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Proof of Lemma 1. (i) Without capacity constraints, price competition has equilibrium

prices c
2−γ

and sales c
2−γ

for both firms. If x≥ c
2−γ

, indeed p∗1 = p∗2 = c
2−γ

can be sustained as

equilibrium prices. (ii) If x < c
2−γ

, both firms set price to clear the market in equilibrium,

i.e., c− p1 + γp2 = x and c− p2 + γp1 = x, which we solve for p∗1 = p∗2 = c−x
1−γ

. Equilibrium

sales and revenues follow immediately. �

Proof of Proposition 1. The proposition follows by applying Lemma 1 to both high and

low demand scenarios, and then computing the expected revenues. �

Proof of Proposition 2. We discuss different ranges of capacity levels. The four cases

in Table 3 correspond to the cases of whether the capacity is cleared when demand turns

out to be either high or low. For each case, we derive the Nash equilibrium. For (pS, pS) to

be a symmetric equilibrium, we must have

pS = argmaxp

1
2
p
(
min(x, (c− p + γpS − t)+) +min(x, (c− p + γpS + t)+)

)
. (0.1)

We first argue that we can remove the (·)+ in the discussion. It can be easily seen that at

equilibrium the latter (·)+ cannot be active, because then the revenue will be 0 and cannot

be optimal. If the first (·)+ is active, then we know that pS > c + γpS − t, i.e., pS > c−t
1−γ

.

However, in this case, pS will not be the optimal response in (0.1) unless pS ≤ c+t
2+γ

. Given

that c≥ 3t, we have c−t
1−γ

≥ c+t
2+γ

, thus the (·)+ can not be active at equilibrium and we can

safely remove the (·)+ operator in our following discussion. We consider several cases as

follows:

• Case 1: c− pS + γpS + t < x. In this case, the optimality condition is pS = c+γpS

2
, thus

pS = c
2−γ

. To make the condition hold, x has to be greater than c
2−γ

+ t. Note that the right

hand side of (0.1) (with (·)+ removed, the same applied to later discussions) is a concave

function of p, therefore pS is indeed the best response when the other firm chooses pS. We

can further compute the expected revenue from (0.1). Therefore, pS = c
2−γ

is an equilibrium

when x > c
2−γ

+ t with equilibrium revenue c2

(2−γ)2
.

• Case 2: c− pS + γpS − t≥ x. In this case, the only possible equilibrium price is pS =
c−t−x
1−γ

(and this will make the equality hold). To show that this is indeed an equilibrium, we

need to show that p = pS is the best response when the other firm chooses pS, in particular,

it is worse off to choose a larger p (there is clearly no benefit for choosing a smaller p). We

consider the right gradient of the function
(
rH(p, pS) + rL(p, pS)

)
at pS. We have

∂

∂p

(
rH(p, pS) + rL(p, pS)

)
|pS+ = c− 2pS + γpS − t +x =

3− 2γ

1− γ
x− c− t

1− γ
.

1
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Since
(
rH(p, pS) + rL(p, ps)

)
is concave, pS is the maximum if and only if 3−2γ

1−γ
x− c−t

1−γ
≤ 0.

The revenue can be computed following (0.1). Therefore, pS = c−x−t
1−γ

is the equilibrium

price when x≤ c−t
3−2γ

with revenue (c−t−x)x
1−γ

.

• Case 3: c−pS +γpS− t < x < c−pS +γpS + t. In this case, the only possible symmetric

equilibrium is pS = c−t+x
2−γ

. In order to make the condition hold, we must have c−t
3−2γ

< x <
c

3−2γ
+ t. Also since (0.1) is concave, pS must be the best response when the other firm

chooses pS. Therefore, pS = c−t+x
2−γ

is the equilibrium price when c−t
3−2γ

< x < c
3−2γ

+ t with

revenue (c−t+x)2

2(2−γ)2
.

• Case 4: c− pS + γpS + t = x. In this case, pS = c+t−x
1−γ

. For this to be the equilibrium,

we require

∂

∂p

(
rH(p, pS) + rL(p, pS)

)
|pS− ≥ 0 and

∂

∂p

(
rH(p, pS) + rL(p, ps)

)
|pS+ ≤ 0.

We have

∂

∂p

(
rH(p, pS) + rL(p, pS)

)
|pS− = c− 2pS + γpS − t +x =

3− 2γ

1− γ
(x− t)− c

1− γ

and
∂

∂p

(
rH(p, pS) + rL(p, pS)

)
|pS+ = c− 2pS + γpS =

2− γ

1− γ
(x− t)− c

1− γ
.

Therefore, pS = c+t−x
1−γ

is an equilibrium when c
3−2γ

+t≤ x≤ c
2−γ

+t. The equilibrium revenue

can be also computed following (0.1) which is (c+t−x)(x−t)
1−γ

.

Next we provide a condition under which the equilibrium must be symmetric.

Claim: When c≥ 3t and x≥ 2t, the pure strategy equilibrium of the game defined by

p1 = argmax
p

1
2

(
rH(p, p2) + rL(p, p2)

)
(0.2)

p2 = argmax
p

1
2

(
rH(p, p1) + rL(p, p1)

)
(0.3)

must be symmetric.

Proof. We show that p1 defined in (0.2) is increasing in p2 and p2 defined in (0.3) is increas-

ing in p1. If this holds, then we can easily show that at equilibrium, p1 = p2. Otherwise, if

p1 > p2, by the monotonicity of (0.2) and (0.3), we have

p2 = argmax
p

1
2

(
rH(p, p1) + rL(p, p1)

)
≥ argmax

p

1
2

(
rH(p, p2) + rL(p, p2)

)
= p1

which is a contradiction.
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Now we show that p1 defined in (0.2) increases in p2 (the other part is the same). To this

end, we show that rH(p, p′) and rL(p, p′) are supermodular in (p, p′). If this holds, then by

Topkis’s Theorem, the result holds.

To show that rH(p, p′) and rL(p, p′) are supermodular in (p, p′), we first show that under

the assumption that c≥ 3t and x≥ 2t,

argmax
p

1
2

(
rH(p, p′) + rL(p, p′)

)
= argmax

p

1
2

(
pmin(x, c− p + γp′ + t)+ + pmin(x, c− p + γp′− t)+

)
= argmax

p

1
2

(pmin(x, c− p + γp′ + t) + pmin(x, c− p + γp− t)) , (0.4)

that is, the (·)+ operator can be removed without changing the optimal solution. The first

part is easy, since the firm will never choose a price such that the demand is negative under

high demand. To show the second part, note that when the firm chooses price p≥ c+γp′−t

(i.e., the second (·)+ operator is active), the demand of the first part is min(x,2t). Under

the assumption that x≥ 2t, the revenue function under the high demand is p(c−p+γp′+t).

When c ≥ 3t, the derivative of p(c − p + γp′ + t) with respect to p at p = c + γp′ − t is

negative, meaning that reduce the price will always increase the overall revenue. Therefore,

one can remove the second (·)+ in (0.4).

Lastly we show the function pmin(x, c− p + γp′ + t) + pmin(x, c− p + γp′ − t) is super-

modular in (p, p′) on the positive orthant. We prove the supermodularity for the first

term. The proof for the second term is similar and the supermodularity of the sum follows

immediately.

To show pmin(x, c− p + γp′ + t) is supermodular, it suffices to show that min(0, p(c− p +

γp′ + t− x)) is supermodular. We define f(p, p′) = p(c− p + γp′ + t− x). It is easy to see

that f(p, p′) is supermodular. For p1 ≥ p2 ≥ 0 and p′1 ≥ p′2 ≥ 0, we consider

min(0, f(p1, p
′
1))+ min(0, f(p2, p

′
2))−min(0, f(p1, p

′
2))−min(0, f(p2, p

′
1)). (0.5)

We consider several cases:

• If f(p1, p
′
1)≤ 0 and f(p2, p

′
1)≤ 0, then since f is increasing in p′, we have f(p1, p

′
2)≤ 0

and f(p2, p
′
2)≤ 0, therefore (0.5) is nonnegative due to the supermodularity of f .

• If f(p1, p
′
1)≤ 0 and f(p2, p

′
1)≥ 0, then again since f is increasing in p′, we must have

f(p1, p
′
2)≤ 0. If f(p2, p

′
2)≤ 0, then the nonnegativity of (0.5) follows from the supermodu-

larity of f and the fact that the last term is truncated at 0. And if f(p2, p
′
2)≥ 0, then the

nonnegativity of (0.5) follows from the monotonicity of f in p′.
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• If f(p1, p
′
1) ≥ 0. then by the form of f , we must have f(p2, p

′
1) ≥ 0. Therefore, (0.5)

reduces to min(0, f(p2, p
′
2)) − min(0, f(p1, p

′
2)). If f(p1, p

′
2) ≥ 0, then by the form of f ,

we must have f(p2, p
′
2) ≥ 0, therefore (0.5) is nonnegative; if f(p1, p

′
2) ≤ 0, we must have

f(p2, p
′
2)≥ f(p1, p

′
2).

Therefore (0.5) is also nonnegative and the claim is proved. �

Proof of Proposition 3. First, by using the same argument as in the proof of Proposition

1, we can safely remove the (·)+ operator in our discussions. Next we show that p∗1 ∈
argmaxp1

1
2
(rH(p1, p

H
2 (p1)) + rL(p1, p

L
2 (p1))) when x≥ h(γ)c + 2t. We first note that p∗1 is a

local maximizer. This is because when p1 = p∗1, and x≥ γ1c+2t, we have pH
2 (p∗1) = c+γp∗1+t

2
,

pL
2 (p∗1) = c+γp∗1−t

2
and x≥ c− p∗1 + γpH

2 (p∗1) + t≥ c− p∗1 + γpL
2 (p∗1)− t. Therefore, locally, the

objective value function is p(c− p + γ c+γp
2

) and p∗1 is exactly its maximizer.

Now we want to show that it is also a global optimum. First we note that for all p such

that

pH
2 (p) =

c+ γp + t

2
, pL

2 (p) =
c+ γp− t

2
, (0.6)

the objective is smaller than that achieved by p∗1. This is because that when the above

equations hold, the objective function can be written as

p

(
min(x, c− p + γ

c+ γp + t

2
+ t) +min(x, c− p + γ

c+ γp− t

2
− t)

)
,

which is concave. And as we have argued, p∗1 is a local maximizer of the concave function

thus achieves a greater value than all other p’s.

Next we consider p that doesn’t satisfy (0.6). We first consider the case when

pH
2 (p) = c+ γp + t−x, pL

2 (p) = c+ γp− t−x. (0.7)

Note that in this case, p≥ p∗1. Since c− p+ γpH
2 (p) and c− p+ γpL

2 (p) are both decreasing

in p, we must still have x≥ c−p+γpH
2 (p)+ t≥ c−p+γpL

2 (p)− t. Therefore, the objective

function in this case is p(c− p + γ(c + γp− x)), which achieves maximum at p = (1+γ)c−γx
2(1−γ2)

with an objective value of ((1+γ)c−γx)2

4(1−γ2)
. When x ≥ γ2c, we can verify that ((1+γ)c−γx)2

4(1−γ2)
≤

(2+γ)2c2

8(2−γ2)
. Thus, when x≥ γ2c, there is no p satisfying (0.7) that achieves a higher objective

value than p∗1.

Last, we consider p such that

pH
2 (p) = c+ γp + t−x, pL

2 (p) =
c+ γp− t

2
. (0.8)
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Note that if pH
2 (p) = c+γp+t

2
, then we must have pL

2 (p) = c+γp−t
2

. Therefore, (0.8) is the only

remaining case to be discussed. Now we consider the objective in this case. By the same

argument, we still have x≥ c− p + γpH
2 (p) + t≥ c− p + γpL

2 (p)− t for all p in this range.

Therefore, the objective function is p(c−p+ γ
2
(c+γp+t−x+ 1

2
(c+γp−t))), which achieves

its maximum at p̃ = (1+ 3
4
γ)c− γ

2
x

2(1− 3
4
γ2)

. However, when x≥ γ3c + 2t, p̃ < 2x−c−t
γ

. This means that

p̃ does not satisfy (0.8). Therefore, when x≥ γ3c + 2t, there is no local maximum in the

range of (0.8). The maximum values obtained in this range is no higher than the maximum

values in (0.6) and (0.7). Therefore, we proved that p∗1 is indeed the optimal solution,

and pH
2
∗, pL

2
∗ follow as maximizers as well. And note that essentially the above argument

showed that p∗1 is the unique maximizer to (3), and it is a sequential game, therefore, the

equilibrium is also unique. �

Proof of Proposition 4. To show this, we need to show that

p∗1 = argmaxp1

1
2
(rH(p1, p

H
2 (p1))+ rL(p1, p

L
2 (p1))) (0.9)

when x ≤ 1+γ
3+γ

(c− t). Note that when p1 = p∗1 and x ≤ 1+γ
3+γ

(c− t), pH
2 (p∗1) = c + γp∗1 + t−

x,pL
2 (p∗1) = c+γp∗1− t−x and x = c−p∗1 +γpL

2 (p∗1)− t≤ c−p∗1 +γpH
2 (p∗1)+ t. For all p < p∗1,

the objective value is still px < p∗1x. Therefore, p∗1 achieves higher revenue than all p < p∗1.

Now we consider p > p∗1. Note that for all p > p∗1, we still have pH
2 (p) = c+γp+ t−x,pL

2 (p) =

c+γp− t−x. Therefore the objective is p · (min(x, c−p+γ(c+γp+ t−x)+ t)+min(x, c−
p+γ(c+γp− t−x)− t)). Note that this is a concave function. And the right gradient at p∗1

is (1+γ)(c− t)+ (1−γ)x− 2(1−γ2)p∗1 = (3+γ)x− (1+ γ)(c− t)≤ 0 when x≤ 1+γ
3+γ

(c− t).

Therefore, p∗1 must be the maximizer of (0.9) and pH
2
∗, pL

2
∗ follows as optimal point as well.

Again, by the above argument, p∗1 is the unique maximizer to (3), and it is a sequential

game, therefore, the equilibrium is also unique. �

Proof of Proposition 5. Note γ1 > 1
2−γ

. Therefore when x≥ h(γ)c+2t, by Propositions

1, 2 and 3, we have

V1(S,S) = V2(S,S) =
c2

(2− γ)2
, V1(C,C) = V2(C,C) =

c2 + t2

(2− γ)2
,

and

V1(S,C) = V2(C,S) =
(2 + γ)2

8(2− γ2)
c2, V1(C,S) = V2(S,C) =

(
4 +2γ− γ2

4(2− γ2)

)2

c2 +
t2

4
.

By simple algebra, we have V2(S,C) > V2(S,S) for all γ > 0, or equivalently V1(C,S) >

V1(S,S). We also have

V1(S,C)−V1(C,C) =
γ4

8(2− γ2)(2− γ)2
c2 − t2

(2− γ)2
.
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Therefore, V1(S,C) > V1(C,C) if and only if t < γ2

2
√

4−2γ2
c. Equivalently, V2(C,S)≤ V2(C,C)

if and only if t≥ γ2

2
√

4−2γ2
c . Therefore, the claims on the pure-strategy equilibria hold.

Moreover, suppose firm 2 assigns probability weight q to S and probability weight (1− q)

to C. If a mixed strategy is a best response then each of the pure strategies involved in the

mix must itself be a best response. In particular, each must yield the same expected payoff.

Hence, in equilibrium, for firm 1, the payoffs of firm 1 against firm 2’s mixed strategy must

be the same regardless which strategy firm 1 plays, i.e.,

qV1(S,S) + (1− q)V1(S,C) = qV1(C,S) + (1− q)V1(C,C). (0.10)

If V1(S,C) > V1(C,C), then by V1(C,S) > V1(S,S), the weight q = 1/(1 + (V1(C,S) −
V1(S,S))/(V1(S,C)−V1(C,C))) indeed belongs to the range [0,1]. Similarly, we can solve

the weight in firm 1’s mixed strategy in equilibrium. Since the weights are unique in

each firm’s strategy in equilibrium, there exists a unique mixed strategy equilibrium. If

V1(S,C)≤ V1(C,C), the weight satisfying (0.10) falls outside of [0,1] and hence there exists

no mixed strategy equilibrium. �

Proof of Propositions 7 and 8. We first define xl as in Proposition 7: If 1
3−2γ

> t
c
≥

1−γ
3−γ

· 1
3−2γ

then

1. If t
c
≥ −2γ2+4γ−1

3−2γ
, then xl = 1−γ

2−γ
c+ 3−γ

2−γ
t.

2. If −2γ2+4γ−1
3−2γ

> t
c
≥ (1−γ)(−γ2+2γ+1)

−γ3+9γ2−23γ+17
, then xl = γ2−2γ+2

γ2−5γ+5
c+ γ2−6γ+6

γ2−5γ+5
t.

3. If t
c
< (1−γ)(−γ2+2γ+1)

−γ3+9γ2−23γ+17
, then xl is the larger root to the equation:

(2γ2−9γ +9)x2− (2γ2−6γ +6)cx+(1−γ)c2−2(1−γ)ct−2(1−γ)xt+(1−γ)t2 = 0.

(0.11)

If t
c
< 1−γ

3−γ
· 1

3−2γ
, then

1. If t
c
≥ γ

4−γ
, then xl = 1−γ

2−γ
c+ 3−γ

2−γ
t.

2. If t
c
< min{1−2γ

3−2γ
, γ

4−γ
}, then xl = c+t

2
.

3. If 1−2γ
3−2γ

< t
c
< γ

4−γ
,then x1 is the larger root to (0.11).

We note that the equilibrium revenues shown in Table 3 and Table 2 have different break-

points. We first establish the following lemma that orders these breakpoints.

Lemma 1. For all input c, t and x, we have c+t
2−γ

≤ c
2−γ

+ t and c−t
3−2γ

≤ c−t
2−γ

. Furthermore,

• When t
c
≥ 1

3−2γ
, c−t

2−γ
< c+t

2−γ
≤ c

3−2γ
+ t.

• When 1
3−2γ

> t
c
≥ 1−γ

3−γ
· 1

3−2γ
, c−t

2−γ
≤ c

3−2γ
+ t < c+t

2−γ
.

• When t
c
< 1−γ

3−γ
· 1

3−2γ
, c

3−2γ
+ t < c−t

2−γ
< c+t

2−γ
.
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We prove each case in Lemma 1 and then summarize the results in the end. We have the

following claims.

Claim 1. If t
c
≥ 1

3−2γ
, then V C ≥ V S.

Claim 2. If 1
3−2γ

> t
c
≥ 1−γ

3−γ
· 1

3−2γ
, then

• If t
c
≥ γ

2−γ
, then V C ≥ V S.

• If t
c
< γ

2−γ
, then V S > V C when x∗ < x < c

2
+ t+

√
γ2c2−4t2(1−γ)

2(2−γ)
and V S ≤ V C otherwise.

Here x∗ is defined as follows:

1. If t
c
≥ −2γ2+4γ−1

3−2γ
, then x∗ = 1−γ

2−γ
c+ 3−γ

2−γ
t.

2. If −2γ2+4γ−1
3−2γ

> t
c
≥ (1−γ)(−γ2+2γ+1)

−γ3+9γ2−23γ+17
, then x∗ = γ2−2γ+2

γ2−5γ+5
c+ γ2−6γ+6

γ2−5γ+5
t.

3. If t
c
< (1−γ)(−γ2+2γ+1)

−γ3+9γ2−23γ+17
, then x∗ is the larger root to (0.11).

Claim 3. If t
c
< 1−γ

3−γ
· 1

3−2γ
, then

• If t
c
≥ γ

2−γ
, then V C ≥ V S.

• If t
c
< γ

2−γ
, then V S > V C when x∗ < x < c

2
+ t+

√
γ2c2−4t2(1−γ)

2(2−γ)
and V S ≤ V C otherwise.

Here x∗ is defined as follows:

1. If t
c
≥ γ

4−γ
, then x∗ = 1−γ

2−γ
c+ 3−γ

2−γ
t.

2. If t
c
< min{1−2γ

3−2γ
, γ

4−γ
}, then x∗ = c+t

2
.

3. If 1−2γ
3−2γ

< t
c
< γ

4−γ
,then x∗ is the larger root to (0.11).

Proof of Claim 1. We consider different cases for x.

• x > c
2−γ

+ t. In this case, V C = c2+t2

(2−γ)2
> c2

(2−γ)2
= V S. And when high demand realizes,

V C is always higher than V S. When low demand realizes, V C ≥ V S if and only if t≥ γc.

• c
3−2γ

+ t≤ x≤ c
2−γ

+ t. In this case, we have:

V S −V C =
(c+ t−x)(x− t)

1− γ
− c2 + t2

(2− γ)2
=−

(x− t− c
2
)2

1− γ
+

γ2c2 − 4t2(1− γ)
4(1− γ)(2− γ)2

. (0.12)

Note that if γ2c2 ≤ 4t2(1 − γ), then V S ≤ V C . Now we consider the case when γ2c2 >

4t2(1 − γ). First we claim that γ ≥ 1/2 in this case. Otherwise, γ2c2 ≤ γ2(3 − 2γ)2t2 =

(3γ − 2γ2)2t2 ≤ t2 when 0≤ γ ≤ 1/2, but 4(1− γ)t2 > 2t2, which contradicts with the case

assumption γ2c2 > 4t2(1− γ). Therefore, γ ≥ 1/2 and thus c
3−2γ

+ t≥ c
2
+ t. Therefore, the

maximum value of (0.12) must be obtained at c
3−2γ

+ t given x in this case. We plug in

x = c
3−2γ

+ t in to (0.12) and get:

V S −V C =−
(x− t− c

2
)2

1− γ
+

γ2c2 − 4t2(1− γ)
4(1− γ)(2− γ)2

=
1

(2− γ)2

(
4γ− 2γ2 − 1

(3− 2γ)2
c2 − t2

)
≤ 0.
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The last inequality is because c≤ (3−2γ)t and 4γ−2γ2−1≤ 1. Therefore, in this interval,

V C is always greater than V S. To decompose it into each sub-case, when the demand is

high, we have

RH
S −RH

C =
(c+ t−x)x

1− γ
− (c+ t)2

(2− γ)2
=−

−(x− c+t
2

)2

1− γ
+

γ2(c+ t)2

4(1− γ)(2− γ)2
≥ 0. (0.13)

And when the demand is low, we have

RL
S −RL

C =
(c+ t−x)(x− 2t)

1− γ
− (c− t)2

(2− γ)2
=−

(x− c+3t
2

)2

1− γ
+

γ2(c− t)2

4(1− γ)(2− γ)2
. (0.14)

It can be shown that (0.14) is positive when x∈ [ c+3t
2
− γ(c−t)

2(2−γ)
, c+3t

2
+ γ(c−t)

2(2−γ)
]. If t > γc, then

RL
C is always higher, however, if γc > t, then RL

S is greater for x ∈ [max{ c
3−2γ

+ t, 1−γ
2−γ

c +
3−γ
2−γ

t}, c
2−γ

+ t].

• c+t
2−γ

< x < c
3−2γ

+ t. We have

V S −V C =
(c− t +x)2

2(2− γ)2
− c2 + t2

(2− γ)2
. (0.15)

Note that (0.15) is a convex function. And by the continuity of the revenue function in

Table 3 and 2, we know that at x = c
3−2γ

+ t, (0.15) is smaller than 0. And at x = 0, (0.15)

is also less than 0, therefore, by convexity, (0.15) is less than 0 for any x in this case. To

decompose it into each sub-case, when the demand is high, we have

RH
S −RH

C =
(c− t +x)x

2− γ
− (c+ t)2

(2− γ)2
=

(x− c−t
2

)2

2− γ
− (c− t)2

4(2− γ)
− (c+ t)2

(2− γ)2
, (0.16)

which is a convex function and the minimizer is c−t
2
≤ c+t

2−γ
, therefore it is maximized at

c
3−2γ

+ t within this interval. However, (0.16) is negative at x = c
3−2γ

+ t. Therefore, RH
C is

always greater.

When the demand is low, we have

RL
S −RL

C =
(c− t +x)(c− t− (1− γ)x)

(2− γ)2
− (c− t)2

(2− γ)2
=

x

(2− γ)2
(−(1− γ)x+ γ(c− t)).(0.17)

Therefore, (0.17) is positive when x≤ γ(c−t)
1−γ

. And it can be shown that γ(c−t)
1−γ

≤ c
3−2γ

+ t in

the range we are considering. Therefore, RL
S is larger if x∈ [ c+t

2−γ
, γ(c−t)

1−γ
].

• c−t
2−γ

< x < c+t
2−γ

. We have:

V S −V C =
(c− t +x)2

2(2− γ)2
− (c− t)2

2(2− γ)2
− (c+ t−x)x

1− γ
= x

{(
1

(2− γ)2
+

1
1− γ

)
x− c+ t

1− γ
+

2c− 2t

(2− γ)2

}
.
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This is maximized at x = c+t
2−γ

. However, by the results in the previous part, we know that

at x = c+t
2−γ

, V S < V C . Therefore, we have V S < V C for any x in this case. To decompose it

into each sub-case, when the demand is high, we have

RH
PC −RH

AD =
(c− t +x)x

2− γ
− (c+ t−x)x

1− γ
=

((3− 2γ)x− c− (3− 2γ)t)x
(1− γ)(2− γ)

< 0.

Therefore when high demand realizes, V C is always higher. When low demand realizes,

RL
S −RL

C =
(c− t +x)(c− t− (1− γ)x)

(2− γ)2
− (c− t)2

(2− γ)2
=

x

(2− γ)2
(−(1− γ)x+ γ(c− t)).

Therefore, RL
S is higher when x∈ [ c−t

2−γ
,min( c+t

2−γ
, γ(c−t)

1−γ
)].

• c−t
3−2γ

≤ x < c−t
2−γ

. We have

V S −V C =
(c− t +x)2

2(2− γ)2
− (c−x)x

1− γ
. (0.18)

Note that (0.18) is a convex function, and it is negative at c−t
2−γ

(by the argument in the

previous part). We can also verify that it is negative at c−t
3−2γ

. Therefore, V S < V C for x in

this range. To decompose it into each sub-case, when the demand is high, we have

RH
S −RH

C =
(c− t +x)x

2− γ
− (c+ t−x)x

1− γ
= x

[
(3− 2γ)x− c− (3− 2γ)t

(2− γ)(1− γ)

]
, (0.19)

which is always negative. Therefore, RH
S is always less than RH

C . When low demand realizes,

we have

RL
S −RL

C =
(c− t +x)(c− t− (1− γ)x)

(2− γ)2
− (c− t−x)x

1− γ

=
1

(1− γ)(2− γ)2
((3− 2γ)x− (c− t))(x− (1− γ)(x− t)). (0.20)

When γ > 1/2, RL
S is always greater than RL

C in this range. When γ ≤ 1/2, RL
S is greater

than RL
C if x∈ [(1− γ)(c− t), c−t

2−γ
].

• x < c−t
3−2γ

. It is obvious that in this case V S = (c−x−t)x
1−γ

< (c−x)x
1−γ

= V C , RH
C is always

greater than RH
S , and RL

C is always the same as RL
S .

To summarize the results, when c < (3− 2γ)t, V C is always greater than V S. And when

high demand realizes, V C is always higher. When low demand realizes, V S is sometimes

higher depending on the relationship between c, t and γ. �

Proof of Claim 2. We consider different cases for x.

• x > c
2−γ

+ t. In this case, V S = c2

(2−γ)2
< c2+t2

(2−γ)2
= V C . And when high demand realizes,

V C is always higher; when low demand realizes, V C is higher if and only if t > γc.
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• c+t
2−γ

≤ x≤ c
2−γ

+ t. In this case, we have

V S −V C =
(c+ t−x)(x− t)

1− γ
− c2 + t2

(2− γ)2
=−

(x− t− c
2
)2

1− γ
+

γ2c2 − 4t2(1− γ)
4(1− γ)(2− γ)2

. (0.21)

Only if γ2c2 > 4(1−γ)t2 can this be positive. Assume γ2c2 > 4(1−γ)t2, it is easy to see that

γc > 2(1− γ)t, which implies c+t
2−γ

> c
2
+ t. Thus (0.21) is maximized at x = c+t

2−γ
. Plugging

it in, we have

V S −V C =−
(x− t− c

2
)2

1− γ
+

γ2c2 − 4t2(1− γ)
4(1− γ)(2− γ)2

=
γct− (2− γ)t2

(2− γ)2
.

which is positive only if γc > (2− γ)t (which implies γ2c2 > 4(1− γ)t2). Therefore we can

conclude that in this case, when γc > (2− γ)t and c+t
2−γ

< x < t + c
2
+
√

γ2c2−4t2(1−γ)

2(2−γ)
, then

V S > V C . Otherwise, V C ≥ V S. To decompose it into each sub-case, when the demand is

high, we have

RH
S −RH

C =
(c+ t−x)x

1− γ
− (c+ t)2

(2− γ)2
=−

−(x− c+t
2

)2

1− γ
+

γ2(c+ t)2

4(1− γ)(2− γ)2
,

which is always negative in this range. When the demand is low, we have

RL
S −RL

C =
(c+ t−x)(x− 2t)

1− γ
− (c− t)2

(2− γ)2
=−

(x− c+3t
2

)2

1− γ
+

γ2(c− t)2

4(1− γ)(2− γ)2
,

which is positive when x∈ [ c+3t
2

− γ(c−t)
2(2−γ)

, c+3t
2

+ γ(c−t)
2(2−γ)

]. And this implies that RL
S is higher

when x∈ [max{ c+t
2−γ

, 1−γ
2−γ

c+ 3−γ
2−γ

t}, c
2−γ

+ t].

• c
3−2γ

< x≤ c+t
2−γ

. In this case, we have

V S −V C =
(c+ t−x)(x− t)

1− γ
− (c+ t−x)x

2(2− γ)
− (c− t)2

2(2− γ)2
=

(c− t)2γ2

8(1− γ)(2− γ)2
−

(x− c+3t
2

)2

2(1− γ)
,

which is positive when x is between c+3t
2

− γ(c−t)
2(2−γ)

and c+3t
2

+ γ(c−t)
2(2−γ)

. Note that the positive

root is always greater than c+t
2−γ

. However, the negative root 1−γ
2−γ

c+ 3−γ
2−γ

t is less than c+t
2−γ

only

if γc > (2− γ)t. Therefore, when γc > (2− γ)t and max
{

1−γ
2−γ

c+ 3−γ
2−γ

t, c
3−2γ

+ t
}

< x < c+t
2−γ

,

then V S > V C , otherwise V S ≤ V C . To decompose it into each sub-case, it is easy to see

that when high demand realizes, RH
S = RH

C . When low demand realizes,

RL
S −RL

C =
(c+ t−x)(x− 2t)

1− γ
− (c− t)2

(2− γ)2
=−

(x− c+3t
2

)2

1− γ
+

γ2(c− t)2

4(1− γ)(2− γ)2
,

which is positive when x ∈ [ c+3t
2

− γ(c−t)
2(2−γ)

, c+3t
2

+ γ(c−t)
2(2−γ)

]. Therefore, RL
S is higher when x ∈

[max{ c
3−2γ

+ t, 1−γ
2−γ

c+ 3−γ
2−γ

t}, c+t
2−γ

].
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• c−t
2−γ

< x < c
3−2γ

+ t. In this case, we have

V S −V C =
(c− t +x)2

2(2− γ)2
− (c− t)2

2(2− γ)2
− (c+ t−x)x

2(1− γ)

=
x

2(2− γ)2(1− γ)
{
(γ2 − 5γ +5)x− (γ2 − 2γ +2)c− (γ2 − 6γ +6)t

}
.

Therefore V S > V C if and only if

x≥ x∗ =
γ2 − 2γ +2
γ2 − 5γ +5

c+
γ2 − 6γ +6
γ2 − 5γ +5

t. (0.22)

Now we want to consider several cases. First we compare the right hand side of (0.22) to
c

3−2γ
+ t. We have that x∗ < c

3−2γ
+ t if and only if (−2γ2 + 4γ − 1)c > (3− 2γ)t. This is

consistent with the previous result, i.e., it is also if and only if 1−γ
2−γ

c+ 3−γ
2−γ

t < c
3−2γ

. Therefore,

the range for V S > V C will be (max{x∗, c−t
2−γ

}, c
3−2γ

+ t]. To decompose it into each sub-case,

when the demand is high, we have

RH
S −RH

C =
(c− t +x)x

2− γ
− (c+ t−x)x

1− γ
=

((3− 2γ)x− c− (3− 2γ)t)x
(1− γ)(2− γ)

< 0.

When low demand realizes, we have

RL
S −RL

C =
(c− t +x)(c− t− (1− γ)x)

(2− γ)2
− (c− t)2

(2− γ)2
=

x

(2− γ)2
(−(1− γ)x+ γ(c− t)).

Therefore, RL
S is higher when x∈ [ c−t

2−γ
,min( c

3−2γ
+ t, γ(c−t)

1−γ
)].

• c−t
3−2γ

< x < c−t
2−γ

. In this case, we have

V S −V C =
(c− t +x)2

2(2− γ)2
− (c−x)x

1− γ

=
(2γ2 − 9γ +9)x2 − (2γ2 − 6γ +6)cx+(1− γ)(c2 − 2ct− 2xt+ t2)

2(2− γ)2(1− γ)
. (0.23)

Note (0.23) is a convex function and it is less than 0 at x = c−t
3−2γ

(because the continuity of

the revenue function and the result in next part). And it is positive at x = c−t
2−γ

if and only if

c > −γ3+9γ2−23γ+17
(1−γ)(−γ2+2γ+1)

t. Therefore, if c > −γ3+9γ2−23γ+17
(1−γ)(−γ2+2γ+1)

t, there is a unique root x∗ ∈ [ c−t
3−2γ

, c−t
2−γ

]

of (0.23). And V S > V C if x ∈ (x∗, c−t
2−γ

]. And if c≤ −γ3+9γ2−23γ+17
(1−γ)(−γ2+2γ+1)

t, then V S ≤ V C in this

range.

To decompose it into each sub-case, when the demand is high, we have

RH
S −RH

C =
(c− t +x)x

2− γ
− (c+ t−x)x

1− γ
=

((3− 2γ)x− c− (3− 2γ)t)x

(2− γ)(1− γ)
,
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which is always negative in this range. When the low demand realizes, we have

RL
S −RL

C =
(c− t +x)(c− t− (1− γ)x)

(2− γ)2
− (c− t−x)x

1− γ
=

((3− 2γ)x− (c− t))(x− (1− γ)(x− t))
(1− γ)(2− γ)2

.

When γ > 1/2, RL
S is always greater than RL

C in this range. When γ ≤ 1/2, RL
S is greater

than RL
C if x∈ [(1− γ)(c− t), c−t

2−γ
] (could be empty set depending on the value of γ).

• x≤ c−t
3−2γ

. It is easy to see that V S < V C in this range. And for this case, it is easy to

see that RH
C is always greater than RH

S , and RL
C is always the same as RL

S . �

Proof of Claim 3. We consider different cases for x.

• x ≥ c
2−γ

+ t. In this case, it is easy to see that V S ≤ V C . And when high demand

realizes, V C is always higher; when low demand realizes, V C is higher if and only if t > γc.

• c+t
2−γ

≤ x≤ c
2−γ

+ t. In this case, we have

V S −V C =
(c+ t−x)(x− t)

1− γ
− c2 + t2

(2− γ)2
=−

(x− t− c
2
)2

1− γ
+

γ2c2 − 4t2(1− γ)
4(1− γ)(2− γ)2

. (0.24)

Similar to the proof of Claim 2, we must ensure that γ2c2 ≥ 4t2(1−γ) in order for V S > V C ,

which also guarantees that c+t
2−γ

> c
2
+ t. When c+t

2−γ
> c

2
+ t, the maximum of (0.24) in this

range is obtained at x = c+t
2−γ

. We plug in x = c+t
2−γ

and find out that V S > V C if and only

if γc > (2− γ)t (which implies γ2c2 > 4(1− γ)t). Therefore, we can conclude that in this

case, when

γc > (2− γ)t and
c+ t

2− γ
< x < t +

c

2
+

√
γ2c2 − 4t2(1− γ)

2(2− γ)
,

V S > V C . Otherwise, V C ≥ V S. To decompose it into each sub-case, when the demand is

high, we have

RH
S −RH

C =
(c+ t−x)x

1− γ
− (c+ t)2

(2− γ)2
=−

−(x− c+t
2

)2

1− γ
+

γ2(c+ t)2

4(1− γ)(2− γ)2
,

which is always negative in this range. When the demand is low, we have

RL
S −RL

C =
(c+ t−x)(x− 2t)

1− γ
− (c− t)2

(2− γ)2
=−

(x− c+3t
2

)2

1− γ
+

γ2(c− t)2

4(1− γ)(2− γ)2
,

which is positive when x ∈ [ c+3t
2

− γ(c−t)
2(2−γ)

, c+3t
2

+ γ(c−t)
2(2−γ)

]. Therefore, RH
S is higher when

x∈ [max{ c+t
2−γ

, 1−γ
2−γ

c+ 3−γ
2−γ

t}, c
2−γ

+ t].

• c−t
2−γ

≤ x≤ c+t
2−γ

. In this case, we have

V S −V C =
(c+ t−x)(x− t)

1− γ
− (c− t)2

2(2− γ)2
− (c+ t−x)x

2(1− γ)
=

(c− t)2γ2

8(1− γ)(2− γ)2
−

(x− c+3t
2

)2

2(1− γ)
,
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which is positive when x is between c+3t
2

− γ(c−t)
2(2−γ)

and c+3t
2

+ γ(c−t)
2(2−γ)

. Note that the positive

root is always greater than c+t
2−γ

. And the negative root is less than c+t
2−γ

if γc > (2− γ)t.

Moreover, when γc < (4− γ)t, we have the negative root is greater than c−t
2−γ

and when

γc > (4− γ)t, the negative root is less than c−t
2−γ

. Therefore, when c > 4−γ
γ

t, V S > V C for

any capacity level x. When 2−γ
γ

< c < 4−γ
γ

t, V S > V C if and only if 1−γ
2−γ

c + 3−γ
2−γ

t < x≤ c+t
2−γ

.

And when c < 2−γ
γ

t, V C ≥ V S for all x in this range. To decompose it into each sub-case,

it is easy to see that when high demand realizes, RH
S = RH

C . When low demand realizes, we

have

RL
S −RL

C =
(c+ t−x)(x− 2t)

1− γ
− (c− t)2

(2− γ)2
=−

(x− c+3t
2

)2

1− γ
+

γ2(c− t)2

4(1− γ)(2− γ)2
,

which is positive when x ∈ [ c+3t
2

− γ(c−t)
2(2−γ)

, c+3t
2

+ γ(c−t)
2(2−γ)

]. Therefore, RL
S is higher when x ∈

[max{ c−t
2−γ

+ t, 1−γ
2−γ

c+ 3−γ
2−γ

t}, c+t
2−γ

].

• c
3−2γ

+ t < x < c−t
2−γ

. In this case, we have

V S −V C =
(c+ t−x)(x− t)

1− γ
− (c−x)x

1− γ
=

2tx− t2 − ct

1− γ
=

t

1− γ
(2x− t− c),

which is positive if x > c+t
2

. One can show that c+t
2

< c−t
2−γ

if and only if (4− γ)t < γc. And
c+t
2

> c
3−2γ

+ t if and only if (1− 2γ)c > (3− 2γ)t. Therefore, if (1− 2γ)c≤ (3− 2γ)t, then

V S > V C for all x in this range, and if (1− 2γ)c > (3− 2γ)t, then V S > V C when x > t+c
2

and V S ≤ V C otherwise.

To decompose it into each sub-case, it is easy to see that when high demand realizes,

RH
S = RH

C . When low demand realizes,

RL
S −RL

C =
(c+ t−x)(x− 2t)

1− γ
− (c− t−x)x

1− γ
=

2t(2x− c− t)
1− γ

.

Therefore, RL
S is higher if x > c+t

2
.

• c−t
3−2γ

< x < c
3−2γ

+ t. In this case, we have:

V S −V C =
(c− t +x)2

2(2− γ)2
− (c−x)x

1− γ

=
(2γ2 − 9γ +9)x2 − (2γ2 − 6γ− 6)cx+(1− γ)(c2 − 2ct− 2xt+ t2)

2(2− γ)2(1− γ)
, (0.25)

which is convex and less than 0 at x = c−t
3−2γ

. And it is positive at c
3−2γ

+ t if and only if

(1− 2γ)c < (3− 2γ)t. Denote the larger root of (0.25) by x∗. Therefore, when (1− 2γ)c≥
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(3 − 2γ)t, V C ≥ V S for all x in this range and when (1 − 2γ)c < (3 − 2γ)t, V S > V C if

x∈ (x∗, c
3−2γ

+ t]. To decompose it into each sub-case, when the demand is high, we have

RH
S −RH

C =
(c− t +x)x

2− γ
− (c+ t−x)x

1− γ
= x

[
(3− 2γ)x− c− (3− 2γ)t

(2− γ)(1− γ)

]
,

which is always negative in this range. When low demand realizes,

RL
S −RL

C =
(c− t +x)(c− t− (1− γ)x)

(2− γ)2
− (c− t−x)x

1− γ

=
1

(1− γ)(2− γ)2
((3− 2γ)x− (c− t))(x− (1− γ)(x− t)).

When γ > 1/2, RL
S is always greater than RL

C in this range. When γ ≤ 1/2, RL
S is greater

than RL
C if x∈ [(1− γ)(c− t), c

3−2γ
+T ] (could be empty set depending on the value of γ).

• x≤ c−t
3−2γ

. It is easy to see that V S < V C in this range. And for this case, it is easy to

see that RH
C is always greater than RH

S , and RL
C is always the same as RL

S . �

Proof of Proposition 9. Part (i): The proof of this part is similar to the proof of Propo-

sition 5. We first show the following lemma:

Lemma 2. Assume the capacities for the firms are x1 and x2, and the demand functions

are

D1(p1, p2) = (c− ap1 + aγp2)+ and D2(p1, p2) = (c− ap2 + aγp1)+.

Then in a one-period game, the unique Nash equilibrium pricing and equilibrium revenue

are as follows:

• Case 1: If x1 ≥ c
2−γ

and x2 ≥ c
2−γ

, then the equilibrium prices are p∗1 = p∗2 = c
(2−γ)

and

the equilibrium revenue is c2

(2−γ)2
for both firms. In this case, both firms use the revenue-

maximizing price.

• Case 2: If x1 < c
2−γ

and x2 ≥ c+γ(c−x1)
2−γ2 , then the equilibrium prices are p∗1 = cγ+2(c−x1)

(2−γ2)

and p∗2 = c+γ(c−x1)
(2−γ2)

. The equilibrium revenues are v∗1 = (cγ+2(c−x1))x1

(2−γ2)
and v∗2 = (c+γ(c−x1))2

(2−γ2)2
. In

this case, the first firm uses the capacity-depleting price and the second firm uses revenue-

maximizing price.

• Case 3: If x1 ≥ c+γ(c−x2)
2−γ2 and x2 < c

2−γ
, then the equilibrium prices are p∗1 = c+γ(c−x2)

(2−γ2)

and p∗2 = cγ+2(c−x2)
(2−γ2)

. The equilibrium revenues are v∗1 = (c+γ(c−x2))2

(2−γ2)2
and v∗2 = (cγ+2(c−x2))x2

(2−γ2)
. In

this case, the second firm uses the capacity-depleting price and the first firm uses revenue-

maximizing price.

• Case 4: Lastly, if γx1 + (2− γ2)x2 < (1 + γ)c and γx2 + (2− γ2)x1 < (1 + γ)c, then

the equilibrium prices are p∗1 = γ(c−x2)+c−x1

(1−γ2)
and p∗2 = γ(c−x1)+c−x2

(1−γ2)
. The equilibrium revenues

are v∗1 = (γ(c−x2)+c−x1)x1

(1−γ2)
and v∗2 = (γ(c−x1)+c−x2)x2

(1−γ2)
. In this case, both firms are using the

capacity-depleting policy.
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The proof of Lemma 2 is very similar to that of Proposition 1 and is omitted for the sake

of space.

Therefore, we know that when x1 > x2 ≥ c
2−γ

+ t, the equilibrium revenue for both firms

are c2

(2−γ)2
when both of them choose contingent pricing. And furthermore, by Proposition

3, when x1 > x2 ≥ h(γ)c + 2t, and one firm chooses committed pricing and the other one

chooses contingent pricing, we must have that the capacity is not binding under either

demand realizations, and thus the equilibrium is as stated in Proposition 3. Therefore, by

Proposition 5, we have the first part of Proposition 5.

Part (ii): We first study the equilibrium revenues for both firms when both firms choose

contingent pricing strategy. By Lemma 2, we know that when

γx1 +(2− γ2)x2 < (1 + γ)(c− ε) and γx2 +(2− γ2)x1 < (1 + γ)(c− ε), (0.26)

the expected revenues are

V1(C,C) =
(γ(c−x2) + c−x1)x1

1− γ2
and V2(C,C) =

(γ(c−x1) + c−x2)x2

1− γ2
.

And if x2 < x1 ≤ 1+γ
3+γ

(c− ε), we know that condition (0.26) holds. Thus the equilibrium

revenues are as specified.

Next, we study the equilibrium revenues for both firms when firm 1 chooses committed

pricing and firm 2 chooses contingent pricing. We show that when x2 < x1 ≤ 1+γ
3+γ

(c− ε),

the equilibrium revenues for firm 1 is V1(S,C) = (γ(c−x2)+c−x1−(1+γ)ε)x1

1−γ2 < V1(C,C), and thus

(C,C) is the Nash equilibrium. To show this, we first show that at equilibrium, all firms

will use capacity-depleting price. We find that in order to show that the firms are using

capacity-depleting prices at equilibrium, it is equivalent as showing that at optimal prices

p∗1, pH
2 and pL

2 , we have

x2 ≤
c− ε + γp∗1

2
and x1 ≤

c+ γpL
2 − ε

3
.

To find the optimal prices, we obtain the following conditions:

p1 = c+ γpL
2 − ε−x1 and p2 = c+ γp1 − ε−x2.

Solving the above conditions and combining with the condition that x1, x2 ≤ 1+γ
3+γ

(c− ε), we

can verify that the optimality conditions of p1 and p2 indeed hold. Similarly, we can also

show that V2(C,S) = (γ(c−x1)+c−x2−(1+γ)ε)x2

1−γ2 < V2(C,C). Thus, under the conditions of part

2, (C,C) is the Nash equilibrium.
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Part (iii): We study the subgame equilibrium when the stage 0 decision are (S,S), (S,C),

(C,S) and (C,C), respectively. Note that since firms are asymmetric, the subgame equi-

librium of (S,C) and (C,S) will no longer be symmetric. For the sake of space, we only

present the main steps of the proof.

Case 1. Both firms make price commitment. In this case, when x1 ≥ c+γc+t−γ2t
2−γ2 , x2 ≤

(2+γ)(c−2t)
6−2γ2 , the equilibrium prices are: pS

1 = 1
2−γ2 (c+γc−γt−γx2), pS

2 = 1
2−γ2 (2c+γc−2t−

2x2) and the equilibrium revenues are: RS
1 = 1

(2−γ2)2
(c + γc− γt− γx2)2, RS

2 = 1
2−γ2 (2c +

γc− 2t− 2x2)x2.

Case 2. Both firms use contingent pricing. In this case, when x1 ≥ 1+γ
2−γ2 c+ t, x2 ≤ c−t

2−γ
, the

equilibrium revenues are (based on Lemma 1): RC
1 = (c+γc−γx2)2

(2−γ2)2
+ t2(1+γ)2

(2−γ2)2
, RC

2 = 1
2−γ2 (2c +

γc− 2t− 2x2)x2.

Case 3. Firm 1 moves first, firm 2 follows. In this case, when x1 ≥ c
2(1−γ)

, x2 ≤ (2−γ)(1+γ)
(4−3γ2)

c,

The equilibrium prices are p1 = (1+γ)c−γx2

2(1−γ2)
, pH

2 = c + γp1 + t− x2, pL
2 = c + γp1 − t− x2 and

the equilibrium revenues are R1F
1 = ((1+γ)c−γx2)2

4(1−γ2)
, R1F

2 = (2+γ−γ2)c−(2−γ2)x2

2(1−γ2)
x2.

Case 4. Firm 2 moves first, firm 1 follows. In this case, when x1 ≥ 1+γ
2−γ2 c, x2 ≤ 2+γ

6−2γ2 (c− t),

the equilibrium prices are p2 = (2+γ)(c−t)−2x2

2−γ2 , pH
1 = c+γp2+t

2
, pL

1 = c+γp2−t
2

and the equilib-

rium revenues are R2F
1 = (2+2γc−2γx2−(2+γ)γt)2

4(2−γ2)2
+ t2

4
, R2F

2 = (2+γ)(c−t)−2x2

2−γ2 x2. Summarizing the

results in the four parts and performing simple algebraic comparisons, we have the desired

result. �

Proposition 1 (Two-Period Model: ε2 = 0). The equilibrium prices and revenues

when both firms use committed pricing strategy or contingent pricing strategy are given in

Tables 1 and 2.

Equilibrium Price Equilibrium Revenue
x≥ 2c

2−γ
+ t c

(2−γ)
2c2

(2−γ)2

2c
3−2γ

+ t≤ x < 2c
2−γ

+ t 2c+t−x
2(1−γ)

(2c+t−x)(x−t)
2(1−γ)

2c−t
3−2γ

≤ x < 2c
3−2γ

+ t 2c−t+x
2(2−γ)

(2c−t+x)2

4(2−γ)2

x < 2c−t
3−2γ

2c−t−x
2(1−γ)

(2c−x−t)x
2(1−γ)

Table 1 Equilibrium prices and revenues when both firms use committed pricing

Proof of Proposition 1. First, we consider the second period problem with general

capacity levels. Assume there are x1 and x2 capacity left in the beginning of the second

period, then the unique Nash equilibrium are given as follows (an extension of Lemma 1):
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Equilibrium Price Equilibrium Revenue
x≥ 2c

2−γ
+ t c

(2−γ)
2c2

(2−γ)2

2c
2−γ

− 2t < x < 2c
2−γ

+ t 1
3

c
(2−γ)

+ 1
3

2c−x+t
(1−γ)

1
3

(2c)2

2(2−γ)2
+ 2

3
(x−t)(2c−x+t)

2(1−γ)

2t≤ x≤ 2c
2−γ

− 2t 2c−x
2(1−γ)

(2c−x)x−2t2

2(1−γ)

Table 2 Equilibrium prices and revenues when both firms use contingent pricing

• Case 1: If x1 ≥ c
2−γ

and x2 ≥ c
2−γ

, then the equilibrium prices are p∗1 = p∗2 = c
(2−γ)

and the equilibrium revenues are c2

(2−γ)2
for both firms. In this case, both firms use the

revenue-maximizing price.

• Case 2: If x1 < c
2−γ

and x2 ≥ c+γ(c−x1)
2−γ2 , then the equilibrium prices are p∗1 = cγ+2(c−x1)

(2−γ2)

and p∗2 = c+γ(c−x1)
(2−γ2)

. The equilibrium revenues are v∗1 = (cγ+2(c−x1))x1

(2−γ2)
and v∗2 = (c+γ(c−x1))2

(2−γ2)2
.

In this case, the first firm uses the capacity-depleting price and the second firm uses the

revenue-maximizing price.

• Case 3: If x1 ≥ c+γ(c−x2)
2−γ2 and x2 < c

2−γ
, then the equilibrium prices are p∗1 = c+γ(c−x2)

(2−γ2)

and p∗2 = cγ+2(c−x2)
(2−γ2)

. The equilibrium revenues are v∗1 = (c+γ(c−x2))2

(2−γ2)2
and v∗2 = (cγ+2(c−x2))x2

(2−γ2)
.

In this case, the second firm uses the capacity-depleting price and the first firm uses the

revenue-maximizing price.

• Case 4: Lastly, if γx1 + (2− γ2)x2 < (1 + γ)c and γx2 + (2− γ2)x1 < (1 + γ)c, then

the equilibrium prices are p∗1 = γ(c−x2)+c−x1

(1−γ2)
and p∗2 = γ(c−x1)+c−x2

(1−γ2)
. The equilibrium revenues

are v∗1 = (γ(c−x2)+c−x1)x1

(1−γ2)
and v∗2 = (γ(c−x1)+c−x2)x2

(1−γ2)
. In this case, both firms use the capacity-

depleting price.

Now we consider the first period problem. We denote V1(x1, x2) and V2(x1, x2) as the

equilibrium revenues of the second stage for firms 1 and 2 respectively, if there are (x1, x2)

capacity left. The formulas of V1(x1, x2) and V2(x1, x2) have been given above. Now we

want to study the equilibrium prices p∗1 and p∗2 in the first period for this two stage game.

For any Nash equilibrium, we must have:

p∗1 = argmax
p1

E
{
p1 ·min{x,D1}+V1((x−D1)+, (x−D2)+)

}
,

p∗2 = argmax
p2

E
{
p2 ·min{x,D2}+V2((x−D1)+, (x−D2)+)

}
. (0.27)

Note that min{x,D}= x− (x−D)+ and define

R1 = (x−D1)+ = (x− c+ p1 − γp2 − ε)+,

R2 = (x−D2)+ = (x− c+ p2 − γp1 − ε)+. (0.28)

We can transform (0.27) to

p∗1 = argmax
p1

{p1x− p1ER1 +EV1(R1,R2)},
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p∗2 = argmax
p2

{p2x− p2ER2 +EV2(R1,R2)}. (0.29)

Now we solve this problem. We focus on symmetric Nash equilibria. We will study several

cases based on the remaining capacity (at equilibrium) after the first period and solve for

(possible) equilibria that satisfy the remaining capacity constraint in each case. Then we

characterize the equilibrium prices and revenues (and the corresponding capacity condi-

tions).

• Case 1. We study the situation where

x− c+ p∗− γp∗− t≥ c

2− γ
. (0.30)

This is the case where the remaining capacity after the first period is still sufficiently high

so that the optimal pricing in the second period is to use the revenue-maximizing pricing

(and note under condition (0.30), the remaining capacity must be strictly positive after

the first period). The equilibrium pricing should satisfy

∂{p1x− p1ER1 +EV1(R1,R2)}
∂p1

(p∗1, p
∗
2) = 0.

And since ∂EV1(R1,R2)
R1

= ∂EV1(R1,R2)
∂R2

= 0, we have the equilibrium condition as: c−2p∗+γp∗ =

0, or equivalently, p∗1 = p∗2 = c
(2−γ)

. And to make (0.30) hold, we need to have x≥ 2c
2−γ

+ t.

To summarize, when x≥ 2c
2−γ

+t, the equilibrium price is p∗1 = p∗2 = c
(2−γ)

, and the firm will

use the revenue-maximizing price throughout the horizon. And the equilibrium revenue is

v∗1 = v∗2 = 2c2

(2−γ)2
.

• Case 2: Next we study the equilibrium when

x− c+ p∗− γp∗ + t <
c

2− γ
,

x− c+ p∗− γp∗− t > 0. (0.31)

The first condition says that even if the first period demand realizes to be low, the remaining

capacity is still not sufficiently high and a capacity depleting pricing is optimal for the

second stage. The second condition says that even if the first period demand realizes to be

high, we still have positive remaining capacities for the second stage. The second condition

removes the (·)+ in R1 and R2 and allows us to take a neat derivative for (0.29).

We consider the equilibrium equation (0.29), we consider the first-order optimality con-

dition. We have given (0.31), ∂ER1

∂p1
= 1, and

∂EV1

∂p1

= E

[
∂V1

∂R1

· ∂R1

∂p1

+
∂V1

∂R2

· ∂R2

∂p1

]
= E

[
−2R1 + c+ γ(c−R2)

1− γ2
+

R1γ
2

1− γ2

]
,
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where the second equality is because of (0.31) and case 4 in the beginning of the proof.

Setting the derivative to zero and set p1 = p2 = p∗, we have p∗ = 2c−x
2(1−γ)

. And to make (0.31)

to hold, we need to have 2t < x < 2c
2−γ

− 2t.

To summarize, when 2t < x < 2c
2−γ

− 2t, the equilibrium pricing is p∗1 = p∗2 = 2c−x
2(1−γ)

. Now

we compute the equilibrium revenue. We just need to summarize the revenues under two

scenarios. Under the high-demand scenario, the revenue is

2c−x

2(1− γ)
(
x

2
+ t) +V1(

x

2
− t,

x

2
− t) =

2c−x

2(1− γ)
(
x

2
+ t) +

(c− x
2
+ t)(x

2
− t)

(1− γ)
.

And under the low-demand scenario, the revenue is

2c−x

2(1− γ)
(
x

2
− t) +V1(

x

2
+ t,

x

2
+ t) =

2c−x

2(1− γ)
(
x

2
− t) +

(c− x
2
− t)(x

2
+ t)

(1− γ)
.

Therefore the total expected revenue is

v∗1 = v∗2 =
(2c−x)x− 2t2

2(1− γ)
.

• Case 3: Lastly, we consider the case when

x− c+ p∗− γp∗ + t >
x

2− γ
,

x− c+ p∗− γp∗− t <
x

2− γ
. (0.32)

This is the case when the first period demand is high, the remaining capacity is relatively

low so that a capacity depleting pricing should be used, and when the first period demand

is low, the remaining capacity is relatively high so that a revenue-maximizing price should

be used. We again consider the first order optimality condition of the equilibrium condition

(0.29). In this case, the optimality condition is

c− 2p∗1 + γp∗2 +
1
2

(
−2RH

1 + c− γ(c−RH
2 )

1− γ2
+

R1γ
2

1− γ2

)
= 0,

where RH
1 = x− c+p1−γp2− t and RH

2 = x− c+p2−γp1− t. Then by setting p∗1 = p∗2 = p∗,

we have the equilibrium price in this case is:

p∗ =
c(5− 3γ)− (x− t)(2− γ)

3(1− γ)(2− γ)
.

And in order to make (0.32) hold, we need to have:

2c

2− γ
− 2t < x <

2c

2− γ
+ t.
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This is actually exactly filling the gap of x ranges in the previous two cases. To summarize,

when
2c

2− γ
− 2t < x <

2c

2− γ
+ t,

the equilibrium price is

p∗ =
c(5− 3γ)− (x− t)(2− γ)

3(1− γ)(2− γ)
.

And it is easy to show that this price is strictly between the equilibrium price in case 1

and case 2, i.e.,
c

(2− γ)
< p∗ <

2c−x

2(1− γ)
.

And one can compute the equilibrium revenue in this case is

v∗1 = v∗2 =
2
3

c2

(2− γ)2
+

1
3

(x− t)(2c−x+ t)
(1− γ)

=
1
3

(2c)2

2(2− γ)2
+

2
3

(x− t)(2c−x+ t)
2(1− γ)

.

This is actually a very interesting results, it says that the equilibrium revenue in this setting

is a mix of the revenues of the maximizing pricing and the capacity depleting pricing, with

a weight of (1/3,2/3). �


