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S hould capacitated firms set prices responsively to uncertain market conditions in a competitive environment? We
study a duopoly selling differentiated substitutable products with fixed capacities under demand uncertainty, where

firms can either commit to a fixed price ex ante, or elect to price contingently ex post, e.g., to charge high prices in booming
markets, and low prices in slack markets. Interestingly, we analytically show that even for completely symmetric model
primitives, asymmetric equilibria of strategic pricing decisions may arise, in which one firm commits statically and the
other firm prices contingently; in this case, there also exists a unique mixed strategy equilibrium. Such equilibrium behav-
ior tends to emerge, when capacity is ampler, and products are less differentiated or demand uncertainty is lower. With
asymmetric fixed capacities, if demand uncertainty is low, a unique asymmetric equilibrium emerges, in which the firm
with more capacity chooses committed pricing and the firm with less capacity chooses contingent pricing. We identify
two countervailing profit effects of contingent pricing under competition: gains from responsively charging high price
under high demand, and losses from intensified price competition under low demand. It is the latter detrimental effect that
may prevent both firms from choosing a contingent pricing strategy in equilibrium. We show that the insights remain
valid when capacity decisions are endogenized. We caution that responsive price changes under aggressive competition
of less differentiated products can result in profit-killing discounting.
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1. Introduction

Growing levels of demand uncertainty imply that
firms should benefit from keeping pricing responsive.
With capacity decisions made before the sales season,
contingent pricing during the sales horizon allows
firms to adjust pricing decisions in response to market
conditions, so they can set higher prices in booming
markets and charge less if demand is low. Such pric-
ing responsiveness seems to provide firms with com-
petitive advantage in battling with competitors.
However, in the fiercely competitive marketplaces,
many firms do not adjust prices in response to market
conditions. For example, it is well known that Wal-
Mart commits to bring customers products at “every
day low prices” (EDLP). Take another example, on
February 1, 2012, J.C. Penney, an apparel retailer,
rolled out a “fair and square every day” pricing strat-
egy that includes everyday, always great regular
prices for a large set of clothing products (Business-
week 2012, Penney 2012). The mismatch between sup-
ply and demand can be huge for short lifecycle
products. By committing themselves to fixed prices,

EDLP firms inadvertently curb their abilities to
respond contingently to changes in the competitive
environment.
EDLP is reminiscent of the “value pricing” strategy

that American Airlines implemented in 1992. At that
time, the airline sought to roll out a fixed pricing strat-
egy that eliminated possible rock-bottom discounting,
when selling fixed amounts of aircraft seats before
planes take off. Then what happened? The rest
became history as rivals responded by offering
contingent pricing and American Airlines quickly
abandoned value pricing. Nowadays every single air-
line implements contingent pricing (it is more often
called dynamic pricing in the airline industry, but
here we emphasize the feature that prices are set con-
tingent on the demand realization). Whether EDLP
firms can sustain their committed pricing strategy
seems puzzling. It makes one wonder under what
conditions committed or contingent pricing strategies
at the strategic level may emerge in equilibrium
under competition. In this work, we provide some
clues to this puzzle by building a stylized model with
no externalities other than competition.
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While EDLP firms may be at a competitive dis-
advantage when competitors run contingent sales
promotions, there is certainly a rationale for this
strategy. For instance, simple pricing relieves firms
from the effort involved in filling Sunday circulars,
simplifies consumers’ decision making, generates
customers loyalty, increases supply chain efficiency,
and more importantly, weans shoppers away from
expecting deep discounts. While admitting all of
these reasons remain valid, we provide an alternative
explanation from a competitive perspective. Wal-
Mart and J.C. Penney’s products are national brands
that are fairly homogeneous. When selling a rela-
tively undifferentiated product with capacity fixed
before the sales season, the race-to-the-bottom price
competition, should the market be sluggish, can be
brutal. This destructive effect of joint contingent pric-
ing under competition, should demand be low, may
counteract the positive effect of profitably reacting to
the market, should demand be high. In expectation,
the firms may be better off by committing to a fixed
price. This argument leaves alone the aspect that
strategic consumers in anticipation of the rock-
bottom prices may further intensify the price compe-
tition.
In particular, we consider a multi-stage duopoly

game, where firms sell symmetrically differentiated
products with given fixed capacities under demand
uncertainty. In the first stage, firms can either choose
to pre-commit to a fixed price, or elect to postpone
pricing decisions in response to market conditions. In
the subsequent stages, the following game plays out
according to the strategic pricing decisions deter-
mined in the first stage: If both firms select the same
committed or contingent pricing strategy, they simul-
taneously make pricing decisions, ex ante or ex post,
respectively; if the two firms select different strate-
gies, they play a sequential game of setting prices,
with one ex ante and the other ex post.
We show that the endogenized strategic pricing

decisions in equilibrium depend on product differen-
tiation, supply capacity and demand uncertainty.
Interestingly, even for completely symmetric model
primitives, asymmetric equilibria of strategic pricing
decisions may arise, in which one firm commits to a
fixed price and the other sets prices contingently. This
equilibrium outcome is more likely to occur, when
capacity is ampler, products are less differentiated
(including in the limiting case, almost homogeneous)
or demand uncertainty is lower. However, with suffi-
ciently limited symmetric capacities, regardless of
product differentiability, contingent pricing always
arises in equilibrium for both firms, though a pris-
oner’s dilemma may occur, namely, both firms could
have been better off by implementing committed pric-
ing. The phenomena of asymmetric equilibrium and

prisoner’s dilemma are two sides of the same coin,
resulted from the destructive effect of joint contingent
pricing. These insights are further confirmed when
the primitives are relaxed to be asymmetric, when
capacities are endogenized and when there are more
than one selling period. The case of ampler capacity
and less differentiated products is consistent with J.C.
Penney’s current situation where national brands are
carried with ample supply. Our result seems to sup-
port J.C. Penney’s strategy of “fair and square pric-
ing,” if the marketplace has not dramatically changed
after its switch from “high-low pricing” to EDLP.1

Our result for the limited capacity case seems to pre-
dict well the prevalent practice of contingent pricing
in the airline industry, in which firms have relatively
scarce supply.
As mentioned, we identify that the asymmetric

equilibrium behavior of strategic pricing decisions for
symmetric capacities is driven by the detrimental
effect of intensified price competition under joint con-
tingent pricing, should demand be slack. If demand
turns out to be high, firms always benefit from contin-
gent pricing, which allows them to profitably respond
to booming markets. The detrimental effect becomes
unequal when the capacities of the firms are asym-
metric. With asymmetric fixed capacities, if demand
uncertainty is low, a unique equilibrium emerges in
which the firm with more capacity chooses committed
pricing and the firm with less capacity chooses contin-
gent pricing. This prediction seems consistent with
the observation that Wal-Mart, the behemoth in the
retail sector with ample supply, practices the EDLP
strategy, and other smaller competitive retailers such
as Kmart, with less capital investment and more strin-
gent supply conditions, are more likely to implement
the contingent sales promotion strategy for seasonal
products.
Though our model is stylized, the analytically

delivered results are nontrivial, and the implied mes-
sages should be of interests to both academic
researchers and practitioners. The rise of e-commerce,
along with an explosion in data and the technology
for analyzing it, has made it possible for price
changes to be done more accurately, responsively,
and faster than ever. For consumers, that could mean
access to the best bargains. For firms, however, the
risk is that the profit-killing discounting could
expand, as they are forced to be more aggressive in
responding to market conditions when battling with
each other. To fight the competition, at the strategic
level, firms should focus on shifting as much as possi-
ble to exclusive products that cannot easily be substi-
tuted. At the operational level, with more
differentiated products, firms then can better enjoy
contingent pricing by dynamically responding to
market conditions.
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2. Literature Review

Our setting can be viewed as a stylized revenue man-
agement (RM) model. RM studies how a firm can
optimally sell a fixed amount of capacities over a
finite horizon. If demand is exogenous, it is obvious
that a monopolist is better equipped with contingent
pricing to cope with demand uncertainty. However,
committed pricing can be indeed advantageous over
contingent pricing, if the firm sells to forward-looking
customers who strategically time their purchases in
anticipation of future discounts (Aviv and Pazgal
2008). On the other hand, Cachon and Swinney (2009)
show that contingent pricing (pricing flexibility) can
recover the advantage if coupled with quick response
(inventory flexibility). Moreover, Cachon and Feld-
man (2013) identify another type of strategic con-
sumer behavior that may give committed pricing an
edge: given costly visits, uncertain prices under con-
tingent pricing may cause consumers to avoid visiting
the firm altogether. Isolated from forward-looking
consumer behavior, we identify a detrimental effect
of joint contingent pricing under competition, which
may result in asymmetric strategic pricing decisions.
In the literature of RM under competition, Netes-

sine and Shumsky (2005) examine one-shot quantity-
based games of booking limit control. For an RM
game of selling differentiated products, Lin and Sib-
dari (2009) study contingent pricing strategies in dis-
crete time, and Gallego and Hu (2013) propose both
committed (open-loop) and contingent (closed-loop)
strategies in continuous time. Levin et al. (2009) pres-
ent a unified stochastic dynamic pricing game of mul-
tiple firms where differentiated goods are sold to
finite segments of forward-looking customers. Talluri
and Mart�ınez de Alb�eniz (2011) study perfect compe-
tition of a homogeneous product under demand
uncertainty and derive a closed-form solution to the
equilibrium price paths. In the literature of joint pric-
ing and inventory control under competition, Van
Mieghem and Dada (1999) study the benefits of pro-
duction and price postponement strategies, with lim-
ited analysis of competitive models under quantity
competition. Bernstein and Federgruen (2005) and
Zhao and Atkins (2008) study the single period prob-
lem in the classic newsvendor framework where pric-
ing and inventory decisions are determined before
demand is realized. Bernstein and Federgruen (2004a,
b) study periodic-review infinite-horizon oligopoly
problems, but under such conditions they reduce to
myopic single period problems where decisions in
each period are made before demand is realized. Adi-
da and Perakis (2010) study a make-to-stock manufac-
turing system where two firms compete through pre-
commitment to a price path and an inventory control
policy. None of these studies compare performances

of committed and contingent pricing under competi-
tion.
In the operations management literature, some

works do look into the co-existence of pros and cons
of pricing or inventory flexibility under competition.
Af�eche et al. (2013) show that quick response may
intensify price competition, should demand be high,
and yield a net negative value. While Af�eche et al.
(2013) focus on the detrimental effect of volume flexi-
bility under competition, we concentrate on pricing
flexibility under competition with a fixed capacity.
The identified detrimental effect of joint contingent
pricing is caused by an intensified price competition,
should demand be low. There are two papers that are
closely related to ours: Xu and Hopp (2006) and Liu
and Zhang (2013). Xu and Hopp (2006) study a two-
stage capacity-pricing oligopoly game of selling a
homogeneous product, where in the first stage firms
build up capacities, and in the second stage they
either pre-commit to a fixed price ex ante, or set prices
contingent on demand realization in continuous time
over a finite horizon. The authors argue that the
downside of contingent pricing comes from over-
stocking in the initial ordering decisions. We comple-
ment their results by studying the differentiated
product competition and identifying that the detri-
mental effect comes from the profit-killing competi-
tion should demand be low. More importantly, we
characterize how endogenized strategic pricing deci-
sions emerge, depending on fixed capacities, product
differentiation and demand uncertainty.
Liu and Zhang (2013) study a duopoly selling

asymmetrically differentiated products to a group of
strategic customers with heterogeneous valuations on
product quality, without considering capacity con-
straints and demand uncertainty. The authors numer-
ically compare performances of a fixed-pricing
strategy and a time-varying price-skimming strategy,
given their closed-form expressions. They identify a
detrimental effect of the joint price-skimming strat-
egy, which comes from an on-going battle of competi-
tion over time (vs. only a one-shot competition if one
commits to a fixed price for the whole horizon), and
from induced strategic consumer waiting given a
decreasing price path. There are several fundamental
differences between Liu and Zhang (2013) and our
paper. First, due to lack of demand uncertainty, both
fixed-pricing strategy and time-varying price-skim-
ming strategy in Liu and Zhang (2013) are pre-com-
mitted strategies, namely, the price path in these
strategies is set before the game starts, whereas
only under demand uncertainty can one compare
pre-commitment and contingent strategy. Second,
the mechanism behind the detrimental effect of
the joint time-varying price-skimming strategy is
different from that of joint contingent pricing under
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competition with demand uncertainty. We isolate the
competition effect from other externalities such as for-
ward-looking consumers, and analytically pinpoint
the cause of the detrimental effect. Lastly, we further
analytically investigate endogenized strategic pricing
decisions.
There are many economic theories on price rigidity,

see Kauffman and Lee (2004) for an extensive survey.
As far as we know, none of them studies the endo-
genized strategic pricing choices between committed
and contingent pricing from the competitive perspec-
tive under demand uncertainty. There is also an
extensive literature in marketing on EDLP strategy – a
strategy in which the retailer charges constant prices
over time. In contrast, “Hi-Lo” strategy is a strategy
in which higher prices are charged for most of time
but frequent promotions are run with lower prices
than the EDLP price. There are some studies on the
co-existence of the two retailing strategies. For exam-
ple, Lal and Rao (1997) explain it using the theory of
market segmentation. In our work, we focus on the
effect of demand uncertainty and competition and
argue that one reason that a firm chooses a committed
pricing strategy is to avoid the detrimental effect of
joint contingent pricing under competition. On the
empirical side of the marketing literature, Hoch et al.
(1994) question about the sheer existence of EDLP.
From a set of field experiments, the authors find that
consumer demand does not respond much to changes
in everyday prices and hence question about the prof-
itability of EDLP as compared to Hi-Lo pricing. In our
model, we assume the same demand function for both
the committed and contingent pricing strategy. In
contrast to our theory that supports asymmetric
pricing strategy in equilibrium, Ellickson and Misra
(2008) discover that firms may tend to choose EDLP
or Hi-Lo pricing that agrees with their rivals. These
works imply that experimental and empirical studies
need to be carefully carried out to identify in specific
settings what forces would emerge from competing
theories as dominant effects.

3. Model

In the base model, we consider a symmetric duopoly
selling differentiated substitutable products. Each
firm i, i = 1, 2, has the same amount of fixed capacity
x. (We will consider asymmetric capacities and en-
dogenized capacity decisions in section 5.) The firms
can only supply the market up to the given capacity
level.
On the demand side, we adopt a symmetric linear

demand structure and introduce demand uncertainty
in the form of a binary additive shock, applied to both
firms. That is, given prices p1, p2 of each firm, the
random demands D1 and D2 are defined as follows

(we use x+ to denote max{x,0}):

D1ðp1; p2Þ ¼ ðc� p1 þ cp2 þ �Þþ;
D2ðp1; p2Þ ¼ ðc� p2 þ cp1 þ �Þþ; ð1Þ

where

� ¼ t ðHigh demandÞ with probability 1
2

�t (Low demand) with probability 1
2

(
: ð2Þ

The linear demand structure with additive
shocks is widely used in the economics literature
(see, e.g., Vives 1999). The parameter c 2 [0,1)
represents the degree of product differentiation,
with c = 0 meaning that products are perfectly dif-
ferentiated, and c approaching 1 meaning that
products are almost homogeneous. We assume that
c is ex ante known to the firms, based on the
notion that brand loyalty and price sensitivity are
well understood. The demand shock e can be inter-
preted as the market size uncertainty, due to a
range of factors that equally affect differentiated
products in the same product category, e.g.,
weather in the case of seasonal products or trend
in the case of fashion apparels. The assumption of
a two-point distribution with equal likely high and
low demand realizations, is mainly made for the
ease of analysis. A relaxation of this assumption
does not change our main qualitative insights: It
will be shown in Proposition 8 that joint contingent
pricing under competition is still beneficial should
demand be higher than expectation, and is detri-
mental should demand be lower than expectation;
the distribution of demand uncertainty and the
likelihood of high and low scenarios simply affect
weights of the positive and negative side of the
contingent pricing strategy in a competitive envi-
ronment.
We assume that demand uncertainty will realize

immediately after the start of the selling season.
Taken literally, this captures a situation where firms
gain demand information through factors other than
their own early season sales, such as weather, market
news and fashion trends. However, the model can
also be viewed as a reasonable approximation of the
settings in which sales that materialize before the
prevalent pricing decisions only make up a small
fraction of the capacity, but are still of significant
value for demand forecasting. It is quite common
that the forecast accuracy for the total season
demand increases dramatically after observing a few
days of early season sales (see, e.g., Fisher and
Raman 1996).
Before the uncertainty unfolds, each firm has two

choices for its strategic pricing decision: it could either
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commit to a price, which we call a committed pricing
strategy or wait until the demand realizes, which we
call a contingent pricing strategy. If a firm commits to a
price, it can no longer change its price no matter
which demand scenario realizes, while a firm adopt-
ing the contingent pricing strategy could set its price
contingent on the demand realization. We assume
that there is no salvage value for the unsold capacity,
and the unmet demand for one firm will not spill over
to the other. Both firms are risk neutral and each one
aims to maximize the expected revenue during the
selling season.
More specifically, we consider a multi-stage non-

cooperative game between the two firms with the
following sequence of events (see Figure 1). At stage
0, both firms simultaneously choose whether to use
committed or contingent pricing strategy. At stage 1,
any firm that chooses committed pricing strategy
makes a price commitment. At stage 2, demand
uncertainty unfolds; any firm that chooses contingent
pricing strategy sets their prices. If both firms make
decisions at the same stage, they do so simulta-
neously.
In the remainder of this paper, we denote the stage

0 actions by “S” and “C,” corresponding to committed
(S stands for committing to a “static” price) and con-
tingent pricing, respectively. If firm i chooses action S
in stage 0, its subsequent price decision is denoted by
pSi ; while if firm i chooses action C in stage 0, its sub-
sequent price decisions are denoted by pHi when high
demand realizes and pLi when low demand realizes.
We are interested in the equilibrium strategy of the
firms in this multi-stage game. In particular, we are
interested in the equilibrium outcome in stage 0, that
is, whether firms would prefer committed or contin-
gent pricing strategies in equilibrium, and under
what conditions they do so. In the next subsection, we
formally define what an “equilibrium” means in this
game. Then we study the equilibrium outcome in
section 4. All proofs are relegated to the Online
Appendix.

3.1. Subgame Perfect Equilibrium
We adopt the concept of subgame perfect equilibrium
(SPE). A SPE is a strategy profile in which it is simul-
taneously a Nash equilibrium for every subgame of
the initial game. In our model, there are three sub-
games that need to be analyzed. In the following, we
define the SPE for each subgame. Conditional on
whether the demand realizes as high or low, the reve-
nue functions of the first firm when it uses price p1
and the other firm uses price p2 are:

rHðp1; p2Þ � p1 minðx; ðc� p1 þ cp2 þ tÞþÞ;
rLðp1; p2Þ � p1 minðx; ðc� p1 þ cp2 � tÞþÞ:

We first consider the subgame when both firms
choose to use contingent pricing strategies in stage
0.There are two scenarios in this case (high demand
and low demand). In each scenario, we can show that
the equilibrium is symmetric and unique (see Propo-
sition 1). We define pH and pL to be the equilibrium
prices when high and low demand realizes, i.e.,
pH 2 arg maxpr

H(p,pH), pL 2 arg maxpr
L(p,pL). We

also define VC � V1ðC;CÞ ¼ V2ðC;CÞ ¼ 1
2 rHðpH; pHÞ�

þ rLðpL; pLÞÞ to be the equilibrium revenue for each
firm in this subgame.
Next, we consider the subgame when both firms

choose to use committed pricing strategies in stage
0. For this subgame, we focus on symmetric equilib-
rium, and under some assumptions we show that
the equilibrium is indeed unique and symmetric
(see Proposition 2). By definition, (pS,pS) is a

symmetric SPE for this subgame if and only if pS

2 arg maxp
1
2 rHðp; pSÞ þ rLðp; pSÞ� �

: We define VS �
V1ðS; SÞ ¼ V2ðS; SÞ ¼ 1

2 rHðpS; pSÞ þ rLðpS; pSÞ� �
to

be the equilibrium revenue for each firm in this
subgame.
Finally, we consider the subgame when one firm

chooses to use committed pricing strategy, while the
other chooses to use contingent pricing strategy.

Stage 1: Firms that choose
commi ed pricing commit to a price 
before uncertainty realizes

Stage 0: Both firms choose 
whether to use commi ed 
or con ngent pricing

Demand unfolds

Stage 2: Firms that choose 
con ngent pricing post their prices 
and revenues are earned

Figure 1 Illustration of the Sequence of Events
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Without loss of generality, we assume that firm 1
chooses committed pricing strategy, because the equi-
librium prices and revenues in the other case would
be the same only with the indices switched. By defini-
tion, a tuple ðp�1; pH2 �

; pL2
�Þ is a SPE if and only if

p�1 ¼ arg maxp1
1

2
ðrHðp1; pH2 ðp1ÞÞ þ rLðp1; pL2ðp1ÞÞÞ;

ð3Þ

pH2 ðp1Þ ¼ arg maxpH
2
rHðpH2 ; p1Þ;

pL2ðp1Þ ¼ arg maxpL
2
rLðpL2 ; p1Þ;

ð4Þ

pH
�

2 ¼ pH2 ðp�1Þ; pL
�

2 ¼ pL2ðp�1Þ: ð5Þ

The last set of equations requires that pH
�

2 and pL
�

2

are the optimal responses of firm 2, given the com-
mitted price p�1 chosen by the first firm, when high
and low demand realizes, respectively; and the first
equation requires that p�1 is the optimal committed
price, given that firm 1 anticipates firm 2 to opti-
mally react to its price. We show in section 4.1.3 that
there exists a unique SPE under some assumptions.
The equilibrium revenues of this subgame are

V1ðS; CÞ ¼ 1
2 rHðp�1; pH2 �Þ þ rLðp�1; pL2�Þ
� �

for firm 1

and V2ðS; CÞ ¼ 1
2 rHðpH2 �

; p�1Þ þ rLðpL2�; p�1Þ
� �

for firm

2. Similarly, we can define V1(C, S) and V2(C, S),
and by symmetry, we have V1(C, S) = V2(S, C) and
V2(C, S) = V1(S, C).
Now we have defined the equilibrium prices and

revenues for each of the subgames after stage 0. At
stage 0, both firms face a two-strategy game with the
payoff matrix shown in Table 1. From Table 1, we
could find the Nash equilibrium for the stage 0 game.
We explore all possible equilibrium strategies, includ-
ing mixed strategy equilibria. The following three
situations may happen. First, if VS ≥ V1(C, S) = V2(S,
C), then (S, S) is an equilibrium. Second, if V1(C,
S) = V2(S, C) ≥ VS and V1(S, C) = V2(C, S) ≥ VC, then
(S, C) and (C, S) are pure strategy equilibria, and
moreover, there exists a unique mixed strategy equi-
librium. Third, if VC ≥ V1(S, C) = V2(C, S), then (C, C)
is an equilibrium. The goal of the subsequent analysis
is to identify conditions under which each outcome
arises as a Nash equilibrium at stage 0, and to draw
managerial insights from these results.

4. Equilibrium Behavior
In this section, we examine the equilibrium behavior
of the strategic pricing game defined in section 3. We
proceed by studying the equilibrium prices and reve-
nues in each subgame, then we investigate the stage 0
equilibrium and discuss our findings.

4.1. Stage 1 Equilibrium
4.1.1 When Both Firms Choose Contingent

Pricing. It suffices to study the subgame equilibrium
under each demand realization in stage 2. The equi-
librium expected revenue in stage 1 will be the aver-
age of the revenues from the two states of demand
realization. To compute the equilibrium revenue
under each demand realization, we first define a term
that we will frequently use in our later discussions.

DEFINITION 1. (REVENUE-MAXIMIZING AND CAPACITY-
DEPLETING PRICES). Consider a firm selling a single
product with capacity x. Given all competitors’
prices fixed, suppose the demand function for this
firm is d(p) when this firm chooses price p. Denote
the optimal price by p* given the fixed capacity x,
i.e., p* 2 arg maxpp�min{d(p),x}. We call p* a reve-
nue-maximizing price if d(p*) < x and p* a capacity-
depleting price if d(p*) ≥ x.

We have the following lemma showing the equilib-
rium prices and revenues when the demand function
is deterministic.

LEMMA 1. Assume both firms have capacity x and com-
pete on prices with demand functions: d1(p1,p2) =
(c�p1 + cp2)

+, d2(p1,p2) = (c�p2 + cp1)
+. Then there is

a unique Nash equilibrium given as follows:

(i) (AMPLE CAPACITY) If x � c
2�c, then the equilibrium

prices are p�1 ¼ p�2 ¼ c
2�c, which are revenue-maxi-

mizing prices. The equilibrium revenues are c2

ð2�cÞ2
for both firms.

(ii) (LIMITED CAPACITY) If x\ c
2�c, then the equilibrium

prices are p�1 ¼ p�2 ¼ c�x
1�c, which are capacity-

depleting prices. The equilibrium revenues are ðc�xÞx
1�c

for both firms.

As an immediate result of Lemma 1, we can obtain
the expected equilibrium revenue in stage 1 after both
firms choose contingent pricing strategy in stage 0, by
considering whether revenue-maximizing prices or
capacity-depleting prices are contingently used in
equilibrium for each demand realization.

PROPOSITION 1. When both firms choose contingent pric-
ing strategy at stage 0, there is a unique equilibrium at
stage 1 that is symmetric, with expected revenues,

Table 1 Payoff Matrix of the Stage 0 Game

Firm 2

Committed (S) Contingent (C)

Firm 1 Committed (S) V S, V S V1(S, C), V2(S, C)

Contingent (C) V1(C, S), V2(C, S) VC, VC
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conditional equilibrium prices and revenues on demand
realization, shown in Table 2.

4.1.2 When Both Firms Choose Committed
Pricing. We have the following result.

PROPOSITION 2. Assume c ≥ 3t. When both firms choose
committed pricing strategy at stage 0, there is a unique
symmetric equilibrium at stage 1 with equilibrium prices
and expected revenues shown in Table 3. Under a further
assumption that x ≥ 2t, all equilibria for this problem
must be symmetric.

Proposition 2 solves the Bertrand-Edgeworth pric-
ing game for differentiated products under demand
uncertainty, given symmetric linear demand struc-
tures. To our best knowledge, this is the first time
such a game is solved, which may be of independent
interest. In Proposition 2, the assumption c ≥ 3t guar-
antees that the demand is non-zero in equilibrium.
This assumption that the potential market size (i.e.,
the market size when both firms set price at zero) is at
least three times of the size of the demand shock, is
usually satisfied in practical settings when the
demand shock is moderate compared to the potential
market size.
The four cases in Table 3 correspond to whether the

capacity is cleared when demand turns out to be
either high or low. Specifically, the first case is when

there are excess capacities in both demand scenarios,
the second case is when the capacity is exactly cleared
when high demand realizes but has extra when low
demand realizes, the third case is when the capacity is
less than the demand when high demand realizes but
has extra when low demand realizes, and the last case
is when the capacity is less than the demand in both
demand scenarios.
There are several interesting observations from

Table 3. Most notably, the equilibrium prices and
expected revenues are not monotone in the capacity
level, unlike in the monopoly case. The equilibrium
price decreases in the capacity level x, except in an

intermediate range c�t
3�2c \ x\ c

3�2c þ t (see Figure

2(a)). In this range, the firms could sell all its capacity
at the equilibrium committed price under high
demand but not under low demand; and the equilib-
rium price is the maximizer of the expected revenue
p�(c�p�t+x+cp), thus increases in x. Note that this
behavior is unique due to the existence of demand
uncertainty, as one can verify that when there is no
demand uncertainty, the price would always
decrease in the capacity level. Another observation is
that the equilibrium expected revenue may be
increasing as the capacity reduces (see Figure 2(b)).
This is due to the competition. Indeed, one can verify
that in a monopoly case, the optimal revenue always
decreases as the capacity reduces. However, under
competition, a decrease in the capacity would have
two countervailing effects on profit: it forces the
firm’s own price up directly due to the stringent
capacity, which incurs a loss; meanwhile, it alleviates
the price competition, which incurs a gain. The gain
outweighs the loss when both firms’ equal capacity
is just falling short of satisfying the uncapacitated
equilibrium demand.

4.1.3. When Firm 1 Chooses Committed Pricing
and Firm 2 Chooses Contingent Pricing. The condi-

tions for a tuple ðp�1; pH2 �
; pL2

�Þ to be SPE prices are
given by Equations (3)–(5). Unfortunately, solving
Equations (3)–(5) analytically for all possible capacity

Table 2 Equilibrium Prices and Revenues When Both Firms Choose Contingent Pricing

Equilibrium revenue High demand Low demand

x [
c þ t

2� c
c2 þ t2

ð2� cÞ2
pH ¼ c þ t

2� c
, RH ¼ ðc þ tÞ2

ð2� cÞ2
pL ¼ c � t

2� c
, RL ¼ ðc � tÞ2

ð2� cÞ2

c � t

2� c
\ x � c þ t

2� c
ðc � tÞ2
2ð2� cÞ2

þ ðc þ t � xÞx
2ð1� cÞ pH ¼ c þ t � x

1� c
, RH ¼ ðc þ t � xÞx

1� c
pL ¼ c � t

2� c
, RL ¼ ðc � tÞ2

ð2� cÞ2

x � c � t

2� c
ðc � xÞx
1� c

pH ¼ c þ t � x

1� c
, RH ¼ ðc þ t � xÞx

1� c
pL ¼ c � t � x

1� c
, RL ¼ ðc � t � xÞx

1� c

Table 3 Equilibrium Prices and Revenues When Both Firms Choose
Committed Pricing

Equilibrium
price

Equilibrium
revenue

x [ c
2�c þ t c

2�c
c2

ð2�cÞ2

c
3�2c þ t � x � c

2�c þ t cþt�x
1�c

ðcþt�xÞðx�tÞ
1�c

c�t
3�2c \ x \ c

3�2c þ t c�tþx
2�c

ðc�tþxÞ2
2ð2�cÞ2

x � c�t
3�2c

c�t�x
1�c

ðc�t�xÞx
ð1�cÞ
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levels is difficult. For example, the optimization prob-
lem (3) is not necessarily concave in p1. This non-con-
cavity is inherent in price competition, coupled with
the sequential nature of one firm’s pre-commitment
followed by the contingent policy of the other. Solving
the optimal value requires discussions and compari-
sons piece-wisely (see Figure 3 for an example). In the
following, we solve two cases of this problem, i.e.,
when the capacity is either sufficiently high or
sufficiently low, and leave other cases to numerical
studies.

PROPOSITION 3. (AMPLE CAPACITY). Assume c ≥ 3t. If
x ≥ h(c)c+2t, then when firm 1 chooses committed

pricing strategy and firm 2 chooses contingent pricing
strategy, the unique equilibrium prices are

p�1 ¼
2þ c

2ð2� c2Þ c;

pH2
� ¼ cþ cp�1 þ t

2
¼ 4þ 2c� c2

4ð2� c2Þ cþ t

2
;

pL2
� ¼ cþ cp�1 � t

2
¼ 4þ 2c� c2

4ð2� c2Þ c� t

2
;

with equilibrium revenues

V1ðS; CÞ ¼ ð2þ cÞ2
8ð2� c2Þ c

2;

V2ðS; CÞ ¼ 4þ 2c� c2

4ð2� c2Þ
� �2

c2 þ t2

4
:

Here h(c)�max{c1,c2,c3} where

c1 �
1

2
þ cð2þ cÞ
4ð2� c2Þ ; c2 �

1þ c
c

� ð2þ cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 2c2

p
and c3 �

8þ 4c� 3c2

16� 10c2
:

Figure 4 shows a plot of h(c). We can see that h(c)
increases in c, though the rate of increase is quite
mild when c is not too large. Proposition 3 considers
a case in which the symmetric capacity is sufficiently
high such that it is never optimal to clear the capac-
ity. In this case, the firm that chooses contingent
pricing strategy always uses revenue-maximizing
prices, given either demand realization. The firm that
chooses committed pricing strategy sets its commit-
ted price higher than the revenue-maximizing price
of the other firm with contingent pricing, should
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demand be low, but not necessarily lower than
the other firm’s revenue-maximizing price should
demand be high.
Now we consider another case when the capacity is

scarce.

PROPOSITION 4. (LIMITED CAPACITY). Assume c ≥ 3t. If

x � �x � 1þc
3þc ðc� tÞ, then when firm 1 chooses committed

pricing strategy and firm 2 chooses contingent pricing
strategy, the unique equilibrium prices are

p�1 ¼
c� x� t

1� c
;

pH2
� ¼ cþ cp�1 þ t� x ¼ c� xþ ð1� 2cÞt

1� c
;

pL2
� ¼ cþ cp�1 � t� x ¼ c� x� t

1� c
;

with equilibrium revenues

V1ðS; CÞ ¼ ðc� x� tÞx
1� c

;

V2ðS; CÞ ¼ ðc� x� ctÞx
1� c

:

Proposition 4 considers a case in which the sym-
metric capacity is sufficiently low such that it is
always optimal to clear the capacity, regardless of
whether a firm chooses the committed or continent
pricing strategy. In this case, the firm that chooses
contingent pricing strategy always uses capacity-
depleting prices, given either demand realization. The
firm that chooses committed pricing strategy sets the
committed price exactly equal to the capacity-deplet-
ing price when the demand is low and the other firm
sets the optimal price. It can be seen from Proposition
4 that the expected revenue of the firm with contin-

gent pricing is higher than that of the firm with pre-
commitment.

4.2. Stage 0 Equilibrium
We have discussed the equilibrium of each subgame,
and are ready to derive the stage 0 equilibrium. A pre-
cise statement can be made when the capacity is either
sufficiently high or sufficiently low.

PROPOSITION 5. (AMPLE CAPACITY). Suppose c ≥ 3t, c>0,
x ≥ h(c)c + 2t, where h(c) is given in Proposition 3.

(i) If t
c � c2

2
ffiffiffiffiffiffiffiffiffi
4�2c2

p , then (S, C) and (C, S) are Nash

equilibria in the stage 0 game. The firm that chooses
C has a higher revenue than the firm that chooses S.
At stage 2, conditional on the demand realization,
the firm that chooses C uses a revenue-maximizing
price. Moreover, there exists a unique mixed strat-
egy equilibrium where firms randomize between S
and C.

(ii) If t
c [ c2

2
ffiffiffiffiffiffiffiffiffi
4�2c2

p , then (C, C) is the unique Nash

equilibrium in the stage 0 game. At stage 2, condi-
tional on the demand realization, firms use revenue-
maximizing prices. Moreover, there exists no mixed
strategy equilibrium.

It is interesting to see that asymmetric equilibrium
(namely, one firm chooses committed pricing strategy
and the other firm adjusts its price depending on
demand realization) naturally arises for completely
symmetric model primitives. Such outcomes arise
when product substitution is sufficiently high (i.e., c
is large, including “almost homogeneous” as a special
case), or demand uncertainty is sufficiently low (i.e., t
is small). The exact condition is given by Proposition
5 (see Figure 5 for the threshold on c to sustain
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asymmetric equilibria with respect to t/c). The intui-
tion behind is as follows: When competition is intense
with low demand uncertainty, one firm can optimally
commit to a committed high price, to avoid potential
fierce price competition under joint contingent pricing
that otherwise might slash the profit of both firms
should demand be low, while the loss from not being
able to dynamically react to high demand is relatively
small due to the low demand uncertainty. Meanwhile,
the other firm, who sets prices contingently, also
benefits from its competitor’s pre-commitment. Thus,
(S, C) and (C, S) are sustained as equilibria.
To take a closer examination of the asymmetric

equilibria, V2(S, C) is always greater than V1(S, C).
Therefore, the firms, if possible, always prefer to be
the “follower” of choosing the contingent pricing
strategy, but may be threatened by a looming price
war such that eventually one firm would settle on
making a price commitment. It is worth noting that
such unfairness for the “leader” in a pure strategy
equilibrium is not uncommon (e.g., see Osborne 1994
for the well-known Battle of the Sexes game and the
game of Chicken). A unique mixed strategy equilib-
rium exists in this case, however, the resulting payoff
is inefficient. To resolve this dilemma, one theoretic
solution is to adopt the notion of correlated equilibrium,
in which firms make their decisions based on some
commonly observed signal and correlate their strate-
gies based on the signal (see Fudenberg and Tirole
1991, section 2.2). The correlated equilibrium can
maintain the efficiency of the outcome yet make the
game relatively fair. Moreover, in practice, firms have
costs of price adjustment, e.g., menu costs, managerial
and customer costs (Zbaracki et al. 2004). With cost of
price adjustment built into the model, the payoff
matrix in Table 1 needs to be updated with the pay-
offs associated with the C action to be undercut by the
cost. Even with a symmetric price-adjustment cost,
(C, S) and (S, C) can still sustain as equilibria, with a
property that the firm choosing C may have a lower
revenue than the firm choosing S. This happens when
the cost of price adjustment falls into an intermediate
range (if the price-adjustment cost is less than V1(C,
S)�V2(C, S), we still have the asymmetric equilibrium
outcomes with the C firm earning higher revenue
than the S firm; if the cost is more than V1(C, S)�VS,
the joint strategy (S, S) will become the unique equi-
librium). In this case, the dilemma can be resolved
because there is an incentive for firms to move “ear-
lier” by announcing price commitment. Lastly, as we
shall see in section 5.1, this dilemma of who has an
incentive to move first can also be resolved when the
firms start with asymmetric capacities.
On the other hand, if the competition is not intense

or the demand uncertainty is high, then both firms
will prefer to use the contingent pricing strategy

which enables them to better react to demand shocks,
while competition, even if demand is realized as low,
will be mild. In this case, there will be no mixed strat-
egy equilibrium.
When the capacity is sufficiently low, we find a

slightly different result. That is, when c, t>0 and

x � �x � 1þc
3þc ðc� tÞ,

V2ðS; CÞ ¼ ðc� x� ctÞx
1� c

[
ðc� x� tÞx

1� c
¼ VS and

VC ¼ ðc� xÞx
1� c

[
ðc� x� tÞx

1� c
¼ V1ðS; CÞ;

thus we have the following result.

PROPOSITION 6. (LIMITED CAPACITY). Assume c ≥ 3t. If

x � �x ¼ 1þc
3þc ðc� tÞ, then (C, C) is the unique Nash

equilibrium in the stage 0 game. At stage 2, conditional
on the demand realization, firms use capacity-depleting
prices. Moreover, there exists no mixed strategy
equilibrium.

Proposition 6 says that when the capacity is scarce,
it is always more critical to stay nimble to adjust to
market conditions, in order to more profitably utilize
limited capacity. Making price commitment to “pre-
empt” intense competition becomes a secondary
concern.
For the cases when the capacity x is neither high

nor low, we are not able to obtain analytical results.
Instead, we conduct numerical experiments to study
the equilibrium outcomes in those cases. A represen-
tative experiment is illustrated in Figure 6 , where we
fix c = 100 and vary demand uncertainty t 2 {3, 5,
10, 15}. For each t, we test the degree of product dif-
ferentiation c ranging from 0.3 to 0.8 and the capacity
level x from 40 to 120, and study the stage 0 equilib-
rium for each combination. In Figure 6, we identify
regions where (S, C) and (C, S) are stage 0 equilibria.
Consistent with Propositions 5 and 6, such equilibria
arise when the capacity is ample and the product dif-
ferentiability is low (i.e., c is high); in all other cases,
(C, C) is the unique Nash equilibrium. It never sus-
tains in the equilibrium that both firms pre-commit to
the committed pricing strategy. By observing Figure
6, we can see that the higher the demand uncertainty
is, the higher capacity and higher product homogene-
ity it requires to sustain an asymmetric equilibrium.
Furthermore, the results align well with the analytic
threshold in Proposition 5, namely, the threshold on c
for (S, C) to be an equilibrium, when capacity x is

ample, indeed satisfies c2

2
ffiffiffiffiffiffiffiffiffi
4�2c2

p ¼ t
c. Another thing we

observe in Figure 6 is that the region where (S, C) and
(C, S) sustain as equilibrium is not convex, there is
some irregular shape when c is low and x is in the
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intermediate range. This is because when both firms
choose committed pricing, the equilibrium revenue is
not always increasing in x, as shown in Proposition 2.
We also perform more extensive experiments with
different primitives, and the results are similar. In
particular, we see no instances where (S, S) could
sustain in a stage 0 equilibrium. We conjecture this is
always true, however, we are not able to prove it
analytically.

4.3. Pareto Efficiency of the Equilibrium
In previous sections, we have derived the Nash equi-
librium of the stage 0 game for the base model. In this
section, we study the efficiency of such equilibria. We
first investigate whether the equilibrium outcomes
are Pareto efficient, and by doing so, we can exactly

pinpoint the detrimental effect of joint contingent
pricing under competition. We identify situations in
which the firms are involved in a prisoner’s dilemma:
The Pareto optimal solution is for both firms to use
the committed pricing strategy, however, the contin-
gent pricing strategy is a dominant strategy. Finally,
we briefly discuss the value of information in this
competitive situation.
To study the Pareto efficiency of the stage 0 equilib-

rium, we note that if the equilibrium outcome is (S, C)
or (C, S), then it must be Pareto efficient, due to the
definition of the problem and the symmetry between
joint strategy pairs (S, C) and (C, S). Therefore, we
focus on the cases in which (C, C) is the equilibrium.
In such cases, the attention is on whether the
equilibrium revenue VS when both firms choose the
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committed pricing strategy is higher than the equilib-
rium revenue VC when both firms choose the contin-
gent pricing strategy. We answer this question in the
following proposition.

PROPOSITION 7. We have the following comparison
between VC and VS:

(i) If t
c � c

2�c, then VC ≥ VS.

(ii) If t
c \

c
2�c, then there exists xl ¼ xðc; c; tÞ\ xu � c

2

þtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2c2�4t2ð1�cÞ

p
2ð2�cÞ such that when xl < x < xu,

VS > VC. The definition of xl is rather complicated,
and we leave it to the proof of Proposition 7 in the
Online Appendix.

Proposition 7 characterizes the situations when VS

is higher than VC, or the other way around. When
products are relatively highly differentiated (i.e., c is
small) or the demand uncertainty is relatively high

(i.e., t
c � c

2�c), both firms are always better off using

the contingent pricing strategy, which is in accor-
dance with our results for the stage 0 equilibrium (see
Proposition 5). In this case, the benefit of being able to
react to demand shocks is dominant. However, if the
homogeneity of the products is relatively high (i.e., c
is large) and the demand uncertainty is relatively low

(i.e., tc \
c

2�c), then there exists an intermediate range of

capacity levels such that the equilibrium revenues
when both firms choose the committed pricing
strategy are higher.
Since the mathematical formulas for the boundaries

of the intervals are quite complicated, we conduct
several numerical experiments to illustrate these
intervals. The results are shown in Figure 7, where we
fix c = 100 and vary demand uncertainty t 2 {3, 5, 10,
15}. For each t, we draw the ranges of capacities such
that VS > VC for different c’s.
For c’s such that this range is empty, VC is always

greater than VS, regardless of the capacity levels. We
see that given demand uncertainty t, the competition
parameter c has to be greater than a certain threshold
so that there exists some intermediate capacity level x

that results in VS > VC. It can be verified that this

threshold on c’s satisfies c
2�c ¼ t

c, consistent with the

result in Proposition 7. Moreover, the threshold
increases as t increases, meaning that as demand
uncertainty grows, it requires higher product homo-
geneity to justify the benefit of the joint committed
pricing strategy.
Combining the comparison of VS and VC with the

next proposition, we can exactly pinpoint the cause of
the detrimental effect of joint contingent pricing
under competition.

PROPOSITION 8. If demand realizes as high, the equilib-
rium revenue when both firms choose contingent pricing
is always larger than that when both firms choose com-
mitted pricing.

As Proposition 8 implies, the gain of the committed
pricing strategy can only derive from the scenario
when the demand realization is low. When low
demand realizes, the competition between firms
under joint contingent pricing can be cutthroat. Price
commitment of both firms before the realization of the
demand forces them to stay in a non-equilibrium
price, which may alleviate the competition, should
demand be low. On the other hand, when high
demand realizes, the firms under pre-commitment
cannot adjust prices to meet the market condition and
thus suffer a loss. The former effect tends to outweigh
the latter when the demand uncertainty or product
differentiability is low, and vice versa.
Now we go back to the original question that

whether the stage 0 equilibrium is Pareto efficient.
The answer is “not always.” For cases when the stage
0 equilibrium is (C, C) but VS > VC, the equilibrium is
not Pareto efficient. Indeed, we identify such cases in
our numerical experiments. Table 4 shows one exam-
ple of such a situation where c = 100, t = 5, x = 60
and c = 0.3. The unique pure strategy equilibrium is
for both firms to choose the contingent pricing strat-
egy, however, the revenues are strictly worse than
those when both firms choose the committed pricing
strategy. One may immediately identify that this is

50 60 70 80 90 100 110 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

γ

(a)

50 60 70 80 90 100 110 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

γ

(b)

50 60 70 80 90 100 110 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

γ

(c)

50 60 70 80 90 100 110 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

γ

(d)

Figure 7 Numerical Results for the Range of x such that VS > VC

Wang and Hu: Committed Versus Contingent Pricing
1930 Production and Operations Management 23(11), pp. 1919–1936, © 2014 Production and Operations Management Society



exactly the same situation as the classic prisoner’s
dilemma. The firms that only play the game once may
not want to cooperate (i.e., pre-commit to a price),
although it is in their best interests to do so. However,
if the stage 0 game is played repeatedly, a cooperative
solution may arise. The analysis of the repeated game
follows the standard game theory approach. We refer
the readers to Fudenberg and Tirole (1991) for the
related discussions.
Finally, we comment on the value of demand infor-

mation in the stage 0 game. The concept of the value of
information is used in decision sciences to measure the
expected gain by the decision maker given certain
information, and it can also be interpreted as the max-
imal amount one would be willing to pay for the
information. It is well known that if there is only a sin-
gle decision maker, the value of information cannot
be less than zero, since the decision maker can always
ignore the additional information and make decisions
as if such information is not available (Ponssard
1976). However, in a competitive environment, this
might not be true. Our stage 0 game is such an exam-
ple. The expected equilibrium revenue when both
firms know the demand information and competi-
tively make decisions based on it may be less than
that when both firms do not know the demand infor-
mation.

5. Extensions

We next examine several extensions to our base
model. In section 5.1, we relax the assumption that
firms are symmetric in their capacities, and show that
the firm with more capacity is more likely to engage
in a price commitment. In section 5.2, we further
explore the situation where the capacity decisions are
endogenized rather than exogenously given. We
show that our insights still hold. Then in section 5.3,
we extend our model setup to a two-period competi-
tion model, and again, we show that our main
insights remain valid.

5.1. Asymmetric Capacities
First, we study the case in which the firms have asym-
metric capacity levels. We denote the capacity for
firms 1 and 2 by x1 and x2, respectively. Without loss
of generality, we assume x1>x2. We investigate the
stage 0 equilibrium and obtain the following result.

PROPOSITION 9.

(i) Assume c ≥ 3t. If x1 > x2 ≥ h(c)c + 2t, where h(c)
is defined in Proposition 3, then (S, C) and (C, S)
are Nash equilibria in the stage 0 game if
t
c � c2

2
ffiffiffiffiffiffiffiffiffi
4�2c2

p and (C, C) is the unique Nash equilib-

rium in the stage 0 game if t
c [ c2

2
ffiffiffiffiffiffiffiffiffi
4�2c2

p .

(ii) Assume c ≥ 3t. If x2 \ x1 � 1þc
3þc ðc� tÞ, then (C,

C) is the unique Nash equilibrium in the stage 0
game.

(iii) If x1 � cþt
2ð1�cÞ and x2 � 2þc

6�2c2 ðc� 2tÞ, then (S, C) is

the unique Nash equilibrium in the stage 0 game if

t\ ðð1þcÞc�cx2Þc2
2ð1þcÞ

ffiffiffiffiffiffiffiffi
1�c2

p , and (C, C) is the unique Nash

equilibrium if t [ ðð1þcÞc�cx2Þc2
2ð1þcÞ

ffiffiffiffiffiffiffiffi
1�c2

p .

The first and second parts of Proposition 9 are
extensions of Propositions 5 and 6, respectively. They
show that the results in the ample/limited capacity
cases can be extended to the asymmetric setting. The
most interesting result in Proposition 9 is part (iii). It
shows that a uniqueNash equilibrium tends to emerge
in the settings where one firm has ample capacity and
the other has limited capacity. In particular, in this
case, the firm with more capacity prefers to act first by
committing to a price upfront, while the other firm
with less capacity chooses to price contingently. This
result seems to support the observation that large
retailers with ample supply, e.g., Wal-Mart, tend to
practice the EDLP strategy, while smaller retailers
with stringent supply, e.g., Kmart, are more likely to
run seasonal promotions. The rationale behind this
result is that the firm with less capacity is more con-
cerned about profitably utilizing its scarce capacity
when random demand realizes, thus prefers to retain
the flexibility to adjust its price based on the demand
realization. On the other hand, the firm with higher
capacity level is more concerned about the equilib-
rium pricing, should demand be low, while less con-
cerned about matching supply with demand due to
its excess capacity. By making a price commitment,
the firm with more capacity could induce a relatively
higher price from its competitor and thus save itself
from brutal competition of undercutting prices, if the
market turns out to be sluggish.
Similar to the difficulty we have for symmetric

capacities, we are not able to obtain analytical results
for other cases besides those shown in Proposition 9.
Instead, we perform numerical experiments for those
cases. We illustrate one set of numerical results in
Figure 8, where we choose c = 100, c = 0.6 and t = 5
as the base case, and vary one parameter between c
and t in each experiment. For each experiment, we
study how the stage 0 equilibrium changes in the

Table 4. Payoff Matrix of the Stage 0 Game

Firm 2

Committed Contingent

Firm 1 Committed (4125, 4125) (3975, 4200)
Contingent (4200, 3975) (4013, 4013)
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capacity levels (x1,x2). In the base case (see Figure
8(a)) where demand uncertainty and product differ-
entiation are low, we can see that if the capacities of
both firms are low, (C, C) is the unique equilibrium in
stage 0 and if the capacities of both firms are high,
both (S, C) and (C, S) are stage 0 equilibria. These
results are similar to those with symmetric capacities.
And when the capacity level of one firm is much
higher than the other (the right lower region of the
figure), the larger firm will choose to make a price
commitment. Moreover, from Figure 8(b) and (c), we
see that the (C, C) equilibrium is more likely to occur
if t is relatively large or c is relatively small. These
observations are consistent with the analytical results
shown in Proposition 9.

5.2. Endogenized Capacity Decision
In our base model, the capacity of each firm is
assumed to be exogenously given, with only pricing-
related decisions being made. In this section, we
consider the situations where the capacity of each
firm is also a decision variable. The main purpose of
this section is to verify whether the main results in
our base model can sustain when capacity decisions
are endogenized.
In this section, we assume that there is a preceding

stage before stage 0 in which the firms simultaneously

make their capacity decisions. We denote the unit
capacity cost of firm i, i = 1, 2, by ci. After the capaci-
ties are determined, the pricing game described in
section 3 follows. An illustration of this game is
shown in Figure 9.
We are interested in the equilibrium behavior of the

capacity-pricing game. In particular, we are interested
in whether different equilibrium outcomes described
in section 4 would emerge. One complication when
we consider the endogenized capacity game is that
the subsequent subgame may not necessarily have a
unique equilibrium when (S, C) and (C, S) are both
equilibria, thus the payoff of the subsequent game
cannot be uniquely defined. The way we choose to
deal with this issue is to consider a correlated equilib-
rium in which either equilibrium outcome is chosen

with probability 1
2 (see Fudenberg and Tirole 1991 for

a discussion on the notion of correlated equilibrium).
Indeed, this choice may be somewhat arbitrary, how-
ever, our task is to investigate whether our main
insights for the subsequent pricing game still hold
under some plausible assumptions. Moreover, we
also conduct the same analysis under other equilib-
rium choices such as the mixed strategy equilibrium
and obtain similar results.
Since the analysis of the endogenized capacity

game is quite complicated, we adopt a numerical

Stage 1: Firms that choose 
commi ed pricing commit 
to a price 

Stage 0: Both firms choose 
whether to use commi ed 
or con ngent pricing

Demand unfolds

Stage 2: Firms that choose 
con ngent pricing post their prices 
and revenues are earned

Firms make capacity 
decisions

Figure 9 Illustration of the Sequence of Events
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Figure 8 Stage 0 Equilibrium for Asymmetric Capacities
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approach. In the following, we fix c = 100, t = 5 and
vary c 2 {0.7,0.75,0.8}. For each c, we consider differ-
ent capacity costs, by varying each of c1 and c2 from 0
to 40. Then, for each combination of the primitives,
we compute the equilibrium of the capacity game. We
mark the scenarios by the induced equilibrium behav-
ior in the subsequent pricing subgame. The results are
shown in Figure 10.
In Figure 10, the lower left region corresponds to

the cases when asymmetric equilibria arise in the pric-
ing subgame, whereas the upper right region corre-
sponds to the cases when (C, C) is the unique
equilibrium in the pricing subgame. We can observe
that for each choice of c, when the capacity cost for at
least one firm is low, asymmetric equilibria could
arise in the subsequent pricing game. Intuitively, this
is because when the capacity cost is low, a firm has an
incentive to build more capacity, thus it is more likely
to result in the ample capacity case of Proposition 9,
where asymmetric equilibria of strategic pricing deci-
sions arise. On the other hand, when the capacity
costs for both firms are relatively high, a unique equi-
librium (C, C) arises in the subsequent pricing game.
This is because, in this case both firms will not build
up a lot of capacity due to high capacity costs, thus it
is more likely to fall into the limited capacity case of

Proposition 9, where (C, C) arises as a unique equilib-
rium.
Finally, we observe from Figure 10 that as c

increases, it is easier to sustain asymmetric equilibria
in the strategic pricing game. This is consistent with
our discussion in section 4, where we conclude that
asymmetric equilibria tend to emerge when capacity
is ampler, products are less differentiated or demand
uncertainty is lower. When c is large, price competi-
tion when low demand realizes becomes fiercer, forc-
ing firms to avoid joint contingent pricing.

5.3. Two-Period Model
In this section, we extend our base model to one with
two selling periods. In this extension, after each firm
selects whether to adopt the committed or contingent
pricing strategy, the firm that chooses committed
pricing must apply the same price for both selling
periods, while the firm that chooses contingent pric-
ing could change its price in the second period
depending on the demand realization. An illustration
of this model is shown in Figure 11.
In this model, we assume that the demand in the ith

period, i = 1, 2, is: Di
1ðp1; p2Þ ¼ ðc� p1 þ cp2 þ �iÞþ,

Di
2ðp1; p2Þ ¼ ðc� p2 þ cp1 þ �iÞþ, where ei is the

demand shock in period i. The main goal of this
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Figure 10 The Equilibrium Outcomes When the Capacity is Endogenized

Stage 1: Start of the first selling period. Both 
firms post their prices and the demand for 
the first period unfolds

Stage 2: Start of the second selling period. The firm that 
chooses con�ngent price could change its price. Second 
period demand unfolds and revenues are earned

Stage 0: Both firms choose 
whether to use commi�ed or 
con�ngent pricing

Figure 11 Illustration of the Sequence of Events in the Two-Period Model
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extension is to verify whether the insights of our base
model still hold.
We obtain some analytical results for e2 = 0, i.e.,

when there is only demand shock in the first period
(included in the Online Appendix). We further con-
duct numerical experiments to study the stage 0 equi-
librium in the two-period model. In the numerical
experiments, we assume e1 = e2. This means that the
demand uncertainty for the second period can be
inferred from that in the first time period. The results
are shown in Figure 12, where we fix c = 100 and vary
demand uncertainty t 2 {5,15}. For each t, we test
the degree of product differentiation factor c ranging
from 0.3 to 0.8 and the capacity level x ranging from
80 to 240. We then identify the stage 0 equilibrium in
each combination of the primitives. We can see from
Figure 12 that the results are consistent with those of
our base model (see, e.g., Figure 6). That is, when the
capacity level is high and the product differentiation
is low (i.e., c is large), the stage 0 equilibrium is asym-
metric with one firm committing to a static price and
the other choosing contingent pricing. In the other
cases, both firms choosing contingent pricing is the
unique Nash equilibrium.These results suggest that
our stylized one-period model is quite robust in terms
of capturing the key tradeoffs in similar strategic pric-
ing games that may have more complicated sequence
of events.

6. Conclusion

In this paper, we consider a duopoly price competi-
tion of selling differentiated products with capacity
constraints and under demand uncertainty. We ana-
lyze firms’ strategic pricing decisions: whether to

commit to a price ex ante or delay pricing decisions
ex post. We show that even for completely symmetric
primitives, asymmetric equilibria, in which one firm
pre-commits to a price and the other firm prices con-
tingently, may arise in the equilibrium. The driving
force behind such an endogenous price commitment
is the detrimental effect of fierce price competition
under joint contingent pricing, should demand be
low. Such a detrimental effect tends to be more
significant if capacity is higher, and product differen-
tiation or demand uncertainty is lower, hence under
these circumstances asymmetric equilibria are more
likely to emerge. On the other hand, if capacity is
more limited, and product differentiation or demand
uncertainty is higher, a joint contingent pricing
strategy is more likely to arise in equilibrium. Our
results seem to be consistent with many industry
practices.
The model can be extended to gain additional

insights. First, one can extend our study to more than
two firms carrying multiple products (see, e.g.,
Federgruen and Hu 2013). It is expected that there
are possibly more than one firm choosing committed
pricing strategy in equilibrium. As the number of
firms increases, it is likely that more firms would
choose contingent pricing in equilibrium. It is
expected that the inter-firm cross-product substitu-
tion has a larger impact on firms’ strategic pricing
decisions than the intra-firm cross-product substitu-
tion.The exact dynamics of a multi-firm competition
game with each firm carrying multiple products is
worth of future study. Second, one can enrich
the two-period model in section 5.3 by imposing
practical price-trend constraints (see, e.g., Pang et al.
2013 and the references therein). In the apparel
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industry, the price trend over time is typically down-
ward, with retailers tending to markdown unsold
inventory towards the end of the sales horizon. If we
impose such a constraint that the second-period price
cannot be more than the first-period price, then one
may expect that the first-period price competition
would be alleviated. This is because a firm who
adopts contingent pricing has an incentive to set a
higher first-period price, to leave room for the possi-
ble high demand scenario in the second period, while
it still can choose to markdown should the demand
be low. This extension can serve as a good example
to illustrate how practical constraints, other than pre-
commitments, can help firms to alleviate price com-
petition. Finally, Hu and Wang (2013) show that
contingent pricing is more profitable than committed
pricing for a monopoly who sells network goods
under demand uncertainty. It would be interesting to
compare the two strategies under competition of
selling network goods.
There are several limitations of our model. For

example, to simplify analysis, we assume that the two
firms, each with one product, are symmetrically
differentiated. In practice, firms usually carry multi-
products and these products can be vertically or
horizontally differentiated. We also use a linear
demand structure for tractability, but in the empirical
studies, multinomial logit demand structures seem
more prevalent.Despite these limitations, our stylized
model captures the core tensions of how capacity,
demand uncertainty and product differentiation may
interplay in influencing strategic pricing decisions
and thus may provide useful managerial insights for
practitioners.
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Note

1J.C. Penney abandoned the strategy of “fair and square
pricing” in April 2013 because this strategy appeared to
alienate its core shoppers; in other words, its market struc-
ture, e.g., market size and price elasticity, was drastically
different before and after the strategy shift (Time 2013).
This cautions that the takeaways of the paper are applica-
ble under certain assumptions, because our stylized model
does not capture all the relevant aspects of real market
dynamics.
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