalues of G as the diagonal elements. Since G is symmetric

and positive definite, all the eigenvalues {λ1, λ2, . . . , λN} are positive. Moreover, the matrix U is

orthogonal, i.e., (UUT ) = (UTU) = I.

Let V ≡ D−
1
2UTL−1, so that V T = L−TUD−

1
2 . We show that V [Π(R)+Π(R)T

2
]V T = I and

V [Φ(R)+Φ(R)T

2
]V T =D−1. To see this, we write

V

[
Π(R) + Π(R)T

2

]
V T = D−

1
2UTL−1

[
Π(R) + Π(R)T

2

]
L−TUD−

1
2

= D−
1
2UTGUD−

1
2

= D−
1
2DD−

1
2 = I,

where the second-to-last equality is due to G=UDUT so UTGU = (UTU)D(UTU) =D.

Also,

V

[
Φ(R) + Φ(R)T

2

]
V T = D−

1
2UTL−1

[
Φ(R) + Φ(R)T

2

]
L−TUD−

1
2

= D−
1
2UTL−1(LLT )L−TUD−

1
2
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= D−
1
2UTUD−

1
2 =D−

1
2D−

1
2 =D−1,

where the second-to-last equality is again due to UTU = I. Thus,

1

λmax

= min
i

(
1

λi

)
≤ πd(w)

πc(w)
=
q(w)T [Φ(R)+Φ(R)T

2
]q(w)

q(w)T [Π(R)+Π(R)T

2
]q(w)

=
yTD−1y

yTy
=

∑N

i=1

(
1
λi

)
y2
i∑N

i=1 y
2
i

≤max
i

(
1

λi

)
=

1

λmin

,

where q(w) = V Ty. �

C. Example That S Fails to Be a Z-Matrix

Example C.1. Consider an industry I = 2 retailers. Retailer 1 potentially can carry product 1,

2, 3 and retailer 2 potentially can carry product 4, 5, 6. The R-matrix is given by

R=


5.5 −0.7 −0.62 −0.8 −0.19 −0.93
−0.4 5.35 −0.73 −0.92 −0.90 −0.33
−0.9 −0.98 5.62 −0.84 −0.57 −0.66
−0.01 −0.55 −0.01 5.63 −0.63 −0.39
−0.3 −0.4 −0.42 −0.62 5.76 −0.63
−0.04 −0.2 −0.75 −0.73 −0.55 5.3

 .

This matrix is both row- and column-diagonally dominant and hence positive definite and a ZP -

matrix. Yet

S = Ψ(R)R=


2.7492 −0.2956 −0.4010 −0.2149 −0.0521 −0.2277
−0.2811 2.6537 −0.4480 −0.2254 −0.2211 −0.0674
−0.3850 −0.4565 2.7907 −0.2372 −0.1543 −0.1725

0.0010 −0.1378 0.0064 2.8020 −0.3266 −0.2873
−0.0758 −0.1100 −0.1036 −0.3448 2.8595 −0.3162
−0.0133 −0.0630 −0.1871 −0.3086 −0.3144 2.6339


has two positive off-diagonal elements. �

D. Auxiliary Calculations for Example 1

When w ∈W (I), the unique retail price equilibrium in P is on the edge BC between P (I) and

P . The effective demand of retailer 1 for any retail price p ∈ P (I) can be expressed as an affine

function of p1 only as d1(p1) = (1 + γ1)− (1− γ1γ2)p1 for p∈ P (I). Given a wholesale price w1, the

optimal monopoly price of retailer 1 is p̃∗1(w1) = 1+γ1
2(1−γ1γ2)

+ 1
2
w1, as the solution to the optimization

problem maxp1≥0(p1−w1)d1(p1). For w ∈W (I),

p̃∗1(w1) =
1 + γ1

2(1− γ1γ2)
+

1

2
w1 ≥ p∗1(w′) =

1 + γ1

2− γ1γ2

+
1

2− γ1γ2

w1,

because w1 ≤ 1+γ1
1−γ1γ2

for w ∈W (I). In other words, the equilibrium price p∗1(w′) of retailer 1, under

competition and the possibility of retailer 2 getting back into the market, is lower than the optimal
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monopoly price p̃∗1(w1), which applies when retailer 2 has exited the market permanently, i.e., the

price range is confined to P (I).

We verify that when γ1, γ2 > 0, p∗(w′) is the unique equilibrium, altogether. To verify this, by

Theorem 1, the only other equilibrium candidates are points po such that Ω(po) = p∗(w′), i.e., the

points on the vertical half line above p∗(w′) in Figure 1(a). However, an arbitrary point on this half

line fails to be an equilibrium, since retailer 1 can improve its profit by moving to the right: during

this horizontal move, the price vector remains in P (I), where the effective demand for product 1

is given by d1(p) = (1 + γ1)− (1− γ1γ2)p1 (see above), and the profit function is quadratic in p1,

hence unimodal with its peak possibly at p1 = p̃∗1(w1).

When γ1 = 0 or γ2 = 0, p∗1(w′) = p̃∗1(w1) and all points on the vertical half line above p∗(w′) are

equilibria: if retailer 1 deviates from the price p∗1(w′) = p̃∗1(w1), he decreases his profit, see above;

similarly, retailer 2’s profit increase by unilaterally switching to a different price level, contradicts

the fact that p∗(w′) is an equilibrium.

Finally, consider the case where w ∈W (III). It is easily verified that all points inW (III) have w′ =

Θ(w) =C and that p∗(C) =C: in other words, when w ∈W (III), the unique retailer equilibrium in

P is for both firms to exit the market by setting p∗(w′) =C. At the same time all other points po ∈

W (III) = P (III) are equilibria as well: retailer 1 may also generate a positive demand by decreasing

its price sufficiently so as to move into P (I), however since w ∈W (III), this is accompanied by a

negative profit margin; similarly retailer 2 cannot improve his profit by changing his price.

Consider the distribution structure analyzed in McGuire and Staelin (2008), where supplier i,

i= 1,2, sells product i exclusively through retailer i. Clearly, T (R) = I and

Ψ(R) = [I +R]−1 =
1

4− γ1γ2

(
2 γ1

γ2 2

)
.

Then we have

S = Ψ(R)R=
1

4− γ1γ2

(
2− γ1γ2 −γ1

−γ2 2− γ1γ2

)
.

By Federgruen and Hu (2013),

Ψ(S) = T (S)[S+T (S)]−1 =
2− γ1γ2

4(2− γ1γ2)2− γ1γ2

(
2(2− γ1γ2) γ1

γ2 2(2− γ1γ2)

)
,

and the effective supply cost polyhedron

C =

{
c≥ 0

∣∣∣∣ (8 + 6γ1− 3γ1γ2− 2γ2
1γ2)− (8− 9γ1γ2 + 2γ2

1γ
2
2)c1 + γ1(2− γ1γ2)c2 ≥ 0

(8 + 6γ2− 3γ1γ2− 2γ1γ
2
2) + γ2(2− γ1γ2)c1− (8− 9γ1γ2 + 2γ2

1γ
2
2)c2 ≥ 0

}
.

We provide an example where c∈C and w∗(c)∈ (W o \P ). Let γ1 = 0.7, γ2 = 0.3. Then, with

a=

(
1
1

)
and R=

(
1 −0.7
−0.3 1

)
,
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it is easily verified that

b= Ψ(R)a=

(
0.7124
0.6069

)
and S = Ψ(R)R=

(
0.4723 −0.1847
−0.0792 0.4723

)
,

and moreover,

Ψ(S) = T (S)[S+T (S)]−1 =

(
0.5083 0.0994
0.0426 0.5083

)
.

Consider c= (1,1.5)T . It is easily verified that

Ψ(S)Q(c) = Ψ(S)(b−Sc) =

(
0.2607
0.0106

)
> 0,

i.e., c∈Co. By Theorem 2 in Federgruen and Hu (2013),

w∗(c) = c+ [S+T (S)]−1Q(c) =

(
1.5519
1.5225

)
∈W o.

By Theorem 2(b),

p∗(w∗(c)) =w∗(c) + [R+T (R)]−1q(w∗(c)) =

(
1.8125
1.5331

)
∈ P o

and

d(p∗(w∗(c))) = a−Rp∗(w∗(c)) =

(
0.2607
0.0106

)
> 0.

However, note that

a−Rw∗(c) =

(
0.5139
−0.0569

)
,

i.e., w∗(c) /∈ P . �

E. A 2-Firm 2-Product Example

Example E.1 (2 Firms, 2 Products). As in Example 1, consider a duopoly of retailers i= 1,2,

each offering a single product i= 1,2, with raw demand functions specified as:

a=

(
5
5

)
and R=

(
4 −1 + δ

−1− δ 4

)
.

Regardless of the value of δ ≥ 0, the symmetrized matrix R̃ ≡ (R + RT )/2 =

(
4 −1
−1 4

)
. As δ

increases, the matrix R becomes increasingly asymmetric. Consider the wholesale price vector

(w1,w2) = (1.5,1.5)T . Figure E.1(a) plots the profits for retailers 1 and 2, respectively, as δ increases

from 0 to 1, its maximum value before R ceases to be a Z-matrix, i.e., before the products cease

to be substitutes.

Clearly, retailer 1 (2) suffers (benefits) when δ increases: the raw demand for its product decreases

(increases) under any given price vector p. This is reflected in the equilibrium profit function for



14

retailer 1 (2) being decreasing (increasing) with very significant bottom line changes as δ increases

from 0 to 1. Moreover, the degree of asymmetry has a major impact on the market structure: as

long as δ < 0.3885, both retailers maintain a market share; when δ≥ 0.3885, retailer 1 is unable to

compete, with retailer 2 remaining as a monopolist.

Case (i). Consider δ ∈ [0, −11+2
√

37
3

≈ 0.3885). In this case, both retailers enjoy positive demand

in equilibrium. The equilibrium prices are p∗1 = 11(9−δ)
63+δ2

, p∗2 = 11(9+δ)

63+δ2
, and the equilibrium demand

volumes are d∗1 = 44(9−δ)
63+δ2

− 6 and d∗2 = 44(9+δ)

63+δ2
− 6. Thus, both the price and the sales volume of

retailer 1 (2) decreases (increases) with δ.

Case (ii). Consider δ ∈ [−11+2
√

37
3

,1]. In this case, retailer 2 has a monopoly. As δ increases, its

profit increases, see Figure E.1(a), along with the retail price p∗2 = 0.75 + 5(5+δ)

2(15+δ2)
.

Figure E.1 A 2-Firm, 2-Product Example
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Note that the wholesale price vector wo = (1.5,1.5)T falls outside of the effective retail price

polyhedron P when δ > 1
3
: after all, qδ(wo) =

(
5− 4× 1.5 + (1− δ)1.5
5− 4× 1.5 + (1 + δ)1.5

)
, so that qδ1(wo) = 0.50−

1.5δ < 0⇔ δ > 1
3
. In other words, when δ > 1

3
, retailer 1 is driven out of the market even if she is

willing to operate without any markup, i.e., even when setting p1 =w1 = 1.5 (, as long as retailer

2 does the same). Nevertheless, as shown in case (i), as long as 0.333 < δ < 0.3885, retailer 1

maintains, in its unique equilibrium, a positive market share and adopts a positive markup.

For example, when δ = 0.36, p∗1 = 1.51 and p∗2 = 1.63. To show that the wholesale price vector

wo = (1.5,1.5)T may well arise in this market (, with δ = 0.36), even though wo /∈ P , consider the

basic channel structure studied in McGuire and Staelin (2008) where retailer 1 (2) uniquely procures

from a dedicated supplier 1 (2), operating with a marginal cost rate vector co = (1.4889,1.2345)T .

Assume the market operates as a sequential oligopoly: first the two suppliers, non-cooperatively,

select their wholesale prices, accounting for the retailers’ equilibrium price responses. Then, the

retailers follow and select their prices. Following the results in Federgruen and Hu (2013), one can
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show that the vector wo = (1.5,1.5)T arises as part of the unique supply-chain-wide equilibrium.

See Appendix E.1.1 for the auxiliary calculations to verify this result. This example shows that

characterizing the equilibrium in the retailer competition model, when w /∈ P o or even when w /∈ P

is of practical importance, because an actually observed market price vector w /∈ P may easily arise.

In addition, to enable the analysis of the competition game among the suppliers in a two-stage

sequential oligopoly, it is necessary to characterize the equilibrium behavior in the retailer game,

for an arbitrary vector of wholesale prices, even if in the end certain price vectors do not arise as

equilibria.

How does the efficiency ratio depend on δ, the degree of asymmetry in the matrix R? Figures

E.1(b) and E.1(c) display the aggregate profits in the oligopoly, those in the centralized solution and

the efficiency ratio as the asymmetry index δ varies between δ= 0 to δ= 1. The efficiency ratio first

declines until δ≤ 2
√

190−25
9

≈ 0.2853, the point where in the centralized solution, it becomes optimal

to sell only product 2, as opposed to both products. Recall that, under competition, both products

continue to be sold in equilibrium, under larger degrees of δ, i.e., even for δ ∈ [0.2853,0.3885). On

this interval, the efficiency ratio increases until it reaches the value δ= 0.3885 where retailer 1 and

its product 1 are driven out of the market. When δ > 0.3885, only product 1 is sold both in the

oligopoly and the centralized solution. Thus, the competitive and centralized solutions coincide for

δ > 0.3885, resulting in an efficiency ratio of 1. The high efficiency ratios in this example are not

representative, see Example 2 below. �

E.1. Auxiliary Calculations

E.1.1. The Example of w ∈W o \P . Clearly, T (R) = 4I and

Ψ(R) =
4

δ2 + 63

(
8 1− δ

1 + δ 8

)
.

Then we have

b= Ψ(R)a=
20

δ2 + 63

(
9− δ
9 + δ

)
and

S = Ψ(R)R=
1

δ2 + 63

(
4δ2 + 124 16δ− 16
−16δ− 16 4δ2 + 124

)
We verify that wo = (1.5,1.5)T ∈W o \P and wo arises as part of the unique supply-chain-wide

equilibrium with the supply cost vector co = (1.4889,1.2345)T . Let δ= 0.36. Then, with

a=

(
5
5

)
and R=

(
4 −0.64

−1.36 4

)
,
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it is easily verified that

b= Ψ(R)a=

(
2.7372
2.9653

)
and S = Ψ(R)R=

(
1.9724 −0.1622
−0.3447 1.9724

)
,

and moreover,

Ψ(S) = T (S)[S+T (S)]−1 =

(
0.5018 0.0206
0.0438 0.5018

)
.

Consider c= (1.4889,1.2345)T . It is easily verified that

Ψ(S)Q(c) = Ψ(S)(b−Sc) =

(
0.0219
0.5237

)
> 0,

i.e., c ∈ Co = {c≥ 0 |Ψ(S)(b− Sc)> 0}, where C is the effective supply cost polyhedron (as long

as c∈Co, all products enjoy positive market shares in equilibrium in the sequential oligopoly), see

Federgruen and Hu (2013). It is also easily verified that

w∗(c) = c+ [S+T (S)]−1Q(c) =

(
1.5
1.5

)
,

This verifies that w = (1.5,1.5)T arises as part of the unique supply-chain-wide equilibrium with

the supply cost vector c= (1.4889,1.2345)T . Since c ∈ Co, w∗(c) = (1.5,1.5)T ∈W o. This also can

be seen because for δ ∈ [0,0.3885), both products are provided in equilibrium in the market and

here, δ= 0.36 is in this range. Then

p∗(w∗(c)) =w∗(c) + [R+T (R)]−1q(w∗(c)) =

(
1.5055
1.6309

)
∈ P o

and

d(p∗(w∗(c))) = a−Rp∗(w∗(c)) =

(
0.0219
0.5237

)
> 0.

However, note that

a−Rw∗(c) =

(
−0.04
1.04

)
,

i.e., w∗(c) /∈ P .

E.1.2. Decentralized System. Case (i). Consider δ ∈ [0, −11+2
√

37
3

≈ 0.3885). In this case,

both retailers have positive demand in equilibrium. The equilibrium prices are p∗1 = 11(9−δ)
63+δ2

, p∗2 =

11(9+δ)

63+δ2
. The equilibrium demand volumes are d∗1 = 44(9−δ)

63+δ2
− 6, d∗2 = 44(9+δ)

63+δ2
− 6. The equilibrium

profits are π∗1 = (3δ2+22δ−9)2

(63+δ2)2
and π∗2 = (−3δ2+22δ+9)2

(63+δ2)2
.

Case (ii). Consider δ ∈ [−11+2
√

37
3

,1]. In this case, retailer 2 is the monopoly in the market. The

equilibrium price of retailer 2 is p∗2 = 3
4

+ 5(5+δ)

2(15+δ2)
. The smallest equilibrium price for retailer 1 to shut

down his demand is p∗1 = 13−3δ
16

+ 5(5−δ)
2(15+δ2)

. The equilibrium demand of retailer 2 is d∗2 = −3δ2+10δ+5
16

.

The equilibrium demand of retailer 1 is 0. The equilibrium profit of retailer 2 is π∗2 = (−3δ2+10δ+5)2

64(15+δ2)
.

The equilibrium profit of retailer 1 is 0.
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E.1.3. Centralized Solution. Case (i). Consider δ ∈ [0, 2
√

190−25
9

≈ 0.2853). Both products

are offered in the market in the optimal solution. The optimal prices are

p=w+ (R+RT )−1(a−Rw) =

(
19
12
− 3δ

20
19
12

+ 3δ
20

)
.

The optimal demand volumes are (
− 3δ2

20
− 5δ

6
+ 1

4

− 3δ2

20
+ 5δ

6
+ 1

4

)
.

The optimal profits are (
(9δ−5)(9δ2+50δ−15)

3600
(9δ+5)(−9δ2+50δ+15)

3600

)
.

The optimal profit is 9δ2

40
+ 1

24
.

Case (ii). Consider δ ∈ [0.2853,1]. The form of equilibria is the same as case (ii) of the decen-

tralized system. This is because in this case, product B is the only product in the market. The

optimal prices are p∗1 = 13−3δ
16

+ 5(5−δ)
2(15+δ2)

and p∗2 = 3
4

+ 5(5+δ)

2(15+δ2)
. The optimal demands are d∗1 = 0 and

d∗2 = −3δ2+10δ+5
16

. The optimal profit is π∗1 +π∗2 = (−3δ2+10δ+5)2

64(15+δ2)
.

F. Auxiliary Calculations for Example 2
F.1. Decentralized System

Case (i). Consider δ ∈
[
0, 3
√

17−11
4
≈ 0.3423

)
. In this case, all three products have positive demand

in equilibrium. The equilibrium prices are p∗A
p∗B
p∗C

=

 50−11δ
δ2+23

13δ/2+101/2

δ2+23
− δ/5

13δ/2+101/2

δ2+23
+ δ/5

 .

The equilibrium demand volumes are d∗A
d∗B
d∗C

=


200−44δ
δ2+23

− 8
301−31δ
δ2+23

+ δ− δ2

5
− 25

2
70δ+2
δ2+23

− δ− δ2

5
+ 1

2

 .

The equilibrium profits are π∗A
π∗B
π∗C

=


4(2δ2+11δ−4)2

(δ2+23)2

4δ7+20δ6+104δ5+3680δ4−1469δ3−11915δ2−1035δ+6075
100(δ2+23)2

−4δ7+20δ6−104δ5+560δ4−14131δ3+47625δ2+36135δ+6075
100(δ2+23)2

 .

The equilibrium profits for retailers are(
π∗1
π∗2

)
=

(
π∗A

π∗B +π∗C

)
=

(
4(2δ2+11δ−4)2

(δ2+23)2

2δ2

5
− 156δ3+(1917δ2)/2−351δ+25149/2

(δ2+23)2
+ 24

)
.
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Case (ii). Consider δ ∈ [0.3423,0.5758). In this case, only products B and C carried by retailer 2

have positive demand in equilibrium. The null price for product A to shut down demand is

p̄1(p2, p3) =
1

4
[5 + (1− δ)p2 + (1− δ)p3]

and the adjusted raw demand system for products B and C is(
d2(p2, p3)
d3(p2, p3)

)
=

(
5(5+δ)

4
5(5+δ)

4

)
−

(
15+δ2

4
− 5−4δ−δ2

4

− 5+4δ−δ2
4

15+δ2

4

)(
p2

p3

)
.

The component-wise smallest equilibrium prices are p∗1
p∗2
p∗3

=


9
8
− 5δ/2−25/4

δ2+5
− δ

2
5δ/4+25/4

δ2+5
− δ

5
+ 1

(4δ2+45)(δ+5)

20(δ2+5)

 .

The equilibrium demand volumes are d∗1
d∗2
d∗3

=

 0
5(δ−1)

8
− 25(δ−1)

4(δ2+5)
− 7δ2

10
5(δ+3)

8
+ 25(δ−1)

4(δ2+5)
− 7δ2

10

 .

The equilibrium profits areπ∗1
π∗2
π∗3

=

 0
112δ7+460δ6+20δ5+3225δ4+1800δ3−7250δ2−2500δ+3125

800(δ2+5)2

−112δ7+660δ6−2020δ5+3225δ4−9300δ3+12750δ2+15000δ+3125
800(δ2+5)2

 .

The equilibrium profits for retailers are(
π∗R1

π∗R2

)
=

(
π∗1

π∗2 +π∗3

)
=

(
0

125(δ+2)

8(δ2+5)
− 5δ

2
+ 7δ2

5
− 95

16

)
.

Case (iii). Consider δ ∈ [0.5758,1). In this case, only product C carried by retailer 2 has positive

demand in equilibrium. The null prices for products A and B to shut down demand is(
p̄1(p3)
p̄2(p3)

)
=

5 + (1− δ)p3

15 + δ2

(
5− δ
5 + δ

)
and the adjusted raw demand system for product C is

d3(p3) =
125 + 50δ+ 5δ2− (50 + 14δ2)p3

15 + δ2
.

The component-wise smallest equilibrium prices are p∗1
p∗2
p∗3

=


33
28
− 25δ/2−375/14

7δ2+25
− 17δ/2−5/2

δ2+15

− 33
28

+ 250
7(7δ2+25)

− 3δ/2−65/2

δ2+15
225+50δ+33δ2

100+28δ2

 .



19

The equilibrium demand volumes are d∗1
d∗2
d∗3

=

 0
0

25δ+185
δ2+15

− 23
2

 .

The equilibrium profits are π∗1
π∗2
π∗3

=

 0
0

(−23δ2+50δ+25)2

8(δ2+15)(7δ2+25)

 .

The equilibrium profits for retailers are(
π∗R1

π∗R2

)
=

(
π∗1

π∗2 +π∗3

)
=

(
0

(−23δ2+50δ+25)2

8(δ2+15)(7δ2+25)

)
.

The maximum of retailer 2’s profit is achieved at δ= 0.822.

F.2. Centralized Solution

Case (i): Consider δ ∈ [0,
√

705−25
8
≈ 0.1940). The optimal prices are

w+ [R+T (R)]−1(a−Rw) =

 9
4
− 2δ

5
9
4

9
4

+ 2δ
5

 .

The optimal demand volumes are

RT [R+RT ]−1(a−Rw) =

− 2δ2

5
− 5δ

2
+ 1

2

− 4δ2

5
+ 1

2

− 2δ2

5
+ 5δ

2
+ 1

2

 .

The optimal profits are  (8δ−5)(4δ2+25δ−5)

200
1
8
− δ2

5
(8δ+5)(−4δ2+25δ+5)

200

 ,

and the optimal total profit is 8δ2

5
+ 3

8
.

Case (ii): Consider δ ∈ [0.1939,0.5758). In this case, only products B and C have positive demand

in the optimal solution. The form of optimal prices is the same as case (ii) of the decentralized

case in which retailer 2 carrying products B and C is the only remaining firm in the market. Then

the optimal prices are  p∗1
p∗2
p∗3

=


9
8
− 5δ/2−25/4

δ2+5
− δ

2
5δ/4+25/4

δ2+5
− δ

5
+ 1

(4δ2+45)(δ+5)

20(δ2+5)

 .

The optimal demand volumes are d∗1
d∗2
d∗3

=

 0
5(δ−1)

8
− 25(δ−1)

4(δ2+5)
− 7δ2

10
5(δ+3)

8
+ 25(δ−1)

4(δ2+5)
− 7δ2

10

 .
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The optimal profits areπ∗1
π∗2
π∗3

=

 0
112δ7+460δ6+20δ5+3225δ4+1800δ3−7250δ2−2500δ+3125

800(δ2+5)2

−112δ7+660δ6−2020δ5+3225δ4−9300δ3+12750δ2+15000δ+3125
800(δ2+5)2

 .

The optimal total profit is

π∗1 +π∗2 +π∗3 =
125(δ+ 2)

8(δ2 + 5)
− 5δ

2
+

7δ2

5
− 95

16
.

Case (iii). Consider δ ∈ [0.5758,1). In this case, only product C carried by retailer 2 has positive

demand in the optimal solution. The form of optimal prices are the same as case (iii) of the

decentralized case. The optimal prices prices are p∗1
p∗2
p∗3

=


33
28
− 25δ/2−375/14

7δ2+25
− 17δ/2−5/2

δ2+15

− 33
28

+ 250
7(7δ2+25)

− 3δ/2−65/2

δ2+15
225+50δ+33δ2

100+28δ2

 .

The optimal demand volumes are  d∗1
d∗2
d∗3

=

 0
0

25δ+185
δ2+15

− 23
2

 .

The optimal total profit is

π∗1 +π∗2 +π∗3 =
(−23δ2 + 50δ+ 25)2

8(δ2 + 15)(7δ2 + 25)
.

G. Robustness Check for Example 2

For all possible combinations of wholesale prices on the grid woi ∈ {0.4,0.8,1.2,1.6,2}, i = 1,2,3,

we compute the following performance measures while varying δ ∈ [0,1): the profit for retailer 1’s

product A, the profit for retailer 2’s product B, the profit for retailer 2’s product C, the aggregate

decentralized profit, the aggregate centralized profit and the efficiency ratio. For all 6 performance

measures, we display below the histograms for the largest percentage increase and decrease due to

asymmetry, across the 125 scenarios.

1. The profit for retailer 1’s product A: For all 125 scenarios, this profit measure decreases with

δ. See Figure G.1 for the maximum percentage decrease.

2. The profit for retailer 2’s product B: For all 125 scenarios, this profit measure decreases with

δ. See Figure G.2 for the maximum percentage decrease.

3. The profit for retailer 2’s product C: For all 125 scenarios, this profit measure increases with

δ. See Figure G.3 for the maximum percentage increase.

4. The aggregate profit of the decentralized system: See Figure G.4.

5. The aggregate profit of the centralized system: See Figure G.5.

6. The efficiency ratio: See Figure G.6.
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Figure G.1 Profit for Retailer 1’s Product A
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Figure G.2 Profit for Retailer 2’s Product B
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Figure G.3 Profit for Retailer 2’s Product C
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H. Robustness Check for Example 3

For the 125 wholesale price vectors described, we compute the following performance measures

while varying δ ∈ (0,1]: the profit for retailer 1, the profit for retailer 2, the profit for retailer 3,

the aggregate decentralized profit, the aggregate centralized profit and the efficiency ratio. For all

6 performance measures, we display below the histograms for the largest percentage increase and
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Figure G.4 Profit for Decentralized System
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Figure G.5 Profit for Centralized System
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Figure G.6 Efficiency Ratio
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decrease due to asymmetry, across the 125 scenarios.

1. The profit for retailer 1: For all 125 scenarios, this profit measure decreases with δ. See Figure

H.1 for the maximum percentage decrease.

2. The profit for retailer 2: For all 125 scenarios, this profit measure decreases with δ. See Figure

H.2 for the maximum percentage decrease.



23

Figure H.1 Profit for Retailer 1
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Figure H.2 Profit for Retailer 2
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3. The profit for retailer 3: For all 125 scenarios, this profit measure increases with δ. See Figure

H.3 for the maximum percentage increase.

Figure H.3 Profit for Retailer 3
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4. The aggregate profit of the decentralized system: See Figure H.4.

5. The aggregate profit of the centralized system: See Figure H.5.
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Figure H.4 Profit for Decentralized System
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Figure H.5 Profit for Centralized System
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6. The efficiency ratio: See Figure H.6.

Figure H.6 Efficiency Ratio

−10 −9.5 −9 −8.5 −8 −7.5 −7 −6.5 −6 −5.5 −5
0

1

2

3

4

5

6

7

8

Largest Downswing in Efficiency (%)

F
re

qu
en

cy
 (

%
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

10

20

30

40

50

60

70

80

90

Largest Upswing in Efficiency (%)

F
re

qu
en

cy
 (

%
)

References

Chang, F. C. 2006. Inversion of a perturbed matrix. Applied Mathematics Letters 19(2) 169–173.

Cottle, R.W., J.S. Pang, R.E. Stone. 1992. The Linear Complementarity Problem. Academic Press, Boston.



25

Farahat, A., G. Perakis. 2010. A nonnegative extension of the affine demand function and equilibrium analysis

for multiproduct price competition. Oper. Res. Letters 38(4) 280–286.

Horn, R.A., C.R. Johnson. 1985. Matrix Analysis. Cambridge University Press, Cambridge, UK.

Horn, R.A., C.R. Johnson. 1991. Topics in Matrix Analysis. Cambridge University Press, Cambridge, UK.

Rosen, J.B. 1965. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica

33(3) 520–534.

Soon, W., G. Zhao, J. Zhang. 2009. Complementarity demand functions and pricing models for multi-product

markets. Eur. J. Appl. Math. 20(5) 399–430.

Topkis, D.M. 1998. Supermodularity and Complementarity. Princeton University Press.


	Introduction and Summary
	The Model
	The Retailer Competition Model
	The Impact of Asymmetry in the Price Sensitivity Matrix R

	Conclusions and Extensions
	Preliminaries
	Proofs for Sections 2 and 3
	Example That S Fails to Be a Z-Matrix
	Auxiliary Calculations for Example 1

	A 2-Firm 2-Product Example
	Auxiliary Calculations
	The Example of wWoP.
	Decentralized System.
	Centralized Solution.


	Auxiliary Calculations for Example 2
	Decentralized System
	Centralized Solution

	Robustness Check for Example 2
	Robustness Check for Example 3



