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E-Companion to Model-Free Assortment Pricing with
Transaction Data

Ningyuan Chen, Andre A. Cire, Ming Hu, Saman Lagzi

EC.1. Additional Tables and Figures

Table EC.1 shows the percentage performance ratio of the conservative, LP relaxation, and cut-off

pricing as explained in Section 7.1. All the instances were solved to optimality using Gurobi 9.0.0

in Python with a desktop computer (Intel Core i7-8700, 3.2 GHz). Similarly, Table EC.2 portrays

the average performance guarantee of conservative and cut-off pricing approximation algorithms.

Table EC.1 The relative performance of the approximation

strategies. Standard errors are reported in parentheses.

Performance relative to the optimal solution

(m,n) Conservative LP Relaxation Cut-off

(50,10) 12.5% (0.6%) 79.8% (0.6%) 97.6% (0.1%)
(50,15) 10.8% (0.4%) 73.3% (0.6%) 97.0% (0.1%)
(50,20) 9.1% (0.4%) 70.4% (0.5%) 96.5% (0.1%)
(50,25) 9.1% (0.5%) 72.1% (0.5%) 96.0% (0.1%)

(100,10) 7.4% (0.3%) 82.4% (0.4%) 99.0% (0.1%)
(150,10) 5.3% (0.2%) 85.0% (0.3%) 99.3% (0.1%)
(200,10) 4.4% (0.2%) 85.4% (0.3%) 99.6% (0.1%)

Table EC.2 The performance guarantee of

approximation strategies. Standard errors are

reported in parentheses.

Theoretical performance guarantee

(m,n) Conservative Cut-off

(50,10) 2.2% (0.2%) 50.1% (3.8%)
(50,15) 1.9% (0.1%) 49.5% (3.8%)
(50,20) 1.7% (0.1%) 49.7% (4.0%)
(50,25) 1.9% (0.2%) 50.4% (3.7%)

(100,10) 1.0% (0.1%) 49.7% (2.9%)
(150,10) 0.6% (0.0%) 50.1% (2.5%)
(200,10) 0.5% (0.0%) 49.9% (2.1%)

Table EC.3 contains the calculated performance bound of cut-off pricing using the 31 product

categories in the IRI academic data set. We consider the ratios of median purchase price to mean

purchase price and
¯
P/P̄ after proper data cleaning. We note that

¯
P/P̄ could be very small in

many categories, but this is primarily due to data entry errors. For example, some products are
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Figure EC.1 The sensitivity of the performance of the data-driven optimal pricing (OP-MIP) and cut-off

pricing relative to the optimal MNL prices estimated from the data with 100 historical customers. The difference

in the revenues is converted to percentage by dividing it by the optimal revenue of the model and then averaged.
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Figure EC.2 The sensitivity of the performance of the data-driven optimal pricing (OP-MIP) and cut-off

pricing relative to the optimal MNL prices estimated from the data with 50 historical customers. The data is

generated from a mixed logit model.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

Standard deviation of historical price distribution

A
v
g.

re
ve

n
u

e
in

th
e

m
ix

ed
lo

gi
t

m
o
d

el

Data-driven optimal pricing for low utility
Cut-off pricing for low utility

MNL Estimated pricing for low utility
Data-driven optimal pricing for high utility

Cut-off pricing for high utility
MNL Estimated pricing for high utility



e-companion to Chen et al.: Model-free Assortment Pricing ec3

Table EC.3 The implied performance guarantee for cut-off pricing using the IRI data.

Ratios

Category Median/Mean
¯
P/P̄ Implied performance guarantee

Beer 0.91 0.025 45.7%
Blades 0.772 0.02 38.6%
Carbonated beverages 0.811 0.026 40.6%
Cigarettes 0.466 0.028 23.3%
Coffee 0.98 0.033 49.0%
Cold cereals 0.986 0.069 49.3%
Deodorants 0.97 0.072 48.5%
Dippers 0.769 0.07 38.5%
Facial tissue 0.812 0.04 40.6%
Frozen dinners/entrees 0.842 0.023 42.1%
Frozen pizzas 0.919 0.053 46.0%
Household cleaner 0.964 0.033 48.2%
Hotdogs 0.989 0.037 49.5%
Laundry detergent 0.914 0.031 45.7%
Margarine/spreads/butter blends 0.924 0.07 46.2%
Mayonnaise 0.951 0.09 47.5%
Milk 1.01 0.05 50.5%
Mustard & ketchup 0.953 0.063 47.7%
Paper towels 0.831 0.03 41.5%
Peanut butter 0.861 0.046 43.1%
Razors 1.02 0.145 51.1%
Photography supplies 0.92 0.057 46.0%
Salty snacks 0.982 0.023 49.0%
Shampoo 0.891 0.023 44.5%
Soup 0.942 0.021 47.1%
Spaghetti/Italian sauce 0.887 0.072 44.4%
Sugar substitutes 0.91 0.058 45.5%
Toilet tissue 0.935 0.032 46.8%
Toothbrush 0.733 0.01 36.7%
Toothpaste 0.831 0.013 41.6%
Yogurt 0.711 0.037 35.5%

purchased at $0.01. We remove the top and bottom 0.001 price quantiles and present the ratio in

Table EC.3. The implied performance guarantee column in Table EC.3 contains the implied theo-

retical performance guarantee by these ratios for each category, obtained through Proposition 10.

We also study the sensitivity of the performance of our data-driven model-free optimal and cut-

off pricing algorithms with respect to the dispersion of prices in the data. To that avail, we first

revisit the low-utility and high-utility experiments with a limited number of customers, explored in

Sections 7.2. For the high-utility experiments, in each of the 200 instances, {αj}10
j=1 are independent

and drawn uniformly at random from the interval [1,3], while historical prices Pij are drawn

uniformly at random from the interval 7±
√

3σ, where σ is the standard deviation of historical

prices. In the low-utility experiment, in each of the 200 instances, {αj}10
j=1 are independent and

drawn uniformly at random from the interval [−2,0] and historical prices are drawn uniformly at

random from the interval 3.5±
√

3σ.
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Figure EC.3 The sensitivity of the performance of the data-driven cut-off pricing relative to the optimal MNL

prices estimated from censored data with 360 historical customers. The difference in the revenues is converted to

percentage by dividing it by the optimal revenue of the model and then averaged.
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Figure EC.1 portrays our results for both experiments when the number of historical customers

is fixed at 100. We observe that in both experiments, the performance of the model-free method-

ologies compared to the estimated MNL optimal prices deteriorate with the increase of σ. This

is intuitive because given that the average historical prices are kept fixed, with the increase of

σ (while customers make decisions based on the MNL model), more purchases happen at lower

prices, making the model-free approaches more conservative. In the meantime, due to a higher

price dispersion in the historical data, the MNL estimation which is correctly specified improves,

leading to better performing prices.

We further study the situation where the MNL model is misspecified and revisit the low-utility

and high-utility experiments in Section 7.3. Here, like before, we set β1 = 0.5 and β2 = 2, while

in each of the 200 instances, we randomly draw (α1j, α2j) independently from [1,3] (for high-

utility) and [−2,0] (for low-utility). In the high-utility experiments, historical prices Pij are drawn

uniformly at random from the interval 7±
√

3σ, while in the low-utility experiment, they are drawn

uniformly at random from the interval 3.5±
√

3σ.

Figure EC.2 displays our results for both experiments when the number of historical customers is

fixed at 50 and the customers in the historical data made decisions based on the mixed logit model

described in Section 7.3. We observe that like before, with the increase of σ the performances of the

model-free approach slightly deteriorate, as there will be a larger portion of low price purchases in

the historical data which tend to be reflected in the model-free pricing. However, what is interesting
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is that the performance of the estimated MNL optimal prices does not improve with the increase

of σ, which can be attributed to the fact that the MNL model is misspecified here.

Finally, Figure EC.3 shows our results for the case when the data does not record all the non-

purchasing customers. In other words, the data is censored and we revisit the low-utility and

high-utility experiments with a limited number of customers, explored in Sections 7.2. As it was

mentioned in Remark 1, censoring does not affect the prices prescribed by our data-driven method-

ologies, however, it can significantly affect the estimated MNL optimal prices, even when the the

MNL choice model is correctly specified. The result in Figure EC.3 suggests that for a relatively

large number of historical customers, 360, in the high-utility experiment from Section 7.3, as long

as only 40% or less of the non-purchasing customers are recorded in the data, the data-driven prices

prescribed by cut-off pricing outperform estimated MNL optimal prices in terms of the expected

revenue. We note that in the low-utility experiment from Section 7.3, this threshold on the fraction

of recorded non-purchase customers becomes 60%.

EC.2. Proofs

Proof of Proposition 1. By Proposition 7, the optimal price output by our framework (OP-MIP)

satisfies p∗ ∈ arg maxp≥0 p
∑m

i=1 I(Pi1 ≥ p). Equivalently, we may write p∗ ∈ arg maxp≥0 p
∑m
i=1 I(Pi1≥p)

m
.

By the Law of Large Numbers, we have limm→∞

∑m
i=1 I(Pi1≥p)

m
= P(Pi1 ≥ p) =

∫ +∞
p

(1−F (x))dG(x).

Therefore,

p∗ ∈ arg max
p≥0

lim
m→∞

p

∑m

i=1 I(Pi1 ≥ p)
m

= arg max
p≥0

p

∫ +∞

p

g(x)(1−F (x))dx.

To prove the last part of Proposition 1, we replace g(x) in (3) with an appropriate scaling of

f(x)/(1−F (x)) using Λ> 0. Hence, when g(p)∝ f(p)/(1−F (p)),

arg max
p≥0

p

∫ +∞

p

g(x)(1−F (x))dx= arg max
p≥0

Λp

∫ +∞

p

f(p)dx= arg max
p≥0

R(p).

�

Proof of Theorem 1. The proof will proceed in several steps.

1. We will show that the solution to (4) on [0, a] with p
∫ a
p

(1−F (x))dx> 0 is the unique maxi-

mizer of (3), p∗.

2. We will show that we can assume without any loss of generality that a= 1.

3. We will show that if p∗ ≤ p̂ then R(p∗)
R(p̂)

≥ 1
2

and for any ε > 0 construct an example such that

R(p∗)
R(p̂)

≤ 1
2

+ ε.

4. We will show that if p∗ > p̂ then R(p∗)
R(p̂)

≥ p̂
p∗ and for any ε > 0 construct an example such that

R(p∗)
R(p̂)

≤ p̂1−ε

p∗1−ε .
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Step 1. When g(p) = 1/b, p∗ = arg maxp≥0 p
∫ b
p
g(x)(1−F (x))dx= arg maxp≥0 p

∫ a
p

1
b
(1−F (x))dx.

Thus

p∗ = arg max
p≥0

p

∫ a

p

(1−F (x))dx= arg max
p≥0

pS(p). (EC.1)

Note that the function H(p), pS(p) on the right hand side of (EC.1) is not zero everywhere and

is a continuous, bounded and differentiable function, defined over the compact region of [0, a]. On

the two ends, it is easy to see 0S(0) = aS(a) = 0. Therefore, the maximizer of H(p) must be in the

interior of [0, a] and satisfy the first-order condition for (EC.1):∫ a

p∗
(1−F (x))dx− p∗(1−F (p∗)) = S(p∗)−R(p∗) = 0.

This proves that p∗ must satisfy (4).

Step 2. Assume a 6= 1. Then, we could define y = p
a
, y ∈ [0,1] and define a new distribution

F̄ (y) = F (ay). We have

R̄(y) = y(1− F̄ (y)) =
a

a
y(1−F (ay)) =

1

a
p(1−F (p)) =

1

a
R(p).

Moreover,

S̄(y) =

∫ 1

y

(1− F̄ (x))dx=
a

a

∫ 1

y

(1−F (ax))dx=
a

a

∫ a

ay

1

a
(1−F (z))dz =

1

a

∫ a

p

(1−F (z))dz =
1

a
S(p).

Where the third equation comes from a change of variable in the integral as z = ax. Hence, if a 6= 1,

we can simply rescale the domain of customer valuations by a and define a new distribution over

the new domain. Thus, we can assume a= 1.

Step 3. Assume p∗ ≤ p̂. Notice that

p(1−F (p)) +

∫ 1

p

(1−F (x))dx (EC.2)

is decreasing in p since(
p(1−F (p)) +

∫ 1

p

(1−F (x))dx

)′
= 1−F (p)− pf(p)− 1 +F (p) =−pf(p)≤ 0.

Thus, by assumption of p∗ ≤ p̂, we have

R(p̂)≤ p̂(1−F (p̂))+

∫ 1

p̂

(1−F (x))dx≤ p∗(1−F (p∗))+

∫ 1

p∗
(1−F (x))dx= 2p∗(1−F (p∗)) = 2R(p∗).

The first inequality comes from the fact that
∫ 1

p̂
(1− F (x))dx ≥ 0. The second inequality follows

since (EC.2) is decreasing in p and p∗ ≤ p̂. The prior to the last equality comes from the fact that

p∗ must satisfy (4).
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To prove that this bound is tight, assume 0< ε1 < ε that is sufficiently small and consider the

following distribution F such that:

F (p) =

{
0, if 0≤ p≤ 1− ε1,
1
ε1

(p− (1− ε1)), if 1− ε1 < p≤ 1.

This leads to:

R(p) =

{
p, if 0≤ p≤ 1− ε1,
p(1−p)
ε1

, if 1− ε1 < p≤ 1.
S(p) =

{
1− p− ε1

2
, if 0≤ p≤ 1− ε1,

(1−p)2
2ε1

, if 1− ε1 < p≤ 1.

To prove tightness, we need to show that F is a proper CDF that satisfies Assumptions 1, 2

and 3. It is easy to check that F (p) is a proper CDF as it is nonnegative and increasing in p while

F (0) = 0 and F (1) = 1, and moreover, for any b≥ 1, Assumptions 1 and 2 will be satisfied.

Hence, it remains to show that the bound is tight for F and that F satisfies Assumption 3. Notice

that for all 0≤ p≤ 1− ε1, R′(p) = (p)′ = 1> 0 and S′(p) =−1< 0. Meanwhile, S(0)>R(0) = 0 and

ε1
2

= S(1− ε1)<R(1− ε1) = 1− ε1

when ε1 < 2/3. Hence, there is a single point on [0,1− ε1] that can satisfy (4). In fact, this point

can be calculated as S( 1
2
− ε1

4
) =R( 1

2
− ε1

4
). Furthermore, S(1) =R(1) = 0 and for all 1− ε1 ≤ p≤ 1,

if ε1 < 1/3,

R′(p) = (p− 1

ε1
(p2− (p− pε1)))′ = 1− 2p− 1 + ε1

ε1
<S′(p) =

p− 1 + ε1
ε1

− 1≤ 0.

Hence S(p) and R(p) cannot cross at any interior point on [1− ε1,1] when ε1 < 1/3. Thus the only

candidate for p∗ if ε1 is sufficiently small is 1
2
− ε1

4
(and clearly ( 1

2
− ε1

4
)
∫ 1

( 1
2−

ε1
4 )

(
1− F (z)

)
dz > 0)

and it is the unique maximizer of p
∫ 1

p
(1−F (z))dz (we showed this in Step 1.).

Moreover,R( 1
2
− ε1

4
) = 1

2
− ε1

4
while if ε1 ≤ 1

3
, p̂= 1−ε1 andR(p̂) = 1−ε1, resulting inR(p∗)/R(p̂) =

1
2−

ε1
4

1−ε1
≤ 1

2
+ ε for ε1 sufficiently small, thus proving the bound is tight (while R(p) is unimodal and

has a unique maximizer p̂). Hence, we have shown the bound is tight for F and that F satisfies

Assumption 3.

Step 4. Assume p∗ > p̂. Notice that by assumption, p∗ is the first and only point on [0,1] that

satisfies (4) with p∗
∫ 1

p∗(1−F (x))dx> 0. Moreover since p∗ > p̂,∫ 1

p̂

(1−F (z))dz ≥
∫ 1

p∗
(1−F (z))dz,

while p̂ > 0. Hence p̂
∫ 1

p̂
(1−F (x))dx> 0 and by assumption we have R(p̂) 6= S(p̂). Therefore, since∫ 1

0

(1−F (z))dz > 0(1−F (0)),
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then we have that

R(p̂)<

∫ 1

p̂

(1−F (z))dz =
p̂

p̂

∫ 1

p̂

(1−F (z))dz <
p∗

p̂

∫ 1

p∗
(1−F (z))dz =

p∗

p̂
R(p∗),

where the last inequality follows from Assumption 3 and that p∗ is the unique maximizer of (3)

and the last equality comes from the fact that p∗ must satisfy (4). Thus,

R(p∗)

R(p̂)
≥ p̂

p∗
.

It remains to be shown that the bound is tight when p∗ > p̂. Consider any 0 < x1 < x2 < 1/e.

Notice that by Assumption 3, R(p) is unimodal on [0,1]. Moreover, by assumption we have p∗ > p̂,

hence, for all x> p∗, x(1−F (x))≤ p∗(1−F (p∗)). Therefore, for all x> p∗, 1−F (x)≤ R(p∗)
x

. Thus,

we claim p∗ < 1
e
. This is because,

R(p∗) =

∫ 1

p∗
(1−F (z))dz <

∫ 1

p∗

R(p∗)

z
dz =R(p∗) log(

1

p∗
),

where the first equality comes from the fact that p∗ must satisfy (4) while the strict inequality

follows form the fact that F is assumed to be continuous and F (1) = 0, proving that p∗ < 1
e
.

Let x̄ = ex2, we know x̄ < 1. Assume 0 < ε2 < ε is sufficiently small and consider the following

distribution F such that:

1−F (p) =



1−
1− δ

x
2−ε2
1
ε2

p, if 0≤ p≤ ε2,
δ

x
2−ε2
1

, if ε2 ≤ p≤ x1,

δ
p2−ε2 , if x1 ≤ p≤ x2,

δ

px
1−ε2
2

, if x2 ≤ p≤ x̄,

δ

x̄x
1−ε2
2

−
δ

x̄x
1−ε2
2
ε2

(p− x̄), if x̄≤ p≤ x̄+ ε2,

0, if x̄+ ε2 ≤ p≤ 1.

The intuition behind the construction of F is as follows. We want to ensure that p̂= x1 while p∗

can be arbitrarily close to x2. If F is such that at these points R(·) is proportional to p, we would

be very close to our goal. It would remain to ensure p∗ happens at the unique point at which R(·)

and S(·) cross each other. Thus, F must be such that from p̂ to x2, the difference between R(·)

and S(·) shrinks and reaches zero at a point slightly larger than x2.

To formally prove tightness, we need to show that F is a proper CDF that satisfies Assump-

tions 1, 2 and 3. It is easy to check that F (p) is nonnegative and increasing in p while F (0) = 0

and F (1) = 1. Moreover, for any b≥ 1, Assumptions 1 and 2 are satisfied.

Hence, it remains to show that the bound is tight for F and it satisfies Assumption 3. Notice that

for all 0≤ p≤ ε2, R(p) = p−
1− δ

x
2−ε2
1
ε2

p2 and R′(p) = 1− 2
1− δ

x
2−ε2
1
ε2

p > 0 if δ > 1
2
x2−ε2

1 . Moreover, for
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all ε2 ≤ p≤ x1 we have R′(p) = δ

x
2−ε2
1

> 0 while S(p) is decreasing for all 0≤ p≤ x1. Furthermore,

notice that

S(x2)>

∫ x̄

x2

δ

px1−ε2
2

dp=
δ

x1−ε2
2

log

(
x̄

x2

)
=

δ

x1−ε2
2

=R(x2),

while

S(x1) =

∫ x2

x1

δ

p2−ε2
dp+S(x2)>

δ

(1− ε2)
(

1

x1−ε2
1

− 1

x1−ε2
2

) +
δ

x1−ε2
2

=
δ

(1− ε2)

1

x1−ε2
1

− ε2δ

(1− ε2)

1

x1−ε2
2

>
δ

x1−ε2
1

=R(x1),

thus S(p) and R(p) do not cross on 0≤ p≤ x1. This is because R(p) is strictly increasing and S(p)

is decreasing in this region while S(0)>R(0) and S(x1)>R(x1).

Moreover, if x1 ≤ p≤ x2, R(p) = δ
p1−ε2 and

R′(p) =−(1− ε2)
δ

p2−ε2
>− δ

p2−ε2
= S′(p),

while S(x2)>R(x2) = δ

x
1−ε2
2

thus S(p) and R(p) do not cross on x1 ≤ p≤ x2 either. This is because

if they cross at any point in this regions, since R′(p)>S′(p) in this region, it must be that S(x2)≤
R(x2) which is a contradiction since we showed earlier that S(x2)>R(x2).

When x2 ≤ p≤ x̄, R′(p) = 0 while S′(p)< 0, thus S(p) and R(p) can cross at most once in this

region, as S(x2)> δ

x
1−ε2
2

=R(x2) while S(x̄)<R(x̄) = δ

x
1−ε2
2

for ε2 sufficiently small.

Finally, if x̄≤ p≤ x̄+ ε2 and ε2 <
x̄
2
,

R′(p) =

(
pδ

x̄x1−ε2
2

−
δ

x̄x
1−ε2
2

ε2
(p2−px̄)

)′
=

δ

x̄x1−ε2
2

−
δ

x̄x
1−ε2
2

ε2
(2p− x̄)<S′(p) =− δ

x̄x1−ε2
2

+

δ

x̄x
1−ε2
2

ε2
(p− x̄),

while S(x̄+ε2) =R(x̄+ε2) = 0. Therefore, S(p) and R(p) do not cross on [x̄, x̄+ε2) since otherwise,

because S′(p)>R′(p) in this region when ε2 <
x̄
2
, it would imply 0 = S(x̄+ ε2)>R(x̄+ ε2) which is

a contradiction.

Thus, S(p) and R(p) will cross once and that will happen on [x2, x̄]. This crossing point p∗ will

satisfy 0< p∗−x2 < ε for some ε2 sufficiently small. This is because R(x2) = δ

x
1−ε2
2

while S(x2) will

get arbitrarily close to δ

x
1−ε2
2

for a sufficiently small ε2, and S′(p) ≤ − δ

x̄x
1−ε2
2

in this region while

R(p) is constant (while clearly we have p∗
∫ 1

p∗(1−F (x))dx> 0).

Therefore we can conclude that the unique maximizer of maxp≥0 p
∫ 1

p
(1− F (z))dz, p∗ satisfies

0< p∗−x2 < ε for some ε2 sufficiently small. Moreover, it is easy to see that R(p) is unimodal and

has a unique maximizer at p̂= x1. We have

R(p∗)

R(p̂)
=

δ
p∗1−ε

δ
p̂1−ε

=
p̂1−ε2

p∗1−ε2
≤ p̂1−ε

p∗1−ε
.

Hence, we have shown the bound is tight for F and it satisfies Assumption 3. Finally, since we

already showed p∗ < 1
e
, we can also see that R(p∗)

R(p̂)
> ep̂.

�
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Proof of Lemma 1. First we will prove that (3) has a maximizer that is the unique solution to

(4) on [0, a). Since p
∫ a
p

(1−F (x))dx is a continuous, bounded and differentiable function, not zero

everywhere and defined on a compact set, while

0

∫ a

0

(1−F (x))dx= a

∫ a

a

(1−F (x))dx= 0,

it must have a maximizer in the interior of [0, a] and this maximizer must satisfy the first-order

condition for (3). Hence, we must have

(
p

∫ a

p

(1−F (x))dx

)′
=

∫ a

p

(1−F (x))dx− p(1−F (p)) = 0. (EC.3)

Notice that ∫ a

0

(1−F (x))dx− 0(1−F (0))> 0,

while if p≥ a
2∫ a

p

(1−F (x))dx− p(1−F (p))≤ (1−F (p))(a− p)− p(1−F (p))≤ (1−F (p))(a− 2p)≤ 0.

Thus (EC.3) must have at least one root in (0, a
2
]. We will show that it cannot have more than one

root in [0, a). Notice that ∫ a

a

(1−F (x))dx− a(1−F (a)) = 0

while (∫ a

p

(1−F (x))dx− p(1−F (p))

)′
= 2F (p)− 2 + pf(p).

By assumption, pf(p)

1−F (p)
is strictly increasing, thus, pf(p)

1−F (p)
= 2 can only have at most one root.

Let x̂ be the single root of pf(p)

1−F (p)
= 2. Then, (EC.3) is strictly decreasing for all p < x̂ and strictly

increasing for all p > x̂ and 0 ≤ x̂ < a (otherwise we will have
∫ a
a

(1− F (x))dx− a(1− F (a)) < 0

which is a contradiction). Then by noticing that
∫ a

0
(1− F (x))dx− 0(1− F (0))> 0 while

∫ a
a

(1−

F (x))dx− a(1− F (a)) = 0, it turns out that (EC.3) must have exactly one root in [0, a). Hence,

p
∫ a
p

(1−F (x))dx has a unique point on [0, a) that satisfies (4) and is its maximizer. If we denote

this point with p∗, it is clear that p∗
∫ a
p∗(1−F (x))dx> 0.

Now we prove R(p) is unimodal in [0, a] and has a unique maximizer. R(p) is a continuous,

bounded and differentiable function defined on a compact set and not zero everywhere while R(0) =

R(a) = 0. Thus, R(p) must have a maximizer in the interior of [0, a] and it must satisfy the first-

order condition for R(p). Thus at optimality we must have(
p(1−F (p))

)′
= 1−F (p)− pf(p) = 0,
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and since pf(p)

1−F (p)
is assumed to be strictly increasing, pf(p)

1−F (p)
= 1 (equivalent to the first-order

condition) can have at most one root. Thus there is a unique point on [0, a] that satisfies the

first-order condition for R(p) and is its unique maximizer, proving that R(p) is unimodal as well.

�

Proof of Lemma 2. First, notice that R(p) is a continuous, bounded and differentiable function

defined on a compact set and not zero everywhere while R(0) =R(a) = 0. Thus, R(p) must have

a maximizer in the interior of [0, a] and it must satisfy the first-order condition for R(p). Thus by

the definition of p̂, it must be that R′(p̂) = 1−F (p̂)− p̂f(p̂) = 0, suggesting that 1
p̂

= f(p̂)

1−F (p̂)
.

Now, for the sake of contradiction, let us assume that p̂ < p∗. Notice that by assumption, p∗

is the first and only point on [0, a] that satisfies (4) with p∗
∫ a
p∗(1− F (x))dx > 0. Moreover since

p∗ > p̂, ∫ a

p̂

(1−F (z))dz ≥
∫ a

p∗
(1−F (z))dz,

while p̂ > 0. Hence p̂
∫ a
p̂

(1 − F (x))dx > 0 and by assumption we have R(p̂) 6= S(p̂), and since∫ a
0

(1−F (z))dz > 0(1−F (0)), then we have that

R(p̂) = p̂(1−F (p̂))<

∫ a

p̂

(1−F (z))dz,

suggesting that
1−F (p̂)∫ a

p̂
(1−F (z))dz

<
1

p̂
=

f(p̂)

1−F (p̂)
.

However, this is a contradiction since by assumption we have h(p)

1−H(p)
≥ f(p)

1−F (p)
for all p∈ [0, a], which

suggests:

1−F (p̂)∫ a
p̂

(1−F (z))dz
=

1−F (p̂)∫ a
0 (1−F (z))dz∫ a
p̂ (1−F (z))dz∫ a
0 (1−F (z))dz

=
h(p̂)

1−H(p̂)
≥ f(p̂)

1−F (p̂)
.

Finally, given that we have p̂≥ p∗, it follows directly from Theorem 1 that R(p∗)
R(p̂)

≥ 1
2
. �

Proof of Proposition 2. Let R̂(p)≡ p
∫ b
p
g(x)(1−F (x))dx and let R̂m(p) = p

∑m
i=1 I(Pi1≥p)

m
= p(1−

ẑm(p)) where ẑm(p) =
∑m
i=1 I(Pi1≥p)

m
is the empirical CDF corresponding to z(p) =

∫ p
0
g(x)(1 −

F (x))dx. We note that this is rigorous as Pi1 for all i ∈ C is generated independently from the

distribution P(Pi1 ≥ p) =
∫ +∞
p

(1−F (x))dG(x).

By applying Hoeffding’s inequality and noticing that for all i∈C and p∗ we have 0≤ p∗I(Pi1≥p∗)
m

≤
b
m

, we can write:

P(|R̂m(p∗)− R̂(p∗)| ≥ t)≤ 2e
−2t2m
b2 ∀ t > 0. (EC.4)

Define the event E , {|R̂m(p∗)− R̂(p∗)|< t}. By assumption, for all p∈ [0, b], we have:

p

∫ b

p

g(x)(1−F (x))dx≤ p∗
∫ b

p∗
g(x)(1−F (x))dx−α(p− p∗)2.



ec12 e-companion to Chen et al.: Model-free Assortment Pricing

Therefore, for any p such that |p− p∗| ≥ ε, we have:

R̂(p)≤ R̂(p∗)−αε2.

Consider any t∈ [0, αε2]. On event E, if |p∗m− p∗| ≥ ε, then R̂(p∗m)≤ R̂(p∗)−αε2 and we have

R̂m(p∗m)≥ R̂m(p∗)≥ R̂(p∗)− t≥ R̂(p∗m) +αε2− t.

Where the first inequality follows from the definition of p∗m while the second inequality happens

due to event E. Therefore, |R̂m(p∗m)− R̂(p∗m)| ≥ R̂m(p∗m)− R̂(p∗m)≥ αε2− t.
In other words, we know that E ∩{|p∗m− p∗| ≥ ε} ⊆E ∩{|R̂m(p∗m)− R̂(p∗m)| ≥ αε2− t}.
Moreover, since |R̂m(p∗m)− R̂(p∗m)| ≥ αε2 − t implies that maxp≥0(|R̂m(p)− R̂(p)|)≥ αε2 − t, we

have

P
(
E∩{|p∗m−p∗| ≥ ε}

)
≤ P(E∩{max

p≥0
(|R̂m(p)−R̂(p)|)≥ αε2−t}

)
≤ P(max

p≥0
(|R̂m(p)−R̂(p)|)≥ αε2−t).

(EC.5)

Next, we provide an upper bound for P(maxp≥0(|R̂m(p)− R̂(p)|)≥ αε2− t). This can be achieved

by applying DvoretzkyKieferWolfowitz inequality (Van der Vaart 2000, page 268): since ẑm(p) is

the empirical CDF of z(p) for p∈ [0, b], we have:

P(max
p≥0

(|R̂m(p)− R̂(p)|)≥ αε2− t)≤ P

(
b

∥∥∥∥∑m

i=1 I(Pi1 ≥ p)
m

−
∫ b

p

g(x)(1−F (x))dx

∥∥∥∥
∞
≥ αε2− t

)
≤ 2e

−2(αε2−t)2m
b2 . (EC.6)

Thus we have:

P(|p∗m− p∗| ≥ ε) = P(E ∩{|p∗m− p∗| ≥ ε}) +P(Ec ∩{|p∗m− p∗| ≥ ε})

≤ P(E ∩{|p∗m− p∗| ≥ ε}) +P(Ec)

≤ 2e
−2(αε2−t)2m

b2 + 2e
−2t2m
b2 ,

where the last inequality follows from (EC.4), (EC.5), and (EC.6).

To finalize the proof, we need to choose 0≤ t≤ αε2 such that the quasi-convex function (when

m is large enough)

2e
−2t2m
b2 + 2e

−2(αε2−t)2m
b2

is minimized, which is achieved, when t= αε2

2
. Therefore, we have:

P(|p∗m− p∗| ≥ ε)≤ 4e
−α2ε4m

2b2 .

Hence, if we want |p∗m − p∗| ≥ ε with probability at most δ, we need up to m=
⌈
( 2b2

α2ε4
) log( 4

δ
)
⌉

historical customers, suggesting a sample complexity of O
(
( b2

α2ε4
) log( 1

δ
)
)
.

�
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Proof of Proposition 3. The linear program that results from removing the disjunctive con-

straint (2) from (DP), i.e.,

min
r,vi
{r : r≥ 0,vi ∈ Vi},

has the trivial finite optimum r = 0. Thus, the model (DP-LP) is obtained by applying directly

Corollary 2.1.2 by Balas (1998). �

Proof of Lemma 3. We begin with statement (a). If pci ≥ Pici , then the valuation v∅
i defined

by v∅ici = Pici and v∅ij = 0 for all j ∈P \ {ci} belongs to W ∅
i (p). Conversely, if v∅

i ∈ W ∅
i (p), the

inequalities v∅ij ≤ pj and v∅ij ≥ Pici from (1) together imply pci ≥ Pici .
For statement (b), the valuation vcii defined by vciici = max{Pici , pci} and vciij = 0 for all j ∈P \{ci}

belongs to W ci
i (p).

Finally, for statement (c), consider the set of constraints that are satisfied by points in W j
i (p)

after re-arranging the constant terms to the right-hand side of the inequalities:

vjij ≥ pj, (EC.7)

vjij − v
j
ij′ ≥ pj − pj′ , ∀j′ ∈P, (EC.8)

vjici ≥ Pici , (EC.9)

vjici − v
j
ij′ ≥ Pici −Pij′ , ∀j′ ∈P \ {ci}. (EC.10)

If pj − pci ≤ Pij − Pici , we construct a valuation vji ∈ W j
i (p) where vjij = max{Pij, pj}, vjici =

max{Pici , Pici −Pij + pj}, and vjij′ = 0 for all j′ ∈P \ {ci, j}. In particular, (EC.7) and (EC.9) are

satisfied by construction. Assume now pj >Pij. For (EC.8) and (EC.10) with j′ = ci, we have

vjij − v
j
ici

= pj −Pici +Pij − pj = Pij −Pici ≥ pj − pci ,

where the last inequality follows from the statement hypothesis. For j′ 6= ci, note that vjij − pj is

zero while vjij′−pj′ is non-positive in (EC.8), and analogously vjici−Pici is positive while vjij′−Pij′ =
−Pij′ is non-positive. If pj ≤ Pij, note that vjij = Pij and vjici = Pici , and the same derivations above

apply.

Finally, the sufficient conditions of (c) follow directly from (EC.8) and (EC.10) with j′ = ci in

(EC.8) and j′ = j in (EC.10). �

Proof of Proposition 4. Let j ∈P and denote by G the set of feasible solutions to (DP-LP).

The projection of G onto variable xj is

ProjxjG= {xj ∈ [0,1] : ∃ ((v1
i , . . . ,v

n
i ,v

∅
i ), (x1, . . . , xj, . . . , xn, x∅))∈G}

= {xj ∈ [0,1] : 6 ∃vji ∈W j
i (p)⇒ xj = 0}

= {xj ∈ [0,1] : (pj − pci >Pij −Pici)⇒ xj = 0}

= {xj ∈ [0,1] : xj ≤ I(pj − pci ≤ Pij −Pici)},
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where the second-to-last equality follows from Lemma 3. The same arguments follow for x∅. Since

the objective is defined only in terms of x, we can replace the inequalities of G by the projections

depicted above, which results in the equivalent formulation

fi(p) = min
x≥0

∑
j∈P

pjxj (EC.11)

s.t.
∑
j∈P

xj +x∅ = 1, (EC.12)

x∅ ≤ I(pci ≥ Pici), (EC.13)

xj ≤ I(pj − pci ≤ Pij −Pici), ∀j ∈P. (EC.14)

Finally, note from (EC.12) and (EC.13) that∑
j∈P

xj = 1−x∅ ≥ 1− I(pci ≥ Pici) = I(pci <Pici)

must hold at any feasible solution, and particularly tight at optimality since it is the only constraint

that bounds x from below besides the non-negativity conditions. �

Proof of Proposition 5. Statement (a) follows from the fact that product ci is always feasible

(Lemma 3-(b)) and that the inequality (13) for j = ci holds with µ∗ici = 0 at optimality, while from

inequality (11), we have that if pci ≥ Pici , fi(p) = 0. For statement (b), if fi(p) = 0, the condition

trivially holds. Assume fi(p) > 0. Let P ′ = max{j∈P:pj<P
max} pj. It can be easily shown that P ′

always exists. Moreover, let j′ ∈P be a product such that pj′ ≥ Pmax. If j′ = ci, then fi(p) = 0

which is a contradiction. Thus, pci < Pmax. If j′ 6= ci, fi(p) < pj′ because of (a) and pci < pj′ .

Reducing the price of j′ to P ′ therefore does not change the optimal value of (DP-C-Dual), and

the same argument can be repeated for other products. �

Proof of Proposition 6. It suffices to show that both optimal solution values match when con-

ditioned to a fixed p≥ 0. First, by Proposition 5-(b), we can restrict our analysis to pj <P
max for

all j ∈P without loss of generality.

Consider any customer i ∈ C . If pci ≥ Pici , then we must have yici = 0 in (OP-B); otherwise, we

can assume yici = 1 since that can only be benefitial to the objective. Thus, the objective functions

of both models match.

Suppose now that pj−pci ≤ Pij−Pici for j 6= ci, i.e., product j is feasible to purchase by customer

i. We necessarily must have yij = 1 because of (18) and, thus, (15) and (16) match. If otherwise

pj − pci > Pij − Pici , then we may have either yij = 0 or yij = 1. Since the objective of (OP-B)

maximizes τi, we can assume yij = 0, which can only relax the bound on τi in (16). Thus, (15) and

(16) also match in this case, i.e., at optimality, the values of τi (and hence the optimal values of

both models) are the same. �
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Proof of Theorem 2. We first show (a). First, (OP-ε) with ε= 0 is always feasible. That is, for

any p≥ 0 and customer i ∈ C , we set yici = 1 if and only if pci ≤ Pici , for all j ∈P \ {ci}, yij = 0

if and only if pj − pci ≥ Pij − Pij, and τi appropriately to satisfy (20). Thus, it remains to show

that g(0) is bounded from above. This follows from noting that, for all i ∈ C , pci is bounded by

Pici +Pmax in inequality (21) and that τi is bounded by pci in inequality (20) with j = ci.

For (b), let (p0,τ 0,y0) be an optimal solution tuple and consider any j′ ∈P such that p0
j′ = 0.

We show an alternative feasible solution with the same (optimal) value after increasing p0
j′ as in

the statement. If y0
ici

= 0 for some customer i, then increasing p0
j′ does not affect τi nor the final

solution value, given that y0
ij is adjusted appropriately for j 6= ci to ensure feasibility. If otherwise

y0
ici

= 1 for some customer i, we have two cases:

1. Case 1, τ 0
i = 0. In such a scenario, we can equivalently set y0

ici
= 0 and apply the same adjust-

ments to y0
ij for all j 6= ci as above, preserving the solution value.

2. Case 2, τ 0
i > 0. Due to inequality (20), we must have j′ 6= ci and y0

ij′ = 0. Thus, p0
j′ − p0

ci
≥

Pij′ −Pici from inequality (22). Increasing p0
j′ thefore just increases the left-hand side of such

inequality, and hence does not impact feasibility nor the solution value.

We now show (c). Since the feasible set of (OP-ε) relaxes and restricts that of (OP-B) for ε= 0

and ε > 0, respectively, the inequality

0≤ g(0)−mτ ∗ ≤ g(0)−
∑
i∈C

fi(p
′)

follows directly. We will now show that

g(0)−
∑
i∈C

fi(p
′)≤ δ′ ≤ δ.

Consider the ordered vector of prices p0 > 0 in the statement and the associated tuple (p0,τ 0,y0).

Let i ∈ C be a customer such that y0
ici
τ 0
i > 0. The inequality (20) is tight for some j′ ≤ ci, i.e., we

can have y0
ij = 0 for all j < j′. This implies that p0

j − p0
ci
≥ Pij −Pici for those indices due to (22).

Next, for ease of notation, let σ= δ′/(mn) so that p′ = (p0
1−σ,p0

2− 2σ, . . . , p0
n−nσ). For j < j′,

p′j − p′ci = p0
j − p0

ci
+ (ci− j)σ >Pij −Pici ,

since j < ci. Thus, when evaluating fi(p
′), the constraints (14) in (DP-D) for j < j′ remains non-

binding, i.e.,

τi ≤ p′j + I(p′j − p′ci >Pij −Pici)P
max = p′j +Pmax
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for j < j′. Thus, since the price of any product j ≥ j′ is decreased by jσ ≤ nσ, evaluating the new

price vector p′ in (DP-D) yields: for all i∈C ,

fi(p
′)≥ I(p′ci <Pici)(τ

0
i −nσ) = I(p0

ci
− ciσ <Pici)(τ

0
i −nσ)≥ y0

ici
τ 0
i −nσ,

where the last inequality follows from the fact that inequality (21) implies p0
ci
≤ Pici , which implies

p0
ci
− ciσ <Pici . Finally, summing the above inequality over all i, we have:∑

i∈C

fi(p
′)≥

∑
i∈C

(y0
ici
τ 0
i −nσ) = g(0)− δ′,

concluding the proof. �

Proof of Proposition 7. We first show by contradiction that all prices are the same at optimality.

To this end, note from inequality (22) with ε= 0 that, for any i∈C , if a product j 6= ci is not eligible

for purchase (i.e., yij = 0) then pj ≥ pci , since all historical prices for i are the same. Consider now

an optimal solution (p∗,τ ∗,y∗) and let pmin ≡minj∈P p∗j be the minimum optimal price. Suppose

there exists some customer i∈C who selects a product j such that τ ∗i = p∗j > p
min. But this implies

that pmin < p∗j ≤ p∗ci (since ci is always feasible), i.e., we must have y∗ij = 1 which by inequality (20)

implies that τ ∗i ≤ pmin, a contradiction.

Finally, let p∗ be the optimal (scalar) price of all products, and suppose i′ ∈ C is the smallest

customer index such that p∗ ≤ Pi′ . It follows that any customer i < i′ does not purchase any product

(since p∗ = p∗ci >Pi), while all customers i≥ i′ yield a revenue of p∗ (since p∗ = p∗ci ≤ Pi). Thus, we

must have p∗ = Pi′ at optimality, and the total revenue is (m− i′ + 1)Pi′ . The element i∗ in the

proposition statement is the index that maximizes this revenue. �

Proof of Proposition 8. The solution value of the proposed solution (i.e., a lower bound to the

problem) is
∑

i∈C Pci , since all customers would purchase their choice ci. Due to inequality (20),

this is also an upper bound, and hence is optimal. �

Proof of Proposition 9. By definition (28), the total revenue is at least m
¯
P . Conversely, by

inequalities (20) and (21), the total revenue is at most
∑

i∈C Pici ≤mP̄ . The ratio hence follows

from dividing the lower bound by the upper bound.

We now construct an instance where this ratio is asymptotically tight. Consider n= 1 product,

m> 1 customers, and fix any P1, P2 such that P1 <P2. Customer 1 purchases the product at price

P1, while the remaining customers 2, . . . ,m purchase it at P2. The conservative pricing (28) will set

the product’s price at P1, yielding a total revenue of mP1. For any sufficiently large m, the optimal

pricing strategy sets P2 as the optimal price, yielding a total revenue of (m−1)P2 (since customer

1 will not purchase any product). The performance ratio is therefore mP1/(m− 1)P2. Taking the

limit m→+∞ with respect to this ratio completes the proof. �
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Proof of Proposition 10. Without loss of generality, suppose the customer index set C is ordered

according to historical purchase prices, i.e., 0 <
¯
P = P1c1 ≤ P2c2 ≤ · · · ≤ Pmcm = P̄ . Let τOPT and

τCP be the optimal solution value of (OP-MIP) and the total revenue obtained by the cut-off price

(30), respectively. It follows from (20) for j = ci that τOPT ≤
∑

i∈C Pici . Furthermore, given the price

ordering, notice that (29) evaluates to maxi∈C (m− i+1)Pici . By the cut-off pricing definition (30),

we therefore have τCP ≥maxi∈C (m− i+ 1)Pici . This is because due to the incentive-compatibility

constraint (22) some customers might not purchase the products priced at the cut-off price p∗ and

opt for a product that is priced higher than p∗. Thus,

τCP

τOPT
≥

maxi∈C (m− i+ 1)Pici∑
i∈C Pici

. (EC.15)

Next, if we divide both the numerator and denominator of the right-hand side ratio above by the

number of customers m≥ 1, we obtain

maxi∈C (m− i+ 1)Pici∑
i∈C Pici

=

maxi∈C (m− i+ 1)Pici
m∑

i∈C Pici
m

=
maxi∈C [1−FX (Pici)]Pici

E[X ]
, (EC.16)

where X is a non-negative discrete random variable uniformily distributed on the set

{P1c1 , . . . , Pmcm}, and FX (·) and E[X ] denote the left continuous c.d.f. (i.e.,FX (x)≡ P (X <x)) and

the expectation of X , respectively. This problem now bears resemblance to the personalized pricing

problem studied in Elmachtoub et al. (2020).

Let R≡maxi∈C [1−FX (Pici)]Pici be the numerator of the ratio above. We have
¯
P ≤R≤ P̄ ; in

particular, the left-hand side inequality holds since [1− FX (
¯
P )]

¯
P =

¯
P . We can hence rewrite the

expectation term as

E[X ] =
∑
i∈C

1

m
Pici =

∑
i∈C

1

m

[∫ Pici

0

1dx

]

=
∑
i∈C

1

m

[∫ Pici

0

1dx+

∫ +∞

Pici

0dx

]

=
∑
i∈C

1

m

[∫ +∞

0

I(x≤ Pici)dx

]
=

∫ +∞

0

∑
i∈C

[
1

m
I(x≤ Pici)

]
dx

=

∫ +∞

0

[1−FX (x)] dx

=

∫ P̄

0

[1−FX (x)] dx

=

∫ R

0

[1−FX (x)] dx+

∫ P̄

R

[1−FX (x)] dx
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≤R+

∫ P̄

R

[1−FX (x)] dx

≤R+

∫ P̄

R

R

x
dx

=R+R log

(
P̄

R

)
≤R+R log

(
P̄

¯
P

)
,

where the previous-to-the-last inequality follows because 1− FX (x) ≤ R/x for any x ∈ [
¯
P, P̄ ] by

definition. From the inequality above, we obtain

E[X ]

R
≤ 1 + log

(
P̄

¯
P

)
⇔ τCP

τOPT
≥ R

E[X ]
≥ 1

1 + log
(
P̄

¯
P

) .
Finally, from (EC.15) and (EC.16) we have that

τCP

τOPT
≥

maxi∈C [1−FX (Pici)]Pici
E[X ]

≥
(1−FX (Pkck))Pkck

E[X ]
≥

Pkck
2E[X ]

≥ med(P )

2E[X ]

where med(P ) denotes the median of X , while Pkck = mini∈C{Pici : Pici ≥ med(P )}. The prior

to the last inequality follows from the fact that 1− FX (Pkck) ≥ 1
2

(as FX (·) is defined to be left

continuous), while the last inequality follows from Pkck ≥med(P ), proving the performance bound.

It remains to show that the ratio is asymptotically tight. Consider an instance with any number

m> 0 of customers and m− k+ 1 products, where k ∈N is any positive integer such that k ≤m.

The historical observed prices Pi by customer i, in turn, are defined by the following vectors, where

δ is any scalar such that 0< δ < 1/(m− 1):

P1 =

(
m

m
,

m

m− 1
,

m

m− 2
, . . . ,

m

k+ 1
,
m

k

)
,

P2 =

(
m

m
+ δ,

m

m− 1
,

m

m− 2
, . . . ,

m

k+ 1
,
m

k

)
,

P3 =

(
m

m
+ δ,

m

m− 1
+ δ,

m

m− 2
, . . . ,

m

k+ 1
,
m

k

)
,

. . .

Pm−k =

(
m

m
+ δ,

m

m− 1
+ δ,

m

m− 2
+ δ, . . . ,

m

k+ 1
,
m

k

)
,

Pm−k+1 =

(
m

m
+ δ,

m

m− 1
+ δ,

m

m− 2
+ δ, . . . ,

m

k+ 1
+ δ,

m

k

)
,

Pm−k+2 =

(
m

m
+ δ,

m

m− 1
+ δ,

m

m− 2
+ δ, . . . ,

m

k+ 1
+ δ,

m

k

)
,

. . .

Pm =

(
m

m
+ δ,

m

m− 1
+ δ,

m

m− 2
+ δ, . . . ,

m

k+ 1
+ δ,

m

k

)
.
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For the historical purchase choices, each customer i ∈ {1, . . . ,m− k} purchased product ci = i,

while all remaining customers i′ ∈ {m− k+ 1, . . . ,m} pick the same product ci′ =m− k+ 1.

An upper bound on the optimal revenue τOPT for this instance is:

τOPT ≤
∑
i∈C

Pici =
m−k+1∑
i=1

Pii +
m∑

i=m−k+2

Pi(m−k+1) =
m−k∑
i=0

m

m− i
+

m−1∑
i=m−k+1

m

k
=

m−k∑
i=0

m

m− i
+m

k− 1

k
.

We now define prices whose resulting total revenue is arbitrarily close to τOPT. Specifically, consider

the price vector

p =

(
m

m
,

m

m− 1
− δ, m

m− 2
− 2δ, . . . ,

m

k
− (m− k)δ

)
.

From the definition above, since pci ≤ Pici for all i∈C , by inequality (21) every customer purchases

a product. We next show that customer i purchases product ci. For any j < ci,

pj − pci =
m

m− j+ 1
− m

m− ci + 1
− jδ+ ciδ≥ Pij −Pici ,

i.e., such products j violates incentive-compatibility constraints (inequality (22) with ε = 0) and

will not be purchasable by customer i. Moreover, from our choice of δ < 1/(m−1), it can be easily

verified that p1 < p2 < · · · < pm−k+1 and therefore pj > pci for all i and j > ci. Product pci must

be necessarily chosen by customer i under her worst-case valuation (vici = Pici and vik = 0 for all

k ∈P \ {ci}) and the revenue from this pricing is hence

∑
i∈C

pci =
m−k+1∑
i=1

pi + (k− 1)pm−k+1 =
m−k∑
i=0

(
m

m− i
− iδ

)
+m

k− 1

k
− (k− 1)(m− k)δ,

thus, as δ→ 0, the total revenue obtained from p approximates that of τOPT.

We now show that the revenue obtained from the cut-off pricing (30) is m. Suppose that the

customer index that solves (29) is i′, and hence p∗ = Pi′ci′ . If ci′ <m−k+ 1, then the cut-off prices

are pCPj = m
k

for all j < ci′ , p
CP
j = m

m−j+1
for all ci′ ≤ j < m− k + 1 and pCPm−k+1 = m

k
. However, if

ci′ =m− k+ 1, the cut-off prices are pCPj = m
k

for all j ∈P. Suppose that ci′ <m− k+ 1. By the

construction of historical prices,

Pi′ci′ =
m

m− ci′ + 1
,

and therefore m− ci′ + 1 customers would purchase a product since Pici ≥ Pi′ci′ for all i≥ i′. Anal-

ogously, since by construction for all customers i < i′, Pici <Pi′ci′ , none of the worst-case historical

customers i < i′ would purchase any product. Moreover, for any of the worst-case customer i≥ i′,

the cut-off price (30) of its chosen product ci is

pCP
ci

=
m

m− ci + 1
.
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This implies that, for any i > i′,

pCP
ci′
− pCP

ci
=

m

m− ci′ + 1
− m

m− ci + 1
<

(
m

m− ci′ + 1
+ δ

)
− m

m− ci + 1
= Pi′ci′ −Pici ,

i.e., product ci′ is incentive-compatible with all customers i > i′. Because pCP
ci′

is the lowest price

across all the products, the total revenue of the cut-off solution

τCP = (m− ci′ + 1)Pi′ci′ = (m− ci′ + 1)
m

m− ci′ + 1
=m

If ci′ =m− k+ 1, as mentioned before the cut-off prices are pCPj = m
k

for all j ∈P and it can also

be easily confirmed that τCP = m as only the k historical customers who historically purchased

product m− k+ 1 will make a purchase, under price m
k

, in the worst-case.

Finally, as δ→ 0,

τCP

τOPT
→

m∑m−k
i=0

m

m− i
+m

k− 1

k

=
m

m

(∑m−k
i=0

1

m− i
+
k− 1

k

)
=

1

1

m
+ · · ·+

1

k
−

1

k
+
k

k

=
1∑m

i=k+1

1

i
+
k

k

.

For a sufficiently large m and k (e.g., by multiplying both by the same constant), the ratio above

can be made sufficiently close to notespar,

1

logm− logk+
1

2m
−

1

2k
+ 1

=
1

log

(
m

k

)
+

1

2m
−

1

2k
+ 1

,

where the last equality follows from the fact that for large enough n,
∑n

i=1
1
i

= log(n) + γ + 1
2n

where γ is the EulerMascheroni constant. The ratio above can approximate 1/(1 + log(P̄/
¯
P )) at

any desired precision since m/k can be made sufficiently close to P̄/
¯
P , while both numbers are

also sufficiently large. Thus, the ratio is asymptotically tight for the constructed instance. �

EC.3. Extending External Validity to the MNL Model

When there are multiple products, the external validity analysis of our approach becomes signifi-

cantly more complicated, primarily because both the model-free and model-based optimal prices

are not tractable. Given such hurdles, we focus on a simple yet relevant special case, where for

some β > 0, the probability of customer i choosing product j from the assortment is given by

exp(α−βPij)
1 +

∑n

k=1 exp(α−βPik)
. (EC.17)
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That is, we limit our scope to the situation where customers make decisions based on the MNL

choice model and the average attractiveness of the products is symmetric (the products are hor-

izontally differentiated). Moreover, we assume the historical prices satisfy Pij ≡ Pi for all i ∈ C .

Such a uniform price is common in some settings, e.g., as noted by Draganska and Jain (2006), it

is a well established policy to offer all flavors in a product line of yogurt at the same price. In this

case, implied by Proposition 7, model-free optimal prices are the same for all the products and can

be expressed in a closed form for uniformly distributed historical prices. We denote the model-free

optimal price of all the products as p∗. Moreover, given that customers make decisions based on

the MNL choice model, the model-based optimal prices are equal for all the products, denoted by

p̂. We also define the expected revenue of the firm when all the products are priced at p under the

MNL model (EC.17) as Υ(p). It turns out the insights developed for a single product in Theorem 1

can be extended to this special case with multiple products.

Proposition EC.1. Suppose the firm sets prices Pi from a distribution with PDF g(p) = 1/b

for p ∈ [0, b], where b > p̂. We have Υ(p∗)
Υ(p̂)

≥ 1
2
. Moreover, the bound is asymptotically tight: for any

ε > 0 that is sufficiently small, a case can be constructed in which there exists ᾱ such that when

α> ᾱ, we have Υ(p∗)/Υ(p̂)≤ 1
2

+ ε.

We note that the bound is asymptotically tight since the worst-case holds when α→∞.

Proof of Proposition EC.1. First, we will show that p∗ must be unique. By Proposition 7, the

optimal price output by our framework OP-MIP satisfies p∗ ∈ arg maxp≥0 p
∑m

i=1 I(Pici ≥ p). Divid-

ing the latter part of this quantity by the number of historical customers m does not affect the

value of p∗. In other words, p∗ ∈ arg maxp≥0 p
∑m
i=1 I(Pici≥p)

m
.

By the Law of Large Numbers we have

lim
m→∞

∑m

i=1 I(Pici ≥ p)
m

= P(Pici ≥ p) =

∫ b

p

1

b
(1− 1

neα−βx + 1
)dx.

Therefore

p∗ ∈ arg max
p≥0

p lim
m→∞

∑m

i=1 I(Pici ≥ p)
m

= arg max
0≤p≤b

p

∫ b

p

(1− 1

neα−βx + 1
)dx

Now, notice that since

0

∫ b

0

(1− 1

neα−βx + 1
)dx= b

∫ b

b

(1− 1

neα−βx + 1
)dx= 0,

and

p

∫ b

p

(1− 1

neα−βx + 1
)dx (EC.18)
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is a continuous and differentiable function, not zero everywhere in [0, b] and defined on the compact

region of [0, b], it has a maximizer and its maximizer must be in the interior of [0, b], and must

satisfy the first-order condition for (EC.18).

Now we will show there is a unique p∗ ∈ [0, b] that satisfies the first-order condition for (EC.18),

and then we will show that p∗ ≤ p̂.
To that avail, notice that the first-order condition for (EC.18) with respect to p is equivalent to:(
p

∫ b

p

(1− 1

neα−βx + 1
)dx

)′
=

∫ b

p

(1− 1

neα−βx + 1
)dx−p(1− 1

neα−βp + 1
) =

log(ne
α−βp+1

neα−βb+1
)

β
−p(1− 1

neα−βp + 1
) = 0.

To show that p∗ must be unique, we need to show

q(p) =
log(ne

α−βp+1
neα−βb+1

)

β
− p(1− 1

neα−βp + 1
) = 0

has only one root in [0, b]. Notice that

q(b) =
log(ne

α−βb+1
neα−βb+1

)

β
− b(1− 1

neα−βb + 1
)< 0.

Moreover,

q(0) =
log(ne

α−β0+1
neα−βb+1

)

β
− 0(1− 1

neα−β0 + 1
)> 0,

thus there must be at least one root.

Now notice that

q′(p) =

(
log(ne

α−βp+1
neα−βb+1

)

β
− p(1− 1

neα−βp + 1
)

)′
=
nβeα((βp− 2)eβp− 2neα)

(eβp +neα)2
,

which is < 0 if p < w0(2neα−2)+2

β
and is > 0 if p > w0(2neα−2)+2

β
. If w0(2neα−2)+2

β
> b, then q(p) is

strictly decreasing in [0, b] and has exactly one root in [0, b]. If w0(2neα−2)+2

β
≤ b, then since q(b)< 0

and q(p) is strictly increasing on (w0(2neα−2)+2

β
, b], q(p) can have only one root, p∗, on [0, b].

Now, we show that p∗ ≤ p̂. Assume otherwise, that for some α, b, n and β > 0, p∗ > p̂. It is trivial

to see that if
log(neα−βp + 1)

β
− p(1− 1

neα−βp + 1
) = 0 (EC.19)

has a root, its root must be larger than or equal to p∗. To show that (EC.19) also has a unique

root it suffices to notice that

log(neα−β0 + 1)

β
− 0(1− 1

neα−β0 + 1
)> 0,

and

lim
p→∞

( log(neα−βp + 1)

β
− p(1− 1

neα−βp + 1
)
)

= 0,
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while ( log(neα−βp + 1)

β
− p(1− 1

neα−βp + 1
)
)′

=
nβeα((βp− 2)eβp− 2neα)

(eβp +neα)2
,

which is < 0 if p < w0(2neα−2)+2

β
and is > 0 if p > w0(2neα−2)+2

β
.

Now let p̄ be the single root of (EC.19). We know p̄ ≥ p∗ > p̂. Notice that the derivative of

(EC.19) with respect to α is
neα(neα + (1−βp)eβp)

β(eβp +neα)2
,

which is < 0 if p > w0(neα−1)+1

β
= p̂. Thus, (EC.19) is strictly decreasing in α at p̄. Moreover,

w0(neα−1)+1

β
is increasing in α, hence

lim
α→−∞

( log(neα−βp̄ + 1)

β
− p̄(1− 1

neα−βp̄ + 1
)
)
> 0,

however this is a contradiction since

log(neα−βp + 1)

β
− p(1− 1

neα−βp + 1
)≤ 0

for all p≥ 0 when α→−∞. The latter claim follows from the fact that log(neα−βp+1)

β
is decreasing

in p and log(neα+1)

β
= 0 as α→−∞ while p(1− 1

neα−βp+1
)≥ 0 if p≥ 0. As a result, by contradiction

we can conclude that p̄≤ p̂ which implies p∗ ≤ p̂ since we know p∗ ≤ p̄.

Now we show the revenue from p∗ is at least 1
2

times the revenue from p̂. We have p∗ ≤ p̂≤ b.

Notice that

(
log(ne

α−βp+1
neα−βb+1

)

β
+ p(1− 1

neα−βp + 1
)

)′
=− nβpeβp+α

(eβp +neα)2
≤ 0 (EC.20)

for all p≥ 0. Moreover, for all 0≤ p≤ b,

log(ne
α−βp+1

neα−βb+1
)

β
≥ 0,

thus

Υ(p̂) = p̂(1− 1

neα−βp̂ + 1
)≤

log(ne
α−βp̂+1

neα−βb+1
)

β
+ p̂(1− 1

neα−βp̂ + 1
)≤

log(ne
α−βp∗+1

neα−βb+1
)

β
+ p∗(1− 1

neα−βp∗ + 1
) = 2Υ(p∗).

Where he second inequality follows from (EC.20) and the fact that 0≤ p∗ ≤ p̂. The last equality

follows from the fact that p∗ must satisfy the first-order condition for (EC.18). Thus, we have

shown that Υ(p∗)≥ 1
2
Υ(p̂).

It remains to show the bound is tight. Consider a case where n = 2, β = 1, and b� α. Let

0< ε1� ε. For any σ > 0, there exists α̃ such that if α> α̃, for any 0≤ p≤ (1−ε1)α, | log( 2eα−p+1
2eα−b+1

)−

log(2eα−p)|<σ, and |p(1− 1
2eα−p+1

)−p|<σ. Thus, for any σ > 0, there exists α̃ such that if α> α̃,
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then |p∗− α+log(2)

2
|<σ (i.e., p∗ can be arbitrarily close to the root of α−p+ log(2)−p= 0). Hence,

for any σ > 0, there exists α̃ such that if α> α̃, |Υ(p∗)− α+log(2)

2
|<σ. Now, we notice that for any

σ > 0, there exists α̃ such that if α> α̃, then |Υ((1− ε1)α)− (1− ε1)α|<σ. Finally,

lim
α→∞

Υ(p∗)

Υ(p̂)
≤ lim

α→∞

α+log(2)

2

(1− ε1)α
=

1

2(1− ε1)
≤ 1

2
+ ε,

proving the bound is asymptotically tight. �

EC.4. The Effect of Data Censoring on Pricing

In this section we study the effect of data censoring on pricing. First, we characterize how censoring

distorts the estimated customer demand model from the data, in the case of single product pricing.

Next, we study a simple, yet illuminating case of demand and we provide a sufficient condition

under which the asymptotic model-free optimal price outperforms the asymptotic optimal price

estimated from the censored data. Finally, we extend the insights derived for the problem of single

product pricing to that of multiple products pricing, when customers are making decisions based

on the symmetric MNL choice model.

EC.4.1. Single Product

Lemma EC.1. Suppose Assumption 1 holds. Then, if at each historical price only a fraction

z of non-purchasing customers are observed, the asymptotic estimated purchase probability of a

customer at price p would be F̂ (·) = 1−F (p)

1−F (p)+zF (p)
.

Proof of Lemma EC.1. Let B(p) be the number of customers that purchase the product at

price p in the data, and let N(p) indicate the number of non-purchasing customers at price p. By

assumption, only zN(p) of these non-purchasing customers are recorded in the data. By definition,

at any price p, we have 1− F̂ (p) = B(p)

B(p)+zN(p)
, while 1−F (p) = B(p)

B(p)+N(p)
. Therefore,

B(p) = (1− F̂ (p))(B(p) + zN(p)) = (1−F (p))(B(p) +N(p)).

Thus we have

1− F̂ (p) = (1−F (p))
B(p) +N(p)

B(p) + zN(p)
= (1−F (p))

B(p)+N(p)

B(p)+N(p)

B(p)+zN(p)

B(p)+N(p)

=
1−F (p)

1−F (p) + zF (p)
.

Where the last equality follows from the fact that

B(p) + zN(p)

B(p) +N(p)
=

B(p)

B(p) +N(p)
+

zN(p)

B(p) +N(p)
= 1−F (p) + zF (p).

�
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Proposition EC.2. Suppose Assumptions 1 and 2 hold. Moreover, assume F (p) = p
a
. We have:

R(p∗)

R(p̂)
≥ 8

9
.

Proof of Proposition EC.2. From Proposition 1, we have

p∗ ∈ arg max
p≥0

p

∫ +∞

p

g(x)(1−F (x))dx= arg max
p≥0

p

ab

∫ a

p

(a−x)dx= arg max
p≥0

p(ax− x2

2
)
∣∣∣a
p

= arg max
p≥0

p(
a2

2
− ap+

p2

2
).

By taking the first-order condition with respect to p we obtain

a2

2
− 2ap+

3p2

2
= 0,

Thus, p∗ = a
3
, which results in a revenue of 2a

9
, while the optimal revenue is a

4
, proving the claimed

ratio. We note that p= a is also a root of a2

2
− 2ap+ 3p2

2
= 0. However, a

∫ b
a
g(x)(1−F (x))dx= 0,

and hence

a 6= arg max
p≥0

p

∫ b

p

g(x)(1−F (x))dx.

�

Corollary EC.1. Suppose Assumptions 1 and 2 hold. Moreover, let F (p) = p
a
. Then as long

as at each historical price, only a fraction z < 0.25 of non-purchasing customers are recorded in

the data, the asymptotic optimal model-free price p∗ generates a higher revenue than that of the

model-based optimal price, estimated from the censored data.

Proof of Corollary EC.1. By Lemma EC.1, the estimated asymptotic purchase probability at

price p would be a−p
a−p+zp and the model-based optimal price will be the optimizer of p( a−p

a−p+zp).

By taking the first order condition, we note that the optimal model-based price would be a(1−
√
z)

1−z

leading to a revenue of a(1−
√
z)(
√
z−z)

(1−z)2 . To conclude the proof, we note that from Proposition EC.2,

the revenue from p∗ would be 2a
9

and it is easy to verify that (1−
√
z)(
√
z−z)

(1−z)2 < 2
9

as long as z < 0.25.

�

EC.4.2. Multiple Products

We note that with a slight abuse of notation, we can extend the insight from Corollary EC.1 to the

setting with multiple products explored in Section EC.3. We assume the historical prices satisfy

Pij ≡ Pi for all i ∈ C . Moreover, we assume that customers make decisions based on the MNL

choice model specified in Equation (EC.17). Then, the following corollary specifies the estimated

MNL optimal price from censored data in terms of w0(·), where w0(·) indicates the positive part

of the lambert function and is defined as w0(x)ew0(x) = x, x≥ 0.
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Corollary EC.2. Suppose the firm samples the price vector seen by each past customer i, Pi,

from a distribution with PDF g(p) = 1/b for p∈ [0, b], where b > p̂= w0(neα−1)+1

β
. If at each historical

price vector, only a fraction z of non-purchasing customers are recorded in the data, the asymptotic

estimated MNL optimal price can be expressed as p̄=
w0(ne

α−1

z )+1

β
. Moreover, there exists ẑ > 0 such

that as long as 0 ≤ z < ẑ the asymptotic optimal model-free price p∗ generates a higher revenue

than p̄, the model-based optimal price, estimated from the censored data. �

Proof of Corollary EC.2. With a slight abuse of notation we can notice that Lemma EC.1 is

applicable here. Thus, at each given price p, the asymptotic estimated probability of purchase can

be expressed as:

F̂ (p) =
neα−βp

neα−βp + z

and hence p̄ will be the optimizer of:
pneα−βp

neα−βp + z
.

By taking the first order condition, it can be easily verified that p̄=
w0(ne

α−1

z )+1

β
. We note that

when there is no censoring in the data, the MNL optimal price is p̂= w0(neα−1)+1

β
. It follows from

Proposition EC.1 that the model-free optimal price p∗ will always guarantee at least 50% of the

revenue from p̂ and is not affected by censoring as mentioned in Remark 1. However, we note that

since 0 ≤ z ≤ 1, we have p̄ ≥ p̂ ≥ p∗ for all z, while Υ(p) is strictly decreasing in p for all p > p̂

(which follows from the fact that p̂ is the unique point satisfying the first order condition for the

pseudo-concave function Υ(p) while Υ(0) = Υ(∞) = 0). Moreover, as the positive part of w0(·) is

known to be a strictly increasing function, p̄ is strictly decreasing in z. Therefore, Υ(p̄) is strictly

increasing in z, becoming zero when z→ 0, as limz→0 p̄=∞, leading to limz→0 Υ(p̄) = 0. Therefore,

there must exist ẑ ∈ (0,1] such that for all 0≤ z < ẑ, Υ(p̄)≤Υ(p∗). �

EC.5. Supplementary Results and Discussions

Proposition EC.3. If prices are set to their average historical values, the worst-case fraction

between the revenue obtained with this approach and the optimal value w.r.t. (OP-MIP) is asymp-

totically zero as the number of historical customers grow.

Proof of Proposition EC.3. Assume we have n = 1 product and m > 1 historical customers

where the purchase price of customers 1, · · · , (m−1), was 1, and the purchase price of customer m

was 2. Then, the average historic price of the product is m+1
m

. At this price, customers 1, · · · , (m−1)

will not make a purchase under their worst-case valuations while customer m will purchase the

product at price m+1
m

. However, setting the price of the product at 1 results in a revenue of m,

since all customers will purchase the product. Thus, the ratio of the revenue from the average price

to the optimal value of (OP-MIP) could be less than or equal to m+1
m2 . Taking the limit m→+∞

with respect to this ratio completes the proof. �
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Proposition EC.4. If prices are set uniformly at random based on the empirical distribution

defined by historical prices, the worst-case fraction between the revenue obtained with this approach

and the optimal value w.r.t. (OP-MIP) is asymptotically zero as the number of historical customers

grow.

Proof of Proposition EC.4. Assume we have n products and n historical customers. The his-

torical prices Pi observed by customer i, are defined by the following vectors:

P1 = (1,2,2, . . . ,2) ,

P2 = (2,1,2, . . . ,2) ,

P3 = (2,2,1,2, . . . ,2) ,

. . .

Pn = (2,2, . . . ,2,1) .

For the historical purchase choices, each customer i∈ {1, . . . , n} purchased product i.

Assume the vector of prices p is equal to one of P1, . . . ,Pn at random (with equal probability).

If p= P1, then for i= 1, we have P1c1 ≤ pc1 and hence the revenue from customer 1 is 1. For any

customer i > 1, we have Pici < pci , hence the revenue form any customer i > 1 is zero. Similarly we

can show that if p= Pi for any i > 1, the total revenue will be 1, under the worst-case customer

valuations.

However, for p= (1,1, . . . ,1), the revenue will be n as every customer will make a purchase at

price 1. Therefore, the ratio of the expected revenue from the price observed by a random historical

customer to the optimal value of (OP-MIP) could be less than or equal to 1
n

. Taking the limit

n→+∞ with respect to this ratio completes the proof. �

In the following example we show that the prices obtained through the LP relaxation of the program

(OP-MIP), have a worse worst-case performance than the conservative pricing approach.

Example EC.1. Consider an instance with m= 3 customers and n= 2 products. The historical

prices Pij and the customer choices (in bold) are listed in the table below:

Price Product 1 Product 2
Customer 1 1 2
Customer 2 2 3
Customer 3 1 3

It can be shown that the LP relaxation yields the price vector pLP = (1.2,2.3) and an upper

bound of 4.8 to the optimal value of (OP-MIP). However, when evaluating (OP-MIP) with variables

p fixed to pLP, both customers 1 and 3 do not purchase any products, while customer 2 purchases

product 1 in the worst-case. The following set of valuations, vij, that are drawn from the IC
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polyhedra of customers 1, 2 and 3 conform to these customer choices that lead to a worst-case

revenue for the firm.

Valuation Product 1 Product 2
Customer 1 1 0
Customer 2 2 3
Customer 3 1 0

Thus, the total revenue generated from pLP is $1.2. The optimal solution of this instance is $4.0

certified by prices p∗ = (1.0,2.0), which leads to an LP solution ratio of 30%, worse than the

conservative price ratio of
¯
P/P̄ = 1/3≈ 33%.

The optimal LP solution associated with variables y provides insights into the poor performance

of the heuristic. In particular, consider inequality (20) for customer 2 (i= 2) and product 1 (j = 1):

τ2 ≤ p1 +P22(1− y21).

At the LP optimality, y21 = 0.4 and the above right-hand side is equal to 3. The inequality is also

tight, leading to a (relaxed) revenue of τ2 = 3.0. However, with integrality constraints, y21 = 1.0

and the constraint is again tight with τ2 ≤ p1 = 1.2, which is a significant decrease in revenue. The

same issue is identified for the other customers.

More generally, the big-M structure of inequalities (20) tends to result in the optimal LP solution

pricing pj slightly higher than the historical prices for most of the customer i with ci = j, in spite

of the fact that the indicator I(pj > Picj ) has been encoded in (OP-MIP) to represent the no-

purchase option. More precisely, yij can be set to 1− ε for any sufficiently small ε to overcome that

condition, and the objective value of the LP is not impacted significantly since the customer is still

assumed to purchase the product. However, when the integrality constraint is imposed, either the

inequality becomes binding with respect to some price or the no-purchase option is chosen, leading

to a smaller expected revenue. �
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