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Supplemental Note

“Pricing and Matching with Forward-looking Buyers and Sellers”

A. Auxiliary Properties

This section discusses some useful auxiliary properties that will be used for the analysis in this

paper.

Lemma S.1. If (ICd’) and (IRd) hold, then for any φ,

E−φ [pφ]≤ vφE−φ [mφ]−
∫ vφ

v′=v
E−φ

[
mφv′

]
dv′− bE−φ [(sφ− tφ)] .

Proof of Lemma S.1. Define ud(φ,yφ), ∂
∂vφ

Ud(φ,yφ). Applying the envelope theorem, we have:

E−φ
[
Ud (φ,yφ)

]
=

∫ vφ

v′=v
E−φ

[
ud
(
φv′ , yφv′

)]
dv′+E−φ

[
Ud
(
φv, yφv

)]
=

∫ vφ

v′=v
E−φ

[
mφv′

]
dv′+E−φ

[
Ud
(
φv, yφv

)]
≥
∫ vφ

v′=v
E−φ

[
mφv′

]
dv′, (S.1)

where the first equality follows from Fubini’s theorem and the envelope theorem (specifically,

Theorem 2 of Milgrom, P, I Segal. 2002. Envelope theorems for arbitrary choice sets. Econometrica

70(2) 583–601), the second equality follows from the definition of ud(·) and Ud(φ,yφ) = vφmφ −

pφ− b (sφ− tφ), and the inequality follows from (IRd) for φv. Consequently,

E−φ [pφ] = vφE−φ [mφ]−E−φ
[
Ud(φ,yφ)

]
− bE−φ [(sφ− tφ)]

≤ vφE−φ [mφ]−
∫ vφ

v′=v
E−φ

[
mφv′

]
dv′− bE−φ [(sφ− tφ)] ,

where the first equality follows from the definition of Ud(·), the first inequality follows from

(S.1). �

Lemma S.2. If (ICd’) and (IRd) hold, then

E

 ∑
φ∈HT

pφ

≤ E

 ∑
φ∈HT

V d (vφ)mφ− b (sφ− tφ)

 .
Proof of Lemma S.2. We have that
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E

 ∑
φ∈HT

pφ

= E

 ∑
φ∈HT

E−φ [pφ]


≤ E

 ∑
φ∈HT

vφE−φ [mφ]−
∫ vφ

v′=v
E−φ

[
mφv′

]
dv′− bE−φ [(sφ− tφ)]

 ,
where the inequality follows from Lemma S.1. We now prove that the right hand side of the above

is the desired quantity by changing the order of integration:

E

 ∑
φ∈HT

vφE−φ [mφ]−
∫ vφ

v′=v
E−φ

[
mφv′

]
dv′− bE−φ [(sφ− tφ)]


= E

 ∑
φ∈HT

Evφ

[
vφE−φ [mφ]−

∫ vφ

v′=v
E−φ

[
mφv′

]
dv′
]
− bE−φ [(sφ− tφ)]


= E

 ∑
φ∈HT

∫ v̄

vφ=v

(
vφE−φ [mφ]−

∫ vφ

v′=v
E−φ

[
mφv′

]
dv′
)
fd(vφ)dvφ− bE−φ [(sφ− tφ)]


= E

 ∑
φ∈HT

∫ v̄

vφ=v

(
vφ−

F̄ d(vφ)

fd(vφ)

)
E−φ [mφ]fd(vφ)dvφ− bE−φ [(sφ− tφ)]


= E

 ∑
φ∈HT

Evφ

[(
vφ−

F̄ d(vφ)

fd(vφ)

)
E−φ [mφ]

]
− bE−φ [(sφ− tφ)]


= E

 ∑
φ∈HT

(
vφ−

F̄ d(vφ)

fd(vφ)

)
mφ− b (sφ− tφ)


= E

 ∑
φ∈HT

V d (vφ)mφ− b (sφ− tφ)

 ,
where the second and the fourth equalities follow from the fact that vφ is independent of tφ, and

the third equality follows from an exchange in the order of integration that

∫ v̄

vφ=v

∫ vφ

v′=v
E−φ

[
mφv′

]
dv′fd(vφ)dvφ =

∫ v̄

v′=v

∫ v̄

vφ=v′
fd(vφ)dvφE−φ

[
mφv′

]
dv′

=

∫ v̄

v′=v
F̄ d(v′)E−φ

[
mφv′

]
dv′

=

∫ v̄

v′=v

F̄ d(v′)

fd(v′)
E−φ

[
mφv′

]
fd(v′)dv′

=

∫ v̄

vφ=v

F̄ d(vφ)

fd(vφ)
E−φ [mφ]fd(vφ)dvφ. �
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Lemma S.3. If (ICs’) and (IRs) hold, for any ψ,

E−ψ [pψ]≥ cψE−ψ [mψ] +

∫ c̄

c′=cψ

E−ψ
[
mψc′

]
dc′+hE−ψ [(sψ − tψ)] .

Proof of Lemma S.3. Define us(ψ,y), ∂
∂cψ

U s(ψ,y). Applying the envelope theorem, we have:

E−ψ [U s (ψ,yψ)] =

∫ c̄

c′=cψ

E−ψ
[
us
(
ψc′ , yψc′

)]
dc′+E−ψ [U s (ψc̄, yψc̄)]

=

∫ c̄

c′=cψ

E−ψ
[
mψc′

]
dc′+E−ψ [U s (ψc̄, yψc̄)]

≥
∫ c̄

c′=cψ

E−ψ
[
mψc′

]
dc′, (S.2)

where the first equality follows from Fubini’s theorem and the envelope theorem (specifically,

Milgrom and Segal 2002, Theorem 2), the second equality follows from the definition of us(·) and

U s(·), and the inequality follows from (IRs) for ψc̄. Consequently,

E−ψ [pψ] = cψE−ψ [mψ] +E−ψ [U s(ψ,yψ)] +hE−ψ [(sψ − tψ)]

≥ cψE−ψ [mψ] +

∫ c̄

c′=cψ

E−ψ
[
mψc′

]
dc′+hE−ψ [(sψ − tψ)] ,

where the first equality follows from the definition of U s(·), the first inequality follows from

(S.2). �

Lemma S.4. If (ICs’) and (IRs) hold, then

E

 ∑
ψ∈HT

pψ

≥ E

 ∑
ψ∈HT

V s (cψ)mψ +h (sψ − tψ)

 .
Proof of Lemma S.4. We have that

E

 ∑
ψ∈HT

pψ

= E

 ∑
ψ∈HT

E−ψ [pψ]


≥ E

 ∑
ψ∈HT

cψE−ψ [mψ] +

∫ c̄

c′=cψ

E−ψ
[
mψc′

]
dc′+hE−ψ [(sψ − tψ)]

 ,
where the inequality follows from Lemma S.3. We now prove that the right hand side of the above

is the desired quantity by changing the order of integration:
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E

 ∑
ψ∈HT

cψE−ψ [mψ] +

∫ c̄

c′=cψ

E−ψ
[
mψc′

]
dc′+hE−ψ [(sψ − tψ)]


= E

 ∑
ψ∈HT

Ecψ

[
cψE−ψ [mψ] +

∫ c̄

c′=cψ

E−ψ
[
mψc′

]
dc′

]
+hE−ψ [(sψ − tψ)]


= E

 ∑
ψ∈HT

∫ c̄

cψ=c

(
cψE−ψ [mψ] +

∫ c̄

c′=cψ

E−ψ
[
mψc′

]
dc′

)
f s(cψ)dcψ +hE−ψ [(sψ − tψ)]


= E

 ∑
ψ∈HT

∫ c̄

cψ=c

(
cψ +

F s(cψ)

f s(cψ)

)
E−ψ [mψ]f s(cψ)dcψ +hE−ψ [(sψ − tψ)]


= E

 ∑
ψ∈HT

Ecψ

[(
cψ +

F s(cψ)

f s(cψ)

)
E−ψ [mψ]

]
+hE−ψ [(sψ − tψ)]


= E

 ∑
ψ∈HT

(
cψ +

F s(cψ)

f s(cψ)

)
mψ +h (sψ − tψ)


= E

 ∑
ψ∈HT

V s (cψ)mψ +h (sψ − tψ)

 ,
where the second and the fourth equalities follow from the fact that cψ is independent of tψ, and

the third equality follows from an exchange in the order of integration that

∫ c̄

cψ=c

∫ c̄

c′=cψ

E−ψ
[
mψc′

]
dc′f s(cψ)dcψ =

∫ c̄

c′=c

∫ cψ

cψ=0

f s(cψ)dcψE−ψ
[
mψc′

]
dc′

=

∫ c̄

c′=c
F s(c′)E−ψ

[
mψc′

]
dc′

=

∫ c̄

c′=c

F s(c′)

f s(c′)
E−ψ

[
mψc′

]
f s(c′)dc′

=

∫ c̄

cψ=c

F s(cψ)

f s(cψ)
E−ψ [mψ]f s(cψ)dcψ. �

Lemma S.5. µ∗ and J̄∗ are increasing in λd and λs, respectively.

Proof of Lemma S.5. (1) In this part, we prove that µ∗ and J̄∗ are increasing in λd.

Consider any two market conditions with λd1 and λd2, where λd1 < λd2. The subscript (1 or 2) in

all following notation denotes the index of the market environment that the intermediary operates

at. Therefore, we need to show µ∗2 ≥ µ∗1 and J∗2 ≥ J∗1 .

The proof of µ∗2 ≥ µ∗1 is as follows.

For µ∈
[
0,min

{
λd1, λ

s
}]
∩
[
0,min

{
λd2, λ

s
}]

=
[
0,min

{
λd1, λ

s
}]

, we have
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V2 (µ)−V1 (µ) = V d

(
F̄ d,−1

(
µ

λd2T

))
−V d

(
F̄ d,−1

(
µ

λd1T

))
≥ 0,

where the inequality follows from Assumption 1. In addition, Assumptions 1 and 2 imply that

Vi (µ) is decreasing in µ. Therefore, µ∗2 ≥ µ∗1.

The proof of J∗2 ≥ J∗1 is as follows.

Given the optimal prices p∗1 and w∗1 in market environment 1 with λd1, we construct prices p2 and

w2 for market environment 2 with λd2, where λd2F̄
d (p2) = λd1F̄

d (p∗1) and w2 =w∗1.

Therefore, J̄∗2 ≥ λd2Tp2F̄
d (p2)−λsTw2F

s (w2) = λd1Tp2F̄
d (p∗1)−λsTw∗1F s (w∗1)≥ λd1Tp∗1F̄ d (p∗1)−

λsTw∗1F
s (w∗1) = J̄∗1 . The first inequality follows from the property that p2 and w2 are feasible but

not necessarily optimal solutions to the optimization problem (D). The first equality follows from

the definitions of p2 and w2. The second inequality holds since the condition that λd1 <λd2 implies

p∗1 ≤ p2.

(2) In this part, we prove that µ∗ and J̄∗ are increasing in λs.

Consider any two market conditions with λs1 and λs2, where λs1 < λs2. The subscript (1 or 2) in

all following notation denotes the index of the market environment that the intermediary operates

at. Therefore, we need to show µ∗2 ≥ µ∗1 and J∗2 ≥ J∗1 .

The proof of µ∗2 ≥ µ∗1 is as follows.

For µ∈
[
0,min

{
λd, λs1

}]
∩
[
0,min

{
λd, λs2

}]
=
[
0,min

{
λd, λs1

}]
, we have

V2 (µ)−V1 (µ) =−V s

(
F s,−1

(
µ

λs2T

))
+V s

(
F s,−1

(
µ

λs1T

))
≥ 0,

where the inequality follows from Assumption 2. In addition, Assumptions 1 and 2 imply that

Vi (µ) is decreasing in µ. Therefore, µ∗2 ≥ µ∗1.

The proof of J∗2 ≥ J∗1 is as follows.

Given the optimal prices p∗1 and w∗1 in market environment 1 with λs1, we construct prices p2 and

w2 for market environment 2 with λs2, where p2 = p∗1 and λs2F
s (w2) = λs1F

s (w∗1).

Therefore, J̄∗2 ≥ λdTp2F̄
d (p2)−λs2Tw2F

s (w2) = λdT p̄1F̄
d (p∗1)−λs1Tw∗2F s (w∗1)≥ λdTp∗1F̄ d (p∗1)−

λs1Tw
∗
1F

s (w∗1) = J̄∗1 . The first inequality follows from the property that p2 and w2 are feasible but

not necessarily optimal solutions to the optimization problem (D). The first equality follows from

the definitions of p2 and w2. The second inequality holds since the condition that λd1 >λd2 implies

w∗1 ≤w2. Therefore, J̄∗ is increasing in λs. �
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B. Proofs for §5
Proof of Proposition 1. Note that F̄ d(·) has the inverse F̄ d,−1(·) and F s(·) has the inverse

F s,−1(·). Then we can prove the result in the quantile space. Define qdt , F̄
d (π̂dt ) and R(qdt ) ,

π̂dt F̄
d (π̂dt ). Then

R′
(
qdt
)

=
dπ̂dt
dqdt

F̄ d
(
π̂dt
)
− π̂dt fd

(
π̂dt
) dπ̂dt

dqdt
=−

(
π̂dt −

F̄ d (π̂dt )

fd (π̂dt )

)
fd
(
π̂dt
) dπ̂dt

dqdt

=

(
π̂dt −

F̄ d (π̂dt )

fd (π̂dt )

)
dF̄ d (π̂dt )

dqdt
= π̂dt −

F̄ d (π̂dt )

fd (π̂dt )
. (S.3)

Hence, Assumption 1 implies that R(q) is concave in q, since π̂dt decreases in qdt . Similarly, define

qst , F
s (π̂st ) and C(qst ), π̂

s
tF

s (π̂st ). Analogously, we can show that Assumption 2 implies that C(q)

is convex in q.

Optimization problem (D) is equivalent to the following optimization problem:

max{qdt ,qst∈[0,1]:∀t∈[0,T ]}

∫ T

0

λdR(qdt )dt−
∫ T

0

λsC(qst )dt

s.t. λdqdt = λsqst , ∀ t∈ [0, T ].

The optimization problem above is equivalent to the following optimization problem

max{qd,qs∈[0,1]} T
(
λdR(qd)−λsC(qs)

)
(S.4)

s.t. λdTqd = λsTqs.

To compute the optimal solution to the optimization problem (S.4), denoted as (q∗,d, q∗,s), we

define a new variable µ, λdTqd. Now, we can write the optimization problem (S.4) in the following

tractable form with respect to µt:

max T
(
λdR

( µ

λdT

)
−λsC

( µ

λsT

))
(S.5)

s.t. µ∈
[
0,min

{
λdT,λsT

}]
.

In the optimization problem (S.5), for the objective function, we have

d

dµ
T
(
λdR

( µ

λdT

)
−λsC

( µ

λsT

))
=R′

( µ

λdT

)
−C ′

( µ

λsT

)
= V (µ) .

Recall that R(q) is concave in q and C(q) is convex in q. Hence,
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d2

dµ2
T
(
λdR

( µ

λdT

)
−λsC

( µ

λsT

))
≤ 0.

In addition, we notice that

d

dµ
T
(
λdR

( µ

λdT

)
−λsC

( µ

λsT

))∣∣∣∣
µ=0

=R′ (0)−C ′ (0) = v̄− c≥ 0.

Therefore, the optimal solution to the optimization problem (S.5), denoted as µ∗, is given by the

following equation:

µ∗ = max

{
µ∈

[
0,min

{
λdT,λsT

}]
:
d

dµ
T
(
λdR

( µ

λdT

)
−λsC

( µ

λsT

))
≥ 0

}
= max

{
µ∈

[
0,min

{
λdT,λsT

}]
: V (µ)≥ 0

}
.

Therefore, the optimal value of the optimization problems (D) and (S.4) is J̄∗ = (p∗−w∗)µ∗.

Next, we prove p∗ ≥w∗. This result immediately follows from properties that

p∗ ≥ p∗− F̄
d(p∗)

fd(p∗)
≥w∗+

F s(w∗)

f s(w∗)
≥w∗,

where the second inequality follows from Equation (2). �

Proof of Lemma 2. Consider the optimal solution of optimization problem (B),{
x∗φ,ψ : φ,ψ ∈HT

}
. Define m∗φ ,

∑
ψ∈HT x

∗
φ,ψ and m∗ψ ,

∑
φ∈HT x

∗
φ,ψ. Hence, m∗φ,m

∗
ψ ∈ {0,1}. We

have

E
[
J̄
(
HT
)]

= E

 ∑
φ,ψ∈HT

(
V d (vφ)−V s (cψ)− b (tψ − tφ)

+−h (tφ− tψ)
+
)
x∗φψ


≤ E

 ∑
φ,ψ∈HT

(
V d (vφ)−V s (cψ)

)
x∗φψ


= E

 ∑
φ,ψ∈HT

(
V d (vφ)− η−V s (cψ) + η

)
x∗φψ


= E

 ∑
φ∈HT

(
V d (vφ)− η

)
m∗φ−

∑
ψ∈HT

(V s (cψ)− η)m∗ψ


= E

 ∑
φ∈HT

(
vφ−

F̄ d(vφ)

fd(vφ)
− η
)
m∗φ−

∑
ψ∈HT

(
cψ +

F s(cψ)

f s(cψ)
− η
)
m∗ψ
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≤ E

 ∑
φ∈HT

(
vφ−

F̄ d(vφ)

fd(vφ)
− η
)+

+
∑
ψ∈HT

(
η− cψ −

F s(cψ)

f s(cψ)

)+


, J̄∗,η.

The first inequality follows from the property that b,h ≥ 0. The second equality holds for any

η ∈R. The fourth equality follows from the definitions of V d (vφ) and V s (cψ). The second inequality

follows from the property that m∗φ,m
∗
ψ ∈ {0,1}.

Define

gd(η),max

{
v ∈ [v, v̄] : v− F̄

d(v)

fd(v)
≤ η
}
.

Following from the property that d
dv

(
F̄ d(v)(v− η)

)
= −fd(v)

(
v− F̄d(v)

fd(v)
− η
)

and Assumption 1,

we have

gd(η)∈ arg max
v∈[v,v̄]

F̄ d(v)(v− η).

Define

gs(η),max

{
c∈ [c, c̄] : c+

F s(c)

f s(v)
≤ η
}
.

Following from the property that d
dv

(F s(c)(c− η)) = f s(c)
(
c+ F s(c)

fs(c)
− η
)

and Assumption 2, we

have

gs(η)∈ arg min
c∈[c,c̄]

F s(c)(c− η).

We have

J̄∗,η = λdT E

[(
vφ−

F̄ d(vφ)

fd(vφ)
− η
)+
]

+λsT E

[(
η− cψ −

F s(cψ)

f s(cψ)

)+
]

= λdT

∫ v̄

v=gd(η)

(
v− F̄

d(v)

fd(v)
− η
)
fd(v)dv−λsT

∫ gs(η)

c=c

(
c+

F s(c)

f s(c)
− η
)
f s(c)dc

= λdT F̄ d
(
gd(η)

) (
gd(η)− η

)
−λsTF s (gs(η)) (gs(η)− η) (S.6)

= max
v∈[v,v̄],c∈[c,c̄]

T
(
λdF̄ d(v) (v− η)−λsF s(c) (c− η)

)
. (S.7)

The first equality is due to Wald’s identity. The second equality follows from the definitions of gd(η)

and gs(η). The third equality is due to
∫ v̄
v=gd(η)

(v − F̄d(v)

fd(v)
)fd(v)dv =

∫ v̄
v=gd(η)

(vfd(v)− F̄ d(v))dv =∫ v̄
v=gd(η)

vfd(v)dv−vF̄ d(v))|v̄
v=gd(η)

−
∫ v̄
v=gd(η)

vfd(v)dv= gd(η)F̄ d(gd(η)) by integration by parts, and

analogously,
∫ gs(η)

c=c
(c + F s(c)

fs(c)
)f s(c)dc = gs(η)F s(gs(η)). The fifth equality follows from properties

that gd(η)∈ arg maxv∈[v,v̄] F̄
d(v)(v− η) and gs(η)∈ arg minc∈[c,c̄]F

s(c)(c− η).
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By setting qd , F̄ d(v), R(qd), vF̄ d(v), qs , F s(c), and C(qs), cF s(c), Equation (S.7) can be

written in the following way:

max
qd,qs∈[0,1]

T
(
λd
(
R(qd)− ηqd

)
−λs (C(qs)− ηqs)

)
. (S.8)

Optimization problem (S.8) is a Lagrangian relaxation of the optimization problem (S.4). Recall

from the proof of Proposition 1 that the objective function in (S.8) is concave in (qd, qs). In addition,

the solution (qd, qs) =
(

λs

λd+λs
, λd

λd+λs

)
satisfies conditions that qd, qs ∈ (0,1) and λdTqd = λsTqs.

Therefore, Slater’s theorem (strong duality theorem) implies

min
η∈R

J̄∗,η = J̄∗.

Therefore,

E
[
J̄
(
HT
)]
≤ J̄∗.

�

Proof of Theorem 1. (i) Under policy πWFP, given that all other buyers φ̂ 6= φ and all sellers

behave myopically, buyer φ’s best response stopping rule τπ
WFP,Mg

φ and purchasing rule aπ
WFP,Mg

φ

can be calculated by solving the following optimization problem:

sup
τφ∈[tφ,T ]

aφ∈{0,1}

E

[
Ud (φ,yφ)

∣∣∣∣πWFP,d
tφ

,
(
Itφ−

)+
, φ

]
.

Denote by ymφ buyer φ’s myopic policy, where τmφ = tφ and amφ = 1{vφ ≥ p∗}. Consider any yφ with

τφ ∈ [tφ, T ] and aφ ∈ {0,1}. We have

E

[
Ud (φ,yφ)

∣∣∣∣πWFP,d
tφ

,
(
Itφ−

)+
, φ

]
= E

[
vφmφ− pφ− b (sφ− tφ)

∣∣∣∣πWFP,d
tφ

,
(
Itφ−

)+
, φ

]
= E

[(
vφ−πWFP,d

τφ

)
mφ− b (sφ− tφ)

∣∣∣∣πWFP,d
tφ

,
(
Itφ−

)+
, φ

]
= E

[
(vφ− p∗)mφ− b (τφ− tφ)

∣∣∣∣πWFP,d
tφ

,
(
Itφ−

)+
, φ

]
≤ E

[
(vφ− p∗)+

mφ− b (τφ− tφ)

∣∣∣∣πWFP,d
tφ

,
(
Itφ−

)+
, φ

]
≤ E

[
(vφ− p∗)+

mφ

∣∣∣∣πWFP,d
tφ

,
(
Itφ−

)+
, φ

]
= E

[
Ud
(
φ,ymφ

) ∣∣∣∣πWFP,d
tφ

,
(
Itφ−

)+
, φ

]
,

where the second inequality follows from the greedy matching policy that if τφ̂ > τφ and aφ̂ = aφ = 1,

then mφ̂ ≤mφ, and the property that τφ ≥ tφ.
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Therefore, buyer φ’s best response is τπ
WFP,Mg

φ = tφ and aπ
WFP,Mg

φ = 1{vφ ≥ p∗}.

(ii) The proof is analogous to part (i), expect that the expectations are not conditional on

(It−)
+

. �

Proof of Proposition 2. (a) We denote Nd
t ,

∑
φ∈Ht 1{vφ ≥ p∗} and N s

t ,
∑

ψ∈Ht 1{cψ ≤w∗}.

Hence, Nd
t is a Poisson random variable with parameter λdtF̄ d (p∗) = µ∗ t

T
, and N s

t is a Poisson

random variable with parameter λstF s (w∗) = µ∗ t
T

.

First, we analyze the price process on the demand side. For the unmatched supply-demand

quantity It− = N s
t− − Nd

t−, we have E [It−] = E
[
N s
t−
]
− E

[
Nd
t−
]

= 0 and Var [It−] = Var
[
N s
t−
]

+

Var
[
Nd
t−
]

= 2µ∗t
T

. Therefore, for any k ∈ [0,1), we have

Pr

(
It− >−

1

2
µ∗min

{
k,1− t

T

}∣∣∣∣It− ≤ 0

)
= 1−Pr

(
It− ≤−

1

2
µ∗min

{
k,1− t

T

}∣∣∣∣It− ≤ 0

)
= 1−

Pr
(
It− ≤− 1

2
µ∗min

{
k,1− t

T

})
Pr(It− ≤ 0)

≥ 1− 2Pr

(
It− ≤−

1

2
µ∗min

{
k,1− t

T

})
≥ 1− 16t

µ∗min
{
k2,
(
1− t

T

)2
}
T

≥ 1− 16

µ∗min
{
k2,
(
1− t

T

)2
} .

The first inequality follows from the symmetry property that for any n ∈ N, P (It− = n) =

P (It− =−n). Thus, P (It− ≤ 0) ≥ 1
2
. The second inequality follows from Chebyshev’s inequality.

The third inequality follows from the property that t≤ T .

Consider any k ∈ [0,1). Define ∆N s
t , N s

min{t+kT,T} − N s
t−. Hence, E [∆N s

t ] = Var [∆N s
t ] =

µ∗min
{
k,1− t

T

}
. Therefore, we have

Pr

(
∆N s

t ≥
1

2
µ∗min

{
k,1− t

T

})
≥ 1−

µ∗min
{
k,1− t

T

}(
µ∗min

{
k,1− t

T

}
− 1

2
µ∗min

{
k,1− t

T

})2

≥ 1− µ∗(
µ∗min

{
k,1− t

T

}
− 1

2
µ∗min

{
k,1− t

T

})2

= 1− 4

µ∗min
{
k2,
(
1− t

T

)2
} .

The first inequality follows from Chebyshev’s inequality. The second inequality follows from the

property that min
{
k,1− t

T

}
≤ 1.

For any t ∈ [0, T ), define At ,
{
It− ∈

(
− 1

2
µ∗min

{
k,1− t

T

}
,0
]

and ∆N s
t ≥ 1

2
µ∗min

{
k,1− t

T

}}
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and Act ,
{
It− ≤− 1

2
µ∗min

{
k,1− t

T

}
or ∆N s

t <
1
2
µ∗min

{
k,1− t

T

}}
. Hence,

Pr (Act |tφ = t, vφ ≥ p∗, It− ≤ 0) = 1−Pr(At|tφ = t, vφ ≥ p∗, It− ≤ 0)

= 1−Pr

(
It− >−

1

2
µ∗min

{
k,1− t

T

}∣∣∣∣It− ≤ 0

)
·Pr

(
∆N s

t ≥
1

2
µ∗min

{
k,1− t

T

})

≤ 1−

1− 16

µ∗min
{
k2,
(
1− t

T

)2
}
1− 4

µ∗min
{
k2,
(
1− t

T

)2
}


≤ 20

µ∗min
{
k2,
(
1− t

T

)2
} .

In addition, we notice that Pr (Ac|tφ = t, vφ ≥ p∗, It− ≤ 0) ≤ 1. Therefore,

Pr (Ac|tφ = t, vφ ≥ p∗, It− ≤ 0)≤min

{
20

µ∗min
{
k2,(1− t

T )
2} ,1

}
.

Therefore, for any t∈ [0, T ), we have

E [sφ− tφ|tφ = t, vφ ≥ p∗, It− ≤ 0]

= E [sφ− tφ|tφ = t, vφ ≥ p∗, It− ≤ 0,At] ·Pr(At|tφ = t, vφ ≥ p∗, It− ≤ 0)

+E [sφ− tφ|tφ = t, vφ ≥ p∗, It− ≤ 0,Act ] ·Pr(Act |tφ = t, vφ ≥ p∗, It− ≤ 0)

≤ min{kT,T − t} · 1 +T ·Pr(Ac|tφ = t, vφ ≥ p∗, It− ≤ 0)

≤ min{kT,T − t}+T min

 20

µ∗min
{
k2,
(
1− t

T

)2
} ,1

 .

For any t∈ [0, T ), we have

Pr (mφ = 1|tφ = t, vφ ≥ p∗, It− ≤ 0) ≥ Pr(At|tφ = t, vφ ≥ p∗, It− ≤ 0)

= 1−Pr(Act |tφ = t, vφ ≥ p∗, It− ≤ 0)

≥ 1−min

 20

µ∗min
{
k2,
(
1− t

T

)2
} ,1

 .

Therefore,

E [sφ− tφ|tφ = t, vφ ≥ p∗, It− ≤ 0]

Pr (mφ = 1|tφ = t, vφ ≥ p∗, It− ≤ 0)
≤

min{kT,T − t}+T min
{

20
µ∗min{k2,(1− t

T )2} ,1
}

1−min
{

20
µ∗min{k2,(1− t

T )2} ,1
} .
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In addition, for any It− > 0 and buyer φ with tφ = t and vφ ≥ p∗, we have sφ = tφ and mφ = 1.

Hence, for any It− > 0,
E [sφ− tφ|tφ = t, vφ ≥ p∗, It−]

Pr (mφ = 1|tφ = t, vφ ≥ p∗, It−)
=

0

1
= 0.

Therefore, for any t∈ [0, T ),

EIt−
[
p∗−πWFP,d

t

]
= EIt−

[
p∗−πWFP,d

t |It− ≤ 0
]
·P (It− ≤ 0)

+EIt−
[
p∗−πWFP,d

t |It− > 0
]
·P (It− > 0)

≤ b
min{kT,T − t}+T min

{
20

µ∗min{k2,(1− t
T )2} ,1

}
1−min

{
20

µ∗min{k2,(1− t
T )2} ,1

} .

As a special case, when b= 0, we immediately have πWFP,d
t = p∗.

By doing the similar analysis for the price dynamics on the supply side, {πWFP,s}, except that

the probability and expectation are no loner conditional on It−, for any t∈ [0, T ), we have

πWFP,s
t −w∗ ≤ h

min{kT,T − t}+T min
{

20
µ∗min{k2,(1− t

T )2} ,1
}

1−min
{

20
µ∗min{k2,(1− t

T )2} ,1
} .

As a special case, when h= 0, we immediately have πWFP,s
t =w∗.

(b) Now, we prove the asymptotic result. Following from Equations (1) and (2) and Lemma S.5

that µ∗ is increasing in λd and λs, respectively, we have µ∗,(n) ≥ nαµ∗. By setting k(n) = k

nα/3
, we

have that for any t∈ [0, T ),

limsup
n→∞

EIt−

[
p∗,(n)−πWFP,d,(n)

t

]
≤ bT

nα/3

(
k+

20

µ∗k2

)
=O

(
1

nα/3

)
,

limsup
n→∞

w∗,(n)−πWFP,s,(n)
t ≤ hT

nα/3

(
k+

20

µ∗k2

)
=O

(
1

nα/3

)
. �

Proof of Theorem 2. The first inequality immediately follows from Lemma 2. Now, we prove

the second inequality. Under the waiting adjusted FP policy πWFP, we denote by Nd
t ,∑

φ∈Ht 1{vφ ≥ p∗} the number of buyers who arrive no later than time t and request to buy the

product, and N s
t ,

∑
ψ∈Ht 1{cψ ≤w∗} the number of sellers who arrive no later than time t and

request to sell the product. Hence, Nd
t is a Poisson random variable with parameter λdtF̄ d (p∗) =

µ∗ t
T

, and N s
t is a Poisson random variable with parameter λstF s (w∗) = µ∗ t

T
. We denote by Nt the

Poisson random variable with parameter µ∗ t
T

.
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Therefore, under the waiting adjusted FP policy πWFP and the greedy policy M g, we have

Jπ
WFP,Mg

= E

 ∑
φ∈HT

πWFP,d
tφ

1{vφ ≥ p∗}1{mφ = 1}−
∑
ψ∈HT

πWFP,s
tψ

1{cψ ≤w∗}1{mψ = 1}


= (p∗−w∗)E

[
min

{
Nd
T ,N

s
T

}]
−E
[
b
∑
φ∈HT

E
[
sφ− tφ|tφ, vφ ≥ p∗,

(
Itφ−

)+
]

Pr
(
mφ = 1|tφ, vφ ≥ p∗,

(
Itφ−

)+
)1{vφ ≥ p∗}1{mφ = 1}

+h
∑
ψ∈HT

E [sψ − tψ|tψ, cψ ≤w∗]
Pr (mψ = 1|tψ, cψ ≤w∗)

1{cψ ≤w∗}1{mψ = 1}
]

= (p∗−w∗)E
[
min

{
Nd
T ,N

s
T

}]
−E
[
b
∑
φ∈HT

E
[
sφ− tφ|tφ, vφ ≥ p∗,

(
Itφ−

)+
]

Pr
(
mφ = 1|tφ, vφ ≥ p∗,

(
Itφ−

)+
)1{vφ ≥ p∗}E

[
1{mφ = 1} |tφ, vφ ≥ p∗,

(
Itφ−

)+
]

+h
∑
ψ∈HT

E [sψ − tψ|tψ, cψ ≤w∗]
Pr (mψ = 1|tψ, cψ ≤w∗)

1{cψ ≤w∗}E [1{mψ = 1} |tψ, cψ ≤w∗]
]

= (p∗−w∗)E
[
min

{
Nd
T ,N

s
T

}]
−E

[
b
∑
φ∈HT

E
[
sφ− tφ|tφ, vφ ≥ p∗,

(
Itφ−

)+
]
1{vφ ≥ p∗}

+h
∑
ψ∈HT

E [sψ − tψ|tψ, cψ ≤w∗]1{cψ ≤w∗}
]

= (p∗−w∗)E
[
min

{
Nd
T ,N

s
T

}]
−E

[
b
∑

φ:vφ≥p∗
(sφ− tφ) +h

∑
ψ:cψ≤w∗

(sψ − tψ)

]

= (p∗−w∗)E
[
min

{
Nd
T ,N

s
T

}]
−E

[∫ T

t=0

b
∑

φ:vφ≥p∗
1{t∈ [tφ, sφ]}+h

∑
ψ:cψ≤w∗

1{t∈ [tψ, sψ]}dt
]

= (p∗−w∗)E
[
min

{
Nd
T ,N

s
T

}]
−E

[∫ T

t=0

b
(
Nd
t −N s

t

)+
+h

(
N s
t −Nd

t

)+
dt

]
= (p∗−w∗)E

[
min

{
Nd
T ,N

s
T

}]
−
∫ T

t=0

E
[
b
(
Nd
t −N s

t

)+
+h

(
N s
t −Nd

t

)+
]
dt

≥ (p∗−w∗)E
[
µ∗−

(
µ∗−Nd

T

)+− (µ∗−N s
T )

+
]

−
∫ T

t=0

E

[
b

(
Nd
t −µ∗

t

T

)+

+ b

(
µ∗

t

T
−N s

t

)+

+h

(
N s
t −µ∗

t

T

)+

+h

(
µ∗

t

T
−Nd

t

)+
]
dt

= (p∗−w∗)E
[
µ∗− 2 (µ∗−NT )

+
]
− (b+h)

∫ T

t=0

E

[(
Nt−µ∗

t

T

)+

+

(
µ∗

t

T
−Nt

)+
]
dt

= (p∗−w∗)E
[
µ∗− 2 (NT −µ∗)+

+ 2(NT −µ∗)
]

− (b+h)

∫ T

t=0

E

[
2

(
Nt−µ∗

t

T

)+

−
(
Nt−µ∗

t

T

)]
dt
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= (p∗−w∗)E
[
µ∗− 2 (NT −µ∗)+

]
− (b+h)

∫ T

t=0

E

[
2

(
Nt−µ∗

t

T

)+
]
dt

≥ (p∗−w∗)µ∗− (p∗−w∗)
√
µ∗− (b+h)

∫ T

t=0

√
µ∗

t

T
dt

= (p∗−w∗)µ∗−
(
p∗−w∗+

2

3
(b+h)T

)√
µ∗.

Here the second equality follows from the definition of the waiting adjusted FP policy. The seventh

equality follows from the definition of the greedy matching policy. The first inequality follows from

the property that min{X,Y } ≥ a−(a−X)+−(a−Y )+ and the property that (X+Y )+ ≤X+ +Y +.

The ninth and tenth equalities follow from the property that X+ = X + (−X)+. The eleventh

equality is due to E[Nt] = µ∗ t
T

. The second inequality follows from Gallego and van Ryzin (1994)

Equation (18) that if X is a random variable with mean µ and standard deviation σ, then

E
[
(X − a)

+
]
≤
√
σ2 + (a−µ)2− (a−µ)

2
.

Therefore,

Jπ
WFP,Mg

J̄∗
≥

(p∗−w∗)µ∗−
(
p∗−w∗+ 2

3
(b+h)T

)√
µ∗

(p∗−w∗)µ∗

= 1−
(

1 +
2

3

(b+h)T

p∗−w∗

)
1√
µ∗
. �

Next, we do the asymptotic analysis. First, following from Equations (1) and (2) and Lemma

S.5 that µ∗ is increasing in λd and λs, respectively, we have µ∗,(n) ≥ nαµ∗.

Second, we have µ∗,(n) ≤min
{
λd,(n)T,λs,(n)T

}
= min

{
λdnαdT,λsnαsT

}
≤ nαmax

{
λd, λs

}
T .

Third, following from Equations (1), (2), and (3) and Lemma S.5 that J̄∗ is increasing in λd and

λs, respectively, we have J̄∗,(n) ≥ nαJ̄∗.

Therefore,

(
1 +

2

3

(b+h)T

p∗,(n)−w∗,(n)

)
1√
µ∗,(n)

=

(
1 +

2

3
(b+h)T

µ∗,(n)

J̄∗,(n)

)
1√
µ∗,(n)

≤

(
1 +

2

3
(b+h)T

nαmax
{
λd, λs

}
T

nαJ̄∗

)
1√
nαµ∗

= O

(
1√
nα

)
,

where the first equality follows from Equation (3), the first inequality follows from three properties
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that we prove in this corollary above. �

C. Proofs for §6
Proof of Theorem 3. (1) First, we prove that p∗ is increasing in λd.

Consider any two market conditions with λd1 and λd2, where λd1 <λ
d
2. The subscript (1 or 2) in all

following notation denotes the index of the market environment that the intermediary operates at.

First, we prove that p∗2 ≥ p∗1.

For i∈ {1,2}, define Wi (ν), Vi (νλdiT ) and ν∗i , µ
∗
i /λ

d
iT .

For ν ∈
[
0,min

{
1, λ

s

λd1

}]
∩
[
0,min

{
1, λ

s

λd2

}]
=
[
0,min

{
1, λ

s

λd2

}]
, we have

W2 (ν)−W1 (ν) =−V s

(
F s,−1

(
ν
λd2
λs

))
+V s

(
F s,−1

(
ν
λd1
λs

))
≤ 0,

where the inequality follows from Assumption 2. In addition, Assumptions 1 and 2 imply that

Wi (ν) is decreasing in ν. Therefore, ν∗2 ≤ ν∗1 . Therefore, the demand-supply balancing condition

(1) implies that p∗2 = F̄ d,−1 (ν∗2 )≥ F̄ d,−1 (ν∗1 ) = p∗1.

Second, the property that µ∗2 ≥ µ∗1 directly follows from Lemma S.5.

Third, we prove that w∗2 ≥w∗1.

The demand-supply balancing condition (1) and the above property that µ∗2 ≥ µ∗1 jointly imply

that w∗2 = F s,−1
(
µ∗2
λsT

)
≥ F s,−1

(
µ∗1
λsT

)
=w∗1.

Finally, the property that J̄∗2 ≥ J̄∗1 directly follows from Lemma S.5.

(2) Consider any two market conditions with λs1 and λs2, where λs1 <λ
s
2. The subscript (1 or 2) in

all following notation denotes the index of the market environment that the intermediary operates

at.

First, we prove that w∗2 ≤w∗1.

For i∈ {1,2}, define Wi (ν), Vi (νλsiT ) and ν∗i , µ
∗
i /λ

s
iT .

For ν ∈
[
0,min

{
1, λ

d

λs1

}]
∩
[
0,min

{
1, λ

d

λs2

}]
=
[
0,min

{
1, λ

d

λs2

}]
, we have

W2 (ν)−W1 (ν) = V d

(
F̄ d,−1

(
ν
λs2
λd

))
−V d

(
F̄ d,−1

(
ν
λs1
λd

))
≤ 0,

where the inequality follows from Assumption 1. In addition, Assumptions 1 and 2 imply that

Wi (ν) is decreasing in ν. Therefore, ν∗2 ≤ ν∗1 . Therefore, the demand-supply balancing condition

(1) implies that w∗2 = F s,−1 (ν∗2 )≤ F s,−1 (ν∗1 ) =w∗1.

Second, the property that µ∗2 ≥ µ∗1 directly follows from Lemma S.5.



16

Third, we prove that p∗2 ≤ p∗1.

The demand-supply balancing condition (1) and the above property that µ∗2 ≥ µ∗1 jointly imply

that p∗2 = F̄ d,−1
(

µ∗2
λdT

)
≤ F̄ d,−1

(
µ∗1
λdT

)
= p∗1.

Finally, the property that J̄∗2 ≥ J̄∗1 directly follows from Lemma S.5. �

D. Proofs for Appendix B

Proof of Theorem 4. Following from Equation 1, we have µ∗ = V+θd−p∗
2θd

= w∗−(C−θs)
2θs

. Hence,

p∗ = V + θd− 2θdµ∗ and w∗ =C − θs + 2θsµ∗.

Because buyer valuation and seller cost are uniformly distributed, for µ≤ [0,1], we have

V (µ) = V d
(
F̄ d,−1 (µ)

)
−V s (F s,−1 (µ)) = V d (V + θd− 2θdµ)−V s (C − θs + 2θsµ)

= (V + θd− 2θdµ− 2θdµ)− (C − θs + 2θsµ+ 2θsµ) = V −C − (4µ− 1) (θd + θs) .

Hence, following from Equation (2), we have

µ∗ = min

{
1

4

(
V −C
θd + θs

+ 1

)
,1

}
.

Therefore, µ∗ is decreasing in θd + θs.

Next, we analyze the effects of θd and θs on p∗. We have

p∗ = V + θd− 2θdµ∗ =

V − θd if θd + θs ≤ V−C
3

V − θd

2

(
V−C
θd+θs

− 1
)

if θd + θs > V−C
3

.

Now, we analyze the monotonicity property of θd
(
V−C
θd+θs

− 1
)

w.r.t. θd. We have

∂
∂θd
θd
(
V−C
θd+θs

− 1
)

= (V−C)θs

(θd+θs)
2 − 1. Hence, ∂

∂θd
θd
(
V−C
θd+θs

− 1
)
≥ 0 if θd <

(√
(V −C)θs− θs

)+

and

∂
∂θd
θd
(
V−C
θd+θs

− 1
)
≤ 0 if θd ≥

(√
(V −C)θs− θs

)+

. Hence, θd
(
V−C
θd+θs

− 1
)

is increasing in θd ∈[
0,
(√

(V −C)θs− θs
)+
]

and decreasing in θd ≥
(√

(V −C)θs− θs
)+

.

Therefore, p∗ is decreasing in θd ∈
[
0,max

{(
V−C

3
− θs

)+
,
(√

(V −C)θs− θs
)+
}]

and increasing

in θd ≥max

{(
V−C

3
− θs

)+
,
(√

(V −C)θs− θs
)+
}

.

In addition, because µ∗ is decreasing in θs, p∗ is increasing in θs.

Next, we analyze the effects of θd and θs on w∗. We have
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w∗ =C − θs + 2θsµ∗ =

C + θs if θd + θs ≤ V−C
3

C + θs

2

(
V−C
θd+θs

− 1
)

if θd + θs > V−C
3

.

Analogous to the analysis for p∗, we have that w∗ is increasing in

θs ∈
[
0,max

{(
V−C

3
− θd

)+
,
(√

(V −C)θd− θd
)+
}]

and decreasing in θs ≥

max

{(
V−C

3
− θd

)+
,
(√

(V −C)θd− θd
)+
}

.

In addition, because µ∗ is decreasing in θd, w∗ is decreasing in θd.

Next, we analyze the effects of θd and θs on J̄∗. We have

J̄∗ = (p∗−w∗)µ∗ =
(
V −C − (2µ∗− 1)

(
θd + θs

))
µ∗

=


V −C − θd− θs if θd + θs ≤ V−C

3

(V−C+θd+θs)
2

8(θd+θs)
if θd + θs > V−C

3

.

Now, we analyze the monotonicity property of the function (V−C+x)2

x
w.r.t. x ∈ R+. We have

d
dx

(V−C+x)2

x
=− (V−C)2

x2 +1. Hence, d
dx

(V−C+x)2

x
≤ 0 if x∈ [0, V −C] and d

dx

(V−C+x)2

x
≥ 0 if x≥ V −C.

Hence, (V−C+x)2

x
is decreasing in x∈ [0, V −C] and increasing in x≥ V −C.

Therefore, J̄∗ is decreasing in θd + θs ∈ [0, V −C] and increasing in θd + θs ≥ V −C. �

Proof of Theorem 5. Consider any two market conditions with θ1 and θ2, where θ1 < θ2. The

subscript (1 or 2) in all following notation denotes the index of the market environment that the

intermediary operates at.

(1) First, we prove that p∗2 ≥ p∗1.

For i∈ {1,2}, define Wi (p), Vi
(
λdT F̄ d

i (p)
)

and p∗i , F̄
d,−1
i

(
µ∗i
λdT

)
.

For p ∈
[
F̄ d,−1

1

(
min

{
λs

λd
,1
})
, v̄
]
∩
[
F̄ d,−1

2

(
min

{
λs

λd
,1
})
, v̄
]

=
[
F̄ d,−1

2

(
min

{
λs

λd
,1
})
, v̄
]
, we have

fd2 (p)

F̄d2 (p)
= θ1

θ2

fd1 (θ1p/θ2)

F̄d1 (θ1p/θ2)
≤ fd1 (p)

F̄d1 (p)
, where the inequality follows from the condition θ1 < θ2 and the property

that
pfd1 (p)

F̄d1 (p)
is increasing in p. In addition, we have F̄ d

2 (p) = F̄ d
1

(
θ1
θ2
p
)
≥ F̄ d

1 (p), where the inequality

follows from the condition θ1 < θ2 and the property that F̄ d
1 (p) is decreasing in p.

Therefore, we have

W2 (p)−W1 (p) =
(
V d

2 (p)−V d
1 (p)

)
−
(
V s

(
F s,−1

(
λd

λs
F̄ d

2 (p)

))
−V s

(
F s,−1

(
λd

λs
F̄ d

1 (p)

)))
≤ 0,

where the inequality follows from the above two properties and Assumption 2. In addition, Assump-

tions 1 and 2 imply that Wi (p) is increasing in p. Therefore, p∗2 ≥ p∗1.

Second, we prove that µ∗2 ≥ µ∗1.
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The property that Assumptions 1 and 2 imply that Vi (µ) is decreasing in µ, and the definition

of µ∗i jointly imply that V1 (µ∗1) ≥ 0. Hence, V d
1

(
F̄ d,−1

1

(
µ∗1
λdT

))
≥ 0. Thus, for µ ∈ [0, µ∗1], we have

V d
1

(
F̄ d,−1

1

(
µ

λdT

))
≥ 0, which follows from the property that Vi (µ) is decreasing in µ.

Therefore, for µ∈ [0, µ∗1], we have

V2 (µ)−V1 (µ) = V d
2

(
F̄ d,−1

2

( µ

λdT

))
−V d

1

(
F̄ d,−1

1

( µ

λdT

))
=

(
F̄ d,−1

2

( µ

λdT

)
− µ/λdT

fd2 (F̄ d,−1
2 (µ/λdT ))

)
−
(
F̄ d,−1

1

( µ

λdT

)
− µ/λdT

fd1 (F̄ d,−1
1 (µ/λdT ))

)
=
θ2

θ1

(
F̄ d,−1

1

( µ

λdT

)
− µ/λdT

fd1 (F̄ d,−1
1 (µ/λdT ))

)
−
(
F̄ d,−1

1

( µ

λdT

)
− µ/λdT

fd1 (F̄ d,−1
1 (µ/λdT ))

)
=

(
θ2

θ1

− 1

)(
F̄ d,−1

1

( µ

λdT

)
− µ/λdT

fd1 (F̄ d,−1
1 (µ/λdT ))

)
=

(
θ2

θ1

− 1

)
V d

1

(
F̄ d,−1

1

( µ

λdT

))
≥ 0,

where the inequality follows from the condition that θ1 < θ2, and the property established above

that V d
1

(
F̄ d,−1

1

(
µ

λdT

))
≥ 0. Therefore, µ∗2 ≥ µ∗1.

Third, we prove that w∗2 ≥w∗1.

The demand-supply balancing condition (1) and the property above that µ∗2 ≥ µ∗1 jointly imply

that w∗2 = F s,−1
(
µ∗2
λsT

)
≥ F s,−1

(
µ∗1
λsT

)
=w∗1.

Finally, we prove that J̄∗2 ≥ J̄∗1 .

Given the optimal prices p∗1 and w∗1 in market environment 1 with θ1, we construct prices p2 and

w2 for market environment 2 with θ2, where p2 = p∗1
θ2
θ1

and w2 =w∗1. Hence, F̄ d
2 (p2) = F̄ d

1 (p∗1).

Therefore, J̄∗2 ≥ λdTp2F̄
d
2 (p2) − λsTw2F

s (w2) = λdTp∗1
θ2
θ1
F̄ d

1 (p∗1) − λsTw∗1F
s (w∗1) ≥

λdTp∗1F̄
d
1 (p∗1) − λsTw∗1F s (w∗1) = J̄∗1 . The first inequality follows from the property that p2 and

w2 are feasible but not necessarily optimal solutions to the optimization problem (D). The first

equality follows from the definitions of p2 and w2. The second inequality follows from the condition

that θ1 < θ2. Therefore, J̄∗2 ≥ J̄∗1 .

(2) First, we prove that w∗2 ≥w∗1.

For i∈ {1,2}, define Wi (w), Vi (λdTF s
i (w)) and w∗i , F

s,−1
i

(
µ∗i
λsT

)
.

For w ∈
[
0,F s,−1

1

(
min

{
λd

λs

})]
∩
[
0,F s,−1

2

(
min

{
λd

λs

})]
=
[
0,F s,−1

2

(
min

{
λd

λs

})]
, we have

fs2 (w)

F s2 (w)
= θ1

θ2

fs1 (θ1w/θ2)

F s1 (θ1w/θ2)
≥ fs1 (w)

F s1 (w)
, where the inequality follows from the condition θ1 < θ2 and the prop-

erty that
wfs1 (w)

F s1 (w)
is decreasing in w. In addition, we have F s

2 (w) = F s
1

(
θ1
θ2
w
)
≤ F s

1 (w), where the

inequality follows from the condition θ1 < θ2 and the property that F s
1 (w) is increasing in w.
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Therefore, we have

W2 (p)−W1 (p) =

(
V d

(
F̄ d,−1

(
λd

λs
F s

2 (w)

))
−V d

(
F̄ d,−1

(
λd

λs
F s

1 (w)

)))
− (V s

2 (w)−V s
1 (w))≥ 0,

where the inequality follows from the two properties above and Assumption 1. In addition, Assump-

tions 1 and 2 imply that Wi (w) is decreasing in w. Therefore, w∗2 ≥w∗1.

Second, we prove that µ∗2 ≤ µ∗1.

For µ∈
[
0,min

{
λdT,λsT

}]
, we have

V2 (µ)−V1 (µ) = −V s
2

(
F s,−1

2

( µ

λsT

))
+V s

1

(
F s,−1

1

( µ

λsT

))
= −

(
F s,−1

2

( µ

λsT

)
+

µ/λsT

f s2 (F s,−1
2 (µ/λsT ))

)
+

(
F s,−1

1

( µ

λsT

)
+

µ/λsT

f s1 (F s,−1
1 (µ/λsT ))

)
= −θ2

θ1

(
F s,−1

1

( µ

λsT

)
+

µ/λsT

f s1 (F s,−1
1 (µ/λsT ))

)
+

(
F s,−1

1

( µ

λsT

)
+

µ/λsT

f s1 (F s,−1
1 (µ/λsT ))

)
= −

(
θ2

θ1

− 1

)(
F s,−1

1

( µ

λsT

)
+

µ/λsT

f s1 (F s,−1
1 (µ/λsT ))

)
= −

(
θ2

θ1

− 1

)
V s

1

(
F s,−1

1

( µ

λsT

))
≤ 0,

where the inequality follows from the condition that θ1 < θ2. Therefore, µ∗2 ≤ µ∗1.

Third, we prove that p∗2 ≥ p∗1.

The demand-supply balancing condition (1) and the property above that µ∗2 ≤ µ∗1 jointly imply

that p∗2 = F̄ d,−1
(

µ∗2
λdT

)
≥ F̄ d,−1

(
µ∗1
λdT

)
= p∗1.

Finally, we prove that J̄∗2 ≤ J̄∗1 .

Given the optimal prices p∗2 and w∗2 in market environment 2 with θ2, we construct prices p1 and

w1 for market environment 1 with θ1, where p1 = p∗2 and w1 =w∗2
θ1
θ2

. Hence, F s
2 (w2) = F s

1 (w∗1).

Therefore, J̄∗1 ≥ λdTp1F̄
d (p1) − λsTw1F

s
1 (w1) = λdTp∗2F̄

d (p∗2) − λsTw∗2
θ1
θ2
F s

2 (w∗2) ≤

λdTp∗2F̄
d (p∗2) − λsTw∗2F s

2 (w∗2) = J̄∗2 . The first inequality follows from the property that p1 and

w1 are feasible but not necessarily optimal solutions to the optimization problem (D). The first

equality follows from the definitions of p1 and w1. The second inequality follows from the condition

that θ1 < θ2. Therefore, J̄∗2 ≤ J̄∗1 . �




