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Abstract. We study a courier dispatching problem in an on-demand delivery system in 
which customers are sensitive to delay. Specifically, we evaluate the effect of temporal pool
ing by comparing systems using the dedicated strategy, with which only one order is deliv
ered per trip, versus the pooling strategy, with which a batch of consecutive orders is 
delivered on each trip. We capture the courier delivery system’s spatial dimension by assum
ing that, following a Poisson process, demand arises at a uniformly generated point within a 
service region. With the same objective of revenue maximization, we find that the dispatch
ing strategy depends critically on customers’ patience level, the size of the service region, 
and whether the firm can endogenize the demand. We obtain concise but informative results 
with a single courier and assuming that customers’ underlying arrival rate is large enough, 
meaning a crowded market, such as rush hour delivery. In particular, when the firm has a 
growth target and needs to achieve an exogenously given demand rate, using the pooling 
strategy is optimal if the service area is large enough to fully exploit the pooling efficiency in 
delivery. Otherwise, using the dedicated strategy is optimal. In contrast, if the firm can endo
genize the demand rate by varying the delivery fee, using the dedicated strategy is optimal 
for a large service area. The reason is that it is optimal for the firm to sustain a relatively low 
demand rate by charging a high fee for a large service radius: within this large area, the pool
ing strategy leads to a long wait because it takes a long time for multiple orders to accumu
late. Moreover, with an exogenous demand rate to meet, customers’ patience level has no 
impact on the dispatch strategy. However, when the demand rate can be endogenized, the 
dedicated strategy is preferable if customers are impatient. Furthermore, we extend our 
model to account for social welfare maximization, a hybrid contingent delivery policy, a gen
eral arrival rate that does not have to be large, a nonuniform distribution of orders in the ser
vice region, and multiple couriers. We also conduct numerical analysis and simulations to 
complement our main results and find that most insights in our base model still hold in these 
extensions and numerical studies.
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1. Introduction
On-demand delivery of food and groceries has gained 
traction nowadays. Given the prevalence of smart devices 
and a flexible labor force of independent contractors, 
many food and grocery stores have started on-demand 
delivery for relatively small orders. For example, Star
bucks plans to expand its coffee delivery services across 
the United States and has already established delivery 
services in China in 30 cities and more than 2,000 stores 
(Jargon 2018). Unlike traditional package delivery ser
vices, coffee delivery involves spontaneous orders for 
small quantities. Typically, customers who order con
sumables such as coffee do not order in advance and 

expect the coffee to still be hot on arrival. A customer 
may choose not to order if the expected delivery time is 
too long.

In hyper-fast (or so-called instant) delivery, compa
nies offer a wait time expectation coupled with a price 
tag, for example, 10-minute grocery delivery for $2 by 
Gorillas and 30-minute grocery and food delivery for 
$1.95 by Gopuff with additional markups on product 
prices. Companies such as Gorillas and Gopuff employ 
and staff couriers dedicated to multihour shifts, fulfill
ing orders from “dark” warehouses or microfulfillment 
centers to meet the promise of rapid delivery. The 
Covid-19 pandemic has solidified this trend. Many more 
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vendors are hiring dedicated couriers for delivery.1
According to Rana and Haddon (2021b), about half of the 
150 registered restaurants on Spread, a start-up delivery 
platform, hire dedicated drivers for their deliveries. Fur
thermore, they set much lower delivery prices to carve 
out a market share to compete with large platforms. Had
don (2021) reports that Domino’s has established market 
penetration by using dedicated drivers and offering 
cheaper than market price pies. During the pandemic, 
Domino’s market share increased by 31%.

Because on-demand deliveries are sensitive to delay, 
many delivery systems dispatch a courier whenever an 
order arrives. Thus, the couriers can serve only one 
order per trip in the hope of reducing delivery time for 
each customer. The empirical analysis of Mao et al. 
(2022) shows that delivery delay significantly reduces 
future orders. However, there are still many occasions 
when a firm can utilize batch delivery if multiple orders 
are placed around the same time in the same area. A 
courier may deliver multiple orders per trip; we refer to 
this as the temporal pooling strategy. In this strategy, a 
courier is not necessarily dispatched as soon as an order 
arrives; orders are allowed to accumulate over time, and 
then a batch of sequential orders is delivered in one trip. 
We show that this strategy achieves delivery efficiency 
in the form of a shorter expected travel distance per 
order and lower variability in traveling distance per 
trip. However, whereas this pooling strategy benefits 
the supply side, it undoubtedly affects customers’ exp
eriences on the demand side, which may deter them 
from using the service or require monetary compensa
tion for the long wait, reducing the strategy’s attractive
ness. Therefore, each delivery strategy has its advantages: 
the dedicated delivery may mean a shorter wait for each 
customer, whereas batch delivery appears more efficient 
from the firm’s perspective.

The on-demand courier dispatch problem differs from 
traditional delivery problems (such as the celebrated 
traveling salesman problem (TSP)), in which there are 
many stops per trip. Orders containing on-demand sup
plies (such as coffee, food, and medicine) typically have 
short delivery windows. According to Rana and Kang 
(2021), food delivery platforms such as DoorDash and 
Uber are researching bundling orders together. Still, 
unlike traditional delivery services, they also plan to 

deliver all orders in an hour. Thus, on-demand delivery 
services cannot deliver with large batch sizes consis
tently. In particular, according to an internal study con
ducted by one of the largest delivery platforms in China, 
for food delivery, their couriers carry fewer than two 
orders on average per trip even during peak lunch and 
dinner hours (see Figure 1).

Another critical factor in the operations of delivery 
systems is whether the demand is exogenous or can be 
endogenized through pricing. On the one hand, a new 
delivery platform needs to maintain growth and carve 
out its market share by sustaining a fixed demand, also 
known as market penetration (Rana and Haddon 
2021a).2 Studies on market penetration can be traced 
back to Buzzell et al. (1975), followed by empirical evi
dence (see, e.g., Szymanski et al. 1993), stating there is a 
positive correlation between the market share and 
(long-term) profitability. Thus, the demand can be exog
enously determined for a vendor in its early stage of 
operations to achieve a particular market share. On the 
other hand, a vendor that has already established a sta
ble market base can endogenize the demand by varying 
delivery fees to further optimize its revenue.

In this paper, we take the perspective of a vendor pro
viding delivery service and address the following 
research questions: when is temporal pooling beneficial, 
and when should a courier be dedicated to one order 
per trip? More specifically, we consider scenarios in 
which the delivery system with dedicated couriers has 
exogenous and endogenous demand, respectively, and 
identify the key factors affecting its operating strategy. 
We use the vendor’s revenue as the performance mea
sure in either scenario. For simplicity, we refer to the 
delivery strategy with temporal pooling as the batch or 
pooling strategy and the one serving a single order per 
trip as the dedicated strategy. In the exogenous demand 
case, depending on the expected wait time associated 
with each strategy, the vendor sets the price to achieve 
the targeted demand rate. In the endogenous demand 
case, the vendor has complete freedom at varying the 
price to moderate the demand rate.

We build a stylized model capturing the spatial aspect 
of delivery systems under different dispatch strategies. 
Following a Poisson process, demand arises at a uni
formly distributed point in a service region. We obtain 

Figure 1. (Color online) The Distribution of Orders per Courier During Peak (Left) Lunch and (Right) Dinner Hours 

Note. By courtesy of Hongyan Dai.
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concise but informative analytical results by using a 
disk-shaped service area and recognizing the similari
ties between delivery and (spatial) queueing systems. 
Whether the demand is endogenized critically affects 
the vendor’s optimal dispatch strategy. In our base 
model, we assume there is a single courier for dispatch 
(which we relax in an extension). We first analyze a 
large market in which customers’ potential arrival rate 
is large (relaxed in another extension). We show that, in 
such a crowded market, if the demand rate is exoge
nously given as under market penetration (e.g., in the 
“scale-up” stage of a start-up), there is a threshold size 
for the service area below which it is optimal to use the 
dedicated strategy and above which it is optimal to use 
the pooling strategy. We find that whichever strategy 
produces a shorter expected wait time under exogenous 
demand is optimal for the vendor. Thus, customers’ 
patience level does not directly impact the decision on 
the delivery strategy because it does not affect the length 
of wait time itself.

The situation is very different if the firm can endogen
ize the demand rate (e.g., as in the “sustainment” stage 
of a start-up where profit maximization is focused on). 
With endogenized demand, there is a threshold size for 
the service area below which it is optimal for the firm to 
deliver in batches and above which it is optimal to adopt 
dedicated delivery. This result is in stark contrast to the 
one for exogenous demand. It runs counter to popular 
belief that serving in batches leads to higher delivery 
efficiency in a large service area than dedicated delivery 
(which is likely gained under the assumption that the 
demand rate is exogenously given). The intuition of our 
finding is that, in a relatively large service area, both 
strategies involve substantial travel distances, leading to 
long wait times. By maintaining a high demand rate, the 
firm needs to sacrifice a lot of profit margin to ensure 
customers join the service. As a result, the firm favors a 
relatively low endogenized demand rate for both strate
gies. The pooling strategy loses its efficiency edge in this 
case because it takes a long time to accumulate multiple 
orders with a low demand rate. The dedicated strategy 
is more efficient because its optimal demand rate is 
lower than the one under the pooling strategy. Further
more, we also find that there is a threshold on custo
mers’ patience level below which the pooling strategy is 
optimal and above which the dedicated strategy is opti
mal. We summarize these results in Table 1.

We then examine a variety of extensions of the base 
model, including social welfare maximization, hybrid 
policies that use dedicated or batch delivery contin
gently, general arrival rates that do not rely on the large 
market assumption, larger batch sizes, a nonuniform 
demand distribution inside the service area, and finally 
multiple couriers. Our main insights carry through in 
these extensions.

2. Literature Review
Cao and Qi (2022) and Yildiz and Savelsbergh (2019) are 
most closely related to ours. Cao and Qi (2022) study the 
optimal deployment strategy for vendors with high 
mobility, often referred to as the stall economy. Although 
their primary focus is on using the analytical model and 
machine learning algorithms to explain the scalability of 
the stall economy, the authors also empirically evaluate 
the benefit of demand pooling. They divide the service 
area into several subregions. They consider demand 
pooling that serves orders arriving within the same time 
window in the same subregion together before moving 
to the next subregion. Their empirical study finds that 
such demand pooling is more beneficial when customers 
are patient, which is consistent with our analytical results 
under the endogenous demand rate. Yildiz and Savels
bergh (2019) also consider a disk-shaped delivery area 
similar to that in our model, in which a single restaurant 
at the center of the disk serves the entire area. They only 
consider the dedicated strategy. Their focus is on the opti
mal service radius and compensation for crowdsourced 
couriers, whereas ours is evaluating the benefit of tempo
ral demand pooling.

Our paper belongs to the stream of research on spatial 
queueing models. This literature typically considers a 
logistical setting in which vehicles are modeled as ser
vers, and their traveling time to serve customers equals 
the service time. Berman et al. (1985, 1987) focus on find
ing one or multiple service hubs in a network to mini
mize the expected response time to random demand. 
They model the service system using queueing models 
incorporating the spatial features of the network. Bertsi
mas and van Ryzin (1990, 1992) consider stochastic and 
dynamic routing of vehicles to serve service requests 
that are randomly generated over a service region. The 
authors evaluate the performances of various policies 
and identify optimal and near-optimal policies under 
light and heavy traffic. Recently, spatial queueing models 
are also utilized in smart city design (see, e.g., He et al. 
2017, Mak 2022) and warehouse operations (see, e.g., 
Besbes and Cachon 2021). Besbes and Cachon (2021) 
compare temporal pooling of robots versus human pick
ers, in which robots move a pod with pooled items to the 
drop-off station and human workers pick multiple items 
in a trip similar to our pooling strategy. In contrast, we 
focus on comparing the dedicated and pooling strategies 

Table 1. Optimal Delivery Strategy According to Nature of 
Demand

Exogenous demand Endogenous demand

Small area Dedicated Batch
Large area Batch Dedicated
Patient customers — Batch
Impatient customers — Dedicated
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and also incorporate demand moderation to examine the 
interaction between the demand side’s pricing decision 
and the supply side’s dispatch decision.

Our paper is also related to papers using queueing 
models to study the on-demand economy. Taylor (2018) 
and Bai et al. (2019) treat freelancers in the on-demand 
economy as servers in queueing models. They approxi
mate the customers’ wait time with M/M/k queues. 
Daniels and Turcic (2021) capture the competition bet
ween taxis and Uber for wait-sensitive riders using 
queueing models. Feldman et al. (2022) examine different 
contracts between a delivery platform and a single res
taurant and compare their performance to that in a cen
tralized setting in which the restaurant controls prices. 
Chen et al. (2022) study a similar problem by examining 
a setting with two streams of customers: tech-savvy and 
traditional. Both papers model the food-serving restau
rant as a stylized M=M=1 queue. Cui et al. (2020, 2021) 
model line-sitting and queue-scalping, respectively, 
based on M=M=1 queues. They treat line-sitting and 
queue-scalping as innovative service models as opp
osed to traditional first come, first served and compare 
their performances in equilibria.

Similar to our paper, a stream of literature in opera
tions management also uses couriers’ travel distances to 
quantify the delivery cost. These papers typically deal 
with a large number of orders per delivery trip and resort 
to the asymptotic analysis of variants of the TSP to quan
tify the expected travel distance (see, e.g., Cachon 2014, 
Carlsson and Song 2017, Qi et al. 2018, Cao et al. 2020). In 
contrast, we assume that a courier delivers no more than 
a few orders per trip, supported by empirical evidence 
(see Figure 1). Furthermore, with a spatial queueing for
mulation, our analysis is anchored by the expected travel 
distance and the variability in traveling during delivery 
trips. More recently, He et al. (2021) also recognize that 
using TSP may not accurately depict the trip length in 
food delivery as couriers and the platform may not share 
the same information. They propose prediction models 
on travel time using machine learning.

Many papers also discuss the impact of dispatch poli
cies on operational efficiency and profitability. Klapp 
et al. (2018a, b) consider the dynamic dispatch wave 
problem. In their setting, dispatch decisions are made at 
predetermined times of a day, and the decision maker 
decides on which orders to be delivered in each wave. 
The major trade-off in whether to deliver an order is 
between reducing the number of outstanding orders so 
they can be delivered by the end of the day versus wait
ing for nearby orders to show up so the delivery effi
ciency can be improved. Voccia et al. (2019) also consider 
a multivehicle dynamic pickup and delivery problem 
with same-day delivery as the time constraint. Other 
papers such as Azi et al. (2012) and Ulmer et al. (2019) 
also study the optimal order assignment and the optimal 
timing for vehicle departure in a single-depot setup. In 

addition, at the operational level, Farahani et al. (2022) 
optimize the dispatch to minimize the costs of earliness 
and tardiness benchmarked with a common quote time. 
At the tactic level, He and Goh (2022) study the optimal 
order allocation between in-house employees and free
lancers with a thicker market for the latter attracting 
more customers over the long term. Unlike these papers, 
we consider the pricing decision besides the short-run 
dispatching policies.

Finally, our spatial modeling approach relates to 
Hotelling’s circular city model in economics. That 
model has suppliers and consumers evenly dispersed 
on a circle, and consumers have preferences over sup
pliers based on their relative locations. We extend the 
original circular city model (see, e.g., Salop 1979) to 
have the supplier sitting at the center of the circle and 
customers located inside the circle, forming a disk- 
shaped service area. In an extension, we also investi
gate the extreme case in which customers only reside 
on the edge of the disk. Some recent papers in opera
tions management also use spatial models based on a 
circular city. Chen et al. (2021) consider a matching 
problem in ride-sharing in which drivers and riders 
depart from the center of a circle going to different 
locations on the edge of the circle. Feng et al. (2021) 
also use a circular city to study ride-hailing in which 
drivers travel clockwise or counterclockwise, picking 
up riders on the circle. Unlike our spatial model, none 
of these papers considers areas inside the circle as part 
of the service region.

3. Model
Consider a vendor with a facility located at the center of 
a disk-shaped region with a radius r > 0 and a single 
courier serving customers in the area. We relax the 
single-courier assumption and consider multiple cour
iers in Section 6.7. The structure of our service area is a 
generalization of the circular city model (see, e.g., Salop 
1979) in the sense that customers also occupy areas 
inside the disk. In contrast, the original model only con
siders the edge of the disk. The centrally located facility 
can be a store, urban warehouse, restaurant, or ghost 
kitchen. We assume the arrival process of customers is 
Poisson with rate Λr2, which scales with the area πr2 of 
the service region.3 Upon arrival, each customer’s loca
tion is independent and uniformly distributed on the 
disk. Each customer is also subjected to a wait cost with 
a rate c per unit of time. Furthermore, we assume that 
each customer has a valuation v for the delivery service, 
which follows a general distribution with the cumula
tive density function (CDF) F. Without loss of general
ity, we normalize the support of F to [0, 1]. The vendor 
can decide the charge for each delivery service at a price 
p. We assume that customers are sensitive toward the 
wait time from their order time to the time of seeing 
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“your order is on its way” (a treatment consistent with 
those papers that ignore the delivery time such as Chen 
et al. 2022 and Feldman et al. 2022), which represents 
the time between when an order is placed and the deliv
ery courier starts to be en route. (This assumption is 
relaxed in Chen et al. 2023.) That is, a customer is satis
fied once a courier is on the way to make an exclusive 
delivery of the order: in dedicated delivery, every trip is 
exclusive; in batch delivery with size two, a customer 
anticipates being either the first or second stop in a 
delivery trip with an equal probability and, if the cus
tomer happens to be the second, expects that the courier 
needs to deliver the first order to a random location. We 
assume that the vendor commits and announces its 
delivery strategy. Thus, the resulting demand process is 
a homogeneous spatial Poisson process, which not only 
makes our model more elegant, but also has practical 
relevance. For example, Ulmer et al. (2021) study a sto
chastic dynamic pickup and delivery problem and con
duct experiments on a dynamic food delivery problem 
in the Iowa City metropolitan area. They use a homoge
neous spatial Poisson process to model the demand 
request pattern that is confirmed by the local providers. 
In Section 6.6 and Online Appendix D, we further inves
tigate the case in which customers are also sensitive to 
en route delays, which leads to distance-dependent wait 
time. As a result, we would have a nonuniformly dis
tributed demand over the space.

Thus, in our base model, given the expected wait time 
w from the order time to the expected starting time of 
making an exclusive delivery, a customer’s utility from 
using the delivery service is simply v� p� cw: Note 
that this utility expression assumes that the wait cost is 
linear in time. This is indeed a simplification of reality 
for model tractability. In practice, most instant deliv
ery services offer a “soft promise” in wait time (e.g., 
10 minutes for Gorillas and 30 minutes for Gopuff). 
This implies that the wait cost by customers may be 
negligible if the wait time is below a cutoff, whereas 
above it, the wait cost can be convexly increasing in the 
wait time because the wait beyond the promise can be 
increasingly painful as each additional minute passes 
by; see Online Appendix H for such an extension.

Only customers with nonnegative utilities use the 
delivery service from the vendor. Customers with nega
tive utilities may choose to pick up the orders themselves 
or not order at all. Denote by λ ∈ [0,Λr2] the effective 
demand rate of the delivery service. Because each custo
mer’s valuation v follows a distribution with the CDF F, 
the demand rate λ satisfies λ=Λr2 � 1� F(p+ cw), which 
implies that, for all λ ∈ (0,Λr2], we have

p � F�1 1� λ
Λr2

� �

� cw, (1) 

where function F�1 is the inverse function of the CDF F. 
Thus, a one-to-one mapping exists between price p and 

positive demand rate λ. Note that, if the demand rate λ 
is exogenous, then it is possible to have p < 0 as the ven
dor needs to subsidize customers for the service, which 
may happen when the vendor wants to grow a market. 
This would not happen when the demand rate is endo
genized. Using the expression in (1) for positive demand 
rate, the vendor’s revenue function can be written as

V(λ, w) � λp � λ F�1 1� λ
Λr2

� �

� cw
� �

, λ > 0:

(2) 

The vendor makes operational decisions based on the 
revenue it generates according to (2).

We emphasize that wait time for each customer, w, in 
a steady state also depends on the effective demand rate 
λ. In later sections, when comparing the vendor’s reve
nue functions under different delivery modes, we 
replace w by the expected wait time for each customer, 
which is a function of the demand rate λ. The underly
ing assumption is that customers anticipate a wait time 
and use it to decide whether to adopt the service. In 
equilibrium, their expected wait time is consistent with 
their experiences over repeated interactions.

We consider and compare two delivery strategies: the 
dedicated and pooling strategies. On the one hand, with 
the dedicated strategy, the courier serves orders one by 
one in the first come, first served fashion (referred to as 
dedicated delivery). On the other hand, with the pool
ing strategy, the courier is not en route for delivery until 
exactly two4 orders are accumulated, which can be 
interpreted as serving orders in batches of two (referred 
to as batch delivery). Figure 2 illustrates the differences 
between the two strategies. When serving dedicated 
delivery, a courier leaves the restaurant immediately 
when an order arrives. After delivering the food, the 
courier returns to the restaurant to pick up or wait for 
the following order. When serving batch delivery, the 
courier does not leave the restaurant until two orders 
have arrived. Then, the courier delivers both orders in a 
single delivery trip before returning to the restaurant for 
the next batch. We do not specify the fulfillment 
sequence within a batch as long as the resulting order is 
random; for example, the sequence can follow the time 

Figure 2. (Color online) Serving Dedicated vs. Serving Batch 

Chen and Hu: Courier Dispatch in On-Demand Delivery 
Management Science, 2024, vol. 70, no.6, pp. 3789–3807, © 2023 INFORMS 3793 



or spatial order of arrivals, such as always traveling 
clockwise. The fulfillment sequence within a batch does 
not affect the total travel distance of a courier but may 
affect the wait time of a specific order. If the resulting 
fulfillment order is random, customers still have the 
same expected wait time over repeated interactions 
with the system. We assume that there is no delivery 
delay at each drop-off location, which is relaxed in 
Online Appendix G.

We recognize the similarity between our delivery sys
tem and a single-server queue in which a courier acts as 
the server and customers’ orders queue up. Because 
potential customer arrivals follow a Poisson process 
and a fraction of the customers choose the delivery ser
vice based on the expected wait, the arrival process of 
orders is also Poisson with the rate equal to the effective 
demand rate λ. As for the service process, we assume 
that the courier instantly picks up the delivery goods at 
the centrally located facility and spends no time at each 
customer’s location. Thus, the service time only consists 
of the courier’s traveling time between the facility and 
the customers’ location(s). We define a delivery trip as 
the process starting when the courier picks up the deliv
ery goods at the facility and ending when the courier 
returns. We utilize the queueing literature results to 
derive customers’ expected wait time under each deliv
ery strategy in the following two sections.

3.1. Dedicated Delivery
Suppose the courier uses dedicated delivery to serve 
customers. As mentioned, orders arrive following a 
Poisson process with a rate λ in equilibrium. The service 
time is the time the courier spends delivering each 
order. When dedicated delivery is adopted, each deliv
ery trip is the round trip between the facility and a ran
dom customer’s location. Assuming a constant travel 
speed and normalizing it to one, the service time equals 
the travel distance per delivery trip.

Denote by a random variable XD the shortest Euclidean 
distance of a delivery trip when serving orders under de
dicated delivery. So XD is two times the distance between 
the disk’s center with radius r and a uniformly distributed 
point on the disk. According to the disk point picking lit
erature (see, e.g., Solomon 1978), we have

E[XD] �
1

2πr2

Z r2

0

Z 2π

0
2
ffiffiffi
x
√

dθ dx � 4
3 r, and

E[X2
D] �

1
2πr2

Z r2

0

Z 2π

0
4x dθ dx � 2r2: (3) 

Note that the first moment of random variable XD repre
sents the expected distance of the delivery trip, which is 
also the expected service time under our normalization 
of the travel speed. Then, we can treat this delivery sys
tem as an M=G=1 queue with the service rate and load 

factor equal to

µD �
1

E[XD]
�

3
4r

, and ρD �
λ

µD
�

4
3λr, respectively:

(4) 

We define the expected wait time by WD when using 
dedicated delivery as a function of demand rate, service 
rate, and the coefficient of variation of the arrival and 
service processes:

WD(λ,µ, C) :�
λ

µ(µ� λ)

C
2 , ∀λ, C ≥ 0,µ > 0, (5) 

where the term represents in-line delay of an M=G=1 
queue (see, e.g., Gross et al. 2008). The summation of 
coefficients of variation of our M=G=1 queue’s arrival 
and service processes is

CD � 1+E[X
2
D]� (E[XD])

2

(E[XD])
2 �

9
8 : (6) 

Thus, according to (5), WD(λ,µD, CD) represents the 
expected wait time for each customer when the courier 
uses dedicated delivery. Therefore, we can rewrite the 
revenue function in (2) as

VD(λ, WD(λ,µD, CD)) �

λ F�1 1� λ
Λr2

� �

� cWD(λ,µD, CD)

� �

, (7) 

representing the revenue rate of the delivery service 
when the vendor adopts dedicated delivery.

3.2. Batch or Pooling Strategy
Instead of serving orders with dedicated delivery, the 
courier can also deliver orders using batch delivery. In 
this paper, we assume that each batch consists of two 
orders and, inside each batch, orders are delivered fol
lowing a predetermined rule. The courier does not leave 
the facility until two orders have arrived. Thus, when 
comparing our delivery system to a queueing system, 
we consider orders entering the queue in pairs of two. 
An arriving order does not technically enter the queue if 
all outstanding orders in the system are already in pairs 
of two. Instead, it waits and joins the queue together 
with the following order that arrives. Therefore, when 
the demand rate is λ, we can effectively treat the interar
rival time as being Erlang distributed with order two 
and having a mean of 2=λ (with the arrival rate being 
λ=2).

Next, we analyze the service process of the delivery 
system using batch. A delivery trip needs to include 
three parts: travel between the facility and the first 
order’s location, between the first and second orders’ 
locations, and finally back to the facility from the second 
order’s location. Denote by random variable XB the 
shortest distance a courier needs to travel per trip. 

Chen and Hu: Courier Dispatch in On-Demand Delivery 
3794 Management Science, 2024, vol. 70, no.6, pp. 3789–3807, © 2023 INFORMS 



According to the disk line picking literature (see, e.g., 
Solomon 1978), we have5

E[XB] �
1
πr4

Z r2

0

Z r2

0

Z π

0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x + y� 2 ffiffiffiffiffixy√ cos(θ)
q

+
ffiffiffi
x
√
+

ffiffiffiy√
�

dθ dx dy � 128
45π +

4
3

� �

r,

E[X2
B] �

1
πr4

Z r2

0

Z r2

0

Z π

0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x + y� 2 ffiffiffiffiffixy√ cos(θ)
q

+
ffiffiffi
x
√
+

ffiffiffiy√
�2

dθ dx dy ≈ 5:428r2: (8) 

Because the travel speed is normalized to one, the travel 
distance in each delivery trip is the service time for the 
courier. Using the first moment of XB, we can derive the 
service rate and load factor of this service queue as

µB �
1

E[XB]
�

45π
4r(32 + 15π) , and

ρB �
λ

2µB
�

2λr(32 + 15π)
45π , (9) 

respectively. With both arrival and service processes 
characterized, we recognize that our batch service can 
be analyzed through an E2=G=1 queue.

Because the interarrival time follows an Erlang-2 dis
tribution, using the first and second moments of XB, the 
summation of the coefficients of variation for arrival 
and service processes is

CB �
1
2 +

E[X2
B]� (E[XB])

2

(E[XB])
2 ≈ 0:583: (10) 

Unfortunately, we do not have a closed-form expression 
for the expected in-line delay of the E2=G=1 queues. Seek
ing analytical results, we use Kingman’s formula (see, 
e.g., Gross et al. 2008) to approximate the in-line delay of 
this E2=G=1 queue as a G=G=1 queue. That is, we have

Wq ≈
1

2µB

ρB
1� ρB

CB �
CB

2
λ

µB(2µB�λ)
, (11) 

where CB is defined in (10). The Kingman’s formula we 
adopt serves as an upper bound (see, e.g., Kingman 
1962) on the in-line delay and is asymptotically exact in 
the heavy traffic regime. All our results in favor of the 
pooling strategy can be refined analytically exact as we 
use the upper bound of the in-line delay under batch 
delivery compared with the dedicated strategy. Our 
results still hold for a numerical verification in which 
the expected in-line delay is computed from a simulated 
system of the E2=G=1 queue. In Online Appendix F, we 
provide simulation results on the accuracy of all the 
approximations in this paper. In summary, this paper’s 
closed-form approximations are reasonably accurate.

Note that the batch delivery has a shorter in-line delay 
compared with a hypothetical M=G=1 dedicated delivery 
system in which the arrival rate is λ=2. The reason is that 

the batch system has a lower coefficient of variation, that 
is, CB ≤ CD, which means there is less variability in both 
the arrival and service processes of the batch system. 
More specifically, the variability in the arrival process is 
reduced from 1 in the dedicated system to 1/2 in the 
batch system because of temporal pooling of orders. The 
variability in the service process is reduced from 1/8 in 
the dedicated system to about 0.083 in the batch system 
because of spatial pooling of two delivery trips into one.

Recall that, when using an E2=G=1 queue to analyze 
our batch system, a single order does not enter the 
queue until a second order arrives. In other words, the 
in-line delay does not include the time to form a batch of 
two orders, which is on average 1=λ. We assume that 
the customer does not know the exact state of the system 
as is the case in practice. That is, the customer has no 
information on the customer’s position in the queue. 
Thus, from a customer’s perspective, the expected wait 
time consists of three parts: the expected wait time for a 
second order to arrive if the customer’s order does not 
enter the queue immediately, the average in-line delay 
once the customer’s batch enters the queue, and if the 
customer is the second in the batch to be served, the 
time it takes to serve the first. Define the expected wait 
time WB as a function of the demand rate, service rate, 
and the coefficient of variation. That is, we have

WB(λ,µ, C) :� 1
2λ+

λ

µ(2µ�λ)
C
2 +

1
2
E[XD]

2

�
1

2λ+
λ

µ(2µ�λ)
C
2 +

r
3 , ∀λ, C ≥ 0,µ > 0,

(12) 

where the components correspond to the three parts in 
the customer’s expected wait time, respectively. In partic
ular, the last term E[XD]=4 represents the expected extra 
delay if the courier serves the customer’s order in the sec
ond. So, half of the time, the customer must wait for the 
courier to deliver the other order first (taking E[XD]=2 
time in expectation) before being en route with the custo
mer’s order. Thus, WB(λ,µB, CB) represents a customer’s 
expected wait time when the courier is serving batch. 
Note that WB(λ,µB, CB) approaches infinity as λ goes to 
zero. The reason is that the courier never leaves the facil
ity with a single order, so a customer may need to wait 
for a long time when a second order takes some time to 
arrive. Thus, the revenue function in (2) becomes

VB(λ, WB(λ,µB, CB)) �

λ F�1 1� λ
Λr2

� �

� cWB(λ,µB, CB)

� �

,λ ∈ (0, 2µB):

(13) 

It is worth pointing out that limλ→0VB(λ, WB (λ,µB, 
CB)) ��

c
2 < 0 as the expected wait time WB(λ,µB, CB)

approaches infinity when λ approaches zero. Thus, in 

Chen and Hu: Courier Dispatch in On-Demand Delivery 
Management Science, 2024, vol. 70, no.6, pp. 3789–3807, © 2023 INFORMS 3795 



batch serving, if the vendor needs to maintain a low 
demand rate close to zero, the vendor has a negative rev
enue rate. In other words, maintaining a low demand 
rate in batch serving is unprofitable for the vendor 
because it requires a significant subsidy to customers. 
However, we only use this limit case to provide intuitions 
on a disadvantage of batch serving because, to gain prof
itability, the vendor can serve dedicated, generating non
negative revenue when the demand is very low.

4. Exogenous Demand Rate
In this section, we evaluate the performance of adopting 
the dedicated and batch deliveries when the demand is 
exogenous. The base model uses the vendor’s revenue 
as the performance measure. Although the demand rate 
is exogenous, the vendor can still decide on which deliv
ery mode to operate, coupled with the corresponding 
price, to achieve the targeted demand rate and attain a 
higher revenue. This is the case when the firm has an 
exogenously given demand segment to cover because 
of the needs of growing or penetrating a market or other 
goals that are not directly related to revenue creation 
from delivery services, for example, the need to match 
the delivery capacity with the kitchen capacity. We 
observe that serving batch can sustain a higher demand 
rate than serving dedicated delivery because, when 
comparing the load factors in (4) and (9), we have ρB <

ρD if λ > 0 is fixed. Furthermore, because both ρD and 
ρB are linearly increasing in r, we also observe that serv
ing batch allows the delivery service to handle a larger 
service region than serving dedicated delivery.

Comparing the revenue functions in (7) and (13), if the 
demand rate λ is exogenous, the delivery strategy that has 
the shorter expected wait time leads to higher revenue. 
Thus, the operating strategy with exogenous demand is 
efficiency-driven. We compare the revenues generated 
via the two delivery strategies and their corresponding 
expected wait times in the following two propositions.

Proposition 1. If the demand rate is exogenously given, 
there exists a threshold on the demand rate below which 
serving dedicated leads to a shorter expected wait time and, 
thus, higher revenue and above which serving batch leads to 
a shorter expected wait time and, thus, higher revenue.

Proposition 1 states that operating dedicated deliv
ery is better than batch when the exogenous demand 
rate is low. The intuition is that, when the demand rate 
is low, it takes a very long time to accumulate two 
orders so that the courier can make a batch delivery 
trip. Figure 3(a) provides a visual representation of the 
wait times. As an extreme case, when the demand rate 
goes to zero, the expected wait time for each customer 
approaches infinity under batch. However, adopting 
dedicated delivery leads to a much shorter expected 
wait time.

As the average time to accumulate two orders drasti
cally decreases when the demand rate increases, the 
overall expected wait time under batch also decreases. 
When the demand rate becomes very high, the in-line 
delay of customers dominates the average wait time for 
a pair of two orders to accumulate. Thus, the expected 
wait time increases with a sufficiently high demand 
rate. As mentioned, serving batch can handle a higher 
demand rate than serving dedicated because the aver
age travel distance associated with delivering an order 
is shorter. In Figure 3(a), we observe that the expected 
wait time under dedicated delivery approaches infinity 
faster when λ becomes sufficiently large than that under 
batch delivery does.

Not only is there a threshold on the demand rate that 
changes the vendor’s delivery strategy, but the next 
proposition also states that there is such a threshold on 
the size of the service region.

Proposition 2. If the demand rate is exogenously given, 
there exists a threshold on the service radius below which 
serving dedicated leads to a shorter expected wait time and, 

Figure 3. (Color online) Expected Wait Time When Serving Dedicated or Batch 

Notes. (a) r � 1. (b) λ � 1.
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thus, higher revenue and above which serving batch leads to 
a shorter expected wait time and, thus, higher revenue.

Proposition 2 states that operating dedicated delivery 
is better if the service radius is small and serving batch 
is better otherwise. This result appears to be intuitive as 
one may think that when the service radius is large, 
serving batch can reduce the total travel distance of the 
courier. However, the first moments of the lengths of 
delivery trips under both dedicated delivery and batch 
scale with r when other parameters are fixed in (3) and 
(8), respectively. Thus, one can verify that, for any ser
vice radius, compared with dedicated delivery, serving 
batch leads to a longer average total travel distance but 
a shorter distance per order, that is, E[XB]=2 ≤ E[XD] ≤

E[XB]. The main reason behind Proposition 2 is that, 
when the service radius is small, the time to accumulate 
two orders when serving batch is much longer than the 
actual travel time. On the other hand, if the service 
radius is large, the travel time becomes longer than the 
time to accumulate two orders, independent of the ser
vice radius when the demand rate is exogenous. Thus, 
serving batch is more beneficial when the service radius 
is large. Figure 3(b) provides a visual illustration of the 
expected wait time of a customer when the courier 
serves dedicated delivery and batch, respectively.

Corollary 1. Suppose the demand rate is exogenously 
given. 

i. There exist thresholds in demand rate and service radius 
(same as those in Propositions 1 and 2, respectively) such 
that below which the price is higher when using dedicated 
delivery and above which serving batch leads to a higher 
price.

ii. There exist thresholds in demand rate and service 
radius (same as those in Propositions 1 and 2, respectively) 
such that below which the expected wait time per order is 
shorter when serving dedicated and above which serving 
batch leads to a shorter expected wait time per order.

Corollary 1 extends the results in Propositions 1 and 2
to price and delivery efficiency. When the demand rate is 
exogenous, the price is nonincreasing with the wait time. 
Furthermore, as we use the expected wait time per order 
as the measure of delivery efficiency, serving batch is 
more efficient when either the demand rate is high 
enough or the service radius is large enough. Otherwise, 
dedicated delivery is more efficient as it bypasses the 
order accumulation time.

As mentioned, the case with an exogenous demand 
rate can describe the market penetration stage experi
enced by many start-up companies or applications in 
public or other business settings with rigid demand 
requirements. For example, consider a newly formed 
ghost kitchen in a mega city, which hires a given number 
of the kitchen staff (so the maximum kitchen through
put is given) at the operational level or aims to carve a 

targeted market share in the local takeaway food market 
at the tactic level. Thus, the kitchen needs to maintain a 
targeted demand rate by offering delivery promotions, 
which greatly limits its pricing decision. If the service 
area is fixed, dedicated delivery outperforms batch 
delivery if and only if the targeted demand rate is rela
tively low. Serving batch is only beneficial if a relatively 
high demand rate needs to be maintained, so temporal 
pooling can add efficiency en route without losing too 
much time accumulating orders. Further, dedicated 
delivery leads to a shorter expected wait time for custo
mers and higher revenue if the service area is relatively 
small. However, with a predetermined larger service 
area, it is better to serve batch, taking advantage of the 
efficiency en route.

We conclude this section by pointing out that, if the 
demand rate is exogenously determined, only the effec
tive demand rate λ and the service radius r impact the 
vendor’s delivery decision because we only need to 
compare the expected wait times for customers under 
the two strategies. That is, the underlying arrival rate of 
customers Λ, wait cost parameter c, and the distribution 
function F of customer valuations do not affect the deliv
ery strategy once the targeted demand rate is deter
mined. In the next section, we compare and contrast the 
results of this section to the case in which the demand 
rate λ can be optimized.

5. Endogenous Demand Rate
The previous section covers the scenario with an exoge
nous demand rate that needs to be sustained. In this sec
tion, the vendor aims at maximizing its revenue with an 
endogenized demand rate. That is, there is no exogenous 
constraint on the demand rate, and the vendor maxi
mizes its revenue by designing the optimal demand rate. 
Therefore, unlike Section 4, in which the vendor can only 
choose in which delivery mode to operate with a given 
demand rate, in this section, the vendor also chooses the 
optimal demand rate in each mode that can be achieved 
via the freedom in varying the price.

Seeking tractable analytical results, we first take 
advantage of a crowded market setting in which the 
underlying arrival rate of customers is high enough. Sup
pose the arrival rate scales with a density factor n ∈ N. As 
n increases, the arrival rate nΛ increases, meaning that 
the market gets more and more crowded. Thus, with cus
tomer valuations drawn from the CDF F (with its support 
normalized to [0, 1]), the revenue function in (2) can be 
modified to

Vn(λ, w) � λ F�1 1� λ

nΛr2

� �

� cw
� �

, λ ≥ 0: (14) 

As in this section, the vendor maximizes the revenue 
rate by choosing the demand rate; λ � 0 is not the opti
mal choice.
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Define function
V∞(λ, w) :� lim

n→∞
Vn(λ, w) � λ(1� cw), λ ≥ 0, (15) 

where the equality follows that the upper bound on cus
tomer valuations has been normalized to one. The 
expression in (15) represents the limiting revenue when 
the density factor n goes to infinity. According to (15), 
when the underlying arrival of customers goes to infin
ity, the vendor only serves those with a valuation almost 
equal to one, the upper bound. Thus, at the limit, the 
vendor’s revenue is independent of customer valuation 
distribution. In general, under a given delivery strategy, 
when the targeted demand rate λ increases, two terms 
in (14) change: (i) the base price F�1 1� λ

nΛr2

� �
needs to 

be adjusted downward to incentivize more adoption, 
and (ii) the expected wait time w increases as a result of 
a higher joining rate, and thus, more discount cw needs 
to be paid to compensate customers for the longer wait. 
The crowded market assumption assumes away the 
first effect, which is verified by Lemma 1. We relax this 
assumption in Section 6.3.

First, we present a lemma on utilizing the expression 
in (15), which greatly simplifies our analysis for a 
crowded market.

Lemma 1. Consider n ∈ N and a CDF F such that F�1 is 
Lipschitz continuous. We have

lim
n→∞

max
λ∈[0,µD)

Vn(λ, WD(λ,µD, CD))

� max
λ∈[0,µD)

V∞(λ, WD(λ,µD, CD)), (16) 

and

lim
n→∞

max
λ∈[0,2µB)

Vn(λ, WB(λ,µB, CB))

� max
λ∈[0,2µB)

V∞(λ, WB(λ,µB, CB)): (17) 

Lemma 1 implies that we can simply optimize the 
demand rates for serving dedicated and batch using the 
limiting revenue function in (15) when n approaches 
infinity. Therefore, the vendor’s demand-rate decision 
is independent of the customer valuation distribution. 
Because function V∞ has a much more concise expres
sion than the nonlimiting revenue function, it is much 
easier to analyze and use for comparing optimal solu
tions under different delivery strategies. In particular, 
the next two propositions summarize the results for a 
crowded market when the vendor can endogenize the 
demand rate.

Proposition 3. Assume a large market and suppose the 
demand rate can be endogenized. 

i. There exists a threshold c∞ on customers’ wait cost 
parameter c, below which serving batch leads to higher reve
nue and above which serving dedicated leads to higher 
revenue.

ii. As c crosses the threshold c∞ such that the optimal strat
egy switches from serving batch to serving dedicated delivery, 
the optimal demand rate has a discontinuous drop, that is, 
limc→c∞�λ

∗(c) > limc→c∞+λ
∗(c), where λ∗(c) is the optimal 

demand rate as a function of the wait cost coefficient c, and the 
corresponding optimal price has a discontinuous surge.

Proposition 3(i) states that, if the vendor can optimize 
the revenue rate by endogenizing the demand rate, 
serving dedicated is better if customers are impatient 
(i.e., c is sufficiently high). With patient customers, it is 
optimal to serve batch (i.e., c is sufficiently low). This is 
in contrast to the result in Section 4: when the demand 
rate is fixed, the wait cost parameter c has no impact on 
the vendor’s delivery decision because it does not affect 
the expected wait time. Proposition 3(ii) says that there 
is a sudden drop in the optimal demand rate and a surge 
in the optimal price when the cost of waiting crosses the 
threshold such that the optimal delivery strategy changes 
from batch to dedicated. When customers are impatient, 
the vendor should have a less crowded system with a rel
atively low demand rate, which gives an edge to dedi
cated fulfillment. If customers are patient, it is better to 
sustain a higher demand rate when implementing batch 
strategy. This shortens the time needed to accumulate 
two orders and, hence, the overall expected wait time. 
This intuition is consistent with Proposition 1 that a 
low (respectively, high) demand rate favors dedicated 
(batch).

Proposition 4. Assume a large market and suppose the 
demand rate can be endogenized. 

i. There exists a threshold r∞ on the service radius r below 
which serving batch leads to higher revenue and above which 
serving dedicated leads to higher revenue.

ii. As r crosses the threshold r∞ such that the optimal 
strategy switches from serving batch to dedicated, the optimal 
demand rate has a discontinuous drop, that is, limr→r∞�

λ(r) > limr→r∞+λ(r), where λ(r) is the optimal demand rate 
as a function of the service radius r, and the corresponding 
optimal price has a discontinuous surge.

Proposition 4 states that the vendor should serve ded
icated when the market is crowded if the service radius 
r is large enough. Instead, serving batch is optimal if the 
service radius is sufficiently small. This result contrasts 
with Proposition 2, in which the demand rate is exoge
nous. With a large service radius, the courier’s travel 
time is long under either dedicated or batch, which 
leads to a relatively long expected wait time for custo
mers. Thus, the vendor should sustain a relatively low 
demand rate. Otherwise, the compensation for the long 
wait would be significant. Again, there is a sudden drop 
in the optimal demand rate and a surge in the optimal 
price when the service radius crosses the threshold at 
which the optimal delivery strategy changes from batch 
to dedicated. Recall that serving batch is less profitable 
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than serving dedicated when the demand rate is low 
because serving batch has a much longer expected wait 
time. That is, an order may have to wait for a long time 
for another order to arrive and form a batch before it is 
en route for delivery. When the service radius is small, it 
is beneficial to operate under a relatively high demand 
rate as the average travel distance is shorter under either 
delivery strategy than with a large service radius. As 
mentioned, serving batch is more profitable for a rela
tively high demand rate.

Next, we discuss the practical implications of our 
results by discussing a few examples. During rush hour 
for a delivery system, the vendor may have far more 
potential customers than it can serve. Customers ordering 
a cup of coffee may be impatient because hot coffee will 
be cold if not delivered in time. In contrast, a grocery ven
dor or restaurant that only serves cold dishes such as 
sushi may have more patient customers. Thus, as implied 
by Proposition 3, even though the two businesses have 
the same service area, the coffee shop may prefer the dedi
cated strategy, and the grocery vendor or sushi restaurant, 
the pooling strategy. As an implication of Proposition 4, 
even if their customers have the same patience level, a res
taurant serving only a 10-block radius in Midtown Man
hattan may prefer the batch strategy, but a restaurant 
with similar characteristics delivering throughout Mid
town Manhattan may want to use the dedicated strategy 
because the latter has a much bigger service area. This 
implication may seem counterintuitive at first glance as a 
larger service area may require more emphasis on deliv
ery efficiency that the pooling strategy may achieve (as 
conveyed in Proposition 2). The key to understanding this 
seemingly counterintuitive insight is that the dedicated 
strategy is coupled with a high delivery price for a large 
service area. In contrast, the pooling strategy needs to 
keep the delivery price relatively low to compensate cus
tomers for the wait. With the profit margin being consid
ered as the demand rate is endogenized, the dedicated 
strategy becomes optimal for a large service area.

We conclude this section by summarizing the results 
and contrasting them with those when the demand rate 
is exogenously given. First, we observe that with an 
endogenous demand rate, it is optimal to serve dedi
cated if the service area is large. This result directly con
trasts with the one for an exogenous demand rate, 
where it is optimal to serve batch for a large service area. 
Second, customers’ patience level, which has no impact 
if the demand rate is exogenous, greatly affects the ven
dor’s delivery strategy for the endogenized demand 
rate. With the demand rate endogenously determined, 
the vendor should serve batch if customers are patient. 
However, if customers are impatient, serving dedicated 
generates higher revenue. Finally, for a crowded mar
ket, we can identify the optimal delivery strategy analyt
ically for the entire spectrum of customers’ patience 
level and the service area’s size, respectively.

6. Extensions
This section considers a set of extensions of our base 
model. We investigate each one and examine the robust
ness of our results and intuitions obtained from Sections 
4 and 5.

6.1. Social Welfare
Another objective of interest is the social welfare gener
ated by the delivery system. We define the social welfare 
generated per order as the summation of the vendor’s 
revenue and the customer’s profit, that is, v� cw, where 
w is the expected wait time because the price is an inter
nal transfer between the vendor and a customer. Thus, 
the social welfare generated per order is

SW(λ, w) � Λr2P(v ≥ p+ cw)E[v� cw | v ≥ p+ cw]

� Λr2
Z 1

F�1 1� λ
Λr2

� �(v� cw)dF(v): (18) 

The next proposition characterizes the impacts on the 
social welfare when the vendor focuses on market pene
tration or maximizing revenue, respectively.

Proposition 5.
i. Suppose the demand rate is exogenous. There exist 

thresholds on the demand rate and service radius below 
which serving dedicated leads to higher social welfare and 
above which serving batch leads to higher social welfare.

ii. Suppose the demand rate is endogenous and the market 
is crowded. There exist thresholds on the service radius and 
customers’ patience level below which serving batch leads to 
higher social welfare and above which serving dedicated leads 
to higher social welfare.

Essentially, we recover the results in Sections 4 and 5
in Proposition 5. Thus, our major insights in the previous 
sections still hold even when the performance measure 
changes from the vendor’s revenue to social welfare. 
When the demand rate is exogenous, the key factor in 
operations is delivery efficiency. On the other hand, 
when the demand can be endogenized, the vendor needs 
to consider the optimal demand rate to sustain, which 
tremendously impacts the system efficiency.

6.2. Contingent Policy
Another natural extension to our base model is to con
sider a contingent policy alternating between serving 
dedicated and batch depending on the queue size.6 Sup
pose the courier serves the orders in batch if and only if 
there is more than one outstanding order in the queue 
and serves dedicated otherwise (i.e., when there is a sin
gle unfilled order). At first glance, it seems this contin
gent policy takes advantage of both delivery methods 
considered in this paper. In the next proposition, we 
show its relationship with dedicated and batch delivery.

Proposition 6. For any demand rate λ > 0, the contingent 
policy leads to a shorter expected wait time for customers 
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than dedicated delivery. Furthermore, if the demand rate is 
large enough, batch delivery leads to a shorter expected wait 
time than the contingent policy, whereas if the demand rate 
is low enough, the contingent policy leads to a shorter 
expected wait time than batch delivery.

Proposition 6 states that the contingent policy always 
dominates dedicated delivery in terms of the expected 
wait time. Thus, we can conclude that the contingent 
policy indeed outperforms dedicated delivery. How
ever, the major trade-off between dedicated and batch 
delivery persists between this contingent policy and 
batch delivery. As batch serving always waits to accu
mulate two orders before dispatch, it can take advantage 
of a large demand rate setting in which the expected 
wait time to accumulate another order is shorter than a 
delivery trip with a single order. On the other hand, the 
contingent policy is better suited when the demand rate 
is relatively low, providing the flexibility to avoid long 
wait times for order accumulation.

To better analyze the performance of the contingent 
policy considered here or any other state-dependent 
delivery policy, we believe a dynamic program model is 
needed, and this is beyond the scope of this paper. We 
hope our discussion can stimulate future research in 
this direction.

6.3. General Arrival Rate
In this section, we investigate whether observations 
such as Propositions 3 and 4 still hold without the 
arrival rate being at the limit. To keep our results concise 
and informative, we assume that customers’ valuations 
are uniformly distributed on [0, 1]. That is, F(v)�v for 
v ∈ [0, 1] and F(v)�0 otherwise. Note that our result 
does not anchor on the uniform distribution assump
tion. Statements in this section can also be generalized 
to more general valuation distributions. We leave the 
detailed discussion to Online Appendix C.2.

When the courier serves dedicated, the revenue maxi
mization problem for the vendor is

max
λ∈[0,µD)

VD(λ, WD(λ,µD, CD)), (19) 

where the constraint on the demand rate λ reflects the 
load factor ρD < 1 so that the system is stable. Similarly, 
when the courier serves batch, the maximization prob
lem is

max
λ∈[0,2µB)

VB(λ, WB(λ,µB, CB)), (20) 

where functions VD and VB are defined in (7) and (13), 
respectively; the constraint on λ reflects ρB < 1. Note that 
we do not include constraint λ ≤Λr2 in either (19) or (20). 
The reason is that, for any demand rate greater than Λr2 

(which is still mathematically possible), the correspond
ing revenue function has a negative value, so it cannot be 
optimal. The next two propositions summarize the results 

when the vendor optimizes its revenue according to (19) 
and (20).

Proposition 7. Fix r,Λ > 0. Consider F(v) � v for v ∈ [0, 1]
and F(v) � 0 otherwise. With the demand rate endogenized, 
there exists a threshold cen on the customers’ wait cost parame
ter c such that, for all c ≥ cen, it is optimal to serve dedicated.

Proposition 7 complements the results in Proposition 
3, assuming that each customer’s valuation follows an 
independent standard uniform distribution. Even with 
the general arrival rates of customers, it is still optimal 
to serve dedicated when customers are impatient (i.e., c 
is large enough). Unfortunately, it is challenging to 
demonstrate analytically that it is optimal with general 
arrival rates to serve batch when customers are very 
patient unlike the case in the limiting regime. With gen
eral arrival rates, both the distribution of customers’ 
valuations and the expected wait time affect the overall 
revenue as mentioned in Section 5. The distribution of 
valuations determines the optimal base price, which, 
unlike the crowded market, is no longer independent of 
the demand. Furthermore, finite arrival rates may pre
vent the delivery system from achieving the optimal 
demand rate when customers are patient. This hurts 
serving batch specifically because the pooling strategy 
shines under a high demand rate, and its efficiency may 
not be fully exploited in this case. Moreover, the price 
compensation has to be significant to sustain a large 
demand rate with finite arrivals. However, we can still 
numerically verify that there exists a threshold on wait 
cost parameter c below which is optimal to serve batch. 
Figure 4(a) provides a visual illustration: the optimal 
revenue functions of serving dedicated and batch only 
cross once.

Proposition 8. Fix c,Λ > 0 and constant L such that 
(Λ=c3) > L (with the exact expression of constant L pro
vided in the online appendix). Consider F(v) � v for v ∈
[0, 1] and F(v) �0 otherwise. With the demand rate endo
genized, there exists a threshold ren on the service radius r 
such that, for all r ≥ ren, it is optimal to serve dedicated.

Proposition 8 extends the result in Proposition 4
when each customer’s valuation follows an indepen
dent standard uniform distribution. We show that, with 
general customer arrival rates, it is still optimal to serve 
dedicated when the service radius is large enough. We 
only require an extra minor condition that either the 
arrival rate of customers is high enough or their wait 
cost parameter is low enough. Similar to Proposition 7, 
it is very difficult to establish optimal conditions for 
serving batch. In fact, in our numerical experiments, we 
find counterexamples in which it may not be optimal to 
serve batch when the radius is small. Instead, as in the 
counterexample shown in Figure 4(b), it is only optimal 
to serve batch when the service radius is medium. For 
sufficiently small or large service radii, it is always better 
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to serve dedicated. As mentioned, serving batch has the 
edge over dedicated when the demand rate is relatively 
high. When the service radius is sufficiently small, sus
taining a high demand rate for both dedicated and batch 
is beneficial. However, because of the finite arrival rate 
of customers, the demand rate cannot reach the magni
tude at which serving batch outperforms serving dedi
cated; otherwise, the price discount to sustain a high 
demand rate for batch delivery would be too great. This 
also explains why we only observe a single threshold on 
the service radius in Proposition 4 in the large market 
limiting regime.

6.4. Batch Size Greater Than Two
In our base model, we consider batches with the size of 
two given applications in food delivery to better illus
trate the main trade-offs in our delivery policies. Here, 
we extend the model to a batch size greater than two 
and conduct numerical studies. Namely, we consider 
that each batch has a size of three or more. In Figure 
5(a), we provide the empirical cumulative distribution 
functions on the courier’s actual travel time per order 

when using batch with different sizes. As we can see, 
increasing the batch size can reduce the chance of 
experiencing long travel times per order. As a result, the 
overall service time is also reduced if we do not consider 
the time to form a batch and the in-line delay from 
queueing aspects. As we can see in Figure 5(b), just by 
adding the batch accumulation time for different sizes, 
increasing the batch size may not always be beneficial in 
improving efficiency. Even if we only consider the cour
ier’s travel time, this margin of improvement gets smal
ler as the batch size increases as shown in Figure 5(a). In 
addition, smaller batch sizes have higher chances of 
inducing a very short travel time when orders are near 
the vendor. In addition to these observations, we choose 
not to consider batch sizes greater than three for the fol
lowing reasons. First, for any batch with a size greater 
than two, we need to consider proper routing policies in 
delivery, which is not the focus of this paper. When the 
batch size equals three, in the following, we consider 
that the courier delivers orders with a purely random 
ordering. But it is observed in Figure 5(c) that the gap 
between a random fulfillment policy versus a delivery 

Figure 4. (Color online) Revenue Functions Under Dedicated and Batch Delivery 

Notes. (a) r � 0:6, r � 0:4, Λ � 25. (b) c � 0.2, Λ � 25.

Figure 5. (Color online) Empirical Cumulative Distribution Functions of Travel Time per Order with Various Batch Sizes 

(a) (b) (c)

Notes. (a) r � 1. (b) With order accumulation time r � 1, λ � 1:5. (c) Random versus shortest path r � 1.
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policy based on the shortest path gets larger when the 
batch size increases. Second, as the batch size increases, 
it may be in the vendor’s best interest to consider contin
gent policies as in Section 6.2, which we leave as a future 
research direction as they should be analyzed using 
nonstationary models. We acknowledge the potential 
shortcomings of our current approach for large batch 
sizes.

We analyze this system using an Erlang-3 arrival pro
cess. An arriving order does not enter the dispatch 
queue until a batch of three is formed. Then, batches 
have the arrival rate of λ=3 with the interbatch time fol
lowing the Erlang-3 distribution. Similar to the deriva
tions in (8), we have

E[X3B] �

Z

A

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x+ y� 2 ffiffiffiffiffixy√ cos(θ)
q

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y+ z� 2 ffiffiffiffiffiyz√ cos(φ)
q

+
ffiffiffi
x
√
+

ffiffiffi
z
√
�

1
π2 dA,

E[X2
3B] �

Z

A

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x+ y� 2 ffiffiffiffiffixy√ cos(θ)
q

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y+ z� 2 ffiffiffiffiffiyz√ cos(φ)
q

+
ffiffiffi
x
√
+

ffiffiffi
z
√
�2 1
π2 dA,

(21) 

where A � [0, 1]3 × [0,π]2 and dA=π2 is the measure of 
set A under the uniform distribution. Using these first 
and second moments, we can get the service rate and 
load factor as µ3B � 1=E[X3B] and ρ3B � λ=(3µ3B): Fur
thermore, the coefficient of variation is C3B � 1=3 +
[E[X2

3B]� (E[X3B]
2
)]=(E[X3B])

2
: As a result, the exp

ected wait time can be calculated using

W3B(λ,µ, C) � 1
λ
+

λ

µ(3µ�λ)
C
2 +

1
3

4
3+

128
45π

� �

r, (22) 

where the first term is the average wait time an order 
has to wait to form a batch (an order needs to wait for 
zero, one, or two more orders with equal probability to 
form a batch), the second term is the in-line delay, and 
the last term is the extra delay if another order(s) in the 
batch needs to be delivered first. Then, W3B(λ,µ3B, C3B)

is the expected wait time.
In our numerical calculations, as shown in Figure 6, we 

always observe that there are single thresholds in the ser
vice radius r and wait cost c, respectively, such that below 
which the vendor should serve with batches and above 
which dedicated delivery generates more revenue. This 
is consistent with our findings in the case with a batch 
size of two. Thus, our main insights are not limited by the 
simplification of considering batches with the size of two.

Consistent with Section 6.3, for general arrival rates, 
when the radius is large enough, the vendor should use 
dedicated delivery. We can again find numerical exam
ples such that two thresholds exist on the service radius. 
Between these thresholds, serving batch outperforms 

dedicated delivery in terms of revenue maximization. 
However, we can also find extreme parameters such 
that batch delivery is completely dominated by dedi
cated delivery for all service radii. We believe that the 
possible inferior performance of batch delivery with a 
size greater than two is contributed to the random rout
ing policy and lack of contingent policies as mentioned 
earlier, and they are beyond the scope of this paper and 
left for future research.

6.5. Circular Service Area
In this section, we consider a service area that only con
stitutes the edge of the disk, that is, the circumference of 
the circle. That is, we still have the facility located at the 
center of the disk, but orders are only coming from loca
tions that are uniformly distributed on the edge of the 
disk with a radius r. This type of city structure has been 
examined by many researchers before, most notably by 
Salop (1979). The so-called circular city model has a lot 
of practical implications because many major cities have 
this kind of circular or ring structure (e.g., Beijing and 
Moscow). These cities have massive business areas in 
the inner rings with residential areas surrounding the 
city center in an outer ring. The circular city model also 
captures scenarios in which the storage warehouse is in 
a relatively remote area, and couriers have to travel long 
distances in each direction to reach the nearest residen
tial area. Furthermore, it also serves as an extreme case 
in which customers’ locations are not uniformly distrib
uted inside the service area.

As in the previous sections, we propose an appropri
ate queueing system and analyze the delivery strate
gies. When serving dedicated, the service time for each 
order is deterministic because the time travel from the 
center to any point on the edge of the circle is fixed. 
Thus, this delivery system can be treated as an M=D=1 
system under dedicated delivery. We still denote the 
demand rate for this system by λ under the arrival rate 
Λr2. Then, this M=D=1 queue has the service rate and 
load factor as µD, C � 1=(2r), and ρD, C � λ=µD, C � 2λr, 
respectively, in which the subscript represents dedicated 
in a circular service area. The wait time for a customer in 
this system is simply characterized by function WD(λ, 
µD, C, CD, C) in (5) with CD, C � 1 because the arrival pro
cess is Poisson and the service process is deterministic. 
Furthermore, the revenue function can be written as

VD(λ, WD(λ,µD, C, CD, C))

� λ F�1 1� λ
Λr2

� �

� cWD(λ,µD, C, CD, C)

� �

:

Next, we consider serving batch in a circular service 
area with radius r. Again, the arrival process has the 
interarrival time following an Erlang-2 distribution. The 
service time needs to include three parts: first, the travel 
time from the center of the circle to a random point on 
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its edge; second, the travel time between two uniformly 
distributed points on the edge of the circle; and finally, 
the travel time from the edge of the circle back to the cen
ter. Denote by random variable Y the distance a courier 
needs to travel per trip. Then, we have random variable 
Y following a uniform distribution on [2r, 2r+πr] with 
E[Y] � 2r+πr=2, and σ2

Y � (πr)2=12: Thus, this queue
ing system has the service rate and load factor as µB, C �

1=E[Y] � 1=(2r+πr=2), and ρB, C � λ=(2µB, C) � λr(4+π)=4, 
respectively, in which the subscript represents batch in 
the circular service area.

Next, again, we use Kingman’s formula to approxi
mate the average wait time for each customer. The aver
age wait time for each order follows from WB(λ,µB, C, 
CB, C)with CB, C � 1=2+ σ2

Y=(E[Y])
2
� 1=2+π2=[3(4+π)2]:

Furthermore, the revenue function in (13) incorporates 
the adjusted wait time as
VB(λ, WB(λ,µB, C, CB, C))

� λ F�1 1� λ
Λr2

� �

� cWB(λ,µB, C, CB, C)

� �

, λ ∈ (0, 2µB, C):

We find that all the major results in Sections 4 and 5 still 
hold even if we change the service area from a disk to a 
circle. We relegate the formal statements and detailed 
derivations to Online Appendix C.3 to avoid repetition. 
Because of the change in the city’s geometry, no orders 
are coming from areas inside the disk. Thus, the courier 
must always travel a fair distance before reaching the 
delivery area (the outer ring). As a result, the thresholds 
for switching delivery strategy also change, though the 
threshold structure remains. The next proposition pro
vides the relationship between thresholds in a circular 
city and those in the base model.

Proposition 9. Assume a crowded market and suppose 
that the demand rate can be endogenized. 

i. In a circular service area, there exist thresholds ĉ∞ and 
r̂∞ such that the vendor should serve batch if the wait cost 

and radius parameters c and r fall below the thresholds, 
respectively. Otherwise, the vendor should serve dedicated.

ii. We have
c∞ > ĉ∞, and r∞ > r̂∞, (23) 

where c∞ and r∞ are thresholds in Propositions 3 and 4, 
respectively, for the counterpart of the base model serving the 
entire disk.

Proposition 9 shows that both thresholds on the wait 
cost coefficient and service radius are lower if orders 
only come from the edge of the disk. The reason is that 
the courier needs to travel to the edge of the disk before 
benefiting from the pooling effect of batch delivery. 
Thus, serving dedicated has more advantages in this set
ting. This implies that dedicated delivery more likely is 
beneficial when the orders tend to be distributed on the 
outskirts of a service region than when they have a 
more uniform distribution inside the region.

6.6. Distance-Dependent Wait Time
Now, we consider an extension to the base model in 
which customers are sensitive not only to the in-line 
delay, but also to the courier’s actual travel time. Be
cause customers take the courier’s traveling time into 
their wait time estimation, the order distribution on the 
disk is no longer uniform because customers from dif
ferent locations may have different expected wait times.

Proposition 10. With endogenized demand under a single 
price, the demand rate is nonincreasing with respect to the 
distance from the hub at the origin of the disk. Furthermore, 
the optimal pricing strategy may lead to a shrinkage in the 
service area. In other words, the vendor may abandon custo
mers who live far away from the hub on purpose.

Proposition 10 shows that, because of customers’ sensi
tivity to the courier’s traveling time, their demand is not 
uniformly distributed over the disk. Instead, customers 

Figure 6. (Color online) Revenue Functions When Serving Dedicated vs. Batch of Size Three Under a Large Market 

Notes. (a) c � 0.1. (b) r � 1.
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located further away from the hub order less than those 
who are closer to the hub. Further, when the service 
region is too large to begin with, because of a single price 
imposed over the entire disk, it may not be in the ven
dor’s best interest to serve those who are too far away 
from the hub, resulting in that the service region is effec
tively shrunk to a smaller disk.

Unfortunately, it is difficult to provide any further ana
lytical characterization of the delivery systems under this 
setting. Even numerical analysis or simulation is chal
lenging to conduct under this setting because the 
demand rate is a market equilibrium outcome.7 Aiming 
to get more analytical and numerical characterizations of 
the delivery systems, we consider a simplified service 
region.

Consider a service region in which customers’ loca
tions are uniformly distributed on two rings, an inner 
ring with radius r and an outer ring with radius r > r. 
The vendor is still located at the center of the rings. 
Thus, the courier needs to travel a longer distance serv
ing customers who are located on the outer ring. We 
leave the detailed derivations under both dedicated and 
batch services to Online Appendix D as they are very 
cumbersome.

In Online Appendix D, we first analytically recover 
the major insights under exogenous demand and then 
conduct numerical analysis with endogenous demand 
under the simplified two-rings service region. Because 
the service region is separated into two rings, exogenous 
demands can potentially become combinatorial and, 
thus, we only focus on a single exogenous demand rate 
on both rings instead. We leave the formal statements 
to Online Appendix D. For endogenous demand, we 
compare the dedicated and batch service systems and 
numerically recover the insights in Section 5. In partic
ular, when fixing the ratio between the radii of the 
rings, we observe a threshold on rings’ radius above 

which serving dedicated delivery is better, as shown in 
Figure 7(a). We also observe that there is still a threshold 
on the wait cost coefficient above which the vendor 
should use dedicated delivery and below which the ven
dor should use batch delivery as shown in Figure 7(b).

6.7. Multiple Couriers
So far, we have focused on cases with a single courier. 
Suppose the vendor hires k couriers to serve the disk- 
shaped area at the same time. We reassess the perfor
mance of dedicated versus batch delivery.

First, note that having k couriers does not change 
the service process for each courier individually. Thus, 
when serving dedicated, the arrival process is still 
Poisson, and the service rate remains µD for each cou
rier. However, the load factor is different because we 
have k couriers instead of one. That is, we have ρD, k �

λ=(kµD) � 4λr=(3k), where the subscript of the load 
factor represents serving dedicated with k couriers. 
Thus, this service system can be analyzed through an 
M/G/k queue. To obtain a tractable expected wait 
time, we utilize two approximations together. Recall 
that the summation of coefficients of variation of the 
arrival and service processes is CD � 9=8. We approxi
mate the in-line delay of an M/G/k queue as

Wq{M=G=k} ≈ CD

2 Wq{M=M=k} ≈ CD

2
ρ
ffiffiffiffiffiffiffiffiffiffi
2(k+1)
√

D, k
λ(1� ρD, k)

, (24) 

where we first use an M/M/k queue with the same 
input to approximate the in-line delay of the M/G/k 
counterpart (see, e.g., Gross et al. 2008) and then use a 
well-studied approximation for the M/M/k queue itself 
(see, e.g., Sakasegawa 1977). This approximation is con
sistent with recent studies on on-demand economy; see, 
for example, Bai et al. (2019), Taylor (2018), and Benjaa
far et al. (2022). As the result of such an approximation, 

Figure 7. (Color online) Revenue Functions Under Dedicated and Batch Delivery 

Notes. (a) r=r � 2, Λ � 25. (b) c � 0.2, Λ � 25.
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the expected wait time for each customer is

WD, k(λ) ≈
CD

2
ρ
ffiffiffiffiffiffiffiffiffiffi
2(k+1)
√

D, k
λ(1� ρD, k)

�
CD

2(kµD�λ)

λ

kµD

� �
ffiffiffiffiffiffiffiffiffiffi
2(k+1)
√

�1
:

(25) 

After these setups, the revenue function is simply V(λ, 
WF, k(λ)).

Next, we consider serving batch. Similar to serving 
dedicated, each courier’s service rate µB �

45π
4r(32+15π)

remains the same, but the load factor needs to take k 
couriers into consideration. That is, we have ρB, k �

λ
2kµB
�

2λr(32+15π)
45kπ : Using the same approximation method as in 

(24), which can be applied to G/G/k systems as well, the 
expected wait time for each customer is

WB, k(λ) ≈
1

2λ+
CB

2(2kµB�λ)

λ

2kµB

� �
ffiffiffiffiffiffiffiffiffiffi
2(k+1)
√

�1
+

r
3 : (26) 

It is worth pointing out that, under this approximation 
scheme, the queueing systems reduce to those in Section 
3 in which k � 1 for both dedicated and batch.

With multiple couriers, we can show analytically that 
there is a threshold on the exogenous demand rate 
below which serving dedicated generates higher reve
nue and above which serving batch is more profitable. 
This result is consistent with Proposition 1. If the vendor 
can endogenize the demand, there is still a threshold on 
customers’ wait cost parameter above which it is optimal 
to serve dedicated, consistent with Proposition 7. We 
leave the formal statements of these analytical results to 
Online Appendix C.4. Other results in Sections 4 and 5, 
such as Propositions 2 and 8, are very difficult to prove 
analytically with multiple couriers. However, we still 
observe these results in our numerical experiments.

Figure 8(a) shows the relationship between the exp
ected wait time when serving dedicated and batch. 

Similar to Proposition 2(i) and Figure 3(a), there appears 
to be a threshold on the service radius r below which 
serving dedicated leads to a shorter wait time than serv
ing batch when the demand rate λ is fixed and above 
which it is the other way around. Furthermore, Figure 
8(b) gives an example of the revenue function with ser
vice radius. As we can see, serving dedicated still out
performs batch when the service radius is large enough, 
just as in Proposition 8 in Section 5.

7. Conclusion
This paper compares and contrasts the fundamentals of 
using dedicated versus pooling delivery strategy. We 
model the two strategies as queueing systems serving 
dedicated and batch, respectively. In addition, we incor
porate a spatial feature in these systems using a general
ized circular city model. This spatial feature makes our 
service system relevant to the daily operations of the 
on-demand delivery industry. We highlight the scenarios 
in which dedicated or pooling delivery strategy is opti
mal, and our results remain robust in various extensions.

Our research contributes to the literature on innova
tive operations and smart cities. One of the major mana
gerial insights is that, contrary to the common belief, 
temporal pooling, such as serving batch, may not always 
increase delivery efficiency in a large service area and 
lead to higher revenue for the vendor. When the vendor 
can endogenize the demand, a vendor should only use 
pooling when it can profitably sustain a relatively large 
demand rate. With impatient customers or a large ser
vice area, the vendor should use the dedicated strategy 
but charge a relatively high delivery price. We also con
tribute to the spatial queueing literature by providing an 
analytically tractable framework using a generalized cir
cular city model, which is relevant to many practical 
applications. Our model accurately depicts delivery sys
tems with a small number of orders per trip.

Figure 8. (Color online) Expected Wait Time and Revenue Functions with Multiple Couriers 

Notes. (a) k � 5, and λ � 0:5. (b) k � 3, c � 0.1, and Λ � 10.
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This paper can shed light on operational policies for 
on-demand delivery services in the emerging markets 
such as food or grocery delivery for which dedicated 
couriers or robots/drones are deployed to make de
liveries, for warehouses where humans or robots/pods 
are pickers, and for an on-demand transportation service 
such as a micro-transit service from/to a subway station. 
Although our focus is mainly on investigating the benefit 
of temporal and spatial pooling in delivery, there are 
many other interesting research questions in the delivery 
business. Our modeling framework can potentially serve 
as a building block for future research in areas such as but 
not limited to contracting and compensation for couriers 
and incentive management with freelancers, for example, 
by endogenizing the number of dedicated couriers or 
freelancers in a shift through a wage decision or a payout 
contract, which is currently missing in the model.

Our work is not without limitations. First, given a 
general arrival rate, for some parameters, for example, 
when the wait cost parameter or the service radius has a 
sufficiently low value, we cannot obtain an unambigu
ous preference for the dedicated or pooling delivery 
strategy. For these parameters and a general valuation 
distribution, one needs to resort to a numerical compari
son. Second, the empirical demand distribution is most 
likely not a uniform distribution. A data-driven approach 
needs to be adopted to prescribe the best strategy for a 
specific practical setting. Third, we assume that the cour
iers are employees of the vendor, and their delivery speed 
is independent of their workload. As mentioned, the com
pensation and behavioral issues for couriers may also 
need to be examined. Finally, we assume the firm com
mits to either the dedicated or pooling strategy as the 
resulting pricing and response time could be easily con
veyed to consumers. In practice, the firm can improve its 
performance by making optimal contingent decisions 
about dispatching and routing depending on the realized 
locations of outstanding orders, which are outside the 
scope of our stylized model.
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Endnotes
1 Gorillas employs a fleet of full-time bike couriers; see https:// 
www.businessinsider.com/ultra-fast-grocery-delivery-startup-gor 
illas-to-launch-in-us-at-end-of-may-2021-5 and https://gorillas.io/ 
en-us/ride-with-us. Gopuff hires deliver workers in advance to 
staff multihour shifts; see https://www.indeed.com/cmp/Gopuff/ 
faq/working-hours.
2 See also https://gadallon.substack.com/p/premature-scaling-will- 
gorillas-go.
3 We can also assume that the arrival rate scales with the circumfer
ence of the circle, which is linear in r. That is, the arrival rate is Λr. 
Our results still hold.

4 According to an internal study by one of the largest delivery plat
forms in China, their couriers carry fewer than two orders per trip 
on average; see Figure 1.
5 Note that the only approximation in Equation (8) is on the coeffi
cient in the second moment, which is computed accurately using 
numerical integration.
6 In Online Appendix E, we also consider a contingent policy based 
on order locations.
7 Without analytical characterizations on the service system, such as 
the service rate and coefficient of variations, one needs to search for 
the equilibrium demand distribution over the disk. This process 
involves searching for an invariant function, which is very challeng
ing computationally.
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